
1422

Create exciting computer games while
you learn valuable new programming techniques!

B'Y
FRANK
DACOSTA

WRITING
BASIC ADVENTURE

PROGRAMS
FOR THE
TRS-80

BY FRANK DACOSTA

FIRST EDITION

THIRD PRINTING

Printed in the United States of America
content in any manner. without express

Reproduction or publicatio~ of t~eb.t d No liability is assumed with respect to
permission of the publisher, is p~o I I e .
the use of the information herein.

Copyright !Cl 1982 by TAB BOOKS Inc.

Library of Congress Cataloging in Publication Data

DaC~:~i·n~r~r;,'.<s1c adventure programs for the

TRS-80.

Includes index. . 2 Fantasy games-
1. Game~-Dat~~~~~s(~~~p~ter)-Programming.

~a~aa~~~(~~~pg~t!~ program language) I. Title.
11'. Title: Writing B.A.S.l.C. adventure programs

for the TRS-80. 82-5945
GV1469.2.D32 1982 794 AACR2
ISBN o-8306-2422-8
ISBN 0-8306-1422-2 (pbk.)

Cover illustration by Robb Durr.

1

2

3

4

5

6

Contents

Introduction v

Adventure Beneath the Keyboard
What an adventure program is and what you need to create
one.

Mapping a Basement Scenario 6
All of the elements and variables an adventure program
must support, from treasures to travel tables.

Structuring the Program 39
Special techniques to organize the BASIC code, speed up
data access, and reduce memory usage.

Entering the Basement 61
How the program is initialized, how scenes are described,
and how commands are input and executed.

Traveling in the Scenario 81
Motion commands, obstacles, and the use of magi,c words
for travel in the basement.

Affecting the Scenario 94
How doors are opened and locked, and how items can be
carried by the adventurer.

109
7 Battling the Enemy th labyrinth the weapons that slay

Creatures that roam e , . fi. ht
th and the commands with which to ig . em,

120
8 ~~~!~;~;;~:e~~ame status on tape f~; fa:~ ~!a~:C~-

calling up the current score, and how to J?ZV p g
fully.

9 Basements and Beasties: The listing t .
The entire BASIC code for an a~venture program tha is

structured for rapid response to input commands.

132

144
10 Improving the Progra~ . of machine-

f :~;:~:ee~:~~~ti~C:t !07:~r:~~d ~;e~s~nd less mem-

ory.

Graphic Adventures: The Concepts
168

11
How they compare to text-oriented adven~:~s~~~ !a:::Z~
d. pl as well as command formats, ~
c~s, a:~d internally mapping the graphic maze.

Graphic Adventures: The Segments .
184

12 . if h p m the Executive,
Line-by-line explanation: o t e rogr:z '
and all related subroutines and han ers.

Mazies and Crazies: The listing .
206

13
The complete BASIC listing, ready to type in and run.

220
summary

221
Index

Introduction

If you are an adventurer who can find your way out of the most
sophisticated mazes, and if you have overcome fantastic threats to
win priceless treasures, you are a serious computer adventurer.
You have probably thought of writing your own adventure program.

You can begin in BASIC. This book will help you create an
expert adventure-with a TRS-80 Model I or III microcomputer,
just 16K memory, and a tape system. You need some instruction and
s·ome examples, which this book provides. It uses two example
programs, Basements and Beasties and Mazies and Crazies.
Their organization-from execution loops, to subroutines, to han­
dlers, to commands-is explained in detail. You will learn how to
access machine-language subroutines from BASIC to increase the
speed of your BASIC adventures. You will learn a variety of ways to
access arrays and to store information. You will also learn­
painlessly-the logical discipline of structured programming.

Everything you learn from Writing BASIC Adventure Pro­
grams will increase your skill as an adventure writer-and inspire
your imagination.

v

Other TAB Books by the author

No. 1141 How to build Your Own Working Robot Pet

vi

Chapter 1

Adventure Beneath the Keyboard

Board game manufacturers made an unusual discovery some years
ago. They discovered that there was a market for complex role­
playing games. Not content merely to manipulate a token around a
board, players wanted games they could "step into" to exercise
their imaginative and strategic skills. A new breed of board games
resulted, and a player can now do anything from recreating historic
battles to fighting dragons and underworld armies.

Then the age of home computing was upon us, and the imagina­
tive gaming enthusiasts predicted that an alliance between the two
fields would not be far off. Imaginative or simulative gaming is, after
all, complex, and there are times in which the sheer logistics of
playing the game hinder the effectiveness of the simulation. But, if a
microcomputer could be used to keep score, manipulate parts,
descriDe situations ... why, the player could play instead of work. It
seemed an ideal union.

This sort of union has taken place, but the direction it has taken
has been shaped by one other factor: the existence of imaginative
gaming programs for larger computers. It was quite a few years ago
that Crowther and Woods first cranked out their Adventure pro­
gram, an amusing simulation placing the player in a danger-filled
cavern, fighting troll and snake, dragon and dwarf, as he searches for
treasure. This prototype adventure was written for the PDP-10 and
~as a popular pastime on university campuses long before its
little-cousin microcomputer version became available.

1

Now you can !eat through popular computing magazines and
find many adventure and fantasy simulation programs for the home
computer-some like the original Adventure, others with new
twists. Some are in BASIC, since most home computers at present
have ROM-resident BASIC; others are quick, efficient machine­
language works.

It occurred to me, however, that no one has taken the time to
explain how these various adventure programs work-the pro­
gramming aspect, that is-and how you might approach the task of
constructing one yourself. It is this consideration that this book
studies. To simplify the teaching process this book deals with
writing an adventure program in BASIC, as opposed to assembly
language. This should hold your interest, since all sorts of inventive
maneuvers become necessary to make bulky BASIC perform effi­
ciently enough for such a complex type of program.

In this book I use the generic term "adventure" program to
refer to any program having the same general play structure and
objectives as Crowther and Woods' original offering. My explana­
tions and examples are not taken from the actual code of any
commercially available programs. Rather, as you will see, a whole
new game program, Basements and Beasties, has been written
specifically for this book. My aim is to teach programming skills, not
to prevent other hardworking programmers from selling their fine
creations.

As an additional example, a second adventure program, called
Mazies and Crazies, can be found in Chapters 11 through 13. This
program is a somewhat different brand of game, making full use of
the TRS-80 graphics capabilities to produce a real-time adventure
experience.

WHAT IS AN ADVENTURE PROGRAM?
In its simplest form an adventure program is like a travel folder

or a very descriptive map. The player is dropped into a scenario,
such as a gloomy dungeon, a steamy rain-forest, or a haunted
mansion, and is allowed to move about. The computer describes, in
a short paragraph, what the space looks like. (Some recent pro­
grams actually draw a map, but let's keep it simple.) The size of the
scenario in terms of number of rooms or locations is limited primar­
ily by the available memory of the home computer.

In addition to the descriptive function of the adventure pro­
gram, the player has a means of communicating with the program to
affect his simulated environment. This is accomplished by entering

2

T
YOU ARE STANDING IN AN OPEN FIELD
HERE IS A JEWEL HERE'

A RAGING BULL PAWS THE GROUND RE
TO CHARGE! · ADY

•TAKE JEWEL
OKAY

NORTH

HERE IS A SMALL BARN. OLD ANO MUSTY

• ENTER

THE DOOR IS LOCKEQi

Fig. 1-1. Sample run of a hypoth !' 1 e ica adventure program.

simple one- or two-word command h
the program's limited vocabular ~/ases that a~e recognized by
phrases the player can move

0
Y ig. 1-1). With a handful of

interact with the scenario i~ i:;:n and close doors, take objects, or
Th 1 o er ways.

. e goa of the game is for the 1 .
articles of worth, "treasures "h. dd p ayer to find and keep various
is hindered in his attempt b, m1 en about the artificial world. He
dragons, and spiders-or pe~ha onstrous creatu~es, such as trolls,
marauding Huns. The player ca:~. m?re co~v~~t1onal enemies like
~e can also be resurrected to co . ie in th~ f1ctit10u_s world; usually,
tJal point-loss The ga . ntmue playing, albeit with a subs tan
vanquished and all treamse is not really over until all enemies ar~

F. ures are won
. igure 1-2 gives a sample f th
interchange you can expect in ~ . e sort of player/computer
that the program d a c ass1c adventure program Note
I oes not understand ll . .

c everer the command . t a possible inputs, but the
in erpreter, the better the program.

WHAT YOU NEED?

Adventure programs
Pro~ramming. Home are one of the _last bastions of commercial
their own space war c~mpu:er ~nthus!asts have already written
~rograms can also bec~mme~, w;th a little instruction adventure
esign computerized lab e i~~P e to handle. Relax. You, too, can

Scaly, .green things! yr es and adventures complete with

First, you'll need a h
assumption that you own a ;~~ ~~mputer. This book makes the

a JO ack TRS-80 Model I or III with

3

SCENARIO

0
0
0
0
0

DESCRIPTIONS PROGRAM

PLAYER COMMAND PHRASES

F 1-2 Adventure program /player interaction.

ig. . f these units operate under Microsoft
16K bytes of memory. Both.a . this book uses this particular
BASIC, and all programmmg. m. I . this book can be applied to
BASIC. However almost any pnnc1p ~ ll~he programs themselves
other BASIC home com?uters'. anon! minor changes.
should run on other machines ~{~f th: program, a cassette ta~e

Also, for storage and .reca d My target reader for this
(rather than disk~ system is ~ssume .with a minimal system, the
book, obviously, is the TRS-8f thownertras How much can be done

th t ot afford all o e ex ·
owner a cann chine? You'll soon see!
with only 16K and a tape i:na . ~· n You probably have more

Second, you'll ne~d imaf~a i~y.need to exercise it. Three­
imagination than you thmk an simp ogramming is dreaming up
quarters of the fun of adve?t~r~sp~f the scenario, monsters, and
bizarre and unexpected descn~ ~ Tolkien, Anne McCaffrey, and
opponents. Read books by J · th. · 1 and look over some fantasy
C S Lewis. Read some old my o og~ 'II et

· · · d t the ideas you g ·
calendars; you'll be surpnse a d amples This book provides

Finally, you'll need ~o~e goo ~=w adve~ture program called
them. I provide the ~11 h~m~ f~~;ter describes some detail in the
Basements and Beasties. ac cd . some options that you may
c~nstruction of this pro~i~ i~ro~1:~~ry program will play only a
wish to take. No ?oubt, h more complex adventure pro­foundational part m your own, muc
gram.

4

WHAT WILL YOU LEARN?

Games are fun, but life is more than just fun and games. So
there are some special programming techniques that you'll gain by
the end of this exercise; you'll never feel like you are studying in the
process!

For one thing, you'll learn the wonders of structured program­
ming. That sounds formidable, but don't worry. All it means is that
you'll experience the joy ~f knowin? wher~ to find a given sub­
routine in a long program without havmg to pick the whole program
apart line by line. By the end of the book, you'll wish you had written
all of your personal programs with some structure. It's easier than
you think. ancidentally, please permit me the use of the term
"structured programming" in a much more general, nontechnical
sense than is usually meant. Those students of the more formal
definition might otherwise wonder if I know what I'm talking about
at all!)

You'll also learn many methods of memory economy. Adventure
programs are, to put it mildly, memory hogs. They eat bytes with
long text descriptions, vocabulary lists, and map tables. Remember
that the earliest were for big computers. If you have disks and disks
to spare, memory is no problem. But, we're writing for a tape-based
16K TRS-80. You'll learn how to conserve and still get what you want.

One final thing you'll learn a lot about is man/machine interface.
By this I mean how well your program understands inputs from the
keyboard and how well it responds. You'll get an education in how to
make a simple machine seem far more intelligent that it really is.
You'll learn to tailor your program to enhance that link between the
scenario and the participant-the sense that the player is really
there in that maze, desert, burning fort, or Martian dome.

If by now I have sold you on the benefits of writing an adventure
Program, then you're ready. Grab a pencil and paper, switch on your
computer, and get ready to make the imaginative leap.

5

Chapter 2

Mapping a Basement Scenario

The rimary function of an adventure program is to_ surround t~e
play:r with an artificial world, a preprogra~med en~1ro~m~n~ ~~~

hich he can interact. This substitute environment is e ec e f
w . . d t · d by the presence o
series of textual descnpt10ns an s_us ai~~ . l l . called a
objects that can be lying about. This art1f1C1a rea m is

scena;~~ type of scenario depends on. th~ imagination of the pro-
ammer The original , classic scenano is the underworld cave~

gr . . t i·n which the player fights mythical beasts to obtain
env1ronmen , . 1 d t e The
treasures-a medieval land of magic, swordp ay '. an s on .
sample program in this book, Basements an~ Beasties, i:nakes ~e~~

h
. There are many other possible scenanos, as a

sue a scenano. ke them. It all
tional or as bizarre as the programm~r car~s to ma . . it
depends on your ability to write creatively; if you can descnbe it,

can be a scenario. . · .
For instance, consider the following possible scenanos. e

•The player is trapped in a haunted mansi~n. He must fi~d ~l ~i:of
treasures hidden in the musty house, while ghosts an g o
various sorts hide behind every door. . d ll f the
eThe player is lost in a zoo after closing hours-an a

0
d

animals are loose. He must face hungr~ lio~s, muscular apes, an
an ostriches as he searches for vanous items. . . 11 .f:e player is breaking into a top-secret government mstall~tio t
after dark. He must find a number of confidential documents an no

6

be caught or killed by the many security devices active on the

premises.
•The player has crash-landed on an alien planet. He must avoid
attacks from the hostile natives while attempting to locate impor­
tant pieces from his ship's engine, pieces that were scattered on

impact.
As you can see, an adventure scenario may be set just about

anywhere-as long as there are three parameters active. The first
parameter is the background itself, a large environment with room
to move about. The second is a set of objects to pursue and locate as
the primary goal of the game. The third is a host of obstacles, both
living (such as enemies to fight) and inanimate (such as locked
doors) to add to the difficulty of the game.

The first of these three factors must be designed before work
on the program can progress very far; this chapter deals with
creation of the basic scenario. The second and third parameters are
handled in the next chapter.

The sample scenario I use is the underground cavern of Base­
ments and Beasties. Your first task is to learn how to map the
basement.

START WITH ROOMS TO SPARE
A scenario, for example, our basement, requires the illusion of

size. This is accomplished by dividing the scenario into individual
units called rooms. These may correspond to actual rooms in a
building, separate caverns in a labyrinth, or clearings in a forest,
depending on the type of scenario. The adventure program as­
sociates each of these rooms with a descriptive paragraph and
u_sually with a short name of two or three words for easy identifica­
tion. The program provides information about what objects or crea­
tures (if any) can be present in the room when the player enters it.
The room is defined uniquely by a preprogrammed description of
entrances and exits, that is , directions in which the player must
move to reach or leave the room.
h" Once_ the programmer has the basic idea and sets out to create
~s sce~an?, he starts with a set of undescribed, unspecified rooms.

1
. P~ratmg m BASIC with only 16K of user RAM, you are severely
1mit d · · e m this regard. For the sake of demonstration, Basements

and Beasties consists of only twenty rooms. (Some refined
methodology and machine language can more than double this
~u~ber.) With these blank rooms before him, the programmer
egms to weave a web of pathways between them, until every room

7

bears a spatial relationship to the others. In other words, he creates
a map of the scenario.

This map of pathways is based on the notation of motion most
commonly used in adventure programs and that is compass-point
travel. When the player wishes to move, ne may cnoose to go north,
south, east, or west. He may additionally move in one of the
diagonal directions, such as northeast or southwest. Finally, up and
down are also possible directions. This provides ten explicit travel
choices for the player. In mapping a room's relationship to other
rooms, then, the programmer must define what will happen if the
player tries each of these directions while in a given room.

Figure 2-1 shows a diagram representing the possible move­
ment between four rooms. Use a large sheet of graph paper to draw
your own map. (A standard 20-by-28-inch sheet of desk blotter
paper is great for this.) Then, using a compass, or even better, a
plastic template available from an office supply store, draw every
room on the sheet. They need not bear any relationship to each
other this early in the task-they are simply spaced evenly and in
several rows. The map for Basements and Beasties, for example,
consists of five rows of four rooms each, for 20 rooms total. Leave
plenty of margin between rooms to allow for connecting lines to be
drawn from circle to circle.

GETIING FROM ROOM TO ROOM
Think a moment about what happens when you move about

from room to room. As you stand in a room in your own house, there
are basically three things that can happen if you choose to move in a
given direction. These are:

•You may end up in another room. If you go north, and there is a
north door, you will find yourself in a new room.
•You may move about in the same room. If you are in a large room,
you may go north for quite a while and find that you are still in the
same room.
•You may go nowhere. If you go east, you may run into a wall.
Ordinarily, you cannot go up or down, either.

Now, imagine that for each room you have a table listing all ten
possible directions the player could move. (You can do better than
imagine; look at Fig. 2-2.) In each empty space in the table fill in the
resulting location of the move. That is, the table tells what room the
player will be in if he moves in a direction. Such a device can bt
called a travel table.

8

DOOR

Fig. 2·1. Symbology for the scenario map.

R
0
p
E

. Now, let's look at the three possibilities again. If the player is
tn room l, and a north move takes him to room 2 . .
the space next to NORTH Th. . . 'you may wnte 2 m
seen . . . is is easily represented on your
. . ar10 map; simply draw a line from room 1 to room 2 and utan N
~~side the room 1 circle right at the line. This symbolizes :at if the
(Ra;~~~es north,. h~ exits the room and ends up in room 2.
that s thg works s1mllarly. An S by that line in room 2 indicates

ou ward travel returns the player to room 1)
ance ~e~t, c~nsi?er option two. In order to give a ro~m the appear­
no exit :~ it ~ght be desirable to make certain directions result in
like forest tr su:ly endless travel. (This is good for outdoor rooms
this will al s, b ac ess deserts, etc. When you consider mazes later

so e useful) In such a ca t h ' beneath the dir . . se, en er t e same room number
dering in roo ection wor~. If eastward travel leaves a player wan­
designated b m \place a 1 tn that space. On the scenario map this is
center of the ro~ ooped arr?w~ as shown in Fig. 2-1. The E in the
no real p ped arrow mdicates that eastward motion results in

No r~gress. The player remains in the same large room
w 1or the fi al · ' · direction .th n option. If a player cannot go in a given

special o~=~er beail~aubsle a .wall prevents him or because there is no
g av a e (m the case of UP and DOWN) thi · , S IS

9

z
~ 00 ""1 00 LO
0
0

a.. 0 010 C") coo ::::>

~ ,..... 0 ,..... C\J 01"-z

t-CJ) ,..... 0 ,..... a; C\J LO w
~

~ CJ) 0 ,..... ,..... 0 0 LO

w J: _J t-Cl) ::::> 0 ,..... 0 LO C")O <t 0 t-
_J

CJ)
w
>
<t w a: C") -.:t" (]) 0 00 t- CJ)

t-CJ)
,..... LO (]) 0 c.o -.:t" <t ,..... w

w
C\J (]) 0 0 c.o 0 z

I
t-a: C\J ,..._ 1 i.r: ,.....

-.:t-0 0 ,..... ,.....
z

t- ...- C\JC")'<:f"LOCD

as~ ~~~~~~
CJ)0 000000
WO 000000
a: a: a: a: a: a: a: a:
0....

10

c:
0 n
~

"O
"O s
c.
E s
iii

-

. dicated by entering a zero in the respective space. There is no
m m o· rather, the zero alerts the program of an attempt to travel in
roo' Th db·· · illegal direction. e program respon s y pnntmg a warnmg
:essage, such as, "You cannot go that way!" The player stays in the
room as before. In the sc_enario map this is the unsp~citied case; that
is, any directio~ not ~pecified by some ?ther symbol 1s assum~d to be
an illegal direction with a value of zero m the travel table. In Fig. 2-1,
for instance, attempted motion from the closet going north will result
in no final motion and a warning message.

There is, in fact, a fourth option, which is a special case. What
happens, for example, if a westward direction leads the player off the
edge of a precipice and results in his death amid the rocks below?
Death is not a destination room, and yet it certainly represents more
than endless motion or an illegal direction. Later, you'll see that a
special number can be assigned to such a death (a non-room number
of some sort, larger than the highest room number in the scenario) as
an indicator to the program. When the program encounters that
number in the travel table, it knows to assume that the player died
(the clod!) and must be resurrected if further play is desired. In
Basements and Beasties, for example, the largest room number is
20; so the number 22 represents death by fire, and 23 represents
death by falling. There is room for expansion.

CREATING A COMPLEX PUZZLE

Figure 2-3 shows the complete travel table for Basements and
Beasties. When you actually write the program in BASIC, this table
is resident as a series of data statements, one data statement per
line. It would be helpful, then, if you actually created a form like this
one, with as many lines as there are rooms in your scenario, and with
ten columns for motion.

Wait a moment! Aren't there supposed to be only ten columns,
one for each of the ten possible directions of travel? Why is there an
eleventh column, marked "Default?" Well, as you will see when you
tackle the problem of travel-command input, there are times when a
playe~ is not explicit enough about his wishes. What if he types the
crypa_c "GO IN," or "JUMP?" What direction do they imply? For
such inputs you must decide a direction in advance, one of the
;tand87d ten, that such an input command implies. This eleventh
actor IS called the default direction .

In the eleventh column you do not put a room number. Rather,
~~ enter a direction number from 0 to 9; wherein 0 refers to

RTH, 1 refers to NORTHEAST, and so on. It is up to you to

11

.....

I\
)

PR
E

SE
N

T

N

N
E

E

SE

s
SW

w

 I
N

W

u
D

D

E
-

RO
O

M

F
A

U
LT

1
1

2
2

1
1

1
~

1
0

3
9

2
2

2
2

2
2

1
1

2
0

8
9

3
0

0
4

10

0
0

0
0

1
0

8

4
0

5
0

0
11

0

3
0

0
0

4

5
0

0
0

0
0

4
0

0
0

0
5

6
0

0
0

12

0
0

0
0

0
23

3

7
0

0
0

14

0
0

0
0

0
0

3

8
0

0
0

0
14

0

0
0

2
0

8

9
9

0
16

15

9

0
0

9
0

0
7

\

I
10

23

23

23

16

17

17

17

3

0
17

4

11

4
0

0
0

0
0

0
0

0
0

0

12

0
0

13

0
18

0

0
6

0
0

7

13

0
0

0
0

0
0

12

0
0

0
6

14

8
0

0
0

19

0
0

7
0

19

4

15

15

0
15

0

15

16

9
0

0
0

0
16

15

16

16

0

16

0
10

9

0
0

1

17

18

18

18

18

18

18

18

18

18

18

0

18

12

19

0
0

0
0

0
0

0
0

0
19

14

0

0
0

0
18

0

0
14

20

9

2
0

22

22

22

22

22

2

2

22

22

19

22

8

~

F
ig

. 2
-3

. C
o

m
p

le
te

 t
ra

ve
l

ta
bl

e
fo

r
B

as
em

en
ts

 a
n

d
 B

ea
st

ie
s.

second-guess the player about the most likely inexplicit command he
' will enter. For instance, in room 1, there is a hole in the ground. If

the player types "JUMP," the most likely defa~lt resp~nse is
DOWN, or direction 9. Much later you'll see how this works~ fu.ll.

Note that it isn't absolutely necessary to know the descnption
of all of the rooms in the scenario before you weave the web between
them. You may find it helpful, however, and if so, you may ~ant ~o
read the section on room descriptions that appears later m this
chapter. The present section deals with elements of the web-the
structure and relationships that make for an interesting and complex
puzzle. . .

There are four factors that go into a clever scenano labyrmth.
These are a home base room, bottlenecking, mazes, and obstacles.
Let's consider these one by one.

The first room to create for the scenario is known as home base.
This is usually a room that is separate or outside of the_ bulk.of the
scenario. It serves several purposes. The program begms with the
player at home base; it is a launching-point for his adventure. Home
base is also a place of refuge and a place for safe storage of treasures.
The program scores the player on the basis of how many treasures
he safely conveys back to home base. This ~o~m may_ corr~spond,
say, to a camp in a hostile jungle, a spaceship m an alien city, o~ a
bathyscaphe in an undersea scenario. In Basements and Beasties
home base is a rock pit in which the player, an adventurous ar­
chaeologist, has broken through to an underground passage. The
home base room is room 1.

Home base represents one access-point to a large closed net­
work of rooms. It is traditional, but by no means necessary, to have
at least one more room that provides another access to the bulk of
the scenario. Basements and Beasties designates room 2 as an area
of ruins with a steel grate set in the rocky floor below-obviously,
another doorway into the underworld. A player can travel freely
between room 1 and 2, but most motion occurs through the web of
rooms underground. . .

You'll note from the travel table that most of the motion options
for rooms 1and2 are looped arrows. The purpose of this is to produce
the illusion of size. A player can go a long way in room 2 and still be
lost in the ruins. Only a few specific directions, however, lead to the
pit home-base room 1. This is a good device to use in outdoor
sit~ations. Note, too, there are almost no illegal directions (up is ~e
only one), since in a wide-open outdoor en~onment a person 5

travel is unrestricted. The zero value finds its use much more

14

naturally in a closed environment, such as a building or a series of
caverns.

THE BOTTLENECK PRINCIPLE

The best way to heighten interest in a scenario is to limit the
player's options as he moves. That is, he must be made to travel with
the maximum effort to see the rooms he desires. One way to do this
is by building sections of the web in branches, as shown in Fig. 2-4.
Once in room A the player has to choose what avenue to explore.
Once the choice is made, the player must return to room A before he
can examine a different avenue. This is a good example of
bottlenecking, forcing a player's motion through a selected room.
The end result of several such bottlenecks is a sort of segmented
scenario with the ever-present possibility of the player finding new
sections previously unexplored.

Another method of bottlenecking is to provide one-way paths.
This is a situation in which a player traveling from room A to room B
cannot get back to room A by the same path; he is forced to take a
more circuitous route. In such a situation the scenario map notation
leaves out a return direction on the path line contacting room B. In
0e travel table a zero takes the place of a return value-or perhaps a
different room altogether-as long as no direct return path to room
A exists.

Such situations can have various explanations in a scenario
description. Perhaps room A is high above room B, and the player

Fig. 2-4 De .
· monstrat1on of room layout to produce the bottleneck effect.

15

could jump down to B, but he cannot climb back up. Perhaps rooms A
and B are at opposite ends of a department store escalator. Base­
ments and Beasties has a ledge with a stream far below. You can
jump into the river and survive; but you'll never get back up to the
ledge. You ge t the picture: one way travel only.

A more subtle sort of bottleneck is a disguised path. The
strength of this sort of method lies in your ability as a describer.
Ordinarily, the room description paragraph tells what doorways or
paths are immediately visible around the player. These described
doors correspond to the travel table pathways. Nothing says that
you have to tell everything, though! Perhaps if the player walks right
into those bushes to the north, he'll find a clearing (a new room) that
can't be seen. Maybe that south wall isn't as solid as it looks! There
may be a waterfall to the east-but, lo and behold, look what happens
when you walk right into the water! The idea is to hint at possible
secret doors and hope that you'll keep the player in the dark as long
as possible.

LOST IN THE MAZE
An adventure program is hardly complete without a maze. Of

course, the entire scenario is a maze in one sense of the word, but
let's use the term in a narrower sense. An adventure maze is a set of
rooms with identical or very similar descriptive paragraphs, such
that it is very easy for the player to get hopelessly lost among them.
When the player is in such a room, he may choose to move in a
direction. If the description of his next room is "YOU ARE LOST IN
A MAZE," he wonders, "Am I in a different maze or the same one?"
It doesn't take many maze rooms to make an effective mantrap!

Figure 2-5 shows a small three-room maze, identical to the one
used in Basements and Beasties. There are three basic elements to
a set of maze rooms. I have already stated the first: nondistinctive
descriptions. The second is a characteristic that need not be re­
stricted to mazes: it is the use of nonrnatching directions in the travel
table. Notice, for instance, that a player moves from maze A to maze
C by traveling east, but he returns by going northwest, not west.
This pattern is carried on throughout the maze, such that the player
can never be certain of returning to a given room. You can imagine
the frustration, can't you?

The third element is the extensive use of looped-arrow paths.
Notice that every maze room has three looped paths. The probability
is high that a player can make several moves in several directions,
thinking that he is visiting entirely new rooms-while in truth he is

16

NARROW
LEDGE

Fig. 2-5. A three-room maze with only one exit.

stuck where he is! The effective use of these three factors can
assure player confusion without very many rooms at all.

The stan~ard method used by an experienced adventurer to get
out of. a maze. is to drop an object he is carrying, then move. If the
~oom is descnbed as containing his dropped object, he knows that it
is the ~arne room and that he has not yet left it. In this manner, he can
effectively tag each room with an object (as long as he has things to
~p!) to find hi~ way .around. The average adventurer, however,
a ost never tries this the first time in the maze Instead he
ahttempts to run blindly, dashing about randomly u~til by sheer
c ance he breaks out!

THOSE ANNOYING OBSTACLES!
Let' t k 1

it 1 k ~ a ea ook at the finished Basements and Beasties map as
ro~o s With all the bottlenecks and flourishes (Fig. 2-6). Ignore the
som~ ~:~es for t~~ moment (I'll describe them later) and notice

F . e remairung features of the web.
death or.~st~ce, remember what I said about directions that lead to
"Bas~mei ter,,m fire or by falling. There are three such rooms in
22 re en s, as you can easily tell from the travel table Recall that

Presents a fi d th ·
Rooms 6 10

ery ea and 23 represents death by falling.
result ai' ' and 20 have one of these two numbers as a travel-

v ue Lo k
· o , now, at how they are represented on the

17

I HOME BASE I

Fig. 2-6. The complete scenario map for Basements and Beasties.

scenario map. A simple arrow marking the travel direction points toi
word describing the death: FIRE or FALL.

Realize, please, the manner in which this represents an obsta·
cle. You need not tell the player that a direction is fatal; a hint i:
enough. Let him make the foolish, presumptious error of testing it
Room 10 is a good example. The description makes both the strea~

18

2

to the west d th
Player tries an e chasm to the east sound equally deadly. If the
scenario! Thi~e strea~, he finds a whole different half to the
adventu .t~mpts him to suppose that perhaps there is more

re awaitm hi · h
Death is g ~ m t e chasm. He is wrong-dead wrong.

resurrected not final m an advent_ure pro~am; the player can be
far from h ' but usually he loses pomts. He 1s revived at home base

w ere he died. That means he must make up the distance.'

19

There is, however, an entire class of special objects called
obstacles whose sole purpose for existence is to impede the Pro.
gress of ~he adventurer. The adventure program maintains a current
list of the status of these obstacles, indicating what pathways they
obstruct and whether they are still present. This list is, ordinarily
enough, called an obstacle list. It is an array of variables maintained
by the adventure program in BASIC. .

There are two specific types of obstacles. The first type is the
living obstacle. These are usually monsters or beasts of some sort
that guard a specific room doorway. They usually are overco~e by
some kind of battle with a given weapon. The second type is the
inanimate obstacle. These are things like doors and steel grates.
They are removed as obstructions by opening or unlocking with a
key. The value of these obstacles as frustrations is ~creased by the
need of special objects-weapons, keys-to deal ~th them. If, ~or
example, that all-important key is somewhere deep m the scenano,
there are several rooms and treasures that the player never sees
until he can find the key. Play-time and interest can be extended by
such devices.

Let's study the inanimate obstacles first, since they are the
most complex to use. On the Basements and Beasties scenario map,
notice that there are three such obstacles: a steel grate separates
rooms 2 and 8, a door stands between rooms 6 and 12 and another
door divides rooms 4 and 11. .

In the case of an ordinary door, there are really three possible
states. A door or grate may be closed-and-locked, closed-and­
unlocked or open-and-unlocked. It simplifies handling such obsta­
cles if y~u reduce the number of possibilities to. two. T?us, at
obstacle is either passable or nonpassable, a simple either-or
proposition. The way to visualize this in the sce?ario is ~~ treat al
doors and gates as if they are in one of two possible positions. For
programming A can represent closed and locked and nonpassablt
doors; B can represent unlocked and freely opened and passabll
doors. . nb

This simplification affects the realism of the sce~ano. o. ·
mildly, but it reduces the complexity of obstacle-handling s1~
cantly. If the player tries to go in a direction blocked by a door with~
status ofA, he is prohibited by a message that says, "THE ?O?R'·
CLOSED AND LOCKED." If ~e tries to open o~ unlock 1t witho~
having a key, the program Slmply responds, YOU HA VE N

11 KEY!" If he does have the key, the p~ogra~ changes the door sta~
to B and informs the player by saymg, WITH A CREAK, T
DOOR SWINGS OPEN." Ever after, an attempt to move in thl

20

direction is successful-the door is ignored as an obstacle, because
'ts status is B. The player can shut the door and return the obstacle
~tatus to A. A message proclaims, "THE DOOR SWINGS SHUT
AND THE LOCK CATCHES," and any progress in that direction is
subsequently prohibited.

It is obvious that such an obstacle cannot simply be treated as if
it were an object sitting in a room. For a door opens onto two rooms;
if you open the door :Vhil~ in ~oom A, that same door must now be
open if you are standing m ad1acent room B. For every inanimate,
door-type obstacle then, there needs to be two status numbers: one
for each of two rooms affected. The program must simultaneously
change the status of both numbers if that door is opened or shut.

CREATING OBSTACLE-LIST ENTRIES

Let's see how the obstacle list and its various entries are
created to support the obstacles in an adventure program. Doing so
is one of the tougher tricks discussed in this book, so read carefully.

For each door there are two distinct sets of status information
that are necessary for the program to properly simulate the obstacle.
The following pieces of information are needed:

•What room is affected? This number, naturally, is A for room A and
B for room B, the two rooms divided by the door.
•What direction is obstructed? Perhaps the door is on the north wall
of room A and the south wall of room B. A direction number of Oto 9
for each room specifies the direction of motion impeded.
•What kind of obstacle is it? This is primarily to tell the program
what messages to print, for example, whether to print "THE DOOR
IS OPEN" or "THE GRATE IS OPEN." This number is, of course,
the same for both rooms affected.
•Is the obstacle presently passable? This is the actual status indi­
~ator that tells whether or not the door is closed and locked. Again, it
is always the same for both rooms affected.

li Since this obstacle-status data is arranged in a list (the obstacle
st), there must be one more piece of information. There must be a

numb t llin
t er e g the program where the other status information of the
dwtao sets is located in the list. After all, once a door is opened the
a ne d t b '

st e s o e changed not only for the room in which the player
st a~ds'. but also for the adjacent room. The program can find the
to a~s information for the present room easily, but where is the mate
• s block of data?

st~~er~l is the companion status data? For simplicity, the pair of 8
ocks are always placed next to each other in the obstacle list.

21

But, if you're looking at one, is the other one right after it or before
it? One simple number can answer that easily by representing
"before" or "after." This data is the opposite for the companion
block. The first of the pair points to its companion as following,
"after;" the second to its mate, "before."

You've just been through a difficult concept, so let's review and
simplify a bit. For each door-type obstacle, two rooms are affected.
For each of the two rooms, there must be an entry in the obstacle
list. This entry must somehow convey five facts: the room number,
the direction blocked by the obstacle, the kind of obstacle, the status
of the obstacle, and the location of the other entry in the list.

All of these facts can be represented by numbers: two sets of
five numbers.

There is fortunately a simpler, more compact way to handle all
of these numbers. You can condense all five of these relatively small
numbers into one large number. How? Because you can break a
large integer into its many digits and allot one or two digits for each
piece of data. This is extremely helpful in saving memory space and
comes in handy in several places throughout an adventure program.

Figure 2-7 shows the standard format for an integer in Mi­
crosoft BASIC. Such an integer has a range of from -32768 to
+32767 inclusive. That is, the largest integer you can create has five
digits and a sign of plus or minus. As long as the fifth digit is no larger
than 3, and as long as you are careful about the fourth digit, you can

MOST POSITIVE INTEGER

MOST NEGATIVE INTEGER

Fig. 2-7. How a standard Microsoft BASIC integer can be broken down for
efficient data storage.

22

SIGN DIGIT DIGIT DIGIT DIGIT FIVE FOUR
DIGIT

THREE TWO ONE

I I

Lv--J l +NONPASSABLE I I ROOM NUMB - PASSABLE
OBSTACLE

(1-20)

/ TYPE
1=CREATURE

DIRECTION 2=GRATE
LOCATION OF MATING 3=DOOR BLOCKED
OBSTACLE LIST ENTRY (0-9)

ER

O=PREVIOUS ENTRY
1=N0 MATING ENTRY
2=NEXT ENTRY

Fig. 2-8. Assigning significance to integer digits t d .
entry. 0 pro uce an obstacle list

deal with the individual digits and assign an . nifi
them that you need. Y s1g cance or use to

Figure 2-8 demonstrates how this method (I . .
analysis) is used to assemble an entry for the obstacle licsallt FI~ int teger
need a room nu b R · Ifs , you
th 1:1 er. oom numbers can be as large as 20 (even if

ere are more m your p .
The point . 'II rogram, you are not likely to exceed 99)

is, you need two diaits of · t ·
number The fir t d ~'. an m eger to tell the room

N
· , s an second digits will do.

ext, you II need the dir ti bl k
ten possible direction . th :~ on oc ed. ~here are, remember,
You can assi s. e e1g t compass-pomts plus up and down
digit 3. The ~~ese ?~mbers of 0 through 9 and plug the data int~
arbitrarily . nh digit can represent the obstacle type if you
location of ~!1gn num~ers .from 0 to 9 to them. Digit 5 poin;s to the
entry is beforec~:::paruon list entry (arbitrarily, a 0 means the other

p · all s one, and 2 means it is after).
· in y, how can you t II if th d ·

sign be the statu . d' e . ~ oor is open or closed? Let the
Passable (closed)~ it icat?r. ~ I~ is positive, the obstacle is non-

The b ' negative, it is passable (open). Useful right:>
o stacle Ii t- I . . ' ·

cl~s are concemed~c at . east as far ~s mm:imate, doorlike obsta-
Pair representin a . ons1sts of .a senes of integers in pairs, each
Basements and i gi~en door. Figure 2-9 shows this portion of the
blocks are dos d :;sties obstacle list as it appears when all of the

e . ake a few moments and try to understand what

23

ENTRY
22902 1

ENTRY 2808 2
ENTRY 23306

3
ENTRY 3712 4
ENTRY 23404 5
ENTRY 3011 6 ._.___

Fig. 2-9. The first portion of the obstacle list.

each digit represents. For instance, the first list entry is 22902. You
should be able to see that:

•The affected room is room 2.
•The blocked direction is direction 9 (DOW'N).
•The obstacle is type 2 (grate).
•The companion-list entry is after this one which 2 indi~at.es.
•The grate is closed and locked, which a positive value mdicates.

Walk through entry 2 the same way. Remember that~ a digit
value is zero, it can vanish altogether-at least on surface mspec­
tion. In entry 2 the value of the fifth digit is zero; so the entry appears
as a four-digit number. Don't worry, think of it as a five-digit number
with an invisible, leading zero.

How could an adventure program use the obstacle list to pro­
cess obstructions? Let's say the player types, "CLOSE DOOR."
The program knows two pieces of information: it knows the room
where the player is (it always keeps track of this), and it knows that
the player wants to close a door, a type 3 obstacle. The program
proceeds to hunt through the list, looking for an entry that matches
these two criteria. Having found it, the program can set the value of
that entry as positive, closing the door for that room. Using ~he fifth
digit the program knows where to look fo~ the second e~t~y 1t need:
to change. Once found, the second entry 1s also set pos1t1ve-and
message is printed saying, "THE DOOR SWINGS SHUT AND THE
LOCK CATCHES."

There are all sorts of peripheral factors to check, of course·
What if the door was already closed? The program could tell by the
sign of the list entries and would say, "IT'S ALREADY SHUT!" The
list entries are the key to the seeming intelligence of the program·

24

One more thing needs to be said about the obstacle list. Since
the entries require upd~ting from time to time, the list cannot simply
be a series of numbers ma DATA line in BASIC. The original values
may start off in DATA statements, but these must be loaded into a
variable array, so that the individual elements can be set positive or
negative as the player interacts with his environment.

BEASTIES AS OBSTACLES

If you've managed to survive this far, you'll have no trouble with
the second type of obstacle-the living obstacle. Creatures that
inhabit the scenario are much easier to use in the obstacle list.

Consider, first, that doors required two entries in the obstacle
list, because in a sense they occupied two rooms at once. Creatures,
however, are objects that exist in only one room at a time. Thus Goy
of joys!), creatures only require one entry each in the list. There is
no need to worry about changing two numbers if a creature's status
changes.

Take a look at the scenario map again in Fig. 2-6. You'll soon see
that there are four creatures acting as obstacles: one each in rooms
4, 6, 14, ~d 18. For instan~e, a player is prevented from traveling
northeast m room 4; the Giant Mantis will not let him pass! If the
player is in room 5 trying to get to room 4, the Mantis lets him enter
as if the player is sneaking behind him. This reiterates the fact tha~
creature-type obstacles are one-way obstacles only. That's why
they only need one entry in the list.

Now, look at the completed obstacle list for Basements and
Beasties giv~n in Fig. 2-10. The original three pairs of passive­
obstacle entnes are there; four new single entries, one for each
creature, have been added.

Th~ first creature list entry is 11104. Analyze what it says
~o~e~g the obstacle. The block is in room 4. It obstructs motion

hi ection 1, which happens to be northeast. The obstacle is type 1
w ch I'll b" · '
biockin ar Itrarily define ~s "creature." The creature is present,
N g the passageway, smce the value of the entry is positive.
enow, ~~hat abo~t the fifth digit, which ~as used to point to a second
se~ {' ou d.on t have a second en~ry WI th creatures; the fifth digit is
ob t 1 ' which means that there 1s only one entry involved in this
an~ ace .. Later, when you study the actual BASIC code that
cho:Ze~ list .e~tries, you'll see why the numbers 0, 1, and 2 were

en tor digit 5.

SearJu~ ~ee other single entries work in the same manner.
g own through the list, the adventure program can under-

25

1 22902 STEEL

2 2808 GRATE

3 23306
DOOR

4 3712
5 23404 DOOR
6 3011
7 11104 MANTIS
8 11118 IGUANA
9 11714 SPIDER

10 11306 TERROR

Fig. 2-10. Complete obstacle list for Basements and Beasties.

stand that a given single entry represents a specific creature in a
specific room guarding a specific pathway. It cannot tell whether it is
a mantis or a spider from this list; that distinction is handled by a
different list, which you'll soon see. At this point it is helpful just to be
able to register this much with a short series of numbers.

How does a creature-type obstacle change status? That is, how
does it become either passable or nonpassable? The standard means
for this change is battle. If the player has the proper weapon and the
random factors of the fight go well, he slays the beast, and the
obstacle is resolved. If he fails, the creature continues to guard the
path. I don't deal with how battles are fought until Chapter_7, but the
part of the program that decides the outcome of the battle 1s respon­
sible for setting the list entry to negative, indicating a passable
obstacle.

Both living and inanimate obstacles are effective in promoting
the realism of the adventure scenario. You should appreciate,
though, that this luxury is not purchased cheaply. Now you have a
variable array that needs maintenance. In fact, every time the player
tries to move, the obstacle list must be consulted to see if the
attempted direction is blocked or not.

An important consideration of programmmg that 1s active many
program of complexity is the trade-off between features and speed.
Adding obstacles to a scenario is possible, but the progrm:uner p~ys
for it in processing time. If you're clever, you can keep this handling
delay to a minimum.

LOCATING OBJECTS
An adventure scenario consists of more than just rooms, path·

ways, and doors. There are objects to find as the player wanders

26

through the artificial environment you paint about him. Objects vary
in their uses, thou~h. A key that o~ens a door (and thus renders an
obstacle passable) 1s one sort of object. A sword that slays a certain
beast (thus rendering _a completely different obstacle passable is
another. There a:e also treas~res and other incidentals, such as a
lamp or torch to light the way m a dark basement. I've even hinted
that creatures are more than obstacles-they are objects in their
own right.

In an adventure program there are two factors that define an
object: its existence at a specified location (a given room), and its
usefulness under special circumstances.

The second of these two factors is wholly arbitrary and is up to
the programmer. When a programmer writes a routine that handles
say, the opening of doors, he knows that he has to designate on~
object as a key. He may choose to treat object 11 as a key. The only
thing that makes it a key is the way the open-door routine works.
The programmer writes it so that it looks for the presence of object
11 before it can open a door. This goes for other types of objects as
well: The only thing that m.akes object 4 a treasure is that the scoring
rout.me looks for that Object number and awards high points for
finding it. Object usefulness is flexible.

The location of an object is simpler to handle. In an adventure
p_ro~am the ~ter simply sets up a variable array in BASIC, as­
s1grung one vanable for each object in the scenario. Then he merely
se~s each. v~ue to the room number corresponding to its location. If
?bject 10 ism room 6, the array variable for that object is set at 6. For
~st~nce, if the variable for object 3 equals 18, it means that object 3
is lymg on the floor in room 18. Simple!

Most objects in a given scenario are made to be found and used
b~ the player. That is, each object starts off at an initial location a
:en room. When the player enters that room, the program t~lls
h that the object is lying there. He may choose to leave it there, or
he m~ u_se a TAKE command to pick the object up and put it in his
thyp~ etical carrying sack. In this way he can cart treasures out of
the asement and back to home base where he is awarded points for
c;~· (The~e i~, usually, a programmed limit to how many objects

e ~amed m the sack at one time.)

the fl~:s ~~~e~ a good question. Wh~n the object, say, a key, is on
C<lrryj '.

1
is m the room. Where 1s the key when the player is

object~g~t?. That i?, ~ha~ value is placed in the array variable for that
numb · his amb1gu1ty is answered by assigning a fictitious room

ertothepla , . .
yer s carrymg sack. Thus, objects are being carried

27

when their location number is the number of the sack. If the player
drops the object, its location number is immediately changed to the
present room number.

In Basements and Beasties, which has 20 rooms, the unused
number 21 is assigned to the player's carrying sack. (You recall that
unused numbers 22 and 23 are assigned to violent deaths that result
from travel in dangerous directions.) The sack number is a helpful
item. If the player wants an inventory of what he is carrying, the
program simply searches through the object location array, looking
for any object with a location of 21. These objects are listed.

HELPFUL SCENARIO VARIABLES
An adventure program such as Basements and Beasties makes

use of several variables and arrays to keep track of things. I just
discussed one such array, the array of locations for objects. I refer to
this as the object status array. It has 16 elements in it, since the
program has 16 distinct objects. In describing a room, the program
must always make one pass through the object status array to see if
there are any objects present to describe.

There is a sense in which the player, himself, is an object, at
least since he can exist at a location and move from room to room.
One variable must always be maintained, apart from the previous
array, to keep track of the player's present room number. Let's call it
the player location variable. This variable is updated chiefly by the
player's use of motion commands.

There are a handful of other useful variables that you need to
update from time to time. You need a counter to keep track of the
number of steps the adventurer has taken, since this can figure into a
scoring scheme. There should be a variable to tell how many objects
the player is carrying, so that the program can refuse to let him pick
up more than he can bear. Another variable should keep track of how
many times the player has been killed, again for scoring purposes.
And there are a couple of lesser counters that I touch on later.

I already spoke at length about another important array-the
obstacle list. The size of this array depends on the scenario map and
the types of obstacles created. Reference is made to it every time a
motion is attempted.

One last array needs to be described at this juncture. When the
player first steps into a room, the program gives a paragraph-long
room description to orient the adventurer. After that first visit,
however, the player should not be bothered with a long, drawn-out
description. Rather, the program should note that he has alreadY

28

n there once and given him a very abbreviated description, a
:pie room titl~. (If he wants the long description again, naturally,

h can request 1t.)
e For this feature to work some sort of flag needs to be main-

tained for each and ev~~Y room, a flag that indicates whether or not
that room has be~n. V1s1ted before. The variable is a zero until the
room is entered; 1t is then permanently set to a one. This array of
variables is the room status array. The existence of this array is also
helpful in scoring, which usually includes some points for number of

rooms explored.
This simple yes-or-no sort of flag can simply occupy one digit of

the integer stored in the element of the array, allowing the other
digits to represent other characteristics of the room. Integer
analysis makes this sort of expansion possible.

So what do you have? Figure 2-11 shows all of the variables and
arrays used by Basements and Beasties, each with a short explana-

VARIABLE DEFINITION

CT(O) PLAYER LOCATION VARIABLE

CT(1) NUMBER OF STEPS TAKEN

CT(2) NUMBER OF OBJECTS CARRIED

CT(3) TOTAL DEATHS OF PLAYER

CT(4) SLAIN ORCS x 25 POINTS

CT(S) NUMBER TO BE ANALYZED

CT(6) - CT(11) NUMBER TO BE SYNTHESIZED

CT(12) ORC APPEARANCE COUNTER

TX$(0) - TX$(1) ROOM DESCRIPTIONS (TEMP.)
TX$(2) - TX$(3) INPUT WORDS (TEMP.)

DA(1) TRAVEL TABLE VECTOR

DA(2) WORD TABLE VECTOR
DA(3) MESSAGE BLOCK VECTOR
DA(4) OBJECT DESC. BLOCK VECTOR
DA(S) ROOM DESC. BLOCK VECTOR

RM(1)-RM(20) ROOM STATUS ARRAY

OB(1.0)-0B(16,0) OBJECT STATUS

OB(1 ,1)-0B(16,1) OBJECT LOCATION

-- BK(1)-BK(1 O) OBSTACLE LIST

F·
19. 2-11. Arra .

Y variables used in Basements and Beasties.

29

tion. Some of the lesser variables will be described at length in the

chapters to come.

DESCRIBING ROOMS AND SCENES
So far we have been speaking of the adventure scenario in very

general, structural terms, to convey the methodology or logic behind
the idea. When the player enters the scenario, though, he does not
see a web of interconnected circles, nor does he see lists and tables.
His impression of the scenario is created and sustained entirely by
the printed descriptions that are displayed on the computer monitor.
These descriptions "paint the picture" in which the player moves and
interacts; all of the arrays and tables merely serve as the mechanics
to call the proper descriptions.

As the programmer creates a scenario, he starts with a central
theme around which to build. I already suggested quite a few­
cavems, haunted mansions, office complexes. Once the program.
mer has an overall environment, the rooms themselves are implied
and come easily. The programmer makes a sheet, numbered from
one to the maximum number of rooms (in Basements and Beasties it
is 1 to 20). Next to the numbers he lists all the different sublocations
a player might expect in this type of scenario.

Suppose your scenario is a large office complex. You might list
the secretarial pool, the boss' office, the cafeteria, the water cooler,
the lavatories. Then there are various halls, the lobby, several
offices differentiated by color or size, perhaps a copy-machine room.
Once your mind is active, you can probably come up with far more
locations than your maximum room count allows! Remember to
assign room 1 to your home base, the access point to the larger
scenario. In this example, room 1 is probably the lobby, or even the
sidewalk or parking lot outside of the building.

Figure 2-12 gives the room list for Basements and Beasties for
ease of reference. As you think of rooms, you'll think of little
distinguishing characteristics that will be incorporated into the rooJll
descriptions later. These may be noted next to the short titles, as
shown. The idea is to generate one or two-word identifiers for each
room. These are used as the short-form description that is printed

for rooms previously visited.
For each room a paragraph description is stored in a DA1A

statement in the adventure program. The short-form title is alsO
stored along with the larger description. When the player moves into
a given room, the program accesses the corresponding DA 1A
statement and retrieves these two pieces of data. Then, depencJilli

30

-
~
<(
w z a: a: t- w

~
Cf) >

0 <.9 <(

0 z ()

a: I >-
Cf) ~
:::> :J a: Cf)

I'- co
#: ~ ~

w
<.9
0

~
w
_J

0
0 ~
a: <(0

w a:
~ a:

<(
~ z

#:
(j) 0

~

t-
0::
LL

~ 0
0
0

~
0 Cf) a: ~ z
0 :::>
CD a:

:ti: .- C\J

Cf)
a: <.9 w z co :J w ~ w

_J

> w :::> ~ a: <(
<(-
() a: z () LL LL

0:: ~ <(>- >-
>- Cf) 0 Cf'(co CD
~
<(>- 0 >- I I
w a: a: a: t- t-

t- w a: <(<(

Cf) LL b <(w w
0

() 0 0

:::>
w
Cf)

(j) 0
a.. C\J ~ C")

~ C\J C\J C\J C\J

~
~ 0
0 0
0 a:
a: CD

w I w CD ()

_J
() () ~w w

_J LL z CD ~ ~ w LL :::> 0
() 0 _J () ~ ~

~ C\J C") ..,. l!) co ui
~ ~ ~ ~ ~

'

I~ .!!1
]i
Q)

Cl)

'O
c:
<11

.!!2
c:

~ t- Q)

0
_J E

0 ~ :::> Q)

w <(Cf)

a: _J ~ 0 > t- <11

0 Cf)
Cl)

Cf) ~ 0 a: w 0 .E z <(0 a: a..
0 CD a: w :::>]i
a.. _J Cf) 0
<(t- CD () <(a: E
w Cf) ~ <(w <(0

~ 0 0 a: a: :::> 0

_J t- 0 t- <.9 a:
C\i
c\i

C") ..,. l!) co I'- co di
i.i:

31

on whether or not the player has seen the room before, the prograni
displays either the long or short description. There is also a LOO}{
command that specifically requires a reprinting ~f the lo~g descrip.
tion. After the room list is created, the next test 1s to wnte the long
description paragraphs for each room. . . .

There are five rules or guidelines concerrung the wnting of
room descriptions. The first is their special format._ The en~re text
of the paragraph must fit on one BASIC program hne, s~anng ~hat
line with the BASIC instruction DATA and also the short l:ltle, with a
separating comma. This limits the length of the ~aragraph to about
240 characters, or just over three and one-half lines of text on the
TRS-80 monitor. If any commas or semicolons form a part of the
paragraph, the whole paragraph must moreover be enclosed in
quotes, to prevent BASIC from misinterpreting the DATA sta~e·
ment. The paragraph may also include line-feed character~ (which
the programmer inserts by typing a shifted down-arrow) to tmprove
the appearance of the paragraph and prevent words from being split
in two between lines of text.

The second guideline is the inclusion of pathway hints. It is only
fair for the description to say, explicitly, "THERE IS A DOOR TO
THE NORTH AND A HALL LEADS EAST," in most cases. I~no
such hints are given, the player is forced to try all t~n possible
directions to find exits. Note, though, that not all extts need be
explicitly told· an occasional room description can even say,
"THERE ARE MANY DOORS AROUND HERE." Remember the
concept of disguised pathways, too. If the north wall is merely a
mirage and really is an exit, just say, "THE NORTH WALL S~M·
MERS WITH A STRANGE GLOW," and let the player expertment

on his own. · 1
A third guideline is the use of nonoriented language. By this,

mean that the programmer must not make any assumptions about
how the player entered the room he is now examining. For instan~
imagine a room with two entrances: a trap door above and a stRJ(
grate in the wall. It is foolish to display, "YOU FALL INTO A DA
SLIMY ROOM." Even if the trap door is the first means of entrance
to the room, there is also the grate. What if the player re-enter~~
room through the grate later on? The description would be in3 ,
curate. Always describe the room as if the player has suddenh
inexplicably, appeared in the midst. Describe most entrances an'
exits-even the one he most likely just crawled through.

A fourth guideline is to avoid the use of_nonexist~n~ objects;~
is, objects not supported by the program itself. This is a hard

32

d rnaY even be imprac~cal at time~, but keep i~ as a goal. You are
:und to get into trouble~ you de~cnbe some object as a part of th~

nery that is not found m the object status array. Why? Because if
see ., th h 1 · b d d · · th description says 1t s ere, t e p ayer 1s oun to try an pick 1t
~ If your program does not make allowances for its existence, that

up~udo-object fouls up the realism of the simulation by refusing to
~~dge, or even causing the program to crash. If you must include
unprogrammed objects in your description, add something to dis­
courage the player from trying to move it. If your office scenario has
a water cooler, say, "THE WATER COOLER SITS NEARBY,
RIVETED TO THE WALL." At least there is then an explanation, if
only a lame one, for the object's refusal to act like an object.

A fifth and final guideline is to use creative description. Much of
the realism of the adventure program depends on your flamboyant,
misty-eyed story-telling. There are many ways to make a descrip­
tion stick in the player's mind. The use of color, size, and shape to
describe a room are all helpful. Is the room cold and clammy, hot and
dry, dark and foggy, tainted by magic, smelling of sea weed, dusty
and in disarray? The idea is to convey images above and beyond the
explicit words you use.

One of my favorite descriptive devices for adventure scenarios
1s incongruity. That is, I always have a few rooms that don't seem to
fit at all with the time-period or the mood of the scenario. (This goes
f?r objects and creatures, too.) For example, Basements and
Beasties describes an underground troll kingdom that for the most
part sounds mythical-caves, an oracle room, a room for armor­
but I threw in an office and a lunch room, just for surprises. Almost
anything goes when it comes to holding the player's interest. Why
sh?uldn't your Martian city scenario have a large, red building with a
flying fire-engine in it? Why shouldn't your undersea Atlantis
scenario have a shower stall that sprays air? Why shouldn't your
o~d-West scenario have a corner horse-feed station with pumps that
dispense "regular" and "premium" hay? You get the idea. ·
R One final word on room descriptions has to do with mazes.
ti emember that all rooms in a maze should have identical descrip-
;:s, t~ befuddle the wandering player. This can usually be a short

P ase like "YOU ARE LOST IN A MAZE," or "HERE IS A SMALL
FEATURELESS ROOM."
id ~n maze rooms the long and short descriptions need to be
w~n~cal. Why? Well,_ because you don't want the player to know in
he ~o maze ~oom he 1s. If one room gives him a shorter description,

ws he s been there before. Just remember that even if you call

33

those rooms something different in the room list-maze A, maze B,
maze C-when the DATA statements are written, the long and
short descriptions must be identical.

DESCRIBING WHAT YOU'VE FOUND
Once the room list is compiled and the room descriptions

written, it is time to create the object list with its descriptions. When
the player enters a given room, the ro~m .des~ri~tion is given. If any
objects are lying around a line of descnption 1s ~s~layed for ea:h of
these. This line of description is the long descnption of the ob1ect.
Each object also has a short description (analogously to rooms),
which is a one or two-word title. This title is used when the player
enters the INVENTORY command to examine the contents of his

sack.
Figure 2-13 shows the object list for Basements an.d Beastie~.

The list is broken up into three basic divisions, each of which I treat m
detail.

The first group of objects to create are treasures. These are the
objects of worth, finding them is the primary goal of the adv~nture.
In hypothetical spy adventures these treasures are confidential g~v­
ernment documents that must be stolen. In Basements and Beasties
they are simply objects of monetary worth, such as one might find in
·dwarfish halls of stone.

To simplify things it is a good idea to make the treas~re.s as
unalike as possible, at least with regard to t~eir. names. This. is to
avoid confusing the adventure program when 1t tnes to detenrune to
which treasure the player may be referring. Use names that suffi­
ciently distinguish between the two. For example, each jewel-type
treasure is referred to by a specific type of jewel; the player can't say
"TAKE JEWEL," he must specify, "TAKE DIAMOND." Even
object 1 is not just a jewel, but a jeweled crown. . .

Remember the principle of incongruity to make things in­

teresting. It would be perfectly acceptable and fun to have a dwarfish

transistor radio as a treasure.
The next group of objects to create are the tools. These are

objects that are necessary to overcome the variety of obstacles that
hinder the adventurer from recovering the treasures. What kinds of
tools you create depend largely on your obstacles and vary fro!ll
scenario to scenario. In cavern-oriented adventures, such as B~se­
ments and Beasties, it is customary to have a lamp or torch, since
underground environments usually necessitate that kind of tool. -i:ie
program is tailor-made to limit the player's subterranean motion

34

d on bis possession of the lamp or torch. Without the tool room
~ase riptions are prohibited and a message displayed: "BE­
~~! IT IS VERY DARK IN HERE!" Of course, this sort of tool
. ut of place in an outdoor scenario in daylight conditions.
15 0 The key, too, is standard fare, because of door-type, inanimate
bstacles. The program refuses to open the door or grate unless the
~ey is in the player's carrying sack. If the programmer really wants
to get fancy, he can have two or three kinds of keys, each matching a

specific door.
The other tools are weapons, basically. The program is con-

strUcted so that certain creatures are destroyed only by one or the
other weapon. Depending on the scenario, these may range from
shotguns to laser cannons. They may even seem harmless in them­
selves. A simple bottle of seltzer water may be just the thing to stop
a marauding robot creature in its own rust!

The last group of objects to dream up are the creatures. These
are the monsters that guard the passageways of dim caves, the
fully-human Huns of a barbarian scenario, the Martians, or the secret
police. Remember that these beasts are also obstacles, and every
one of them should have an entry in the obstacle list. When one of
them is overcome by fancy swordplay, the obstacle list entry is
changed, and the creature is considered dead. (To simplify things the
creature usually vanishes rather than allowing a dead body to remain
behind. This is done by changing the location of the creature in the
object status array to a zero, which amounts to sudden nonexis­
tence, since there is no Room Zero.)
. . How many objects of the three kinds may you have? That is
limited by memory restraints, since every object requires an object
status array variable, a long and short description, and programming
~ handle the special cases that relate to its function. Too many
e~sures take the fun out of the search; too many creatures are

bonng. The number and proportions of objects listed in Fig. 2-13 are
prob~?ly optimum for ~ scenario o~ only 20 rooms.
and sh ve alread! ~entloned that, like rooms, all objects have long
,
0

. ort descnptions-long ones for looking in a room, short ones
1' r mvent Ii · T ory stings. What guidelines can you suggest for these?

Ob. he short descriptions are only one or two-word names for the
~ects· th . wh ' ese are simple. The long descriptions are usually any-

lineere ;om 48 to 96 characters long, which is up to a maximum of a
"TII~kone-half of monitor text. Usually they are in the form of
descn ti IS A ~L~K LYING HERE." Treasures usually have

P ons ending with an exclamation point, such as, "THERE IS

35

A BEAUTIFUL STATUE HERE, ENCRUSTED WITH E}.f.
ERALDS!" Creatures, too, usually evoke an exclamation, and the
description is even more insistent, as in ' "A GIANT WOOLly
MAMMOTH STANDS NEARBY, READY TO CHARGE IN
FURY!"

The only warning is to avoid any mention in the description of
the immediate surroundings, since that may change. Don't say, for
instance, "THERE IS A SHINY COIN IN THE CASH REGISTER"
because the player may take it and drop it in some other room th~t
has no cash register. This rule may be bent a bit in the case of
creatures, since they usually live out their existence in one room
only. (Helpfully, a part of the program prevents the player from
picking up that fire-breathing dragon and carting him off in his sack!)

Once you've created your object list and written the descrip.
tions, you need to add notations to the list, telling in which room each
object starts at the beginning of the game. Notice this column of
information next to the object names in Fig. 2-13. Where you choose
to place the objects is up to you, but here are a few random
suggestions. Tools should be placed where they slow progress down
a bit. That is, if your scenario has a key, don't give it to the player
right off; put it deep into the scenario, so he has to retrace his steps
to use it. Put the treasures behind locked doors and behind angry
creatures, but leave a few out, unattended, just to whet the player's

appetite.
This series of room numbers telling the starting places of

objects will later be committed to memory-RAM-in the form of a
DATA statement. At the start of the program an initialization routine
simply reads these numbers and stuffs them into the brand-new

object status array.

THE UNEXPECTED ENEMY
Before I tie a tail to the present discussion of creating a

scenario, there is one more item for the program to support. To
explain, consid~r the fact that the creatures already mentioned are
pretty tame and fairly docile. True, they are ferocious enough when
attacked, but that's just it-they are passive. The adventurer can
walk around in the same room as that giant mantis without fear, as
long as he does not attack the beast. Now, what kind of challenge is

that?
What the program needs is what I term a tenacious creature·

Tenacious implies that the creature refuses to leave the adventurer
alone. There are three characteristics of such an enemy: it wanders

36

- T
y STARTING

OBJECT ~
DESCRIPTION ROOM NO.

T
1 R CROWN OF JEWELS 4

2 E GOLDEN CUBE 7

3 A ni • <Af"'INn 1:u=~T1 ~ 'ln

4 s SILVER BELT 11

5 u PLATINUM RIW~ I;

6 R POLISHED ONYX' 1Q

7 E COIN WORTH Mii LIONS 7

8 s HOURGLASS 6

9 T TORCH .,
0

10 0 MAGIC AXE 3
11 L KEY 1n

12 s ENCHANTED GRENADE 1?

13 c GIANT MANTIS A

14 R HUGE 1r::1 IHIA 1A

15 E WHITE SPIDER 1A

1fl A NAMELESS TERROR !::

T
u
R
E
s

Fig. 2·13. Complete object list for Basements and Beasties.

~eely about the scenario, it attacks without provocation and it
ollo;s the player from ro?m to room. '

ou can see how forrrudable an enemy this sort of creature is. It
:ianders around randomly, until it ends up in the same room as the
£ v

1
enturer. It attacks! The player tries to flee but to his dismay the

ou creature kee . h hi I T ' ' eate ps up wit m. he player must conquer or be
n.

siv Clearly, the tenacious creature is totally unlike the other pas-
e, creatures d 't . h di ' specifics • an . 1 is an ed much differently. (Study the

of the creation of the dreaded Ore in Chapter 4.)

THE NEARLY FINISHED SCENARIO
As you read thi You've . s paragraph, congratulate yourself on how far

contain~~;e (proVIded you aren't skipping pages). This chapter
fonn. The ermea~ of adventure programming, from the standpoint of

emamder of the book actually deals with taking the

37

concepts of this chapter and coding them into BASIC. If you've been
sweating through it all and wondering why you ever thought you
could handle this sort of programming, relax-the hard foundational
work is over.

Let's briefly review the elements of an adventure scenario. As
we list each one, see if you can recall what its purpose and function
are. If you're foggy about a couple of them, flip back and review them
in detail.

1. A scenario is made up of rooms.
•You need a room list of short room names.
•You need a long description for each room.
e You need a .room status array to indicate if a room is unvisited.
•You need a scenario map of room interrelations.
•You need a travel table defining entrances and exits.

2. A scenario is made complex by obstacles.
•You need living obstacles such as creatures.
•You need inanimate obstacles such as locked doors.
•You need an obstacle list defining the obstructions.

3. A scenario is occupied by objects.
•You need treasures, tools, and creatures.
•You need an object list of short object names.
•You need a long description of each object.
•You need an object status array to locate the objects.

Now, at last, you have a feel for much of what it takes to make
an adventure program operate. Let's go on now to the next chapter
and see how to use this foundation in BASIC programming.

38

Chapter 3

Structuring the Program

Most programming in BASIC is, sadly, haphazardly done. The
programmer starts out with a simple idea, and he writes a simple
program. Then, as he adds features to his program, the code grows
rapidly and unevenly. At last he is finished, and he has a massive,
unwieldy piece of work. The program runs, miraculously enough,
but if it needs an improvement here or a correction there, the
programmer is stuck. Where is that printer driver subroutine?
Where is the routine that updates variables? Lost in a maze of
unchecked program grov.th, the programmer cannot find what he is
after.

The writer of an adventure program cannot afford to be sloppy,
for at least three reasons. One is memory space. A program like
~asements and Beasties needs every byte it can find. Sloppy code is
likely to contain redundancies (that could be better organized sub­
routines) and other items of inefficiency. Speed is another factor. An
adventure program tries to do a lot of processing in as short a time as
Possible. Sloppy code is very difficult to streamline. Modification is
the final factor. Someone adventurous enough to write an adventure
Program will eventually want to upgrade it in some way-extra
~ooms, new creatures, more treasures. Sloppy code makes program
llnprovement a matter of more frustration than it is worth.

For these reasons, from the very start of your task, do your
Pr~gramrning in a very disciplined and thoughtful way. Abide by the
rues and partake of the advantages of what is known as structured
Programming.

39

HOW TO BE STRUCTURED PAINLESSLY
Nothing sounds quite so ominous as structured programming.

In my mind it calls images of lengthy diagrams in obscure notation,
reams of flowcharting, and the like. It could put any would-be
adventure programmer to flight.

Actually, if you think about it, the rudiment of some sort of
program structure is right there ~ BASIC, .staring up from the
screen. It is the line number. Think about it for a moment. In
Microsoft BASIC the programmer can use any line number from 0 to
65529 inclusive. What usually happens is that the programmer sim­
ply numbers his lines as 10, 20, 30, and so on. Then he squeezes
extra lines in between if he later needs to add program features.
Never does he utilize more than a minute percentage of the numbers

available to him.
What does this tell you? Simply this: if you have so many line

numbers that you can afford to choose them randomly, you can also
afford to choose them meaningfully. That is, you can assign certain
sets of line numbers to certain tasks. Then, if you ever need to make
changes, you know where to check the listing. Inste~d of scratc~ng
your head and mumbling, "Hmmm, I think that routine was on line
639 or 369 or something like that," you can know "That routine was
an i:Utia!iza~ion task; it is somewhere between 0 and 99."

The first key to structured programming is putting the Ji_ne
number to work for you. Use it, as in the example above, to orgaruze
your program for easy readability. Later, you'll see how it will help
you speed up those important references to DATA statements._

The second key to structured programming has to do with
program flow. By this I mean the use of forethought in how a
program gets its work done. If you look closely at t~e flow of ~o~r
program, you'll see that there are many tasks that 1t handles sum­
larly, many repetitive paths. When you kno~ what these are, you
can write the program so that there are sections of code that serve
for many of the program's functions, not just one. That creates an
efficient compact program-just what you need with only 16K of
availabl~ memory. There are two features of Microsoft BASIC that
make this sort of str~amlining possible. One is the GOSUB­
RETURN feature, which gives you the ability to call subroutines.
The other is the ONX GOTO feature, the ability to jump to handl~rs.
I take full advantage of these methods in Basements and Beas~e5·

Now, Jest I stray too far into a general treatise on programrrung.
Jet's get back to your adventure program.

40

WATCHING THE FLOW
Have you ever seen those drain cleaner ads on TV, the ones

'th the transparent drainpipes? It is very easy to follow the flow of
WI lumbing system if you have clear-plastic pipes. Wouldn't it be
~e ~f programming were like that? You could tell what sections of a
ruce 1

am get the most work-out.
progrfigure 3-1 is a transparent-drainpipe illustration of the flow of an
d enture program. This sort of diagram is most helpful in dividing
~; program into logical sections to simplify construction. Let's
onsider each pipeline and the part it plays.

c The first section of the program is the initialization routine.
This portion of the code is executed only once and serves to set the
scenario to some predetermined starting state. What sorts of things
are involved in the initialization procedure? For one thing, any string
of numeric variable arrays must be created and sized properly. Then
those variables need to be set up to simulate the scenario properly.
The player-location variable must be set to the home-base room
number, for instance.

Several additional blocks of program code are made available to
the initialization routine to simplify the process. These are DATA

INITIALIZATION

+

•
EXECUTIVE

SUBROUTINES

Fig~ 31 _T ___________________ _J

· · · ransparent drainpipe view of the program flow.

41

statements that contain the values necessary to preset those van.
ables and arrays. One such is the obstacle initialization block. The
initialization code reads the values from this block and loads thern
into the array known as the obstacle list (remember, the one that
deals with doorways and creatures). A second is the object initializa.
tion block. This contains all of the starting locations for all objects in
the scenario, which are loaded into the object status array. A third
block is the room initialization block. This is used to fill the room
status array, which indicates which rooms have been visited and
which remain unvisited. . .

One question that arises is this: why have a long D_~ TA ~st to
1
fill

the room status array? Don't all rooms start off as unvisited. Can ta
simple program loop be used to fill the room status array with z.eroes
for this purpose? The answer to this question is future expansion. It
is conceivable that in the future there may be other status factors you
will need to keep track of for rooms. It makes sense t? all~w for
specific values to be loaded into the array, even though m this first
version of the program all elements equal zero. Remember that a
room status value could be broken into several digits in the future;
digit 1 could stand for the visit/nonvisit flag. Other digits could
represent other status flags. Accept for the moment that this may
prove helpful at some future date.

Now that the scenario has been 1n1tialized, the game can be gm m
earnest. The next section of code is calledExecutive. It is named this
because it is the part of the program primarily responsible for the
execution of the game; all other parts are subservient to it or
eventually loop back to it. (You'll notice how the many other
pipelines in the program return to the Ex~cutive soo~e~ or later.)
The executive has two subsections. One 1s the descnptwn subsec·
tion. This routine describes the room in which the player st.ands,
including objects and enemies that may be nearby. The other is the
command subsection. This routine accepts input from the keyboard
and interprets the intent of the player. d

Two DATA blocks are used by the description subsection, an
if your memory is clear, you should be able to tell me which ones. O~e
is the room description block. This holds the long and short desc~p-

. h . th bjecl tions for each room, one DAT A line per room. The_ ot ens . e o d
description block, which similarly, has one DATA line per ob1ect an
holds the long and short descriptions for objects.

There is another DATA block, one that comes into play ever'/
E en· time the player enters a command. That is the word table. ss

tially, it consists of the basic vocabulary of the adventure prograrn•

42

gether with corresponding numbers to help define the input word.
~e command subsection searches through the word table every
tirne a word is entered. If the word is not in the table, the interpreter
cannot respond intelligently and must prompt the player for more
information.

The next level of code is the row of program units below
Executive. These are called handlers . There is one handler for each
sort of function possi~le in th~ adven~ure program: The command
subsection of Executive decides which handler 1s selected and
executed. For instance, if the player types "INVENTORY," the
command subsection scans the word table for that word. Upon
finding it, the interpreter also reads a number in the table that
specifies which handler to execute. Some words are synonymous
and invoke the same handler. It is easy to see how the program
capabilities can be expanded with this scheme. The programmer
simply adds a new key command word to the word table and a
handler to perform the new function. The remainder of the code is
unchanged, but now the adventure program recognizes a new com­
mand. (See how structured programming reduces perspiration in
program improvement?)

The particular handlers for motion makes reference to an all­
important DATA block which was created in the last chapter. This is
the travel table, which contains the entrance and exit information for
each and every room. This motion handler and the travel table
probably get the most workout of any section of the program code
except for the command subsection of the Executive.

Two final divisions of the adventure program serve all handlers
and even the Executive. The first of these is a DATA section called
the message block. For many handlers there are special messages
that need to be displayed to indicate the status of that handler. If you
walk into a wall, a message says, "YOU CANNOT GO THAT
WAY':" If you walk off a cliff, a message says, "YOU FALL TO
YOUR DOOM " There are literally dozens of such simple
one-liners that must be kept on file for use.

The last division contains all subroutines called by the program.
There is a subroutine to locate entries in a DATA block. There is a
subroutine to analyze the travel table. There is a subroutine to
change the status of an entry in the obstacle list. Many other
?ften-called functions are located in subroutines, all of which reside
IIl a large common pool.
di . _Now let's stand back and look at how these many program

Visions are positioned with respect to BASIC line numbering.

43

-
PROGRAM STRUCTURE

LINE NUMBERS PROGRAM SEGMENT

0-99 Initialization
100-199 Main Executive
200-999 Handlers
1000-1999 Subroutines
2000-2999 Room Initialization Block
3000-3999 Obiect Initialization Block
4000-4999 Obstacle Initialization Block
5000-5999 Travel Table
6000-6999 Word Table
7000-7999 Messaoe Block
8000-8999 Object Description Block
9000-9999 Room Description Block

Fig. 3-2. How to assign specific program segments to specific ranges of line
numbers.

Figure 3-2 is the program structure listing for an adventure program.
Notice that initialization code (which is executed earliest) is first in
the program structure. It may reside anywhere among the line
numbers from 0 to 99 inclusive. (I follow the practice of using even
line numbers within a block. Basements and Beasties initialization
runs on lines 2, 4, 6, 8, and so on.)

Executive is next, then handlers, and subroutines. Notice that
more room is given to handlers and subroutines than Executive,
since those two sections are more likely to expand. (Of course, you
still never come close to using hundreds of available line numbers.)

Next, in multiples of thousands, are the DATA blocks. First are
those three blocks used only in the initialization procedure. Then
come the two tables for vocabulary and room pathways. Finally,
there are the three text blocks, with messages, room, and object
descriptions. You'll discover that these text blocks are the real
memory-hogs of the program.

GRAB THE DATA AND RUN
Of the above twelve program sections, eight are blocks of data·

That means they contain long lists of numbers or words placed on
BASIC lines separated by commas and preceded by the DA'f;\
keyword.

44

You may not have realized it before, but getting data out of
ASIC DATA statements is rough. There are two BASIC com­

B ands that relate to the process. The first is READ. Each time it is
JTJ cuted, one item of DATA is obtained and placed in a desired
exe R D . . h . ·1 all ariable. The next EA mstruction gets t e next Item, untI
~ ve been read. The other command is RESTORE, which starts the
;EAD process over again at the very first item of the very first
DA TA line in the program.

This is all very well and good up to a pomt. What If, ma DATA list
of 300 items, you want item 173? There is only one way to get it in
BASIC: do a RESTORE, then run a loop that executes READ
commands for 173 iterations until item 173 is read. Now, suppose
you want item 160. Can you read backwards to get i~? Can you jump
to that item somehow? No, you must start all over with a RESTORE
and READ, READ, READ until you find it. The problem, then, with
BASIC DAT A lines is that they require sequential access, that is, all
items must be read in sequence without skipping any.

You may ask, "So what? I'll just set up a simple FOR-NEXT
loop to do all of those useless READs." Fair enough; but consider
the problems. The first is time. Your adventure program will muddle
along like a turtle if it has to read through all those DATA items
sequentially. (Remember that two-thirds of the program consists of
data.) Then, too, you'll need to calculate how many loops to do. If
you want item 17 in DATA block 4, how many loops do you need?
You have to start at the first block and read it, whether you need it or
not, thanks to the RESTO RE command. To get that item, you must
add 17 to the total lengths of the other three blocks. That's work!

One final difficulty is that the data may be numeric in one block
and a string in another. If you try to do READ A repetitively, that is,
if you try to load the data into numeric variable A, the program
crashes if your loop crosses a block with strings of letters in it! Again,
the reason is that you can't be choosy in BASIC. You can't skip a
block under any circumstances.

One common way out of this mess is to create a huge variable
array and read all of the DATA elements into it. Accessing individual
items then becomes easy. The problem with this typical approach is
memory space. Essentially the programmer ends up using twice as
~uch memory as the data actually requires! This sort of waste is
Impractical. It would seem that the limitations of BASIC force us to
accept difficult data access or face scandalous memory demands.

Ah, but necessity is the mother of invention. BASIC, after all, is
Only a program itself, with memory locations that control how it

45

operates. What you need to do is come up with a way to skip around
through DAT A blocks so you can read what you want to react.
Somewhere in RAM memory, BASIC keeps a DATA pointer run.
ning that tells the READ command where to read. With a bit of care
you can change the value of this pointer to suit your own purposes.
To do that, though, you need to understand how DAT A statements
are stored in memory.

Figure 3-3 shows the format of a DAT A statement as it is stored
in memory. Notice the following six elements of the format:

• A zero, which separates the DATA statement from the previous
statement.
• A next-line pointer, which, coded in two memory locations, gives
the memory address of the corresponding nextline pointer of the
next BASIC program line.
• A BASIC line number, which is the line number coded in two
memory locations.
• A 136, which is the BASIC code for the word DATA
• A list of items, each separated by a comma, which appears in
memory as a 44 .
• A zero, the separator between this line and the next BASIC line,
which is just element 1 again .

At first some of these numbers in memory take some getting
used to but some simple conventions apply. First, remember that in
a 16K TRS-80 all BASIC programs occupy the RAM locations from

BASIC LINE
NUMBER CODED

IN TWO BYTES

ADDRESS OF THE
NEXT LINE'S "NEXT­

LINE POINTER"

ZERO BYTE TO MARK
BEGINNING OF LINE

DATA ITEM

44 IS THE ASCII
CODE FOR A

SEPARATING COMM

FIRST DATA ITEM.SOME
INDETERMINATE

NUMBER OF BYTES

136 IS THE BASIC
CODE FOR THE

KEYWORD "DATA"

ZERO BYTE MARKS THE
END OF THIS LINE AND T
THE START OF THE NEX

Fig. 3-3. How a DATA statement with its individual items is stored in merrt
ory.

46

•FORMULA 1: GIVEN H AND L,
INTEGER I = H x 256 +- L

ADDRESS I BYTE H
X+1 (0-255)

[
ADDRESS BYTE L
x (0-255)

•FORMULA 2:
GIVEN INTEGER I,

I H = FIX(l/256)

(THAT IS, 1/256 ROUNDED
DOWN TO THE NEXT
INTEGER)

IL= I - H x 256

Fig. 3-4. Two-byte code for storing integers.

17384 to roughly 32767. (For owners of the Model I this starting
location is 17128.) The content of 17384 is ,a zero and corresponds
to the first element above. It indicates that a BASIC program line
follows.

Now, the next-line pointer is in a two-memory-location code, as
shown in Fig. 3-4. To calculate the address, multiply the contents of
the second memory location by 256, and add the result to the
contents of the first memory location. Using this number (which is,
of course, between 17384 and 32767), BASIC can tell where each
successive line is located in memory. The next-line pointer at the
beginning of line A gives the memory location of the pointer in
subsequent line B, and so on. The next-line pointer in the very last
line of a program is set equal to zero, as a flag to indicate the end of
program.

When BASIC is first told to read through a series of DATA
statements, it sets a data pointer to the address of the zero that
Precedes the very first DATA line. Each time a READ statement is
executed, this pointer is moved forward, past the piece of data just
r~ad, t~ the comma before the next piece of data. When the last piece
~ data in that line is read, the pointer points to the zero that marks

e end of the line. The next READ causes the pointer to advance, sear hi
lin c ng for another DATA line and a comma to stop. All DATA
atts are read in this manner, until no more data remains. Then, any
rn empt to read causes an error message. The data pointer in
Premodin1:Y always points either to a comma in a DAT A line or to a zero

ece g a line.

i 663Jhe TRS-80 data pointer is kept in the two memory locations
and 16640, encoded as shown in Fig. 3-4. If you multiply the

47

second number by 256 and add the firs~, you_'ll get the memory
address of either a comma or a zero preceding a line. The RESTORE
command resets the pointer to 17384, the zero at the very start of
the BASIC program.

If you know the memory address of the zero that precedes a
certain DATA line, you can put that memory address, in coded forrn,
into the data pointer. In this case, a READ statement does not stan
at the beginning of the program; the program starts with the first
item in that DATA line-no matter where it is. Imagine that! Just by
changing the data pointer you can begin reading anywhere, skipping
hundreds of items if you wish!

The problem is how do you find out what these addresses are1
You have eight blocks of DATA statements. The first three are for
initialization and are read only once, but the last five are more
important. How can the program find the beginning of them?

Here is another benefit of structured programming. You know
the line numbers of the five important blocks. As you have seen,
each BASIC line contains its own line number in encoded form. What
you need is a routine to be placed in the initialization section that does
the following:
•Find one at a time the first lines of each DATA block, i.e., 5000,
6000, 7000, 8000 and 9000
•Store these five all-important addresses in a numeric array for
future reference.

After this phase of initialization is completed, if a part of the
program needs to access a DAT A block, it finds the proper adru:ess
in the array, subtracts one to point to the zero before the DATA line,
converts it into the proper two-byte code, and places it into the data
pointer. In Basements and Beasties the array is called DA(n), for
data access. Since you are concerned with the last five DATA
blocks, DA(n) has five elements, DA(l) through DA(5), containing
the proper pointer addresses.

Figure 3-5 gives the initialization code that creates the DA(n.~
array. Let's step through it command by command and see how 1

determines the proper addresses. ·
First, some variables are preset. The variable P is used for the

memory address itself and is incremented successively to the pro~er
address values. P is set to 17385, the a.ddress of the next-u:
pointer for the very first BASIC program line. (Remember, ~ 73 ..
holds the zero preceding this first line.) The variable N is Ill
cremented from 1 to 5 to step through the elements of array DA(n)·
It begins at 1.

48

6 P=17385:N=l:FORl=SOOOT09000STEP1000

g 1Fl=PEEKCP+2)+PEEKCP+3)*256TllENDA(N
)=P:N=N+l:NEXTI :GOTOlO:ELSEP=PEEK(P)+
pEEK(P+l)*256:1FP=OTHE.NCLS:PRINT"ERRO
R": EIW: ELS E8
10 CT(O)=l:CTC12)=RND(10)+10:CLS

Fig. 3.s. Initialization code that loads array DA(n) with the addresses of important
OAT A blocks.

A loop is then set up, to step the variable! from 5000 to 9000 in
increments of a thousand. Naturally, I corresponds to the line num­
bers for which you are searching. Remember that the line number
for each BASIC line is stored in two-byte code early in the line. In the
loop you'll need to convert each such encoded line number you
encounter into the standard decimal value; if that value equals I,
you've found the line.

The first part of line 8 does this. Since P always points to the
first byte of the next-line pointer, the line number bytes are located
at P+2and P+3. Usingourconversionformula, the values in these
locations are reconstructed into the original line number and com­
pared to I. If the line is found, the present value of P is saved in the
array at DA(N); N is incremented so that the next line's address is
saved in the next array element. The loop is continued and exited
upon completion. (Line 10 is the continuation of the initialization
procedure.)

Obviously the first line number this routine encounters is not
line 5000. What happens when the line number does not match!? In
th~t ~ase the BASIC code following the ELSE is executed. P i~
PGtnting to the present next-line pointer; now it is actually set to the
value of that pointer. The contents of the bytes at P and P+ 1 are
con_verted into a decimal number, and the result is placed in the
v~ableP. Now the search can continue, sinceP points to the next
:3!Jabl~ BASIC line. The routine repeats line 8 over and over again

ti! a line number match occurs.
thr Let's review a moment. Using variable? the routine advances
s~ugh BASI~ line by line using the next-line pointer bytes at the
tryi of each line. It looks at the encoded line number in each line,
Di\Qg) to find line 5000. When it finds it, the value of P is saved in

· Then the process repeats for 6000 through 9000. The array

49

DA(n) finally contains five memory addresses with which you can
locate your five major DATA blocks.

THE ACCESS SUBROUTINE
This part of the initialization routine does half of the work of data

access for you: it provides the location of the very start of each
DATA block. Now you need a subroutine that can make use of this
information to find specific data items. Each DAT A block follows the
same basic format: it consists of several DATA lines, and each
DATA line has several items. The subroutine must do the following
things:

•Find the proper DATA block using the array DA(n)
•Find the proper row in the block, and
•Set the DATA pointer to that proper row.

With the DATA pointer set, the main program can then use the
READ command to locate the desired item in the row. (It may then
have to do a READ loop to skip a few items; but the big skip has been
done already without any time-consuming loops.)

These three requirements, then, imply the need for two vari­
ables that must be set before the subroutine can do its job: a block
number and a row number. The block number is a number from 1 to
5, and the row number ranges from 1 to the maximum number of
DAT A lines in the selected block.

Figure 3-6 provides the code for a subroutine called Access.
(Like all adventure subroutines, it resides in BASIC from lines 1000
to 1999.) The main program calls the subroutine only after setting
two variables: the variableA is set to the DATA block number, andB
is set to the row number. After Access is complete, any successive
READ commands begin at the Bth line of DATA block A.

Access begins by finding the memory address of the beginning
of DATA block A, using the numbers stored in array DAW). The
variable P is set to this address. Remember that this address points
to the next-line pointer of the first DATA line of that block.

What if the desired row number stored in B is 1, that is, what if it
is the first line of the block? If so, P already points to the proper line,
and the subroutine skips on to set the DATA pointer in line 1042. If
not, you must search for the right line. The method used is similar to
that in the initialization routine. The next-line pointer is read and
placed into variable P. Each time this is done a line is skipped andf
points to the next line. This skipping process is done as a loop fro!ll 1
to B minus 1; the loop skips the unwanted lines until P holds the

50

NAME: ACCESS

TYPE: SUBROUTINE

INPUT: A = DATA BLOCK NUMBER
B = DATA ROW NUMBER

OUTPUT: DATA POINTER IS SET TO

PRECEDE THAT ROW

1040 P=DA(A):IFB=lTHEN1042ELSEFORZ=lTO
B·l:P=PEEK(P)+PEEK(P+l)•256:NEXTZ
1042 P=P-l:POKE16640,FIX(P/256):POKE16
639,P-FIXCP/256)•256:RETURN

Fig. 3-6. Subroutine Access.

address of the desired line. In this way the proper row is found
rapidly.

Now all that is left is to set the DATA pointer so that the READ
statement properly reads that line. You may recall that in normal
operati~n the DATA pointer should point to the zero that precedes a
~ATA line for the READ statement to start with the first data in the
~e. Well, P already points to the next-line pointer in your DATA
line, and the zero marker is just one byte earlier. If you set the
DA!A pointer toP minus 1, it is set just the way Microsoft BASIC
ordinarily does it-and READ works. Using the formula for encocling
numb · ·
1

. ers mto two-byte code, P 1s converted and stored in memory

Thocations 16639 and 16640, which together form the DATA pointer
~~ .

This Access subroutine really speeds things up. For instance, if
~.ou need to know the short description for room 7, the procedure is
~~~e. Room descriptions are in DATA block 5, so you setA to 5. 
Th 00m number corresponds to the row number, so set B to 7. 
RE~;call Access (G~SUB 1040). When it is finished, execute two 
the Ion statem~n~s; smce both are on the ~ame DAT A line one reads 
&entl ~ descnption, one ~he short. In t~s manner you have intelli­
react Y ccessed data, qmckly and efficiently, without the need to 

every preceding piece of data. 

51 



Since any adventure program is at heart a data storage and 
modification program, it should come as no surprise that severa] 
other subroutines are related more directly to the kind of data 
located in each DAT A block. These subroutines use Access to find 
what is needed. Access can thus be called (though I'll probably never 
live it down) a sub-subroutine. This is the secret to any truly complex 
program: simple routines to do simple tasks, other routines that use 
several of the simple routines to do larger tasks, and so on upward. 
The result, as you'll see, is that the Executive, the main program of 
Basements and Beasties, is really rather short and sweet. Why? 
Because it delegates the detail-work to layers of subroutines below 
it a sort of corporate executive routine. 

' Now that you have a good way of getting at data, what sub-
routines use this method? Let's look at a few. 

GET THE MESSAGE 
One function involving quick data access is the printing of 

special messages. You have an entire data block, block 3, devoted to 
messages. Life is easier if you assign these messages numbers; 
when a message needs to be displayed, Access is used to find the 
right one. . . 

Enter the subroutine called Mesprt, as in message pnnt. Figure 
3-7 gives the BASIC code for this utility, which is loc~ted at ~ne 1100 
in the subroutine section of the program. Only one piece of mfonna­
tion is needed for Mesprt to work: the message number from 1 to the 
maximum number of messages. Mesprt takes over from there, 
locating the message (using Access, of course), and printing it on the 
video screen. 

The program that wants a message displayed sets B equal ~o 
the message number and calls Mesprt (GOSUB 1100). Now, m 
order to use Access, remember, Mesprt must in turn provide two 
pieces of information: block number and row number. The row 
number is easy, since the message number is the row number-:­
each row in message storage holds one message. This number 15 

already in B which is where Access would like it, too. The block 
number is al~o no problem. Special messages are located in block~ 
So Mesprt sets A equal to three, just as Access expects. Mesp . 
calls Access. Now all Mesprt has to do is a READ statement, and ~t 
has the message in hand. The message is read, printed, and that 5 

that. fro!ll 
Using Mesprt really frees the adventure programmer 

keeping track of his messages. I have seen such programs that have 

52 

NAME: MESPRT 

TYPE: SUBROUTINE 

INPUT: 13 = MESSAGE NUMBER 

OUTPUT: MESSAGE IS RETRIEVED AND 

DISPLAYED 

1100 A=3:GOSUB1040:READA$:PRINTA$:RETU 
RN 

Fig. 3-7. Subroutine Mesprt. 

messages planted all over the place, some repetitively. With 
Mesprt, the programmer piles his messages in one location, and 
refers to them by number. This saves work, and as you know, 
programmers can use all the help they can scrounge! 

FOLLOWING THE PLAYER'S MOVES 
The most frequently entered commands in an adventure pro­

gram are motion commands. As he progresses from room to room in 
the scenario, the player is first and foremost an explorer. The 
programmer wants these commands to take little time to execute, 
but a lot goes on when the player tries to move. It takes time to find 
out which room he'll end up in if he moves in that particular direction. 
Obviously, that block of data known as the travel table really gets a 
work-out. With Access subroutine, you can dig out the room num­
bers you need, but it is handy to have a slightly higher level sub­
routine, one designed strictly for accessing the travel table in the 
most efficient manner. 

So, create the subroutine in Fig. 3-8, which is dubbed Travec, 
because it finds travel vectors, which are the end destinations of 
c~rtain moves. Travec resides on line 1120 in the subroutine area of 
~ e Program. Its primary purpose is to derive destination data from a: tr~vel table, given the present room number and the desired 

ection of travel. 
f Remember how the travel table is organized? There is one line 

~ resultant destinations for each room. There are eleven elements 
n each line, the first ten corresponding to the ten possible directions 

53 



NAME: TRAVEC 

TYPE: SUBROUTINE 

INPUT: D =DIRECTION tJUMBE.R 

ATTEMPTED Cl - 11) 

OUTPUT: A= DESTINATIOt~ OF ATTEl:PTEO 

MOVE 

1120 B=CT(O):A=l:GOSUB1040:FORY=lTOD: R 
EADA:NEXTY:RETURN 

Fig. 3-8. Subroutine Travec. 

of travel, the eleventh for the default direction when an ambiguous 
motion term is used (ENTER, for instance). To find the destination, 
Travec must first find the DATA line corresponding to the room 
where the player is. Then it must read across the line to the element 
corresponding to the desired direction. 

Travec uses Access to get to the data. Access asks for two 
pieces of information: variable A must be the row number and 
variable B must be the DAT A block number. In using the travel 
table, the present room number is the important thing. Row number 
equals room number in the table, so Travec sets A equal to the 
present room number. (The variable CT(O) contains the present 
location of the player). The travel table is block 1 of the five blocks 
Access covers; so Travec sets B to 1. Then, Access is used by 
executing the proper GOSUB statement. 

When Access is done, Travec knows that it can read the proper 
line of information, but it needs to know which of 11 elements to 
locate. For this purpose the program that calls Travec must sup~ly 
one more variable, D, to specify the direction of motion. Moa~n 
numbers 1 to 8 correspond to compass-point directions; 9 is up, 10 is 
down, and 11 is the default motion. With this number inD, Travec 
knows just how far over to read. It sets up a short READ lo?P• 
counting from 1 to D. When the loop is finished, the destinaoon 
number is stored in variable A. . 

There are several other subroutines in Basements and Beasaes 
that use Access to get at data. These are discussed in detail in later 
chapters, as their necessity becomes evident. 

54 

SQUEEZING DATA INTO INTEGERS 
Organized programmers are never wasteful. They are always 

arching for neater ways to store information, they are always 
~~erested in how to compress and compact and combine data. With 
111

0ur memory limitations (most of the 16K is eaten up by text), you 
~ewise cannot afford to pass up a good method for data compres­
sion. If you !~ave it up to ~crosoft BAS! C to decide, the creation of 
numeric vanables alone will swallow the last of your memory and 
hand you a nice, big OM ERROR. 

The last element of methodology I need to discuss in program 
structuring is variable organization. Some forethought in this regard 
should save a lot of trouble when you finally type RUN and hit 
ENTER. 

Let's get the simple preparations out of the way first. For one 
thing, the adventure programmer must exercise discipline in choice 
of variable names as he writes the many parts of his program. If you 
can't remember what variable you last used, don't simply use 
another. The end result is that most BASIC code is littered with 
variables from A to Z, when in many cases just a couple would 
suffice. 

Why is this a problem? Well, every time you introduce a new 
variable Microsoft BASIC proceeds to set up memory space for it. 
Three bytes of memory are set aside for every variable name you 
introduce, just as housekeeping, not including the bytes containing 
the actual value of the variable. These allocated bytes are unused; 
they simply sit there, wasted. 

A good practice is to keep track, on paper, of which variables 
yo~ are using and for what functions. Whenever you need to use a 
vanable, force yourself to look back at that list and see if a previously 
cre.ated variable will serve. The best example of this sort of organi­
zation is in FOR-NEXT loops. Conceivably, you can limit yourself to 
a few specific variables, like I,], and K, whose sole purpose is to be 
used and reused in loops. Resist the urge to leap from letter to Jetter. 

. A second rule of thumb to follow has to do with the type of 
;~able you use. After all, not all variables are created equal. Look at e:·. 3-9 and compare the number of bytes involved. The most 
int cient of the variable types is the integer; it squeezes a number 
int 

0 
that ~wo-byte code I've already been using. The precision of 

sin efers 1s. ~oor, since no fractions are allowed; that's why the 
n~;-prec1s1on and ~~uble-pr~cision variables were created. Ordi­
Pro ' though, prec1s10n vanables are for mathematics-oriented 
Prec~~s. Adventure programs have no real need for hair-splitting 

1s1on. 

55 



Ah, but if you don't tell BASIC what you want, it'll give Yaq 
more than you bargained for! Single-precision variables are th 
default type. That is, unless you specify the kind of variable Yoe 
want, BASIC assumes you want single-precision. This means ~ 
extra couple of bytes per variable-a 40 percent increase in variable 
storage space! There must be a better way. 

Of course, if you want to, you can specify "integer" every time 
you create a variable, by appending a percent sign(%) to the variable 
name. This is a nuisance, especially since BASIC provides a quicker 
means, and one that won't accidentally forget to specify a variable 
somewhere. It is the DEFINT statement. 

By using a DEFINT statement in the initialization section of the 
program, you can prespecify certain variables as integers. The fonn 
Basements and Beasties uses is the widest form of the statement 
DEFINT A-Z. This effectively tells Level II to treat all numeric 
variables that begin with a letter from A to Z (and that is all numeric 
variables) as integers. Effectively you have handed BASIC a note 
that says, "We're hurting for space, please economize." 

MAKING EVERY DIGIT COUNT 
The preceding remarks on variable choice are all based on 

common sense and are nothing new. Now let's get tricky. You have 
already seen that an integer can hold quite a bit of information. 
Integers in Microsoft BASIC range from - 32768 to +32767. The 
sort of numbers you want to store are seldom larger than 10 and 
almost always less than 100. It is to your advantage, then, to 
squeeze as much as you can out of one integer. 

That simple integer essentially has six areas of storage that are 
easily accessible in BASIC. There are five digits, (which 1 number 
digit 1 to digit 5fromright to left) and one signplace(which is either 
plus or minus). There are certain limitations to how we can use these 
six areas. No digits can be assigned such that the final value of the 
assembled integer exceeds the limits given here. Thus, digit 5 can 
never equal 4; it must always be from 0 to 3. Digit 4 can be anything 
from 0 to 9, as long as digit 5 is less than 3; otherwise, the compled 
integer may exceed 32767. The programmer in using this sort 
data compression can best eliminate such worries by assigning digitS 
to some function in which it never exceeds 2. Otherwise, he needs to 
pay close heed to other digits. 

The sign place only conveys one small piece of informati0~ 
since it is only in one of two states. Still, this is useful, and it doe~n 
really affect the number that follows it. Plus, as you'll see, the sig!l 

56 

...J 

~ 
~ 
en w 
~ 
CD 
lO 

II 
a: w 

~ 
~ 

w 
::> 

..... _J -

< > 

w 
:E ..... < -
z 

C\I 

_J 

~ 
0 
t-
en 
w 
~ 
CD 
....... 

II 

z 
0 
en 
u 
w 
a: 
a.. 

I w 
_J 

(.!) 
z 
en 

i- -
w 

... :::> -
_J 

< > 
.... -

UJ 
I- :E -

< z 

-.:t" 

_J 

~ 
0 
t-
en 
w 
t­
>­
CD 
..­..-
II z 

0 
U5 
u 
w 
a: 
a.. 
w 
_J 

CD 
::> 
0 
Cl 

.... -
- -

fo- -
w ... ::> -
....J 
< > 

I- -

... -

... -

w 
- :E -< z 

co 

ui 
~ ·:::; 
er 
~ 

.J:: 
0 

~ 

~ 
E 
Q) 

E 
0 
c: 
::;, 
0 
E 
<ll 
Q) 

= "O 
c 
<ll 
Cf) 
Q) 

:0 
<ll 
-~ 
> 
0 
"§i 
E 
::;, 
c 
Q) 
Q) 

,6 
Q) 

.J:: 
1-

oi 
cl> 
Ci 

~----~~~~~~~~~~~~~~___J~ 

57 



place is far easier to test and change than are the individual digits of 
the integer. 

Assuming you wish to use the places of an integer to store smau 
numbers, what methods can you use? There are no BA~IC state. 
men ts that are designed to change the digits of a number directly. So 
you need to write some routines of your own-two, in fact. One 
subroutine should take an integer, split it up into five digits, and store 
each digit value in a separate variable somewhere for easy examina. 
tion and alteration. The other subroutine should take the values of 
those five separate variables and reverse the process: assemble 
them into a complete integer again. 

AN INTEGER DIVIDED 
The routine that divides a given integer into its digits is called 

Analyz, and the code for it is shown in Fig. 3-10. The v~ria?les 
CT(5) to CT(ll) are dedicated to the integer under exammation. 
When the routine is finished, the first through fifth digits are stored in 
variables CT(6) to CT(lO), respectively. Additionally, the sign of the 
integer is saved in CT(ll); a 1 if positive, a - 1 if negative .. 

A FOR-NEXT loop is established to clear the values of vanables 
CT(6) to CT(lO). This is because digits of some pre~ous integer 
analysis may remain and confuse the results. Next, the mte~er must 
be converted into a form in which the individual digits can be isolated. 
As a numeric variable, CT(5) cannot be studied digit by digit; ~o 
BASIC statement exists to do this. If the contents of CT(5) is 
converted into a string, the various powerful string-handling sta~e­
ments of Microsoft BASIC can be used to split the string into its 
components. . . 

The STR$ statement can perform this conversion. In this con· 
version the entire number is changed into a string-including the 
sign! F~r the moment you simply want to isolate the five digits; 3 

leading sign character would just get in the way. Use the MID$ 
statement to exclude the first character of the new string. (This.fir?t 
character is a space if the number is positive, a minus if it 15 

negative.) r 
STR$ converts CT(5) into a string. MID$ creates anoth~ 

string from this one, beginning at the second character. Then, th1: 

string is stored in memory as B$. Now a FOR-NEXT loop can bt 
b . The las used to anal~z~ B$ on a 0~racter-by:character as1s.' left. 

character is digit l, and the d1g1t number mcreases from nght to . 
Remember that the number may not have all five digits, depending 
on its numerical value. 

58 

UAME.: ANALYZ 

TYPE: SUBROUTINE 

INPUT: CT(S) = A GIVEN INTEGER 

our PUT: ere s > TO CT(lO) = THE DIGITS 

OF THAT INTEGER, AND CTCll) = 

THE SIGN 
1000 FORZ=6T010:CT(Z)=O:NEXTZ:B$=MID$( 
sTR$(CT(5)),2):FORZ=lTOLENCB$):CT(6+LE 
N(B$)-Z)=VAL(MID$(B$,Z,l)):NEXTZ:IFCT( 
S)<OTHENCT(ll)=-l:RETURN:ELSECT(ll)=l: 
RETURN 

Fig. 3-10. Subroutine Analyz. 

The FOR-NEXT loop runs from 1 to the total number of 
characters in the string: LEN$ determines this limiting value. The 
string is evaluated from left to right, again using the MID$ state­
ment. AsZ increments, the MID$ selects each character. VAL does 
the reverse of the earlier STR$ function; the selected character is 
converted into a numeric value for storage in a CT(n) variable. 

The left-hand portion of the equation is designed to ensure that 
the proper value ends up in the proper variable. For instance, 
suppose that Z equals 1. The digit is the leftmost one in the string. 
But, what is it, digit 5? digit 4? That all depends on the length of the 
string; so the LEN statement plays a part. If the number has five 
digits, the leftmost digit is placed in CT(6+ 5 -1), or CT(lO), the 
Variable for digit 5. This is as it should be. 

After the loop has loaded all digits into separate variables, the 
last remaining task is to store the sign. If CT(5) is less than zero, a 
- 1 is placed in CT(ll); otherwise, a 1 is stored. 

The result? Now if a program attributes some significance to 
~ay, digit 3 of a stored variable, it simply calls An~yz usi~g a 

OSUB 1000 and then examines CT(8). That makes hfe easier! 

AN INTEGER REUNITED 

int Now, suppose a program used Analyz to check a digit. in an 
eger, and now wants to change that digit. You need a routme to 

59 



NAME: SY NT HE 

TYPE: SUBROUTINE 

INPUT: CT(6) = THE DIGITS OF A GIVEN 

I NT EGER, AND CT(ll) = THE 

SIGN 

OUTPUT: CT(5) = INTEGER 

1020 CT(5)=CT(l0)*10000+CT(9)*1000+CT( 
8)*100+CT(7)*10+CT(6):CT(5)=CT(5)*CT(l 
1): RETURN 

Fig. 3·11. Subroutine Synthe. 

will take all of those digits, including the changed one, and reassem­
ble them into a new integer. 

This converse of Analyz is called Synthe, and it is shown in Fig. 
3-11. It sets CT(5) to the value resulting from the assembly of all five 
digits in CT(6) to CT(lO), even if some of these are only zero. Plus, 
the sign of the variable is set by the presence of 1 or - 1 in CT(ll). 

The whole thing can be done much like Analyz, using string­
handling functions to convert the digits to string characters, then to 
concatenate them, then to reconvert the new string to a numeric 
value. However, the method shown in Fig. 3-11 is quicker and 
simpler. 

After all, each digit really represents a place value in a number. 
Digit 1 is the ones column, digit 5 is tens, and so forth. So, Synthe 
multiplies each digit by the proper place factor and adds the results. 
Then, to set the sign, CT(ll) is used as a multiplier. The final result 
is stored in CT(5), and we have come full circle in integer handling. 

AND NOW A STEP DOWN 
Well, now we've discussed many of the fine structural points 

that go into creating a tight, efficient adventure program. It's high 
time that you opened that creaky trap door and stepped down into 
the gloom. How are the room descriptions displayed? What about 
objects? What about attacks from hostile enemies? All of these~~ 
part of the main executive section of the adventure program, and iJJJ 

are explained in the next chapter. 

60 

Chapter 4 

/..:. . . 

Entering the Basement 

I have compared the typical adventure program to a running 
travelog, providing views of the surrounding environment as .the 
adventurer walks about. The program really has two states of action. 
The first state is that in which rooms, objects, and the like are 
described and the program sits dormant, waiting for a command. 
The second state is that in which a command is entered, a handler is 
invoked and some sort of result is produced. Ordinarily, the adven­
ture program runs a regular loop between these two states. 

Before the first state can be initiated, the program must 
undergo some preparation. Some of this initialization was described 
in the previous chapter. Before stepping down into the basement 
let's complete a look at the preliminaries that allow the program to 
run. 

TYPE RUN AND ENTER 
Figure 4-1 shows the entire initialization sequence for Base­

ments and Beasties. When you type, "RUN," and press ENTER 
these lines set up the ground rules for the execution of the main 
executive. 

First things first. No game program is complete without a 
snappy title display. It's a shame that you cannot afford to expend 
Precious memory space for helpful things such as rules to the game 
0~ Playing hints. A title has to do. CHR$(23), of course, places the 
display into the 32-character mode, producing large attention-

61 



2 CLS:PRltlTCHR$(23):PRINTQ46S,"HELCOM 
E TO":PRINTQ522, 11 BASEMENTS & BEASTIES 
II 

4 CLEARSOO:DEFINTA-Z:OIMTX$(4),DA(5), 
RM(20),08(16,l),BK(l0),CT(l2):FORl=lT 
02 0: READRt I (I): NEXT: FOR I =l TOlG: REAOOB ( 
1,1),0B(l,O):NEXT:FORl=lTOlO:REAOBK(t 
) : NEXT 
6 P=l7385:N=l:FORl=SOOOT09000STEP1000 

8 IFl=PEEK(P+2)+PEEKCP+3)•256THENDA(N 
)=P:N=N+l:NEXTl:GOTOlO:ELSEP=PEEK(P)+ 
PE.EKCP+1)•256:1FP=OTHENCLS:PRINT"ERRO 
R": E.tW: ELS E.8 
10 CT(O)=l:CT(12)=RND(10)+10:CLS 

Fig. 4-1. Initialization code. 

getting letters. The PRINT@statements place the title lines just 
where you want them. 

(A note of caution is apropos here for users unfamiliar with the 
32-character display mode. The width of the letters is doubled, and 
every other byte in display memory is skipped. Thus, the PRINT@ 
statement must be used to address even-numbered screen locations 
only! For demonstration purposes try to use PRINT@with an odd 
number; the word is stored in memory, but the screen refuses to 
display it.) 

Next, you need to attend to a number of housekeeping functions 
within the computer. Some of these have to do with the allocation of 
memory. Figure 4-1 shows how BASIC line 4 handles these needs. 

For instance, you need to tell the TRS-80 how much memory 
space to set aside for the purpose of constructing and saving strings. 
You may know that, upon power reset, BASIC goes right ahead and 
sets aside 50 bytes of space for strings; this space is located in high 
memory near: the memory-size border. You need more than that, 
though. The printed descriptions for each room have a maximurn 
length of 240 characters, and even the short descriptions used for 
the objects tend to be at least a line long (64 characters). So line 4 
contains the CLEAR 500 statement. This allocates a good 500 bytes 
of working space for the few string variables used in Basements and 
Beasties. CLEAR 500 also, of course, resets all variables, a good 
thing to do as an early part of program initialization. . 

In the previous chapter I mentioned the need to define numeric 

62 

variables as integers, in the noble interest of saving bytes. DEFINT 
A-Z alerts the TRS-80 that every numeric variable beginning with a 
letter from A toZ (in effect, all such variables) should also be treated 

as an integer. . 
Also, any vanables that you have chosen to organize into an 

arraY must be properly sized or "dimensioned." In the TRS-80, all 
arrays begin with eleven levels of value in any direction (zero 
through ten) unless the program specifically indicates otherwise. 
Thus, if you refer in some line to A(3), BASIC sets up the array A(n), 
where n may range from zero through ten. If you never intend to use 
more than a few of the elements of that array, all of the others 
represent a memory waste. On the other hand, if you try to refer to 
something like A(22), the result is a dimension error; you have 
exceeded the predetermined size of the array. 

To save space in the case of small arrays and to make larger 
arrays possible, the DIM statement is used. Notice that in Fig. 4-1 
the single statement DIM is used across five different arrays. In 
order, the text-string array TX(n) is sized, then the data-access 
array DA(n), then the room status array RM(n), then the object 
status array OB(m, n), then the obstacle list array BK(lO). 

The remainder of line 4 performs the initialization of three of 
these important statuses. Perhaps you recall that the first three data 
blocks in the program are for the setting up room, object, and 
obstacle states. Figure 4-2 shows how each of the relevant arrays 

2000 

DATA ... 

3000 

DATA ... 

4000 

DATA ... 

~ ·~--~~~~~~~~~-===:::===--__J 
b:~~k4-2 . How the major arrays are initialized from the first three DATA 

s. 

63 



are loaded from these three blocks. Since the data-read pointer is 
reset to the very beginning of the BASIC program buffer, upon 
power reset the first READ statement accesses the first DATA 
statement, and subsequent READs continue through the blocks that 
follow. After these initial setups, however, all data access is done 
using the special methods outlined in the previous chapters: the 
data-read pointer is controlled by POKE statements within the 
program, not primarily by BASIC. 

The initialization performed in lines 6 and 8 have already been 
described in the previous chapter. When these two lines are exe. 
cuted, the data-access array DA(n) contains the memory addresses 
of the beginning of each of five important data blocks. These ad­
dresses are then used for quick access to the selected data block, 
skipping previous blocks. 

Line 10 is the final bit of preparation you need to begin the 
game. Array element CT(O) contains the present room location of 
the intrepid adventurer. The player begins in room 1, the home 
base; so CT(O) is set to 1. Next, the counter that controls the 
appearance of the tenacious creature, called Ore, must be initialized. 
CT(l2) is set to some random value of from 10 to 20, using the RND 
function. At last the screen is cleared, removing the game title and 
preparing the display for the room descriptions coming along. 

DESCRIPTION 
Lines 100 to 199, as you may recall, contain Executive, that 

portion of the code that really gets a workout; most other sections 
loop back to Executive. Figure 4-3 lists Executive in its entirety. 
The first two lines, 100 and 102, constitute the description subsec­
tion of Executive. They paint the picture of the adventurer's im· 
mediate surroundings. Line 104 jumps to a section of code that 
handles the activity of the tenacious Ore. The remainder of the lines, 
105 to llO, are the command subsection. These lines receive input 
from the keyboard, parse the command, and direct program flow to 
the appropriate handler. Let's first take a look at the description 
subsection. 

There are three descriptive tasks for this subsection to ac· 
complish: 

•Describe the room itself, 
•Describe any objects in the room 
•Describe a tenacious enemy in the room 

Consider first the description of the room itself. There are, of 
course, two ways to describe a room: the long description and the 

64 

OD CT(5)=RMCCT(O)):GOSUB1000:C=CT(6): 
~osUB1160:GOSUB1180:1FB=OANOC=OTHENCT( 
")=l:GOSUB1020:RM(CT(O))=CT(5):ELSEIFB 
~1THENN=RND(100):1FN<20THENB=5:GOSUB11 
oo:GOT0580 
l02 GOSUB1140 
l04 GOT0112 

105 INPUTA$ 
106 GOSUB1060:A$=TX$(2):GOSUB1080 
108 CT(5)=N:GOSUB1000:1FCT(10)=00RN=OT 
HENB=7:GOSUB1100:GOT0104 
110 ONCT(6)+CT(7)•10GOT0200,220,240,26 
0,280,300,320,340,360,380,400,420,460, 
480,500,520,540,560,580,600,620,640,66 
0,680,700 

Fig. 4-3. The Executive, divided into the description and command subsec­
tions. 

short description. Which descriptive paragraph/phrase should be 
displayed? The rule is, if this is the first visit to the room, display the 
long paragraph. On subsequent visits, show the short phrase de­
scription. The first piece of information to check, then, is whether 
this room has been visited before or not. 

The room status array, RM(n), contains this information. If the 
first digit of the integer stored in RM(n) is a zero, then the room has 
never been visited; if it is a one, then it has been visited one or more 
times. You need to check that digit; so the Analyz subroutine, 
located at line 1000, comes in handy. Analyz divides any integer 
temporarily placed in variable CT(5) into its five digits, which are 
stored in variables CT(6) through CT(lO). After using Analyz (CT(6) 
contains the first digit, which would tell you which description to use. 
. Line 100 begins by setting CT(5) equal to the room status 
~teger for the present room and then calling Analyz. [Note that 
th T(O) ~olds the number of the present room; thus, RM(CT(O)) gives 

e desired status integer.] When Analyz is finished, CT(6) is either 
a zero or a one, depending on whether the room has been visited or 
not. 

th This proves to be a convenient arrangement. The subroutine 
e·~ actually prints the room description (its name is Viewrm) prints 

1 
er the long or short form, depending on the following criterion: if 

65 



the variable C is a zero the long form is used, otherwise the sho 
phrase is used. rt 

CT(6) already meets this requirement (not by chance, I assur 
you). All you need to do is set C equal to CT(6) and call Viewnn· the 
proper description will be displayed on the screen. ' e 

It's clear that you'll need to take a good look at how the room i 
described, and so we must take a detour from our analysis 0~ 
Executive. Figure 4-4 gives the code for Viewrm and one more 
helpful routine called Darkck. Don't worry, I'll explain how it an 
hangs together. 

Before Viewrm can describe the room, regardless of long or 
short description, there is one final consideration-is it too dark to 
see in there? Remember that in Basements and Beasties (and in a 
number of similar adventure programs) much of the action takes 
place beneath the earth's surface, in gloomy caves. Standard equip­
ment in such cases is a torch or lantern to see by (that is object gin 
your program). Thus, there are two questions to answer: Is the 
adventurer in a dark room? Does the adventurer have the torch1 

The subroutine Darkck (from DARK Check) evaluates these 
two questions, which is why Viewrm calls Darkck before it does 
anything else. Look at line ll80. Using the following logic Darkck 
sets the variable B to a one if the player cannot see his surroundings. 
If the player doesn't have the torch, and if he's not above ground, 
then it's too dark to see. The array element OB(9, 1) tells where the 
torch is. If the adventurer is carrying it, OB(9, 1) should equal 21, the 
location number for all things being carried. Then, the only two 
rooms above the ground and not needing extra light are rooms i and 
2. If CT(O), the present player location, does not equal 1or2, a torch 
is needed. Darkck uses these comparisons and sets B accordingly. 

Getting back to Viewrm, Darkck is called. If B equals 1 it is too 
dark to describe the room. In such a case the message "IT IS TOO 
DARK ... YOU MAY FALL INTO A PIT!" is displayed in lieu of a 
description. This message is message 39; all that is needed is to set 
B to this message number and call Mesprt (message-print) at line 
llOO. The message is displayed and Viewrm returns. (Check the 
previous chapter on the workings of Mesprt for review.) 

If the adventurer can see, though, Viewrm continues on. The 
long and short descriptions of the rooms are kept in the roofll 
description block of data. Using Access (lines 1040 through 1042), 
the specific long paragraph and shorter phrase descriptions can be 
read from the DATA line and stored in two separate string variables. 
The long version is stored in TX$(0), the shorter in TX$(1). 

66 

...--
NAME: VI E.~mM 

TYPE: SUBROUTINE 

1NPUT: C = 0 FOR LONG DESCRIPTION 

C = 1 FOR SHORT DESCRIPTION 

OUTPUT: ROOM IS DE.SCRIBED IF THE.RE IS 

ENOUGH LIGHT; IF NOT, A 

WARNING MESSAGE IS DISPLAYED 

1160 GOSUB1180:1FB=lTHENB=39:GOSUB1100 
:RETURN:ELSEA=5:B=CT{O):GOSUB1040:READ 
TX$(0),TX${l):IFC=OTHENPRINTTX${0):RET 
URN:ELSEPRINTTX$(l):RETURN 

NAME: DARKCK 

TYPE: SUBROUTINE 

INPUT: NONE 

OUTPUT: B = 1 IF IT IS TOO DARK TO 

SEE 

B = 0 OTHERWISE 

1>1280 IFOB(9,1)<>21ANDCT{0)<>1ANDCT(0)< 
THE.NB 11 lELSEB•O 

~82 RETURN 
F· 
'9· 4•4. Subroutines Viewrm and Darkck. 

tio . Remember that Access requires two main pieces of informa-
13 ~the block number in variable A and the entry number in variable 

· e number for the room description block is 5, and the entry 

67 



number is equal to the present room number in CT(O). So VieWrrii 
sets these two variables and calls Access. When Access is done, th 
data pointer in BASIC is at the beginning of the data line that holde 
the two descriptions. They are read into TX$(0) and TX$(1) Wi~ 
ease. 

The final consideration is which description to use. Ah, wa 
back in Executive we set variable C to select the right descriptioJ 
Viewrm just checks the value of C and prints out either TX$(0) 

0
; 

TX$(1). That's simple! 
Reviewing what we've just seen, Executive needs to describe 

the room. It calls Viewrm, which may print either a long description 
or a short one-or it may choose to print no description if the room is 
too dark. 

One more thing needs attention regarding the room. Now that 
the room has been visited, you need to change the room status array 
element to reflect the fact. The digits of that element are still kept in 
variables CT(6) through CT(lO). You can simply change CT(6) to 1. 
Then a call to the subroutine Synthe reassembles the digits and put 
them into a complete integer in CT(5). (Synthe, described in the 
previous chapter, is the inverse of Analyz.) 

It would not be good to make this change if the room was dark 
and no description had been printed. Why? Because if the adventurer 
returns later, torch in hand, he just gets a short description; he was 
there before, even though he couldn't see. That would be grossly 
unfair (and adventurers need all the help they can get). So, before 
you change the room status to visited, ask, "Did he see anything?" 
That means another call to Darkck, which sets B accordingly. 

IF Bis a zero, and C (which a long time ago was set to the status 
of the room) is a zero, change the room to visited. In that case, set 
CT(6) to a 1 and call Synthe (line 1020). CT(5) is the new room 
status, and you can place this into RM(CT(O)). 

What if the room is dark? In that case, play a little game on the 
poor adventurer. Remember the message "IT IS PITCH DARK IN 
HERE ... YOU MAY FALL INTO A PIT"? Well, provide him with 
that chance. Using the BASIC RND function to provide a random 
number from 0 to 100, give the player a 20 percent chance of fallinS 
into a pit and being killed by the fall. The variableN is set to a random 
number; if N is less than 20, his doom is sealed. Message 5 is printed 
using Mesprt ("YOU FALL TO YOUR DOOM . . . ") and the 
program jumps out to a handler that takes care of dead adventurers. 
This may seem cruel and unfair, but it is merely a means to ke.e~ 
smart-alecky players from attempting to travel through the entil' 
scenario without the aid of a torch! 

68 

KEEPING TRACK OF OBJECTS 
Now that the room has been described, the objects come next. 

Note that this includes passive creatures that do not attack unless 
jrritated by the adventurer. Executive relies on yet another sub-
outine for this requirement. Line 102 of Executive calls it. 

r figure 4-5 shows line 1140, which is the subroutine Listob (as in 
list-objects). Its task is to search through the entire object status 
array, find those objects that are located in the present room, and 
print their description. 

By now you are probably not surprised by the first few state­
ments. It just makes sense once again that if it is too dark to see, no 
object descriptions can be printed! Here we go again ... another call 
to Darkck, and a check to see how variable B has been set. Listob 
returns wordlessly if the environment is too dark. 

In the normal case, though, the objects are seen and Listob 
prepares to describe them. The object descriptions are kept in data 
block number 4, and Access is used. Variable A is set to 4 in 
expectation of repeated calls to Access. The other variable that 
Access expects to see, variable B, is set by the loop that follows. 

In the object status array, the elements OB(n, 1) yield the room 
number where the object is located. Which objects are in the present 
room? A FOR-NEXT loop is set up for 16 iterations, since there are 

NAME: LI STOB 

TYPE: SUijROUTINE 

INPUT: tJONE 

OUTPUT: All OBJECTS IN THE ROOM ARE 

DESCRIBED IF THERE IS 

ENOUGH LIGHT TO SEE BY 

1140 GOSUB1180:1FB=1THENRETURN:ELSEA=4 
:FORB=1T016:1FCT(O)<>OBCB,l)THENNEXTB: 
XRETURN:ELSEGOSUB1040:READTX$(4):PRINTT 
$(4):NEXTB:RETURN 

Fi~--~~~~~~~~~~~~~~~~~~__J 
g. 4-5. Subroutine Listob. 

69 



16 objects. If an object is not in the room indicated by CT(O), theniti 
skipped. Otherwise, it is a nearby object and needs to be described. s 

On such objects, a call is made to access to get the object 
description. The variable A has already been set to locate the proper 
data block. Access now needs the variable B to tell it which entry in 
the block to point to. 

Fortunately, we thought to use B in the FOR-NEXT loop. 
Thus, B already equals the desired object number, and access has 
everything it needs to seek the descriptive sentence to be printed. 
When Access is done, Listob is ready to access the description with a 
standard BASIC READ statement. The sentence is stored in TX$(4) 
and is immediately printed. The remainder of line 1140 completes 
the loop, checking the other objects. 

So far the descriptive subsection of Executive has described the 
room itself and listed any objects sitting around. This also covers the 
dormant creatures. Now, what about the real fiend of the scenario 
the tenacious creature Ore? ' 

ROAMING MONSTERS 
The final descriptive task of the Executive is to alert the ad­

venturer to the existence and attacks of the tenacious creature Ore. 
This creature is unique in that it does not simply pose an obstacle to 
getting through a given door. Nor does it sit there, refusing to bite 
until .threatened. The tenacious creature Ore as its name implies, 
never gives up. Once it finds you, it will follow you from room to 
room, until either you or it is laid to rest. It attacks randomly and just 
as randomly may succeed in killing the stalwart player. The BASIC 
code controlling this creature's activity is located in Executive. 

Figure 4-6 shows the routine for the tenacious creature, Ore. 
Three variables are used to control the appearance and activity of the 
foul beast. Array variable OB(O, 1), an unused element in the object 
status array, is used to store the room location of the Ore. Variable 
OB(O,O), on the other hand, is a flag. If it equals zero, the Ore has not 
yet stumbled upon the adventurer. If it is a one, the Ore and the 
player are in the same room. Finally, variable CT(12) is a counter 
used to control how often the hero runs into the Ore. 

How does the Ore find the player? There are many ways this 
can be done. For instance, I had one version in which a random 
number generator bounced the Ore from room to room, until he 
landed on the player. The problem with this approach, and several 
others like it, is that it was too random. The Ore might never appe~ 
in some rounds; in others, he'd keep popping in every other move. 

70 

l l2 IFOBC0,0)=0ANDCT(0)>2THENCT(12)=CT 
(12)-l:IFCT(12)<=0THENCT(12)=RND(10)+1 
o: OB(0,l)=CT(0):0BCO,O)=l:GOT0116:ELSE 
105 
114 IFCT{0)<3THENOBCO,O)=O:GOT0105:ELS 
EOB(O,l)=CT(O) 
116 B=42:GOSUB1100:B=RND(100):1FB>75TH 
EN105ELSEB=43:GOSUB1100:B=RN0(100):1FB 
>60THENB=44:GOSUB1100:GOT0580:ELSE105 

Fig. 4-6. Routine governing the tenacious creature Ore. 

Clearly, he must have limits placed on his random wanderings. 
In this version the variable CT(12) is a counter that is set to 

some random number between 10 and 20. This counter is dec­
remented with every move made by the player. When it runs out, 
the player meets the Ore! You may choose to change the frequency 
of meeting, but the concept itself works well. 

Let's follow the routine. The first task is to decrement that 
counter, CT(12). The counter should be decremented under two 
conditions only. First, the Ore and player should not yet be together, 
since that is what the counter is preparing for. Second, the player 
should not be in room 1 or 2, since these are above-ground rooms 
and Ores hate the outdoors! OB(O, 0) is the flag that satisfies the first 
qualification, CT(O) the other. If the player is above ground, or if the 
Ore is with him, the rest of that line is skipped. Otherwise, CT(12) is 
lessened by one. 

Now, what if CT(12) finally runs down to zero? Then the Ore 
appears! First, CT(12) is reset to some level, to control the next Ore 
that comes along. Second, the Ore is moved right into the player's 
room (OB(O, 1), the Ore's location, is set equal to CT(O), the hero's 
~ation). Then, the Ore chooses whether or not to attack in line 116. 
be ~T(l2) has not yet run out, the routine is finished for the time 

mg and returns to the input portion of the program. 
If the player is above ground, or if the Ore is with him, line 114 is 

e~ecuted. In the first case, the Ore leaves the player alone if the 
~ayer moves above ground. Then, OB(O, 0) is set to zero, indicating 
C~t the Ore i~ no ~onger at the hero's throat. (This starts the counter 
ca 02) back mto its downcount for a future meeting.) In the second 
o~~O the .Ore follows the player; so the Ore's location number in 
Po . '1) IS equated with the player's in CT(O). Line 116 handles 

ssible attacks by the Ore. In line 116 three possibilities are gener-

71 



ated: the Ore does not attack, the Ore attacks but does not kill th , e 
Ore attacks and kills the adventurer. 

Before these three options are juggled, message 42 is dis. 
played, which warns, "THERE IS AN ANGRY ORC NEARBY!" A. 
random number from 0 to 100 is generated. If this number is greate 
than 75, the first option above comes true: the Ore does not attackr 
and the program continues on. ' 

In the 75 percent chance that the Ore does attack, message 43 
exclaims, "HE SWINGS OUT AT YOU WITH A BLACK SCJ. 
MIT AR!" Then the fate of the duel is determined with a second 
random number. A value of greater than 60 means death for our 
hero. In that case, message 44 laments, "YOU ARE SLASHED IN 
PIECES." Then program control skips to a routine that provides 
handy resurrection and re-entry into the scenario. Otherwise, the 
program continues on to the input segment. 

(I hardly need to tell creative programmers who read this 
volume that these probabilities are arbitrary. You can demonstrate 
your capacity either for compassion or cruelty depending on the 
numbers you choose for the comparisons in line 116!) 

With that done, Executive fills a portion of the screen with 
descriptive material. It now awaits input from the player, who 
doubtlessly would like to swing his own sword at the Ore before the 
percentages backfire. The command subsection of Executive now 
comes into play. 

AT YOUR COMMAND 
Lines 105 to 110 constitute the command subsection. Through 

this section, the one or two word phrases entered by the player are 
broken down and analyzed, and the desired action is performed. 

Now, there are far more elegant adventure programs in terms 
of command parsing (interpretation). Some allow prepositional 
phrases, adverbs, and so on. Those touches are fine-if you have 
both the memory and the program speed to handle a large vocabularY 
and a number of options quickly. You're limited to BASIC and 16K. 
Don't quail: two-word commands are enough, as long as you choose 
your vocabulary well. 

Figure 4-7 shows the grammar we chose. Every input frorn the 
keyboard contains one or two words, either a verb or noun by itsett 
(NORTH or OPEN), or a verb with a noun (TAKE DIAMOND or 
GO WEST). . g 

It is the place of word 1 to specify the type of task be1~ 
requested, so that an appropriate routine or handler can be invoke · 

72 

SINGLE COMMAND 

WORD. A SELF­

EXPLANATORY 

VERB OR NOUN 

_E& "WAIT ... "EAST" 

OPTIONAL SECOND 

WORD WITH SPACE 

AS SEPARATOR­

USUALL Y A NOUN 

£.& "DROP AXE" 

Fig. 4-7. Simplified grammar of Basements and Beasties. 

For instance, if the player types in "SCORE," a handler is called that 
displays the present score and then returns to Executive. 

Word 2, on the other hand, specifies the parameters relating to 
the task implied by the first word. Suppose you typed "TAKE." 
What does the program do? It invokes the handler called Take, but 
what object in the room should the adventurer take? The second 
word removes the ambiguity by supplying additional data. 

In either case the words of the command must be recognized to 
be useful. This involves that dreaded trick of the programmers' 
trade, the table search. A word table must be maintained in memory 
so that each input word can be compared to the table elements for 
identification. 

The word table for Basements and Beasties comprises data 
block 2. It is not enough, of course, simply to have a long list of 
words; each word should have some data associated with it, to 
instruct the command interpreter on how to define it. Each word in 
the table is paired with an integer known as the word ID number. 
Each of the digits of this integer contains information to define its 
accompanying word. 

Figure 4-8 gives the breakdown of the word ID number. There 
are three fields of information that aid in identifying a given word. 
The first is digit 5; if it is a one, the word is a valid first word term and 
~hould be interpreted as such. Any word in the table with an ID 
number of from 1000 to 19999 invokes a handler, but which han­
dler? The answer is in the field consisting of digits 1 and 2. These 
Specify one of 99 possible handlers that this word can imply. If you 
enter the word SCORE, it is found in the word table with an ID 
~Umber of 10012. The command interpreter then knows to invoke 
and1er 12. 

73 



± 
WORD 
TYPE 

0 IF 
A NOUN 

1 IF 
A VERB 

WORD ID NUMBER 

DELINEATOR 

EXTRA 
INFORMATION 
IF HANDLER 
REQUIRES IT 

Fig. 4-8. Digit assignment for the word ID number. 

IDENTIFIER 

HANDLER No. 
(IF A VERB) 

OR 
OBJECT No. 
(IF A NOUN) 

A third field is added, made up of digits 3 and 4. In some special 
handlers extra information can be carried through this field. The 
simplest example of this usage is a handler called Liners. This 
handler simply gives a one-line answer to a one-word input. If the 
player types "WAIT," he gets the message, "TIME PASSES." 
Many different words can invoke Liners, but which message should 
Liners print? To simplify matters the third field in the ID number 
contains the message number that Liners use for that word. In the 
word table the word WAIT is paired with the integer 13809. This 
tells the interpreter to invoke handler 9 (which is Liners). It tells 
Liners to print message 38 (which is, "TIME PASSES"). There are 
other handlers that use this third field, too, but you get the idea. 

Let's get back to the first field. If it's a one, you have a valid first 
word; if it's a zero, it's a valid second word. The handler needs some 
additional information, such as the name of an object to TAKE or a 
creature to KILL. In the case of a second word identification, the 
second field (first and second digits) represent the object number to 
which the word refers. (The third field is not used.) Essentially, 
object names in the word table are simply paired with their numbers, 
since all other digits in the ID number are zeroes. 

Note, too, that many different words stored in the word table 
refer to the same object; they all must be paired with identical ID 
numbers. That is why the words JEWEL and CROWN both are 
paired with ID numbers of 1, because they both refer to the first 
object, which is the jeweled crown. 

Now it is time to consider the actual code that makes use of the 
word table and the word ID numbers, and see how the handlers are 
invoked. Use Fig. 4-3 as a reference to the discussion. 

74 

The first step is simple-getting the input string. The BASIC 
taternent INPUT A$ produces a question-mark prompt on the 
~RS-80 screen and loops until the player types in a series of charac­
ters terminated by ENTER. The input string is stored in the variable 

A$· . . 
Now, think for a moment: where 1s the first or second word in 

that variable A$? To the TRS-80 A$ is just a series of characters! 
There must be a process to break A$ into one or two input words. 
This process is embodied in the subroutine called Getcom. It resides 
at line 1060. Figure 4-9 shows its contents. 

Given a string in A$, the purpose of Getcom is to isolate the one 
or two words in it and place these in the variables TX$(2) and TX$(3) 
as the first and second words, respectively. If there is only one word 
in A$, it is placed in TX$(2) as the first word, and TX$(3) is nulled to 
indicate no second word. 

The key to this isolation process is the space character. If the 
input string stored in A$ contains a space, it is assumed that this is 
the separator between the first and second words. If there is no 
space, A$ is considered to be one entire first word. Getcom must 
systematically search through A$, looking for a space. 

Fortunately, Microsoft BASIC contains some very helpful 
string manipulation functions. The LEN (X$) function can determine 

NAME: GETCOM 

TYPE: SUBROUTINE 

INPUT: A$ = COMMAND INPUT LINE 

OUTPUT: TX$(2) = WORD 1 

TX$ C3) = WORD 2, IF ANY 

1~60 FORl=lTOLEN(A$): IFMID$(A$, 1,U<>" 
THENNEXTI :TX$C3)= 1111 :TX$(2)=A$:RETURN 

~ELSETX$(3)=MID$CA$,l+l):TX$(2)=LEFT$( 
$,1-l):RETURN 

r· -:-::--~~~~~~~~~~~~~~~__J 
19· 4-9. Subroutine Getcom. 

75 



the length of the input string, so you'll know how far Lo search. The 
MID$(X$,y,z) function can extract specific characters out of the 
string for your examination. 

Here's how it's done. A loop is set up to §learch the string frorn 
the first to the last character. Each character in the string is corn. 
pared to a space. The expression MID(A$,I, 1) :>elects one character 
from A$, specifically the one that is I characters from the beginning 
of the string. As I changes value, each and every character is 
checked to see if it is a space. Each time a character is found not to be 
a space, the loop continues. 

If the loop runs out without having found a space, TX$(3) is set 
to a null length, meaning that no second word exists in the string. A$ 
is interpreted as being only one word, and it is stored in TX$(2) as 
first word. Getcom is finished and returns. 

If a space is found, however, Getcom makes the assumption 
that all of the characters to the left of the space are word l; and all of 
the characters to the right of the space are word 2. First, word 2 is 
stored in TX$(3); the expression MID$(A$,I + 1) extracts all charac­
ters from position/+ 1 to the end of the input string. (Note that this 
excludes the space itself.) Then, a word 1; is stored in TX$(2). The 
expression LEFT$(A$,l-1) extracts all characters from the ?egin­
ningof the input string up to and including position/ - 1. (Agam, the 
space is excluded.) Getcom's task is finished; so it returns. . 

You may be asking, "What if there are more than two w~r?~ m 
the input string?" Well, think it through. Getcom makes the ~vis10n 
at the very first space it can find. It doesn't continue to see if there 
are more spaces or words. Therefore, if you type in "KILL SPIDE~ 
QUICKLY," word 1 is "KILL" and word 2 is "SPIDER QUI~KLY. 
You'll see in a moment that the useless third word is safely ignored 
when the interpreter figures out what creature is intended by the 

second word. . . . 
0 Back to the command interpreter itself. After 1t calls Getcom t 

divide the input string, it has a fir~t word with which to work. Tr~ 
next thing to do is to find that word m the word table, get the w?rd 

1 
number, isolate th.e handler number, and invoke the handler . . sirnpl~· 

The thing that mak~s it simple i~ yet another subr~utI~e;e~~ 
One is called Idword· Figure 4-10 gives the code for it. fh d 

' d Idwor terpreter sets A$ equal to the first word and calls ldwor · 
takes the word in A$ and locates the word in the word table. Upo~ 
finding the word, it sets the variable N equal to the word ID numbe 
paired with the word. 

76 

NAME: 

TYPE: 

1NPUT: 

IDHORD 

SUBROUTINE 

A$ = \·JORD 

OUTPUT: N =WORD 10 NUNBER IF FOUND 

IN ~~ORD TABLE 

N = 0 OTHER\~ISE 

1080 IFLEN(A$)>5THENA$=LEFT$(A$,5) 
1082 A=2:B=l:GOSUB1040 
1084 READB$,N:IFB$="."ORB$=A$THENRETUR 
NELSE1084 

Fig. 4-10. Subroutine ldword. 

The first step in the process is in line 1080. Essentially, all this 
line does is limit the word in A$ to a maximum length of five 
characters. You may have wondered, if you looked at the word table, 
why all the object names and other terms are all only five letters long. 
This is strictly to save space. It turns out that five is an optimum 
length for word recognition in adventure programs; certainly fewer 
than four letters causes some ambiguities and erroneous identifica­
tions. This also allows for a bit of input abbreviation. The player can 
type "INVEN," and the program knows he is asking for an inventory. 
Fumble-fingered typists lost in the heat of adventure play always 
appreciate a break! 

Next, Idword gets ready to begin its long reading through the 
Word table. The word table is data block 2, and Idword wants to 
?egin searching at the first entry. It sets variables A andB accord­
~gly and calls the ever-ready subroutine Access to position the 

ASIC DATA pointer at the head of the table. Subsequent READ 
statements access the elements of the word table. 

The search performed by Idword is a good, old-fashioned se­
~uential search: the word table is not alphabetically sorted. As it 
s urns out, the time delay involved in finding the word is not too long; 
0 

I never wrote a fancy binary search routine. (Chapter 10 of this 

77 



this book, however, does provide a way to use an alphabetized Word 
table to speed up the search.) 

Sticking with the sequential search, Idword reads data in Pair 
grabbing a word into variable B$ and placing its corresponding 1ti 
number in variable N. Then it performs a compare operation. Ob\rj. 
ously, if B$ equals the input word A$, the job is finished and Idword 
returns with the ID number still in N. But another comparison is 
performed, to see if the character "." has been read from the table. 
The last elements in the word table always are a period paired With 
an ID number of zero. Thus, if Id word reads a period in its search it 
knows it has reached the end of the table without finding the word it 
is after. Just the same, it takes no more action; it returns. The 
variable N, though, now contains a zero, which is a reserved ID 
number indicating a search failure. If the program that called Idword 
(the interpreter) gets back an N with zero value, it knows that the 
input word is not in its vocabulary, and it can respond accordingly. 

Once again, back to the interpreter. Now that it has the variable 
N, the interpreter can begin to break down and make use of N. 

You naturally remember the subroutine Analyz, which isolates 
the digits of a given integer. The interpreter places the value of N 
into variable CT(5) and calls Analyz. When that routine is completed, 
the five digits of the ID word reside in CT(6) to CT(lO). 

Now the interpreter needs to make a few decisions. What if the 
player entered a single word that is not really a valid first word, like 
"SPIDER?" Or what if the player typed two words, but the first is 
not a valid first word, such as, the phrase "SPIDER KILL?" The 
interpreter rejects both of these entries by checking the value of the 
fifth digit in the ID word. That digit must be a 1 to be a valid first 
word. If it is not, the interpreter plays dumb: it sets variable B to 
message 7 and calls Mesprt. The result is the displayed question, 
"WHAT DID YOU SAY?" The program-flow loops back to the 
INPUT A$ statement, allowing a new command input from the 
player. ~ 

At the same time the interpreter checks the value of N to see 
the input word was recognized from the word table at all. If N equals 
zero, once again the interpreter professes ignorance and prornP~5 

the player for another command with the question in message ' 
looping back to line 104 and INPUT A$: . the 

You're skeptical; I can hear you agam! You are asking whY e 
interpreter is so dumb. After all, it should be smart enough to .ign°~0 
word order in that input example, "SPIDER KILL." It is obvious 

3 
dumb humans what that phrase was intended to mean: why not to 

78 

umb computer? .Again, it's a .case of personal preference. The 
d rnrnand subsection of Execut.Jve can be refined to become quite 
~~erate and comprehensive, if the programmer is willing to sacrifice 

rne memory space and speed. 
50 

If the program gets through these few input constraints, it 
d cides that it is ready to invoke a handler; the first and second digits 
; the analyzed ID word, now in CT(6) and CT(7), are the handler 

0 
umber. To reconstruct that number from the two separated digits 

~·s necessary to mul?~ly the second digit by ten (since it was the 
tens column of the ongmal ID number) and add it to first digit. The 
result is a handler number from 1 to 99. 

Many thanks to the man who first suggested that BASIC should 
include the calculated GOTO. This function, in the form ON X 
GOTO A,B,C, ... Z, makes the control of program flow an easy 
thing. The ON ... GOTO statement is followed by a list of BASIC 
line numbers; a GOTO occurs to the line in the list position specified 
by the variable in the statement. If the variable is the handler 
number, ON ... GOTO matches that number with its location in the 
program and jumps to it. (Be warned, if the variable is to equal zero, 
no GOTO occurs and the next statement is executed. Also, if the 
variable exceeds the number of line numbers in the list, an error 
occurs.) 

For a period of time, the program is under the control of one of 
the handlers. Depending on the function of the handler, the flow 
eventually returns to Executive at one of two points of entry. The 
first is the description subsection. After the player makes a move in 
the scenario, he needs to see the room into which he has moved. The 
descriptive portion of Executive is the logical return point. The other 
entry point is the command subsection. Some commands do not 
~eed a second description of the immediate environment; commands 
like SCORE, INVENTORY, or TAKE. After these handlers do their 
task, they simply return for another command. 

b. This, then, forms the core of the adventure program. Here is a 
•tof · 

t reVJew on the procedure of the program from the moment you 
yPe RUN and ENTER. 

1. lnitializati 
• D on 
1 

isplay the game title. ,tt up variables. 
I C ad object status array and obstacle table. 
,~eate data access array. 
creaotve player to Room 1, clear the screen, and reset the tenacious 

Ure. 

79 



2. Executive 
•Description Subsection 

Describe the Room. 
Describe the Objects nearby. 
Describe the "tenacious" creature if nearby. 
Handle any attack from the "tenacious" creature. 

•Command Subsection 
Input a command string. 
Evaluate it as one or two words. 
Look up the first word in the Word Table. 
If possible, invoke a handler from that word. 

All of the preceding has simply set the stage for an effective 
game of Basements and Beasties. Now it's time to find out how each 
of the handlers actually sustain the play. The logical starting-place is 
to study the handlers that move the adventurer around. That is the 
topic of the next chapter. 

80 

Chapter 5 

Traveling in the Scenario 

Once the player has entered Basements and Beasties, he is placed in 
a room and told what it all looks like. The initiative is left with the 
player. What should he do? The command interpreter awaits input, 
and a score of handlers stand ready to do the player's bidding. 

The first command an adventurer usually enters is a motion 
instruction. (Obviously, he wants to get a broader picture of his 
surroundings.) When he does, a handful of handlers come into play. 

When traveling about in an adventure scenario, there are 
primarily three sorts of travel commands you can input. These are 
explicit travel commands, implicit travel commands, and magic 
travel commands. 

Explicit travel commands give complete information on the 
direction of travel. As covered in Chapter 2, a player can travel in one 
of ten directions, eight compass points plus up and down. An explicit 
t~avel command tells the command interpreter the exact path de­
srred. The player can type, "GO NORTH," or simply, "NORTH," or 
even "N." In all of these cases, the interpreter knows what is 
expected and can proceed to move the player along that path (as­
suming there are no obstacles). 

Implicit travel commands, on the other hand, indicate only that 
tnotion is desired; they do not specify the direction. The interpreter 
rnust somehow perceive the direction that is intended based on the 
scenario. For instance, the player can be standing near a ledge. If he 
tyPes, "JUMP," he has not specified a direction-but the interpreter 

81 



assumes the direction is down. Similarily, if there is a room with oni 
one door, to the north, the interpreter understands the comma ~ 
"EXIT" to mean the same as "GO NORTH" in this context. Impijn· 
t I d . . lli f h . Cit rave comman s reqmre more mte gence rom t e mterpretin 
handler. g 

Magic travel commands are a stock item in adventure program 
and usually come in handy in dangerous situations. These command: 
usually depend on a magic word or words that are immediately 
understood by the handler and produce a preprogrammed motion 
response. Magic travel is typically teleportation: rather than moving 
one step in a compass direction, the player is suddenly deposited in a 
different room, sometimes quite far from the point of origin. There 
are other factors involved (such as how the destination is deter­
mined), but I'll cover those in due time. 

The key to these three modes of travel lies in the handlers 
associated with them. Therefore, let's examine these routines case 
by case. 

EXPLICIT TRAVEL 

For explicit commands of motion, there is a specific handler 
termed Xmove. It is the first handler in the program area designated 
for such routines, and Fig. 5-1 gives the code for it. 

NAME: 

TYPE: 

XMOVE 

HANDLER 

FUNCTION: EXPLICITLY-DEFINED MOTION 

200 D•CT(8)+CT(9)•10•l:FORK=lTOlO:CT{5 
)•BKCK):GOSUBlOOO:tFD<>CT{8)0ACT(O)<>C 
T(6)+CT(7)•10THENNEXTK:GOT0202:ELSEIFB 
K(K)<OTHEN202ELSEB=CT(9):GOT0206 
202 D•D+l:GOSUB1120:1FA=22THENB=4:GOT0 
204:ELSEIFA•23THENB=S:GOT0204:ELSEIFA= 
OTHENB•6:GOT0206:ELSECT(O)=A:CT(l)=CT( 
l)+l:GOTOlOO 
204 GOSUBllOO:GOTOSSO 
206 GOSUB1100:GOT0104 

Fig. 5·1. Handler Xmove. 

82 

--CooE CODE 

A B DIRECTION A B DIRECTION 

i...--- 1 NORTH 5 6 SOUTHWEST 
0 .....---

2 NORTHEAST 
1 

6 7 WEST 

'-2 3 EAST 7 8 NORTHWEST - 4 SOUTHEAST 8 9 UP 
3 -- 5 SOUTH 9 10 DOWN 
4 -

F'Q s-2. Direction code chart. Code A is used if only one digit of storage is 
a~a.ilable for a direction. 

Recall from the last chapter that the command interpreter, upon 
receiving an input, isolates the first word and looks it up in the word 
table. Upon finding the word, the ID number for that word is also 
retrieved. Inherent in that number is the handler number that such a 
command should invoke. 

In the word table, there are sixteen words whose ID numbers 
request the attention of Xmove. These are the following: 

eThe eight abbreviated compass points: N, S, E, W, NE, SE, NW, 
and SW 
•The four major compass points: NORTH, SOUTH, EAST, and 
WEST 
•The vertical directions with abbreviations: UP, DOWN, U, and D. 

Each of these sixteen words, when entered by themselves, 
result in the execution of Xmove, because each has an ID number 
ending in 01, the handler number for Xmove. 

(What about the use of these words with words like "GO?" A 
command like "GO NORTH" is explicit because of "NORTH." But 
the word "GO" is handled by the implicit travel handler temporarily. 
Y.ou'll see this later. The explicit information is in the inclusion of the 
direction word "N 0 RTH. ") 

The word ID number contains more than just the handler 
~umber. Digits 3 and 4 have been set aside to convey extra informa­
tion, so that one general handler can respond to many individual 
~ords with varied results. In the case of these direction words, each 
D number uses digits 3 and 4 to tell the handler what direction is 
~eant. Together, those digits have a value of from 1 to 10, according 
0 the chart in Fig. 5-2. 

dir ~s in other cases of words with synonymous meanings, if a 
ID ection word is an abbreviation of another, the two have the same 
n number. "SOUTH" and "S" are synonyms, and both have an ID 
Umber of 10501. The first 1 indicates that both are valid as a first 

83 



word. The 05 indicates a southern course and the final 01 invokes the 
handler Xmove. 

If you review the code for the command interpreter in th 
previous chapter, you'll notice that when Xmove (or any othee 
handler) is invoked, some information is ready for use. First th r 
variable N still contains the ID number for word 1 of the ~Pu~ 
command. Second, the variables CT(6) through CT(lO) still contain 
the five digits of N, isolated. Third, the strings TX$(3) and TX$(4) 
contain word 1 and word 2 unchanged. All of these help a given 
handler do its job. 

THE DECISIONS OF XMOVE 
Figure 5-1 shows the handler Xmove, which is probably the 

most overworked handler in Basements and Beasties. To aid in 
discussion of the code, here is a list of its tasks. 

•Check the obstacle list to see if motion in that direction is in any 
way restricted. 
•Check the travel table to see if motion in that direction is either 
deadly or impossible. 
•Perform the motion if possible and increment the counter that 
keeps track of the number of steps taken. 

The first task is a tough one. If the player chooses to go north, 
there may be an obstacle in his way. Way back in Chapter 2, you saw 
that there are two types of obstacles: active (like creatures) and 
passive (like locked doors). To keep track of these, the array BK(n) 
with special numbers that describe where the obstacles are, what 
directions they block, and more. 

Figure 5-3 shows the way these numbers in BK(n) are as­
signed. Digits 1 and 2 of the number tell which room the obstacle is 
in. Digit 3 tells which direction is blockaded by the obstacle (using 0 
through 9 as the ten possible directions). Digit 4 gives the message 
number of the line that is printed if the obstacle is encountered 
(message 1, 2 and 3 are set aside for obstacles). 

Digit 5 indicates if there is another number in BK(n) that relat~s 
to this one and where it is (such as in the case of a door, w~c~ 1~ 
simultaneously in two rooms). Paired obstacle numbers of this kin 
in BK(n) are always immediately adjacent to each other; digit 5 tells 
whether the other part of the pair is before it, after it, or sirnP1Y 
nonexistent. (Creature obstacles occupy only one room, and thU

5 

require only one number in the BK(n) array.) Finally, the sign of ~e 
number indicates if the obstacle is passable or not. If the number 15 

84 

..-::::::: 
SIGN 5 4 3 2 I 1 

Sf'ATus LOCATION OBSTACLE DIRECTION ROOM 
OF MATING TYPE BLOCKED NUMBER 

OF ENTRY 1-3 0-9 1-20 OBSTACLE 
+OR- 0-2 --F;" s-3. Assignment of digits in elements of Obstacle List array BK(n). 

positive, the obstacle is nonpassable; if negative, it is passable. (The 
door can be open or closed, for example.) 

Now, Xmove knows what direction is being attempted. What it 
needs to do is search through every entry in BK(n). If it finds no 
entries that match the room, motion is possible. If it finds no entries 
that match the desired direction, motion is possible. If it finds the 
obstacle is passable, motion is possible, but a match in all three areas 
results in an obstacle. 

Xmove begins by checking the obstacle list, BK(n), for matches 
with the room and direction. The direction, remember, is a part of 
the extra information embedded in the ID number of words like 
"NORTH" or "UP." The ID number is still in variable N, so Xmove 
needs to isolate that direction information. 

The first expression in Xmove does this very thing. CT(6) 
through CT(lO) still contain the digits 1 to 5 of the ID number, and 
CT(8) and CT(9) contain the direction value, from 1 to 10. The 
expression CT(8)+CT(9)*10 retrieves that value, but you need it in 
the form of 0 to 9, since that is the form used in the obstacle list. The 
value is lessened by one, and the result is placed in D. 

Next, Xmove needs to set up a loop to test each of the numbers 
in the array BK(n). In order to compare specific digits in those 
numbers, each and every element needs to be broken down, using 
the subroutine Analyz. So, a loop must fetch a number from BK(n), 
place it in CT(5) for analysis, call Analyz, and then do the desired 
comparison. Xmove uses a FOR-NEXT loop with the variable K; 
there are ten entries in BK(n); so the loop is set to that limit. 

Each time the loop selects an entry from BK(n), Xmove tests 
the entry. Is the desired direction (stored in D) the same as the 
blocked direction (stored in digit 3, or CT(8), of the obstacle 
number)? Also, is the present room (stored in CT(O) as always) the 
same as the room where the obstacle is? (The expression 
CT(6)+CT(7)*10 recreates the room number from digits 1and2.) If 
not, the examination loop continues with another entry from the 
~bstacle_ list. If no matches are found, program control goes to line 
02, which checks for other travel restrictions. 

85 



What if an obstacle match occurs? In that case there is stilt a fin 
question: is it passable? Sure, there's a door here-but it may baJ 
open! The way to check is to see if the number is less than zero. Ifs e 
the obstacle is passable and can be ignored. If not, the obstacle Pos~' 
difficulty and motion is prohibited. s 

Digit 4 of the obstacle number contains the message number to 
be used in printing the explanation for the difficulty. In Basements 
and Beasties, this digit is a 1 for creatures, a 2 for steel grates, and a 
3 for doors. Message 2, for instance, says, "THE GRATE IS 
CLOSED AND LOCKED." Line 206 calls Mesprt to display the line 
and then returns to Executive. 

(An obstacle can be made passable, of course, if you know how. 
Commands like UNLOCK for doors and KILL for creatures are 
discussed in their proper chapters.) 

CHECKING THE TRAVEL TABLE 

This is all very well and good. Perhaps there isn't any locked 
door in the way. Now Xmove must consult the authoritative travel 
table, the map of the scenario. From it, the handler can tell what 
room is the destination of the desired direction, or if that direction 
leads to some sort of horrible doom. 

Figure 5-4 gives a small portion of the actual travel table, which 
is data block 1. In its entirety, the table has twenty lines, one for each 
room. For each line, there are ten numbers, plus an extra that is 
used by another handler for implicit travel. These ten numbers 
correspond to the ten possible directions. Each number is the 
number of the room which is the destination of a move in that 
direction. Thus, if a routine needs to know where the player will end 
up if he is in room 3 and tries to go southeast, it is simple. It finds the 
third line (for room 3) and the fourth number (for the fourth direction, 
southeast). The table says that the player will end up in room 10, 
provided no obstacles are in the way. 

Wait a moment! What are all of those zeroes in that line? There 
isn't a room 0, is there? True. In addition to travel resulting in arrival 
at a room, travel can also result in no motion-because there may be 
a wall in that direction. The room number zero represents a wall, and 
any attempt to move in that direction results in the message, "YOU 
CAN'T GO THAT WAY." Plus, travel can result in death, if the 
player falls off a cliff or steps into a wall of flame. The unused room 
number 22 represents death by falling and 23 represents death by 
fire. If the player moves in a direction indicated by a 22 or 23 in the 

86 

5000 DATAl,2,2,1,1,1,1,1,0,3,9 
5002 DATA2,2,2,2,2,1,1,2,0,8,9 
5004 DATA0,0,4,10,0,0,0,0,1,0,8 
5006 DATA0,5,0,0,ll,0,3,0,0,0,4 
5008 DATA0,0,0,0,0,4,0,0,0,0,S 
5010 DATA0,0,0,12,0,0,0,0,0,23,3 
5012 DATA0,0,0,14,0,0,0,0,0,0,3 
5014 DATA0,0,0,0,14,0,0,0,2,0,8 
5016 DATA9,0,16,15,9,0,0,9,0,0,7 

• 
• 
• 

Fig. 5-4. The first several lines of the travel table as it is stored in a DATA 
block. 

travel table he dies, and a special handler called Resur (for resurrec­
tion) is called to give the player a new start. 

To help Xmove search the travel table for these all-important 
numbers, there is a subroutine called Travec (for travel vector). 
Given a direction number from 1 through 10 stored in variable D, 
Travec finds the destination number in the table line for the present 
room and returns with that number in variable A. Xmove already has 
the direction number inD in the form 0 through 9; it adds one toD 
and calls Travec. (Check Chapter 3 for the discussion on Travec and 
how it uses Access to locate the numbers.) 

Since A has been set to the destination number, it is easy to 
compare A to the three special case numbers, 22, 23, and 0. In the 
first two special cases, a death-notice message must be displayed. 
The variable B is set to message number 4 (for a fiery death) or 5 (for 
a falling doom), and Mesprt is called. Then the special death-handler 
Resur is executed from line 204. If the destination number equals 
zero, then the message number for "YOU CAN'T GO THAT WAY" 
is placed in B and Mesprt is called. The handler loops back to the 
command subsection of Executive to receive a new command. 

If Xmove has managed to elude all of these special cases, then 
the motion finally takes place. CT(O), the room number is changed to 
~· the destination number. At the same time, the variable CT(l) is 
lflcreased by one. CT(l) is the counter that records the number of 
steps taken, which is always of interest to players trying to get 
through the basement in the minimum number of steps. Xmove then 

87 



terminates by looping back to the description subsection of Execu. 
tive, so that the adventurer can see his new location. 

See how complex mere motion can be? And that's only explicit 
travel. 

IMPLICIT TRAVEL 
Implicit travel comes into play with motion words that do not 

specify the intended direction of travel. For these words, there is a 
c;econd handler, called !move (for implicit move). Figure 5-5 shows 
the entire BASIC routine. 

!move is handler 2. In the word table there are presently five 
words whose ID numbers request the execution of !move. These 
are IN, OUT, GO, ENTER, and EXIT. 

Strangely enough, all five have identical ID numbers. The 
question that comes is this: how is !move to know which direction to 
infer from those words? None specify extra information in their ID 
words. 

The answer is found in the travel table. Remember that for 
every room there is a line; and for every line there are ten regular 
destination numbers, plus an unused eleventh number. That 
eleventh number now comes into play as the default direction. It is 
not a room number; it is a direction number from 0 through 9. In any 
case in which direction is not explicit, this default direction number is 
used. 

Consider the case of room 1, the above-ground pit, which has a 
hole in the ground leading to the basement. Down is the default ~or 
room 1· so that IN or ENTER result in the logical motion of entenng 
the hol~. True, EXIT and OUT do not fit, and GO could be inter­
preted in any direction. What the default direction does is ~t the 
amount of code necessary to handle implicit travel. Without 1t, for 
every room there would need to be a separate number for each 
implicit word used. There are some possible compromises, but for 
the moment this method of choosing direction works quite well .. 

!move is understandably quite simple. There are three cases 111 

which it is executed. In the first, the implicit-travel word can be input 
alone, as in GO. In the second, the implicit-travel word may be in?~t 
paired with another implicit-trav~l word •. as in ~O IN. In ~e ~:1 
the implicit-travel word can be mput paired with an explic1t-tra 
word as in GO NORTH. !move can handle all three cases. . 

• 5 1n 
The first case is evaluated first. If the player mer~ly type 

3
) 

"GO " there is a word 1 with no word 2. Thus, the stnng TX$( n' ' . u 
which holds word 2, is empty. !move checks to see if TX$(3) is n · 

88 

NAME: IMOVE 

TYPE: HANDLER 

FUNCTION: IMPLICITLY-DEFINED MOTION 

220 I FTX$ ( 3) =""THEND=ll: GOSUBll 20: N=A* 
10 0+1010l:GOT0108:ELSEA$=TX$(3):GOT010 
6 

Fig. 5-5. Handler I move. 

If it is, !move seeks out the default-direction number. Setting the 
variable D to 11 and calling Travec, the default-direction number is 
obtained in A. From this number it creates an artificial ID number, 
the sort of ID number that an explicit-travel word might have. The 
expression A*l00+10101 results in an ID word that requests the 
explicit handler Xmove and specifies a desired direction of 1 through 
10. 

Finally, !move injects this artificial ID number into Executive at 
line 108. At that point Executive acts as if it had received an 
explicit-travel command and proceeds accordingly. 

If two input words are used, the second word is placed in A$. It 
re-enters in Executive at line 106. At that point, Executive acts as if 
only one word, the second one, has been input. In the case of GO 
NORTH, Executive now sees NORTH and has no trouble knowing 
what to do. In the case of GO IN Executive sees IN and eventually 
requests !move again, which uses the default direction. 

That takes care of two of the kinds of travel possible in the 
adventure program. There remains one more to consider. 

MAGIC TRAVEL 

th Magic travel in adventure programs is usually included to help 
the player.out of some sort of a trap or to provide a way to complete 
the game m the least possible steps. At root, magic travel permits 

e adventurer to circumvent the standard rules of scenario motion 
~d make a sizable leap into a far distant room, ignoring any walls or 
0 stacles that may be in the way. 
s This sort of travel is accomplished by the use of a magic word of 
;rn~ sort. Part of the challenge of an adventure game is to find out if 

agic travel exists and what word triggers it off. Perhaps the word is 

89 



written on a wall of one of the rooms. Maybe it is in a book. Maybe 
one of the creatures said it at times. Whatever the case, the word. 
hidden somewhere and must be unearthed. is 

In Basements and Beasties, as you'll find, the magic word i 
written in a short poem on the wall of Room 6. If the player enters th s 
command READ, he hears the poem. The magic word ie 
AARDVARK (don't ask me why; it just sounded right). There ar: 
two ways of using it. The player can enter the command "SAy 
AARDVARK," and get magic travel. The player may simply tyPe in 
the word "AARDVARK," and it will still work. There are limitations 
on the effectiveness of the word, as we'll see shortly. 

Right off the bat, you can see that you need three handlers to 
support the use of magic travel as it has been described. You need: 
•One handler to recognize the word READ 
•One handler to recognize the word SAY 
•One handler to recognize the word AARDVARK 

The first handler to examine is the handler called READ. It 
starts at line 400. Figure 5-6 is the listing. 

There are two cases in which the player might use the command 
READ: either when he is in room 6 or when he is somewhere else 
(how simple). In the room description for room 6, the player is 
informed that an oracle "HAS LEFT A MESSAGE ON THE 
WALL." There is no reading material anywhere else in the base· 
ment. You can expect only two responses to the command READ. If 
the player is in room 6, he hears the poem recited. If he is elsewhere, 
he hears nothing of interest. The handler READ, then, should be 
able to determine where the adventurer is and be prepared to print 
one of two messages depending on the location. 

NAME: 

TYPE: 

READ 

HANDLER 

FUNCTION: READING OF SPECIAL 

MESSAGES 

400 IFCT(0)<>6THENB=32:GOT0402:ELSEB=3 
3 
402 GOSUB1100:GOT0104 

Fig. 5·6. Handler Read. 

90 

NAME: 

TYPE:. 

SAY 

HANDLER 

FUNCTION: SAYING OF MAGIC WORDS 

460 I FL EFT$ CTX$ C3), 5) <> 11AARDV"THENB=34 
:GOSUB1100:GOT0104:ELSE560 

fig. 5.7, Handler Say. 

Line 402 of READ is a call to the subroutine Mesprt, to display 
the message chosen. Line 400 selects the message. If CT(O), the 
present room location, equals 6, the poem is printed. The poem has a 
message number 33. In any other room message 32 is displayed: 
"NOTHING HERE TO READ ... HOW DULL!" 

The poem that is displayed is no great work of art, but it does 
the job: 

THE DANGER HERE 
IS PRETTY THICK. 
BUT SAY AARDVARK 
YOU'LL GET OUT QUICK! 

It should be noted, as an aside, that the poem is contained, as 
are all messages, on a one-line DATA statement. But how is it that it 
is displayed in four neat little stanzas like that? The secret is in how it 
is typed into the DATA line. The down-arrow of the TRS-80 inserts 
a line-feed into the text. When message 33 is being created, the 
programmer inserts a line-feed in between each of the four sections 
of the poem. The DATA statement doesn't care, but the end result is 
catchy when it is displayed. 

The next handler to take a look at is SAY. First, if the player 
enters the input "SAY AARDVARK," the handler should respond 
~~~ctly as if the player had simply said the magic word by itself and 
IJUtiate magic travel. Second, if he enters the input "SAY XYZ,"
Where XYZ is anything but the magic word, nothing should occur and
a message should be displayed.
p· The second case is checked at the start of the handler SAY, in
k ig. 5-7. If the player enters "SAY AARDVARK," word 2, which is
hept safely in variable TX$(3), is the word "AARDVARK." The
if ~dler looks at the first five letters of the second word 2, just to see

ey fit this case. The BASIC expression LEFT$(X$,n) is used to

91

extract the desired letters of TX$(3). If a match does not occur (a
woe to the player who misspells "AARDVARK"), then Mesprt ~d
called to display message 34, which says, "NOTHING HAPPENS 1~
Then Executive is re-entered. ·

Note that this sort of message is desirably noncommittal. It
does not say, "I DON'T RECOGNIZE THAT W?RD.," even if that
second word is absent from the word table. The idea 1s to leave the
player in doubt as to whether or not that second word may still be
useful. In any new game experienced adventure players try to use
old magic words that they picked up from similar games. Thus, they
will type, "SAY ABRACADABRA," or, "SAY OPEN SESAME," or
whatever. Since this handler only states that nothing happened, it is
possible (reasons the player) that the command might work in some
different room or under different circumstances. This sort of am.
biguity prolongs the mysteries of the game.

What if he says "SAY AARDVARK?" In that case the handler
goes ahead and jumps to line 560, which is the beginning of yet
another handler. This is the handler AARDVARK (see Fig. 5-8).
Lines 560 and 562 actually determine whether the player experi·
ences magic travel or not.

The limitations of magic travel vary from adventure program to
program. In some games the player must be holding some particular
object in order to travel. In others, he must be in a specific room. In
some games, the travel amounts to a random teleportation. In
others, magic travel is limited to a two-way path between two
predetermined rooms.

In Basements and Beasties magic travel occurs between two
rooms only: room 6 and room 1. This is helpful for two reasons.
First, room 6 contains a dangerous creature who guards the only
doorway out of the room. If the player wanders into the room, h.e
finds a treasure and a trap! The only way out of the room is magic
travel. Second, room 1 is the bottom of the pit room, and it is the
home base of Basements and Beasties. ,

For any new-found treasures to be registered in the players
score, they must be smuggled out of the basement and up to roorn 1·
It is very helpful to have a magic pathway to home base; the sJowe:
method is to travel on foot all of the way through the basemen '
risking an encounter with a hungry creature. e

The handler AARDVARK brings about travel between the5
•

two rooms. Checking CT(O), the present room location, ~
V ARK determin~s w~ich way the travel. should go. If th~ adven!~f ue
is in room 6, he 1s switched to room 1 simply by changing the

92

NAME: AARDVARK

TYPE: HANDLER

FUNCTION: OPERATION OF MAGIC WORD

560 IFCT(0)=6THENCT(0)=1ELSEIFCT(0)=1T
HENCT(0)=6ELSEB=34:GOSUB1100
562 GOTOlOO

fig. 5-8. Handler Aardvark.

of CT(O). If he in room l , he is transported to room 6. What if he is
somewhere other than room 1 or 6? If that's the case, that ambigu­
ous message 34 is displayed: "NOTHING HAPPENS." Again, the
player is left with the question of under what circumstances the
word "AARDVARK' works.

TRAVELING, IN REVIEW
Looking back, you have seen the three types of travel that are

available to the adventurer, along with their associated handlers.
These are explicit travel accomplished by the handler Xmove, im­
plicit travel accomplished by the handler Imove, and magic travel
accomplished by the handlers SAY and AARDVARK and supported
by the handler READ.

Realistic travel conditions form one part of the believability of an
adventure scenario. The ability to interact with objects within the
scenario forms another. In the next chapter, you'll see how such
interaction is effected in Basement and Beasties.

93

Chapter 6

Affecting the Scenario
How would you feel if you were walking around in someone's home,
and you tried to pick something up, but it wouldn't budge? Just when
you thought you'd gotten a good grip on that magazine, you lifted it
... but it stayed put. Then you tried to leave; you reached out to
open the front door ... but it refused to open. How much more
nightmarish could it get?

A world in which nothing can be changed is an unreal world. In
order for the artificial world of the adventure program to sustain a
simulated reality, the wandering adventurer must be able to bring
about changes in it. Doors must open and close; objects must be
movable.

Two sets of input commands are implied by this requirement of
simulated reality. These are:

•Commands to unlock and open doors and to close and lock them;
•Commands to pick up and carry objects and to drop them.

For each of these commands there are associated handlers,
b' ct tables, and arrays that are affected by them, specifically, the o ie

status array and the obstacle list.

BEHIND CLOSED DOORS
In order to understand how handlers that open and close doors

work we need to review the obstacle list for a few moments.I
' ~ Remember that the array BK(n) contains a set of numbers

94

escribe obstacles that impede the progress of the adventurer. The
~ee types of obstacles are doors, steel grates, and creatures.
D ors and grates are subject to the handlers under discussion now;

0
atures can only be handled by battle, as described in the next ere

chapter.
Doors and grates are unique things, since they actually occupy

two rooms at once. For this reason, each door or grate needs two
ntries in the array BK(n), one for the status of the obstacle in each

~oom. If a door is closed and locked, it must pose an obstacle to the
adventurer regardless of which side of the door he is on. Thus,
whatever handler opens and closes doors and such, it must be able to
change both status numbers for that door in BK(n).

In Basements and Beasties as in similar adventure programs,
there exists a key (object 11) that unlocks doors and grates. Without
this key the status of those obstacles in BK(n) cannot be altered.
Unlike other programs, however, doors and grates exist in one of
only two states: closed and locked or unlocked and open. Other
programs may permit an intermediate state of "closed yet un- •
Jocked," but this seemingly simple addition complicates obstacle
handling quite a bit. (That doesn't keep you from adding it if you think
it's worth the trouble.)

Consider first a hypothetical handler that opens doors. Such a
handler must answer the following questions:

•Did the player tell what he wanted to open?
•If he did, is that door or grate nearby?
•If it is, is the door or grate closed?
•If it is, does the player have a key?

The handler that answers these questions and opens the door is
handler 5 and is called Open. Figure 6-1 provides the Open listing.
There are two words in the word table whose ID numbers request
the execution of Open. These are OPEN and UNLOCK. This makes
sense, because to unlock a door in this program also causes it to
Swing open and to lock it implies that it is closed. Thus, the two
Words can be treated as synonymous.
. Open begins by checking to see if the player provided enough
~~ormation for a valid response. If the player merely types
OPEN," that may not be good enough; there may be two doors that

are adjacent to a given room. Open checks for this case by looking at
~Ord 2, which is stored in TX$(3). If TSX$(3) is of null length, then
stPen does not bother to proceed any further. Rather, it issues the

andard "play-dumb" statement, message 7, by setting the variable

95

l~AME.: OPE.N
TYPE.: HANOLE.R
FUNCTION: OPE.NING OF DOORS AND

GRAT E.S
280 I FTX$ (3)= 1111 THE.NB=7: GOT0284: E.LSE.A$:::
TX$(3):GOSUB1080:CT(5)=N:GOSUB1000:A:::c
T(8):GOSUB1200:1FA=OTHE.NB=l2:GOT0284:E
LSE.IFBK(A)<OTHE.NB=l3:GOT0284:E.LSE.IFOB(
ll,1)<>21THE.NB=l6:GOT0284:E.LSE.GOSUB122
O:B=l2+CT(9)
284 GOSUB1100:GOT0104

Fig. 6-1 . Handler Open.

B to 7 and calling Mesprt in line 284. Message 7 simply asks,
"WHAT DID YOU SAY?" and gives the player another chance to be
more lucid.

Assuming that the player did enter some sort of second word
along with the key word "OPEN" or "UNLOCK," the handler tries
to identify the meaning of that word 2. It calls the subroutine Idword,
which begins at line 1080. Idword takes the word stored in the string
variable A$ and searches the word table for it. If it is found, it returns
with the ID number for that word in the variable N. If it is not in the
program's vocabulary, it returns with N set to zero. Open saves
word 2 in A$ and lets ldword loose on it.

When ldword is finished, Open is interested in the individual
digits of the ID number stored inN. Since this is so, it calls Analyz to
breakN up into digits. Analyz takes the contents of CT(5) and places
digits 1 to 5 in CT(6) to CT(lO). Open sets CT(5) equal to N, and
Analyz does the rest. Note, for the moment, that if N equals zero
(because the second word was not found in the word table, Analyz
simple places zeros in all of the variables CT(6) to CT(lO). .

Now that Open has all of the digits Iai? bare, it i~ ~nterested ~
only one of them: digit 3. Recall that for ob1ects the digits 1 and 2 °
the object's ID number represent the object number. If, for exaf0 pie, you look up the word "SPIDER" in the word table, the. t
number has the value 15 in digits 1 and 2, because the spider is obiec
15 in the list of objects for Basements and Beasties.

Things like doors and grates, however, are speci~. TheY ~~
not objects in the regular sense; they cannot be earned awaY
dropped. Thus, there is no object number for a door or a grate·

96

ther they are assigned a special object number of 17. Digits 1 and
Raf th; ID numbers for the words "DOOR" and "GRATE" have a
2 ~ue of 17. Later, you'll see that when the player tries to pick up and
v arrY anything with an object number of 17, the program refuses,
~elling him.that "IT IS I~MOYABL~." This prevents some pretty
rnbarrassmg program mcons1stenc1es!

e If the ID number of word 2 that Open just analyzed does not
have a useful object number, wha~ goo.ct is the ID number at all? T?e
other digits do not have any des1gnation, do they? The answer 1s,
es they do. There are three types of obstacle, remember. It can be
~e~ useful to Open if the ID number can convey which type of
obstacle. Only for the two words "DOOR" and "GRATE," digit 3 of
their ID number is assigned to be the obstacle type: type 2 if it is a
grate and type 3 if it is a door. (Type 1 is a creature, but you don't
open and close creatures.)

The reason that Open is interested in the obstacle type is simply
that the obstacle-type number is used in the entries of the obstacle
list, BK(n). There are two questions that Open needs to answer
from the obstacle list: (1) is there any obstacle in this room and (2) if
so, is it the same obstacle that the player wants to open or unlock?

Each entry in the obstacle list contains the answer to both of
these questions. Digits 1 and 2 of each entry give the room number
where the obstacle is, and digit 4 is the type number, 1, 2, or 3. So
the handler Open now must search the obstacle list and do two
comparisons. First, it must find any entries that match the present
room number, which (as always) is in CT(O). Second, of those
entries it must find any entries whose obstacle type matches the
type number presently in CT(8), the obstacle input by the player as
the second word of his OPEN command.

There exists a handy subroutine to search the obstacle list. It is
called Ckobs (as in check obstacles), and it is given in Fig. 6-2.
Essentially, it takes each and every entry in BK(n), breaks it up into
its digits, and performs these two comparisons. If it finds such an
entry, it returns with the position of the entry placed in the variable
A. If no matching entry is found, A is set to zero. Using this value A,
Open can find and change the appropriate entries in the obstacle list,
BK(n).

. Ckobs begins by setting up a FOR-NEXT loop of from 1to10,
since there are ten entries in BK(n) . Each entry is broken down by a
Call to the subroutine Analyz (using GOSUB 1000). The handler
?Pen has previously set the variable A to the obstacle type for which lt.

is looking. So Ckobs compares the room number and obstacle type

97

NAME:

TYPE.:

CKOBS

SUl3ROUTINE.

INPUT: A ~ TYPE. OF OBSTACLE. Cl - 3)

OUTPUT: A = OBSTACLE LIST ENTRY

NUMBER IF FOUND

A = 0 OTllE.R\'/ISE.
1200 FORQ=lTOlO:CT(S)=BK(Q):GOSUBlOO O·
IFCT(6)+CT(7)•10<>CT(O)ORCT(9)<>ATHEN~
E.XTQ:A=O:t:LSEA=Q
1202 RETURN

Fig. 6-2. Subroutine Ckobs.

with every element of BK(n). The expression CTT(6)+CT(7)•10
recreates a room number from digits 1 and 2 of the obstacle list
entry. If this value doesn't match the present room number in CT(O),
or if digit 4 in CT(9) doesn't match the obstacle type stored in the
variable A, the FOR-NEXT loop continues the search. If the loop
runs out without finding a match, A is set to 0 and the subroutine
returns. If a match is found, then A is set equal to Q, the variable
used for the FOR-NEXT loop. Thus, if the fourth entry is a match,A
equals 4.

Now to answer a question you may be keeping. Awhile back, a
word-table search was made to find word 2. If a word is not found in
the word table, the handler Open cannot check the word. If a player
types in something like "OPEN CUCUMBER," what is to keep the
handler from making an erroneous response?

Ckobs filters this out. Remember that if a word is not found in
the word table, the subroutine Idword returns a zero. This breaks
down into five zero digits. When Open calls upon Ckobs to perform
the two comparisons of room and obstacle type, a match cannot
occur. Why? Because an unrecognized word 2 would be requesting
to open an obstacle of type zero! Such an obstacle doesn't exist; no
entry in BK(n) has an obstacle type of zero. So the response to a
command like "OPEN KANGAROO" is the same as to a command
like "OPEN DOOR" in a room with no doors.

The handler Open now has an obstacle list entry number trorn
1

to 10, or zero if no entry is found that matches the command request.

98

open begins to a~t on this new information. What if no such obstacle
eidsts? If so, A is a zero. Open tests for this and calls Mesprt to
display message 12, which reads, "I SEE NOTHING OF THE
soRT HERE!"

Next, Open must decide if the door or grate needs to be
opened. Obviously, if it is already swinging in the breeze, it is
ridiculous for the handler to go through the act of opening it all over
again. Th~ way that Open determines this case is by referring to the
obstacle list entry. A equals the position of the entry that was found
and BK(A) is the entry itself. The obstacle list indicates whether o~
not an obstacle is passable using the sign of the entry. That is if the
entry is a negative number, then the obstacle is passable: the door or
grate is unlocked and open. Otherwise, it is closed and locked and
needs to be opened. Open checks to see if BK(A) is less than zero
and if it is, it calls for the display of message 13, which reads "YOU
DON'T NEED TO." '

The final contingency is the possession of the key. Without the
key, which is object 11, no door or grate can be opened. The key
must be ~n the play~r's possession; that is, he must be carrying it. It
cannot simply be lymg nearby in the room. Open checks the object
status array to find where the key is. The variable OB(ll, 1) betrays
the key's room number at that time. Anything that the adventurer is
carrying is assigned a room number of 21. Thus, the player can only
open the door or grate if OB(ll, 1) equals 21. If it does not, the
handler calls for the display of message 16, which reads "YOU
HAVE NO KEY!" '

Once Open manages to execute all these steps, it is ready to
unlock ~nd open the door or grate. To do this, Open calls upon a
~~broutme.called Revobs (f?r reverse obstacle), which is given in
ig. 6-3. Given an obstacle-list entry number from 1 to 10 in variable

~ ~evobs performs two functions: it reverses the sign of the entry
mdicated by A, and if a corresponding entry exists in the list it
reverses the sign of that entry as well. '
th .Note that Revobs reverses the sign of the entry. That means

1
at if the door or grate is closed, it will be opened. Revobs can also

~~se open doors. Revobs comes. in handy to input commands like
th C~ GRATE. Note also that 1t finds a corresponding entry (if
one~~tis ?ne) ~nd compleme.nts it. That way, a ?oor becomes open
ent h s1~es, m both rooms 1t connects. If there 1s no corresponding
the% (as m t~e case of creature obstacles), Revobs performs only
tu st function. REVOBS also is used to make unpassable crea­
te res Passable, when we discuss battle commands in the next chap-

r.

99

NAME: REVOBS

TYPE: SUBROUTINE

INPUT: A = OBSTACLE LIST ENTRY

NUMBER

OUTPUT: THE STATUS OF THAT ENTRY AN D

OF ITS MATING ENTRY (IF ANY)

ARE COMPLEMENTED
1220 BK(A)=-BK(A):CT(S)=BK(A):GOSUBlO O
O:IFCTC10)=1RETURNELSEBK(A-l+CT(l0)) =­
BKCA-l+CT(l0)):RETURN

Fig. 6-3. Subrout ine Revobs.

The first function is simple. Variable A already carries the
obstacle list entry number. So Revobs negates the variable BK(A).
The second function takes some figuring. In the obstacle-list entry
digit 5 is assigned the task of telling routines whether or not there is a
second entry, and if so, where it is. Remember that the two paired
entries for a door or grate in the obstacle list are always immediately
adjacent one to the other. Digit 5 allows three possibilities, indicated
as follows by a number from 0 to 2:

0. There is a corresponding entry immediately before this one.
1. There is no corresponding entry; this is the only one.
2. There is a corresponding entry immediately after this one.

The numbers 0, 1, and 2 were not chosen arbitrarily. Revobs
already knows that entry BK(A) needs to be changed. Now, the
entry BK(A-1) or BK(A + 1) or neither needs to be changed. Now,
the previous element can be expressed as (A-1)+2. Thus, Revobs
can use the numbers 0, 1, and 2 to identify the entry number of the
corresponding entry, if one exists. . .t

Study Listing 6-3 to see how this is done. CT(lO) contains dig~
5: the numbers 0, 1, or 2. REV OBS returns if this is a l, becaus_e it
has already complemented the sign of entry CT(A). Otherwise.
Revobs complements entry BK(A-1 +CT(lO)), which is the co~­
responding entry either before or after it. Then the subroutine

15

ended and returns to Open, which called it.

100

Someone is bound to ask this question, so I'll answer it now.

5
. ce there are only ten entries in the obstacle list, why not use digit

5
ins a number from 0 to 9, corresponding to the ten entries? Then, an
a trY could specify exactly where its mate is, and the corresponding

en trY would not need to be right next to the first one.
en The answer is that this automatically limits the size of the
bstacle list to ten entries, with no room for expansion. The present
~asements and Beasties has only two doors, one grate, and four
creatures as obstacles. That's really a bit skimpy. The present
system using relative location of paired entries allows the obstacle
list to be as large as need be.

The handler Open has one last task after Revobs is finished, and
that is to inform the adventurer that the door or grate has been
opened. Digit 4 of the obstacle-list entry is a number from 1 to 3,
indicating which kind of obstacle has been changed. In the message
block in memory, the messages announcing the opening of a door or
grate are placed next to each other, in just the right order to simplify
matters. Obstacle type 2 is a grate, and type 3 is a door; so the
message for the opening of a grate precedes the one for a door. The
expression 12+CT(9) results in a value of 14 for a grate and 15 for a
door. Message 14 states, "WITH A CREAK, THE GRATE FALLS
OPEN." Message 15 says, "THE DOOR SWINGS OPEN WIDE."
Notice that in both cases, the message is the same whether the
original command was "OPEN DOOR" or just "UNLOCK DOOR."
Either command has the same result.

LOCK THE DOOR BEHIND YOU
The other handler that relates to doors and grates is called

Close. It is handler 6, given in Fig. 6-4. In the word list the two words
whose ID numbers request the execution of Close are "CLOSE" and
"LOCK."
. In many ways, Close operates exactly like Open, with a few

simplifications. The questions that Close must answer are:

•o· id the player tell what he wanted to close?
•If ~e did, is that door or grate nearby?
• If it is, is the door or grate open?

b If you are sharp-eyed, you noticed the one important difference

retween Open and Close (other than the end result). That is the e .
tu quirement of a key. To close and lock a door or grate, the adven-
acrer does not need the key. It simply swings shut and, as the

companying message reads, "THE LOCK CATCHES."

101

NAME: CLOSE
TYPE: HANDLER
FUNCTION: CLOSING OF DOORS AND

GRATES

300 I FTX$ (3)='"'THENB=7: GOT0304: ELSE.A$::
TX$(3):GOSUB1080:CT(S)=N:GOSUB1000:A::c
T(8):GOSUB1200:1FA=OTHENB=l2:GOT0304:E.
LSEIFBK(A)>OTHENB=l3:GOT0304:ELSEGOSUB
1220:8=17
304 GQSUB1100:GOT0104

Fig. 6-4. Handler Close.

Close performs the first decision by checking word 2. If word 2
in TX$(3) is nonexistent, the message "WHAT DID YOU SAY?" is
displayed. Otherwise, Close takes the word in TX$(3) and passes it
to ldword in the string variable A$. Id word returns with the word ID
number stored in the variableN. Close calls Analyz to isolate the five
digits of the ID number. Then it takes digit 3, the obstacle type, and
lets the subroutine Ckobs determine if the obstacle intended by word
2 is really there in the room or not. If not (as indicated by a value of
zero in variable A), message 12 is displayed: "I SEE NOTHING OF
THE SORT HERE." Finally, the sign of the entry is checked. If it is
positive, then L1ie door or grate is already closed and locked, and
message 13 tells the player, "YOU DON'T NEED TO."

If the input command stands valid after all three tests, Close
goes ahead and reverses the status of the obstacle using the sub­
routine Revobs. The opened door or grate is set to a closed condition
by the changing sign of the obstacle list entry, along with a change of
the corresponding entry in the list.

When the time comes to tell the player what has been done,
Close does not make a distinction between doors and grates, as
Open did. Rather, the general message 17 is used, which reads, "IT
SLAMS SHUT AND THE LOCK CATCHES."

One intriguing final note should be made about the differenc~
between the handlers Open and Close. Open requires a key, an
Close does not, as we have seen. This means it is quite possible for a
poor, misguided adventurer to walk through an open door ~to~
room with only the one exit, and slam the door shut behind hirTJ,
without a key. Both rooms 6and11 are traps like this, if a pla~er is~~
foolish. Room 11 does provide an out, though; the magic wo

102

,.AARDVARK" teleports the player to freedom. Room 6 can be a
.....;ble place to spend the remainder of one's game! te1•·

TAKE THE TREASURE AND RUN
Now that I've covered the specific scenario interaction affecting

doors, I can move on to the general set of commands controlling
carnring objects. The simple actions of picking up and dropping
articles are not so simple after all. What objects are movable? How
rnuch can the adventurer carry? Questions like these must be
answered by the relevant handlers.

Two handlers relate to the tasks of object-toting. These are
Take and Drop, and they are invoked by the corresponding com­
rnand words, TAKE and DROP, followed by the name of the object.
Two other words, STEAL and THROW are synonyms with the first
two command words, respectively.

Let's look at Take first. Logically, a handler to bring about the
picking-up of objects must answer the following list of questions and
act accordingly:
t Does the adventurer already have too much to carry?
I Does the adventurer command ungrammatically?
I Does the adventurer want to take a creature?
t Does the adventurer want to take something immovable?
I Does the adventurer already have the object in his sack?
• Is the object requested either nonexistent or not in that room?

The first question has to do with the maximum amount an
adventurer can carry. In Basements and Beasties this maximum is
set strictly on the basis of quantity. An adventurer can only carry five
objects, regardless of size or shape. This is unrealistic in some ways,
but it is simpler to handle.

If the adventurer could carry more than five objects, each and
every movable object would have to be assigned a mass number or
something of that sort. Then, the handler Take would determine its
res~onse by adding up all of the mass numbers of the objects now
tarried and comparing the result to some arbitrary maximum. If you
~e to do this, it should be a simple matter to assign the unused
~erments .of ~e object status array, OB(X, 0), as object mass num-

s ranging m value from 0 to 255. Then a maximum total mass of
:~und 5.00 could be set to limit what the adventurer carries. Small

50
iects like the coin and the key would have mass numbers in the

ov s, and heavy objects like the golden cube would have a value of

10~r 100. An example of this method is provided for you in Chapter

103

You might ask what is the purpose of a carry-limit anyway. 1'h
primary reason is to require the adventurer to make several succe e
sive trips into the basement in order to get all treasures out. If h.
could carry anything and everything, he would make one long excur~
sion, get everything, get back to home ~ase, and end the game. With
a maximum limit based either on quant:Ity or mass, he must forever
fight his way back to the entrances-that adds to the challenge,

At any rate, the present version of Basements and Beasties
sets an upper limit of five objects. The variable CT(2) is set aside to
keep track of the number of articles the adventurer has. The handler
Take must check to see if CT(2) is already at its maximum of five.

Figure 6-5 gives Take. The first question is answered by
comparing the value in CT(2) with the value of five. If CT(2) equals
or surpasses the maximum, Take refuses to pick up the requested
Object. It notifies the player of this refusal by setting variableB to 36
and calling the subroutine Mesprt. This prints message 36: "YOUR
ARMS ARE FULL ... YOU CAN CARRY NO MORE." If CT(O) is
less than five, though, Take proceeds to consider the other ques­
tions.

The next question has to do with the player's grammar. The
command has taken the form, "TAKE X," where Xis some word. In
order for the handler to know which ·object to pick up, it must try to
define that word X. It must submit that word to a search of the word
table to find it in the vocabulary.

The grammar problem is this: what if the second word in the
command is in the word table but is not an object? For instance, a
player might type "TAKE OPEN." The word "OPEN" is in the wor.d
table-but it is a verb, not an object. The handler should not perrrnt
such an ungrammatical possibility.

Fortunately, the program can determine between valid o~je~ts
and verbs. Each word in the word tab~e i~, ?f c?urse, pair~d with 1;~
ID number. This ID number has a one m digit 5 if the associated wo .
is a verb. That is, any word with an ID number of 10, 000 or greaterid
a verb. Thus, the handler Take finds the ID number of the secon
word of the command and checks it against a value of 10,000.Th

Take uses the subroutine ldword to obtain the ID numb~r. A;
second word 'of the command is stored~ TX$(~). By setbn:a1ue
equal to TX$(3) and calling ldword, the vanableN 1s set to the aJs
of the ID number. If the word is not found in the word table, N equ

zero. Jayer
The handler compares N to 9999. If N is gr~ater, th.e ~aY of

entered an ungrammatical command. The result 1s the disp

104

NAME: TAKE

TYPE.: HANDLER
FUNCTION: PICKING UP OF OBJECTS

240 IFCTC2)>=5THENB=36:GOSUB1100:GOT01
04:ELSEA$=TX$(3):GOSUB1080:1FN>9999THE
NB=7:GOT0242:ELSEIFN>l2ANON<l70RN=18TH
ENB=40:GOT0242
241 IFN=17THENB=8:GOT0242:ELSEIFOB(N,1
)=21THE.NB=9:GOT0242:ELSEIFOB(N,l)<>CT(
0)0RN=OTHENB=l2:GOT0242:E.LSE.OBCN,1)=21
:B=ll:CT(2)=CT(2)+1
242 GOSUB1100:GOT0104

Fig. 6-5. Handler Take.

message 7, which asks, "WHAT DID YOU SAY?" IfN is less than
10, 000, the command is at least grammatical, though it remains to be
determined whether or not the command can be executed.

The third question is asked because of wise-guy adventurers.
Almost certainly, someone will try to pick up and carry a creature.
Before I added this consideration, I had a play-tester who could not
get past the giant mantis. So what did he do? He carried the silly
creature out of the room! After groaning longly and loudly, I interpo­
lated this third question.

There are, of course, two kinds of creatures: the passive guard
creatures and the more dangerous tenacious creature (the Ore).
Passive creatures have object numbers from 13 to 16. The Ore,
although his position information is kept in OB(O, 1), has an object
number of 18 in the ID number of the word table. When the handler
Take finds the ID number for the object to be carried, it must
compare that number to those of the creatures.

If N, the ID number, is both greater than 12 and less than 17,
~en a passive creature is intended. Or, if N equals 18, the Ore is
Intended. In either case, the command is rejected by a call to Mesprt
for message 40: "YOU MANIFEST SOME PRETTY SUICIDAL
TENDENCIES, FELLA!" That'll keep them from dragging your
dragons away!

The fourth question relates to immovable objects. Every room
has a somewhat elaborate description, telling its features, its colors,
anct so on. In some cases such a description may mention the
Presence of some article which nevertheless is not an object. Note,

105

for instance, that the description for room 14 includes the state
"THERE ARE COBWEBS EVERYWHERE." Now, suppos~ent,
the player typed in the command, "TAKE COB WEBS." Sine Jhat
webs are not an object with an element in the object status: ob.
how can such a command be executed? If the word COBWEBS i~~Y,
out of the word table altogether, the response to that comm eft
would be "I SEE NOTHING OF THE SORT HERE," which and

d 'di u1 · would soun n c ous, smce the room description just said that they w
there. Yet, if you put the word COBWEBS into the word table w~re
ID number do you give it? You can presumably expand the ~b· at
status array to cover all these descriptive articles, but that woul~~
wasteful.

To simplify the situation, all descriptive articles are added int
the.word table. Rather than unique object numbers, however, all ar~
assigned the value 17 in their ID number. The adventure program
knows how to treat all objects 17-as recognizable, but less than
true objects.

The handler Take checks to see if the article within reach is an
object 17. If it is, the command is rejected. Unfortunately, there is
little logical ground for refusing the command. If there are cobwebs
there, why can't the adventurer take them? So, rather than giving
any. real explanation, Mesprt is called to display message 8, which
avmds the subject but remains firm: "YOU TRY UNSUCCESS­
FULLY ... IMMOVABLE!" Granted, this is less than satisfying,
but the only simpler choice is to write room descriptions that don't
even hint at furniture or articles other than legitimate objects. That
can result in a boring scenario.

The next question checks to see if the command is even neces·
sary. Maybe he already has the object and doesn't need to take it!
How can you tell? All objects that are in the player's possession are
given a location of value 21. That is, they no longer reside in the room
where he stands; they reside in room 21, which is the player's sack.
If the adventurer already has the object, the handler Take knows by
checking the object status array.

Since the· variable N gives the object number of the article, the
element OB(N, 1) gives the object's physical location. If OB(N,1) is
equal to 21, the corninand is rejected and message 9 is displayed:
"YOU ALREADY HAVE IT!"

The final question is whether or not the requested object is
available for the taking. There are two cases to handle. In one case,
the object may be in another room altogether. In the other, the
requested article may not exist in the word table. In either situation.

106

t)le handling is the same-the handler replies that it doesn't see the

article n~arby. . . .
As m the preVIous question, smceN equals the object number,

OB(N, 1) giv.es its loca?on. CT(O) tells the room number where the
adventurer is. Thus, if OB(N, 1) doesn't equal CT(O), the object
sirJlplY is not there. On the other hand, if the player asked to pick up
an article unknown to the program's vocabulary (as in "TAKE
woMBAT"), the variable N would equal zero, because that is the
result of an unsuccessful word table search using the subroutine
Jdword. If N equals zero, or if the other case occurs, the command is
rejected with message 12, which says "I SEE NOTHING OF THE
SORT HERE." Note that this does not reveal the program's ignor­
ance of the article mentioned in the command; the player may find a
Wombat elsewhere!

If the handler Take gets through all six of the above contingen­
cies it is ready to perform its function. It does this in three steps.
First, the object must be transferred into the player's possession.
This is done by removing it from the room and placing it in the
carry-sack. The variable OBW, 1) is set equal to 21 to effect this
transfer. Second, the program must keep track of how many articles
the adventurer is now carrying. Take performs an update by adding
o~e to the present value of CT(2), which records his inventory total.
Fmally, the player must be notified of the success of the transaction.
~or this, message 11 is printed: "OKAY." As usual, a deceptively
sunple message is used, obscuring the complex decision-making that
led up to it!

That takes care of picking up objects. Now we need to examine
how objects are dropped back into the room.

DROP THAT TREASURE!
There are two key words in the word table that are treated as

ronymous and relate to the dropping of carried objects: DROP and

F~ROW. Both of these invoke the handler Drop, which is given in
ig. 6-6.

TakeThe operation of Drop_is s~ar to, but simpler than, that of
't · There are three questions this handler seeks to answer before
1 can execute the command:
tD h •Doest e adventurer command ungrammatically?
t ls oes the adventurer have the object in his carry-sack?

the adventurer dropping the Enchanted Grenade?

be dr~ three questi~ns depend on the object number of the article to
PPed. ldword is therefore called to locate the word stored in

107

NAME:
TYPE:

DROP
HANDLER

FUNCTION: DROPPING OF OBJECTS
260 AaTX(3):GOSUB1080:1FN>9999THENB=
7:GOSUB262:ELSEIFOB(N,1)<>21THENB=lO·G
OT0262:ELSEf FN=l2THEN540:ELSEOB(N l)~C
T(O):B=ll:CT(2)=CT(2)-1 '
262 GOSUB1100:GOT0104

Fig. 6-6. Handler Drop.

TX$(3) ~ome:vhere m the w~rd table and to place the word's ID
number m vanableN. (For objects, the ID number equals its object
number.)

The first question is handled just as in the handler Take. If the
player has used a verb as the object of the command DROP, the
~alue of N exceeds 9999; that is, it is 10, 000 or greater, since digit 5
ts set to one for verbs. If this happens, message 7 gives the player
another chance with "WHAT DID YOU SAY?"

The next question is handled analogously to the handler Take
with converse results. In · this case the command is rejected if th~
player does not have the object in his possession. If OB(N,l) does
not equal 21, the object is not in the carry-sack. Mesprt is called tc
print message 10: "YOU DON'T HAVE IT!"

The final question cannot be fully explained until the next chap­
ter; there is one object that responds very strangely to the action of
dropping or throwing, and that is the Enchanted Grenade. It's object
number is 12; if the handler Drop finds that object 12 is being thrown,
it refers the whole affair to line 540, which is the start of the handler
called Bomb. You'll see later that a number of things may happen
when Bomb is invoked, but that is another story.

With these exigencies considered, the transfer can now occur.
As before, there are three steps. The object's location is changed,
by setting OB(N, l) equal to the room number stored in CT(O). The
inventory total in CT(2) must be updated by subtracting one. Lastly,
the simple message "OKAY," message 11, is displayed.

The adventurer is making gradual progress. A few chapters
back he could merely walk about and look at things. Now he can
touch those things, take them with him, and open and close doors. !JI
the next chapter, the adventurer learns to defend himself against the
creature~ that roam unchained in the dark corridors of the basement.

108

Chapter 7

Battling the Enemy

The danger factor differentiates an adventure program from a mere
Easter egg hunt. If all the adventurer has to do is wander around and
find tr~asures, there is no challenge! There must be something to
defy his attempts, something to hinder his progress, even to
threaten his life. That is why adventure programs have creatures.

Various programs handle their creatures differently. Some
creatures wander aimlessly about the scenario, bumping into the
adv~nturer at random. Some have a stationary post that they guard
continually. Some do not attack unless threatened. Others cannot be
slain by normal weapons. Battles may be decided on purely random
factors, or a record may be kept of the combatant's strength levels to
determine who should rightly be the victor.
v . ~ase~e~ts and Beasties has a combination of many of these
anations m its method of battle simulation. An attempt is made to

keep the algorithms simple while maintaining the illusion of an actual
struggle. There are three classes of battle in the program:

•Attack/retaliation with certain passive creatures
•S . . . ' Pec1al weapon agamst certam other passive creatures
•Defense/offense against the tenacious creature

th Figure 7-1 shows the beasts that wait in the wings. You recall
at there are really two basic kinds of creatures in any adventure

~~Ogram .. One type might be called passive creatures. Their main
su:ose is to guard or block some passageway in the scenario. As

• they are also bona fide obstacles and are present in the

109

-TYPE CREATURE WEAPON ROOM

-PASSIVE GIANT MANTIS AXE 4

PASSIVE HUGE IGUANA AXE -18

-PASSIVE WHITE SPIDER GRENADE 14

-PASSIVE NAMELESS TERROR GRENADE 6

ACTIVE ANGRY ORC AXE

Fig. 7-1. The creatures of Basements and Beasties.

obstacle table. Other obstacles, like doors, are rendered passable by
the "OPEN" command. Passive creatures are rendered passable by
battle. They do not attack on their own, but if they are attacked, they
always retaliate. Since they are not immediately hostile, it is not
necessary for the adventurer to engage them in battle. However
the player gains points for every creature killed, and there ar~
certain treasures he can never retrieve without passing a passive
creature.

To add to the challenge, not all passive creatures can be beaten
in the same manner. Of the four passive creatures, there are two
subsets of two each. One set may be engaged in the attack/
retaliation cycle and eventually slain. The other set is totally immune
to the standard weapon (the Axe), but may retaliate nevertheless.
The only way to kill these two creatures is with the Enchanted
Grenade.

Separate from the passive creatures is the much more danger­
ous tenacious creature, the Ore. Class 3 battle is called defense/
offense because the Ore attacks without provocation. He can be
killed in the usual manner (with the Axe), but he follows the adven·
turer from room to room. The player's only escape is either to slay
the Ore or run back above ground, where the Ore can not follow.

A number of sections of code interact to support this battle
simulation. I already discussed one of these in the examination of
Executive a few chapters ago. That section handles the motion of the
tenacious creature, whether he attacks, and how successful he is.
The standard battle handler is called Fight, and it controls the
outcome of any encounter with a creature that can be killed by the
Axe. Another handler, called Bomb controls the effect of the End
chanted Grenade on those two creatures that have tough skin an

110

are Axe-resistant. Finally, there is a handler called Resur, which is
. voked when the adventurer dies. It resurrects him outside of the
:asement, adjusts the score, and handles a few other details.

FIGHT THE GOOD FIGHT
In the word table there are three words that relate to standard

battle. These are KILL, FIGHT, and SLAY. All three are treated
synonymously and invoke the same routine: handler 7, the section
called Fight. Figure 7-2 gives the code for it.

The handler Fight answers the following questions when it is
invoked:
e ls the tenacious creature there?
e ls any passive creature there?
e ls the standard weapon at hand?
e ls the creature resistant to the standard weapon?

Assuming that a battle does ensue, Fight moderates the skirmish
according to the following set probabilities:

• There is a 70 percent chance that the creature is killed this tum.
• If this is not a tenacious creature, there is a 30 percent chance that
the adventurer is killed in retaliation.

Note that the 30 percent retaliation figure applies only to pas­
sive creatures. The handler Fight does not cause the tenacious Ore
to fight back. Rather, Executive handles the Ore's response.

The first question to be asked is whether or not the enemy
being challenged is in fact the Ore. Recalling the discussion of
Executive, the unused elements of the object status array, OB(O, 0)
a?d OB(O, 1), are set aside for the tenacious creature. OB(O, 1) gives
his location, and Executive moves him around randomly. As long as
the Ore is not in the same room as the player, OB(O, 0) is kept at a
value of zero. If the Ore stumbles across the adventurer, however,
OB(O, 0) is set to one. From then until the player either kills the Ore
or escapes to the surface, the Ore tracks the player from room to
room.

.The element OB(0,0), then, is an easy way to tell if the Ore is
~ou~d. If it equals one, Fight automatically assumes that the player
t trying to slay the Ore. The handler proceeds down to the next line
0 handle the other questions.

This raises an intriguing consideration. If the player enters the
~ornmand KILL, and if there are two creatures in the room, Fight
ptays defaults to the tenacious creature Ore first. In this way, the

ayer need not specify the creature's name in the heat of battle, and

111

NAME: FIGHT

TYPE: HANDLER

FUNCTION: BATTLE WITH CREATURES

320 IF08(0,0)=1THEN322ELSEFORK=l3T016:
IFOB(K,l)<>CT(O)THENNEXTK:B=4l:GOSUB11
OO:GOT0104
322 IFOB(l0,1)<>21THENB=23:GOT0326:ELS
EIFK=l50RK=16THENB=24:GOT0324:ELSEX=RN
0(100):1F08(0,0)=1THEN328ELSEIFX>70THE
NB=26:GOT0324:ELSEOBCK,l)=O:A=l:GOSUB1
200:GOSUB1220:B=25:GOT0326
324 GOSUB1100:8=27:GOSUBllOO:X=RND{lOO
):IFX<40THENB=29:GOSUB1100:GOT0580:ELS
EB=28
326 GOSUB1100:GOT0105
328 IFX>70THENB=26:GOSUBllOO:GOT0112:E
LSEOB(O,O)=O:OB(0,l)=O:B=25:CT(4)=CT(4
)+25:GOT0326

Fig. 7-2. Handler Fight.

the handler is not confused by two types of creatures at once. This
assumption is not too hard to accept, since the Ore is hard to ignore,
and only a fool would waste his time provoking a sleepy, passive
creature while the Ore is leaping at his throat all the time.

The next question is whether any other creatures are present in
the room. To check this out, a FOR-NEXT loop is set up to scan the
object status array. Passive creatures are objects with numbers in
the range from 13 to 16. For each of the four creatures, it's location is
compared to CT(O), the location of the player. The loop continues
until a match is found. If the match occurs, program control drops to
the next line for further questions. If no match occurs, i.e., if no
passive creatures are there, the loop runs out. The handler can on~Y
assume that the poor delirious adventurer has tried to attack and kill
a rock or something. It sets the variable B to 41 and uses.J;i~
subroutine Mesprt to display the message, "SAVE YOUR ST
INA, TURKEY! I SEE NO REAL THREAT!"

I might add that this section of Fight was added to cover up a~
embarrassing situation. I had a play-tester who sat down and foun

112

. flaw. He entered a room that had no creatures at all, entered the
tl1l~and Fight, and suddenly, a nonexistent creature appeared,
co t at his throat, and killed him! Programmer, beware. If you
1 ~:en't thought out all of the possible options, your player will
h rnble on a few beauties!
stu The third question is whether the player even has a weapon

·th which to fight! The standard weapon is object 10, the Axe. If it is
~the adventurer's carry-sack, OB(lO, 1) equals 21, the location
!llurnber indicating possession. If not, the player is unarmed, and the
~andler responds with message 23, which asks, "WITH WHAT
WEAPON?" Notice that this question procludes use of the En­
chanted Grenade through this handler. If the player wishes to bomb
his opponent, he must enter the specific command key word BOMB.

Even if the player has the Axe, there are two creatures with
skin too tough to harm. These are the White Spider and the Name­
less Terror, which have object numbers of 15 and 16. If the adven­
turer swings his Axe at either creature, the handler displays mes­
sage 24, "YOUR AXE SWINGS ARE DYNAMIC ... BUT INEF­
FECTIVE!" The creature suffers no harm, but the handler con­
tinues on from that point to the next line, which controls retaliation.
Thus, a player may die in learning the secret that the Axe cannot kill
these two beasts.

With all four preliminaries out of the way, the player's attack can
be simulated. The variableX is randomly set to some number from 0
to 100. This number provides the probability percentage for the
success or failure of his attack. Before that probability can be
evaluated, however, the program forks in two possible directions. If
the creature is tenacious, his doom or survival is handled differently
than that of a passive creature. Line 328 takes care of this; and you'll
see it in a moment.

For the passive enemy, though, the random percentage is
examined. If X is greater than 70 (a 30 percent chance), then the
attack was unsuccessful and the creature survived. If this is the case,
message 26 is displayed: "MISSED IT! FIE!" Program control
Proceeds to the next line, as the creature is given a chance to
retaliate.

What ifX is less than or equal to 70? If so, the Axe has met its
~ark, and the handler must remove the creature. This requires a
t~w ~t~ps. First, the creature must be removed from the room so
~t It is not described by the description subsection of Executive.
" e most effective way to do this is to move it to room 0, the
nonexistent" room. OB(K, 1) gives the location of the creature,

113

since if this is a passive creature, K equals its object number du
the FOR-NEXT loop up in line 320. Setting OB(K, 1) to zero so~ to
dispatches the creature to limbo. of

That's not all. The passive creature is not just an object. It.
also an obstacle, with an entry in the obstacle list. The handler Fi~s
must change this obstacle list entry so that the player can mo t
freely through the passageway previously guarded by the creatUrve
This is done through two subroutines. The first, Ckobs, finds ~­
obstacle list entry of the creature. The second, Revobs, toggles th:
status of the entry from unpassable to passable. (A more detailed
description is available in the previous chapter.)

The subroutine Ckobs, located at line 1200, needs to know the
obstacle type and the present room number in order to find the
entry. The room number is always in CT(O); the obstacle type must
be stored in variable A. The handler sets A equal to 1 (the obstacle
type for creatures) and calls Ckobs. When the subroutine is done, A
is set to the entry number, which is a number from 1 to 10.

The subroutine Revobs, located at 1220, needs to know the
obstacle list entry number in order to change the entry's status. It
expects this number to be in variable A. Fortunately, Ckobs usedA
for that number, so no preparation is necessary; Revobs can be
called right after Ckobs. When that subroutine is done, the obstacle
list entry indicates that the passageway is open for travel.

The final step in handling the slaying of a passive creature is the
death notice. The subroutine Mesprt displays message 25, which
reads, "YOUR MAGIC AXE CONNECTS! THE CREATURE
VANISHES IN A PUFF OF FOUL SMOKE!" The handler is then
finished and returns to the command subsection of Executive.

The past few paragraphs have dealt with attacking a passive
creature. Before looking at its retaliation, let's see what happens if
the enemy is the tenacious creature. Line 328 handles the attack in
this case. The variableX is still some random number from 0 to 100
as before. If Xis greater than 70 (a 30 percent chance), then the Ore
has avoided the player's Axe. Message 26 is shown ("MISSED IT!
FIE!"), but instead of skipping to a routine to provide retaliation,
program control leaps back to the Executive, right before the de·
scription of the Ore. That passage of Executive causes the Ore to
launch his own offensive. Splitting things up this way provides 3

means for Ore to attack repeatedly, relentlessly, possibly ever'/
tum, making him the toughest of creatures to beat. c

If the probability value inX is less than or equal to 70, the OJ rd
has met his match. Note, though, that his demise is hand e

114

·quely. The variable OB(O, l) controls where he is; this is set to
uJJJ

0
sending him to the "non-room." The variable OB(O, 0) controls

z~r a~tions. This is set to zero, which puts him into a waiting mode. In
tu;

0
rt, the Ore never really dies. He is just temporarily sent to room

5 Executive sets him traveling again on a random basis. Thus, the
Odventurer soon meets the Ore again in his travels. The best way to
~k of this feature in the scenario is that the basement is full of
wandering Ores, and that each one that comes along is a new one.
'[his randomly reoccurring danger adds to the interest of the game.

Even though the Ore (or an Ore, if you will) returns, the
message printed is a death notice identical to that for vanquished
passive creatures: message 25.

After each Ore is killed, the variable CT(4) is increased by a
factor of 25. The next chapter explains this, but for now, recognize
that this is for scoring purposes. The player receives an extra 25
points for every Ore he slays.

That takes care of the attack portion of the handler Fight. Line
324 provides the retaliation attempt. It begins with a GOSUB to
Mesprt , since other parts of the handler enter this line with mes­
sages to show. It prints a message of its own, message 27, which
exclaims, "THE HIDEOUS MONSTER LEAPS AT YOUR
THROAT!"

Then the probabilities are calculated for the success or failure of
the creature's retaliation. As before, the variableX is set to a value
from 0 to 100. If Xis less than 30 (a 30 percent chance), then the
creature has been victorious and the adventurer is slain. If so,
message 29 is called up and displayed, lamenting, "IT FINISHES
YOU OFF!!" At this point, program control is vectored to line 580,
which is the routine Resur. This handler (or sub-handler) arranges
for the player's re-entry into the game.

There is a 70 percent chance, though, that the creature's
retaliation does not succeed. In this case, message 28 is issued,
relating a nervous, "SOMEHOW YOU FEND IT OFF!!" All is well,
a~ the Executive is re-entered and the player gets a chance to catch
his breath before typing another "KILL" or "SLAY."

THE PLAYER'S RESURRECTION
Even the most experienced adventurer gets eaten once in

awhile. To provide a fair second chance, the handler Resur brings
~Player back for more. There is a cost, of course, to his score.

s Prevents players from being reckless instead of clever.)
h Resur is given in Fig. 7-3. There are a handful of tasks for it to
andle:

115

NAME:

TYPE:

RES UR

HANDLER

FUN CT I OtJ: RESURRECTION OF SLAIN

PLAYER

580 CT(3)=CT(3)+l:B=35:GOSUB1100:0B(g
1)=2:FORl=lT012:1FOBCl,1)=21THENOBCt,i
)=CT(O):NEXT:ELSENEXT
582 CT(O)=l:CT(2)=0:GOT0100

Fig. 7-3. Handler Resur.

•To keep track of the number of deaths for later scoring
•To inform the player of his situation
eTo make certain the player can get a torch for his next venture
•To empty his carry-sack into the room where he died ·
•To move the player back to home base
•To update his inventory load total to zero

Resur begins by recording this death in the variable CT(3).
Later on, when the score is computed, CT(3) is consulted, and the
total score is docked by 20 points per death.

Next, message 35 is printed, to inform the player of his dire
situation. It reads, "WELL, FINE ADVENTURER! YOU ARE IN
A REAL JAM! FORTUNATELY, WE CAN BRING YOU BACK!
... POOF!! ... " At this point you may wish to insert some sort of
FOR-NEXT loop in the handler simply for delay. It might help
support the illusion of great effort being taken to reassemble the
fallen adventurer.

The next step is to make sure the player, once resurrecte~, is
able to re-enter the basement. When he returns, he is outside,
above ground. He needs a torch to travel underground-and he

· .i..:n to dropped his torch "down there, somewhere!" The only fair uuug

do is to drop a torch somewhere in reach so that he can return to ~e
basement and reclaim his treasures. Resur takes the torch, whic~1.~
object 9, and moves it to room 2, above ground. The player can fin 1

easily up there. .
Now Resur must steal everything in the adventu~er's c~d

sack. If he died in a given room, by all rights his possessions shO

116

pave fallen on the floor there! A FOR-NEXT loop scans through the
rst of portable objects (of which there are twelve; the others are
~eatures) . Any objects with location number 21 are in the player's
possession. Each such object is transferred to the room where the
player lies dead, as determined by CT(O).

The last two steps occur in line 582. By setting CT(O) to 1, the
player is whisked out of the basement and dropped at home base, or
room l, the excavation pit. Also, since the player no longer is
carfYing anything, CT(2) must be set to zero. CT(2) is used by the
Take handler to determine if the player is carrying too much. At this
point, it is reset.

BOMBING THE ENEMY
We have one final handler to examine that relates to the adven­

turer fighting for his life. Of the four passive creatures, remember,
there are two that are impervious to the player's hasty ax swings.
Both the White Spider and the Nameless Terror cannot be killed by
an ax attack; but they retaliate! Woe to the adventurer who is trapped
in the Oracle Room with nothing but his ax. His only escape is to
teleport out, for the Nameless Terror guards the only exit, and the
Terror laughs at axes.

Fortunately, there is a weapon that kills either of these two
hardy beasts. It is the Enchanted Grenade, also known as object 12.
If this magic bomb is thrown at one of these tougher creatures, it
detonates and blows the beast away in an ethereal burst of light. The
grenade cannot operate or explode against any other object; so the
adventurer is bound to waste a tum or two trying to blast down a
locked door with it.

The handler that controls the operation of the Enchanted Gre­
nade is called Bomb (naturally), and it is given for you in Fig. 7-4.
There are two ways in which Bomb is activated. The first was
mentioned in the previous chapter when I described the handler
Drop. One of the questions that Drop asks is, "Is the adventurer
dropping the grenade?" If so, Drop relinquishes the whole matter to
~omb. Since there are basically two forms of the command that
mvokes Drop, you have two commands right from the start that can
activate Bomb; these are "DROP GRENADE" and "THROW
GRENADE."

The adventurer can be more specific, however. In the word
~ble, there are two keywords that specifically request the activation
~handler 17 (Bomb). These two words are "BOMB" and "BLOW."

5 You'll see, the handler ignores word 2 of the command altogether.

117

NAt·lE: BOMB

TY PE: llAIWL ER

FUl.JCT I ON: OPERATION OF ENCHArJTED

GRUJADE

540 IFOB(l2,1)<>21THENB=20:GOT0544:ELS
EOB(l2,l)=CT(O):CT(2)=CT(2)-l:FORK=l5T
016:1FOBCK,l)<>CT(O)THENNEXTK:B=2l:GOT
0544:ELSEOB(K,1)=0:A=l:GOSUB1200:GOSUB
1220:8=22
544 GOSUB1100:GOT0104

Fig. 7-4. Handler Bomb.

The player can enter "BOMB CREATURE" or "BLOW UP
SPIDER," or whatever, and the program still understands the
player's intention.

The handler Bomb must detennine the following factors before
following through with a grenade explosion:

•Does the adventurer have the grenade?
els one of the tough creatures nearby?

Bomb begins by checking to see if the player is bluffing. Does he
have a grenade to throw? The Enchanted Grenade is object 12. If the
player possesses it, then the variable OB(12, 1) equals 21, the
location number of the carry-sack. If this is not true, Mesprt is called
and prints message 20, "YOU HAVE NO BOMB!"

Assuming that the adventurer does carry the grenade, the
handler goes ahead and drops it on the floor. This is done in two
steps. First, the grenade is transferred from the carry-sack to the
present room by setting OB(l, 1) equal to the value in CT(O). Sec­
ond, since the player's carry-sack is now a bit lighter, this fact must
be noted. The variable CT(2), the inventory total, is decremented by
one. .

The next question is whether or not a legitimate target is withiJJ
range. The only two creatures whose presence trigger the grena~~
are the Spider and the Terror, Objects 15 and 16. A short FO~

118

NEXT loop checks these two to see if either is in the room, by
paring their locations to CT(O). If neither is in the room, the

co~ade fizzles. Message 21 is printed, which announces, "THE
g:ENADE FALLS TO THE FLOOR AND NOTHING HAP-

NS" PE . ddi · all h h d . " d ., (Note, a tion y, t at t e grena e is never use up.
Whether or not it explodes, it ends up still lying on the floor. It can be
·eked up and used later against the other of the two tough crea­

:res. Don't say I never gave you anything!)
If one of the two creatures is in the room, the handler destroys

it. The first step is simple. By setting OB(K, 1) equal to zero, the
creature is banished to the nonexistent room 0, from which it never
returns. The real task, though, is to adjust the associated entry in
the obstacle list so that the guarded doorway can be declared pass­
able. This is handled just as it is in the handler Fight. The variableA
is set to one, to indicate the obstacle type, i.e., a creature, and the
subroutine Ckobs is called. Ckobs searches the obstacle list and
finds the proper entry. The handler calls Rev obs, which toggles the
obstacle status from unpassable to passable.

The final job is to print a message notifying the adventurer of his
triumph. Message 22 fills the bill: "THE GRENADE EXPLODES IN
A SILENT FLASH OF WEIRD BLUE LIGHT ... AND THE
CREATURE IS GONE! "

The adventurer is now ready for anything. Axe in one hand,
grenade in the other, he can face any beast-be it Ore, Mantis, or
Terror. All he needs to know is which weapon works on which
creature!

SAFE AND SOUND
The past few chapters have covered, in detail, the major ele­

ments of an adventure program. The player can roam through the
scenario, looking at each room, just enjoying the view. The player
can also affect his environment, swinging doors shut, carrying ob­
jects, and so on. And the player can do battle, fighting off beasts with
special weapons, winning or sometimes losing.

There are quite a few other commands the adventure program
recognizes; however; they are auxiliary to the action of the game.
F?r instance, the player may want to know his score, or perhaps he
Wishes to examine his carry-sack. These auxiliary commands are
described in the next chapter.

119

Chapter 8

Auxiliary Commands

Most adventure program commands control the motion or action of
the adventurer within the scenario. He moves, he opens doors, he
takes articles, he fights monsters. Quite a few commands, however,
are actually instructions to the program itself, controlling how the
game is played or requesting certain information. These are
auxiliary commands.

There are seven remaining handlers that support these extra
commands. Two of the seven supply information about the sur­
rounding scenario. Two more provide the score, one of which
results in game termination. Two more make use of the tape re­
corder supplied with the TRS-80 to store the present status of the
game for later retrieval, so that the player may stay long in the
basement. The final handler responds to certain inputs with one­
liners, strictly for effect.

TAKE A SECOND LOOK
As the adventurer travels from room to room, the program

keeps track of which rooms he has been to before and which ~oorns
are new to him. Based on this information, a room is described in one
of two ways: with a long paragraph upon first visit, or with a short
room title upon subsequent visits. This saves eye strain and bore·
dom from seeing the same long paragraph displayed every tjrne a
room is re-entered. · rs

The only problem with this helpful little feature is that playe t

forget. The player is bound to walk into the Cobweb Room and forge

120

h t it looks like. Where are the doors? Are there any dangerous
w a "d? Jiffs to av01 .
c For this reason the adventure program must have the command
LOOK. With this command the long description of the room is

peated so that entrances and exits may be clearly seen.
re Figure 8-1 gives the handler called Look. It is handler 10 and is
. voked only by the command word LOOK. It performs the following
1.11 •
two functions:
tDescribe the room in detail
tList all nearby objects

Really, this is not so different than what is done by the descrip­
tion subsection of Executive each time a room is entered. All that
Look does is ignore the stored information concerning whether or
not a room has been visited.

Two subroutines come into play in Look. The first is Viewrm,
which prints either the long or short description of a room, based on
the value stored in variable C. If C equals zero, Viewrm prints the
long room description. (Look sets C to zero and calls line 1160.)
Note, though, that Viewrm performs the necessary checks con­
cerning visibility. If the player is below ground and he does not have
the torch, Viewrm refuses to give any description and warns the
player, "IT IS PITCH DARK! YOU MAY FALL INTO A PIT!"

The other subroutine is Listob at line 1140. Listob runs through
the entire list of objects, finds all of the objects that reside in the
room, and describes these for the player. Again, if it is too dark, the
description does not occur. In this case, however, no warning
message is issued.

It may be desirable to review the workings both of Listob and
Viewrm. These are described in the chapter detailing the operation
of Executive.

TAKING STOCK
Often it is helpful to know what one possesses. If the player

NAME:

TY PE:
LOOK

HANDLER

FUNCTION: LONG DESCRIPTION OF ROOM

380 C=O:GOSUB1160:GOSUB1140:GOT0104
F·

ig. 8-1. Handler Look.

121

NAME:

TYPE:

INVEN

HANDLER

FUNCTION: LISTING OF OBJECTS

CARRIED

340 B=l8:GOSUBllOO:FORJ=lT01G:IFOB(J
1)<>21THENNEXTJ:GOT0104:ELSEA=4:B=J:~
OSUB1040:READB$,B$:PRINTB$:NEXTJ:GOTO
104

Fig. 8-2. Handler lnven.

encounters the angry Ore, he may or may not remember whether or
not he has the Axe among his possessions. Or, upon finding a
treasure, he may be told that he is carrying too much. So he must
make a decision concerning what to keep and what to drop.

Handler 8 provides an easy way to rummage through the ad­
venturer's carry-sack. It is called lnven and is given in Fig. 8-2.

Basically, Inven takes an inventory of everything the player
presently carries. Much like the subroutine Listob, this handler
scans the object status array in search of any objects that reside in
the carry-sack. These objects are then described by a short-form
name.

Inven begins by a preliminary message, message 18, which
states, "YOU HAVE THE FOLLOWING:" Then a FOR-NEXT loop
is established, and each object location is compared to 21, the
carry-sack location. For each object that matches location 21, the
short-form name is accessed and displayed.

Every object has two descriptions: a long one about 64 charac­
ters maximum and a short one that is one or two words Jong. These
are stored as pairs, one pair to a line, in the object description-block
among the DATA statements. For each object to be listed, Inven
must find the proper line and short name.

Inven uses the subroutine Access at line 1040 to find the short
name. Access expects to see variable A equal to the data block
number, and variable B equal to the row number in that block. The
object-description block is numbered 4; so A is set according!~·
Since J equals the object number, and the descriptions are stored~
rows by that number, lnven sets B equal to]. When Access is

122

finished, Jnven begins reading data and finds the long and short
1
bject-descriptions immediately.

0
Inven only cares about the second of the two descriptions, the

shorter one. So the statement "READ B$,B$" results in the short
narne being stored in B$. The handler prints this name and then loops
back. This process continues until all objects have been checked to
see if they are being carried.

It may be a bit inconsistent, but note that the player can take
inventory at any time and still be able to tell what's in his sack-even
in pitch darkness. (Maybe he can identify the objects by size and
shape!)

DRAGONS 10, HEROES 0
As the adventurer makes his way from danger to danger, he

needs to know how well he is doing-either as an incentive to go on
or as a warning to quit while he is still alive. To provide this valuable
service, the player can type, "SCORE," and see his progress or lack
thereof.

Basements and Beasties uses a very simple scoring algorithm
as follows:

• 5 points for every room visited
• 10 points for every treasure at home base
• 20 points for every passive creature killed
• 25 points for every tenacious creature (Ores) killed
• - 20 points for every death of the adventurer

Figure 8-3 gives the code for two portions of the program. Line
420 is the handler Score, which is invoked by entering that same
word at the Keyboard. All Score really does is call a subroutine
named Points, which is also shown in Fig. 8-3. This was done so that
other handlers can make use of Points, notably the handler that ends
the present game.

Points begins by printing a preliminary line, message 30, which
reads, "YOUR SCORE IS:" Then the contents of CT(4) is dumped
intoA. Remember from the previous chapter that CT(4) keeps track
?f how many tenacious creatures (Ores) have been killed; CT(4) is
1~cremented by 25 for every slain Ore. The variable A begins with a
sizable positive bias if several Ores are slain in the game.

Next, Points checks the status of each room and awards 5
Points for each room that the adventurer has visited. In the room
s~a~us array RM(x), digit 1 of the integer is a one, if the room was
V!sited, and zero if not. Points isolates digit 1 in two steps: first, by

123

NMiE: SCORE

TYPE: HANDLER

FUNCTIOt~: DIS PLAY OF CURRENT PO ltlTS

420 GOSUB1240:GOT0104

NAME: POltffS

TYPE: SUBROUTINE

I IJ PUT: NOJ~E.

OUTPUT: THE. PRESENT SCORE IS

CALCULATED AND DISPLAYED

1240 B=30:GOSUB1100:A=CT(4):FORl=lT020
:IFRIGHT$CSTR$(RM(l)),l)="l"THE.NA=A+S
1242 NEXTl:FORl=lT08:1FOB(l,l)=lTHENA=
A+lO
1244 NEXTl:FORl=l3T016:1FOB(l,l)=OTHEN
A=A+20
1246 NEXTl:A=A-CT(3)*20:PRINTA:PRINTCT
Cl); "STEPS": RETURN

Fig. 8-3. Handler Score and the related subroutine Points.

converting the integer into a string with the STR$ function, then by
selecting the rightmost character of the new string using the
RIGHT$ function. Points performs this analysis for each room,
looping from 1 to 20. Each time a one is found, the score increases by
five points.

The treasures are tallied next. In order for any treasure to
count towards the player's score, it must be safely dropped in room
1, the home base location. Objects 1 t~o~gh 8 are tr~asures; s~
Points checks the location of these spec1al 1tems. Loopmg throug
the object status array, a 10-point award is given for each treasure
with location number 1. r

Now the victorious fighter is shown honor. The hero faces fou
passive creatures and any number of tenacious Ores. The Ores w~re
taken into account at the start of the subroutine; the slain passive

124

sts are now evaluated. When such a creature is killed, it is
!Jell oved from the scenario by banishing it to the nonexistent room
re: Thus, Points can easily find out how many passive enemies
zerr~ killed by checking their location. Points sets up a loop to check
w: ects 13 to 16, which are the regular creatures. Each creature that
0 ~ides in room 0 earns the adventurer an extra 20 points.
re Finally, the player is docked 20 points for each time he fell into a
't burned in flames, or was eaten. The variable CT(3) keeps track

~~ iliese failures, and it is multiplied by a factor of 20 and subtracted
from the score.

Now Points displays the results. Two pieces of information are
printed on the screen. First, the actual score is shown by printing the
value of variable A. Second, the number of steps taken so far is
displayed. The variable CT(l) is used by Executive to accumulate
the steps taken; so Points prints its value.

Basically, the player is given two measures of his effectiveness
as an adventurer. First, he has a raw score. This score can be as high
as 260 if the player is careful not to get killed and can be much higher
if chance sends him a few bonus Ores to vanquish at 25 points a shot.
Second, he has an efficiency standard.

The avid adventure gamer first strives for a high raw score.
Once he has that in hand, he replays the game for speed and the least
number of steps.

WHEN ALL ELSE FAILS
The player always has the option of ending the game if he is

either too bored or too frustrated to continue. Of course, he can do
this by inelegantly punching BREAK with his thumb. This is the
quickest way to call it quits, but just for the sake of style Basements
and Beasties includes a QUIT command.

When the player types "QUIT," he invokes handler 14, called
~uit, which is given in Fig. 8-4. Quit performs three simple tasks. It
issues a sign-off message. This is message 31 in the message block,
and it reads, "DO VISIT THE BASEMENT AGAIN!" Whether the
Player wishes to do so or not is his problem.

Second, Quit displays the adventurer's final raw score and the
number of steps taken throughout the game. You have already seen
~ow this is done, using the subroutine Points. Quit simply executes a

0SUB to 1240, and this task is taken care of.
Finally, Quit terminates the program for good. The END

S~tement allows no continuing via a Cont command, so the player
s 0uldn't say "QUIT" until he really means it.

125

NAME:

TYPE:

QUIT

HANDLER

FUNCTION: GAME TERMINATION

480 B=3l:GOSUB1100:GOSUB1240:END

Fig. 8-4. Handler Quit.

SAVING THE GAME ON TAPE

--
Sometimes the adventurer has to quit when he doesn't want t

Dinner won't go away just because he is trapped in the Maze with~
Ore at his throat. Even adventurers need sleep now and then. To
lend some semblance of normalcy to the player's life, it is helpful to
provide the option of saving the game, as is, on tape for resumption
later.

Basements and Beasties has two handlers to support tape based
adventure interruption. The first stores all crucial variables on tape;
the second recalls them from tape. The input key word SAVE
invokes the first handler, and RESTORE activates the second one.

Now, what really needs to be saved on tape to preserve the
present status of an adventure program? The handler Save writes
the following variables out to the cassette port.

• The present room location of the player
• The number of steps taken so far
• The inventory total count
• The present number of player deaths
• The present number of Ores killed
• The status of all rooms
• The status of all objects

In writing this handler a rather difficult trade-off presented
itself, as we'll see in a moment. The trade-off revolves around the
operation of the BASIC statements for tape data files, which are
PRINT#-1 and INPUT#-1. These two statements can be used in a
variety of ways, some more and some less efficient.

Consider that data is saved on tape, using the PRINT#~!
statement, in bursts of up to 255 bytes of data. Each burst of data is
preceded by a synchronization leader signal of about five seconds.
This means that the most time taken up in data file tapes is due to the
leader signals. Clearly, if you want efficient tape storage, you rnust
keep these leaders to a minimum.

126

Of course, since there is a five-second leader to each data burst,
our goal should be to store the desired data in as few bursts as

~ssible. A burst ranges from 1 to 255 bytes in length. To minimize
leader time, the Save handler records as many variables as possible
in each burst.

Look at Fig. 8-5, though, for two examples of how to save a
series of variables on tape. In the first example there is an array A(x)
with ten elements to store. A FOR-NEXT loop is set up to store
each of the ten elements using a repeated PRINT#-I. The problem
is this: each time the statement PRINT#-1 is reexecuted, a new
leader signal is recorded and a new data burst initiated. The result is
that method 1 produces a long tape file consisting of ten separate
bursts, each just over five seconds long. One simple array takes
aJrnost a minute to store-and to reload!

Now look at the second example in Fig. 8-5. This time, instead
of looping to save each array element, all ten elements are explicitly
specified with commas as separators. All ten are stored with only
one executed PRINT#-1 statement. The result is that all ten array
elements are stored in one single burst with only one leader. (Ten
integer variables at about five bytes a piece are only 50 bytes.)
Instead of a minute to save or reload the array as before, it now only
takes five or six seconds. What a difference!

Here's the catch-the handler Save has a lot of variables to
record. The second method is fast and efficient with regard to tape,
but wasteful of BASIC code in memory. Imagine that all 20 elements
of the room status Array, all ten of the obstacle list, and so on, are all
~pelled out explicitly! This takes up quite a few lines and a lot of bytes
mmemory.

As usual, a sort of compromise can be struck, which is neither
as fast as possible, nor as lengthy as the extra speed requires. The
final version is shown in Fig. 8-6; this version saves all of the crucial
Variables in nine densely packed bursts, for a total record length of
about 48 seconds. If it is done using many FOR-NEXT loops and no
c~rnma separators, it takes 52 inefficient bursts, or well over four
lll!nutes.

20 FOR 1=1 TO 10: PRINT#-1,A(I): NEXT
22 PRINTf-1,A(l),A(2),A(3),A(4),A(5),

......_A(6),A(7),A(8),A(9),A(l0)
p·
ig. 8-5. Two ways to save a variable array.

127

NAME: SAVE

TYPE: HANDLER

FUNCTION: SAVING GAME PARAMETERS ON

TAPE

500 B=l9:GOSUB1100:1NPUTA:FORl=OT08:PR
INT#-l,OBCl,0),0BCl,1),0B(l+8,0),0B(1+
8,l),RM(l),RMCl+8),RM(l+12),BK(l),BK(1
+2),CT(l):NEXT:GOT0104

Fig. 8-6. Handler save.

The handler Save first prompts the player with message 19
which instructs, "PREPARE TAPE RECORDER AND HIT
(ENTER)." The subsequent statement, INPUT A, holds the
handler in suspension until ENTER is pressed, to allow the recorder
to be loaded and started.

As soon as ENTER is hit, the handler performs a loop from Oto
8 (which adds up to nine loops total). Let's look at how each array is
saved in this loop. You'll see that some variables are actually saved
twice, but this redundancy actually helps keep the loops simpler and
more efficient.

The first array to be saved is the object status array. The first
two items in the list after the PRINT#-1 statement save OB(O,O) to
OB(8, 0) and OB(O, l) to OB(8, 1) in the various bursts.

What about the rest of the array? The next two list items add
eight to the value of the loop counter in referencing the array
elements to be saved. Elements OB(8,0) to OB(16,0) and OB(8,l)
to OB(l6, 1) are saved. Now, OB(8, 0) and OB(8, 1) are saved twice
by this scheme, but as it turns out that small redundancy is more than
compensated by the density of the bursts.

Next to be saved in each burst are the elements of the room
status array. One item of the list saves RM(O) to RM(8). The next
adds eight to the loop counter, so RM(8) to RM(16) are recorded.
The next item adds 12 to the loop counter, such that RM(.1~) t~
RM(20) are stored away. Note, again, that a handful of indiVIdu
array elements are repeated, but this is compensated. The idea is t~
make one FOR-NEXT loop cover everything, to keep the number 0

loops minimal.

128

Next in line is the obstacle list. The first applicable item saves
Bl<(O) to BK(8). The next adds two to the counter, so BK(2) to
sI<(lO) are stored. Again, there is redundancy, but also simplicity.

The last array to be saved is CT(X), the general-purpose
record-keeping variables. The most crucial of these are CT(O)
wrough CT(4), but Save keeps everything up to CT(8) at any rate.

Save records all of the major variables of Basements and
Beasties in only nine data bursts. Each burst is still somewhat
inefficient, since a maximum of about 80 bytes is stored each time­
about a third of what is theoretically possible. The only way to
increase this efficiency is to shorten the loop and lengthen the list of
explicitly stated array elements. I wrote one version that ran in only
five loops-but it took twice the memory space in the program!

Corresponding to the handler that saves these variables on tape
is one that recalls them to resume a game. The handler Restore is
given in Fig. 8-7.

I don't need to go into detail on Restore, since in most respects
it is identical to Save. The only difference is that instead of the tape
output statement PRINT#-1, there is the tape input statement
INPUT#-1. The close similarity between the two handlers assures
that all variables are properly loaded. The state of the game before
Save is identical to the state after restore.

By the way, you might be wondering if there is a way to save
code somehow, since the two handlers are so alike. Can't they
share, somehow? Not easily, since the majority of either handler is
so closely tied to the input or output statement.

At one point in the development of the program, I attempted to
manage this by writing a small routine that changed the PRINT#-1

NM.IE:

TYPE:

RESTORE

HANDLER

FUtJCT I Otl: LOADING GAME PARAMETERS

FROM TAPE
520 B=l9:GOSUB1100:1NPUTA:FORl=OT08:1N
PUT#·l,OB(l,0),0B(l,1),0B(l+8,0),0B(I+
8,1),RM(l),RM(l+8),RM(l+l2),BK(l),BK(I
+2),CT(l):NEXT:GOT0104

F· 19· 8-7. Handler Restore.

129

NAME:

TYPE:

LI tJ ERS

HANDLER

FUNCTION: ONE-LINE RESPONSES TO

KEYWORDS

360 CT(S)=N:GOSUB1000:B=CT(9)*10+CT(8)
:GOSUB1100:GOT0104

Fig. 8-8. Handler Liners.

statement into an INPUT#-1 statement, using the POKE command.
(After all, both statements are stored in memory as a specific
one-byte code.) However, the small routine kept growing faster
than I expected and didn't save enough memory to justify the trou­
ble.

SNAPPY REMARKS
Believe it or not, there is only one handler left that you have not

examined. It provides one of the fine points of adventure program­
ming that really adds to the feel of the game. In short, it provides
snide remarks to specific inputs.

Figure 8-8 is the handler called Liners. It ha_s one function: to
output a specific message in response to a specific command key
word.

In order to use Liners, the desired trigger key-words are
stored in the word list. Remember that verbs in the word list po~nt to
their handler using digits 1 and 2 of their ID number. All ~gg~r
key-words have "09" in digits 1 and 2 to invoke handler 9, which is

Ll~ra. ~
Some verbs, though, make use of ~i~ts 3 and 4 for. spe~n

purposes. Direction verbs use these digits to pass a direct!
number along to the handler Xmove, for example. To keep every·
thing simple trigger key-words use digits 3 and 4 to pass along_a

' · · tedlll message number, i.e., the number of the message that 1s pnn
response to that input. rd

At present there are only two trigger key-words in the wo
list. The first is HELP. In a number of adventu~e programs th~t:;
on larger machines, the command HELP proV!des a lengthy iil

00
duction to the program with an explanation of how to play. Alas, ~e
don't have the memory to waste on such luxuries. Instead, pull

130

er's leg. The ID number of HELP causes message 37 to be
pl~Yted, which reads, "YOUR CRIES GO UNHEARD, PITIFUL
pflll rcH."
WREThe other trigger command is WAIT. In some programs the

1 er can enter this command and expect some situation to change.
P aY instance, if a magic beanstalk is growing, the adventurer can
~AfT and the stalk grows before his eyes. Again, Basements and

B asties pokes fun. Message 38 is called, which says, "TIME
e " pASSES . ·.. .

The operation of the handler Liners is simple. The vanable N
already contains the ID number of the input word, thanks to the able
assistance of Executive. Liners sets variable CT(5) equal to_N ~d
calls the subroutine Analyz. This breaks the ID number down mto its
five digits. Next, Liners needs to isolate the message number
embedded in the ID number. Digits 3 and 4 are now stored respec­
tively in CT(8) and CT(9). The expression CT(9)•10+C~(8) re­
creates the message number, which is stored in variable B. Fmally, a
call to Mesprt displays the desired message.

What other sorts of one-liner responses might be added?
Sometimes, an adventurer who suspects that the program recog­
nizes a magic word tries one of his own, like ABRACADABRA. That
can be placed in the word list and used to trigger the response,
"OLD, WORN-OUT MAGIC WORDS HAVE NO EFFECT
HERE!" Or, the player standing on a bridge might enter the com­
mand JUMP. The program could respond, "HOW HIGH?" You get
the idea.

BOY, WAS THAT SIMPLE!
Amazing as it seems, you have covered all the code in Base­

ments and Beasties. You've seen how the program initializes all
Variables. You've examined Executive and seen it describe rooms
and other things. You've followed input key-words from keyboard to
Word list to handler, with subroutines as supporting cast. You've
Studied how the adventurer walks about, opening doors, taking
treasures, slaying beasts, and getting killed. Finally, you've seen
how the program itself is enhanced with special features.

Where does this leave you? With two final tasks. One is to
COtnpile all of the preceding bits of code into one complete listing with
Various tables, annotations, and so on, so that you can load and run
~asements and Beasties. That is done in the next chapter. The other
18

to suggest a number of optional improvements to the adventure
Program, either to increase speed, efficiency, or capability. That is
reserved for the following chapter.

131

Chapter 9

Basements and Beasties: The Listing

Finally, after much tedium, toil and talk, you have arrived at a
complete listing of the program Basements and Beasties. Before
you roll up your sleeves and tackle the task of typing it in, a couple of
comments are in order.

First, you'll notice that there are no REM statements what­
soever in the listing. (Hopefully, the remarks in the text make
remarks in the listing superfluous.) The reason, obviously, is that
remarks take up memory space, just what you are trying to con·
serve.

What may be more discomforting is that there are no spaces,
except for lines containing strings to be displayed on the screen.
Again, the rationale was memory savings, since BASIC doesn't
really need spaces everywhere. This can certainly generate some
frustration when it comes time to type! Everything runs together so
that variable names are hard to separate from BASIC key words, and
so on. Words and expressions can get chopped in half between
succeeding lines.

Be careful while you type. If your keyboard has noticeable
keybounce, keep an eye on the screen, because errors of this kind
are harder to find in these tightly packed program lines. It may even
be advisable to read each line before you type it, deciphering the
line in order to be prepared for expressions you might mistYP~·

Finally, you may wish to put spaces into some lines for cla!l~
go ahead. But if you do, I suggest that you avoid spaces in the wor

132

--
HANDLER LI NE HANDLER LINE -- XMOVE 200 READ 400

IMOVE 220 SCORE 420

TAKE 240 SAY 460

DROP 260 QUIT 480

OPEN 280 SAVE 500

CLOSE 300 RESTORE 520

FIGHT 320 BOMB 540

f NVEN 340 AARDVARK 560

LINERS 360 RE SUR 580

LOOK 380

Fig. 9-1 . Handlers for Basements and Beasties.

SUB+ SUB•
ROUTINE LI NE ROUTINE LI NE

ANALYZ 1000 LI STOB 1140

SYNTHE 1020 VIEWRM 1160

ACCESS 1040 DARKCK 1180

GETCOM lOGO CKOBS 1200

IDWORD 1080 RE.VOBS 1220

MESPRT 1100 POINTS 1240

TRAVEC 1120
......_

Fig. 9-2. Subroutines for Basements and Beasties.

133

table. Why? Because in the next chapter , you'll be implementin
machine-language routine that scans the word table at high spe gda
The routine assumes no spaces in the table, and leaving thern ~ ·
now will prevent having to remove them later. Ut

Prior to the listing itself, there are two lists included for yo
reference . One lists the handlers and the other the subroutines 1_lr
order and by line numbers. This may in part make up for the lack

1

~
REM statements with regard to finding specific segments of code~

2 CLS:PRINTCHR$(23):PRINT@468, 11\·JE.LCOM
E. TO": PR I NT@522, 11 BASE.ME.NTS & BE.AST I E.S
II

4 CLE.ARSOO:DE.FINTA-Z:DIMTX$(4),0A(5),
RMC20),0BC16,l),BK(10),CT(12):FORl=1T
020:READRM(l):NEXT:FORl=1T016:READOB(
1,1),0B(l,O):NE.XT:FORl=lTOlO:READBK(I
):NEXT
6 P=17385:N=l: FORl=SOOOT09000STEP1000

8 IFl=PEEK(P+2)+PEE KCP+3)•256THENDA(N
)=P:N=N+l:NEXTl:GOTOlO:ELSEP=PEEK(P)+
PEEKCP+1)•256:1FP=OTHENCLS:PRINT"ERRO
R11 :END:ELSE8
10 CT(O)=l:CTC12)=RND(10)+10:CLS
100 CT(S)=RM(CT(O)):GOSUB1000:C=CT(6)
:GOSUB1160:GOSUB1180:1FB=OANDC=OTHENC
T(6)=1:GOSUB1020:RM(CT(O))=CTCS):E.LSE
IFB=lTHE.NN=RND(l00):1FN<20THENB=S:GOS
UB1100:GOT0580
102 GOSUB1140
104 GOT0112
105 INPUTA$
106 GOSUB1060:A$=TX$(2):GOSUB1080
108 CT(S)=N : GOSUBlOOO:IFCTClO)=OORN=O
THENB=7:GOSUB1100:GOT0104
110 ONCT(6)+CT(7)•10GOT0200,220,240,2
60,280,300,320,340,360,330,400,420,4 6
0,480,500,520,540,560,580,600,620,640
,660,680,700
112 IFOBCO,O)=OANDCT(0)>2THENCTC1 2)=C
T(12)-l:IFCT(12)<=0THENCTC12)=R~0(10)
+10:0BCO,l)=CT(0):0B(O,O)=l:GOT0116:E
LSElOS
114 IFCT(0)<3THENOB(0,0)=0:GOT0105:EL
SEOBCO,l)=CT(O)

Fig. 9-3. The complete listing for Basements and Beasties for the TRS-80 Mo~~
Ill computer. To run the program on the Model I, in line 6 you must change
number 17385 to the number 17129.

134

116 B=42:GOSUBllOO:B=RND(100): IFB>7ST
HEN105ELSEB=43:GOSUB1100:B=RND(l00):1
FB>60THENB=44:GOSUBllOO:GOT0580:ELSEl
05
200 D=CT(8)+CT(9)•10-l:FORK=lTOlO:CT(
S)=BK(K):GOSUBlOOO: IFD<>CT(S)ORCT(O)<
>CT(6)+CT(7)•10THENNEXTK:GOT0202:ELSE
IFBK(K)<OTHEN202ELSE.B=CT(9):GOT0206
202 D=D+l:GOSUB1120:1FA=22THENB=4:GOT
0204:ELSEIFA=23TllEN!3=5:GOT0204:ELSEIF
A=OTHE.NB=6:GOT0206:ELSECT(O)=A:CT(l)=
CT(l)+l:GOTOlOO
204 GOSUB1100:GOT0580
206 GOSUB1100:GOT0104
220 I FTX$ (3) =""THEND=ll: GOSUBll 20: N=A
•100+1~101:GOT0108:ELSE.A$=TX$(3):GOTO

106
240 IFCT(2)>=STHENB=36:GOSUB1100:GOTO
104:ELSEA$=TX$(3):GOSU!31080:1FN>9999T
HENB=7:GOT0242:ELSEIFN>12ANDN<l70RN=l
8THENB=40:GOT0242
241 IFN=l7THENB=8:GOT0242:ELSEIFOB(N,
1)=21THENB=9:GOT0242:ELSEIFOB(N,l)<>C
TC 0) ORN=OTHEtJB=12: GOT0242: ELSE.OB(N, 1)
=2l:B=ll:CT(2)=CTC2)+1
242 GOSUB1100:GOT0104
260 A$=TX$(3):GOSUB108-0:IFN>9999THENB
=7:GOSUB262:ELSEIFOBCN,1)<>21THENB=l0
:GOT0262:ELSEIFN=12THEN540:ELSEOB(N,1
)=CT(O):B=ll:CTC2)=CT(2)-1
262 GOSUB1100:GOT0104
28 0 I FTX$ C3) =""THEN B= 7: GOT028 4: ELS EA$
=TX$(3):GOSUB1080:CT(S)=N:GOSUB1000:A
=CT(8):GOSUB1200:1FA=OTHENB=12:GOT028
4:ELSEIFBK(A)<OTHENB=13:GOT0284:ELSEI
FOB(ll,1)<>21THENB=l6:GOT0284:ELSEGOS
UB1220:B=l2+CT(9)
284 GOSUB1100:GOT0104
30 0 I FTX $ (3) =""THEN B= 7: GOTO 304: ELS EA$
=TX$(3):GOSUB1080:CT(5)=N:GOSUB1000:A
=CT(8):GOSUB1200:1FA=OTHE.NB=12:GOT030
4:ELSEIFBK(A)>OTHENB=l3:GOT0304:ELSEG
0SUB1220:B=17
304 GOSUB1100:GOT0104
320 IFOBC0,0)=1THEN322ELSEFORK=l3T016

135

:IFOB(K,l)<>CT(O)THENNEXTK:B=4l:GOSUB
1100: GOT0104
322 IFOBC10,1)<>21THENB=23:GOT0326:EL
SEIFK=l50RK=l6THENB=24:GOT0324:ELSEX=
RND(lOO): IFOB(0,0)=1THEN328ELSEIFX>'lo
THENB=26:GOT0324:ELSEOBCK,1)=0:A=l:GQ
SUB1200:GOSUB1220:B=25:GOT0326
324 GOSUB1100:8=27:GOSUBllOO:X=RND(lO
0): IFX<40THENB=29:GOSUB1100:GOT0530:E
LSEB=28
326 GOSUB1100:GOT0105
328 IFX>70THENB=26:GOSUBllOO:GOT0112:
ELSEOBC0,0)=0:0BCO,l)=O:B=25:CT(4)=CT
(4)+25:GOT0326
340 B=l8:GOSUBllOO:FORJ=lT016:1FOB(J,
1)<>21THENNEXTJ:GOT0104:ELSEA=4:B=J:G
OSUB1040:READB$,B$:PRINTB$:NEXTJ:GOTO
104
360 CT(5)=N:GOSUB1000:B=CT(9)•10+CT(8
):GOSUB1100:GOT0104
380 C=O:GOSUB1160:GOSUB1140:GOT0104
400 IFCT(0)<>6THENB=32:GOT0402:ELSEB=
33
402 GOSUB1100:GOT0104
420 GOSUB1240:GOT0104
460 I FL EFT$ CTX$ (3), 5) <>"AARDV"THE.NB=3
4:GOSUB1100:GOT0104:ELSE560
480 B=31:GOSUB1100:GOSUB1240:END
500 B=l9:GOSUB1100:1NPUTA:FORl=OT08:P
RINT#-l,OB(l,0),0B(l,l),08(1+8,0),0B(
1+8,1),RM(l),RM(l+8),RM(l+12),BK(l),B
KCl+2),CT(l):NEXT:GOT0104
520 B=l9:GOSUB1100:1NPUTA:FORl=OT03:1
NPUT#-1,0B(l,0),0B(t,l),08(1+8,0),0B(
I + 8, 1) , RM (I) , RM (I + 8) , RM (I + 12) , BK (I) , B
K(l+2),CT(l):NEXT:GOT0104
540 IFOBC12,1)<>21THENB=20:GOT0544:EL
SEOBC12,l)=CT(O):CT(2)=CT(2)-l:FOR~=l
5 T016: I FOB (K, 1) <>CT (0)THENN EXT K: 13= 21:
GOT0544:ELSEOBCK,1)=0:A=l:GOSUB1200:G
OSUB1220:B=22
544 GOSUB1100:GOT0104
560 IFCT(0)=6THENCT(0)=1ELSEIFCT(0)=1
THENCT(0)=6ELSEB=34:GOSUB1100
562 GOTOlOO
580 CT(3)=CT(3)+1:B=35:GOSUBllOO:OB(9

Fig. 9-3. Continued from page 135.

136

l)=2:FORt=lT012:1FOBCl,1)=21THENOB(I 1
l)=CT(O):NEXT:ELSENEXT

S82 CT(O)=l:CT(2)=0:GOT0100
1000 FORZ=6T010:CT{Z)=O:NEXTZ:B$=MID$
(STR$CCT(5)),2):FORZ=1TOLENCB$):CT(6+
LEN(B$)-Z)~VALCMID$(B$,Z,l)):NEXTZ:IF
CT(5)<0THENCT(ll)=-l:RETURN:ELSECTC11
)=l:RETURN
1020 CTCS)=CTC10)•10000+CT(9)•1000+CT
(8)•100+CT(7)•10+CT(6):CT(5)=CT(S)•CT
(11): RETURN
1040 P=DA(A):IFB=lTHEN1042ELSEFORZ=lT
OB-l:P=PEEK(P)+PEEKCP+l)•256:NEXTZ
1042 P=P-l:POKE16640,FIX(P/256):POKE1
6639,P-FIX(P/256)•256:RETURN
1060FORl=lTOLENCA$):1FMID$(A$,1,1)<>
II "THENNEXTI :TX$(3)= 1111 :TX$(2)=A$:RETU
RN:ELSETX$(3)=MID$(A$, l+l):TX$(2)=LEF
TCA,1-l):RETURN
1080 IFLEN(A$)>5THENA$=LEFTCA,5)
1082 A=2:B=l:GOSUB1040
1084 READB$,N:IFB$="."ORB$=A$THENRETU
RNELSE1084
1100 A=3:GOSUB1040:READA$:PRINTA$:RET
URN
1120 B=CT(O):A=l:GOSUB1040:FORY=lTOD:
READA:NEXTY:RETURN
1140 GOSUB1180: I FB=l THEN RETURN: ELSEA=
4:FORB=lT016:tFCT(O)<>OB(B,l)THENNEXT
B:RETURN:ELSEGOSUB1040:READTX$(4):PRI
NTTX$ C 4) : NEXT B: RE TURtJ
1160 GOSUB118 0: I Fl3=1 THENl3=39: GOSUBllO
0:RETURN:ELSEA=S:B=CT(O):GOSUB1040:RE
ADTX$(0),TX$(1): IFC=OTHENPRINTTX$(0):
RETURN:ELSEPRINTTX$(l):RETURN
1180 IFOB(9,1)<>21ANDCT(0)<>1ANDCT(0)
<>2THENB=1ELSEB=O
1182 RETURN
1200 FORQ=lTOlO:CT(S)=BK(Q):GOSUDlOOO
:IFCT(6)+CT(7)•10<>CT(O)ORCT(9)<>ATHE
NNEXTQ:A=O:ELSEA=Q
1202 RETURN
1220 BK(A)=-BK(A):CT(S)=BK(A):GOSUBlO
OO:IFCT(lO)=lRETURNELSEBK(A-l+CT(l Q))
=-BKCA-l+CT(lO)):RETURN
1240 B=30:GOSUB1100:A=CT(4):FORl=1T02

137

O: IFRIGHT$CSTR$CRMC I)),l)="l"THENA=A+
5
1242 NEXTl:FORl=lT08:1FOB(l,l)=lTHENA
=A+lO
1244 NEXTl:FORl=l3T016:1FOBCl,l)=OTHE.
NA=A+20
1246 NEXTl:A=A-CT(3)*20:PRINTA:PRINTC
T(l);"STEPS":RETURN
2000 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,o
,O,O,O,O,O,O
3000 DATA 4,0,7,0,20,0,11,0,5,0,19,0,
7,0,6,0,2,0,3,0,10,0,12,0,4,0,18,0,14
,0,6,0
4000 DATA 22902,2808,23306,3712,23404
,,.3011,11104,11118,11714,11306,0
5000 DATAl,2,2,1,1,1,1,1,0,3,9
5002 DATA2,2,2,2,2,1,1,2,0,3,9
5004 DATA0,0,4,10,0,0,0,0,1,0,8
5006 DATA0,5,0,0,11,0,3,0,0,0,4
5008 DATA0,0,0,0,0,4,0,0,0,0,5
5010 DATA0,0,0,12,0,0,0,0,0,23,3
5012 DATA0,0,0,14,0,0,0,0,0,0,3
5014 DATA0,0,0,0,14,0,0,0,2,0,8
5016 DATA9,0,16,15,9,0,0,9,0,0,7
5018 DATA23,23,23,16,17,17,17,3,0,17,
4
5020 DATA4,0,0,0,0,0,0,0,0,0,0
5022 DATA0,0,13,0,18,0,0,G,0,0,7
5024 DATA0,0,0,0,0,0,12,0,0,0,G
5026 DATA3,0,0,0,19,0,0,7,0,19,4
5028 DATA15,0,15,0,15,1G,9,0,0,0,0
5030 DATA15,1G,16,0,16,0,10,9,0,0,1
5032 DATA18,18,18,18,18,18,18,18,18,l
3,0
5034 DATA12,19,0,0,0,0,0,0,0,0,0
5036 0ATA14,0,0,0,0,18,0,0,14,20,9
5038 DATA22,22,22,22,22,22,22,22,19,2
2, 8
6000 DATAJEWEL,1,CROWN,1,GOLDE,2,CUBE
,2,DIAM0,3,BEETL,3,SILVE,4,BELT,4,PLA
Tl,5,RING,5,0NYX,6,COIN,7,HOURG,8
6001 DATATORCH,9,AXE,10,KEY,11,GRENA,
12,MANTl,13,IGUAN,14,SPIDE,15,NAMEL,l
6,TERR0,16,0RC,18
6002 DATAOOZE,17,DESKS,17,CABIN,17,BO
DIE,17,COKE,17,MACHl,17,COBWE,17,CASE

Fig. 9-3. Continued from page 137.

138

S,17,COFFl,17,DOOR,317,GRATE,217,U,10
901,0,11001,N,10101,NE,10201,E,10301,
Sf,10401,S,10501,SW,10601,W,10701,NW,
10801
6003 DATANORTH,10101,SOUTH,10501,EAST
,10301,WEST,10701,UP,10901,DOWN,11001
,SCORE,10012,QUIT,10014,KILL,10007,FI
GHT,10007,SLAY,10007,BLOW,10017,BOMB,
10017
6004 DATAWAIT,13809,HELP,13709,READ,1
OOll,SAY,10013,LOCK,10006,UNLOC,10005
,OPfN,10005,SHUT,10006,CLOSE,10006,LO
OK,10010,INVEN,10008
6005 DATATAKE,10003,0ROP,10004,THROW,
10004,STEAL,10003,IN,10002,0UT,10002,
G0,1-0002,ENTER,10002,EXIT,10002,SAVE,
10015,REST0,10016,AARDV,10018,.,0
7000 DATA "THE CREATURE WILL NOT LET
YOU PASSI"
7001 DATA"THE GRATE IS CLOSED AND LOC
Km 111

7002 DATA 11THE DOOR IS TIGHTLY SHUT AN
D LOCKED."
7003 DATA"YOU BURN IN THE FLAMES!"
7004 DATA"YOU FALL TO YOUR DOOM ••• "
7005 DATA"YOU CANT GO THAT WAY"
7006 DATA"WHAT DID YOU SAY?"
7007 0ATA11 YOU TRY UNSUCCESSFULLY ••• IM
MOVABLE!"
7008 DATA"YOU ALREADY HAVE IT!"
7009 DATA"YOU DONT HAVE IT!"
7010 DATA"OKAY. 11

7011 DATA"I SEE NOTHING OF THE SORT H
ERE."
7012 DATA"YOU DONT NEED TO."
7013 DATA 11 WITH A CREAK, THE GRATE FAL
LS OPEN."
7014 DATA"THE DOOR SWINGS OPEN WIDE."

7015 DATA"YOU HAVE NO KEY!"
7016 DATA"IT SLAMS SHUT AND THE LOCK
CATCHES."
7017 DATA"YOU HAVE THE FOLLOWING:"
7018 DATA"PREPARE TAPE RECORDER AND H
IT <ENTER>."

139

7019 DATA"YOU HAVE NO BOMB!"
7020 DATA"THE GRENADE FALLS TO THE. FL
OOR AND NOTHING HAPPE.NS."
7021 DATA"THE GRENADE EXPLODES I r1 A S
ILENT FLASH OF WEIRD BLUE
LIGHT ••• AND THE CREATURE IS GONE!"
7022 DATA"WITH WHAT WEAPON?"
7023 DATA"YOUR AXE SWINGS ARE DYNAMIC
••• BUT INEFFECTIVE!"
7024 DATA"YOUR MAGIC AXE CONNECTS! TH
E CREATURE VANISHES IN
A PUFF OF FOUL SMOKE 111

7025 DATA11MISSED IT! FIE!"
7026 DATA"THE HIDEOUS MONSTER LEAPS A
T YOUR THROAT!"
7027 DATA"SOMEHOW YOU FENO IT OFF!"
7028 DATA"IT FINISHES YOU OFF!!"
7029 DATA11 YOUR SCORE IS: 11

7030 DATA"DO VISIT THE BASEMENT AGAIN
I II
7031 DATA''NOTHING HERE TO READ ••• HOW
OULU"
7032 DATA"THE DANGER HERE
IS PRETTY THICK,
BUT SAY <AARDVARK>;
YOULL GE.T OUT QUICK!"
7033 DATA"NOTHING HAPPENS."
7034 DATA"WELL, FINE ADVENTURE.RI YOU
ARE. IN A REAL JAMI
FORTUNATELY, WE CAN BRING YOU BACK!

••• POOF l l ••• II
7035 DATA"YOUR ARMS ARE FULL ••• YOU CA
N CARRY NO MORE."
7036 DATA"YOUR CRIES GO UNHEARD, PITI
FUL WRETCH."
7037 DATA"TIME PASSES ••• "
7038 DATA11 1T IS PITCH DARK! YOU MAY F
ALL INTO A PIT!"
7039 DATA"YOU MANIFEST SOME PRETTY SU
ICIDAL TENDENCIES, FELLA!"
7040 DATA"SAVE YOUR STAMINA, TURKEY!
I SEE NO REAL TllREATI 11

7041 DATA"THERE IS AN ANGRY ORC NEARS
y I"
7042 DATA"HE. S~HNGS OUT AT YOU WITH A

BLACK SCIMITAR!"

Fig. 9-3. Continued from page 139.

140

7043 DATA"YOU ARE. SLASHED lfJ PIECES."
8000 DATA "THE.RE IS A CRO\IN OF JE~·IELS

HE.REl","JEl'JELED CROvHJ"
8001 DATA"THERE IS A GOLDEN CUBE. HERE.
!","GOLDEN CUBE"
8002 DAT A"THERE IS A DIAMOND HERE Cl\R
VED LIKE. A BEETLEl","DIAMOND BEETLE"
8003 DATA"THERE IS A FINE SILVER BELT
HEREl","SILVER BELT"

8004 DATA"THERE IS A RING HERE OF PUR
E. PLATINUMl","PLATINUM RING"
8005 DATA"THERE IS A POLISHED ONYX HE
RE!","ONYX"
8006 DATA"THERE IS A COIN HERE \~ORTH

. MIL LIONS 111
, "COIN"

8007 DATA"THERE IS AN ANCIENT HOURGLA
SS HERE.I" "HOURGLASS"
8008 DATA('THERE IS A BURN I NG TORCH HE
RE.",TORCH
8009 DATA"THERE IS A HEFTY MAGIC AXE
HERE.. ",AXE
8010 DATA"THERE IS A LARGE KEY HERE."
, KEY
8011 DATA"THERE IS AN ENCHANTED GRENA
DE HERE.",GRENADE
8012 DATA"A GIANT MANTIS CROUCHES NEA
RBY, READY TO POUNCE!"
8013 DATA"A HUGE IGUANA PACES RESTLES
SLY NEARBY, KEEPING AN
EYE ON YOU!"
8014 DATA"A GIANT WHITE SPIDER, MANDI
BLES TWITCHING, TOWERS
ABOVE YOU!"
8015 DATA"THE NAMELESS TERROR ARISES
FROM A PIT, BLOCKING
YOUR RETREAT \'/!TH SLIMY TENTACLES!!"
9000 DATA "YOU STANO AT THE BOTTOM OF
A LARGE PIT. AT YOUR FEET IS A

NARROW HOLE JUST \~IDE ENOUGH TO CRA\IL
INTO.","BOTTOM OF PIT"

9001 DATA"HERE ARE THE RUINS OF AN AN
CIENT TROLL-CASTLE. NEARBY
IS A GRATE LEADING DOWN INTO DARKNESS
• ••

11
, "RU I NS"

9002 DATA"THIS WAS APPARENTLY ONCE A
WEAPONS ROOM, THOUGH THE ·

141

CASES ARE ALL EMPTY NOW. THERES A HOL
E. IN THE ROOF, AN ARCHWAY
TO THE EAST, AND A JAGGED HOLE IN THE

SOUTHEAST WALL.","WEAPONS ROOM"
9003 DATA"THE SIGNS OF A GREAT BATTLE

BETWEEN TROLLS AND TERRIBLE
BEAST-Mm ARE EV I DEtH ••• FRot\ THE LOOK
S OF IT, THE TROLLS LOST.
BOD I ES ARE E.VERYHHERE. THE.RE. IS A JAG
GE.D HOLE. TO THE. WE.ST, A
HALL NORTHEAST, AND A SOUTH DOOR.","L
OST BATTLE"
9004 DATA"THE WALLS ARE LINED WITH CO
FFIN CASES ••• THIS IS
THE. TROLL CEMETERY, IT SEE.MS. A SOUTH
WEST DOOR LE.ADS OUT. 11,,"TOMB ROOM"
9005 DATA"THIS IS A SMALL, DARK ROOt.:
SMELLING OF MAGIC. THE
ORACLE HAS LE.FT A MESSAGE ON THE WALL
• THERES A SOUTHEAST DOOR
AND A LARGE PIT NEAR THE DOOR.","ORAC
LE ROOM"
9006 DATA"AT LAST! THE TREASURE. VAULT
I WHAT A SHAME THAT SO
MUCH OF THE ORIGINAL WEALTH HAS BEEN
REMOVED! THERE IS A
SOUTHEAST DOOR OUT.","TREASURE VAULT"

9007 DATA"THIS WAS ONCE THE MAIN GUAR
DPOST TO THE. UNDERGROUND
KINGDOM OF THE TROLLS. THERE IS AN EN
TRANCE-GRATE SET IN THE
ROOF AND A SOUTH EXIT OOOR.","GUARD P
OST11

9008 DATA"YOU ARE LOST IN A MAZEl","Y
OU ARE LOST IN A MAZE!"
9009 DATA"YOU WALK ALONG A NARROW LED
GE RUNNING NORTmlEST AND SOUTHEAST.
TO THE WEST IS A RAPID STREAM FAR BEL
OW, ANO TO THE. EAST IS A
BOTTOMLESS CHASMl","NARROW LEDGE"
9010 DATA"THIS IS A SMALL PRISON CELL
• THROUGH THE. BARS, YOU CAN
SEE A NICE OFFICE ••• UNREACHABLE. THER
ES A NORTH DOOR.","CE.LL"
9011 DATA"HERE IS A BUSINESS OFFICE,

Fig. 9-3. Continued from page 141 .

142

WITH EMPTY, RANSACKED DESKS AND
CABINETS. A BARRED WINDOW IN THE WALL

SHOWS A SMALL PRISON CELL
OF SOME SORT. THE.RE ARE TWO DOORS, TO

THE NORTHWEST AND EAST,
AND A ROCKY HOLE IN THE SOUTH WALL.",
"OFFICE"
9012 DATA"THIS IS THE LUNCH ROOM, COM
PLETE WITH COKE MACHINE •••
EMPTY, UNFORTUNATELY. THERE IS A DOOR

TO THE WE.ST.","LUNCH ROOM"
9013 DATA"WHAT A CREEPY PLACE! THERE
ARE COBWEBS EVERYWHERE! A
DOOR LE.ADS NORTH, A HALL GOES NORTHWE
ST, AND THE.RE IS A HOLE
IN THE FLOOR.","COBWE.B ROOM"
9014 DATA"YOU ARE LOST IN A MAZE!","Y
OU ARE. LOST I N A MAZE.I"
9015 DATA"YOU ARE. LOST IN A MAZE.!","Y
OU ARE LOST IN A MAZE!"
9016 DATA"YOU ARE SPLASHING ABOUT IN
A COLO, RUSHING STREAM!
NOTHING YOU DO SEEMS TO STOP YOUR PER
ILOUS RIDE. TOWARDS A
NEARBY STONY CAVE. E.NTRANCE.!","RUSHING

STREAM"
9017 DATA"YOU LIE ON THE SANDS OF A D
ARK, SLIMY CAVE.RN BY A
STREAM. THE WALLS ARE COVERED WITH DI
SGUSTING OOZE.. THERE IS
A HOLE IN THE NORTHERN ROCKS AND A PA
TH NORTHE.ASTWARD.","SLIMY CAVERN"
9013 DATA"SWE.AT BE.ADS ON YOUR FACE AS

YOU STANO IN A STEAMY
CAVE. SMOKE. RISES FROM A HOLE IN THE
FLOOR, ANO THE.RE IS
ANOTHER RAGGED HOLE IN THE. ROOF WITHI
N REACH. THE.RES ALSO
A PATH GOING SOUTHWE.ST.","STE.AMY CAVE
II

9019 DATA"YOU ARE CROUCHING ON A FIER
Y SPIRE, A PINNACLE
SURROUNDED BY FLAMES! A LOW ROOF WITH
A HOLE HANGS A FOOT

ABOVE YOUR HE.AD. IT IS UNBEARABLY HOT
!","FIE.RY SPIRE"

143

Chapter 10

Improving the Program

Computer programmers are the most dissatisified class of people
you are likely to meet. It's not enough for them to have a program
that plunges the player into a carefully constructed alternate reality
for hours. That's peanuts! The real challenge for programmers is to
write the program better, faster, more efficiently, with more style.

Now, I'd be foolish to claim that Basements and Beasties is as
optimized and efficient as can be. In fact, there are a number of tricks
that can be employed to squeeze the program even further. In this
last chapter, I really push BASIC to its limits and find out just how
much complexity I can get at high speed with little memory.

Of course, I ought to warn you where all of this is leading.
BASIC has served us well through these past chapters, but in my
heart of hearts, I know that Basements and Beasties ought to be
enlarged and rewritten in assembly language. Some remarks toward
the end of this chapter address how you might begin to attempt this
task.

One preliminary comment is in order. Several improvements
and modifications are described in this chapter, along with BASIC
code to implement them. Not all of them are compatible simply by
adding these new lines of code. Before attempting to implernen~
everything at once, review what variables have been changed an
what other sections of code are affected. One small chang~ c~eate~
ripple-effect that could leave your adventure program adrift lI1 a s
of syntax errors!

144

A f ASTER WORD SEARCH
In Chapter 3 you looked at the command subsection of Execu­

tive. When a one- or two-word command is input, that section of
code performs two initial functions. First, it divides the input into its
separate wo~ds (~ th~t is necessary). Second, it takes the first word
and tries to identify lt.

The key to the program's interpretation of inputs is the data
block known as the word table. All words that the program is to
understand are listed in this table, paired with an ID number that aids
in definition. If a word is not found in the word table, the program
usually responds in ignorance with a message like, "WHAT DID
YOU SAY?"

There is a subroutine, called Idword, that is used to access and
use the word table. Given a word in the variable A$, Id word searches
the entire table, attempting to find a word that matches A$. If it
succeeds, it sets the variableN to the accompanying ID number. If it
fails, N is set to zero.

What is the fastest way to search a table? One method is a
simple sequential search. Every word in the table is checked, from

J

K

QUESTION:

" ISTHIS
ITEM THE
LETTER
H?"

SEQUENTIAL
METHOD:
8 LOOPS

QUESIIQ!':::I:

" IS THIS ITEM
GREATER OR
LESS THAN THE
LETTER H?"

BINARY
METHOD:
3 LOOPS

A

B

·c

D

E

J

K

i:·
1~9 · 10-1. ~equential versus binary searching. (Note that binary searching seeks
n~ approximate halfway point of each table segment it checks, rounding up if

..... essary.)

145

1080 IFLEN(A$)>5THENA$=LEFT$(A$,5)
1082 A=2:B=l:GOSUB1040
1084 READB$,N:IFB$="."ORB$=A$THENRET
RNELSEIF~$>A$THENN=O:RETURN:ELSEl084U

Fig. 10-2. The subroutine ldword revised. Note that the word table must be
alphabetized for this change to function.

the very start of the table, until a match is found. If no match occurs
the entire table is read, which is a waste of time.

A second method is called a binary search. In such a case, the
words in the table are set in alphabetical order. The middle entry is
checked for a match first. Depending on whether the sought word is
alphabetically less or greater than that entry, one half of the table is
eliminated from consideration. The middle entry of the remaining
half is checked, and so on, until a match does or does not occur. The
binary search method is very fast, indeed. (Fig. 10-1 compares these
two search methods.)

Now, after that big build-up, this chapter does not give the code
for a binary search of the word table. Why not? The primary reason is
that the items in the table are all in a series of DATA lines. Even with
improved data access methods used to POKE values into the BASIC
data pointer, it is cumbersome to find the middle entry of the table,
and the middle entry of half of the table, and so on. The READ
statement itself is by nature sequential. The code it would take to
maneuver the data pointer into a binary search is too complex to
justify it as the method.

So what do I suggest? As usual, a good compromise is better
than no progress at all. Take a look at Fig. 10-2. This is the code for
an improved version of the subroutine Idword. The underlined
statements are new and the rest is unchanged. Apart from these
additions, one other change is necessary: all words in the word table
must be placed in alphabetical order. In this way, the new Idword can
tell whether it has looked too long and too far for the desired word,
and when to give up.

Line 1084 is the crucial segment. Note that the search begins at
the very top of the table, just like a regular sequential search. For
each iteration of the search, a word from the table is read into B$ and
its accompanying ID number is read intoN. The very last word in~
table is a period with an ID number of zero. Thus, with ea
iteration, Idword checks for one of two conditions. If a match occur~
between B$ and A$, the subroutine returns, and N equals the

146

urnber. Also, if B$ is a period, the search is over andN equals zero
~ indicate failure. All of this is just as it was before.
0

Here's the improvement. If neither of the above cases occur,
then maybe the word is still somewhere in the rest of the table. But,
ou can eliminate some searching if you compare the word's al­

;habetical position to that of the table entry. If the sought word
begins with a "D" and the previous table entry began with an "E",
you know (assuming an ordered table) that further searching is
unnecessary. The search-time savings average out to about 50
percent.

How can this work? Looking at the listing, you see the expres­
sion, IF B$> A$. In Microsoft BASIC the comparison operators">"
and"<" can be used to compare two strings for alphabetical relation­
ship. Thus, the word "DROP" is alphabetically "less than" the word
"LOOK." In cases of shortened words, the dictionary order applies:
"ACT" comes before "ACTION" and is therefore alphabetically
less.

So, the new Idword makes a final test. If the table entry just
read is alphabetically greater than the desired word, the word cannot
be in the remainder of the table. The variable N is set to 0 to indicate
search failure and Idword returns. If you think about it, this is similar
to the way in which you verify that a word is not in a dictionary. Once
you are in the general area where the word should be, you look for a
match. If you find that one word and the next is greater, you don't
need to search anymore. (Imagine if dictionaries weren't ordered
alphabetically!)

This upgrade to Idword is one that can be made to the program
immediately. Once the word table is reordered alphabetically (get to
work), this improvement works without problems. Remember that
new words added to the table must be placed in the proper position.

HEAVY OBJECTS
In Chapter 6, which deals with how the adventurer can affect

the scenario, a lengthy explanation is provided for the handler called
Take. This handler, if you recall, is invoked by the keywords TAKE
or STEAL, and it controls the players ability to pick up objects and
tote them in his carry-sack. A number of limitations are placed on
the player in this regard. For instance, the adventurer is forbidden
to carry creatures.
th The major parameter that limits the act of carrying, however, is

e maximum amount of five objects. The variable CT(2) is carefully
Updated each time an object is taken or dropped. The handler Take

147

doe~ not permit a new item to be picked up if CT(2) is already at th
maximum total of five. e

This sort of limitation is a simple one to maintain, but it I k
realis~. After all, the objects in Basements and Beasties range ~c s
small nngs to heavy golden cubes to unwieldy magic axes. It w ~rn
certainly be more realistic to limit the player by the weight

0
d

bulkiness of an object rather than a simple total. and
. How might this be done? For one thing, each object must be

assigned a number that approximates its value in terms of portabilit
As a player gathers objects, their numbers (which may be call:d
mass numbers) are totaled and recorded. If the addition of a ne
object with its unique mass number would cause the total to exce ~
some arbitrary limit, a message warns the player that he cannot pi~k
it up without collapsing altogether!

Figure 10-3 shows the mass chart, in which each of the portable
objects in the scenario is assigned a mass number. These approxi­
mate mass numbers range from 1 to 50 and are an evaluation both of
weight and ease of carrying. Obviously, the numbers are arbitrary.
The program descriptions never tell, for instance, how big the
Enchanted Grenade is or of what it is made. You may wish to revise
these numbers altogether.

That's the simple part. Where do you put these numbers so that
the handler Take (when it is modified) can access them? Fortunately,
you planned ahead. The object status array consists of OB(X,O) and
OB(X, 1) for all objects. OB(X, 1) gives the object's location, but

OBJECT MASS OBJECT MASS·

1 CROWN 25 7 COIN 5

2 CUBE 40 Is HOUR- 20 GLASS

3 BEETLE 15 9 TORCH 15

4 BELT 20 10 AXE 20

5 RING 10 11 KEY 5

6 ONYX 10 12 GRENADE 25

Fig. 10-3. Proposed mass chart assigning an arbitrary mass factor to eacll
portable object.

148

3000 DATA 4,25,7,40,20,15,11,20,5,10,
19,10,7,5,6,20,2,15,3,20,10,5,12,25,4
0,18,0,14,0,G,O

I

fig. 10-4. The .revised object initialization block, such that the first 12
objects are assigned mass numbers.

oB(X, O) is unassigned. The mass number for each object can be
stored in these unused elements of the object status array.

How do you put the mass numbers into the proper variables? In
the initialization code of Basements and Beasties the object status
array is filled from a data block, the object initialization block on line
3000. Up until now, every other element in that data block was a
zero, unused; the other data are the beginning room locations for all
objects. Now replace those zeroes with the appropriate mass num­
bers.

Figure 10-4 shows the new version of line 3000. The first data is
the beginning location for object 1; the Crown of Jewels begins at
room 4. It has a mass number of 25. Once this block of data is read
OB(X, 0) can quickly be checked to determine if the object in ques~
tion can be carried.

The handlers Take and Drop look a bit different. It goes without
saying that the old system using CT(2) for the total number of
objects carried is eliminated. Thus, any references in other routines
that increment, decrement, or set CT(2) need to be removed.

Figure 10-5 shows the changes that need to be made in Take
and Drop. Let's look at Take first, since it is modified the most. The
handler Take must determine if the addition of this new object is too
~uch for the player to handle. You must make two assumptions.
First, .assume that the mass numbers are totaled and stored in CT(2)
eac~ time an object is taken. Second, assume an arbitrary carry-sack
maximum of 75 total mass points.
. In t?e .o?ginal Take, it did not matter what object the player

~ed to lift: if it ~ushed his total above five objects, it was prohibited.
e old Take did not need to decode what the object was until this

~~~e w.as dismi~sed. !he .n~~ Take, however, must know what the 
a ~ect1s.before1t dec1desif 1t1s too much to carry. Line 240 begins by 
u ctecoding of word 2 stored in TX$(3). The subroutine ldword is 
l~ed to loca~e the ?bject's name in the word table and return with its 
ob· number m vanable N. For objects, the ID number equals the 
~ect number. 

CT With t~s information, Take can now perform a comparison. 
(2) contains the player's total burden in terms of mass points. If 

149 



the addition of this new object's mass, as found in OB(N, 0), result . 
a total that exceeds 75, it is too much to bear. If so, Take proceed:~ 
display message 36, as it did before: "YOUR ARMS ARE FUtt 
... YOU CAN CARRY NO MORE." On the other hand, if the limit f 
75 mass points is not exceeded, the handler goes ahead and allo: 
the object to be lifted. To keep track of the load, CT(2) is increase~ 
by the added mass in OB(N,O). 

Next, look at the handler Drop. If all of the prerequisites ar 
met, Drop permits the specified object to be taken away from th: 
carry-sack. Again, CT(2) is adjusted to keep track of the tota) 
burden. The mass value of the object as stored in OBQC,0) is 
subtracted from CT(2). 

There are other routines that are affected by this improvement 
notably the Resur handler that resurrects the player with an emptied 
carry-sack. Any other such modification is simple to make, following 
the example of Take and Drop. 

RUN-TIME BASEMENTS 
The small computer market does not lack for adventure pro­

grams of every size, variety, and degree of complexity. If you study 
the available programs, though, you'll discover that they generally 
fall into one of two categories. The first category consists of fixed 
labyrinth games, like Basements and Beasties, programs in which 

240 A$=TX$(3):GOSUB1080:1FN>9999THENB 
=7:GOT0242:ELSEIFCT(2)+0B(N,0)>75THEN 
B=36:GOSUBllOO:GOT0104:ELSEIFN>12ANDN 
<170RN=l8THENB=40:GOT0242 
241 IFN=17THENB=8:GOT0242:ELSEIFOB(N, 
1)=21THENB=9:GOT0242:ELSEIFOB(N,l)<>C 
T(0)0RN=OTHENB=l2:GOT0242:ELSEOB(N,1) 
=21:B=ll:CT(2)=CT{2)+0B{N,0) 
242 GOSUB1100:GOT0104 

260 A$=TX${3):GOSUB10SO:IFN>9999THENB 
=7:GOSUB262:ELSEIFOB{N,1)<>21THENB=10 
:GOT0262:ELSEIFN=l2THEN540:ELSEOB(N,1 
)=CT{O):B=ll:CT{2)=CT{2)-0B(N,0) 
262 GOSUB1100:GOT0104 

ctivelY· Fig. 10-5. The revised versions of the handlers Take and Drop, respe 
allowing for mass number assignments to objects. 

150 

treasures, creatures, and pathways are the same every time 
the are played. As such, programs of this first type are like puzzles 
~:i, once solved, are replayed primarily to increase speed and 

;eor~he second category, though, consists of variable labyrinth 
es, in which the treasures and situations change loc~ti?ns each 
~ the program is run. Since the layout of the scenano 1s dete~­

. ed randomly when the game is first run, these programs are said JTlll1 . . 
to have run-time scenarios. 

There are a few drawbacks to run-time adventures. First, they 
more battle-oriented than solution-oriented. That is, specific 

arets of the adventurer's cleverness are not often included, since 
~~se usually imply a fixed room loc~tion with fixed entrances. and 
exits. (Consider the narrow ledge m Basements and Beas.tie.s.) 
Second, they sometimes downplay the role of on-scr~~n descnptlon 
of the rooms, since such descriptions cannot be explicit about door­
ways, which are always changing. 

These objections are not universal, however, and you may be 
wondering if Basements and Beasties might not be a bit more 
interesting if there were more random factors included. For you, 
let's discuss some ways of creating run-time basements. 

At least in its present form, your program does not yield to 
random pathway designation. The room descriptions tell where 
every doorway is. These references all have to be deleted. Plus, the 
function of obstacles depends heavily on the directions from which 
the player exits a room. 

For these reasons, it is best rather to think in terms of random 
placement of objects, and specifically the treasures, at various places 
throughout the scenario. Each time the game is played the adven­
turer does not know where the treasures are, and the chances of him 
recovering them easily vary each time. 

In Fig. 10-6, you can see a line of code that can be placed in the 
initialization section of the program. A loop is set to affect objects 1 
through 8, which are the treasures. For each treasure, its location, 
as found in variable OB(I, 1), is set randomly. The expression 
RND(l 7) +3 provides a room number from 3 to 20. This prevents 
the player from finding treasures without even going down into the 
basement; rooms 1and2 are excluded. (Of course, if you don't care, 
You can substitute the expression RND(19)+ 1, which provides a 
room number of from 1 to 20. In fact, the expression RND(20) 
Permits some treasures to be placed in limbo, room 0, so that in 
some rounds of the game the total possible score is lessened. 

151 



12 FORl=lT08:0B(t,l)=RND(17)+3:NEXTt 

Fig. 10-6. Addition to the Initialization code to randomize object locar 
specifically the treasures. 1on, 

There is a way to make the run-time basement even riskier. F 
the FOR-NEXT loop in the example, substitute a range of from 1 ~r 
12. This provides for the random placement of such necessary itern ° 
as the Key and the Axe. Some miserable possibilities can turn up . 

8 

this case. For instance, the Key may be placed in a locked roorni 
Also, the player may have to do some hard searching just to find th~ 
Axe to defend himself. However, do the poor adventurer a favor: 
add the statement "CT(9, 1)=2" after the loop. This ensures that th~ 
torch is always available above ground. You don't expect the pitiful 
hero to grope around for it in the dark, do you? 

Aside from this sort of random assignment of object locations 
there is one more sort of run-time approach that can be incorporated 
into Basements and Beasties. Several programs have been written 
that store entire scenarios in data files on tape. The player loads a 
main program that in turn loads in whichever scenario the player may 
choose. The net effect is that of a multi-floor scenario that is limited 
only by the number of available files on tape. 

How can this concept be implemented? Basically, all scenario 
information, including room and object descriptions, travel table, 
obstacle list, and so on, can be created on tape by using a special 
program. The word table and message block are a part of the main 
program that stays in memory from the start, but extensions to both 
of these must be loaded from tape to support specifics of each floor of 
the basement. 

The key to the transition is that almost everything that now 
resides in DATA statements will reside only on tape, until loaded. At 
that point, the data is stored in numeric and string variables. Thus, a 
whole set of arrays needs to be set up to receive data from tape. For 
example, for the 20 rooms (per floor) there needs to be an arraY 
RD$(20, 1) for room descriptions. RD$(x, 0) contains the long forlll, 
RD$(x, 1) the short form. A similar array OD$(16, 1) serves for 
object descriptions, and so on. 

A CONDENSED TRAVEL TABLE 
If your goal is to find ways of reducing the use of memory usag~~ 

there are plenty of tricks that can be applied. For instance, thank~e 
the inclusion of the PEEK and POKE statements in BASIC for 

152 

fRS-80, block of memory can be accessed and altered without the 
use of other BASIC structures, such as, arrays and DATA lines. In 
several cases, data managed by PEEK and POKE can be set up 

1110re efficiently than by other means. 
Let's take a look at the best example of this: the travel table. In 

its present form, the travel table consists of 20 DATA lines, one for 
each room in the scenario. Each line contains eleven items, and each 
item is a number from 0 to 23. Now, if you add together the number 
of bytes taken for each number, plus the memory needed for DATA 
block overhead, you discover that the travel table fills about 595 
bytes of memory. 

A lot of this space is really wasted. Since each data item is less 
than 256, each needs only 1 byte. If so, the total memory consump­
tion would only be about 220 bytes: 11 items multiplied by 20 rooms. 
The rest of the space is taken up by structures to permit the items to 
be read by the READ command as DATA elements. Think of it: 375 
bytes are consumed in things like BASIC line numbers and pointers, 
DATA keywords, and commas to separate the items! If PEEK and 
POKE are used, most of this is superfluous, and a savings of well 
over 60 percent could be realized. 

Where do you put this magical block of bytes, this data block 
without DATA structures? It may surprise you to hear it, but you can 
put the data bytes right into a BASIC line. As long as you know the 
exact memory location that begins the BASIC line, you can PEEK 
the contents of the line to your heart's content. 

This unusual assertion needs some bolstering. The plain fact is, 
BASIC for the TRS-80 really only makes a few stipulations concern­
ing what can be put into a line. The first restriction is a length 
limitation of 255 characters (or bytes) maximum. You only need 220 
of these for the travel table, so that is no problem. Second, any 
character at all can be placed into a BASIC line (even special control 
characters with ASCII values below 32) with one notable 
exception-character zero. This is because BASIC uses a zero byte 
to determine the end of the line. As long as you don't POKE zero 
values into a line. you are free to POKE anything else from 1to255. 

The third stipulation is that the contents of a BASIC line can be 
nonsensical as far as BASIC syntax, as long as the program does not 
try to execute the line. That is, you can POKE numbers into a 
BASIC line that spell out gibberish, and it does not crash the 
Program-as long as that line is avoided in execution. So you can fill a 
BASIC line with bytes that make sense to a data-access routine of 
some sort, without worrying that it might somehow confuse BASIC. 

153 



You don't even need a REM statement to protect the line, if y 
·1 fr. ou sunp y stay away om it. 

One hasty interjection should be made. These stipulations ref 
strictly to the proper running of a program. I haven't said an~r 
about listing the program. Obviously, if I POKE some unusual bYte g 
into a BASIC line, the listing may appear with graphics blocks or~ 
unreadable altogether due to control characters like dear-screen. A 
garbled listing does not prevent the program from running, though. 
In fact, those strange lines can even be edited from BASIC without 
trouble. 

Now, let's get specific. In place of 20 DATA lines from 5000 to 
5038, I propose one BASIC line, numbered 5000. Its exact location 
in memory is stored in the data-access array DA(x) anyway, thanks 
to the initialization segment of the program. The line will contain 220 
bytes of information, corresponding to the present 220 DATA items 
in the travel table. 

Wait a minute! I hear some objections from somewhere. First, 
some of those values in the travel table are zeroes, and that's not 
permitted as a byte in a BASIC line. Second, how are you to type all 
of this in as you write the pro gram? There are no keys for typing in all 
of the characters with ASCII values less than 32. What do you do? 

There is one answer to both questions: encode the data a bit. 
You already know that the numbers in the travel table range from 0 to 
23. If you add 65 to every value, the range is from 65 to 88-and 
characters 65 to 88 are the letters A through X. Those letters are 
safe on a BASIC line and are easily entered from the keyboard. 
Whenever you access the travel table bytes using PEEK, though, 
you need to remember to subtract 65 to return to the original value. 

So much for theory; now on to code. Figure 10-7 gives two 
sections of Basements and Beasties. The first is the actual travel 
table, encoded and stored on one BASIC line, number 5000. Using 
the correspondence factor that the letter A represents a zero, ~e 
letter B a one, and so on, compare the listing to the DATA items m 
the present version of the program. 

The second listing is the new form of the subroutine called 
Travec. Recall that when the program presently needs to access the 
travel table, it sets variableD to a number from 1 to 11, to choose the 
specific item from a table row. (The row itself corresponds to the 
room the player is in at the moment, which is stored in CT(O).) Then 
Travec is called, which finds the proper DATA block and the proper 
row, fetches the item, and stores it in variable A. th 

In the new version of Travec, the inputs and outputs are e 

154 

soOOBCCBBBBBADJCCCCCBBCAIJAAEKAAAABAI 
AFAALADAAAEAAAAAEAAAAFAAAMAAAAAXD 
AAAOAAAAAADAAAAOAAACAIJAQPJAAJAAH 
XXXQRRRDAREEAAAAAAAAAAAANASAAGAAH 
AAAAAAMAAAGIAAATAAlfATEPAPAPQJAAAA 
PQQAQAKJAABSSSSSSSSSSAMTAAAAAAAAA 
OAAAASAAOUJWWWWWWWWTWI 

1120 A=(CT(O)-l)*ll+(O-l)+DA(1)+4:A=P 
E.E.K(A)-65:RETURN 

Fig. 10-7. New encoded travel table and the. revised version of the sub­
routine Travec. Line 5000 should be typed with no spaces at all. 

same as before, but the method has been changed. The new Tra~ec 
must calculate the memory location at which to find the specific 
travel vector byte. The memory address for the beginning of line 
5000 is already stored in DA(l), but a factor must be added to this 
address to locate a particular byte. 

Take line 1120 expression by expression. First, although 
nothing actually divides the bytes in the new travel table, they are 
still organized in series of eleven, one series of eleven per room. If 
the bytes for room 1 start at the beginning of the line, the bytes for 
room 2 start eleven bytes later, and so on. The expression 
(CT(0)-1)• 11 helps Travec skip to the exact 11-byte series that 
matches the present room. If it is room l, the expression equals 
zero, meaning that the bytes for room 1 are right at the start of the 
line with no addition needed. For room 2, the expression equals 11, 
meaning that 11 must be added to the memory address of the 
beginning of the block to get to the series for room 2. 

Once the right 11-byte series is found, the expression D-1 is 
added. Remember that Dis a number from 1to11. This expression 
converts it into the form 0 to 10 to be added to the beginning of the 
series. For example, if you want travel vector 1, it is the very first 
byte in the series for the present room, and no addition need be made 
or skipping done. 

Finally, the expression DA(1)+4 adds all of the preceding to the 
exact memory address of the first of the 220 bytes. DA(l) contains 
the memory address of a part of the BASIC line called the line vector 
(see elsewhere in this book for a fuller description), and the actual 
contents of the line do not start until 4 bytes later in memory. All of 
the expressions added together provide the address of a specific 
character; this address is temporarily stored in variable A. 

155 



Reading the memory location is simple; the stateme 
PEEK(A) accesses the location and provides the value of ~t 
character stored there. The value is from 65 to 88, and you need it~ 
the form 0 to 23. So, 65 is subtracted from the PEEK value, and th 
result is stored in variable A. Travec is finished and returns to th: 
calling program. 

The user can expect two advantages to this approach. First, 
you saw the vast savings in memory; some 370 bytes worth is 
nothing to sniff at. Second, the user will probably notice a speed 
difference in the execution of motion commands. Before, Travec had 
to call another subroutine to move the data pointer down to a specific 
DATA line, then READ across to the item using a FOR-NEXT loop. 
Now, Travec simply evaluates an expression of medium complexity, 
uses the value to read a byte, and subtracts a fixed value from the 
result-which takes a lot less time than some of the FOR-NEXT 
loops of the old method. 

By the way, the listing of line 1120 is not even as simplified as it 
can be; I left it that way for ease of explanation. The first part may 
also read A=(CT(O)-l)•ll+D+DA(1)+3. 

USR RUSES 
For the entire book, I have been dealing with ways to accen­

tuate BASIC, because BASIC is so slow. I have seen adventure 
programs that take an average of 20 seconds to respond to any one 
command. This makes a boring game: hence the search for stream­
lining devices. 

In the final analysis, of course, machine-language routines are 
far faster than interpreted BASIC, and the best adventure program 
is one written entirely in assembly language. Not everyone is ready 
to tackle that sort of task, though, and BASIC makes things easier. 

Fortunately, Microsoft BASIC provides for a third alternative, 
hybrid programming, which allows BASIC to call fast machine co~e 
routines on occasion. The statement that supports this facility 15 

USR(N). Using this statement, BASIC can relinquish control of the 
processor to assembly routines designed to handle more complex 
oft-used functions in the most efficient manner. 

You probably know some things about using USR(N). You kn°~ 
that you need to POKE the starting address of the routine first Ill 
two-byte form into memory locations 16526 and 16527. You knO; 
that the expression X=USR(N) can be used, and that the varia?les 
and N in that expression may be affected by the called routin~· 

0 One frequently discussed aspect of USR(N) is the questJO ' 

156 

"Where do I put the routine?" Machine-coded routines can be stored 
in upper memory, but you must protect that space with the MEM­
ORY SIZE option, or else BASIC steals the memory for string 
pace. You can POKE routines into a string variable, as long as that 

:ariable is left alone. There is waste involved, because the program 
must include a BASIC subrou~e to REA~ the machine codes froI? a 
DATA line and to POKE them mto the string. In the end the routine 
is stored in two places: in a form able to be executed in the string and 
in the DATA line as now-useless numbers. 

Now for a rare piece of USR news. (It should come as no 
surprise to you after reading the previous section of this chapter.) A 
machine-code subroutine can exist right in a BASIC line! That way, 
the routine is ready to use the minute the program is loaded from 
tape; it does not have to be constructed by POKE commands and 
FOR-NEXT loops. 

As I've shown once before, there.are restrictions on this sort of 
thing. Your machine-code routine cannot exceed 255 bytes, or else it 
will not fit in a single BASIC line. It must be avoided by BASIC, or 
else a syntax error occurs; the line must either be skipped, or it must 
be protected by a beginning REM marker. Finally, and most impor­
tantly, no zero bytes are tolerated. An ill-placed zero byte confuses 
BASIC utterly. It takes some care to write an assembly routine that 
avoids the use of zero byte, but it can be done. 

The use of USR(N) requires that the address in memory of the 
beginning of the routine be known. To simplify things a bit, it is a 
good idea to put machine-language routines into the first lines of a 
program. You know that BASIC storage starts at 17384 (or, for 
Model I users, 17128), so specific routine addresses can be calcu­
lated from this fact. Since the program tries to execute these lines if 
you type, "RUN," you need to protect them by starting each line 
with the REM statement. With four bytes taken for the encoded line 
number and line vector, plus two bytes for the REM marker, a good 
place to start the routine is at location 17391 in memory. 

The next question is, how do you get the routine into the line? 
The answer is, with a temporary POKE loop. Look ahead, briefly, to 
Fig. 10-8. Use this short block of code to POKE a routine into the 
first BASIC line in a storage, assuming that the line is created already 
and filled with enough spaces to hold the routine. The last thing that 
the code does is delete itself, because it is no longer needed. The 
~esulting BASIC line can be saved or loaded from tape with no 
1ll-eff ects, other than the rather distorted effect it produces during a 
LIST command. 

157 



20 RESTORE: FOR 1=17391 TO 17308: RtA 
D N: POKE l,N: NEXT: DELETE 20-26: tN 
D 
22 DATA 42,251,64,35,12G,35,70,35,2S4 
,65,32,5,120,254,68,40,7,94,35,86 35 , , 
25,24,235,30,9,175,87,25,94,35,86,27, 
213,42,249,64,12G,95,35,70,35,78,35 2 
54,3,32,9,120,183,32,5,121,254,65,40 
5 , 175 , 8 7 , 2 5 , 2 l~ , 

24 DATA 231,70,35,94,35,SG,225,213 12 
0,254,G,56,2,6,5,72,G5,209,213,126:2s 
4,44,40,8,183,32,8,35,35,35,35,35,35 
24,237,254,46,32,2,225,201,2G,19,190, 
35,40,12,43,35,126,254,44,40,221,183: 
40,213,24,245,16 
26 DATA 214,12G,254,44,40,8,183,32,23 
5,35,35,35,35,35,35,205,90,30,225,213 
,42,249,64,126,95,35,70,35,78,35,254 
2,32,9,120,183,32,5,121,254,78,40,5,l 
75,87,25,24,231,209,115,35,114,201 

10 CT(O)=l:CT(12)=RND(l0)+10:CLS:POKE 
16526,239:POKE 16527,67 

1080 N=O:N=USR(O):RETURN 

Fig. 10-8. This POKE routine creates a machine-code subroutine in line 1. Line 
10 prepares BASIC for the USA statement, and line 1080 issues the call to the 
new subroutine. 

The procedure is simple. The programmer creates line 1 of the 
BASIC program as a REM line full of following spaces. The number 
of spaces depends on the number of bytes needed by the machine­
code routine. Then, he types in the lines in Fig. 10-8, making certain 
that these DATA lines are the earliest DATA lines in the whole 
program. When he types, "RUN 20," the spaces in line 1 are 
replaced by machine-code bytes, and finally the POKE code self­
deletes. Line 1 is ready for access by a USR call. 

LOOKING UP WORD QUICKLY 
If you do want to speed BASIC up by sprinkling in a few 

machine-language segments, what functions should you augment? 
BASIC is plenty fast in most cases, but what you want is to shorten 

158 

the visible delay between command and response that is so obvious 
in BASIC adventures. How do you do that? 

If you trace the execution of Basements and Beasties by using 
the TRON function of Microsoft BASIC, you'd find one routine in 
particular that seems to take forever to execute. That routine is 
Idword, the subroutine responsible for matching an input word with a 
word table entry. If you have not alphabetized the word table, this 
routine can take three or four seconds maximum, just to determine if 
the word is in its vocabulary. Moreover, the maximum time occurs 
every time the input word is not recognized. The player can enter 
"STUPID GAME" and wait several boring seconds before getting 
the response, "WHAT DID YOU SAY?" What you need is a 
machine-language version of Idword. Such a routine can reduce the 
word table scan time to mere milliseconds. 

Figure 10-8 provides a BASIC routine to POKE a machine­
Ianguage version of Idword into memory. Remember from earlier 
discussion that a substitute REM line full of spaces must be prepared 
to receive the information. The machine code in this case requires 
174 bytes, starting at memory location 17391, which is shortly after 
the actual REM indicator in memory. Be sure to create line 1 with 
this many spaces, plus one for the REM, at least. 

When the BASIC routine is RUN, line 1 is filled with the new 
subroutine, and the BASIC lines self-delete. The strange bytes in 
line 1 do not interfere with the saving, loading, or running of the 
program in any way. Just remember that the command LIST results 
in garbage for line 1, but everything else should LIST fine. 

Figure 10-8 also gives the few changes that need to be made in 
the program as a whole to accommodate the new subroutine. The 
initialization section of Basements and Beasties must POKE the 
Proper values into the USR pointer, so that a USR call results in a call 
to memory location 17391. Secondly, the present BASIC version of 
Idword must be replaced by the simplified line as shown. Note that 
the variable N is set equal to zero. As is explained in a moment, this 
assures that the variableN exists in memory for the new subroutine 
to find and manipulate. That way the routine need not be able to 
create new variables, a task that takes some complex operations. 
T (Some of the val~e~ in Fig. 10-8 are different f~r users of the 

RS-80 Model I. This ts because the Model I begms its BASIC 
storage area about 256 bytes earlier than the Model III. Therefore, 
the POKE loop that stores the machine-language routine in memory 
rnust begin with memory location 17135, not 17391. Also, when 
setting up the USR pointer, you must POKE the values 239 and 

159 



VARI AS EQU 16633 POP HL ~ ~ LO HL,(VARIAS) LO A,C 
ARRAYS EQU 1663S PUSH DE 1015 LO A, ( HL) CP 78 

ORG 1713S LO A,B LO E,A JR Z,1017 
IDWORD LO HL,(ARRAYS) CP 6 INC HL 1016 XOR A 
101 INC HL JR c,107 LO B, (HL) LO D,A 

LO A,CliL) LO B,S INC HL ADD HL,DE. 
INC HL 107 LO c, li LO C,(HL) JR IDlS 
LO B, (HL) 108 LO B,C INC HL 1017 POP DE 
INC HL POP DE CP 2 LO ( HL), E 
CP 6S PUSH DE JR NZ,1016 INC HL 
JR NZ,102 109 LO A,(HL) LO A,B LO (llL),D 
LO A,B CP 44 OR A RET 
CP GB JR Z, I 010 JR NZ, 1016 END 
JR Z,103 OR A 

102 LO E,(HL) JR rn, r 011 r--.. t.,...--INC HL INC HL 
LO D, (HL) INC HL 
INC HL INC HL 

66-not 239 and 67. The code for the routine itself does not change; ADD HL,DE INC HL 
JR 101 me HL it is relocatable, or address-independent.) 

103 LO E,9 1010 INC II L The BASIC user who has never dabbled in machine language 
XOR A JR 108 

can use the routine without being concerned with how it works. For LO D,A I 011 CP 46 
ADD HL,DE JR NZ, I DllA the bold, however, I think it's only fair to include a listing of the 
LO E, (HL) POP HL assembly code that produced the routine, along with a brief descrip-
INC HL RET 

tion, which is given in Fig. 10-9. LO D, (HL) I DUA LO A,(OE) 
DEC DE INC DE Consider briefly the requirements of the subroutine, which I 
PUSH DE CP (HL) 

continue to call Idword. The calling program stores the word to be 
LO HL,(VARIAS) INC HL 

searched for in the string variable A$. Idword compares this word to 104 LO A,(HL) JR Z, I 013 
LO E,A DEC HL each of the entries in the word table, until it either finds a match or 
INC HL 1012 INC HL 

reaches the end of the table. If the word is found, the accompanying LO A,(HL) LO B, CHU 
CP 44 ID number is read and stored in the variableN; a search failure sets INC HL 
JR Z, 109 N to 0. LO C,(HL) 

INC HL OR A 
A machine-language table-search is fairly easy to contrive. The JR Z,109 CP 3 

JR 1012 task that takes some thought, though, is how to interface to those JR NZ,IDS 
1013 DJNZ 109 Variables! Where are they in memory? What is their format? How do LO A,B 

LO A,(HLl OR A You find them and change their values? JR NZ, IDS CP 44 
LO A,C JR Z, 1014 For the purposes of the discussion, refer to the diagrams in Fig. 
CP 65 OR A 10-10. You need to work with two structures in memory: straight 
JR Z,106 JR NZ. I nl? 

Variables, such as N and A$, and variable arrays, such as DA(n). IDS XOR A INC HL 
These structures are stored by BASIC in the free memory space LO O,A INC HL 

ADD HL,DE INC HL that follows the actual program lines. Simple variables are stored 
JR 104 INC HL first, and not in any particular order; arrays come next. BASIC 106 LO B,(HL) INC HL 

lllaintains two pointers to help locate the memory areas where these INC HL 1014 INC HL 
LO E, (HL) CALL IE5AH structures are. Locations 16633 and 16634 contain the address 
INC HL POP HL ~here simple variables start. I call this pointer Varias. Locations LO D, (HL) PUSH DE __i 

t 
6635 and 16636 point to the start of the arrays, and this pointer is 

Fig. 10-9. The source listing of the new machine-language ldword. errned Arrays. 

160 161 



Note, by the way, that strings do not actually reside in 
immediate area where other variables are. Rather, the entry in ~e 
area provides an address where the string can be found. Strings at 
stored up near the top of available memory. are 

The first thing th~t the new I~word mu~t do is find the be&innin 
of the word table. This address 1s stored m array variable DA(2 g 
since the word table is DATA block 2. Idword loads the beginning \ 
array space from the pointer Arrays. Then it searches for an arrao 
entry that has the letter A in the second byte and the letter Din th~ 
third byte, the reversed form of the name DA. The ASCII codes 6S 
and 68 correspond to these letters. Each array that does not corres­
pond to this name is skipped; this is done by using the value stored 
in the fourth and fifth bytes, which tells how many bytes are left in 
that variable. Idword loops until it finds DA(n). 

When it has found the array, it needs to locate the value of the 
specific entry DA(2). The actual values of the array elements begin 
five bytes after the name characters, beginning with the value of 
DA(O). Since each value takes two bytes, the value of DA(2) is found 
a total of nine bytes after the name characters. So Idword skips this 
far ahead, reads the two-byte value, and stores it on the stack using 
the PUSH instruction. 

Now you need the location in memory where A$ begins so you 
can do comparisons. Using the pointer Varias, the routine performs 
another search looking for two factors: a first byte equal to three, 
indicating a string variable, and second and third bytes equal to zero 
and 65 respectively, indicating a name character of A. (Single-letter 
variables fill the remaining byte with 0). If a match of this kind does 
not occur, the variable is skipped. This is done by skipping ahead by 
the same number of bytes as the value of the first byte, the type 
identifier. Type 2 variables, or integers, use two bytes to store a 
variable; type 3 variables or strings use three bytes to point to the 
string. Thus, the identifier number can tell Idword how far to ad­
vance in order to find the next variable. (Since the BASIC program 
contains a DEFINT statement, expect to see these two types of 
variables only, not single or double-precision variables.) . 

Once the variable A$ is found, the value of the fourth byt~ ~ 
stored; this value tells how long A$ is: T~e next two bytes, w~d. 
give the starting address of the stnng m memory, are s~~r 
Finally, the length of A$ as stored in register B is changed; so 1t.1s ~~ 
larger than five. In this way only the first five letters of any II1P 
word are considered significant. To save space no word-table entrY 

162 

--

--

~ 
w 
~ 

~ 
w w 
....J :::> 
Cl) -<i-<( 

a: > 

~ 
a: w 
-~-w <( 

<.!) z UJ I-
!; C\I 

• 

(/) 
(/) 
w 
a: 
0 
0 
<( 

-<.!)-

z 
F= 
a: 

y; <( 
<( I-

(/) 
w 
~ 
::J CJ I 
w z I-

- <.!) ....J a: z Cl) 
<( I- w 

(/) ....J a: 
<( 
> w 
-~-<.!) 

z z a: 
I-
(/) (") 

• 

~ 
C\I 
I-

-dj-
~ 
w 
....J 
w 

.,.... 
I-z _w_ 
~ 
w 
....J 
w 

I-
(/) 

~z 
LLQ 
LL -
_o~-

I W 
I-~ a.. -wO 
0 

- (/) '2 
~ a: z 

w 0 0 Cl) LL Ci) 
w ~oz 
~ :::> lJ..l 
~ z ~ 

>- 0 
<( 
a: 
a: (/) w 
<( W....J 

a: ~~ w Cl) -
<.!) a: 

LL<( w 
I- O> 
z -a:I--- wx z Cl) w 
0 ~z 
Ci5 =>O z ZI-w 
~ 
0 w 
-~-u'.J 

....J z <.!) 
z 
Ci5 C\I 

• 

0 
c: 
0 

·~ 

~ 
u 
Q) 

:c 
E 
Q) 

~ 
Q) 

£ 
~ 
u 
~ 
u c: 

<11 .c 
VJ 
Q) 

:c 
.~ 
:u 
> 
0 
VJ 
Q) 
c. 
.2:' 
Q) 

e 
£ 
Q) • 
.c :::;? 
..... ~ 
ci a: .,..._ 
60 
.... VJ 

• <11 
Cl Q) 

u:: :u 

163 



is any larger than five letters. PUSH the string starting address 
0 

the stack for safe-keeping. The string length is hidden in registe~~ 
for later use. 

Now the table search begins in earnest. Idword presets th 
register B to the length of A$, and DE is set to the starting address ~ 
A$. HL acts as a memory counter, incrementing from the start of~ 
word table to the end. Then the comparison loop begins. Idwor~ 
checks a character in the word table to see if it is a zero or a comm 
(ASCII 44). If so, the end of a DATA item is hit, and the next ite~ 
must be found. If a zero is encountered, the end of the DATA line has 
been reached and Idword must skip ahead five bytes to reach the 
start of the next line. If a comma is found, one byte must be skipped 
(the comma itself) to get to the next item. Then the routine loops 
back to reset the values of Band DE for a new comparison. This is 
because the present comparison is considered to have failed if the 
end of the DATA item is reached this early. 

If neither end-of-item code is found, one more preliminary 
check is performed. If a period (ASCII 46) is encountered, then the 
entire table search is considered a failure. Why? Because the last 
word in the table is a period; if it is found, the table search has 
reached an end without a successful word match. ldword cleans up 
the stack a bit, using POP, and returns. N equals zero, indicating a 
search fail, sinceN was set to zero immediately prior to the USR call. 

If none of the above codes are found, ldword performs the 
actual comparison of words. A Jetter of A$, as pointed to by DE, is 
compared to the corresponding Jetter of the table entry, as pointed 
to by HL. If the match fails, a quick loop occurs which advances HL 
past the remainder of the table entry up to the end-of-the-item 
marker, either a zero or a comma. Then, ldword loops back to reset 
DE and B for another check. 

If the comparison of the two letters is successful, however, Bis 
decremented and the next two letters are compared. This loop 
continues until B runs out to zero. When this occurs, ldword knows 
that every letter in A$ is in that table entry. That is not enoug~; wha~ 
if A$ is just a small part of that entry? (For instance, the mput 
passes this test if the table entry is SE, but the two are not the same 
command.) One more test is done. The next character in the table 
entry is checked. If it is an end-of-item code, zero, or comma, th~n 
the match is identical. If not, Idword jumps to the loop that skips e 
rest of that entry and loops for another item. xt 

If it is an identical match, the final task is to read the very n~ t 
item in the word table, which is the ID number, and store a 

164 

numeric value in variable N. ldword advances to the next item 
according to the kind of end-of-item code it encounters. Then it calls 
the address 1E5AH, which refers to a routine in the TRS-80 ROM. 
'fhis routine takes any ASCII-coded number pointed to by HL, 
converts it to a binary value, and stores it in DE. Once this is done, 
the stack is adjusted and the value in DE is temporarily stored on the 
stack. 

Finally, ldword must find the variableN in memory so that it can 
change its value to that of the binary-coded ID number. A search is 
performed, similar to the earlier search for A$. When N is found, 
POP the value off of the stack and store it in the fourth and fifth bytes 
of that variable. Idword is finished, so it returns, ending the USR call. 

There is one inconsistency in the routine that nevertheless 
does not affect its performance. The routine searches every item in 
the table for a match-including the ID numbers. (Technically, it 
should skip these.) If a player types in a number instead of a word, 
there is a chance that a match might occur. But even if this sort of 
erroneous match occurs, nothing goes awry. Why not? ldword, upon 
finding the match, sets N to the numeric value of the next item in the 
table, thinking it to be an ID number. Since that next item actually is a 
nonnumeric word, its numeric value (as computed by the ROM 
routine at 1E5AH) is zero. Thus, a wrong match always results in N 
equalling zero, telling the calling program that no acceptable match 
occurred. 

Is it worth the trouble to incorporate this routine into the 
adventure program? Try it and see! Since at least 80 percent of the 
delay from command to response is due to the word table search, the 
speed increase of a machine-coded ldword is well worth the small 
trouble of creating a new line 1 and typing in the simple POKE loop 
of Fig. 8. 

AND FINALLY 
For most of you, a hybrid Basements and Beasties is plenty fast 

for enjoyable adventuring. Some hard-driving programmers will still 
thirst for precision and efficiency. Such readers eventually consider 
the ultimate challenge-an adventure program completely in assem­
bly language. For these few hardy souls, some final comments and 
suggestions are offered. 

First of all the challenge of an assembly-code adventure is made 
tougher by the limitations of one's equipment. Remember that this 
book assumes that you own a TRS-80 with only 16K bytes of usable 
lllemory and tape 1/0 instead of disk. The problem with this is that 

165 



editor-assembler programs based on tape I/Oare abominable to u 
when creating machine-code programs of any real size. It is irnpra~~ 
tical to try to create a program any larger than lK of object cod 
using a tape-based assembler on a 16K machine. e 

This limitation can be circumvented by writing the program as a 
series of assembled modules. The catch is that each module has no 
way of knowing what addresses to use when addressing another 
module, unless you explicitly state those addresses in each module. 
One change in a module can then require changes in many other 
modules at once. (Disk-based assemblers get around this by provid­
ing a program that links the modules, filling unresolved addresses in 
one module with locations in others.) 

Assuming you are willing to suffer these sorts of discomforts 
you must next contend with the problem of housekeeping. BASIC i~ 
nice, in that lines of text can be displayed simply by PRINT. What do 
you do in machine code? When you want to print a line, how do you do 
it? Or how do you get a command from the keyboard? Fortunately, 
TRS-80 ROM contains some routines that can be called upon to do 
some of these menial chores. Check Fig. 10-11 for a few examples. 

Another aspect of housekeeping has to do with variables. In 
BASIC you can say A=l. You don't have to look for a place in 
memory for A to be stored-BASIC does that. The assembly lan­
guage adventurer needs to think ahead and set up areas of memory 
to store all of the numbers that an adventure program needs to 
maintain. Routines must be written to access these areas. 

On the other hand, consider the advantages. Since assembly 
language is so fast, there are tricks that can save memory that would 

ADDRESS 

032AH The character In A Is printed 
on the screen 

2SA711 A message 1 lne ending In a 
zero byte and pointed to by 
HL Is printed on t~e screen 

1BB3H Up to 255 characters are Input 
from the keyboard and stored 
In a buffer; HL Is set to one 
less than the buffer beginning 

0049H A single key Input Is loaded 
Into A; the routine waits 
until the key Is pressed 

L-~~~~~~~~~~~~~~~~~~~~----~ 
Fig. 10-11. Some ROM-resident routines that can be called frorn 

8 

machine-language adventure program. 

166 

FIVE-BIT ENCODING 

•ALL CHARACTERS TO BE ENCODED ARE 
ASSIGNED A NUMBER FROM 1 TO 31 

•THE RESULTING NUMBERS REQUIRE 5 BITS: 
THREE SUCH NUMBERS WILL FIT INTO 2 BYTES 

•THE LETIER A-Z ARE NUMBERED 1-26. AND 
THE COMMA, PERIOD. SPACE AND OTHERS ARE 27-31 

CHARACTER CHARACTER CHARACTER 
ONE TWO THREE 

~( "'------..')~ 

.......... ! x~I ~' ~' ~' ~' ~l__._____.I I I I I I I I t BYTE 1 BYTE 2 

UNUSED 

Fig. 10-12. One of many methods for encoding characters for compression. 
This method, though inefficient, is very easy to implement in assembly 
language. 

be impractical in slow BASIC. The best of these tricks is to use what 
you might call "compressed descriptions." 

What is a compressed description? First, think of all of the 
memory that room descriptions and object descriptions take up in 
BASIC adventure programs. If these lines can be stored in com­
pressed form somehow, much space can be saved. A compressed 
description is one in which text material is stored in encoded form 
and is decoded only when displayed. 

Figure 10-12 shows one method of encoding text for com­
pressing storage; there are many others. In this method the 
characters in a section of text are limited to only 31 different charac­
ters: the 26 letters plus a handful of separators, such as, spaces and 
Periods. To encode a paragraph every three characters is com­
Pressed into two bytes of memory, by giving each character a value 
0~ from 1 to 31. Since a number in that range requires only five 
binary bits, three encoded characters require a total of 15 bits, 
Which fits easily into two bytes. Thus, by some voluntary limitation 
of one's selection of letters, a savings of 33 percent can be achieved. 

167 



Chapter 11 

Graphic Adventures: The Concepts 

After the last pages, you'd think that there is nothing that could be 
added to the discussion of adventure programming. However, there 
is a growing circle of microcomputer users that would take issue with 
that statement. After all, the sort of text-oriented adventure pro­
grams that I've examined are merely the forefathers of today's 
computer-gaming genre. Newer types of adventure programs are 
swiftly moving into the market, replacing the old. By far, the pre­
dominant form of these newer games is that of the graphic adventure. 

Why is this true? At least one reason is to take advantage of the 
architecture of the modern-day microcomputer. In the earlier days, 
computer use was time-shared and terminal-based, and the terminal 
was not necessarily even a CRT, but possibly a teletypewriter. 
Adventures were of necessity text-oriented. Today's small comput­
ers are for the most part designed for quality graphics and cursor­
control. (Most other types of microcomputer games take advantage 
of the versatile screen; why not adventures as well? 

COMPARING ADVENTURES 
There are several differences between the structure and oper­

ation of the text-based and the graphic adventures. Here are a fe~ of 
the differences. If you remember the earlier chapters, you may think 
of others. 

First, there is a less stringent memory requirement. What was 
the real memory-hog in the older-type game? Clearly it was the 

168 

space required for text: room and object descriptions, special mes­
sages, and the word table. In the graphics form of the game, the 
required text is lessened dramatically. Room descriptions are entirely 
replaced by graphic representations of the rooms. The object de­
scriptions, likewise, are replaced by representative characters that 
appear on the screen to indicate each object. Not as many special 
messages are required. Commands are entered by single key 
strokes, replacing the need for a word table and its parsing routines. 

The result, obviously, is that more free memory means more 
possible rooms. Graphic adventures usually boast scores more 
rooms than competing text games. As an example, compare Base­
ments and Beasties with the sample graphics game Mazies and 
Crazies. The first game has only 20 rooms; the latter, a total of 90! 
More rooms definitely increase the interest of an adventure game. 

Second, graphic adventures are played in real time. In other 
words, the passage of precious seconds is a real factor. The older 
games are command-driven; things happen in response to each 
entered command, but all action freezes until the next command. 
The newer games are clockdriven; action goes on as you watch, and 
you can choose to act or react at any time. 

Again, the interest-level is increased. If a graphic creature is 
attacking, you cannot simply walk away and take a snack break; you 
must fight or die! Thus a new element, quick eye/hand response, 
becomes crucial to success in the game. 

Third, there is an emphasis on battle. In the older games, 
creatures are largely obstructions to travel, except for the occa­
sional tenacious creature that might come along. In graphics games, 
all creatures are tenacious, hostile, and battle the adventurer to the 
death. In Basements and Beasties, battle was determined by ran­
dom numbers; in Mazies and Crazies, opponents possess strength 
levels that affect the course of the conflict. 
. As a result, the new adventurer must be a wiser fighter. His 

Victory is no longer dependent on the computerized flip of a coin. He 
~ust take into account the types of weapons he has available to him, 
his own strength-level, how far away food and medicine might be, 
and the strength of his opponent. 

Fourth, the details of the scenario are subject to random initiali­
zation. The placement of most objects is determined at run time, not 
at creation of the program. Thus, while the actual room map and 
room details remain the same, the location of treasures and crea­
tures is new in every game. 

Finally, from a structural standpoint, graphic adventures are 

169 



easier to construct. Executive does not have to interpret man 
many possible variations of commands. Fewer commands rne Y, 
fewer handlers. Since objects are represented as special charactean 
on the screen, the screen itself can be c9nsidered as a form r~ 
information storage; thus, fewer data need to be stored in arrayso 

One case in which this generalization does not hold true is th~t 
of the actual screen handling. In Basements and Beasties, all you had 
to do was PRINT. Now you must be concerned about how to 
represent objects, creatures, and treasures graphically. You must 
be careful about how you move them and be aware of what happens 
when two moving things cross paths. You must write a screen 
update routine that does not take two minutes to draw a newly 
entered room. As you had to become a master at text handling 
(command parsing, word table look-up, text access) in text adven­
tures, now you must become a master at graphics (what to POKE 
and where) in graphic adventures. 

DISPLAYING A ROOM 
The heart of graphic adventures is the video display of the 

room. No longer can the programmer merely print a verbose, 
image-provoking description; he must really paint the room on the 
screen. Walls, vertical, horizontal and diagonal, must be plotted, 
with doors in predetermined locations, and each article, animate and 
inanimate, must be represented by a defined symbol. 

In Mazies and Crazies, as in many other graphic adventures, 
the screen is divided into two separate areas. The leftmost, larger 
area is called the action field, and the area to the right is the status 
field. It is in the action field that the room is drawn and the adventurer 
(or mazer) interacts with displayed items. The status field is an 
all-text area, and displays frequently-updated information pertinent 
to the playing of the game. Managing to paint your picture and print 
your status data in separate areas with no overlap is part of your 
ability as an accomplished programmer! 

Let's look at the action field in a bit more detail. Figure 11-1 
shows a typical screen display in Mazies and Crazies, with the two 
fields. The action field takes up 88 percent of the screen. The 
current room is shown as an open square of graphic blocks, broken 
by occasional blanks that are doors to adjacent rooms. Withll:1 th~ 
frame are assorted walls (called features of the room), again pamte 
using graphic blocks. Finally, there are several standard characters 
scattered about, each designated as a different type of object. 

The first question that may be asked is this: why use su~~ 
coarse resolution for the graphics? The walls are plotted on a gn 

170 

( . 

YOU HAVE 
NO SWORD 

ROOM 53 

1TR25 

2 TR 16 

STRENGTH 
8472 

Fig. 11-1. Typical screen display for Mazies and Crazies. 

that is 64 by 16, the same layout that is used for the display of 
alphanumeric characters. Yet the TRS-80 supports a graphics grid 
with the higher resolution of 128 by 48, using the BASIC statements 
SET, RESET, and POINT. Wouldn't high resolution improve the 
appearance of the action field? 

The reason for the choice of low-resolution graphics is to allow 
easy interaction between graphics and alphanumeric characters. 
Using a single alphanumeric character to represent an object is very 
easy to handle, especially for moving objects. Characters, however, 
adhere to the 64 by 16 grid. For instance, if there is a door that is only 
one unit wide in high-resolution mode, the single-character objects 
aren't able to fit through it anyway. There is efficiency, also, in 
treating everything in the display field in the same way. Objects and 
walls alike are drawn by the POKE command and examined by the 
PEEK command. Overall, it is much easier (and quicker) to draw the 
action field in this way than to create high-resolution multipoint 
graphic symbols for each object and to move them about. 

All walls are plotted by whiting out successive character­
locations on the screen. To do this POKE the graphic code number 
191 into each desired screen location in screen memory (graphic 
character 191 is a white rectangle). With a grid of 64 by 16, there are 
1024 possible character locations, 896 of which are used for the 
action field. Knowing . that screen memory begins ~th address 

171 



15360, it is possible to draw any feature desired with the POKE 
command. 

Although the doors that appear in the outer walls look like 
simple spaces, they are not. Most of the area within the action field is 
filled with space characters, character number 32; but doors are 
represented by graphic character 128. This special character looks 
blank, as if it is a simple space, so it makes a good door. It is 
distinguishable from a mere space by the program, using a PEEK to 
view screen memory and see a value of 128, not 32. In this manner 
as the player moves up to and contacts the door, the program ~ 
invoke a routine to send the mazer into a new room. 

For each object, there is an alphanumeric character that visually 
represents it. The adventurer is seen as the "at" sign (@) and moves 
about freely. The creature or opponent is shown as an asterisk(•) 
and attacks at will. A treasure is represented, naturally enough, by a 
dollar sign ($). 

There are various tools that can be present. The torch is an 
exclamation point (!) and must either be carried or present in a room 
to allow the player to see. The number or pound sign ( #) is a portal, a 
mystic doorway which, when touched by the player, teleports him 
into a randomly selected room. The shield is a left parenthesis, which 
lessens the severity of wounds inflicted by an attacking creature. 
The right parenthesis is a bow and the dash ( - ) is an arrow. The 
potion, a medicine that restores full strength to the player, is seen as 
a plus sign ( + ). A period (.) is a kind of fruit that is stored in selected 
rooms and nourishes the player. The sword is a slash(/) and is the 
player's primary battle weapon. A field of fire is suggested by the 
block of ampersands (&) across which the player can go only pain­
fully. Finally, the zero (0) is a bomb, which can be safely carried, but 
it destroys either the player or creature who blunders into it. (See 
Fig. 11-2 for the complete object list.) 

Note that there are several ASCII characters that can be dis­
played by the TRS-80 Models I and III that are not defined abov~. 
The ones that are defined were chosen because, to degree, their 
appearance suggests the objects they represent. Other characters 
can be defined and accessed if they suggest a useful new object. The 
angle bracket or greater than sign ( 1 ), for instance, may represent a 
sword that has been broken by an ill-fated attempt to hack away at a 
shell-backed creature. An equals sign (=)may suggest a poison-d~ 
blowgun. Later you'll see how the structure of Mazies and Crazies 
allows for easy expansion along these lines. 

To the right of the action field is the status field, which ke~ps th~ 
player informed of the progress of the game. The action field is fille 

172 

OBJ NO. TYPE SYMBOL COD£ 

1 Torch 33 

2 34 

3 Portal # 35 

4 ..:::Treasures> $ 36 

5 % 37 

6 Fire & 38 

7 39 

8 Shield 40 Fig. 11-2. Object list for Mazies 
9 Bow 41 and Crazies. 

10 ..:::Creatures> 42 

11 Potion + 43 

12 44 
13 Arrow 45 

14 Fruit 46 

15 Sword I 47 

16 Bomb 0 48 
17-48 Treasures $ 36 
49-96 Creatures 42 
49.54 Spiders 73-78 Huge Bees 
55-60 Snakes 79-84 Amoebae 
61-66 Landcrabs 85·90 Trolls 
67-72 Scorpions 91-96 Dragons 

with text using the PRINT@ function of Microsoft BASIC, which 
allows precise positioning of the wording without overlaps or car­
riage returns that would disturb the action field unintentionally. 

The status field may itself be subdivided into four Windows, 
each intended to display a different piece of status data. The topmost 
is the message window. In it, responses to any given input command 
are printed, as well as warning messages generated by the progress 
of the game, such as, the proximity of a dangerous creature. 

The next subdivision is the room window, which always pro­
vides the number of the current room that the action field is display­
ing. The third subdivision is the inventory window. In it, the names of 
any objects carried by the player are listed, arbitrarily numbered 
from 1 to 8. The player may carry a maximum of eight objects. The 
inventory window can be entirely blank, of course, if no objects are 
being carried. Objects with specific names are listed; general ob­
jects, such as the 32 treasures, are indicated by treasure number (1 
to 32) prefixed by TR. 

The final subdivision is the strength window. Here the running 
strength level of the player is continually displayed and updated. 
Since this level is changing by the second, the strength window is of 
all four windows the most rapidly updated. The player begins with a 
Strength of 10, 000, but this amount wanes with time, with motion, 
~th exertion in battle, and most dramatically with wounds sustained 
Ill battle. Only the consumption of fruit or a potion can raise the 
strength level to a safer amount. 

173 



SINGLE-KEY COMMANDS 

nces Gon~ ~e the days. of one - and two-word command sente 
that reqmre mteI"?retabon. All commands in a graphic adventur 
now entered by smgle keystrokes. This is consistent with then 
of the newer game as a real-time program. It makes sense to s 
up. comm~d-entry. time in a game so much more oriented tow 
qmck deas1on-making and response. Then, too, it would never 
have tJ:ie whole real-time program stop in midstream while the p 

eare 
ature 
Peed 
atds 
do to 

types m a command word. 
layer 

and 
time 

Using the INKEY$ function of TRS-80 BASIC, Mazies 
Crazies can scan the keyboard as it loops through its real 
Executive. Any key on the keyboard can be used to directly 
~ome handler, based on the character number generated by pre 

Call 
ssing 

It. 
and Figure 11-3 shows the commands available in Mazies 

Crazies. Again, as in the case of object assignment, command 
their associated handlers may be added as desired; the structur 

sand 
e of 

the program allows for lateral expansion. 
mo-Obviously, the primary function to control by command is 

tion. The four arrow-keys of the TRS-80 serve well in this capa 
The player cannot move diagonally, except as the result of 
consecutive keystrokes. Later you'll see that the creatures are 
thus limited and can move diagonally as needed to intercep 

city. 
two 
not 

t thE 
fleeing player. 

ata 
ugh 

path 

Using the arrow keys, the player can move about, one step 
time. Obviously, he cannot pass through walls (except thro 
doors). As he moves, the program is continually checking the 
ahead. Is there an obstacle? In most cases an obstacle in the play 
way simply prevents motion. In two cases, the bomb and the po 
motion is radically affected. Contact with the bomb is fatal. One 
special case is fire . The player can pass through fire, stomping it 
as he goes, but it weakens his strength level by several point 

er's 
rtal, 
final 
cold 
s. 
the 

e. In 
If the player attempts to leave by a door, his contact with 

graphic-character 128 alerts the program to access a certain tab! 
this table the program can locate the end destination of the door, and 

Fig. 11-3. Single-key command list 
for Mazies and Crazies. 

174 

-
ND !!.!.. HANDLER /COMMA __ 

Arrows 
T 
1-8 
F 
s 
a 

r MOVE the Maze 
TAKE an Object 
DROP an Object 
FIGHT with Swo 
SHOOT the Arro 
QUIT or score 

rd 
w 

-

' 

the features of the new room so that it can be properly drawn. If the 
ch is not being carried nor lying in the new room, however, 
tion in that direction is impeded, with a warning that it is too dark 
enter the room. 

tor 
JllO 
to 

ron 

After mere motion, the mazer wants ways to affect his envi­
ment. In order to carry out his primary goal-the hoarding of 
asures-the mazer must be able to pick up objects and later drop 
m in room 1, which is the home base for the maze. This implies 
next two commands. 

tre 
the 
the 

hei 
Pressing Tallows the player to take an object nearby, assuming 

s immediately adjacent to it. The program scans his surroundings 
tarting at a point above and to the left of the player) and takes the 

t portable article it finds. (Creatures, fire, walls, and such are not 
rtable.) ~ccordingly, if there are several portable objects nearby, 

player picks up one of them according to the scan sequence. The 
y real limit is the maximum of eight placed on the player's inven­

ry. As in other adventure games, it reduces the challenge if the 
er can carry as much as he wants. 

(s 
firs 
po 
the 
on! 
to 
play 

tivel 
Conversely, the mazer may drop any one of his burdens selec­
y. This is accomplished by pressing one of the numeric keys 

m 1 to 8. In the inventory window of the status field, each item fro 

be 
Dro 

carried is tagged with a number between 1 and 8, and each item can 
dropped by pressing the key matching this identifying number. 
pped items are deposited in a circle around the player. If, for 
e .reas?n~ there is no room around him for all items that he drops 
, _if he 1s m a comer or already closely surrounded by objects), a 

som 
(say 
w ammg message in the message window alerts him and he is 

ented from dumping his load. prev 

prim 
The next activity that the player pursues is battle. He has two 
ary weapons, the sword and the bow. The sword is used by the 

F k 
ere a 

ey, representing the command FIGHT. Assuming there is a 
ture close by and that the sword is being carried, a percentage of 
creature's strength-level is shorn, with a lesser depreciation of 
mazer's own energy. Attempts to swing away at a creature too 
way or in a room with no enemy, or attempts to fight with no 
d, all generate appropriate responses in the message window. 
The S key allows the player to shoot an arrow at a creature. (He 
' o~ course, be carrying both the bow and the arrow.). Alas, the 

the 
the 
far a 
swor 

rnust 
arro 
level. 

w Slffiply bounces off of a creature that is stronger than a given 
Then, too, in many cases the arrow misses the mark and 

ers off into a comer of the room, where it must be retrieved to 
sed again. If it does kill the creature, it does so swiftly and 

clatt 
be u 

175 



without a drain on the player's own strength. The arrow can b 
plucked from the body of the creature for reuse. e 

Finally, there are auxiliary functions that can be helpful in th 
process of conquering the maze. The Q key invokes the Quit fun ~ 
tion, which provides an instantaneous evaluation of the prese~t 
score. The score is based on the number and types of creatures slain 
and treasures recovered, less penalties for deaths experienced 
(since all deaths are recoverable by resurrection). The player can 
choose to terminate the game then and there, or to go on as if the Q 
key has never been hit. Incidentally, the Quit function makes use of 
most of the status area. The area is refreshed properly if the olayer 
chooses to continue the game. 

The programmer may choose to add other single-key functions 
as far as memory allows. H may invoke a Help function, which lists 
the objects and their symbols in the status area, or perhaps lists an 
commands. Perhaps an R key could call the Rest handler, which 
could stave off death by allowing the player to regain strength in 
sleep. 

DOORWAYS TO WHERE? 
In Basements and Beasties, a sizeable portion of code is dedi­

cated to the support of the travel table. A scenario, be it in text or 
graphic adventures, is merely a set of rooms connected by an orderly 
list of defined doorways as connecting paths. Without doorways, 
there is no relationship between the rooms and no real sense of an 
actual, mapped, travel experience. 

How Mazies and Crazies handle doors is at once similar to and 
yet different from the method used in Basements and Beasties. Let's 
compare the two approaches. 

First of all the number of doors in a room in the old game is 
limited by the number of directions in which the adventurer can go. 
He has ten possible directions-the eight compass points plus up and 
down-and usually uses only a few of these. Remember, too, that 
there is no such thing as motion within a room; motion always takes 
the player through a door into a new room. . 

In the new game doors can be defined at any of the 896 locatt~ns 
that make up the action field. This is made possible by the wi~e 
amount of intraroom motion allowed the player. The penalty of ~s 
new liberty is that the new form of the travel table needs to specify 
the exact grid location of each door. That is, each door has an X.~ 
horizontal coordinate and a Y or vertical coordinate, the two of whi 
plot the door on the action field. 

176 

Then, too, it is not enough simply to specify the room destina­
tion at which the player arrives if he uses a given door. When the new 
room is drawn, where should the player be placed? Surely not 
randomly in the middle of the floor! No, the new travel table, 
whatever form it takes, must specify both the final room number and 
the coordinates (X, Y) at which the player is deposited. These 
coordinates should place the player just inside a corresponding door 
within the new room. Door coordinates and destinations must be 
decided upon systematically and logically. 

In place of a travel table, Mazies and Crazies has an explicit 
string stored in program memory for each room. These room strings 
contain coded information that specifies the coordinates of doors in 
the room and their destination coordinates. Room strings also con­
tain data to plot the various features when that room is displayed. 

REACHING THE GOAL 
Ultimately, the player of Mazies and Crazies has three goals: 

(1) to stay alive, (2) to collect all available treasures, and (3) to slay all 
creatures. 

Many factors in the game hinder reaching these goals. For 
instance, even granting the lack of an active opponent, the player can 
starve to death if he does not locate some food. Treasures are 
plentiful, but they are scattered throughout the 90-room scenario 
(and 90 rooms is a bunch!). Creatures are not easily slain, and they 
"home in" on the player to attack. No, obtaining a high score in this 
sort of game is no easy trick. 

Fortunately, there are some aids that are designed into the 
fabric of the game. Consider first that the game begins in room 1, the 
home base, and two helpful tools are placed there for the mazer: the 
torch and the sword. In addition, no creatures ever stray into rooms 
1, 2, or 3; so the mazer always knows that in a pinch he can run for 
these rooms. 

What about hunger and exhaustion? The player's strength level 
decreases while he rests and drops more quickly as he moves. Two 
means of sustenance are provided. First, in certain selected rooms 
there is a piece of magic fruit that regenerates itself after the room is 
vacated. The strength level of the consumer is raised by a percen­
tage when he eats. The player, as he finds these rooms, should keep 
track of them, and never stray too far from one of them. 

In addition to the fruit, there is a potion, a sort of health 
rnedicine that pops up in a room from time to time. When taken, the 
Potion restores the player to his full health of 10, 000 strength points. 

177 



The potion vanishes, to appear randomly in some other room. Th 
player may find the potion and not use it, but remember the room~ 
which it is located. 

Now, lest the player get too lazy, he must remember the 
following warning. Creatures like food and medicine, too! That's 
right; if a creature is in the room where your fruit supply is, he can 
eat it just as easily as you! The same goes for the potion, which then 
promptly vanishes for some other room. This can be frustrating, but 
who says adventure gaming is a breeze? 

Retrieving treasures is a fairly easy task, remembering the 
usudl limitations. You have an inventory limit of eight, and this really 
means only about six treasures a trip, since you'll need to carry the 
torch to see, and you are a fool if you leave your Sword behind. All 
treasures need to be dropped at home base, room 1, in order for 
them to count towards your score. 

Killing the creature is not so easy. To make things easier, there 
IS never more than one creature in a room at a time. You'll find that 
one is enough! The beasts range in size from a deadly spider to a 
huge dragon, and the larger creatures start off with a strength-level 
greater than your greatest. They attack without provocation and 
repeatedly. They can move diagonally, while you can only move 
nonzontallv or vertically. 

'f ou are doomed without weapons. You have your sword, which 
Inflicts a wound on the enemy proportionate to your strength level. 
The beast must be very close for you to hack him with the sword. 
You have a bow and arrow, which is more accurate the closer the 
creature approaches. Even the closest of proximity does not assure 
that the arrow will hit him. In fact, arrows bounce right off the 
stronger creatures until their strength is worn down a bit. 

There are some defenses as well. First, there is a shield, which 
limits the wounds which a creature can inflict, somewhat. There is 
the bomb, which can be dropped in the creature's path. If the enemy 
steps on it, he is blown to bits-so are you, if you are so clumsy as ~o 
step on it. Finally, if the urge to tum yellow reigns supreme, there is 
the portal, which can quickly be dropped, stepped into, and used to 
whisk the player off to some random and (hopefully) safer room. 

ROOM STRINGS 
In Basements and Beasties, each room is associated with two 

types of information. First, there is a room description block that 
matches a block of text to each room, which serves to describe that 
room in detail. (In that same block are the short-form names for the 

178 

rooms that are used after the first visit.) Second, there is the travel 
table, which defined the end destination resulting from travel in any 
given direction within a selected room. 

In Mazies and Crazies, these entities are superseded by dif­
ferent sets of information. Travel data is replaced by door informa­
tion, and the text descriptions are replaced by codes to plot a visible 
room on the screen. Both of these types of information are stored in 
what is called a room string. 

Figure 11-4 shows the essential structure of a room string. 
Each room has its own room string, which can be broken into two 
sets of substrings. The first set is a group of door substrings, each of 
which consists of numerical codes defining the location and operation 
of all doors in that room. The second set is a group of feature 
substrings, each of which contains numerical codes used to create 
walls as well as other room features, such as, a patch of fire or a piece 
of magic fruit. Separating the two sets of substrings is a dash. This 
separator is always present, even in the hypothetical case in which 
there are no subsequent feature substrings. 

Let's consider the door substrings first. Remember you must 
keep track of three pieces of data for each door in your graphic 
adventure. These are the screen location of the door in X and Y 
coordinates, the number of the room to which the door leads, and the 
screen location where the player is plotted when he arrives at the 
destination room (in X and Y coordinates). 

How much space does this data take up? In the case of the X and 
Y coordinates, Xis an integer from 0 to 55, and Y is an integer from 0 
to 15. For Item 1 you need four digits to represent X and Y together; 
four more digits from Item 3 raise the total to eight digits. The room 
number in Item 2 is an integer from 1 to 99; these additional two 
digits result in a total door-substring length of ten digits. 

F F F 

D D D E E E 

0 0 0 A A A 
T T T 0 0 0 u u u R R R 
R R R 
E E E 

'----v-----J 1..--_..J ~ 
DOOR SEPARATOR FEATURE 

SUBSTRINGS SUBSTRINGS 

Fig. 11-4. Components of a room string. 

179 



CHABtlCI~RS QAIA 

1 - 2 Door X-Coordlnate 
3 - 4 Door Y-Coordlnate 

5 - 6 Destination Room 
7 - 8 New X-Coordlnate 
9 - 10 New Y-Coordlnate 

Fig. 11-5. Components of a door substring. 

Figure 11-b demonstrates how the door substring is divided. 
Since every door substring is ten numeric characters long, there is 
no need for some sort of character to separate them. Whatever 
routine accesses these substrings knows to count in multiples of ten 
characters to move from substring to substring without error. If the 
routine sees a numeric character, it knows that a new door substring 
is present; if it sees the dash separator, there are no more doors in 
that room. 

Walls and distinguishing features not only help to identify 
individual rooms, they increase the challnge by making motion in a 
room more difficult. Also, certain special features, such as, the 
magic fruit, require data to specify location. 

There are six kinds off eatures available in Mazies and Crazies 
to adorn a room. The first four are walls, available as horizontal, 
vertical, and positive, and negative-slope diagonal lines. The fifth 
feature is a field of fire, which can be placed to block a door if desired. 
The sixth feature is the magic fruit. 

In plotting these six features, different sorts of da~a ar~ re­
quired. In the case of the first four features, which are straight ~~s, 
an interpreting routine must be furnished with a number specifyin~ 
the type of line, a pair of numbers giving the starting X, Y coordif 
nates, and a number telling the length of the line. In the case 0 

features 5 and 6, no length is required, but the feature type and X, Y 
coordinates are still necessary. Thus, there are two types of fea~ur: 
substrings-a long one and a short one. The long one require 
seven characters, and the short one only five. . 

Figure 11-6 shows how the feature substring is divided, bo~ 1Il 

its five and seven-character forms. The routine that does the plott!Ilg 
knows how long the substring is based on the beginning feature t;:Pe 
number and can thus find the start of the next feature substr!Ilg 
without any dividing marker. 

180 

For ease of entry and location, the 90 room strings are stored 
on separate program lines in a block of memory by themselves. In 
order to allow easy access to the strings, they are equated to the 
elements of a 90-deep string array. The use of string array names 
does not recopy these explicit strings into free memory; rather, it 
sets up a list of addresses that point to these strings in program 
space. About 200 bytes of string-array variable-pointer space is 
required, but the result is worth it-rapid access to the strings for 
the quickest possible action field refresh. 

THE 90-ROOM MAP 
Just as a map or drawing of the interrelations between rooms is 

necessary in Basements and Beasties, so must a map be drawn for 
the scenario of the graphic adventure; however, it makes no sense to 
label the interrelated pathways by the motion indicators N, S, E, and 
so on. Compass points are no longer relevant. Now doors are in 
specific screen locations in the action field. 

Drawing a detailed scenario map in this case becomes impracti­
cal. It is still helpful, however, to map out the rooms and their 
pathways without regard to the specific locations of the doors, 
simply to show the end room destinations. Later, the exact door 
coordinates can be chosen as desired to fit the rough layout of the 
map. 

CHARACTE.RS 

1 
2 - 3 
4 - 5 

( 6 - 7) 

IYPE I 

1 
2 
3 
4 
5 
G 

Feature Type 
Plot X-Coordlnate 
Plot Y-Coordlnate 

(Plot Length) 

EE AIU RE. 

Hor I zonta 1 LI ne 
Positive Slope 
Vertical Line 
Negative Slope 
Fire (field of 
Fruit (single • 

( - ) 
C I > 
C I > 
( \ ) 
nine &'s> 
) 

Fig. 11 ·· 6. Components of a feature substring. 

181 



'-----------{JOI-----------' 

'-----------1901-----------' 
Fig. 11-7. The complete Mazies and Crazies scenario map. 

182 

Figure 11-7 provides the map for Mazies and Crazies. Note that 
the positions of the connecting lines correspond roughly to the final 
coordinates of the doors. See also that the locations of special 
features, such as patches of fire and piles of fruit, are marked for 
inclusion in the room strings. 

The symmetrical form that this map takes was chosen for ease 
of design. You will find that the general appearance of rooms in the 
action field repeats the symmetry of the map. This is, of course, 
arbitrary, being based on the room strings. Ideally, each and every 
room is designed to look distinctly different. 

The same rules that go for scenario mapping in text-type ad­
ventures also go here. Note the number of careful branches. They 
are intended to limit options so that each branch chosen is followed. 
The player finds new layers of rooms each time he leaves one of the 
root nodes by a different door. This maximizes the suspense of the 
game. 

DOWN TO SPECIFICS 
Now you are familiar with the general attributes that make a 

graphic adventure such as Mazies and Crazies a different game than 
the text-oriented programs. In several ways it is a much easier 
program to write. Certainly, the executed code is shorter. For all its 
simplicity, the graphics make it an inviting game. 

Now you are ready to move on to the specific details of Mazies 
and Crazies from the assignment of variables to the structure and 
operation of the handlers and subroutines themselves. 

183 



Chapter 12 

Graphic Adventures: The Segments 

Let's start with program structure. As in the text adventures, a high 
goal is to produce code that is easily followed and easily expanded or 
modified. BASIC isn't that sort of language by birth; so it is up to the 
programmer to supply the structure. 

Figure 12-1 shows the program's organization. Note the close 
similarity to the organization used in Basements and Beasties. 
Mazies and Crazies is notably simpler. 

The first program segment is the Initialization section, desig­
nated in the area from BASIC lines 0 to 99 (though, of course, it only 
uses a few of these) . In this section all arrays are dimensioned, and 
variables are preset. Note that the locations of objects, such as, 
treasures or creatures, are randomly assigned in this section. This, 
of course, is in distinction to text-type adventures that preassign 
these locations according to a strict lookup table. 

Next comes the Executive loop, from lines 100 to 199. This 
section is called a loop because the program spends most of its time 
circulating through this code. Even when the player is not selecting 
specific commands, the program loops through this segment, up­
dating the player's strength level, moving a creature (if there is one 
nearby), and otherwise maintaining the status of things. Mazies and 
Crazies deserves its description as a real-time game due to the 
continuous operation of the loop. . 

As in Basements and Beasties, player commands are serYiced 
by the invoking of specific handlers, tailored to bring about whatever 

184 

- LINES 

0-99 
100-199 
200-499 
500·599 
900-999 
1000-1099 

PROGRAM SEGMENT 

Initial ization 
Executive Loop 
Handlers 
Display Section 
Subroutines 
Room Strings 

Fig. 12-1 . Program organization 
of Mazies and Crazies. 

effect is commanded. Handlers reside anywhere from lines 200 to 
499 in the program. Generally speaking, there is one handler per 
command, each of which is called by the pressing of a given key. 
One special addition required is the display section, which can be 
found from lines 500 to 599. This section is called whenever the 
mazer enters a new room. It replots the walls and other features of 
the room, and indicates the presence of any objects located in that 
room. This routine makes heavy use of the information contained in 
the room st.rings that are stored later. 

Next is the subroutine section, from lines 900 to 999. These are 
subroutines called either by the Executive loop, the display routine, 
or individual handlers. 

The final (and largest) of the program segments is the room 
string section, delimited by program lines 1000 and larger. The room 
string for each room resides in a single program line, such that the 
strings for rooms 1 to 90 are on lines 1000 to 1089. Each line sets a 
string array element equal to the room string; the room string 
section is really a large subroutine, called by the initialization section, 
which simply initializes variable pointers for each access to the room 
strings. Accordingly, the last line of this section is terminated by a 
RETURN statement. 

ALL OF THE VARIABLES 
Mazies and Crazies is a simpler game to maintain than the text 

adventure games. The list of variables it needs for housekeeping are 
shorter. Figure 12-2 provides the variable list. 

There are 96 objects in the scenario, including 16 tools, 32 
treasures, and 48 creatures. For each of these objects, a record is 
required telling in which room each resides. The room location is 
stored in the elements of array L(n), wherein n is the object number 
from 1 to 96. (See the object list in Fig. 11-2). Similarly, the player 
himself lives in a given room, and this location is stored in L(O). 

The contents of the elements L(O) to L(96) can be an integer 
from 1 to 90, specifying the room location. Also, if a creature has 

185 



been slain, his L(n) value is set to 0; Room 0 is the grave. Objects 
that are carried are in the player's carry-sack and are assigned a 
location value of 91. 

Several other values are required for program operation, but it 
saves some memory to assign these to further elements of the array 
L(n). Why is this so? The reason is that for each different variable set 
up by a program, a variable pointer is created. You save a few bytes 
by making the most out of an already created variable array. 

Inanimate objects are assigned positions in the action field 
largely on a random basis (as you'll see later). This is not true of the 
player and his opponent creature (if there is one in the room), since 
both must move above freely in a comprehensible manner. For this 
reason a record is maintained and updated of their positions in the 
room. These position records are stored in X, Y form, wherein the X 
coordinate refers to the horizontal character position from 0 to 55, 
and the Y coordinate refers to the vertical character position from O 
to 15. L(97) and L(98) save the X, Y position of the mazer, and L(lOl) 
and L(102) save the creature's position. Obviously, if there is no 
creature in the room, the contents of L(lOl) and L(102) are 
irrelevant and ignored. 

Next, a couple of facts concerning the player are required. The 
strength-level of the player begins at a value of 10,000, and is 
continually being affected by battle, exhaustion, or consumption of 
nutrients. Element L(99) keeps track of the player's running 
strength. The player may fail'in his attempts to slay the foul beasts of 

Fig. 12-2. Variables list for Mazies 
and Crazies. 

186 

VARIABLE 

L(O) -L(96) 
L(97) 
L(98) 
L(99) 
L(100) 
L(101) 
L(102) 
L(103) 
L(104) 
L(105) 
L(106) 
L(107) 

R(1) -R(90) 

C(1) -C(8) 

TA$ 
TB$ 
CRS 

APPLICATION 

Obiect Room Number 
Mazer X-Coordinate 
Mazer Y-Coordinate 
Mazer Strength-Level 
Mazer Deaths 
Creature X-Coordinate 
Creature Y-Coordinate 
Creature Strength-Level 
Creature Number 
Attack/ Retreat Flag 
Retreat Counter 
Counter 

Room Strings 

Carry-Sack Contents\ 

Inventory Name String 
Creature Name String 
Current Room Stri ng _ 

the maze, dying in some obscure room. Since these deaths count 
against the player's final score, L(lOO) keeps a tally of them. 

Most of the remainder of the L(n) elements deal with the 
creature that might be in the room with the player. L(103) reveals 
the strength level of the creature, which varies as widely as the 
player's own. The creature n~ber is .stored~ L(104). If ther~ is no 
creature in the room at the time, this value 1s set to 0, telling all 
routines to ignore the values of other creature-related array ele­
ments. 

The creature in the room always operates in one of two modes: 
either attack or retreat. In attack mode it heads directly toward the 
players; in retreat mode it heads directly away. Element L(105) 
toggles between 1 and -1, to indicate attack or retreat mode 
respectively. The creature operates in attack mode until it contacts 

· the mazer or until the mazer fends it off with an arrow or the sword. 
It then remains in retreat for a random number of steps, as stored 
and decremented in L(l06), the retreat counter. When this counter 
reaches zero, the creature returns to the offensive. 

(Incidentally, you might note that all of these variable values 
assume the presence of no more than one creature in a room. This is 
all very proper, since the initialization section is written such that the 
48 creatures are separated only one to a given room. The 32 
treasures may be divided up between rooms in any old way.) 

The final element L(107) is used as a timer. The Executive 
loop reiterates fairly quickly; to decrement the strength levels both 
of the creature and the player at this rate is too rapid. Thus, the loop 
is written to weaken the opponents by one degree every ten loops. 
L(107) operates as a divide-by-ten counter, being refreshed to a 
value of 10 each time it counts down to zero. 

The next variable array is actually a string array, R(n). The 
characteristic string-designator, $, is left off, since the statement 
DEFSTR is used in, the initialization section to define R(n) as a string 
array. This saves one byte per line in the 90-line room string section. 
In that section each of the elements R(l) to R(90) are set equal to an 
explicit room string present on the program line. This arrangement 
does not make use of extra memory space used for strings in high 
memory. Rather, variable pointers are set up to address the room 
Strings where they reside in the program. In this way, characteris­
tics of a given room can be found simply by reference to the appro­
priate element R(n), a quick method and an equitable trade-off. 

The player can carry up to eight items in his carry-sack. You 
already know that the carried objects are assigned a location value of 

187 



91 in the L(n) array. Handling the carry-sack is vastly simplified if 
list of its contents is also kept current. The array C(n) perform thia 
fu . I s s 
nc~on. ? ea~h of the elements.C(l) to C(8), the object number of a 

c~ed ob~ect 1s :ecorded. ~outmes governing the taking and dro _ 
p1~g of objects dictate that. m the .case of fewe: than eight carn:d 
objects there are no gaps m the list. Thus, objects picked up 
recorded in the next available element of C(n), and all unu:~ 
elements are set to zero. If four objects are carried, for exam 1 
th · b. b Pe eir o ~ect num ers are stored in C(l) to C(4). The remainin~ 
elements, C(5) to C(8), have values of zero. The subroutine th t 
updates the inventory window of the status field makes use of C(n) : 
list the carried objects. 

0 

When the inventory window is updated, the object numbers in 
C(n) must be translated into object names that are meaningful to the 
player. So, an inventory name string is set up with a designation of 
T~$. This string contains 16 six-letter names, one for each of 
objects numbered 1 to 16, the tools. (Presently undefined objects 
have a dummy name of" ABC DEF.") The proper routine can extract 
the correct six-letter name from this 96-character string using some 
math and string-handling. Treasures, which can also be carried are 
not given names and are handled differently in the inventory window. 

In similar fashion, different kinds of creatures have identifying 
names. The 48 creatures are divided into eight kinds, from the weak 
spider to the terrifying dragon. When one of these beasts is encoun­
tered in a room, the routine that handles the message window must 
have access to a string of text that defines the eight creature names. 
For this purpose a second text string, the creature name string, is 
set up with a designation of TB$. This string contains eight eight­
letter names for the creatures; names shorter than eight letters use 
spaces to fill their substring. Again, string-handling and some calcu­
lation can extract the correct name. 

The final designated variable is the current room string, iden­
tified as CR$. The variable CR$ is really more of a convenience. 
Whenever a new room is entered, CR$ is set equal to the current 
room string, R(n). Subsequent routines can always refer simply to 
CR$, without needing to access the specific string array element. 
Otherwise, every reference to the appropriate room string would 
require the cumbersome expression R(L(O)). 

Having considered the variables used to support the game, let's 
tum our attention to the program code itself. For the bulk of this 
description, refer to the complete listing of Mazies and Crazies 
provided later in Chapter 13. 

188 

INITIALIZATION 
The initialization section of the program performs the following 

tasks: 

• Displays a welcoming message, 
• Establishes the size variables and string space 
• Places treasures randomly 
• Places creatures randomly 
• Defines text strings 
• Places tools randomly or specifically 
• Presets player values 

Initialization begins with BASIC line 2. The game title is 
printed, preceded by special character 23 to place the screen tem­
porarily in 32-character large-type mode, for appearance's sake. A 
CLS statement at the end of the initialization section returns the 
screen to normal mode. 

Next, string space and variable sizing is managed. The CLEAR 
statement is used to reset all variables and to reserve 256 bytes of 
string space, which is plenty for the nominal demand incurred by 
occasional string-handling operations and the maintenance of the 
current room string. (Most strings used in the game are explicitly 
defined and stored in program space.) The DEFINT statement is 
used to declare all variables beginning with A through Z to be 
integers. This saves plenty of memory space and calculation time. 

The major numeric arrays, L(n) and C(n), are sized using the 
DIM statement. Next, DEFSTR declares variables beginning with R 
to be strings. This is to save space in the case of the 90 explicit 
references to elements of the string array R(n), which is then sized 
using DIM. The elements of R(n) are then equated to their corre­
sponding room strings by a subroutine call to the room string 
section located at lines 1000 and beyond. 

Take a look at the room string section starting at line 1000. 
Notice the structure of each program line, which defines an explicit 
string. You should be able, with a little patience and some review of 
the previous appendix, to dissect both the door substrings and the 
feature substrings, and thereby to get a hint of what any given room 
should look like. Later, you'll study the code that actually performs 
this sort of analysis. 

Line 4 of initialization scatters objects numbered 17 to 48 (the 
treasures) to the four winds. The location array element L(n) for 
each item is set to a random value from 4 to 90. Thus, the treasures 
may be found in any room other than the home base (room 1) or the 

189 



two rooms directly adjacent to the home base (rooms 2 and 3). Also 
more than one treasure may turn up in any one room. ' 

The same cannot be said for the placement of creatures, which 
is performed in lines 6 to 8. Because of the way in which creatures 
are manipulated, it is necessary to limit them one to a room. To do 
this, a scratchpad string, X$, consisting of one character per room is 
set up. By accessing the variable pointer for this new string using the 
V ARPTR statement, the memory address of the first character in 
X$ is stored in variable P. Then, for each of the creatures (objects 49 
to 96), a random room number is generated. 

The idea is to use X$ to record which of the rooms contain 
creatures, and to flag those rooms as invalid choices if their numbers 
randomly come up again during the FOR-NEXT loop. For each 
randomly selected room number, the corresponding character of X$ 
is checked to see if it is a space (character 32) and therefore 
available, or a dash (character 45) and therefore unavailable. If it is a 
space, the creature is placed in that room, and the space is changed 
to a dash, to eliminate the room from future selection. If it is not a 
space, line 8 loops to itself, generating random room numbers until it 
finds an available room. The location array element L(n) is set to the 
room number selected. When the room numbers are all selected, the 
scratchpad string X$ is set to a null length, effectively removing it 
from active service. 

Notice again the use of the expression RND(87)+3, which 
selects a room number from 4 to 90. Creatures, as well as treasures, 
are not found in those first three rooms of the scenario. 

In line 10 the two text strings are explicitly defined. TA$, the 
mventory-name string, and TB$, the creature-name string, are 
created. Note that the spaces in each string are critical, since the 
proper extraction of a name depends on counting through the string 
character by character. 

Line 14 places certain tools in random rooms, again from 4 to 
90. Notice that a loop is not used (as in line 4), because not all tools 
are to be placed randomly, nor are all objects from number 1to16 
defined. (If an undefined tool is placed in a room, the action field 
shows a symbol, such as a comma for object 12, which can be picked 
up and carried, but serves no purpose. The inventory name is 
"ABCDEF.") 

Next, line 16 selectively places certain tools in room 1. Objects 
1 and 15, the torch and the sword, are really necessary for any 
progress into the maze, and so these are helpfully placed at the home 
base. Later you'll see that these are dropped back at home base if the 
player is killed and resurrected. 

190 

Finally, the player's location and strength are set. L(O) is set to 
1 placing the player at home base. His X, Y coordinates are set to 
piace him roughly at the center of the action field. His strength-level 
is preset to its starting value of 10, 000. 

A CLS statement concludes the initialization operation by 
clearing the screen (returning it to 64-character mode as well), 
preparing for display of the first room. On the whole, the pregame 
delay only amounts to four or five seconds. 

DISPLAY 
Although the next block ofBASIC text is properly the executive 

loop, one of the first things the loop does is plot the current room in 
the action field. The task of reading the room strings and painting the 
picture belongs to the display section. This section begins at line 
500. It contains the subroutine which we'll refer to as Dsplay. 

The steps taken by Dsplay to fill the action field and prepare the 
player for entrance into the new room are: 

1. Reset pertinent variables. 
2. Paint an empty frame over the action field. 
3. Plot the doors. 
4. Plot the features. 
5. Plot the player. 
6. Plot all objects. 
7. Set variables related to the creature, if it's present. 

Dsplay starts by clearing L(104), the variable that specifies 
which creature is present. Unless otherwise updated by step 7 of 
this routine the zero value indicates that no creature is in the room. 
Then the ~urrent room string (CR$) is created by accessing the 
prop~r array element of R(n), using L(O) which contains the present 
room number. 

The next step is to paint the basic square frame that forms the 
basis of the action field. This is done quickly by creating strings and 
printing them at the proper screen locations. (This is far q~ck~r.than 
looping through each screen location and to POK~ mdiv1d~al 
characters.) This has the additional advantage of erasmg anything 
that was previously within the boundaries of the action field, without 
having to blank out the entire screen with a CLS statement. Thus, as 
the player moves from room to room, the status field of the screen 
remains undisturbed. 

First the top and bottom parts of the frame are drawn, by 
printing t~o 56-character strings made up of white blocks (grap?ics 
character 191). Then the internal portion is blanked out and the sides 

191 



of the frame drawn by printing a series of strings consisting of spaces 
and leading and trailing white blocks. 

Now the routine is ready to loop through the room string CR$ to 
place doors on the screen. The string is examined using the MID$ 
statement with the variable N pointing to each successive character. 
N ii> set tc 1 at the end of line 500 in preparation for the loop. 

Line 502 begins with a test of the character in CR$ being 
pointed to by variable N. If that character is a dash, the routine 
knows that it has come to the end of the door substrings and it car 
proceed to the next step of the task. Otherwise, it begins to anatyzt:. 
the next few characters according to the guidelines set up in Chapter 
11. 

Remember that each ctoor substring consists of ten characters, 
the first two being the two-digit X-coordinate of the door, and the 
next two being the two-digit Y-coordinate. Using MID$ these pairs 
of characters are extracted, and they are converted to the original 
numeric values using the statement VAL. With the variables X and Y 
set to these values, POKE the door onto the screen using the 
expression X+64•Y+15360, which converts X,Y notation into a 
specific screen memory address. Note that the door is represented 
by the character numbered 128 which, though it looks like a space, is 
really a blank graphics character distinguishable by the program. 

After a given door substring is accessed, it is bypassed by 
adding 10 to the variable N. Then line 502 is executed again. Line 502 
loops to itself in this manner until the dash is encountered. This is the 
reason that all room strings require a dash, even if there are no 
subsequent feature substrings. If there were no dash, line 502 would 
try to read beyond the length of CR$, causing an error. 

OncP all doors are plotted, line 504 accesses the feature sub­
stnngs. variable N is already set to the character position just one 
past the dash, in readiness for this next scan. Line 504 begins with a 
test to see if the end of CR$ has yet been reached. If not, the 
subsequent characters are examined according to the format for 
feature substrings presented earlier. 

For all types of feature substrings, the second through the 
fourth characters store the X, Y coordinates for the beginning of the 
feature plot. These coordinates are extracted using MID$ and VAL, 
similarly to line 502. Then, the specific feature type must be 
selected. The first character of the feature substring is a digit from 1 
to 6. This digit is extracted and used to select the appropriate 
program line for that feature, using the calculated jump statement 
ON GOTO. The program lines that handle the plotting of features 
are located in the block of lines from 506 to 512. 

192 

Feature type 1 is a horizontal line. The code on line 506 allows 
very rapid display of such lines, because it uses the BASIC PRINT@ 
function rather than plotting each point in the feature with POKE 
commands. The expression X+64•Y provides the screen location 
for the PRINT@statement. A string is built of graphic characters 
191. The length is determined by examining the sixth and seventh 
characters of the feature substring; these are restored to true 
numeric form and used to complete the STRING$ function. Once 
this string is printed, the pointer variable N that keeps track of the 
location in the room string is bumped by seven characters, thus 
skipping on to the next feature substring. Looping back to line 504 
checks to see if more features are encoded. 

Line 508 handles the other three types of line features. The 
variable Sis assigned as a pointer to track the plotting of each point in 
the line that reaches screen memory by a POKE. Using the already 
extracted X and Y coordinates, S is set to the specific screen 
memory location at which the line starts. 

Now, if you think about it, there is an easy way to figure out 
which memory location is next in the line plot. Consider first the 
vertical line. Each point in the line is exactly 64 memory locations 
further along than the previous point. That's because the TRS-80 
screen is 64 characters wide. Thus, to plot a vertical line, the pointer 
S is increased by 64 each time. 

What if Sis increased by only 63? The next point is below and to 
the left of the first. If this is repeated, a diagonal line of positive slope 
is effectively plotted. Similarly, adding 65 to S creates a negative 
sloping diagonal line. 

The feature number which is the first character of the feature 
substring was chosen in these three cases so that adding 61 to the 
feature number produces the proper number to add to S. Line 508 
extracts the feature number, converts it and adds it to 61, storing the 
result in variable D. Then a loop is set up, from one to the line length, 
which is extracted as previously from characters 6 and 7 of the 
substring. Using the contents of D to produce the proper line angle, 
POKE the graphic character 191 successively into screen memory 
locations. When the process is complete, the next substring is 
sought. 

Feature number 5 is a field of fire, as represented by nine 
ampersands (&). This field is plotted around the point specified by 
the X and Y coordinates already extracted. Again, to speed things 
up, the PRINT@statement is used to print strings, rather than using 
POKE. The field is created by printing three strings of three amper­
sands each, starting at the point to the left and above the location 

193 



specified by the X, Y coordinates. This starting location, for the sake 
of the PRINT@statement, is calculated by subtracting 65 from the 
center point address. 

Line 510 creates the fire field. Three times in a row, a string of 
three ampersands is printed, increasing the starting location by 64 
each time to assure that a perfect three-by-three box is generated. 
Then the substring pointer, variable N, is bumped by five to access 
the next substring. 

The final feature is the magic fruit, which is simply a period(.) 
placed at the point specified by X and Y. Line 512 calculates this 
memory address and use a POKE to place the number 46, the ASCII 
code for a period, into that location. The substring is skipped and line 
504 is again executed. 

When all feature substrings are serviced, the player must be 
plotted onto the action field. Array elements L(97) and L(98) give the 
player's X, Y coordinates in the room; these are reset by the routine 
that moves the player. If the entrance is through a standard door, 
this plotting location is right next to a door in the display. Using 
POKE character 64 is placed in the proper location, displaying an at 
sign (@), which is the symbol for the player. 

Next, all objects present in that room must be plotted. This 
occurs in three stages, since there are three distinct categories of 
objects. 

The first objects to plot are the tools, with object numbers 1 to 
16. A simple loop checks the location array elements for each tool. 
Each object that has a location number corresponding to the present 
room (stored ih variable L(O)) is plotted. The character used is the 
object number plus 32, which produces the symbols described ear­
lier for objects. 

Where do you plot these tools? There are no variables that 
store the X, Y coordinates of these objects. Therefore, they are 
placed on the screen randomly. A subroutine is called to locate a 
viable X, Y location for an object. This subroutine is called Randxy, 
and it is found on line 940. In it random values for X, Y are generated; 
X equals 1 to 54 and Y equals one to 14, which selects a random spot 
within the outer frame of the action field. You do not want to plot that 
object right on top of a feature just plotted! Randxy checks the 
proposed location using PEEK. If there is a blank space there, it 
returns; otherwise, it loops, proposing new random locations until it 
finds a suitable spot. 

The same procedure occurs for the treasures, objects 17 to 48. 
Randxy is used to find locations on the screen for treasures that are 
located in the current room. This time, however, the number placed 

194 

into screen memory (using a POKE) is character 36, the dollar sign 
($). 

Finally, the creatures, objects 49 to 96, are checked to see if 
any are in the room. The FOR-NEXT loop in this case is left open if a 
match is found, because there is never more than one creature in a 
room. A random location is found using Randxy, character 42, the 
asterisk (•), is put in the address using a POKE. 

Assuming a creature is not found, Dsplay is done, and it returns 
to the calling routine. If a creature is in the room, however, miscel­
laneous variables are set. L(lOl) and L(102), as the creature's X and 
Y coordinates, are set to the random values decided by Randxy. 
Then L(104) (which is zero if no creature is present) is set to the 
creature's object number. Dsplay then returns. 

THE EXECUTIVE LOOP 
The Executive loop is the block of code stretching from line 

100 to 130. Depending on the present environment, the Executive 
loop performs the following functions: 

• Refreshes the message window and action field 
• Initializes the creature (if there is any) 
• Refreshes the status field 
• Updates the strength window 
• Handles an input command 
• Directs the creature's motion or attack 
• Handles the creature's death 
• Handles the player's death and resurrection 

The first task is easy. A subroutine called Clrmes, located on 
line 920, is called to clear the message window. (Clrmes simply 
prints strings of blanks at the two message window lines, locations 
56 and 120). Then a subroutine call to Dsplay refreshes the action 
field. For the next step, the variable L(104) is checked to see if a 
creature is present. If it is a zero, there is no creature and the third 
step is performed. Otherwise, the strength level of the creature is 
calculated and stored in L(103). This strength level depends on 
which of the eight types of creature this one is. Using the creature's 
object number stored in L(104), the strength level is generated, 
being from 5000 for the lowly spider to a full 12050 for the fearsome 
dragon. 

The message "BEWARE!" is printed in the message window, 
along with the name of the creature. The creature name string, TB$, 
is accessed and the proper eight-character name is extracted using 
MID$ and some calculations on the object number. The resulting 

195 



Fig. 12-3. Screen addresses for 
the status field. 

56 
120 
184 
248 
312 
376 
440 
504 
568 
632 
696 
760 
824 
888 
952 
1016 

MESSAGE 
FIE.LO 

STRENGTH 
FIELD 

name is printed. Finally, L(105) is set to 1. This variable represents 
whether the creature is attacking or retreating; a value of 1 indicates 
an attack, while -1 indicates a retreat. 

Creature or not, the next step is to refresh the status field. This 
is done by calling a subroutine named Status, which is located on lines 
900-902. Figure 12-3 shows the layout of the status field with the 
screen addresses used by the PRIN'I@statement. Status first prints 
the headings and appropriate values for the room window and 
strength window, using PRINT@. Next, a loop scans the inventory 
array C(n). For each element of C(n) that yields an object number 
(and thus an object carried), the element number from 1 to 8 is 
printed. If the object is a treasure, the prefix TR is printed, along 
with the treasure number from 1 to 32 (which is simply the object 
number minus 16). If the object is a tool, the inventory name string, 
TA$, is accessed to extract the proper six-character object name to 
be printed. As soon as a zero value is found in an element of C(n), the 
loop is completed. To clean up remnants of a previous inventory 
listing, a blank line is printed right after the last displayed carried 
item. Next, the strength level of theplayer, stored in L(99), is 
printed in the strength window. 

The keyboard is scanned for any command input, using the 
INKEY$ function. Commands fall into three categories: (1) the 

19f\ 

arrow-key commands that access the Move handler, (2) the 
numeric-key commands which access the Drop handler, (3) the 
alphabetic-key commands. 

Pressing the arrow keys produce ASCII characters 8, 9, 10 and 
91 through INKEY$. The Executive loop checks for this and jumps 
to the handler Move, at line 260, if so. Otherwise, a call to Clrmes 
prepares the message window for responses to the next commands. 
(Clearing the message window between commands makes it easier 
to tell when new messages are printed.) 

The Executive loop jumps to Drop, at line 230, if a numeric key 
is pressed. If a character comes in that is outside of the alphabetic 
range, the program skips the command handling altogether. 

Line 106 contains the vector list that provides the BASIC 
addresses for each single-key command handler. There are 26 
vector addresses, one for each letter of the alphabet. Letter inputs 
that are not implemented are simply vectored past the command 
handling and ignored. The handlers themselves, when they com­
plete their tasks, vector back to one of a few entry-points in the 
Executive loop. 

MOVING THE CREATURE 
Assuming no command was input, the creature must now be 

moved. Line 110 checks L(104) to see if there is a creature in the 
room. If not, it skips on to the next step. Otherwise, a proposed next 
position for the creature is generated. This is done by comparing the 
present X, Y coordinates of both the player and the creature. The 
new location of the creature is one degree closer to or farther from 
the player. The attack or retreat variable L(105), which is either a 1 
or a -1, is used as a multiplier to determine which direction t· 
move. 

The results of a move in the proposed direction aFe considered 
before the move is performed. This check is done by examining the 
contents of the new location on the screen, which is in ASCII-coded 
form in variable D. There are six cases to deal with: 

• Contact with the player 
• Contact with the bomb 
• Contact with the fruit 
• Contact with the potion 
• Contact with an empty space 
• Contact with an obstacle 

In the case ofrontact with the player, line 112 prints a warning 
message stating the name of the creature followed by "ATTACKS!" 

197 



(The creature name string is accessed as before for the proper 
name.) Next, to indicate that the player has just been bitten, the 
location is blinked. This is done by quickly placing the all-white 
graphic character 191 into the location (with a POKE), then restor­
ing it to character 64, the player symbol. The creature is set to 
retreat mode by storing a-1 in L(105). Subsequent moves are in the 
opposite direction from the player. The retreat counter L(106) is set 
to some random value from one to 20; a creature may flee far, or he 
may attack again almost immediately. 

The player's damage due to attack is calculated. The player's 
strength level is reduced by one-eighth of the creatures' strength 
level. In that way the stronger the creature, the more the damage. If 
the player carries the shield, he is somewhat protected. The location 
of object 8 (the shield) is checked to see if it is in the carry-sack 
Oocation 91). If so, the player's strength level is boosted by 500 
points after an attack. On line 114 the effects of the damage are 
evaluated: did the player die? If not, the next step of the Executive 
loop is performed. If so, line 128 is executed, handling the player's 
death and resurrection. 

When the player dies a loop is set up, causing the inventory 
array C(n) to clear all contents, and every object carried is moved to 
the room where he died. Then L(lOO), which keeps track of the 
number of player deaths for scoring purposes, is increased by one. 
The screen is cleared, and a message is displayed. On line 128 an 
INKEY$ loop scans the keyboard, waiting for ENTER to be 
pressed, indicating that the player is ready to continue. To con~ue 
the program reenters at line 16, which dumps the player back mto 
home base (room 1) along with the torch and the sword Gu~t to be 
fair, since he couldn't get far without them). 

All of the above occurs if the creature contacts the player. What 
if it contacts the bomb? On line 116 this case is checked. If so, a loop 
is set up that effectively causes the bomb to blink in a random pattern 
of graphic characters; that is, it explodes. This spot is blanked out, 
and the bomb (object 16) is randomly sent to a room from 3 to 90. 

Line 124 handles the creature's death. The creature's symbol 
on the action field is blanked out by inserting a space with a POKE. A 
message in the message window proclaims, "AT LAST! IT'S 
DEAD." The creature's location is set to zero (where only the 
scoring routine can find it), and then L(104) is set to zero to indicate 
to the Executive loop that the current room no longer contains a 
creature. The program slips into line 126, which updates the play~ 
er's strength level (as you'll see shortly). 

198 

What if the creature hits the fruit or the potion line? Line 117 
handles these cases. In the case of the fruit, the symbol for the fruit 
is replaced with a space, again using POKE, and the creature's 
strength level is boosted by a certain random value. If it is the potion, 
the symbol for the position is blanked. The creature's strength level 
is set to 10,000, and the potion (object 11) is sent to some random 
room from 3 to 90. 

What if the creature contacts empty space? If so, it is free to 
move to that space. Line 118 blanks out the creature's present 
location, updates the creature's X, Y coordinates in L(lOl) and 
L(l02), and puts its symbol into the new location-using a POKE. In 
line 120, the retreat counter is updated if L(105) is a -1; if the 
retreat counter runs down to zero, the attack or retreat flag L(105) is 
toggled to a 1, and the creature switches to attack mode. Then in line 
122, the creature's strength is updated if the counter L(107) is ready 
to overflow. (This counter divides the Executive loop iterations by 
ten.) If the creature's strength runs out, the routine handling its 
death is executed on line 124. 

Finally, what if the creature encounters some sort of obstacle, 
such as, a wall or an object, other than those already handled? Line 
119 sets the creature to attack mode if it is retreating when it hits the 
obstacle. Creatures rebound from obstacles, as if backed to the wall 
and desperate. If the creature is already attacking but simply can't 
see its way clear to get at the player, it must choose an alternate 
path. It does this by generating up to three possible new X, Y 
coordinate pairs as random choices. If one of these random locatiens 
contains only a space, the program jumps to line 118 and handles it 
normally. Otherwise, the creature is blocked and must wait for the 
next iteration of the execution loop to be freed. 

REMAINDER OF THE LOOP 
Line 126 completes the Executive loop by updating the 

strength-level of the mazer himself. This update, as is true for the 
creature, occurs only once every ten iterations of the loop. The 
counter L(107) is decremented; if it has still not overflowed, the loop 
begins its next iteration starting with line 104, the command input 
analyzer. If it does overflow, then it is reloaded with a value of ten. 
Then the mazer' s strength is degraded by a point. If this degradation 
results in a strength-level of zero, the mazer dies, and the program 
continues on into line 128, which handles mazer death. 
THE MOVE HANDLER 

The four arrow-keys are used to invoke the handler called 

199 



Move, located on lines 260 through 288. Move must detennine the 
proposed new location and handle contact with various items. 

Move begins by deriving the net direction desired based on the 
key ·pressed. Of the four arrow-keys, the up-arrow key is the 
"oddball," generating a character value of 91. The value of the key 
pressed is still resident in variable D, in which it was placed by the 
Executive loop. Line 260 changes the value of D to be more consis­
tent, such that the arrows yield values of 8, 9, 10, and 11. Using 
these numbers, line 262 vectors to other lines that translate the 
arrow direction into X and Y values: 1 if a positive motion, -1 if 
negative, 0 if no motion. These numbers are then added to the 
present X, Y coordinates of the player to generate a proposed new 
position. The variable Q stores the screen contents of the new 
position, examined by POKE. 

If the motion causes contact with a space, line 274 blanks out 
the mazer's previous position, updates his X, Y coordinates in L(97) 
and L(98), POKEs the player symbol onto the Action Field at the 
new location, and depletes his strength-level by five points to 
indicate gradual tiring in travel. If this tiring results in a strength­
level of zero or less, the player-death routine of line 128 is exe­
cuted; otherwise the Executive loop is reentered. 

If the Bomb is touched, the message "BOO MM!! YOU FOOL" 
is placed in the message window by line 276. A loop causes the bomb 
on the screen to flicker with random graphic patterns. Then the 
bomb is randomly moved to another room, and the player-death 
routine is invoked. 

If the portal is contacted, line 278 generates a random room 
number from 3 to 90. If the torch is neither in that new room nor in 
the player's possession (as determined by checking L(l), the torch 
location variable), the message "NOTHING HAPPENS!" is dis­
played and the Executive loop is re-entered. Otherwise, the word 
"POOF! " is printed right near the player in the Action Field. Then 
after a delay, the player's location variable L(O) is set equal to this 
random new room, and the Executive loop is re-entered early, such 
that the action field is refreshed. 

If fire is touched, then line 280 blanks the old location, and the 
player is moved to the new location much like a regular move to a 
space. However, in the process, his strength-level is docked by a 
random amount, and the message "FIRE!! YEO WW!!" is shown. As 
usual, if the player runs totally out of strength, the death-routine is 
executed. 

If a door is contacted (character 128), line 282 checks to see if 
the torch is being carried. If not, line 288 prohibits motion with the 

200 

warning, "TOO DARK IN THERE". Otherwise, line 28~ sets uo ::i 

loop to compare the door coordinates with those in the Current 
Room String Door Substrings. Once a match is found, L(O), the 
player location, is set to the room number extracted from the door 
substring. If this new room number is 92, then it is not a destination 
at all, but indication of death by falling into a pit; line 286 handles this 
case with a message and a one-way trip to the player-death routine. 
Otherwise, the X, Y coordinates of the player are set to the destina­
tion values extracted from the Door Substring, and the Executive 
loop is reentered early, when the Action Field is refreshed. 

THE HANDLER TAKE 
Pressing the "T" key invokes the handler Take, locatea on lines 

210 to 220. The following cases are considered by Take· 
1. Is the mazer carrying too much? 
2. Is there anything nearby to take? 
3. Is the item a Fruit? 
4. Is the item a Potion? 
5. Is the item a Treasure? 
Line 212 begins by counting through the inventory array with 

variable K, seeking an empty or zero slot to place the new item. If it 
finds none, the "TOO MU CH TO CARRY" message is displayed and 
TAKE is done. 

Line 121 then scans the immediate surroundings for portable 
objects. The starting point for the scan is the screen location above 
and to the left of the player. A nested loop using I and J checks nine 
locations forming a three-by-three block around the player. If the 
scan finds a symbol that is not a creature, a wall or fire, or the player 
himself, the player can pick it up. If the scan completes without 
finding such an item, a "NOTHING TO TAKE!" message is dis­
played and the Executive loop takes over. 

Line 214 blanks out the object that is being taken, then checks 
for special cases. If the object is a potion, the mazer's strength-level 
is restored to 10,000, an appropriate message is displayed, and the 
potion is randomly sent to some other room. If the object is a fruit, a 
random increase in strength-level occurs, a "THAT WAS TASTY!" 
message is shown, and Take is finished. 

Line 216 continues special checking. If the object is identified as 
a treasure, it must be determined which of the 32 treasures it is. A 
loop looks for which treasures are in the current room; the first one 
encountered in the loop is assumed to be the one presently being 
taken. 

201 



Treasure or not, the object is added to the player's inventory by 
setting its location number to 91 and plugging its object number into 
C(K), where K is the next available inventory slot. A final message 
acknowledges the transaction and returns the program to the 
Executive loop. 

THE HANDLER DROP 
Pressing any numeric character from 1to8 invokes the handler 

Drop, located on lines 230 to 236. 
Line 230 sets up a scan area of three-by-three screen locations, 

just as Take did. This time, however, Drop is simply looking for a 
blank space at which to drop a given item. If it cannot find a space 
(character 32), it assumes the player is blocked in close, and refuses 
to drop any item, warning, "NOWHERE TO DROP!". 

Otherwise, line 232 takes the ASCII value of the numeric key 
pressed (still stored in variable D) and converts it to the value from 1 
to 8 by subtracting 48. The Inventory slot referenced by this number 
gives up its carried object; the location variable for the object is set to 
the current room number. The last part of line 232 is added so that 
treasures (i.e., portable objects numbered above 16) will be dis­
played using the proper symbol. 

Line 234 POKEs the dropped object symbol into the located 
nearby space. Then line 236 essentially compresses the remaining 
entries in the Inventory array C(n), such that there are no spaces. 
Drop is done, and the Executive loop is re-entered. 

THE HANDLER QUIT 
The key "Q" invokes the Handler Quit, which can be found on 

lines 240 to 246. It performs the following functions: 
1. Evaluates treasures retrieved 
2. Evaluates creatures slain 
3. Evaluates mazer deaths 
4. Displays the current score 
5. Gives player a chance to quit. 
Line 240 sets variable J to zero; J will be used to tally the score. 

To evaluate the treasures, a loop counts through the location array, 
finding treasures that reside at home base (room 1). For each safe 
treasure, points are added to score J based on the treasure number. 
Treasures are worth anywhere from 17 to 48 points each. 

Next, line 242 evaluates the slain creatures. A loop awards 
points for every creature found residing in "room zero" (having an 

202 

L(n) value of zero), indicating that it has been killed. Based on the 
size of the creature, points awarded range from 9 to 16 points each. 

Finally, player deaths are subtracted from the total. Checking 
L(lOO), which is used to keep track of these deaths, the player is 
docked 30 points per death. 

Using PRINT@statements, line 244 displays an explanatory 
message which includes the total score at present. Quit uses most of 
the status field to print this text. Then line 246 accepts input from the 
player. A "N" answer to the question of "GIVE UP?" runs a quick 
loop to blank out the entire status field, and the Executive loop is 
re-entered at the point where the subroutine Status is called to 
refresh that Field. An answer of "Y" places the cursor in the upper 
left comer of the screen and terminates the BASIC program with an 
End statement. Any other input simply loops line 246; this avoids the 
frustration of ending a game by error. 

THE HANDLER SHOOT 
If the "S" key is pressed, the Handler Shoot is executed; it 

resides in the block of lines beginning at 250. The following con­
tingencies must be allowed for by Shoot: 

1. Does the mazer have a Bow? 
2. Does the mazer have an Arrow? 
3. Is there a creature in the Room? 
4. Is the creature too tough for the Arrow? 
5. Does the shot miss? 
Line 250 checks the first three cases. By referring to the 

Location array L(n), SHOOT can tell if the Bow is being carried; it 
will have a Location value of 91. If not, a message proclaims, "YOU 
HAVE NO BOW!" and the handler exits. Similarly, an absence of 
the Arrow gives the warning, "YOU HAVE NO ARROW'. By 
checking L(104), Shoot can determine if a creature is in the room. If 
not, the message is "ZZINGG!!" and the arrow is randomly shot out 
into the room. 

Line 256 places the spent arrow in the Action Field. A call to 
Randxy get a likely location. The corresponding L(n) value is set to 
the room number, and the arrow symbol is POKEd into the random 
location. Then a call is made to a subroutine termed SUBINV, 
whose task is to remove a given object from the Inventory array 
C(n); this subroutine is found on line 910. 

SUBINV expects the object number of the object to be dropped 
to be stored in variable A. It loops through the eight elements of 
Inventory array C(n) until it finds the item. It then deletes the item 

203 



by copying all subsequent elements of the array backwards by one. 
C(8) is always set to zero, since it is set to the contents of the 
always-unused C(9). 

After calling SUBINV to remove the arrow from the inventory, 
the variables that control the retreat mode of the creature are set 
such that the creature is in retreat. Now, in this present case, there 
is no creature, but changing these variables does not harm in such a 
case. Soon, though, this same line 256 can be used to handle the case 
in which the shot drives the beast away. 

Assuming there is a creature in the room, line 252 checks to see 
how powerful it is. The arrow will bounce off of the hide of the 
creature if its Strength-level exceeds 5000. H so, the message 
"BOUNCES OFF HIM!" is printed and line 256 randomly drops the 
useless arrow elsewhere in the room: otherwise, the arrow may hit 
the creature. 

To determine whether or not the arrow hits its mark, the actual 
distance from the mazer to the creature is calculated, using the 
square root of the sum of the squares of the X,Y coordinates. This 
value may range anywhere from 1 to 55. The distance is subtracted 
from 81 and used as the basis of a percentage test. A random 
percentage is compared to the value, such that the closer the target, 
the greater the chance of a hit. The maximum chance of hitting the 
creature at any one shot is no better than 80 percent. 

H the shot fails, the message "RA TS!! MISSED!" is displayed 
and line 256 again drops the used arrow somewhere in the room. 
Otherwise, line 254 sets the arrow's location to the room number, 
and the arrow symbol is POKEd so as to replace the symbol of the 
vanquished creature. SUBINV is called to remove the arrow from 
the inventory array C(n). The Creature's Location variable assumes 
a zero value, and the variable L(104) is zeroed to indicate the room 
is no longer occupied by a creature. A message proclaims, "GOT 
HIM! VICTORY!", and the handler exits. 

THE HANDLER FIGHT 
Pressing the key "F" causes the execution of the handler Fight, 

which is located from line 290 to 298. The following cases must be 
handled by Fight: 

1. Does the mazer have no sword? 
2. Is there no creature to fight? 
3. Is the creature too far away to hit? 
Line 290 checks the location array to see if Object 15, the 

sword, is present in the player's carry-sack. H not, the message 

204 

window states, "YOU HAVE NO SWORD." If L(104) betrays that 
there is no creature in the room, the snide remark "FIGHTING 
SHADOWS?" is shown. 

By subtracting the X, Y coordinates of the two opponents and 
taking the absolute values, a limit can be set on how close the 
creature need to be hit with the sword. Line 292 determines that if 
the creature is not directly adjacent to the player, the message, 
"MISSED IT! FIE!" is displayed. Then line 298 decreases the 
player's strength level by 5 percent. If the player's strength runs out 
entirely, he dies, and the death routine at line 128 is executed. 

If the sword hits the mark, line 294 subtracts from the crea­
ture's strength-level an amount equal to 20 percent of the player's 
strength. If this does not totally drain the creature, the message "A 
GOOD SLASH!" is shown in the message window. Also, a 50-50 
chance is generated that the creature is put to flight (switched into 
retreat mode) by the onslaught. If the swing does empty the crea­
ture's strength level, line 296 prints the message "FINISHED HIM 
OFF!" The creature is dispatched to room 0, the room is flagged as 
having no creature, and the creature's symbol is blanked out. 
Whether or not the creature is killed by the blow, line 298 comes into 
play, draining the player's strength a bit. 

205 



Chapter 13 

Mazies and Crazies: The Listing 
That's all there is to it! All that remains to put Mazies and Crazies in 
operation is to type it into your TRS-80. The full listing follows for 
that purpose. 

After running "Mazies," you'll find that there are some things 
you might wish to change. Perhaps the scoring values don't suit you. 
Maybe you wish there were a few more commands, or some dif­
ferent kinds of creatures. Almost certainly you ·will want to experi­
ment with the appearance of the individual rooms. As in the text-type 
adventures, the sky (or at least the memory size) is the limit. 

206 

INITIALIZATION SECTION 
2 CLS: PR I NTCHR$ ( 23): PR I MT@532, "l:/ELCO 
ME. TO":PRINT@590,"MAZIES & CRAZIES!" 
:CLEAR256:DE.FINTA-Z:DIML(107),C(9):D 
EFSTRR:DIMR(90):GOSUB1000 
4 FORN=l 7T048: L ( fJ) =RND ( 8 7) + 3: IJE.XTN 
6 X$=STRING$(90, 11 11 ):P=PEEK(VARPTR(X 
$)+1)+PE.EK(VARPTR(X$)+2)*256-l:FORN= 
4'.H09G 
8 ~·1=RtJ0(87)+3: IFPEEK(P+M)<>32THEN8EL 
SE POKE P+M, 4 5: L ( N) =M: N EXTN: X$ = 1111 

10 TA$="TORCH ABCDEFPORTALABCDEFABCD 
EF.4UCDEFA!3CDEFSH I ELDBOH ABCDEFPOT I 
Ol~ACCD E. FARRO\'J FRUIT SWORD BOMB 11

: Tl3 
$= 11 SPI DER SNAl~E LAtJDCRAl3SCORPI ONH 
UGE. l3EE.AMOEBA TROLL DRAGOtJ 11 

14 L(3)=RND(87)+3:L(8)=RND(87)+3:L(9 
)=RN0(87)+3:L(ll)=RN0(37)+3:L(l3)=RN 
0(8/)+J:l(16)=RN0(87)+3 
16 L(l)=l:L(15)=1:L(O)=l:L(97)=28:L( 
98)=G:L(99)=10000:CLS 

Fig. 13-1. Initialization section for Mazies and Crazies. 

EXECUTIVE. LOOP 
100 GOSUB920:GOSUBSOO: IFLC104)<>0THE 
NL(103)=(L(104)-49)*150+SOOO:PRINTQ5 
6, II BE \JAR E ! II; : PR I NT@ 12 0, MI D$ (TB$, F I x ( 
(L(l04)-4~)/6)*8+1,3);:L(105)=1 
102 GOSUl3900 
104 PRINTQ1016,L(99);:X$=1NKEY$:1FX$ 
=' 111 THEfHlOELSED=ASC(X$): I FD>7ANDD<ll 
ORD=91 THEN2GOE.LSEGOSUl3920: I FD<5 7AtJDD 
>48THE.tJ230ELSE I FD<700RD>90THE.IH10 
lOG ON0-64GOT0110,110,110,110,110,29 
0,110,110,110,110,110,110,110,110,11 
0,110,:40,110,250,210,110,110,110,11 
0,110,110 
110 IFL(104)=0THEN126ELSEX=L(10l)+SG 
N(L(97)-L(101))*L(105):Y=L{102)+SG~( 

Fig. 13-2. Executive loop for Mazies and Crazies. 

207 



L(98)-L(102))•L(105):0=PEEKCX+64•Y+l 
5360):1FD<>G4THEN116 
112 GOSUB920:PRINT@SG,MID$(TB$,FIX(( 
L(104)-49)/6)•8+1,8);:PRINTQ120,"ATT 
ACKS!";:POKEL(97)+64•L(98)+15360,191 
:POKEL(97)+64•L(98)+15360,G4:L(105)= 
-l:L(106)=RNDC20):L(99)=L(99)-L(l03) 
/B:IFL(8)=91THENL(99)=L(99)+500 
114 IFL(99)>0THEN122ELSE128 
116 IFD=48THENFOR1=1T020:POKEX+G4•Y+ 
15360,RND(64)+128:NEXT:POKEX+G4•Y+15 
360,32:L(16)=RND(87)+3:GOT0124 
117 IFD=46THENPOKEX+64•Y+l5360,32:L( 
99)=L(99)+RND(4000)+2000:GOT0120:ELS 
EI FD=43TllENPOKEX+64•Y+15360, 32: LC 99) 
=10000:L(ll)=RNDC87)+3:GOT0120 
118 IFD=32THENPOKEL(101)+64•L(l02)+1 
5360,32:L(l0l)=X:L(l02)=Y:POKEX+G4•Y 
+15360,42:GOT0120 
119 I FL ( 10 5 ) =-1 TI lE r J L ( 10 5 ) = 1ELSEF0 R I = 
1T03:X=L(l0l)+RND(3)-2:Y=L(l02)+RND( 
3)-2:D=PEEK(X+64•Y+l53GO):IFD<>32THE 
NNEXT:ELSE118 
120 IFLC105)=-1THENL(l06)=L(l06)-l:I 
FLC106)<=0THENL(105)=1 
122 IFLC107)>1THEN12GELSE.L(103)=L(l0 
3)-l:IFL(l03)>0THEN12G 
124 POKELtl01)+64•L(l0:)+153G0,32:PR 
INT@SG,"AT LAST!";:PRINTQ120, 11 1TS DE. 
AD"; :LCLC104))=0:LC104)=0 
126 L(107)=L(l07)-l:IFL(107)>0THEN10 
4ELSEL(107)=10:L(99)=L(99)-l:IFL(99) 
>OTHEN104 
12 8 F 0 R I = 1T0 8 : LC C ( I ) ) = L( 0 ) : C ( I ) = 0 : ~l E 
XTI :LC100)=L(100)+l:CLS:PRINT@512,"Y 
OU ARE QUI TE DE.AD. BUT WE CAtJ RESURR 
ECT YOU! 
WHE.N YOU ARE RE.ADY, PRESS <ENTER>"; 
130 X$=1NKEY$:1FX$=CHR$(13)THENCLS:G 
OT016:ELSE130 

Fig. 13-2. Continued from page 207. 

208 

HANDLE.RS 
11 TAKE 11 

(Press T Key) 

210 FORK=lT08: I FC(K)<>OTHEtrnEXTK: PRI 
~JT@S6, 11 TOO MUCH";:PRIMT@120,"TO CARR 
Y"; :GOTOllO 
212 N=L(97)+G4•L(98)+1529S:FORl=NTON 
+128STE.P64:FORJ=OT02:A=PE.EK(l+J)-32: 
I Ff>.> J/\i~ DA< 17 A~J DA<> 1OAIJDA<>6THEN 214 EL 
SENE.XTJ, I :PRllH(2 5G,"NOTHING 11

; :PRllJTQ 
120,"TO TAKE.!"; :GOTOllO 
214 POKE.l+J,32: IFA=llTHE.rJL(99)=10000 
: PR I NIQS G, 11 1 IEA LT HY 11

; : PR I NTQ 12 0, "AGA I 
IJ ! 11

; : LC 11) =RN D ( 87)+3:GOTO110 : ELSE I FA 
= 14 THE. iJ L ( 9 9) = L ( 9 9) +RN D ( 4 0 0 0) + 2 0 0 0 : PR 
1;Hl::!SG, 11 THAT \'JAS";:PRINTQ120,"TASTY! 
11

; :GOTOllO 
216 IFA=4THE.NFORA=17T048:1FL(O)<>L(A 
)THE.NIJE.XTA: 
213 L(A)=91:C(K)=A 
220 PRltJT@SG,"OKAY!"; :PRINT@l20, 11 

11
; :GOT0102 

Fig. 13-3. Handler Take. 

"DROP" 
(Press Numeric Key) 

230 IJ=L(97)+64•L(98 )+15295: FORI =NTOr! 
+128STEPG4:FORJ=OT02:1FPEEK(l+J)<>32 
THE.NtH:.XTJ, I :PRINTQ5G, 11 NO\"JHE.RE"; :PRIN 
T@120,"TO DROP!";:GOTOllO 
232 K=C(D-48):L(K)=L(O): IFK>lGTHEtJK= 
4 
234 POKEl+J,K+32 
236 FORl=D-48T08:C(l)=C(l+l):NE.XTl:G 
OT0102 

Fig. 13-4. Handler Drop. 

209 



"QUI T11 

(Press Q Key) 

240 J~O:FORl=l7T048:1FL(l)<>lTHENNEX 
T:ELSEJ=J+I :NEXT 
242 FORl=49T096:1FL(l)<>OTHENNEXT:EL 
SEJ•J+FIX((l-l)/6)+l:NEXT 
244 J=J-LC100)•30:PRINT@l84,"IF Y.OU 

11 ;:PRINT@248, 11HERE TO 11 ;:PRINT@312, 
"STOP NOH";:PRINT@376, 11 YOUD ";:PR 
INT@440, 11 HAVE A 11 ;:PRINT@504,"SCORE 
OF";:PRINT@568,J;:PRINT@632, 11WANT T 

0 ";:PRINT@696, 11 GIVE UP?";:PRINT@760 
,"CY OR N)"; 
246 X$=1NKEY$:1FX$= 11 N11 THENFORl=OT014 
:PRINT@56+1•64, 11 11 ;:NEXT:GOTO 
10 2ELSE IF X$ ="Y"THEN PR I NT@O, 1111

; : END: E 
LSE246 

Fig. 13-5. Handler Quit. 

"SHOOT" 
(Press S Key) 

250 I FL(9) 091THENPRI NT@56J "YOU HAVE 
11 ;:PRINT@l20,"NO llOUl";:GOTOllO:ELSE 
I Fl ( 13) 09 lTHENPR I NT@5 6, "YOU HAVE 11

;: 

PRINT@l20, 11 NO ARROW 11 ;:GOT0110:ELSEIF 
LC104)=0THENPRINT@56, 11 ZZINGGI 111

; :PRI 
NT@l20, 11 ";:GOT0256 
252 IFL(l03))5000THENPRINT@56,"BOUNC 
ES"; :PRINT@l20,"0FF HIM!"; :GOT0256:E 
LSEN=SQR((L(l01)-L(97))[2+(L(l02)-L( 
98))[2):N=81-N:IFRND(l00)>NTHENPRINT 
@5 6, 11 RATS I I 11

; : PR I NT@l 20, '~MI SS ED 111
; : G 

OT0256 
254 L(l3)=L(O):POKEL(l01)+64•L(l02)+ 
15360,45:A=l3:GOSUB910:L(l(l04))=0:L 
Cl04)=0:PIUNT@56, 11 GOT HIM!"; :PRINT@l 
20,"VICTORYl 11

; :GOT0102 
256 GOSUB940:l(l3)=L(O):POKEX+64•Y+l 
5360,45:A=13:GOSUB910:L(105)=-l:L(10 
6)=RND(20):GOT0102 

Fig. 13-6. Handler Shoot. 

210 

"MOVE" 
(Press Arrow Key) 

2GO X=O:Y=O:IFD=91THEND=ll 
2G2 OND-7GOT0264,266,268,270 
2G4 X=-l:GOT0272 
2GG X=l:GOT0272 
268 Y=l:GOT0272 
270 Y=-l:GOT0272 
272 X=X+l(97):Y=Y+l(98):Q=PEEK(X+64* 
Y+15360) 
274 I FQ=32THENPOKE.LC97)+64*LC98)+153 
60,32:L(97)=X:L(93)=Y:POKE.X+64*Y+l53 
GO,G4:L(99)=L(99)·5:1FLC99)>0THEN110 
ELSE128 
276 IF0.=48TllENPRINTQ56,"BOOM~;! !";:PR 
INT@120,"YOU FOOL 11 ;:FORl=lT040:POKEX 
+64*Y+15360,RN0(64)+128:NEXTl:l(16)= 
RtJD(87)+3:GOT0128 
278 IFQ=35THENl=RND(87)+3:1Fl(1)<>91 
AtJDL ( 1) <>I THF.NGOSUB9 20: PR I fJT@S G, "rJOT 
HI l~G";: PR I NT@l20, 11 HAPPEfJS ! 11

;: GOTOllO 
:ELSEPRINT@X+64*Y,"POOF!";:FORl=lT02 
O:tJEXTI: l(O)=I :GOTOlOO 
280 I FQ=38THEflPOKELC97)+G4*lC98)+153 
G0,32:L(97)=X:l(98)=Y:POKEX+64*Y+l53 
60,G4:l(99)=l(99)-RND(200)+100:GOSUB 
920: PR I NT@SG, 11 F I RE!! 11

;: PR I NT@120, "YE 
mJ\J! !";: IFLC99)>0THEN110ELSE128 
282 IFQ=l2GTHENIFL(l)<>91THEN288ELSE 
FORl=1T091STEP10:1FX=VAL(~ID$(CR$,I, 
2)) ANDY=VAL Oi I 0$ (CR$, I+ 2, 2) )THEN l( 0) 
=VA l Cf.i I D $ (CR$, I + 4, 2 ) ) : I Fl ( 0 ) = 9 2 THE f J 2 
86ELSEL(97)=VAL(MID$(CR$,1+6,2)):L(9 
8)=VAL(MID$(CR$,1+8,2)):GOT0100:ELSE 
NEXTI 
284 GOTOllO 
236 PRINT@56,"0H NOOO!";:PRINT@120," 
A PIT!!"; :FORl=lT020:fJEXT:GOT0128 
288 GOSUB920:PRINT@56,"TOO DARK";:PR 
INT@l20, 11 1N THERE";:GOTOllO 

Fig. 13-7. Handler Move. 

211 



"FIGHT" 
(Press F Key) 

290 IFL(l5)<>91THENPRINT@56, 11 YOU HAV 
E. 11 ;:PRINT@l20, 11 NO s~·JOrW";:GOTOllO:E.L 
SE.IFL(l04)=0THENPRINTQSG, 11 FIGHTING"; 
:PRINTQ120, 11 SHADOWS?";:GOT0298 
292 IFA6S(L(97)-L(l01))>10RAGS(L(98) 
-L ( 102))>1 THEN PR f NTQ5 6, ''M f SSE.D''; : PR I 
NTQ120, 11 1T! FIE.!"; :GOT0298 
294 LC103)=L(l03)-L(99)/5:1FL(l03)>0 
THE.NPRINT@SG,"A GOOD";: PRltH@l20, 11 SL 
ASH!";: fFRtW(2)=2THENLC105)=-l:LC106 
)=RND(20):GOT0298:ELSE298 
29G PRfNT@56, 11 FINISHED 11 ;:PRINT@l20, 11 

HtM OFF!";:LCLC104))=0:LC104)=0:POKE 
LC101)+64•L(l02)+15360,32 
298 L(99)=L(99)-L(99)/20:1FL(99)>0TH 
ENllOELSE.128 

Fig. 13-8. Handler Fight. 

SUBROUTINES 
11 DSPLAY 11 

5 0 Q LC 10 4) = 0: c R$ = R ( L ( 0) ) : PR I rno 0, ST R 
Ii: G$ ( 5G,1~1); : PR f NT~ 9 GO, ST Rf tJG$ ( 56, 1 
9l);:FORl=64T089GSTEP64:PRINT@l,CHR$ 
(19l);STRING$(54,32);CHR$(19l);:NEXT 
I : J~=l 
502 I FMI 0$ CCR$,fJ, 1)= 11

-
11 THE.tHJ=tJ+l :GOT 

0 5 0 4 c LS EX= VAL( t·; I D $ ( CR$ , N, 2 ) ) : Y =VAL( 1--1 

ID$(CR$,N+2,2)):POKE.X+64•Y+l53G0,128 
:tJ=N+lO:GOT0502 
:J04 I FN>LEtJ(CR$ )Tl1Etl520ELSEX=VAL(MI D 
$(CR$,~+l,2)):Y=VAL(MID$(CR$,N+3,2)) 
: OIJVAL (MI 0$ (CR$, tJ, 1)) GOTOS 0 G, 5 0 8, 5 0 8 
,508,510,512:GOT0520 
5 0 G PR I J J T@ X + 6 4 * Y, ST R I f JG$ ( VA l ( t•1 I D $ ( C R 

Fig. 13-9. Subroutine Dsplay. 

212 

$ , I J + 5 , 2 ) ) , 19 1 ) ; : t·l = I H 7 : G 0 T 0 5 0 4 
SOG S=X+G4•Y+l5360:D=VALCMID$(CR$,N, 
1 ) ) + G 1 : F 0 R I = 1T0 VA LC f,; I D $ (CR$, N + 5, 2 ) ) : 
POKES,19l:S=S+D:NE.XTl:N=N+7:GOT0504 
5 1 0 s = x + 6 4 * y - G 5 : p R I t lT@ s, II & & f1 II ; : s = s + G 
4: PR I tJTQS, 11 &&f• 11

;: S=S+GI~: PR I MTQS, 11 fJfi~ 
II;: tJ=tJ+S: GOT0504 
512 POKE.X+64•Y+l53G0,46:N=N+5:GOT050 
4 
520 POKEL(97)+64•L(98)+153G0,64:FORf 
=lTOlG: IFLC I )=l(O)Ti1E.NGOSUB940:POKEN 
, I +32 
5 2 2 ii E. X T I : F 0 R I = 17 T 0 4 8 : I FL( I ) = '- ( 0 ) THE 
NGOSUl3940: POKEIJ, 3G 
524 Nl:.XTI :FORf=49T09G: IFLC t )=L(O)THE 
NGOSUU940:POKEN,42:LC101)=X:L(l02)=Y 
:L(104)=f :ELSENEXTI 
52G RETURN 

Fig. 13-9. Continued from page 212. 

"STATUS" 
900 PRINT@243, 11 ROOM";l(O); :PRIMTQ9.S2 
, 

11 STRE.IJGTH";: PRI NT0101G, L(99); 
902 FORl=lT08:1FC(l)=OTHENPRINTQ312+ 
1•64, 11 "; :RETURM:ELSE.PRltnQ31 
2+1*G4,CHR$( 1+48); 11 11

;: IFC( I )>lGTHEN 
PRINT"TR11 ;C(l)-16;:NEXT:RETURN:ELSEP 
RINTMID$(TA$,C(l)*6-5,G);:NEXT:RETUR 
N 

Fig. 13-10. Subroutine Status. 

"SUB I IN" 

910 FOHl=lT08: IFC( I )<>ATHEW~EXTI :RET 
URI~: El SEFORJ =I T08: C ( J) =C ( J + 1) : IJ EXT J: 
RETURN 

Fig. 13-11. Subroutine Subinv. 

213 



"CLRMES" 

920 PRINTU56, 11 

II;: RE. TURI~ 

Fig. 13-12. Subroutine Clrmes. 

"RANDXY" 

11 ;:PRINT@12::l," 

940 X=RND(54):Y=RND(l4):N=X+64*Y+153 
60: I FPEE.K(tJ) <> ·32THE.fJ940E.LSE.RETURtJ 

Fig. 13-13. Subroutine Randxy. 

ROOM STRINGS 

1000 R(l)="0006025408550703010629009 
02714-401011125401111180418 11 

1001 R(2)="5508010106190004231400090 
554082015062501-30601123120312113073 
9" 
1002 R(3)="0006015407211507270155070 
801092200092914-10110273270407128042 
2 II 
1003 R(4)="2315021901240010311401001 
14014-304010810508453190904 11 

1004 R(5)="5508020109000212541100121 
:J540:J-1010850351040950202 11 

1005 R(G)="2500022014011514410126151 
532ul-305060910GOG273310704 11 

lOOG R(7)="2700032114281516330139151 
71401-1040451 11 

1007 R(3)="0009035407551018010553021 
90110-3200105324031255310 11 

1008 R(9)="2915032201400020151430002 
l:J414-23G01124360112 11 

1009 R(l0)="3115042401000622540G-331 
04081270909 11 

Fig. 13-14. Room strings. 

214 

j lOlO R(l1)="40150401011000224414-103 
053824Gu510" 
1011 R(12)="55110501020012235402-101 
10203241005 11 

1012 R(13)="55030501120004235412-42l 
; 01062330106 11 

1013 RC14)="41000G01141315244501-101 
12303300212 11 

I 1014 R(l5)="32000626140007245407-101 
: 0538 11 

i l015 R(l6)="33000728145503250108-345 
I 01081210928 11 

i 1016 RC17)="14000739144215251601-101 
104204ul0507" 
· 1017 R(l8)="00050854105Slll260113-317 
· 011032104113250110 11 

: 101~ R(l9)="00100854025511260103-104 
· 09431200520 11 

1019 RC20)="15150940014300271714-442 
01091200931 11 

1020 R(21)="34150930015509270109-108 
052910810293360510 11 

1021 R(22)="550610010644151110010315 
I 285404-22806084230609 11 

. 1022 RC23)="550212011255121301040008 
I 285408-101053510110353360504 11 

. 1023 R(24)="450014131455071501070900 

. 285414-25401102440110 11 

, 1024 R(25)="00081654081600171~2145JOO 
' 290110-34901051030545 11 

. 1025 R(26)="001318540100031954115 50$ 
290107-315010731509063450110" 
1026 R(27)= 11 17152043010009215409521S 
290105-3130411 11 

1027 R(28)="550422031455082 3u108 5::i14 
2409014Gl5300301-450020525409051030G 
4460510 11 

1028 R(29)= 11 001025500100072G54U30005 
275214041530500l-4010607108123Cl4 G0 4 

Fig. 13-14. Continued from page 214. 

215 



09GlS04 11 

1029 R(30)= 11 03002846145000290414271:> 
312901- 32ti011010 G 0·5 4 2 II 
1030 R(3l)="0006325408550733010G2900 
302714-401011125401111180418 11 

1 0 31 R ( 3 2 ) =II 5 5 0 8 310 10 G 19 0 0 3 4 2 311~ 0 0 0 9 
35540820153G2501-30G0112312031211307 
39 II 
1032 R(33)= 11 000631540721153727015507 
3801092200392914-1011027327040712804 
2 2 II 
1033 R(34)=1i231532190124004031140100 
414014-304010810508453190904 11 

1034 R(35)= 11 55083201090002425411001~ 
435403-1010850351040950202 11 

1035 R(36)= 11 250032201401154441012Gl5 
453201-3050G0910606273310704" 
1036 R(37)= 11 270033211428154633013915 
471401-1040451 11 

1037 R(38)= 11 000933540755104S01055502 
490110-32001053240312:.i5310 11 

1038 R(39)= 11 291533220140005015143u00 
513414-23G01124360112 11 

1039 R(40)= 11 31153424010006525406-331 
04081270909 11 

1040 R(41)= 11 40153401011000524414-108 
053824G0510 11 

1041 R(42)="55113501020012535402-101 
10203241005 11 

1042 R(43)= 11 550335Dll20004535412-421 
010G233010G 11 

10 4 3 R ( 4 4) = 11 L~l003G01141315544501-10 l 
12303300212 11 

1044 R(45)= 11 32003G2Gl40007545407-101 
0538 11 

1045 R(4G)= 11 33003728145508550108-345 
010::J1210923 11 

1 0 I~ G R ( 4 7 ) =II 14 0 0 3 7 3 914 4 215 5 5 1 G 0 1-1 0 1 
04204010507 11 

Fig.13-14. Continued from page 215. 

216 

1047 R(48)="00053354105501560113-317 
011032104113250110 11 

1043 R(4~)="00103354025511560103-104 
0'.1431200520 11 

10 4 9 R ( 5 0 ) =I' 151s3'.l40014 3 0 0 5 71711~ - 4 4 2 
01091200931 11 

105u R(51)="34153:B0Lll5:i09.i70109-100 
052~108102933G0510" 
1051 R(52)= 11 550G40010G441~4110010315 
53S404-2280GU34280G09" 
1052 R(53)= 11 550242011255124301040008 
58540S-1010~35101103533G0504 11 

1053 R(54)= 11 450044131455074501070900 
535414-25401102440110 11 

1054 R(55)="00084G54031G004742145000 
590110-34901051030545 11 

1055 R(56)="001348540100034954115508 
590107-315010731509063450110 11 

10 5 G R ( 5 7 ) =II 1 715 5 0 I~ 3 0 10 0 09s15 4 0 9 5 215 
590105-3180411 11 

1 0 5 7 R ( 5 s ) =II 5 5 0 4 5 2 0 3 14 5 5 0 G 5 3 0 1 0 c 5 5 11~ 
5409014615G00301-4500205254090510306 
4460510 11 

1058 R(59)= 11 001055500100075654080005 
5752140415G05001-4010607108123814604 
0961804 11 

1059 R(60)="030058461450005904142715 
612901-32801101060542 11 

1060 R(61)= 11 0006G2540855076301062900 
602714-401011125401111180418" 
1061 R(62)= 11 550861010G19006423140009 
65:;4082015662501-30b0112312031211307 
3 9 II 
1062 R(63)="000661540721156727015)07 
6801092200G92914-1011027327040712J04 
22 II 
1063 RC64)= 11 231562190124007031140100 
714014-304010810508453190904" 
1064 R(65)="550262010900027254110012 

217 



735403-1010850351040950202 11 

1065 R(66)= 11 25006220140115744101 2Gl5 
753201-305060910606273310704" 
1066 R(67)="270063211428157G33013915 
771401-1040451 11 

1067 R(68)="00096:J5407551078010S5502 
790110-3200105324031255310 11 

1068 RC69)="2915G3220140G0801514 3000 
813414-236011243G0112" 
1069 R(70)="3115642401000682540G-331 
04081270909 11 

1 o 7 o n c 11 > = 11 4 o 15 G 4 o 1 o 11 o o o 3 2 4 1~ 14 - 1 o 0 
053324G0510 11 

1071 RC72)="5511G501020012335402-101 
10203241005 11 

1072 R(73)= 11 5503650112000433'.J412-421 
010G2330106" 
1073 RC74)="4100660114131S34450l-101 
12303300212 11 

10 7 4 R ( 7 5 ) = !13 2 G 0 G G 2 614 0 0 0 7 84S407-1J1 
0538 11 

1075 R(76)="330067281455083S0103-345 
01081210928" 
1076 R(77)="14006739144215851601-10l 
04204010507 11 

1077 R(78)= 11 00056 354105501860113-317 
011032104113250110 11 

1078 R(79)="00106854025511860103-104 
09431200520 11 

1079 R(80)= 11 15156940014300871714-442 
01091200931 11 

1080 R(81)="34156930015509870109-10 8 
052910810293360510 11 

1081 R(82)= 11 550G70010644157110010315 
885404-22806084280609 11 

1082 R(83)="550272011255127301040008 
385408-101053510110353360504" 
1083 RC84)="450074131455077501070900 
885414-25401102440110" 

Fig. 13-14. Continued from page 217. 

218 

1 0 8 4 R ( 8 5 ) = II 0 0 0 8 7 6 5 4 0 8 1 G 0 0 7 7 4 211~ 5 0 0 0 
890110-34901051030545 11 

1085 R(86)="001378540100037954115:>03 
890107-3150107315090b3450110 11 

1086 RC87)="1715S04301000!:18154095215 
890105-3180411 11 

1087 R(88)= 11 550482031455088301085514 
8409014615900301-4500205254090510306 
4460510 11 

1088 R(89)= 11 001035500100078654080005 
8752140415905001-4010607108123814604 
0961804 11 

1 0 8 ~ R ( 9 0 ) =II 0 3 0 0 8 8 4 G 11~ 5 0 0 0 8 9 0 414 2 715 
012901-32801101060542 11 

1090 RETURN 

Fig. 13-14. Continued from page 218. 

219 



Summary 

How does anyone manage to summarize an entire book? I suppose 
the best way is to reiterate the key concepts, seeking to clarify 
things for some readers at the risk of boring others. 

Let all who read heed concept one: structure your program­
ming. No program of any real complexity can avoid the debug­
correction cycle, and an unstructured program is difficult to correct. 
Some of the problems themselves may be linked to lack of structure, 
such as accidental re-use of variables best left untouched. One hour 
to make a flow chart or table on paper is worth the ten hours of 
confusion avoided at the keyboard later. 

The second concept is even more crucial: consider your op­
tions. In an input-oriented program like Basements and Beasties, 
someone is bound to phrase a command or try something in a way 
you hadn't predicted-possibly with disastrous results to your pro­
gram flow! Do a lot of if-then thinking and testing before presenting 
your adventure program to a prospective adventurer. 

The final concept may take awhile: optimize your code. Find 
ways to simplify your statements and speed up program execution. 
Use calculated jumps (ON-GOTO) and subroutine calls (GOSUB). 
Study anything you can read on the way BASIC actually works, and 
find ways to manipulate it using PEEK and POKE. If you think 
"adventure programming" has reached its zenith, surprise, there 
are plenty of more tricks to be tried. You'll probably be the first to 
find some of them. 

After all, if you're ready to fight dragons with the Axe, then 
maybe you're adventurous enough to be a programmer! 

22(\ 

t 

I 

A 
Aardvark handler, 92 
Access, sequential, 45 
Access subroutine, data, 50 
Adventure games, comparison of, 168 
Adventure program, definition of, 2 
Analyze subroutine, 59, 78 
Arrays, 27, 29, 63, 65, 69, 85 
ASCII characters, 172 
Axe, 110, 113 

B 
Battles, 109, 175 
Bomb handler, 110, 117 
Bottlenecking, 14, 15 

c 
Ckobs subroutine, 97, 114 
Close handler, 101 
Clrms subroutine, 195, 214 
Commands, 53, 72, 81, 174 
Command subsection, 42 
Creature movement, 197 
Creatures, 35, 70, 95, 105, 109, 195 

D 
Darkck subroutine, 66, 67 
Data lists, 45 
Data pointer, 47 
Data statements, 11 
Death, player, 11, 19, 198 
DEFINT statement, 56 
Description subsection, 42 

Index 
Direction, default, 11, 88 
Direction, fatal, 19 
Direction, illegal, 11 
Display mode, 32-character 62 
Display subroutine, 191, 212 
Doors, 95, 176 
Drop handler, 103, 107, 149, 202, 

209 

E 
Enchanted grenade, 108, 11 O, 117 
Ending the game, 125 
Entrances, 7 
Executive, 42, 64, 184, 195, 207 
Exists, 7 

F 
Fields, graphic, 170 
Fight handler, 110, 111, 204, 21 2 
Fire field, 193 
Flags, 29 
Fruit, magic, 194 

G 
Getcom subroutine, 75 
Giant Mantis, 25 
Grammar, 72 
Graphics, low-resolution, 171 
Grates, 95 

H 
Handlers, 40, 43, 133, 184 
Home base, 14 

221 



I 
ldword subroutine, 76, 145, 160 
!move handler, 89 
Initialization, 36, 41, 49, 184, 189, 

207 
Integers, 22, 55 
lnven handler, 122 

K 
Keys, 35, 95, 99 

L 
Labyrinth games, 150 
Line numbers, program, 40 
Liners handlers, 130 
Listob subroutine, 69 
Look handler, 121 

M 
Machine language, 157 
Mass chart, 148 
Mazes, 14, 16, 33 
Memory, economic use of, 5, 22, 62 
Mesprt subroutine, .52 
Message block, 43 
Microsoft BASIC, 4, 22, 40, ti5, 75, 

156 
Move handler, 200, 211 

N 
Nameless Terror, 113, 117 

0 
Object descriptions, 34, 42 
Objects, 26, 173 
Object toting, 103 
Obstacles, 14, 17, 20, 21 , 25, 26, 

35 
Open handler, 95 
Orc, 37, 70, 100, 105 

p 
Points subroutine, 124 
Programming, hybrid, 156 
Programming, structured, 5, 39, 40, 48 

Q 

Quit handler, 126, 202, 21 O 

R 
Randxy subroutine, 214 
Read handler, 90 

222 

Restore handler, 126, 129 
Resur handler, 115 
Revobs subroutine, 99 
Room descriptions, 30, 32, 42 
Room display, 170 
Room strings, 179, 214 
Run-time, 150 

s 
Sack, player's, 28 
Save handler, 126, 128 
Say handler, 91 
Scenario, 6, 14, 152, 176 
Scenario, mapping the, 7, 181 
Score handler, 123 
Scoring, 123 
Shooting handler, 203, 210 
Status subroutine, 213 
Strength level, player, 196 
Subinv subroutine, 213 
Subroutines, 40, 43, 133 
Synthe subroutine, 60, 68 

T 
Table search, 73 
Take handler, 103, 147, 149, 201, 

209 
Title display, 61 
Tools, 34, 36, 172, 194 
Travec subroutine, 53, 154 
Travel, 8, 81, 82, 88, 89 
Travel table, 8, 10, 12, 87, 

152, 177, 179 
Treasures, 27, 34, 36, 194 
TRON function, 158 

v 
Variables, 28, 56, 186 
Viewrm subroutine, 65, 67, 121 

w 
Weapons, 35 
White Spider, 113, 117 
Windows, 173 
Word ID number, 73 
Word search, faster, 145 
Word table, 42, 73 

x 
Xmove handler, 82 



Writing BASI C 
Adventure Programs for the TRS-80 

by Frank Dacosta 

Find out how you can write your own original adventure programs 
for your TRS-80 Model I or 111 with as little as 16K of memory! Discover 
how to use new programming tricks and techniques to gain memory 
space and increase programming speed! Even learn how to construct 
a full-feature graphic adventure! It's all here in this unique program­
ming guide, along with two brand new games devised by the author to 
help you perfect your game-writing skills! 

The first step is to find out what an adventure program contains 
and how it is created . You 'll learn to map a "basement" or scenario for 
your adventure, including all the elements the program needs to 
support-from writing the description of each room and its contents to 
constructing a complex map c·Jntaining surprises for the unwary 
player. Structuring the program is covered and you 'll learn special 
techniques for organizing the BASIC code to speed up data access 
and reduce memory usage. 

You 'll examine a sample adventure program called "Basement 
and Beasties" to find out how programs are initialized, how scenes are 
described, and how commands are input and executed. Motion com­
mands, obstacles, the use of magic words and action routines be­
come clear so that you 'll be able to use them properly when you write 
your own original game. 

The how-to's for constructing a graphic adventure including the 
concepts, the segments, and listings are given along with a sample 
graphics adventure, "Mazies and Crazies. " If you're interested in 
computer games and want to learn how to write your own and improve 
your programming skills at the same time, then this book is definitely 
for you! 

Frank Dacosta is a computerist who is experienced in both 
hardware design and software development. A computer hobbyist, he 
works professionally with many types of microprocessor- and 
minicomputer-based systems. 

OTHER POPULAR TAB BOOKS OF INTEREST 

33 Challen1in1 Computer Games for TRS-80™/ 
Apple™/PET• (No. 127f>-$8.95 paper; $15.95 
hard) 

67 Ready-To-Run Pr0&rams in BASIC: 1raphics, 
home r. business, education, 1ames (No. 
l 19f>-$8.95 paper; $13.95 hard) 

ITABI TAB BOOKS Inc. 
Blue Ridge Summit, Pa. 17214 

Send for FREE TAB Catalog describing over 750 current titles in print. 

FPT > $10-25 ISBN 0-8306-1422-2 

PRICES HIGHER IN CANADA 995-1182 




