
How To W1~ite
ADVENTURE GAMES
for the BBC Microcomputer Model B

and Acorn Electron

Peter Killworth

PENGUIN ACORN COMPUTER LIBRARY

0

Penguin Books
How To Write Adventure Garnes

Peter Killworth is the author of some of the best selling
adventure games published by Acomsoft Ltd. for use on
the BBC Microcomputer Model Band Acom Electron . By
profession he is a senior research associate at the
Department of Applied Mathematics and Theoretical
Physics in the University of Cambridge, and works in the
field of dynamical oceanography and climate. Peter
Killworth' s current projects include a magic program with
Paul Daniels and a mathematics adventure program
designed to teach 13 year-olds who are studying the SMP
syllabus.

Peter Killworth has also prepared a cassette program which
can be used in conjunction with this book. It is available
(price £9.95) from Acomsoft Limited, c/o Vector Marketing
Ltd, Denington Industrial Estate, Wellingborough,
Northants NNB 2RL. Please allow 28 days for delivery.

The object of this book is to enable a reader fairly fluent in standard BBC BASIC to
create and write fairly complicated Adventure games without recourse to machine
code; he or she may well learn some programming techniques as well! No previous
knowledge is assumed. The ratio of text to program is very high for a book of this
type: the intention is not to teach an intimate knowledge of three Adventure games
to the exclusion of all others. Rather, it is to foster an understanding of how to create
other programs and so allow the reader to move beyond the confines of what is
explicitly covered in this book. To this end, both a database creation program and a
'shell' for an advanced Adventure game are provided.

How To Write
ADVENTURE GAMES

Peter Killworth

Penguin Books

This book owes its existence to many people, and I thank them all: a student on a
flight from Portland, Oregon to San Diego who first told me about Adventure and the
joys of mazes and rod-waving; an anonymous writer in the Cambridge IBM 370
complaints book who grumbled how he couldn't find a free terminal as everyone was
busy running M. Oakley's compilation of Colossal Cave; M. Oakley himself for
providing it; David Seal and Jon Thackray for writing the first half of Acheton (still
the best game!) and for teaching me what a good database system looked like;
Jonathan Mestel, Ian Farquarson, and David Jeffrey for discussion and argument
about Adventures both specific and general, and so many suggestions; Jonathan
Partington for many enjoyable and puzzling hours; the people at Acornsoft,
specifically first Chris Jordan and then Tim Dobson, and especially David Johnson
Davies, for their support and making this possible; Acorn USA for loaning
much-needed equipment during summer 1983; Andrew for telling me what to do
with the mushroom; Paul for creating the old lady one afternoon and donating much
of the plot for the Roman adventure in this book; Addison-Wesley, for permission to
use material which first appeared in Acorn User; Jonathan Griffiths and Rob
Macmillan, who devotedly forced my programs into a vague semblance of structure;
the writers of the Acornsoft View word processor, on which this book was written;
and last, but really first, Sarah for putting up with seeing only a bent back, no
husband, and all that clacking ...

The Penguin Acom Computer Library is a joint venture, produced by Acomsoft Limited (in
association with Pilot Productions Limited), and published by Penguin Books Limited

Penguin Books Ltd, Harmondsworth, Middlesex, England
Penguin Books, 40 West 23rd Street, New York, New York, 10010, U.S.A.
Penguin Books Australia Ltd, Ringwood, Victoria, Australia
Penguin Books Canada Ltd, 2801 John Street, Markham, Ontario, Canada L3R 184
Penguin Books (N.Z.) Ltd, 182-190 Wairau Road, Auckland 10, New Zealand

First published 1984

Copyright© Peter Killworth, 1984
All rights reserved

Set in Palatine by Saxon Press; Norman House, Heritage Gate, Derby

Colour origination by RCS Graphics Ltd, 39-40 Springfield Mills, Parsley, Pudsey, Leeds, and
MRM Graphics, 61 Station Road, Winslow, Bucks

Made and printed in Spain by Printer industria grafica s.a., Sant Vicenc dels Horts, Barcelona
D.L.B. 15171-1984

Line illustrations by Rob Shone
Original photograpny by Nick Wright

Except in the United States of America, this book is sold subject to the condition that it shall
not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without
the publisher's consent in any form of binding or cover other than that in which it is
published and without a similar condition including this condition being imposed on the
subsequent purchaser

CONTENTS

INTRODUCTION

Introduction - what are adventure games?
A map of this book

1 HOW ARE GAMES WRITTEN?
1.1 Fundamentals
1.2 Vocabulary
l.3 Databases - what are they and why do we want them?
1.4 Running programs

2 CREA TING A 'HACK-AND-SLASH' GAME: 'CA YES'
2.1 The plot
2.2 Planning the game - the game logic
2.3 Planning the game - the database structure
2.4 Programming - the main program
2.5 Programming - the procedures (1)
2.6 Programming - the procedures (2)
2.7 Improvements

3 DEVELOPING A SIMPLE ADVENTURE GAME: 'MINI'
3.1 The plot
3.2 More ideas about databases
3.3 Yet more ideas about databases: states and exit programs
3.4 Messages
3.5 Vocabulary
3.6 Program structure
3.7 Writing the program (1)- objects and rooms
3.8 Writing the program (2) - the main program
3.9 Writing the program (3)- the command subprograms
3.10 Writing the program (4)- the utility procedures
3.11 Afterthoughts: improvements and debugging tips

7

15

29

61

CONTE T5

4 CREATING AN ADY ANCED ADVENTURE GAME: 'ROMAN'
4.1 An overview of the rest of the book
4.2 Plot development
4.3 More on states; introducing properties
4.4 A better message system
4.5 Direct memory addressing
4.6 Use of direct memory access for database handling

5 INTERLUDE: AN ADVENTURE GAME DAT ABASE
WRITING PROGRAM: 'DATAGEN'

5.1 The database format and binary numbers
5.2 The driving program
5.3 Object, room and vocabulary storage
5.4 Message and switching storage
5.5 A listing of 'DAT AGEN'

6 ORGANISING AN ADY ANCED ADVENTURE GAME
6.1 The object and room handling subprograms
6.2 The message procedure
6.3 Other utilities - descriptions, light, etc.
6.4 The overall running program structure

7 PROGRAMMING AN ADY ANCED ADVENTURE GAME: 'ROMAN'
7.1 The map and initial layout
7.2 The object list
7.3 The room list
7.4 The exist programs
7.5 The pre- and post-programs
7.6 The vocabulary lists
7.7 The command programs
7.8 Assembling the program
7. 9 On debugging
7.10 A listing of the (non-database part of) ·'ROMAN'
7.11 The input for 'DAT AGEN'

8 WHERE DO I GO FROM HERE?
8.1 On plots and player enjoyment
8.2 More on plots

APPENDICES
Al What you need to know about bitwise logic
A2 The rudiments of hexadecimal notation

97

117

135

147

203

211

INTRODUCTION

Introduction - what are adventure games?
Adventure games are like avocado pears - you either
love them or hate them. This book is written for those
who love Adventures, for those who would like to
know more about them, and particularly for those
who would like to create their own Adventures . The
flexibility and power of the BBC Microcomputer or
Electron make it possible for anyone to construct
games of their own, using only BBC BASIC, without
the necessity of lapsing into machine code.

The appeal of Adventures is rather difficult to
describe; one really has to experience it. I vividly recall
typing the appropriate symbols for my first ever game
on the local mainframe. (The Crowther and Woods
original Colossal Cave extended to about twice the size
on the version I played .) Apart from a sneaking worry
that (a) I should be working, and (b) what if someone
came along and wanted my terminal, my main
problem was one that faces almost every player new to
Adventure games - I hadn't the faintest idea what I
was supposed to do!

The game came up with 'Welcome to Adventure!' ,
which was friendly, followed by 'Would you like
instructions?' A slight problem there, I thought.

7

INTRODUCTION

Obviously I did want instructions - but should I type
'YES' or 'Y' or 'yes' or 'y' in reply. It turned out not to
matter - but it taught me later that it shouldn't matter
to my players either if I could help it. The program
obligingly told me that the computer was my eyes and
hands. It would describe what I could see, and tell me
what happened to me as a result of my actions. In
return I must tell it what to do on my behalf, using
sentences of one or two words. A few helpful
examples were given: GET, DROP, INVENTORY,
LOOK, HELP. I was told that only five letters were
scanned, so that 'northeast' had to be typed as 'ne' to
distinguish it from 'north'. The object, it transpired,
was to find all the treasure and dump it in the house.
Then I should re-enter the cave, when the 'end-game',
whatever that was, would befall me. I remember
assuming that none of this would take too long .. .

The description of where I was then appeared . 'You
are standing at the end of a long road. In front of you is
a brick building. A stream flows out of the building
and down a valley. Around you is forest.'

And that was that. I was on my own, and utterly
baffled . This feeling of bafflement seems to divide
those who love Adventures from those who dislike
them; the former treat it as a challenge, while the rest
put the game away and do something else instead!

8

INTRODUCTION

Tentatively I typed 'building' (I'd forgotten about the
five letters already) to be met with 'You are standing
inside the building .. .' and some more description.
Obviously J had moved inside the building, which was
what I had intended. What was even better was a pile
of useful things on the floor - things like a lamp, a
bottle of water, some food , and so on . I tried 'eat food'
to be met by 'You're not holding that!' which was
frustrating; why couldn't the silly machine let me bend
down and scoff the food? O.K., so 'take food' was
followed by 'OK', to which I said 'eat food'. The
response Thank you, that was delicious!' worried me.
It looked as if that food had some other use than
feeding my alter ego's stomach . (Stirrings of the
Adventure player's first maxim: almost everything has
a use, otherwise the writer would not have written it
into the game!)

Some little time later (well, about an hour actually) I
made a save of my position (I couldn't get past a pesky
snake, an obstacle which will be familiar to many
readers) and headed home in great excitement. The
game was tremendous!

Perhaps the easiest way to show the appeal of
Adventures is to give you the to-and-fro conversation
between player and machine in an actual game. This
particular one is called, "Countdown to Doom". It has
a science fiction flavour: the player has crashed his
spaceship on the planet Doom and has 220 turns to
repair it before the ship corrodes. Now read on (player
responses are in capitals for clarity).

You are standing in what used to be the control
room of your spaceship, but after the attack it looks
more like a junkyard. The only usable exit is
northwards, as the other exits are covered by a delicate
patina of squashed solid-state circuitry. On the floor
there is some explosive with a self-igniting fuse. A
ruined console lies to one side, barely operating. Only
one button seems to be functional. ..

PRESS BUTION Nothing happens

GET BUTTON You can't take that!

GET EXPLOSIVE OK

GO NORTH You are in what used to be the engine

9

INTRODUCTION

room of your ship, only in the landing the cargo hold
has been concertinaed into it. What's left of the motor
will not, alas, be responsible for any more flights.
There is a port south, and a doorway northeast. The
door to the northeast was jammed on landing and
won't open

NE The door to the northeast was jammed on landing
and won't open

OPEN DOOR The door to the northeast was jammed
on landing and won't open

THROW EXPLOSIVE OK

GET OK

LIGHT FUSE The fuse starts to bum Time before ship
collapse is 210.

10

INTRODUcnON

DROP EXPLOSIVE OK

S You're in the control room A ruined console lies to
one side, barely operating Only one button seems to
be functional

WAIT From next door there is a loud bang! OK

BACK You're in the cargo hold-cum-engine room. The
door to the northeast is off its hinges but still blocks the
way

NE The door to the northeast is off its hinges but still
blocks the way

PUSH DOOR The door falls outwards onto the
ground, leaving the way clear

NE You are standing under a dull copper sun in a wide
open clearing where your ship crashed. To the
northeast, north and northwest lies an evil-looking
(and smelling!) swamp, while further west a track
climbs steeply up the lower tongue of a glacier.
Westwards there seems to be jungle, while south an
opening in the mountains reveals a valley. Southeast
there is a path into the mountains, and a narrow path
wanders east through cliffs to skirt round the swamp.
To the southwest lies your ship. There is a heavy
mangled door here

GET DOOR You can't take that!

E You're at a flat area of scorched ground. Cliffs to the
west fall away to the swamp. Paths lead northeast,
east, and south west. A metallic object is south. A wide
hole has been scooped out of the earth. There is a small
jelly-like blob here . It is wriggling towards the cliffs

GET BLOB As you touch the blob, a thousand volts
pass through you. Shocking, isn't it? You seem to have
lost your life. You have scored 0 out of 250 Would you
like another game?

Analysing my reactions years after playing my first
game, I see them as precisely those of avid Dungeons
and Dragons or Traveller or other role-playing
gamers. I wasn' t just playing Adventure, and trying to
solve the problems that came my way by native
wit/common sense; I was living the game. The

11

INTRODUCTION

machine was providing me with excellent descriptions
of areas, objects, disasters, etc. (plus some very funny
jokes at my expense), but I could see the caves I was
exploring in my imagination. My maps, though
scrappy, became treasured friends; each new problem
surmounted (or cryptic hint from a friend decoded)
became a source of soaring emotion. In short, I was
hooked, and still am, many, many games later.

Adventure games vary both in style and
background. Some, like Zork (available on some
micros and various mainframes) allow vast sentences
in English like 'take all but the rope and throw the pig
at the cat'. Some provide pretty pictures of various
scenes. Some disc-based American products even
include moving graphics, and a lot of disc-whirring,
no doubt! Some even talk to you in computer-speak.
Some are hilariously funny; some are fiendishly
difficult even for experts. Some suffer from crude
programming or lots of errors.

This book is about how to write games like these
(but hopefully not the ones with lots of errors). It's not
totally about programming, however, it's also about
the Adventure plots; about user-friendliness,
whatever that means; and, at the end of it all, it is
about having fun. Because that's what Adventures are
for.

Before we begin the first part of this book, you must
learn the fundamental rule of Adventure
programming:

No matter how small an Adventure you write, it will
take far, far more time and effort than you thought it
would .

A map of this book
This book is divided into eight Parts, most of which are
a mixture of discussion and programming.

Part 1 talks about the requirements of Adventure
games, and how they might be implemented on a
microcomputer.

Part 2 creates a simple, menu-driven game of the
'hack-and-slash', exploring variety; it was chosen not
because this is a good Adventure game model, but
because we can learn some useful concepts from it.

12

I TRODUCTION

Part 3 designs a simple Adventure, called 'MINI'
because it only has four rooms. Nonetheless it
contains four puzzles, and introduces many ideas
which will recur later. You can use the game system it
employs, without ever using the more complex
system described later.

Parts 4 to 7 are devoted to the creation and
programming of an advanced Adventure set in
ancient Rome.

Part 4 develops the plot, and refines and completes
the database system for use in such games.

The price paid for a flexible system is the need for a
separate program to insert the data into the computer,
and Part 5 is devoted to such a program, which can of
course be used for any game.

Part 6 details the subprograms that allow the
database to be manipulated by the Adventure
program, and the overall running structure. In other
words, Part 6 creates a 'shell' for use in any
Adventure.

Part 7 finaJJy programs the 'ROMAN' game proper,
and includes details as to how to dovetail the program
and database.

Part 8 is in many ways the most important, although
it contains no programming details. It is largely
devoted to a discussion about plot creation and
implementation.

Two appendices are provided which give very brief
looks at bitwise logic and hexadecimal notation.
Neither are intended as full treatises on the subject!

13

14

I
HOW ARE GAMES
WRITTEN?

1.1 Fundamentals
If we're going to write some games, we need the right
equipment. The BBC Model B or Electron, either a
black and white or colour TV or monitor, and a cassette
recorder are all the hardware required . You don't need
a disc pack, although that would speed things up. The
only other essential hardware is stationery: pencils
(sharp), an eraser, and LOTS of paper.

Most of what we need is mental. Obviously an
ability to write in BBC BASIC is necessary, though
much of this can be learned as we go along. A little
facility in mathematics will help, but isn't vital. A good
imagination is, however, as is the ability to keep calm
and organized.

So what ingredients are important in Adventure
games? Let's step away from the programming
problems for the moment and think from the player's
point of view. We have to supply:

a) a PLOT (maybe weak, maybe strong; but the
player must have a goal or else why play the
game?)

b) an AREA, or a GEOGRAPHY (usually to explore
and map, but not necessarily)

15

HOW ARE GAMES WRIITE ?

c) some TOOLS for the game (usually objects or
information which the player manipulates to
achieve his goals)

d) a way for the player to make decisions and TELL
them to the game (or INPUT them)

e) a way to TELL THE PLAYER WHAT HAPPENS.

On top of this, there are some other features which
aren't so essential; for example, the ability to save a
game in the middle rather than always having to start
at the beginning. We'll ignore these finer points until
we start constructing more complicated examples.

Although (a) to (e) above are what the player sees,
it's important to realise that they are not necessarily
what the writer sees. Indeed, the programs must
concentrate on far more:

16

f) any game must have a well-defined
VOCABULARY (whether the player knows this
from the start or discovers it during the course of
the game, depends on you)

g) a way of handling ERRORS of all kinds, from
unknown words to inconsiderate pressing of
'Escape' at awkward moments

h) a way to keep track of all the things going on,

HOW ARE GAMES WRIITEN?

where the player is, what happened to that
dragon, and so on; this is known as a
DAT ABASE structure

i) an overall RUNNING PROGRAM to organise all
the strange things that happen to the player.

Finally, there are one or two other items which
should be mentioned right now. One is the question of
STORE, the other concerns GRAPHICS.

I stated earlier that you will need a Model B or
Electron, but in fact our first two games will run on a
Model A. Quite frankly 32K, which sounded awfully
large to me when I started, shrinks rapidly when
dealing with real programs. Because of this, don't
consider graphics unless you have access to a second
processor. It can be done at the cost of grossly
simplifying the game, but the real drawback is that
even switching from the 'cheapest' mode - 7 on the
BBC Micro, 6 on the Electron - to a graphics mode like
4 can lose 9216 bytes of storage. Think of a byte as a
character, if the word bothers you, and just take it as
read that we can't afford to lose that much store
normally.

Let's now look at some of the Adventure ingredients
which we mentioned above.

1.2 Vocabulary
The player of an Adventure will need a vocabulary
with which to communicate. Frequently, in other sorts
of program, users have to instruct a program to run.
Typically, the user is presented with a MENU (i.e. a
list) of alternative inputs, each with their own
meaning. For example, a menu might contain the
following instructions: 'Type 1 to reset the colours';
'Type 2 to rescale the graph'; 'Type 3 to see the graph
from a different angle'; and so on. A menu of this or a
similar kind is convenient for most programs because
it pre-plans both the sense and format of the user's
response, and ensures that the computer will
understand.

In an Adventure, where discovering the vocabulary
of communication is part of the game, this method is
obviously inappropriate. The program will not ask a
player to enter '3' when he wishes to throw a rock. It
will be up to the player to say 'throw rock' or 'hurl
stone' or something of that sort.

17

HOW ARE GAMES WRITIEN?

This immediately gives us two problems. First there
is the thorny one of SYNONYMS. The player will get a
bit cross if his favourite verb (like 'hurl' in the example)
is met by a bland 'I don' t understand that!' But the
poor programmer is in a no-win situation. If he
includes 'hurl' in the computer's vocabulary to satisfy
one player he may alienate another because 'sling'
isn't understood ... There is no easy solution here;
you have to decide just how much vocabulary you
want to teach the program, and then call a halt.

The other problem with constructions such as
'throw rock' is getting the program to understand it
even when the vocabulary has been included! To
begin with, the player may leave, say, three spaces
between 'throw' and 'rock' when you expected a mere
one. Or he may just say 'throw' and the computer
expects an object after the verb. Or, even worse, what
if he says 'rock' without the 'throw' and your program
is expecting a verb, not a noun?

The obvious solution, and one which works very
well for small vocabularies, is to make a list of all the
verbs your program will accept and store them
somewhere with easy access. One place - but not
necessarily the best, as we'll see - would be in a
subscripted string array.

Why an array? (I assume the 'string' part is obvious -
where else could you store characters?) Well, you need
to be able to do two quite different things with the
player's verb. First, you have to check to see if you
recognise it. Second, you need to take some action
based on what verb it was.

Now you could do this very simply with a piece of
program like this (ignoring nouns for now):

80 dead=FALSE: REM use dead as a variable to en d
90 REPEAT game wit h

100 INPUT "What now?" X$
110 IF X$="GET" PROCGET:GOTO 200
120 IF X$="DROP" PROCDROP:GOTO 200
130 IF X$="THROW" PROCTHROW:GOTO 200
140 etc •••

200 UNTIL dead

18

HOW ARE GAMES WRITIEN?

which, as l said, is fine for a very small vocabulary but
becomes tedious - and space-consuming - for maybe
60 commands. So let's reorganise how we can store the
vocabulary by putting it in an array VOCAB$(1% },
where 1% runs from 1 to 60. Then we could write
something like:

10 DIM VOCAB$(6Q)
20 FOR Ii.= 1 TO 60: READ VOCA8$(Ii.): NEXT

80 d~ad=FALSE
90 REPEAT

100 INPUT "What now?" X$
110 Ii.=O
120 REPEAT Ii.=Ii.+1
130 UNTIL XS=VOCABS(Ii.) OR Ii.>59
140 IF X$<>VOCAB$Cir.) PRINT "EH??":UNTIL FALSE
150 ON Ii. GOSUB 2000,2100, •••••

200 UNTIL dead

The idea here is that we tuck all the vocabulary away
in a DATA statement somewhere towards the end of
the program; something like

5000 DATA GET,nROP,THROW,EAT, ...
and use line 20 to store these words in the array
VOCAB$. After getting X$ read in (line 100) we
repeat-loop through 1% in lines 120 and 130 until we
find the appropriate element of VOCAB$ which
matches X$. If we never do find a match (line 140) we
grumble and let the player try again. Otherwise (line
150) we know which word it was because we know
1%, and can act on it for example as shown in line 150.(I
don't like nasty anonymous GOSUBs, but they are
very useful in cases like that, although there are other
methods.)

The astute reader will be asking various questions -
or at least I hope you are. First, why use a clumsy
REPEAT loop when a FOR loop on 1% would do just as
well? Because when we found the matching 1%, we'd
have to jump out of the loop somehow. BBC BASIC
sensibly frowns on such activities; frankly, any
program trying that deserves what it gets. Second,
why 1% rather than l? Because integer variables -

19

HOW ARE GAMES WRITrEN?

those with % signs after them - perform much faster
than real variables; and 'resident' integer variables
(A% to Z%) are a bit faster still . If you've never tried it,
type in the following:

10 TIME=O
20 FOR I= 1 TO 10000
30 NEXT
40 PRINT TIME

and then repeat with I changed to 1%. The saving -
nearly a factor of three - is dramatic! Since Adventure
games often do quite complicated things between
commands, speed is essential; and that usually means
employing integer variables .

Third, you might be wondering why the vocabulary
was stored so wastefully. After all, that DIM statement
took up quite a bit of store (256 bytes, that's 1/4 of lK)
and we ended up storing the vocabulary twice : once in
the program in the DAT A statement, and once in the
VOCAB$ array. There are ways round this waste as
we'll see later. We could leave the vocabulary in the
DAT A statement, and each time RESTORE to the
beginning of the DAT A line, reading in until we find a
match:

90 REPEAT
100 INPUT "What now?" XS
110 RESTORE 1)000
120 I%=0
130 REPEAT
140 Ii.=!%+1
150 READ Y$
160 UNTIL X$=Y$ OR Il.>60
170 IF X$<>Y$ PRINT "EH??": UNTIL FALSE
180 O~ I% GOSUB ••.

This is slightly slower than using a subscripted
array, but not much. In either case, time is spent in the
process of checking. In the end, I prefer the original
method because it's neater. Neat programs tend to
demand less debugging time, and adding some extra
information with each piece of vocabulary, such as
whether to expect another word, you'll be reading that
in as well; all extra time.

20

HOW ARE GAMES WRITTEN?

So part of our programming is going to involve a
playoff between SPACE and TIME. A DATA list or
VOCAB$ array is just too slow to sort through a fair
size vocabulary. And, later on, we'll see how the
concept of alphabetizing (a useful sorting technique)
will speed up the hunt rather dramatically.

1.3 Databases - what are they and why do we need
them?
The word 'database' has been known to put some
people off computing, but it is fundamental to the
science. Adventure games would be impossible
without some form of database structure. A database
is just a collection (or file) of information or it may do
housekeeping work and change the information .

Take an example. When you pick up an object, you
expect the program to 'know' that you're holding it
or at least that the puppet figure within the program is
holding it. How the program knows this depends on
the complexity of the program's structure. If the
programmer only needs to bother about a sword and a
shield (carrying these is the sole condition of a player
being able to enter a room containing a fire-eating
dragon safely, say), then we could just have two
variables SWORD and SHIELD set to FALSE
originally, and TRUE after the player had picked them
up. (I prefer using logical values to SWORD=l when
the player is carrying it for two reasons: it's quicker to
test IF SWORD THEN . .. than IF SWORD= 1 THEN
. . . , and l can more easily remember what the
variable means!)

That simple example is a database, albeit a trivial
one. It's a set of accessible variables - in this case
exactly two- that the program can examine at any time
to calculate the player's situation. Most adventure
databases are complicated by the need for areas to be
explored and mapped . The computer's-eye-view of
such a map is a database too, since the program has to
know whether the player can, for example, go west
from his current position (or whether a sack of
concrete will fall on him, or whatever. ..). So how
could we store such a map?

Many people find drawing maps difficult enough,
let alone converting them to numerical terms which a
computer can understand! Let's look at a simple
example. Let the map have four areas, or rooms, only:

21

HOW ARE GAMES WRIITEN?

North is up the page. Room 1 has a single exit sou.th
(to 3): room 2, a single exit east (to 3); room 3 has exits
west north and east (to 2, 1 and 4), and room 4 has a
single exit west (to 3). Each exit is also an entrance in
the example, but this need not always be true (e.g.
when an exit leads to a trap or cliff) . As north, west,
etc. are real directions, to return to a room you
must travel in precisely the opposite direction . Again,
this is not necessarily true since twisty passages,
mazes, etc. can complicate matters.

The names of the rooms above are fairly boring, of
course. They could have been 'A glade in the forest',
'The giant's castle', and so on. The player will certainl,Y
prefer it that way! So, why number the ro.oms? Th~t s
important. Computer~ are much ~~pp1e~ working
with numbers than with names - 1t s easier for the
program to ask 'is the player in roo~ 1 ?' and to l~ok at
some variable then it is for it to ask '1s the player in the
forest glade?' It means that somewhere in the innards
of the program there'll have to be a piece of text
reading 'A glade in the forest' and some means of
relating this to room 1. But the labe.l of.the room apart,
we'll have to resign ourseh:es to thinking of that glade
by a prosaic number.

22

HOW ARE GAMES WRIITEN?

How do we tell the program about the layout of the
four rooms in the diagram? There are literally dozens
of ways of doing it, ranging from very simple to very
complex. How cunning a method you use will depend
on how cunning the problems are in your scenario,
together with how much space you have left over for
your method .

At the very least, when specifying a room number,
the database must allow the program immediate
access to: (i) the directions of the exits, and (ii) the
destinations of those exits. We could store this
information in several ways .

We could set up a series of dimensioned arrays
NORTH(4), EAST(4), SOUTH(4), and WEST(4) . The
entry in EAST(2) would refer to your destination
(room) when going EAST from room 2 (i.e . room 3).
This is fine, but what of NORTH(l)? There is no exit
north from room 1. However, we must inform the
program of this. Zero will do fine, provided that there
is no room with that number.

If we follow this method of holding the map, we
shall have entries looking like this:

ARRAY
NORTH
EAST
SOUTH
WEST

INDEX 1 2 3 4

0 0 1 0
0 3 4 0
3 0 0 0
0 0 2 3

This isn't too bad. If the player wants to go SOUTH,
say, all we have to do is check SOUTH(X) (where X
signifies the room he's in) . If it's zero, we politely tell
the player he can't go that way, and let him do
something else. If it's non-zero, then we set
X=SOUTH(X) . This resets the player's room to his
destination . We'll probably have to tell him what the
new room looks like, and will deal with that later.

This method, albeit easy to understand, has a few
snags which are mostly generic to this type of database
(how would you program 'send the player through the
second exit to the right from where he is now facing',
for example?) but works fine. So, let's revise the
method slightly and choose to store a single two
dimensional array WHERE{X,N) dimensioned DIM

23

HOW ARE GAMES WRITIEN?

WHERE(no. of rooms, 4) . In this case, X still refers to
the room in which the player resides and N refers to
the direction he wants to travel. Thus, WHERE(X,1)
would tell us which room the player reached when
going in direction 1 from room X.

What's direction 1? Whatever you choose to make it!
I tend to think clockwise from north , so we could
define direction 1 to be north, 2:east, 3:south, and
4:west. If so, our map could be coded thus.

Second index (direction) 1 2 3 4

First index (rooms)
0 0 3 0 1

2 0 3 0 0

3 1 4 0 2

4 0 0 0 3

It contains the same information in a different form.
The entries have been flipped about a diagonal run
ning top left to bottom right.

The problem with these systems is that they take.up
a lot of space: typically nearly 100 bytes for JUSt our tmy
map. Later on we shall meet up with ways of holding
the same amount of information in vastly less space;
the reason for doing so is not for neatness or efficiency,
just to give us more space for plot!

1.4 Running programs
Let's now look at the overall running program which
co"ordinates all the various activities that the program
and the player will be undertaking. Devotees of
structured programming will be shocked. They would
argue that you should write all your programs ' top
down', like this:

10 PROCSETUP
20 REPEAT
30 PROCFINDOUTWHATPLAYER~ANTS!O~O
40 PROCTELLPLAYERWHATHAPPENS
50 UNTIL PLAYER~EAD -
60 PROCDIE

Each of the procedures would then be written . ln
turn they would almost certainly involve other
procedures - and so on.

24

HOW ARE GAMES WRITIEN?

This is fine for short programs, and I recommend it
highly . But for anything complex a great deal of
thought is involved before you can write
PROCSETUP. For example, look at the room database
system in the previous section. Suppose you decided
on one of the versions I mentioned, and then wrote
PROCSETUP. A couple of days later, while working
through a procedure called PROCDESCRIBE
PLA YERSROOM, you might decide that you want
some rooms (and some rooms only) without any
natural light. Alas, your room database doesn' t
include such an option - it merely tells the computer
about entrances and exits. Cursing, you decide to add
an array: LIGHT(X), which is TRUE if room X is lit and
FALSE otherwise. That should solve the problem. But
then, a little later still, you remember that the player
must carry a lantern in order to illuminate those dark
rooms. So, the describing procedure should check if
the player is carrying a lantern before the computer
can announce whether the room is, or is not, pitch
dark. Then again, suppose the player had the lantern
when he entered the room but dropped it. In that case,
he would not be carrying a lantern but the room would
neverthless be illuminated .

Obviously this could get very complicated very
rapidly, and unnecessarily so. The fact is that
Adventure games need a bit of 'bottom-up'
programming too, a degree of thinking about the nuts
and bolts of the program before putting pen to paper.

Having said this, your final program should be very
well structured - it's only a question of how the
structure is produced. It is vital that you know your
way around your program, and that implies a
structured approach. If, when you are debugging the
program, you are presented with: ' Array in line 2040',
you need to know not only what that line was
supposed to do (and have a copy of what the line
purports to say), but also where the variable for the
array was set last, what its value was supposed to be,
and so on.

An example of the thought required is in your choice
of variables. BBC BASIC lets you use variables with as
long and as descriptive a set of names as you like. For
short programs, this minimises both the writing and
debugging time - as does the inclusion of plenty of
REMs within the program. But these all take up space;

25

HOW ARE GAMES WRITIEN?

the variable PLA YERSROOM needs 11 characters or
bytes just to mention it in the program; whereas R
takes up but one character. Use the longer variable 50
times in your program and you have used up 550
characters just mentioning the player's room! On the
other hand, R isn't the most descriptive of labels and
hardly facilitates reference. The solution is obvious -
think about the variables before you write the
program, and make a list of what they are going to
represent.

This becomes really important when considering
'work variables'. These are variables to enable the
computer to make a quick calculation. For example,
you might need to count how many rooms have been
visited by the player (the array VISITED(R) would be
TRUE if room R had been visited and FALSE
otherwise). So you could well write something like:

500 Ii.=O
510 FOR Ji. = 1 TO NUMBEROFROOMS
520 IF VISITED(Ji.) Ii. = Ii. + 1
530 NEXT

which would leave 1% holding the number of visited
rooms (and J% with a value you don't really care
about).

l used 1% and J% in that example for two reasons:
(a) I always use them for work variables, and (b) they
are two of the resident integer variables; they don't
take up any space because they exist already.
However, do be careful not to use them unwisely.
Programs tend to include lots of procedures which call
each other (PROCA includes a line which calls
PROCB, which itself contains a line which calls
PROCC, and so on). If, then, we use 1% and J% both
as work variables in the main program and in PROCA,
and include something of the order, 1% =3: PROCA: IF
1%=N% THEN ... , PROCA will almost certainly
have redefined 1%. Think about so structuring your
use of work variables that they don't get called upon to
play several roles in several procedures
simultaneously.

One remedy is to use LOCAL variables for the
procedures. Thus DEF PROCA: LOCAL !%, J% will
particularise 1%, J% to PROCA. Predictably, we pay
for this in SPACE. If the computer is to keep track of

26

HOW ARE GAMES WRIITEN?

the vali:es 1% & }% in the main program and their
values m PROCA, it will have to store both sets of
values somewhere.

My own solution is to plot out in advance which
resident work variables will be used for which 'level' of
procedures or functions. By 'level' I mean that a
procedure like 'move player' refers to certain functions
like 'room of player', for example, whereas the
procedure 'room of player' makes no such reference to
the 'rr:,ove player' proced~re. So, I use!%, }%, K%,
and LYo as four work vanables m my main program·
A%, B%, C% and 0% as variables in the 'big;
procedures (like moving, etc.); and E%, etc. in the
procedures called by the 'big' ones, and so on down to
such elementary functions as 'where in the machine I
have stored the information about room 15'. This all
takes work - but the pa yo ff is the lack of work trying to
figure out how H% came to be 157 when your program
clearly set it in the range 1 to 4 ...

. We h~ve merely touched on the problems involved
m creating the .running prog:am. The best way to
cozi:ie t~ terms Wlth the process 1s to try writing a game,
which 1s what we shall do in the next part.

27

28

2
CREATING A 'HACK
AND-SLASH' GAME:
'CAVES'

2.1 The plot
In this part of the book we will investigate a simple
adventuring game in order to demonstrate how to
develop a database structure, handle commands, and
so on.

As a model we will look at the bones of a more
complex but truly excellent Adventure called
Sorceror's Cave (the publishers are now Gibsons, and
its writer is Terence Donnelly) .

The game presents a team of people (initially just
one man) involved in an exploration of a vast cave
system, which will change from game to game. You
begin in an entrance cave just underground, and may
explore in any one of six directions: north, east, south,
west, up and down (though not all areas have exits in
each direction) . Exploration reveals a three
dimensional grid of caves and passages, which should
be mapped in order to avoid getting lost.

In the caves lie treasures of various values, and
denizens. The latter are both ordinary people, like
yourself, and mythical creations such as giants,
dragons, and so on. Often the denizens are guarding
treasure or blocking a route you wish to take. You have

29

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

the choice, as you would in real life, of deciding to
leave well alone (a good choice where dragons are
concerned!), fighting them (and gaining the
advantage of surprise) or approaching them to see if
they're prepared to explore with you (which will
strengthen your party for Later encou~ters). In ~he
latter case, the denizens' leader will determine
whether he likes the look of you, doesn't care one way
or the other, or wants to fight you (whereupon the
denizens get the advantage of surprise). Some
denizens are more friendly than others ...

Fighting is carried out by the program, not by the
player, and involves a comparison (or weighing up) of
fighting strengths. Each character i~ the game has a
fighting strength; weak characters like hobb1ts have
little strength, whereas fearsomely strong characters
like dragons resemble a mobile army. The fighting
strengths of all denizens present are added together
and pitted against the fighting strengths of up to three
of your party (since caves are awkwa~d places, not _too
many people can muscle in on ~he fight!). There I~ a
bonus of one for whichever side has the surpnse
advantage. To each of these numbers is added a
random dice throw (i.e. a number between one and
six). The team with the higher number kills one of the
other side. In the event of a draw, you are deemed to
be still fighting. This gives you the chance of running
for an exit, or continuing to fight.

Only if you kill all the denizens, or if they join your
party, can you pick up the treasure in their area . There
are more treasures (and more denizens!) in the lower
levels of the caves; thus the surface levels are safer if
less rewarding.

Each area is either a cave with something inside it, or
an empty passage. The type of area, its e~ts, ~nd
contents if any, are determined randomly the first tune
the player attempts to enter. Thus the player may be~
a passage with a north exit but be unable to use 1t
because the area to the north doesn't have a southern
entrance.

Finding and using an 'up' staircase on a level of the
caves just underground will take you out of the caves,
and finish the game. Things are seldom that simple
because caves and passages get blocked easily, and
there are two further random events which can ruin

30

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

your plans. One is an earthquake, which will destroy
the area you were just in, and render it impassable.
The other, a trap, is a precipitous drop one level
deeper into the cave system. ln either of these cases,
there is no possibility of retreat should you encounter
any denizens .

That's roughly the plot. In the original, access to the
next cave or passage w~s determined by revealing a
card with a representation of a cave and some exits
drawn on it, followed by a number of cards
representing its contents. In our implementation, this
will be replaced by random selection within the
computer. However, there will have to be a fair
amount of book-keeping so that the player may
backtrack and rediscover caves (and where
appropriate, contents) that have already been
mapped.

2.2 Planning the game - the game logic
Having decided on the plot of the game, the next thing
is to organise its logi~al _flow, turn by turn. I strongly
recommend domg this m English, or a quasi-English
most programmers know as 'pseudo-code' . What we
will do is write the program in readable English, but in
terms that are converted, with relative ease, to BBC
BASIC.

Since BBC BASIC is highly structured, and we aren't
going to be short of room for this program, we can set
up a very structured program; please bear this in mind
as we proceed .

First of all, when writing pseudo-code,

GET THE LOGICAL STRUCTURE FIRST

then figure out later how to program it. Only if the
programming is clearly beyond your abilities should
you redesign the structure!

We'll assume that outside the main program loop
there will be some initialisation, dimensioning, screen
mode choosing, etc., and concentrate now on the
~ecurring logic. As he takes a turn, the player may be
ma normal , 'what shall I do now?' situation, or he may
be 'still fighting' from his previous turn . Obviously the
latter will take precedence over the former. So we
begin our pseudo-code with:

31

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

IF PLAYER IS FIGHTING, MAKE THE AREA
UNSAFE, SET FIGHT BONUS TO ZERO, AND ASK
PLAYER IF HE WISHES TO CONTINUE TO FIGHT
OR TO LEA VE. IF CONTINUING, FIGHT AND GO
TO END OF LOOP.

Programmers will notice this 'fighting' test is going
to be used time and again in the program - it is of
course part of the database structure. Since we will
have to write it many times, let's decide now to handle
it, and questions like it, by a simple FLAG. This is a
logical variable (e.g. FIGHTING) which when true will
indicate that fighting is proceeding and when false
indicates the opposite. This shortens the above
pseudo-code to:

IF FIGHTING, SAY SO, SET UNSAFE, BONUS=O.
ASK PLAYER 'CONTINUE OR LEA VE?' IF
CONTINUE, FIGHT; GO TO END OF LOOP.

Notice how 'Basic-like' this looks. It makes it more
likely that when the programming begins, we will get
it right (or nearly right) the first time rather than the
tenth time!

Now, what's it all about? Well, if the player is
fighting, we shall remind him, and jot down that the
area is 'unsafe'. Later on, if an area is unsafe, it will
stop the player grabbing treasure, checking the status
of his party, and all the other things which wouldn't
make sense in the presence of- not necessarily hostile
- strangers. We then set the fight bonus to zero, as in a
continuing fight nobody has a surprise advantage.
Then we check whether the player is continuing the
fight, or leaving. If he fights, let him do a round, and
then end the loop. (If he leaves, he' ll just continue the
main program loop.)

Now we can proceed with the normal course of
events . First, tell the player where he is and find out
what he wants to do next:

DESCRIBE ROOM. ASK PLAYER FOR A
DIRECTION TO MOVE (IF SAFE, ALSO ASK IF HE
WISHES TO KNOW HIS PARTY'S STATUS).

After doing this, we have to examine whether he
can go in that direction . Many things can intervene,
and this is where a little logical thinking comes in. Put

32

CREATING A 'HACK-A D-SLASH' GAME: 'CAVES'

yourself in the player's position for a moment. Let's
s~y you've j~st said 'north'. What could stop you?
First, there might be no north exit in your area. (I can
hear you objecting that we've just described the room,
so the player knows there's an exit north. Well, he's
allowed to make mistakes, and this might be one of
them .) So let's write (incorrectly at first, as we'll see):

IS THE EXIT BLOCKED? IF SO, SAY SO, AND GO
TO END OF MAIN LOOP.

. St~p a mome~t and be the player again. If he wasn't
fighting, that's fme. But if he was fighting, his inability
to leave would plunge him back into the melee again.
So we have to modify this outcome to:

IS THE EXIT BLOCKED? IF SO, SAY SO. IF
FIGHTING, FIGHT AND GO TO END LOOP, ELSE
GO TO END LOOP.

A word of warning here: in BBC BASIC the first
'ELSE' encountered on a line pairs with the first 'IF'
before it on the line that failed. If you think like me,
though, that 'ELSE' refers to 'IF NOT FIGHTING'. The
whole clause, therefore, refers to what happens if the
exit is blocked . Note also that we always tell
the player something (user- friendliness!).

Now we know the player can leave his room, what
else may happe~? First of all, he may be trying to exit
the maze with his treasure, which he can do if he's on
the top level and is moving up. On the other hand, he
may not have noticed which level he's on. Hence we
should give him the choice:

WILL THIS TAKE PLAYER OUT OF MAZE? IF SO,
SAY SO AND OFFER THE CHOICE OF NOT
LEAVING. IF LEAVES, SCORE, END GAME, AND
OFFER A NEW ONE; ELSE IF FIGHTING, FIGHT; GO
TO END LOOP (ELSE JUST GO TO END LOOP
ANYWAY).

Notice that awkward test for fighting recurring;
life's like that. Next we must check whether there's
already a room in existence for the player to go to, or
whether we have· to design a new room and its
contents. Since any database must be of a limited size,
we shall choose to allow only 90 rooms in total. So it
may not be possible to design a new room:

33

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

IS THERE A ROOM ALREADY THERE? IF NOT, TRY
TO MAKE AND FILL A NEW ROOM. IF THERE'S A
PROBLEM, REPORT THE EXIT TO BE BLOCKED
AND CHECK FOR FIGHTING AS USUAL BEFORE
GOING TO END LOOP.

So now there's a room for the player to go to - but
there may be no entrance. Let's check:

IS THERE AN ENTRANCE FOR THE PLAYER IN
THE NEXT ROOM? IF NOT, REPORT BLOCKAGE,
FIGHT IF NECESSARY, ANDGOTOENDOFLOOP.

Believe it or not, after all this the player is ready to be
moved! If you've programmed up similar things
before, none of the foregoing will have been unusual.
If you're new to this, you may still be puzzled as to
how you would generate an equivalent set of
questions in your own games. It's a knack, really . Try
to think negatively rather than positively. Put yourself
in the player's position. If there were no problems,
he'd just move. So assume there are problems. Before
you start writing in pseudo-code, don't worry about
getting them in logical order, unless you have that
kind of mind! Just jot them down on a piece of scrap
paper as they occur to you, until you' re convinced you
have a complete list. Then put them into sequence.
There's no point in checking, say, the entrance to the
next room until you've ascertained whether the player
can leave his current one, and so on.

OK, back to the plot, but still thinking negatively.
The player can move, but something may well happen
to him on the way: those random events, namely
earthquakes and traps. Both of these would stop him
retreating from his new room. So we first set a flag
which will let him retreat, and then if an event occurs
to stop him we can cancel the retreat:

SET RETREAT OK.
CHECK FOR EARTHQUAKES.
IF EARTHQUAKE, SAY SO; SET CURRENT ROOM
TO RUBBLE; SET NO RETREAT, AND SKIP OVER
THE 'TRAP' SEQUENCE.
CHECK FOR TRAPS.
IF TRAP, TRY TO MAKE NEW ROOM BELOW
CURRENT ONE. IF CAN'T, IGNORE TRAP; ELSE
SAY SO, REDEFINE NEW ROOM TO BE ONE
BELOW AND SET NO RETREAT.

34

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

Now we simply shift the player:

MOVE PLAYER TO NEW ROOM.

What problems can afflict him once he's in the new
room? Perhaps none: the room may be empty:

IF ROOM EMPTY, SET NOT FIGHTING, SET
SAFE, SET RETREAT OK,
GO TO END LOOP.

That gets the easy case out of the way! The loop will
circle round to the beginning and do a description of
the ro.om, which is what is needed in this position . But
suppose there is something in the room. We should
first tell the player what it is, then see if he likes what
he sees:

DESCRIBE ROOM.
IF RETREAT POSSIBLE AND THERE ARE
DENIZENS, ASK IF WISHES TO RETREAT. IF SO,
RETURN TO PREVIOUS ROOM (AND FIGHTING IF
NECESSARY) AND END LOOP.

Note that check for fighting again - we don' t want
this to be too easy! We obviously don' t ask about
retreating if there aren' t any denizens, because in that
case there's only treasure, which the player will pick
up automatically in a moment. First we must check the
SAFE flag:

IF ANY DENIZENS UNSET SAFE ELSE SET SAFE

(because this might be left over as unsafe from the
previous turn) . Now the player may be able to pick up
the treasure:

IF SAFE, EMPTY ROOM OF TREASURE AND GO TO
END LOOP.

So if we get here in the logic, there must have been
some denizens (i .e. it was UNSAFE). Now the player
gets the choice of approaching them or fighting them:

ASK IF PLAYER WISHES TO APPROACH OR TO
FIGHT.

Now the logic forks, depending on what he elects to
do. Let's look at approaching first. Three outcomes are

35

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

possible: the denizens may choose to join the party,
ignore the party, or attack it with the advantage of
surprise. All we have to do here is to note the
outcomes in each case, and program up the mechanics
later:

IF APPROACH:
IF DENT ZENS JOIN, SAY SO, ADD THEM TO PARTY
AND EMPTY ROOM (I. E. GET THE TREASURE); GO
TO END LOOP.
IF DENIZENS IGNORE PARTY, SAY SO AND GOTO
END LOOP.
IF DENIZENS A TT ACK PARTY, SET BONUS FOR
DENIZENS, FIGHT, AND GO TO END LOOP.

This leaves only the fight option, which scores the
bonus for the party:

IF FIGHT:
SET BONUS FOR PARTY; FIGHT; END LOOP.

And that is the end of the program logic. Before we
discuss how we might store and access all the
information the program will need , here's a repeat of
the logic in continuous sequence. You may find it
useful to refer to when we do the programming.

IF FIGHTING, SAY SO, SET UNSAFE, BONUS=O.
ASK PLAYER "CONTINUE OR LEA VE?" IF
CONTINUE, FIGHT; GO TO END OF LOOP.

DESCRIBE ROOM.

ASK PLAYER FOR A DIRECTION TO MOVE (IF
SAFE, ALSO ASK IF HE WISHES TO KNOW HIS
PARTY'S STATUS) .

IS THE EXIT BLOCKED?
IF SO, SAY SO. IF FIGHTING, FIGHT AND GO TO
END LOOP, ELSE GO TO END LOOP.

WILL THIS TAKE PLAYER OUT OF MAZE?
IF SO, SAY SO AND OFFER THE CHOlCE OF NOT
LEAVING . IF LEAVES, SCORE, END GAME, AND
OFFER A NEW ONE; ELSE IF FIGHTING, FIGHT; GO
TO END LOOP (ELSE JUST GO TO END LOOP
ANYWAY).

IS THERE A ROOM ALREADY THERE?

36

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

IF NOT, TRY TO MAKE AND FILL A NEW ROOM. IF
THERE'S A PROBLEM, REPORT THE EXIT TO BE
BLOCKED AND CHECK FOR FIGHTING AS USUAL
BEFORE GOING TO END LOOP.

IS THERE AN ENTRANCE FOR THE PLAYER IN
THE NEXT ROOM?
IF NOT, REPORT BLOCKAGE, FIGHT IF
NECESSARY, AND GO TO END OF LOOP.

SET RETREAT OK.

CHECK FOR EARTHQUAKES.
IF EARTHQUAKE, SAY SO; SET CURRENT ROOM
TO RUBBLE; SET NO RETREAT, AND SKIP OVER
THE 'TRAP' SEQUENCE.

CHECK FOR TRAPS.
IF TRAP, TRY TO MAKE NEW ROOM BELOW
CURRENT ONE. IF CAN'T, IGNORE TRAP; ELSE
SAY SO, REDEFINE NEW ROOM TO BE ONE
BELOW AND SET NO RETREAT.

MOVE PLAYER TO NEW ROOM.

IF ROOM EMPTY, SET NOT FIGHTING, SET SAFE,
SET RETREAT OK, GO TO END LOOP.

DESCRIBE ROOM.

IF RETREAT POSSIBLE AND THERE ARE
DENIZENS, ASK IF WISHES TO RETREAT. IF SO,
RETURN TO PREVIOUS ROOM (AND FIGHTING IF
NECESSARY) AND END LOOP.

IF ANY DENIZENS UNSET SAFB ELSE SET SAFE

IF SAFE, EMPTY ROOM OF TREASURE AND GO TO
END LOOP.

ASK IF PLAYER WISHES TO APPROACH OR TO
FIGHT.

IF APPROACH:
IFDENJZENSJOIN, SAY SO, ADD THEM TO PARTY
AND EMPTY ROOM (I.E. GETTHE TREASURE); GO
TO END LOOP.
IF DENIZENS IGNORE PARTY, SAY SO AND GO TO
END LOOP.

37

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

IF DENIZENS ATTACK PARTY, SET BONUS FOR
DENIZENS, FIGHT, AND GO TO END LOOP.

IF FIGHT:
SET BONUS FOR PARTY; FIGHT; END LOOP.

2.3 Planning the game - the database structure
Having organised the playing logic, we must now
decide how the various details (the cave layout, the
contents, who is in the player' s and so on) can be
stored. In other words, decide on the database
structure.

There are many ways we might choose to store the
information . Not all are as efficient as others . Let's
start with the cave layout,and leave the cave contents
until later. The cave system is built up on a three
dimensional grid, so that a map of the system would
need three dimensions: north-south, east-west, and
up-down . Unlike the map we looked at in Part 1, it's
determined randomly every game (we can't worry
about how just-yet as we don't even know how to store
it!). So for each area in the system, we need to establish
two things: (a) which directions are exits, and (b)
where in the 3-D grid the area Lies.

That may not be obvious, but think about it for a
moment. We can' t store the destination rooms for the
six possible exits to any given room, because as yet we
cannot identify the room or even tell whether any exist
exist exist. So that precludes the system in Part 1. (I
suppose one could use an entry of 'O' to mean 'exit
blocked' , a number from 1to90 to indicate which room
lay beyond the exit, and a 99 to mark 'no room yet in
existence there' , but it's a Little clumsy and, as we shall
see, space-consuming.) Hence the method sugge~ted .
If the player tries to go north, say, we can look~~ m (a)
to see if that's possible, then check where he 1s m (b),
and decide whether there's a room to the north by
using (b) again. After making an exit, if necessary, we
can check to see if that room has an exit to the south (to
let the player in), again by using (a).

The first essential is to identify the rooms. Let's
number them as in Part 1. The player won' t know they
are numbered, of course, but the program will. Also,
let whichever room the player is in be accorded the
integer variable "r%" . (For simplicity all the variables
used, except local work variables, will be lower case

38

CREATING A 'HACK-AN D-SLASH' GAME: 'CAVES'

integers; all logical variables and arrays will be upper
case for this part.) So the directions with exits from
room r% can now be stored in one or more arrays.

And therein lies the first snag. Suppose we create six
arrays: NORTH(90), EAST(90), etc. (because there are
90 rooms). The entry in NORTH(lO) will be zero if
there is no exit northwards from room 10, and one if
there is such an exit. Well, try it. Tum on your
computer, and if your BBC BASIC is version 1 or 2,
type the (non-Ac;orn supported)

PRINT !2 AND &FFFF
(This little bit of gobbledegook tells you where the first
available piece of memory is, after your program
variables . When this value hits about HIMEM, you get
that awful 'No room' message.) Jot down the answer,
then type:

10 DIM NORTH(QQ),EAST(90),SOUTHC90l,WEST(QQ),UPC90l,DOWNC90'

followed by RUN . This simply reserves space in
memory for these six arrays. If you now type

PRINT !2 AND &FFFF
again, you should find a number about 2790 higher
than it was before. In other words, simply
dimensioning those six arrays used up nearly 3000 (i.e.
3K) of precious memory. Declaring them as integer
arrays helps a little, but not a great deal. Thus the
EASY way to store the information is a WASTEFUL
way. And obviously so. Each of the 5 bytes which one
entry of NORTH occupies will hold either a one or a
zero; hardly an optimal use of space!

To save space drastically - at the cost of working a
Little harder on the programming - we can store the
entire exit information in one array, called R%(90) . It's
important that it be an integer array, as you' ll see in a
moment; in fact, very little in adventure games needs
real numbers . Suppose that the exits from room 13 are
north, south and down . Then we can make the value
of R%(13) be 100101, where we use the code:
S W U D E N
100101
(an integer variable can be any value up to about 2
thousand million) . Each digit of R%(13) then holds a
flag to indicate whether there is an exit in the
appropriate direction. I' ll come to my reasons for
choosing that particular order of directions later.

39

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

We haven't yet exhausted the size of R%, since the
code scheme only uses 6 digits. It seems a pity to waste
a digit, Jet's determine that the millions digit will be a 1
if the room is a cave (and hence has contents, at least
when it's created) or a 0 if the room is a passage
(without contents). So if room 13 is a cave, R%(13)
becomes 1100101. Similarly, if R%(14) is 11010, we
interpret room 14 as being a passage (because R%(14)
has no millions digit), and with exits west, up, and
east, to correspond with the l's in its value. Be sure to
grasp this because we'll be using similar ideas later.

The point of this apparently complicated setup was,
you'll recall , to save space. The entire information
about exits, together with a flag marking whether a
room is a cave or a passage, is summarised in ONE
integer variable, which takes up only 4 bytes, instead
of the 24-30 we were using previously. (In Part 4, I'll
show you how to get this down to one-and-a-half
bytes!) But we shall pay for this saving by having to
write a program to find out whether there' s a
northward exit or not, instead of just looking at the
array NORTH.

By the way, you may have noticed there are several
digits left over in R% which could have been used to
store information. You may want to modify the
program afterwards to add some frills of your own,
and there are three digits left you can play with .

Now to store the location of room r%, again in a
single array (slightly too large to fit into the remaining
digits of R%) called WHERE%(90) . If room 13 is 4
levels down from the surface, 8 areas east and 47 areas
north in the three-dimensional grid, then
WHERE%(13) will be 40847. We use the scheme:

D E N
04 08 47

to encode the location numbers for room 13. Such
numbers are known mathematically as the room's
co-ordinates. Hence if WHERE% (14) is 174923, room
14 is 17 levels down, 49 areas east, and 23 areas north .
We have to use 2 digits here as the player may well
roam quite some distance .

Before we accept this scheme, think negatively.
What if the player goes south successively until his

40

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

'north' co-ordinate becomes 2, then 1, then zero, and
then . .. ? We can't place a negative number for the
north co-ordinate in the middle of a normal six-digit
number, so instead we must define all ways as blocked
when north or east co-ordinate reaches what would be
a negative number. To circumvent this altogether, we
could define the entrance cave as east 45, north 45
(chosen merely to be half of 90, by the way). Then, the
down co-ordinate will never be a problem since the
entrance cave is at level 1, and the player can only go
deeper; also, you will recall that any move to rise
above level 1 will end the game, so no worry there;
and, finally, the player will never get 45 rooms in one
direction, I guarantee! (If you are paranoid about this,
put a check into the program later.)

The only other big array should seem fairly
straightforward now. We need one to hold the
contents of each cave - or indeed, each area, even
though a passage won't have any contents . We call
this CONTENTS% (90), and let any area hold as many
as four things, each of which can be a treasure or a
denizen. (We'll decide how to number those in a
moment.) So if CONTENTS% (13) = 12060312, then
room 13 holds things number 12, 6, 3, and 12 again .
We take pairs of digits just as before:

Thing 1 2 3 4
12 06 03 12

and another example would be CONTENTS% (14)=0,
which would mean there are no things in room 14.
(Thing 2 can be zero, while things 1 and 3 are not zero,
by the way.)

There will also need to be some smaller arrays
connected with denizens. The time has come to decide
which denizens we shall have in the game. My list
contains 10 different types. These are: dragon, giant,
wizard, ore, man, woman, dwarf, hobbit, wolf, and
lion. These are numbered from 1 to 10 in order of
importance when it comes to deciding which denizen
chooses whether to join the player's party (i.e if there's
a dragon present, he chooses) . We shall also have five
possible treasures: bronze, silver, gold , gems, and a
treasure chest, in increasing order of value. There' s
nothing significant about 10 and 5 - change the
numbers of denizens or treasures if you wish . In order
to be able to print out what is present in an area, we

41

CREATING A 'HACK-A D-SLASH' GAME: 'CAVES'

make a string array to hold the names of these 15
things, called CHAR$(15). CHAR$(1) = 'A dragon',
and so on.

Another array for things is needed to hold their
individual characteristics. For each denizen , we need
to be able to refer to its fighting strength, and how
likely it is to attack or to befriend the party. The
strength will be a number from 1 to 10 (again, there's
no specific reason for the limits). The likelihood of
attacking or befriending is handled in a similar manner
to the original game: each denizen has associated with
it two numbers from 1to6, namely its attack threshold
and its befriending threshold . When approaching the
most important of the denizens in an area, a die is
thrown (i.e. a random number between 1 and 6 is
generated) . lf the number is less than or equal to the
attack threshold, the denizens attack. If the number is
greater than or equal to the befriending threshold, the
denizens befriend. If the number lies in between the
two, the denizens remain neutral. This enables us to
make dragons impossible to befriend - their
befriending threshold will be 7 - and almost
impossible to avoid fighting - their attack threshold
will be 5. Conversely, little peacable hobbits have an
attack threshold of 1 and a befriend threshold of 3. We
hold these numbers in a single array called
CHAR%(15); the remaining 5 elements will be used
for the value of the five treasures, with CHAR% (11)
for the bronze, up to CHAR%(15) for the treasure
chest. We pack in the fighting strength and the two
thresholds into a single number just like
CONTENTS%, with three sets of two digits. Hence
CHAR% (1), for the dragon, is 70510, which means:

Be At St
07 05 10
where Be, At, and St stand, of course, for Befriending,
Attacking, and Strength respectively .

Two more arrays complete the list. The first is
TEAM% (30), whose entries are the numbers of the
characters in the party. TEAM%(1), then, is 5, because
the first member of the party is a man, numbered 5 on
the list of 10. TEAM%(2) is undetermined so far, but
will be set when a denizen joins the party. The last
array is for printing convenience only: DIRN$(5) . Each
of the 6 entries (we're using DIRN$(0) here also, for
programming convenience) contains a string

42

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

corresponding to one of the six directions, in the
reverse order to the way R:'/o stores directions . Thus
DIRN$(0) ='North' , DIRN$(1) = 'East', and so on up
to DIRN$(5) = 'South'.

These, plus a few variables, are all we need . to
program the game.

2.4 Programming - the main program
Thanks to our pseudo-coding the game logic, the main
program loop now almost writes itself. We need
merely to set a screen mode, do some dimensioning,
call a setting-up procedure, and then loop around the
logical structure we've created . This gives us (in
chunks, to allow for explanations):

10 DIM RX C90l,WHEREXC90l,CONTE~TSXC90l,TEAMXC30l,CHARXC15l,CHARSC15l,
DIRNS (5)

20 HOOE 7 : PROCSETUP
30 REPE AT SNAG=FALSE
40 IF FI GHTING SAFE=FALSE:bonusX=O:PRINT"Do you wish to Continue

fi ghtinQ (C)""'or Leave CU ?":REPEAT AS=GETS: UNTIL AS="C" OR AS="L":IF
AS • " C" PROCF IGHT:UNTIL FALSE

50 CLS :PROCDESCRIRE
60 PROC GETDIRECTION
70 PROC EXITBLOCK
8C IF SNAG AND FIGHTING PROCFIGHT:UNTIL FALSE FLSE IF SNAG UNTIL FALSf
90 PR OCLEAVEHAZE:IF SNAG ANO FIGHTING pqocFIGHT:UNTIL FALSE ELSE IF

~NAG UNT IL FALSE
100 PR OCROOMTHERE(1)
110 IF SNAG AND FlG~TING PROCFIGHT:UNTIL FALSE ELSE IF SNAG UNTIL FALSE

Here are the explanations.

10: Dimension all needed variables.
20: Set mode 7 (i.e . 6 on the Electron) for needed

space; call PROCSETUP (to be written) to initialise
variables .

30: Enter main loop, and clear a flag SNAG, which is
set to true by most of the procedures if, not
surprisingly, a snag occurs for the player. This trick of
passing back a flag from a procedure avoids lots of
awkward programming.

40: A long line, but containing a single piece of logic.
If fighting, find out player's decision . (Note the use of
GET$ - the only input method used in the game - and
the way it is checked. In particular, we're only
accepting upper case input. How could you allow for
lower case as well?) If he wishes to leave, the program
will simply continue. If he wishes to fight,
PROCFIGHT will be called (not written yet!) followed
by the very useful UNTIL FALSE. The main loop's

43

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

REPEAT can have many UNTILs to end it with; here is
the first.

50: Clear screen and describe room and contents.
60: Ask for direction to move (and/or party's status if

SAFE) .
70-80: If exit blocked (marked by SNAG) fight or not

depending on FIGHTING. Care is needed with the IF
ELSE ordering here.

90: Leaving maze check. SNAG will be set in
PROCLEAVEMAZE if player decides not to leave.
You could if you preferred have used functions
instead of procedures, and written
SNAG=FNLEAVEMAZE. There's no 'right' and
'wrong' way to do all this!

100-110: faa room there for player to go to? Note the
passing of a marker 1 here, as we'll use a similar
procedure if the player falls down a trap, but don't
want to set SNAG in that case. The procedure will here
make a room if necessary. SNAG will get set only if a
room is impossible to make, and will generate fighting
as per usual.

120 PROCENTERROOM
130 IF SNAG AND FIGHTING PROCFIGHT:U~TIL FALSE ELSE IF SNAG UNTIL FALSE
140 RETREAT=TRUE
150 PROCEARTHQUAKE
160 IF NOT SNAG PROCTRAP
170 SNAG=FALSE
180 roldX=rX:r~=r1X
190 IF CONTENT$XCrZl=O FIGHTING=FALSE:SAFF.=TRUE:RETREAT=TRUE:UNTIL FAL SE
200 PROCDESCRIRE
210 IF NOT RETREAT OR NOT FNANYOENIZENS ELSE PRINT"Do you wish to

retreat (Y/Nl ?":REPEAT AS=GETS:UNTIL AS="Y" OR AS="N":IF AS="Y" AND
FIGHTING rX=roldX:PROCFIGHT:UNTIL FALSE ELSE IF AS="Y" rX=roldZ:UNTIL
FALSE

220 IF FNANYOENIZENS SAFE=FALSE ELSE SAFE=TRUE
230 IF SAFE PROCEMPTYROOM:FIGHTING=FALSE:UNTIL FALSE
240 PRINT""Do you wish to Approach (Al'""the denizen(s) or Fight

CF)?":REPEAT AS=GETS: UNTILAS="A" OR AS="F"
250 IF AS="F" ELSE PROCAPPROACH:IF NEUTRAL UNTIL FALSE ELSE IF SMAG

PROCFIGHT:UNTIL FALSE ELSE UNTIL FALSE
260 bonusZ~1
270 PROCFIGHT
280 UNTIL FALSE

Explanations:

120-130: Is there an entrance? If not, fight etc. as
needed.

140: The player is moving whether he likes it or not!
Let him retreat unless something awkward happens.

150-160: Test for earthquakes. (If there was one, the
procedure will reduce the current room to rubble; in
that case don't burden the player with a trap as well.)
Test for traps. The procedure will alter the destination

44

CREATlNG A 'HACK-AN D-SLASH' GAME: 'CAVES'

room to the one below in this case. (rl % by this time
holds the destination room number.)

170-180: Clear SNAG to avoid problems, and move
the player. This simply makes the value of r% be rl % ,
the destination! At the same time, to allow for possible
retreats, remember where player came from in rold%.

190: If the room is empty, make all safe and end the
loop.

200: Not empty, so tell player what there is. Note
re-use of an earlier procedure.

210: If there are any denizens and the player can
retreat, find out if he wishes to . If so, return him (r% =
rold%) and check for fighting again. This line has
more than its share of IFs. In particular, we only want
to do a retreat check IF two conditions are satisfied, yet
there will be other IF-ELSE checks in the line. We
could avoid ELSE conflict by using a GOTO, but
structured programming frowns on this (tough luck
-we'll be using them later!). So instead we use the fact
that BBC BASIC does not require a THEN clause at all
(merely passing on to the next line if the condition is
satisfied). This kills the first ELSE early on and allows
more IFs later in the line.

220: If the room is inhabited, make it unsafe .
230: If the room is safe, collect the treasure - which

will leave the room empty.
240: The room was inhabited. Find out player's

decision.
250: He's approaching (note the IF-ELSE trick

again) . Take action if neutral or fighting (approach
procedure will handle joining).

260-280: He's fighting. Set bonus, fight, and end
loop.

Working out the logic of the game in section 2.2 not
only takes care of a great deal of the programming
work, but also minimises the incidence of errors too.
Of course there' ll be bugs in individual procedures -
there were when I wrote these! - but they' re easily
traceable, as I'll show you when I talk about
debugging later.

2.5 Programming - the procedures (1)
Now comes the pleasant part of the programming -
writing the procedures and making the program come
'alive'. Unless there are pressing needs otherwise, it's
usually simpler to write the procedures in the order
they appear in the program, and I'll adopt that here .
You'll already have found in your own programming

45

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

that it pays to use fairly separated line numbers for
procedures (to allow for debugging later) so we'll start
at line 500, with PROCSETUP.

5(1(1 DEFPROCSETUP
510 nroomX=1:rX=1:RX<1l=1111011:WHEREXC1l=14545
520 ntoamX=1: TEAM!(1l=5:scoroX=O
530 FOR 1~=1 TO 15:READ.CHARV.CI%1,CHARSCIXl:NEXT
540 DATA 70510,"A draQon",60406,"A glant",50304,"A whard",50405,"An

orc 11 ,40203, ' 1 ~ man••
550 DATA 40202,"A woman",30101,"A dwarf",30101,"A hobbit",5(1304,"A

wolf",50305,"A lion"
560 DATA 2,''So~~ bron1e'',S,''Some silver 11 ,10,''Gold bars'',20,"Ge~s'',30,''A

treasurp chest 11

570 DIRS="":FORIX•O TO 5:READ OIPNiCIXl:DIRS=DIP$+
LEFTS(DIRNSCI~l,1l:NEXT

580 DATA 11 North 11
,

11 East","Down", 11 Up", 11 West","South"
590 FIGHTING=FALSE: SAFF.=TRUE: RETREAT=TRUE
600 ENDPROC

Explanations:

510: Only one rooin so far; player is in room 1; room
1 is a cave (without contents) with exits south, west,
up, east and north; it lies on level 1, 45 rooms east and
north.

520: One member in the party, who's a man (we get
the numbering system next line); no score so far.

530: Read and store characteristics and names of all
things which can be met in the cave system, using
DATA lines 540 to 560. To remind you of the storage
system, the dragon has a befriending threshold of 7,
an attacking threshold of 5, and a fighting strength of
10. The bronze treasure is simply worth 2.

570: Using the DATA in 580, read in the six
directions. Store their initial letters - in capitals - in
DIR$, which finally equals "NEDUWS". This order is
exactly the reverse of the way we code directions in the
database, for a reason you'll appreciate soon. DIR$
will be used as an efficient check to see if players type
in the correct response to a directional request.

590: Set various.flags to their initial values. All the
other dimensioned variables will be set to zero anyway
by BASIC.

The next procedure to be met is PROCFIGHT,
which occurs many times in the program. I'm going to
skip over it for now, as the only time it occurs without
a preceding IF check is towards the end of the main
loop . The beauty of procedure-writing is that you can
check as you go, so it's easier to write only the ones we
need at any time. So we move on to PROCDESCRJBE.

46

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

FPROCDES CRIBE: LOCAL It
700 ;:. RX CrX) DIV 1ooooon:IF IX -S="cav•" ELS~ AS="passag•"
710 Jf rX=1 PRI NT''"You are in the entrance cave with ••its:" ELSE
720

1
, , ,,

0
u are in a '';AS;'' with exits:''

PRINT FOR IX=O TO 5
~!~ If FNEXIT CIX,rXJ PRINT DIRNSCIX)
750 NEXT
760 lf tONTENTS XCrX)=O END~ROC

770 PRINT'"In the ceve 1s:
710 FOR 1X• O TO 6 STEP Z
790 JX • FNWHOCr X,lX)
100 If JX>O PR INT CHARSCJX)
110 NEXT
120 ENOPROC

Explanations:
710: Is the area a cave or a passage? The information

!sin R%(r%), an_d depends whether the millions digit
1s a 1 or a 0. A quick way to find out is to integer divide
by a million (much quicker than normal dividing) . 1%
is a standard work variable. Then we set A$ (a
working string) to the type of area. Notice that we can
just say IF 1%, since a non-zero 1% yields TRUE
anyway.

720: Describe the area . A special test to see if we are
in the entrance cave (the first room) .

730-750: Scan the six directions (0 = North, up to 5 =
West) and see if there is an exit. We use a logical
function FNEXIT(I%,r%) for this . FNEXIT returns a
value of TRUE if room r% has an exit in direction 1%,
and FALSE otherwise. More on this in a moment,
when we write it.

760: If area empty, end description.
770-810: Othe.rwise, check all four possible things in

the cave, and write out their names. Here we use
another function, FNWHO(r%,I%). This gives the
(I%/2)th thing in room r%. (We use counting by twos
merely because WHERE% holds thing labels in two
digits.) If any thing exists (i.e.]% > 0), print it out.

This procedure referenced two functions . The first is
FNEXIT, which will be used by various procedures.
FNEXIT(dir%,r%) will be TRUE if there is an exit from
room r% in direction dir% (0 to 5) and FALSE
otherwise:

900 DEFFNEXITCIX,rXJ:LOCAL JX
910 JX=CRXCrX) DIV 1o~IX) "OD 10
9ZO IF JX=1 THEN •TRUE ELSE •FALSE

Explanations:
910: We must examine one of the digits of R%(r%) to

see if it is 0or1 . If the relevant exit is, say, Down, this is
digit 2 in our scheme, or the lO's digit in ordinary

47

CREATI G A 'HACK-AND-SLASH' GAME: 'CAVES'

arithmetic. If the exit were West, 1% would be 4, so we
would have to examine the 10,000's digit. We do so by
stripping off all the other digits and leaving just one to
examine. First we integer divide by a suitable power of
10, to 'lose' all the digits to the right of the one we
want. For Down, we want to lose the units and 10s
digits, so we divide by 100:

Ri.Cri.)= (say) 1
we want this digit

Ri.Cri.) DIV 100= 1

101101 •
1 0 1 1

and in general we divide by 10 to the power of 1%. For
non-mathematicians, 10 to the power 0 is 1, so we can
even get the North digit this way. Now we have to
remove the digits to the left of the one we want, so we
use the BASIC MOD function , which throws away
multiples of any number. In this case we can lose all
multiples of 10, so we MOD with 10. This gives,
continuing the Down example,

RZCrZ) DIV 100= 1 1 0 1
we want this digit

(RXCri.) DIV 100) MOD 10=

So J% here= 1.

920: Return TRUE or FALSE as required.

This may have sounded rather complicated, but
remember we are trading programming effort for
space. If ever in doubt, test the procedure on any data,
as you write it. There are other ways of picking up
specific digits without arithmetic- converting R % (r%)
to a character string via STR$, then using MID$ to
locate the specific digit. I didn't use these because the
later methods we' ll use will store rather more
information than just one number in a single digit, in
which case STR$ isn't much use. Now for FNWHO:

950 DEFFNWHOCrX,IX)=CCONTENTSXCrX) DIV10-IX) MOD 100

The logic here is rather like FNEXIT. We have to look
at CONTENTS%(r%) and pick out a pair of digits
beginning at digit 1% from the right. (The rightmost
digit, the units digit, is 1%= 0.) First we remove all
digits further right, if there are any, by dividing by 10
to the power 1% . Then we kill all digits beyond (what
are now) the units and lO's columns by MODding with
100.

48

1 •
1

CREATING A 'HACK-AND-SLASH' GAM E: 'CAVES'

Now comes PROCGETDIRECTION. This is fairly
straightforward :

1000 DEFPROCGETDIRECTION
1010 PRINT'"What would you l i ke to do:"
1020 FOR IX=OT05
1030 PRINT "Move " ; DIRNSCIX>;" C";MIDSCDIRS,IX+1,1>;")"
1040 NEXT
1050 IF SAFE PRINT "Condition of party CC) "
1060 PRINT "?"
1070 REPEAT
1080 AS=GETS
1090 IF SAFE AND AS="C" PROCSTATUS:UNTIL FALSE
1100 JX=INSTR<DIRS,AS):UNTIL JX>O
1110 dirX=JX-1:ENDPROC

Explanations:
1010: Ask player.
1020-1040: List the six directions (be user-friendly!).

Pull the single letters out of DIR$.
1050: Allow status check if safe
1060: Cue player to type something!
1070: Begin a REPEAT loop until we get a useful key

pressed.
1080: Read a key, using the A$ work variable .
1090: If status check is permissible, call that

procedure and continue the loop with UNTIL FALSE
(as we haven't got a direction yet) .

1100: The use of DIR$ now becomes clear. We look
to see if A$ is one of the letters in DIR$. If not, try
again.

1110: Set the direction (dir%) to be one less than the
position of A$ in DIR$, as INSTR counts from 1 but we
are counting from 0, and return .

We referred to PROCSTATUS in the above, and this
is easy:

1200 DEFPROCSTATUS:LOCAL IX
1210 PRINT '"Your team consists of:"
1220 FOR IX=1 TO nteamX
1230 PRINT CHARS(TEAMXCIX))
1240 NEXT
1250 PRINT '"Your score is now ";STRS(scoreX>
1260 PRINT"Where will you move now?"
1270 ENDPROC

Explanations:
1220-1240: Print out the name of each person in the

team. The 1% th person has a number TEAM% (1%)
cal1 this number J, say - and the label of the jth type is
CHAR$0) .

1250: Print the score. Note the use of STR$ to make
the format pretty.

1260: Remind player he's got to move, and return to

49

CREATING A 'HACK-A D-SLASH' CAME: · AVES'

PROCGETDIRECTION.

The next item involves checking for a blocked exit. We
can use FNEXIT again here:
1400 DEFPROCEXITBLOCK
1410 SNAG=NOT FNEXIT(dirX,rXl
1420 IF SNAG PRINT'"You can't go that way!":PROCDELAY
1430 ENDPROC

Explanations:
1410: Set SNAG TRUE or FALSE opposite to

FNEXIT, by use of NOT.
1420: If no exit, say so, and give player time to read

it.

The delay loop is a common feature in computer
displays. This one is nothing fancy:

1500 DEFPROCDELAY: LOCAL NX
1510 NX=TIME:REPEAT UNTIL TIME > NX+100
1520 ENDPROC

Now we must check if we are about to leave the
maze:
1600 DEFPROCLEAVEMAZE
1610 IF dirX<>3 OR WHEREX<rXl>=20000 ENDPROC
1620 PRINT'"That will take you out of the maze."'"Do you really want to
eave? (Y/N)"
1630 REPEAT
1640 AS=GETS:UNTIL AS="Y" OR AS="N"
1650 IF AS="N" SNAG=TRUE:ENDPROC
1660 PRINT" "'Your score is ";STRS(scoreXl
1670 PRINT"Well done!""'Would you like another game <YINl?"
1680 REPEAT
1690 AS=GETS:UNTIL AS="Y" OR AS="N"
1700 IF AS="N" END ELSE RUN
Explanations:

1610: If not going up, or player at level 2 or deeper
(recall how we store room co-ordinates), ignore this
procedure.

1620: Tell player, and seek advice .
1630-1640: Acquire a yes/no answer.
1650: If player chooses to remain, set SNAG as a

signal to finish the main loop, and leave procedure.
1660-1670: Tell player the (good?) news about score,

and seek advice again.
1680-1700: Note the lack of an ENDPROC

statement. We end either with END, which is final, or
by RUN, which is equally final!

So the player can move. Is there a room there? If not,
we must make one. This procedure takes an argument
K% . If K% is 1, we' re calling the procedure normally .
A lack of a possible room will trigger SNAG, etc. If K%

50

CREATING A 'HACK-AND-SLASH' CAME: 'CAVES'

is 2, however, we' re calling the procedure from TRAP,
and we don' t want to set SNAG. Hence the 'signalling'
to the procedure via K%.

1800 DEFPROCROOMTHERECKXl:LOCAL IX,JX
l810 IF dirX>2 IX=-1 :JX=2•(5-dirXl ELSE 1%=1 :JX=2•dirX
1820 If nroomX<90 ELSE SNAG=TRUE:IF K%=1 PROCSAYBLOCK:ENDPROC ELSE

ENDPROC
1830 checkX=WHEREXCrXl+IX•10"JX:r1X=O
1840 FORIX=1 TO nroomX
1850 IF checkX=WHEREX(I%) r1X=IX:IX=nroom%
1860 NEXT
1870 IF r1%>0 ENDPROC
1880 nroomX=nroom%+1:r1X=nroomX:WHEREXCr1Xl=checkX
1890 PROCMAKEROOMCr1Xl
1900 ENDPROC

Explanations:
1810: This looks rather complicated . We have to

work out what the co-ordinates of this new room will
be, given the co-ordinates of the old room r%.
Depending on the value of dir%, we have to change
either I or J or K by the following formula :

di r Y. change

0 J -> J + 1
1 I -> I + 1
2 K -> K + 1
3 K -> K 1
4 I -> I 1
s J -> J 1
(For example, going in direction 4 means going West,
which decreases l by 1.) If you examine the list
carefully, it has a pattern of sorts (which was why the
order of exits was so arranged). Had you not thought
of a pattern system, your program would have needed
an ON dir% GOSUB . Don' t worry . It wouldn't have
mattered violently, and it would still have worked.
Anyway, to work out the value of CHECK% for the
(possibly new) room, we have to modify the value for
the room r% which the player is in . We shall do this in
line 1830, and it will involve adding or subtracting
either 1, 100, or 10000 to the current CHECK% . We
add for dir% = 0, 1 or 2; we subtract for dir% = 3, 4, or
5. The above table shows this clearly. So we set the
sign of the addition to be plus (1 % = + 1) or minus(!%
= -1) accordingly . The amount is 1 if dir% is 0 or 5; 100
if dir% is 1or4; and 10000 if dir% is 2 or 3. If we think
of these as powers of 10 (i .e . 0, 2, or 4) we can see that
]% is set accordingly also .

51

CREATING A 'HACK-A D-SLASH GAME: 'CAVES'

I stress again that this is just a fancy mathematical
way of doing something. If you can't figure out a way
to do something neatly when writing a program, it
really isn't worth sleepless nights. Just program it
slightly messily and get on with the rest of the
program!

1820: If we've run out of rooms, set SNAG anyway.
Tell the player about blockage in normal case, and
leave procedure.

1830: Set new CHECK% in check% by adding
appropriate term. In our example above of West (dir%
= 4), 1% would be -1, J% would be 4, so we would
subtract 10000, correctly. Now set rl %, which will be
the number of the new room if we find it, to be 0.

1840-1860: Search through the rooms we have
already, looking for a CHECK% which matches the
test value check%. If we find one, set rl % to the room
number, and end the loop immediately by setting I%
to the end value of the loop.

1870: If we found a room which matched, rl % will
be nonzero, so quit.

1880: We didn't. Increase nroom% by one (it wasn't
90, because we checked earlier). Set rl % to this new
value of nroom% - because it's a new room and hasn't
a number as yet - and set CHECK% for this room to
the value check% we calculated.

1890: Make a room numbered rl % .

The last line, of course, begged the question! But
writing 'make a room' as a separate procedure allows
the testing of PROCROOMTHERE. Running the
program either throws up a bug so far, or reports the
lack of PROCMAKEROOM (which you knew
anyway). So don't be afraid to put off writing things
for a bit. Here it is now:

2100 DEFPROCMAKEROOMCrXl:LOCAL IX,JX,KX
2110 RXCrXl=CRNDC2l-1l•1000000
2120 IX=RND C1 Ol
2130 IF IX<3 RXCRXl=RXCrXl+110011:GOTO 2160
2140 IF lX<7 RXCrXl=RXCrXl+110011:REPEAT IX=RNDC6l-1: UNTIL IX<>2 AND

tX<>3:RXCrXl=RXCrXl-10"IX:GOT02160
2150 REPEAT IX=RNDC6l-1:UNTIL IX<>2 AND IX<>3:RXCrXl=RXCrXl+10"IX:REPEAT

JX=RNDC6l-1:UNTIL JX<>2 AND JX<>3 AND JX<>IX:RXCrXl=RXCrXl+10"JX
2160 IF RNDC6l=1 OR CdirX=3 AND RND(2)=1l RXCrXl=R1.CrXl+100
2170 IF RNDC6l=1 OR CdirX=2 AND RNDC10l<4l RXCrXl=RXCrXl+1000
2180 IF RXCrXl<1000000 ENDPROC
2190 JX=WHEREXCrXlDIV10000:lF JX>4 JX=4
2200 CONTENTSXCrXl=O
2210 FOR IX=1 TO JX
2220 IF RN0(2l=1 KX=FNOENIZEN ELSE KX=FNTREASURE
2230 CONTENTSXCrXl=CONTENTSXCrXl+KX•100"CIX-1l
2240 NEXT
2250 ENDPROC

52

CREATING A 'HACK-A D-SLASH' GA"1E: 'CAVES'

Explanations:
2110: Give the room a 50% chance of being a cave or

a passage. So set the millions digit with 50%
probability. Notice that r% is local to this procedure,
as it is handed through as a parameter.

2120: Choose a number from 1 to 10. We shall allow
20% of rooms to have all 4 horizontal exits; 40% to
have 3 of the 4 possible horizontal exits; and 40% to
have only 2 horizontal exits. The point is to make it not
too easy to wander around, and to have a fair
proportion of blockages. If you find the proportions
not to your taste, change them here .

2130: l can't find a neat way to do this! There is a 20%
probability of all 4 exits (110011 pattern) . We add this
to R%, which may already have a millions digit set.
Jump to 2160 (a GOTO! Sorry.)

2140: 40% probability of 3 exits. Set all 4 as in 2130.
Then scan [% through 0 to 5 randomly until it's not
'up' or 'down' (2 or 3). Then subtract that power of 10
from R% to remove that digit 1 from the pattern. Jump
to 2160. Sometimes programs just are ugly ...

2150: 40% probability of 2 exits. Randomly choose
one with 1%, and add it into R%. Choose another in
J% (making sure it isn't the same as 1%) and add that
in too.

2160: A 1 in 6 chance of a down exit in the new room,
unless player is going upwards, when it's 50%. We
don't want it to be too difficult to change levels
upwards (retreating).

2170: Similarly for an up exit in the new room, but
only a 40% chance if the player is going down -
making it more difficult to go down than up.

2180: If room is a passage, quit.
2190: It's a cave, so needs filling with J% things. J%

is the level of the cave, but can't get bigger than 4.
2200: Set CONTENTS% to 0 initially.
2210-2240: Make]% random contents. Each one,

whose number is K%, is equally likely to be a denizen
(number FNDENlZE , defined below) or a treasure
(number FNTREASURE, ditto). Since we store two
digits in CONTENTS%, raise 100 to the appropriate
power (1% - 1). So the first thing goes in at digit 10 to
the power 0, which is 1. The next at 100 to the power 1,
which is 100, and so on. Then quit.

FNDENIZEN and FNTREASURE can be defined to
suit yourself. Here are my options:
2300 DEFFNDENIZEN:LOCAL IX,JX,KX

53

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

2310 IX=RND(100l:RESTORE 2340
2320 JX=O:REPEAT JX=J%+1:READ KX:UNTIL IX<KX
2330 =JX
2340 DATA 4,15,22,35,45,55,68,80,90,100
2400 OEFFNTREASURE:LOCAL IX,JX,KX
2410 IX=RN0(100l:RESTORE 2440
2420 JX=10:REPEAT JX=JX+1:REAO KX:UNTIL I%<KX
2430 =JX
2440 DATA 35,55,75,95,100

Explanations:
2310: Choose a random percentage 1% .
2320-2340: 3% chance of a dragon (value 1) else 11 %

chance of a giant (value 2) else . . . else 11% chance of a
lion (value 10). Just change these numbers if you
prefer others . More dragons to fight? Then 2340 begins
DATA 9, etc.

2410-2440: Similarly for treasure. Make bronze likely
(34%) and a treasure chest (value 15) only 6% .

2.6 Programming - the procedures (2)
Most of the work is now behind us, although the
program remains untestable. If you're typing this in as
we go, load a collection of 'dummy' procedures and let
the program run. If you've never used them, a
'dummy' procedure is something like 'DEFPRO
CHELLO: ENDPROC', inserted specifically to allow
testing of other parts of your program. Now, on with
the job. We first need to check whether the player can
enter the new room.

2500 DEFPROCENTERROOM
2510 SNAG=NOT FNEXIT(5-dir%,r1Xl
2520 IF SNAG PROCSAYBLOCK
2530 ENDPROC

Explanations:

2510: Player is leaving his old room in direction
dir%. This means he is entering his new room by
direction (5-dir%). This finally explains why the exits
were set up in that order - purely to make this line be
an easy calculation! Again, if you hadn' t thought of
something along those lines, and had done 6 IF
statements, it really wouldn't have mattered, except
that the habit of 'thinking of neat ways' is a useful one
to acquire . So SNAG gets set if there's no exit in room
r1 %.

2520: If so, say the exit is blocked, and quit.

To do this, we use:

54

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

200 0 oEFPROCSAYBLOCK
201 0 PRINT''"That exit seems to be blocked!"

2020 pROCDELAY
2030 ENDPROC

which needs no explanation. The next item is to check
for earthquakes and traps:

2600 oEFPROCEARTHQUAKE
2610 IF RNDC25l>1 ENDPROC
26 20 PRINT''"An earthquake just reduced the area"'"you were in to

rubble!''
2630 PROCDELAY
2640 SNAG=TRUE:RX(rXl=O:RETREAT=FALSE
2650 ENDPROC

2700 DEFPROCTRAP:LOCAL IX
2710 IF RND(25l>1 ENDPROC
2720 dirX=2:PROCROOMTHERE(2)
2730 IF SNAG ENDPROC
2740 PRINT''"You fell into a trap!"'"Your party just dropped a level!"
2750 RETREAT=FALSE:PROCDELAY
2760 ENDPROC

Explanations:
2610: A 1 in 25 chance of an earthquake.

. 2620-2640: Tell player, let him read it, use SNAG to
signal, reduce room to rubble (R%(r%) = O does that
very efficiently) and remove retreat.

2710: As 2610.
2720: Reset direction of movement to be down (the

player is falling!) Make a new room below but use
option 2 now (don' t say things about blockages)

2730: If we can' t make a room (all 90 used up) he
can' t fall down the trap!

2740: Yes he can, so tell him.
2750: No retreat, and let him read 2740.

We now skip through to line 210 of the main
prog:a.n: . loop, where we are examining retreat
possibilities. We called up a function
FNANYDENIZENS on that line, which returned
TRl!E or FALSE as there were, or were not, any
deruzens present.

2800 DEFFNANYDENIZENS: LOCAL IX,JX,KX
2810 JX=FALSE
2820 FOR IX=O TO 6 STEP 2
28 30 KX=FNWHOCrX,IX)
~ 88 4500 IF KX>O AND KX<11 JX=TRUE:IX=6

NEXT
2860 =JX

Explanations:
2810: The function will take the value J%. Set it to

FALSE unless we find a denizen in the room.

55

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

2820: Loop through the 4 possible things in room
r% .

2830: This one is K%.
2840: IfK% has a value consistent with denizens, set

J% to TRUE, and kilJ the I% loop by making it 6.
DON'T jump out of the loop by writing 'IF K%>0
AND K%<1l=TRUE', as this leaves an unfinished
loop.

2860: Return the value J%, whatever it is by now.
A little later we need PROCEMPTYROOM:

2900 OEF PROCEMPTYROOM:LOCAL IX,JX,KX
2910 JX=FALSE
2920 FOR IX=O TO 6 STEP 2
2930 KX=FNWHO<rX,IX>
2940 IF KX>10 scoreX=scoreX+CHARX(KX):JX=TRUE
2950 NEXT
2960 CONTENTSX<rX>=O:SAFE=TRUE
2970 IF JX PRINT'"Your party removes the treasure!'':PROCOELAY: PROCOELAY
29!0 ENOPROC

Explanations:
2910: There may be treasure present. Set a marker to

say whether there was. Assume not, unless proved
otherwise.

2920: Check the 4 things in the room.
2930: Get the number of one.
2940: If treasure, add its value to score%, and note

treasure for J% .
2960: Empty the room and set SAFE.
2970: If there was treasure, tell player. Give him a bit

longer than usual to take all this in.

Now the interactions with the denizens must be
added. Your program will work fine now, by the way,
until you find a room with denizens! The first
procedure is approaching.

3000 DEF PROCAPPROACH:LOCAL IX,JX,KX,attackX,friendX
3010 KX=10:FOR IX=O TO 6 STEP 2
3020 JX=FNWHOCrX,IXl:IFJX>O ANO JX<11 IF JX<KX KX=JX
3030 NEXT
3040 attackX=<CHARX(KX) DIV 100) MOD 100:friendX=CCHARX<KX> DIV 10000)
3050 IX=RND(6):NEUT RAL=FALSE:IF IX<= attackX SNAG=TRUE:bonusX=-1:

PROCOELAY:PRINT''"The denizens attack you with surprise!":
PROCOELAY:ENDPROC

3060 IF IX< friend% NEUTRAL=TRUE:FIGHTING=FALSE:PROCOELAY:PRINT'"'The
denizens ignore you!":PROCOELAY:ENDPROC

3070 FOR IX=O TO 6 STEP 2
3080 JX=FNWHO(rX,IXl:IF JX>O AND JX<11 AND nteamX<30

nteamX=ntea~X+1:TEAMX<nteamX>=JX
3090 NEXT:PROCOELAY:PRINT'"Your approach is successful!"'"The denizens

join your party":PROCDELAY:FIGHTING=FALSE:SAFE=TRUE:PROCEMPTYROOM:ENDPROC

Explanations:
3000: We don't really need attack% or friend % to be

56

CREATING A 'HACK-A D-SLASH' GAME: 'CAVES'

local - we could use L% and M%. It's just easier to
remember what they are here.

3010: Prepare to find the lowest numbered character
in the room (there must be one else we wouldn't be
here). Use K% for this, and set it to 10 (the highest
possible) first. Scan through 4 things with 1%.

3020: This thing is numbered J%. If it's a denizen
and Jess than K%, reset K% to its value.

3040: Compute the attack and befriending
thresholds for denizen number K%. The extraction
method should now be straightforward.

3050: Throw a 6-sided die (1%). Set NEUTRAL to be
FALSE for now. If the denizens attack, set the trusty
SNAG. Set the bonus to them (all bonuses will be
added to player, so setting bonus% negative is the
same as adding to the denizen's forthcoming score.
This is a very useful trick if you've never come across
it). Tell the player what's happening to him, and quit .

3060: If denizens neutral, reset the marker, clear
FIGHTING, say so, and quit.

3070: They befriend! Count through the 4 possible
things in the room.

3080: If J% is a denizen and our team isn't full, add
one to nteam% and insert J% in the TEAM% array.

3090: Tell the player, reset logical values, empty the
room, and quit.

We have put it off to the end, but must now write the
fighting procedure. Fortunately the hard work is all
done for us already.

3200 DEFPROC FI GHT:LOCAL IX,JX
3210 youX=b on usX:themX=O:FIGHTING=TRUE:JY.=nteamX:IF JX>3 JX=3
3220 FOR I X= 1 TO JX
3230 youX=yo uX+(CHARXCTEAMX(IX)) MOD 100)
3240 NEXT
3250 FOR I X=O TO 6 STEP 2
3260 JX=FNWHO CrX,IX>
3270 IF JX>O AND JX<11 themX=themX+(CHARX<JX) MOD 100)
3280 NEXT
3290 youX=yo uX+RND<6l:themX=themX+RND(6)
3300 IF youX =t hemX PRINT' "'You're still

fighting!":PR OCDELAY:bonusX=O:ENDPROC
3310 IF youX <th@mX PROCLOSE ELSE PROCWIN t:320 IF NOT FNANYDENIZENS SAFE=TRUE:FIGHTING=FALSE:PRINT''"You kill@d all
e denizens !":PROCDELAY:PROCEMPTYROOM 3330 ENDPRO C

Explanations:
3210: Set the fighting scores for the player (you%,

set to the bonus so we don' t forget it) and the denizens
(them%). Set FIGHTING, of course. Allow a
maximum of 3 of player's team in the action.

57

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

3220-3240: Add to player's fighting score the
fighting strength of the first]% of his team.

3250-3280: Add to denizens' fighting score the
fighting strength of all of them.

3290: Add a random dice throw to both scores .
3300: If equal, say so, remove any surprise bonus,

and quit.
3310: Either player wins or loses.
3320: If he's killed all the denizens, it's safe and the

fighting has ended. Tell the player, and pick up any
treasure.

Which only leaves two procedures, for winning and
losing a fight:

3400 DEFPROCLOSE:LOCAL IX
3410 IF nteamX>1 ELSE PROCDELAY:PRINT' '"Your party is all dead!"' "'Wou ld

you like another game?'':REPEAT AS • GETS:UNTIL AS•"Y" OR AS•"N": IF AS•"Y "
THEN RUN ELSE END

3420 IX=RND(nteamlO:PROCDELAY::PRINT""The denizens killed"'
CHARSCTEAMXCIXll: PROCDELAY

3430 TEAMXCIXl=TEAMXCnteamX):nteamX=nteamX-1
3440 ENDPROC

3590 DEFPROCWIN:LOCAL IX
3510 IX=-2
3520 REPEAT IX=IX+2
3530 JX=FNWHO(rX,IXl
3540 UNTIL JX>O AND JX<11
3550 PROCDELAY:PRINT' "'Your party ki lled"'CHARSCJX) :PROCDELAY
3560 CONTENTSXCrXJ=CONTENTSX(rXl-JX*10 hIX
3570 ENDPROC

Explanations:
3410: No team left? Then give player the option of a

new game.
3420: We have to kill one member of the team,

number I%. Say which member it was.
3430: We now delete that member. A neat way to

remove it from the TEAM% list is to set the I%th
member of the list equal to the nteam%th (i .e . the last)
member, then drop nteam% by one. What happens
looks like this:

8 5 3 7 2 3
Copy the 3 at the far end into the '7' spot

I a I s I 3 I 3 I 2 I 31

(note that the last 3, although stored, doesn't really
'exist' any more.

3510-3520: Loop I% by 2's .

58

CREATING A 'HACK-AND-SLASH' GAME: 'CAVES'

3530-3540: Until we find a denizen]%.
3550: Tell player he killed it.
3560: Remove]% from its position in

CONTENTS%.

Well, that's the entire game. Try playing it for a
while-it isn' t easy to get a large score and to live to tell
the tale!

2. 7 Improvements
The previous sections have described what is still the
bare bones of a 'hack-and-slash' game. You wiJI
probably want to make some changes or
improvements to it after you have played it. Doing so
will be excellent practice in the care and handling of
databases! In this section a few modifications are
suggested, which you could try out as exercises.

(a) Increasing the number of different denizens and
treasures . This is not a difficult job. Apart from a few
dimension and data statements, it's only a matter of
checking through the procedures and modifying
where necessary. Had we left the number of denizens
as a variable (e.g. ndenizen%) the checking wouldn't
have been necessary, as all the arithmetic would have
worked out properly once the variable was set in
PROCSETUP. This points to a general programming
principle: always use variables rather than specific
values like 10 (because you will have forgotten where
all the references to that 10 were after a few weeks!)

(b) Modifi;ing the chances of survival. This, too, is
straightforward. You could modify strengths and
thresholds immediately, or make the probability of
more or less exits be whatever you wished.

(c) Modifying the fighting procedure. The fighting is -
deliberately - the least 'realistic' procedure in the
game. You could, instead, allow your team to square
off against the nasty denizens, with doubling up if you
have a big team . Or borrow a fight procedure from a
role-playing game and allow all sorts of actions like
ducking, blocking, firing arrows from long distance,
etc. There are numerous options.

(d) Modifying the properties of treasure. All the treasure
in the game is essentially passive, in the sense that it
disappears the moment it's picked up . You could alter
this in at least three ways. First, allot each piece of

59

CREATING A 'HACK-AND-SLASH' GAME 'CAVES'

treasure to a specific member of the party - which you
would do in PROCEMPTYROOM - and lose any
treasure on a member who gets killed . This ensures
the care and treatment of treasure, especially when
combined with option (c) above. Second, you could
allocate different weights to different treasures, and
give each member of the party a different carrying
ability. This wouJd force the player to approach
denizens rather more frequently, as he will run out of
carrying ability fairly early. Third, certain treasures
could be magical. For example, incorporate a magic
ring able to restore to life one party member - once.
Handling this would require remembering which
member just died, and a logical flag noting the
possibility of resuscitation.

(e) Improvement of room descriptions. Areas in this
game are either caves or passages . It would be more
attractive, and certainly more realistic, to add some
sort of description to some of the areas ("A cobweb
filled passage", or "A volcanic dungeon", etc.). Recall
all those unused digits in R%? We only used a 1 or a 0
to trigger the descriptions, but you could do far more
than that with a separate array to hold more elaborate
ones. (Note that we cannot simply make them up in a
random fashion whenever the player enters an area.
The information must be stored since he may return to
the area and would be confused if its description has
changed in his absence.)

These are no more than suggestions. Let your
imagination run wild, and modify the program as you
see fit. Your only limitations are space, a problem to be
looked at later in the book.

60

3
DEVELOPING A SIMPLE
ADVENTURE GAME:
'MINI'

In thio., Part we turn (finally) to the writing of a genuine
Adventure g.ime. If you have the game on the
ao.,sociated cassette (available separate ly from
Acornsott), try it out before the plot is revealed. ThL'
object i.., o.,imply to get the crown betore drowning.

I have constructed a simple plot to demonstratL'
some desirable and some of the less desirable icaturl'S
of a typical Adventure game. Wl' shall dco.,ign ,1

method for handling thL' plot that reveals little that i..,
new but probably contains all that is required for
writing simple games. In the nci..t Part we sha ll ..,ee that
there arc better wayo., to do most of the things I describe
here, but it needs a simple game to make their need
apparent.

3.1 The plot

First, let's look at the map. There are only four
rooms, and exits lead on ly a lorig the fou~ main
compass dirt.'ctions . This removes NE, SE, SW, NW,
up and down, but as we saw in Part 2 thi o., merelv
'>hortens things, it doesn ' t reduce the complexity. The
player is 'born' in the cobwebby room.

61

DEVELOPING A SIMPLE ADVENTURE GAME: 'MINI '

ALCOVE TREASURE
CHAMBER

- - . -

PINK ROOM COBWEBBY
ROOM

A gap indicates an exit. There's only one ordinary
0ne, from the pink room to the cobwebby room and
vice versa . The other two exits, marked with a couple
of dots, are special because something unusual may
happen to the player when he tries to pass through
them. The exit to the treasure chamber (which is
where the player is trying to reach) is blocked by a
locked door. It'll have to be opened or removed before
the exit can be passed. The other 'trick' exit, between
the pink room and the alcove, contains whirling knife
blades which threaten to cut the player to ribbons if he
goes through them.

We shall give the player some tools. In addition to
the jewelled crown in the treasure room (which could
be a tool, but isn't in this game!) there is a shield in the
cobwebby room, a black rod (a popular feature of
Adventure games) in the alcove, and a helpful magic
word 'BLAH' written on the wall in the pink room.

These tools function as follows . The shield offers
protection against the knives, but only if the player is
actually wearing it (rather than just carrying it) when
he passes through. If he survives, the shield will have
shattered, so he' ll have to figure out another way out

62

N

DEVELOP! GA SIM PLE ADVENTURE GAME: 'MINI'

of the alcove. This is provided by saying BLAH, which
fli~s hin:1 back to t~e cobwebby room, his sta'rting
pomt. Finally, waving the rod in front of the door
causes the door to vanish.

To make life suitably worrying, there's a time limit
for the player, as water is rising steadily throughout
the game, and he will drown if the crown isn't picked
up before the passing of a certain number of turns.

So that's the plot: three problems to solve, and a
certain time in which to do it. But before we consider
how we can program it efficiently, let's pause for a
mom~nt and look at the plot as a collection of puzzles.
Certainly the puzzles are not in themselves earth
shattering, but the structure of them is of interest. The
solution to the locked door (waving the rod) is the first
problem the player meets on entry to the game.
However, because of the game structure, it's the last
problem he can actually solve. Something along these
lines is important in Adventure games - some
problems ought to be fairly easy to solve; but others
should be designed to test the player for some
considerable time. When, finally, he can exclaim, 'Ah,
so that's the solution!' a player has derived pleasure
from playing the game (which is the point of playing it,
after all) .

Consider. the magic word. Almost the first thing
anybody will, or ought to, do when seeing it is to try
saying it. So, it's important that it be put where it
doesn' t work otherwise you'll lose a problem
immediately. Mind you, the poor player shouldn't
really have to run around 200-odd rooms muttering
'BLAH' in every room just to find where it does
something. Ideally, as here, the possibility of a magic
word being useful should occur to him only in certain
correct circumstances. At every point, try to channel
the player's thoughts in the direction you'd like them
to go: hints are often useful!

Then there are the whirling knives . It is vital that the
player get a different response when he goes through
the exit without the shield, than when he goes
through carrying, but not wearing, the shield . He'll be
killed in either case, but he must receive a hint (i.e. a
different response) that he's in some sense 'close' to
the correct answer. So we must remember to refer to
the shield as we kill him!

63

DEVELOPING A SIMPLE ADVENTURE GAME: 'MINI'

Finally, there's the mounting water problem. If we
were being nasty, we could calculate the shortest
number of moves necessary to solve the problems and
give the player exactly that number of moves. I don't
subscribe to this; I believe that players should (unless
the structure of a given puzzle makes this impossible)
have a bit of leeway in their timing. Enough, say, to
permit the occasional 'LOOK' to remind themselves of
where the exits are! But don't give them too long to
solve the game - else the water will cease to be a
problem. The fun of the game lies in worrying the
player, but not unduly so.

To give you a feel for the flavour of 'MINI', here's a
little specimen dialogue from the game:

You are in a crumbling room full of cobwebs. A
passage leads west. A barred door bars a north exit.
You can see a shield ...

GET SHIELD OK There are faint sounds of water.

GO NORTH A barred door bars a north exit. The
sounds are slightly nearer.

W The water sounds are quite loud. You are in a
cheerful pink room. The word BLAH is inscribed on
the ceiling. A passage leads east, and a doorway full of
whirling knives leads north. You can see: Nothing

NORT The knives stab at you as you pass. They slice
you to ribbons. You have departed this world, alas.
Would you like another game?

This Part will follow the plan of Part 2. I intend to
spend some time discussing the problems facing us, in
English, before we begin to program in BASIC.
Understanding general principles is more important
than working out an individual program.

3,2 More ideas about databases
The 'MINI' game will extend the database ideas
already discussed, and introduce some new ones. At
the same time, many of the apparently complicated
ways in which we handled storage in Part 2 (all those
digits, MOD lO's, etc.) will disappear - not because
they weren't useful, but because there are other ideas
to examine here. In Part 4 the best of all our ideas will
come together.

64

DEVELOPING A SIMPLE ADVENTURE GAME: 'MINI'

Let's start with the rooms section of the database. As
before, we shall have to store a list of exits, and their
destinations, for each room in the game. Unlike
'CAVES', however, we know the map before the game
starts, so we can store the room exits and destinations
together. One of the methods discussed in Part 1 will
suffice.

But how can we handle the location of the objects?
In 'CAVES', the objects 'vanished' upon being picked
up, merely becoming part of the score. (This was
necessary because no room could hold more than four
things, you'll remember). In this case, there is no
restriction-if the player wants to pile up all the objects
in one room, he's at liberty to do so (provided that it is
possible in game terms!). But this makes storing a list
of objects for each room awkward as we don't know
how long the list should be. We could invert the
method we used in 'CAVES' and use an array of
'object rooms', one entry per object. If we call this
array or%, ('o' for object, 'r' for room) then or%(3) is
the room that object 3 is currently in. So, to know
which room an object is in, we merely look it up in the
array. Conversely, to know what's in a given room, we
scan through all the objects and jot down which ones
live in which room.

But what room do we allocate to objects carried by
the player? At first sight you might suggest that we put
them in the actual room the player is in ('telling the
truth'!). A little thought shows why this won't work.
We would have no immediate way, for example, of
distinguishing objects carried by a player in room 3
from those that are set in room 3. And if the player then
moves to room 4, how do we know which of the
objects purporting to be in room 3 should move with
him?

(We are of course talking about what the program
sees, and not what the player sees. I can't stress this
too much. To him, the dead elephant is obviously too
heavy to carry and will remain where he saw it last.
That the program has to struggle to figure out where
the elephant should be is none of the player's
concern.)

So where do we put objects carried by the player?
One method would be to generate a second array for
the objects, each entry carrying a flag to say 'carried' or

65

DEVELOPING A SIMPLE ADVENTURE GAME· 'MINI'

'not carried'. (This is ugly, and uses up too much
store.) A second method is to make the room value_s
negative if the object is being earned . (Less ugly, as 1t
uses only the one array, this method is still no good for
direct byte storage to be explained in Part 4.) The
simplest solution, and one which is used by. manx
games on the market, is the one we shall use m. this
book. (Its disadvantage is that it isn't totally flexible,
but in problem circumstances it is usually easy to
'fake'.)

The method is straightforward. We create an extra
room devoted solely to objects carried by the player. It
isn't really a room in game terms, but it gives us
somewhere sensible in the machine for the objects to
reside. The player can then roam as he wishes. The
objects remain in this special 'room', which we shall
number as room 1, until he drops or loses them. When
we want to display what objects the player is carryir:'g,
we look through the objects and find those for which
or% has the value 1.

While we've been discussing this setup, something
subtle has occurred. The database has developed two
distinct features. One part of the database always
remains the same, no matter how many adventures
the player has (where each exit leads, for example).
But the other part of the database is constantly
changing (which objects are in which rooms, etc.).
You may not feel that this distinction is signifi~ant; nor
is it for this game. But suppose we permitted the
saving of a game onto tape or disc while it was still
being played. On disc, where access times are so fast,
the size of the database won't really affect the process.
But on tape, the faster the loading and saving of a
game, the better.

The point is that by distinguishing between the
unchanging, or static part of the database and the

66

DEVELOPING A SIMPLE ADVE TURE GAME: 'MINI'

storyline (as it were), saving on tape mid-game can be
greatly facilitated. There i~ no need to dump out the
'backdrop' (the static part of the database) because that
is the same for all games. Only the 'storyline' (the
dynamic part of the database) has to be copied out. So
when we design a larger game, we should give some
thought to the whereabouts of both static and dynamic
parts of the databases live.

3.3 Yet more ideas about databases: states and exit
programs

When we were setting up the plot, several of the
actions a player might take to try to solve one of the
puzzle depended on the history of the game - i.e.
what had happened so far while he was playing. For
example, was he wearing the shield? (So two things
had to have happened to the shield: it had to have
been picked up and, therefore, be in the player's
possession, and also it had to have been 'worn',
however we code that.) Again, whether he could go
north into the treasure chamber depended on whether
he had removed the door!

You may be tempted to invent a couple of variables
to look after this: WEAR, which can be TRUE or FALSE
depending on whether the shield is being worn, and
NODOOR, which could also be TRUE or FALSE
depending on the state of the door. Most books - and
programs, as far as I know- do just this. Obviously it is
exceedingly efficient for the small game we're
discussing here. But in a complicated game with about
60 objects, 80 rooms, etc., there might be too many
such 'extra' variables to keep track of. Still no problem,
you may think, albeit a little messy. B~t. we can do
things a lot more cleanly, and more efficiently.

Let me introduce you, then, to the concept of
STATES of rooms and objects. We shall define two
arrays, one for rooms and one for objects. The room
array has an entry for each room (and ~imilarly ~he
object array has an entry for each obiect), which
contains a single number allocated to that room. The
value of this number will tell us (and the program)
what has been happening to that room. Of course, this
is a bit like overkill for the little game here, but you'll be
able to see its general usefulness as we go along.

How will this work? Consider the cobweb room

67

DEVEWPI GA SIMPLE ADVENTURE GAME: 'Ml I'

with the north door. We'll set the state of all rooms to
zero to start with, lacking any good reason to do
otherwise. When the player waves the rod (which you
will recall makes doors vanish) in the cobweb room,
we'll set the state of the cobweb room to 1. Whenever a
player tries to leave a room, we offer its state for
examination and the program acts accordingly.

The shield is handled in much the same way. Its
state is zero to begin with, and 1 when the player says
'WEAR SHIELD', assuming he was holding it. (We
must also remember that if he drops it, its state will
revert to zero. Thus, when he picks it up again, the
program does not presume that he's wearing it!) Then,
when he goes past the knives, our action depends,
amongst other things, on the state of the shield.

Two arrays of states may seem more cumbersome
than the 'simple' solution, but the beauty of the
system will become apparent in Part 4 when states are
seen to permit automatic descriptions of rooms and
objects, without lots of ifs and buts . As a hint of things
to come, however, note that states allow you to do
familiar things, like filling an empty bottle with water,
very easily. (The database we have been using can
only let the player carry objects. How can a bottle
'carry' something called 'water'? With states, the
problem becomes trivial. A bottle in state zero is
empty; in state 1 it contains water!)

As far as the program is concerned, there are no
objects called doors or knives. There are merely things
that happen to the player as he passes through an exit.
Look again at the logic of going north through that
door. What the player 'sees' is a door. What the
program sees, however, is a hiatus after the player
types 'N' or 'NORTH' or 'GO N', or whatever is the
appropriate instruction. During this hiatus the
program runs to a subprogram which examines the
state of the cobweb room and decrees whether or not
the room may be left. A 'door' simply doesn't come
into it!

What of the knives? When the player says 'N' in the
pink room, once again a subprogram is scanned: tell
the player about the knives; is he carrying the shield? If
not, kill him. Is he wearing the shield? 1f not, kill him,
but drop him a hint as to why he has been killed.
Otherwise, destroy the shield and let him pass

68

DEVEWPI GA SIMPLE ADVE TURE GAME: 'MINI'

through . Again, note that there is no mention of an
object called 'knives'. They don't exist.

These non-existent objects are replaced in prnr,ram
terms by subprograms tied to specific exits. Before the
player may pass through an exit like this, he must first
execute the particular subprogram and suf{er the
consequences. We call these subprograms 'exit
programs', for the sake of a bit of jargon. The concept
is a powerful one; my own games typically contain ~O
or more exit programs, many of which the player is
never aware! Their use is far more widespread than
exemplified here, and we'll see more examples in Part
4. But here's one type of exit program to whet your
appetite. Suppose you wanted to create a random
maze, which would be different with each game but
not change within a specific game. What you could do
is set up an exit program two rooms before the maze,
which runs something like this: is the state of the next
room 1? If so, leave the exit program. Otherwise: set
up a random maze, and set the state of the next room
to 1, then leave the exit program. Notice that the
player remains ignorant of all this! The maze is set
once, and once only, by this subprogram.

3.4 Messages
Telling the player what is happening to him merely
involves a PRJNT statement in BASJC. Anything that
the player reads is a MESSAGE given him by the
program. For example, LOOK is the standard code for
'give me a description of the room I'm in'. The
program's response will take the form of a message
describing the room itself; then, under normal
circumstances, there follows a whole list of messages,
each one describing an object present in the player's
room. Similarly, when the player gets killed going
through the knives, he will receive four messages .
First comes one about the knives themselves (he'd get
that no matter where the shield was) and then a
message telling him of his demise. This would then be
followed by a standard 'Oh dear, you're dead' style
message, and this in turn is followed by another,
asking about a new game.

Now the point of all this is that you should train
yourself into thinking about all communications as
messages, rather than thinking: when the player gets
the knives, I must PRJNT 'The knives slice you to
pieces.' There are some good reasons for this.

69

DEVEWPING A SIMPLE ADVE TURE GAME 'MINI'

First, consider that task of describing the player's
room. Assuming R% to be the value of the player's
room, isn't it rather ugly, not to say inefficient, to write
'IF R%=2 PRJNT "You are in a cobwebby "ELSE
IF R%=3 PRINT" .. . "'?To follow this, you'd have to
loop through the objects, and decide which object
descriptions to print also. Obviously there are better
ways to do thisf

Instead you can store ALL messages (barring a few
odd ones like 'I don't understand!') in the static part of
the database. Each message will be given a unique
identifying number. So message I3 might be-and is in
this game - 'There are faint sounds of water.' On the
first occasion that we tell the player about the water
rising, we can now write 'PROCm(13)', which will
mean 'print message 13', instead of 'PRINT "There are
faint sounds of water."'

Apart from the obvious neatness (we don't disturb
the flow of program logic when we talk to the player),
this method of storing messages almost fully
automates descriptions of rooms and objects. With it,
we can store a message number for each room and
each object and simply PROCm it when necessary.

I say almost fully automated because there are still
some ifs and buts. What of the door, which may or
may not be there? There will have to be a message
associated with it, which will be printed as part of a
description of the cobwebby room, provided that it's
in state zero. Similarly, the shield, when the player
does an INV(entory) of his possessions, will have to
have an extra message "(which you are wearing)"
tacked on if the shield is in state 1.

Apparently, we should be stuck with this kind of
awkwardness no matter how we handled
descriptions. I hope you find it unaesthetic, because I
do. In Part 4 we'll meet a way of removing all the
messiness by modifying the way we treat and store
messages.

3.5 Vocabulary
Now let's consider how the vocabulary of Adventure
games is made up. In this context, 'vocabulary' means
those words that the player may type which the
computer can recognise. There are several classes of
such words.

70

DEVEWPING A SIMPLE ADVENTURE GAME: 'Ml I'

The obvious class is VERBS. These include DROP,
LOOK, THROW, and so on. We anticipate finding
verbs as the first thing a player says to the program (as
in 'DROP ROD', 'GET SHIELD', etc.). This isn't to say
we'll always find them in that position! Certainly, any
player who types in 'ROD DROP' deserves an 'I don't
understand that!' message in response. But in
Adventures not all 'doing' words are in fact verbs. In
'GO NORTH', 'GO' is obviously a 'doing' word, but in
many games, so is NORTH, or N. (Again, most
players discover that GO or MOVE are an unnecessary
waste of time; the original Colossal Cave adventure
makes a point of reminding us of it!) But the player
should still be entitled to say 'GO NORTH' if he
wishes. So your program should be able to accept
some non-verbs as commands.

What kinds of second words are most common?
LOOK, INV (or INVENTORY) require none, of
course, but the most common second words are
THINGS - so named to keep clear in your mind the
distinction between words the player can type, and
program ingredients. THINGS are nouns
that refer to objects, namely quantities which
the program manipulates (such as the shield, the rod,
and so on). Different THINGS can refer to the same
object in the program if we choose to allow it. The
jewelled crown might be called 'JEWEL' or 'CROWN'
by the player - if we permit it. So this is an example of
two THINGS referring to the same object (the crown).

We now know that there are also things that the
player sees which the program doesn't. The knives
and the door, in our game. What happens if the player
says 'GET KNIVES'? We cannot include the word
'KNIVES' in our list of things because although in
English grammar it is a noun, in our program in the
strictest sense, the word does not refer to anything.
There are two ways out of this dilemma . One is to
shrug and let the player get 'I don't understand that!'
when he tries 'GET KNIVES'. This seems grossly
unfair to me: the room description included knives,
yet the program will not tolerate a reference to them!
The second way, which we shall espouse here, is to
create another category of second words. These I shall
refer to as SPECIAL words. They are special because
they don't refer to what the program recognises as
objects, yet the program must be able to comprehend
the word .

71

DEVELOPING A SIMPLE ADVENTURE GAME: 'MINI '

In our small game, the only two special words will
be DOOR and KNIVES; neither will ever succeed in
getting a positive response from the program, but at
least they'll be recognised!

Unfortunately, there are yet more types of second
words. Suppose the player says 'SAY HELLO' to the
program. A smart response - and fairly standard - is
'OK, "HELLO!"'. But notice that HELLO isn't on any
of our lists at all; it could be any word at all. So either
we must be prepared not to accept SAY HELLO, or
else we must somehow treat any word after SAY as
being acceptable.

It's very program-consuming to include in each
command subprogram a decision as to what words are
acceptable as second words. It's also not very neat. So,
given that we have to store the vocabulary in the static
database, let's store an extra quantity with each verb,
to indicate what kind of second word can follow it. For
most purposes, and certainly those here, there are
three kinds of verbs:

TYPE 0 (Those which cannot be followed by a
second word)
TYPE 1 (Those which must be followed by a thing or
a special word)
TYPE 2 (Those which can be followed by anything or
nothing)

Examples of type 0 would be EAST, BLAH, LOOK.
Examples of type 1 would be GET, THROW, WEAR.
And examples of type 2 would be GO, SAY, etc.
There's no particular reason for my numbering.

So each 'doing' word (in our terms, each verb) will
be stored with an integer (0, 1, or 2) to mark what kind
of construction the program expects. Then when we
are examining what the player says, we can throw out
a lot of nonsensical input. But we must also store
another integer which tells the program what
command the verb intended. (The program can then
be guided to a suitable subprogram by the value of this
number.) It follows that by giving certain verbs the
same identifying number, we can permit the use of
synonyms (e.g. GET as well as TAKE),.

Having decided that verbs need two numbers, what
of things and special words? Since these are rather less

72

DEVELOP! GA SIMPLE ADVENTURE GAME: 'MINI'

complicated, they only need a single number with
them. For things, the number refers to the object
named by the thing. For special words, we can identify
them in any way convenient for our program; it
doesn't matter for our small game, since neither
achieves a useful response. I'll just give DOOR a 1 and
KNIVES a 2 and then ignore them.

3.6 Program structure
There is still one more item to discuss before we get
down to writing 'MINI', namely the structure of the
overall running program. If we can get that fairly clear
in our minds, even in pseudo-code format, we're more
likely to get an approximation to a working program
on the first trial.

So here we go. I'm going to put approximate line
numbers in as we go along to make comparison with
the program somewhat easier later. Explanations will
be given after the pseudo-code.

10 - 99: Initialise variables, etc.
100 - 199: Between turns housekeeping; describe

room if moved.
200- 299: Input from player, isolate what he said.
300 - 399: Check if command makes sense; if not,

back to 200.
400 - 499: Unused here (reserved for later!).
500- 599: Handle command. Die if necessary.
600 - 699: Post-program routine (see below). Go

back to 100.
1000 - 1099: Death and restart routine.
2000- 2999: Command subprograms.
3000 - 3999: Vocabulary data list.
4000 - 4999: Static database: room and object data,

and messages.
5000 - 5999: Helpful procedures (room and object

describing, message printing,
vocabulary locating, etc.) .

6000 - 6999: Reserved for later.

Lines 10 to at worst 99 will set up initial values of
variables, dimension arrays, etc.; the kind of thing one
does at the beginning of most programs. In Part 4 we'll
see how to avoid much of this. Lines 100 to 199 will
usually only be a trivial test:

Check player's last room. If same as this, continue,
else describe this room and reset the 'last room'

73

DEVELOPING A SIMPLE ADVENTURE GAME: 'MINI'

variable.

The idea is almost to automate when describing a
player's room. Under all except unusual circum
stances, we do this only after the player has moved. By
keeping track of the last room as well as the current
one, this is easy to detect. To ensure a description at
the beginning of the game, we can set the last room to
zero, so the program thinks the player has moved.

Lines 200 to 299 request player input, and must sort
it into at most two words. I truncate all words to four
letters for two reasons. First, it saves unnecessary
typing by the player. Second, it facilitates quick
movement by the pling operator (to be discussed in
Part4). Anyway, atthe end of299, the program should
have two strings x$ and y$ which hold the first and
second word typed, respectively.

Lines 300 to 399 attempt to locate the verb (x$)
amongst the vocabulary, and should complain if they
can't find it. Assuming all is well, they then check on
the second word, bearing in mind the coding on the
verb already (i.e. if it's a zero, then complain if there's
a second word, and so on). By the end of this section
the program should know what it's doing!

Lines 400 to 499 don't exist here. The use I put them
to will turn up next Part.

Lines 500 to 599 actually do what the player told the
program to do. There will be a massive ON C%
GOSUB statement, where C% will hold the current
command number, and all the GOSUBS are in 2000 to
2999 inci'usive. On return from the appropriate
GOSUB, a flag (F%) will be checked to see if one of
several possibilities has occurred which need special
treatment. These are:

Has the player died? If so, off to death program
Was the command one of the 'second word is a verb
also' type?
If so, treat y$ as a new x$ and try again.
Was the command one to stop the program? If so,
off to new game program

Lines 600-699 contain something new, which is
called here the post-program. Instead of simply
programming 'that's finished that command, now

74

DEVELOPI GA SIMPLE ADVENTURE GAME: 'MINI'

back to line 100 for the next one', which will often
suffice, we have added an extra piece of possible
program. This is executed after the player's command
has been acted on, but before we return to the room
description possibility at line 100. Since it occurs after
the main command program, we term it a post
program. (If you wonder about a pre-program, you'll
see that in Part 7.)

What do we use a post-program for? In Adventure
games, practically anything! For example, keeping
track of the nasty things happening to the player. The
rising water is a good example. By now you'll have
realised that 'water' isn't an object in the game (and in
fact isn't even in the vocabulary) but that messages
about rising water will continue to appear on the
screen. It's the function of the post-program to supply
these messages, since they are in no way part of the
response to the player's commands themselves.

We also have to finish the game when the player
picks up the crown. We could program this into the
'take-prog', yet to be written. It's a little tricky to do
that, but we could. It's infinitely cleaner and simpler to
put the test into the post-program. We can enquire
whether the player is holding the crown, at the end of
every turn. If he is, then we congratulate him and end
the game.

Post-programs have many other uses, too. If there
are objects to be moved around, like monsters, they
can be moved here. This will mean that when a room
description is given next, assuming the player has
moved, the description of the monster will be given
correctly. However, we must be careful to end the
post-program with an UNTIL FALSE to complete the
command loop, else control will pass to the next set of
lines.

These are lines 1000-1099, usually only two lines
long, which include two procedures: a death program,
which prints a 'You're dead' message, followed by a
new game procedure, which prints 'Would you like
another game?' and acts accordingly.

Lines 2000-2999 I reserve for the various command
subprograms. These are usually written in whatever
numerical order seems convenient; this tends to be,
alphabetical except for synonyms, as the verbs have to

75

DEVEWPING A SIMPLE ADVE TURE GAME· 'Ml I'

be alphabetised anyway.

The remainder of the lines are self-explanatory. So
let's program 'MINI'!

3. 7 Writing the program (1) - objects and rooms
When l write an Adventure program I tend to use
three or four pieces of paper simultaneously; hence
my appeal to clear-headedness and .organisational
ability! (To follow my logic, a few pieces of paper
certainly wouldn't come amiss.)

We'll need one sheet for the numbers part of the
database, and one for the messages (we will have to
refer constantly to that one). We also need one for the
program as we write it.

The first thing I write (bottom-up programming,
this) are the definitions of the objects and rooms. Let's
start with the rooms. If you look back at the map,
you'll see we have 4 rooms. In addition, there is the
room for the objects which the player is carrying, room
1. That's five rooms altogether, which we shall
number in this fairly obvious fashion (although the
numbering is totally arbitrary) :

ALCOVE TREASURE
(4) CHAMBER

(5)

. - - .

PINK ROOM COB\~EBBY

(3) ROOM

(2)

First on paper and then in the program we must list
which rooms have exits and where they lead, and
allocate a mes age and message number to each room.

76

PLAYER
(1)

Room
1
2
3
4
5

North

0
5
4
0
0

DEVEWPING A SIMPLE ADVENTURE GAME: 'Ml I'

Room 1 (the player's carried objects) has no exit, of
course, but it does have a message associated with it.
In order to describe what a player is carrying, we must
be able to say 'You are carrying:' .. So let this be the
message for room 1. So, on one piece of paper we can
create a pencil version of the room database, as
follows:

East South West Message

0 0 0 1
0 0 3 2
2 0 0 3
0 3 0 4
0 2 0 5

As in Part 2, we have used 0 for an exit which
doesn't exist, and the other numbers to indicate an
exit's destination room. We must also write relevant
messages (on another sheet of paper):

1 "You are holding:"
2 "You are in a crumbling room full of cobwebs. A

passage leads west."
3 "You are in a cheerful pink room . The word BLAH

is inscribed on the ceiling. A passage leads east,
and a doorway full of whirling knives leads
north."

4 " You're to the north of the pink room in an alcove.
The only exit seems to be back the way you came."

5 "You're in a vast treasure chamber, with an exit
south."

These messages do not exhaust everything we
know about the rooms. What about that barred door?
And what if the player isn't carrying anything? What
can come after 'You are holding:'? Clearly we need
messages 6 and 7:

6 "A barred door bars a north exit."
7 "Nothing"

Although all these messages will eventually become
part of the program, for two reasons I do not
recommend writing them directly into the program.
First, let the program worry about where to find and
store the messages. Second, you may well need to
change the messages (i.e. find a mistake) as you go

77

DEVELOPI G A SIMPLE ADVENTURE GAME: 'MINI'

along. Pencilled writing is a lot easier to modify than
program structure.

However, since the static database is unlikely to be
modified, we can define that part which relates to our
rooms. We'll put it in a DATA statement for now, at
line 4000:

3990REM room data
4000DATA 0,0,0,0,1
4010DATA 5,0,0,3,2
4020DATA 4,2,0,0,3
4030DATA 0,0,3,0,4
4040DATA 0,0,2,0,5

Each line corresponds to a room: 4000 to room 1 (the
player); 4010 to room 2 (cobweb); 4020 to the pink
room; 4030 to the alcove; and 4040 to the treasure
vault. The first four numbers in the data statement are
the rooms reached by going North, East, South and
West respectively from the room corresponding to
that data line. The snags (i.e . the exit programs)
haven't shown up yet. The last number on each line
tells the program which message goes with that room.
You might think, by the way, that as these run 1to5,
there is no need to store these numbers. But on a more
involved scenario, the numbering almost certainly
would get more complicated - so the message
numbers are needed.

We must now set up a data list to hold the messages
relating to objects:

4490REM object data
4500DATA 8
4510DATA 9
4520DATA 10

which relate, sequentially, to objects 1, 2, and 3. These
three messages are:

8 "A shield"
9 "A black rod"
10 "A jewelled crown!"

(by convention, 'treasures' get exclamation marks;
sometimes this makes them easier to spot). We shall

78

BLAH, 1,0
DROP, 2,1
E,3, 0
EAST, 3,0
GET, 5,1
G0,4 ,2
INV, 6,0

DEVELOP! GA SIM PLE ADVENTURE GA ME: 'MINI'

need another message (11) to give an extra line after
the shield description when the shield is being worn:

11 " (which you are wearing)"

So when the shield is merely carried, message 8
occurs. When the shield is worn, message 8 followed
by message 11 will occur. The dynamic part of the
object database is so short that it can be done explicitly
at the beginning of the program, so let's leave that for a
minute.

The next bit of pencil-and-paper work concerns the
vocabulary. You may feel impatient to start
programming, but since most of the programming
involves manipulating the vocabulary, we really do
need that defined first. Start ·by writing a list of verbs,
together with their two key numbers (the command
number, and the command type) in alphabetical
order. This bit is important. We shall see that
vocabulary searches are much faster when the data is
arranged alphabetically. I shall now list all the verbs I
intend the program to understand . It is instructive to
make your own list first, and compare it with mine to
see how much disagreement there is . Here' s my list.

LOOK,7,0
MOVE,4,2
N,8,0
NORT,8,0
Q,9,0
QUIT,9,0
S,10,0

SAY,11,2
SOUT,10,0
STOP,9,0
TAKE,5,1
THR0,2,1
W,12,0
WAVE,13,1

WEAR,14,1
WEST,12,0

Twenty-three verbs in all , each truncated to four
letters . You may not have thought of including
synonyms, but they are important . Hence 'E' and
'EAST both appear; so do 'GO' and 'MOVE', and 'Q',
'QUIT, and 'STOP'.

Let's examine the list. The first number of each
command arose according to the position it originally
occupied as I wrote down the list-; there's no particular
necessity to do this. (Indeed, GO and GET occurred
out of alphabetical order when I first wrote it, so their
numbering is, in that sense, out of sequence).

79

DEVELOPING A SIMPLE ADVENTURE GAME: 'MINI'

Finally, as already explained, each verb has its type
after its number: so 'BLAH' is of type 0 - no second
word - and so on.

Putting this part into the static database is trivial.
We'll use line 3000 for this .

Synonyms are easy to spot by their carrying the same
number as each other. 'DROP' and 'THRO(W)' are
synonyms for this game and thus both are numbered
2. In all there are 14 different commands possible.

3000DATA BLAH,1,0,DROP,2,1,E,3,0,
EAST,3,0,GET,S,1,G0,4,2,INV,6,0,
LOOK,7,0,MOVE,4,2,N,8,0,NORT,8,0,Q,
9,0,QUIT,9,0,S,10,0,SAY,11,2,SOUT,
10,0,STOP,9,0,TAKE,5,1,THR0,2,1,W,
12,0,WAVE,13,1,WEAR,14,1,WEST,12,0

When we initialise the program, this is ready to be
read into an array. Do not just leave it as data .

Now come the things:

CROW,3
JEWE,3
ROD,2
SHIE,1

Again these are listed in alphabetical order. Notice
the double occurrence of words meaning crown.
These also go into a data statement, this time at line
3100:

3100DATA CROW,3,JEWE,3,ROD,2,SHIE,1

We follow this with our list of special words:

DOOR,1
KNIV,2

which fit into line 3200:

3200DATA DOOR,1,KNIV,2

3.8 Writing the program (2) - the main program
The next part of the program to write is the main

loop, as described in Section 3.6. First, let's deal with
initialisation :

80

DEVELOP! GA SIMPLE ADVENTURE GAME: 'MINI'

10DI M rsXCSl,osXC3),orZC3l,vS<23),vXC23),vtXC23),oSC4l,oXC4l,sSC2),

5 x r2>
20~00~7:nr T5:no=3:nv=23:nt=4:ns-2:xS=STRINGSC20," "):yS=xS
3QFOR IZ=6 TO 7:PRINT TAB(9,IXl;CHRS141;''Mini-adventure":NEXT
40PRINT'' '':RX=2:QX=O:WZ=12:orXC1>=2:orXC2)=4:orXC3)=5
SOFOR IZ=1 TO nv:READ vSCIXl,vXCIZ),vtXCIX):NEXT
60FOR IZ=1 TO nt:REAO oSIIX),oXflX):~EXT
70f0R IX=1 TO ns:REAO sSCIX),sXCIXl:~EXT

Line 10 sets us some arrays to hold both the dynamic
part of the database and also some bits of the static
database (the rest of which, remember, sits in DATA
statements) . The reason all the static database is not
DATA'ed is for speed of command handling, as we' ll
see below.

The arrays are as follows:

rsX - room state (note initials)
osr. - object st~te
orZ - object's room
vS - a string holding each of the verbs which is understood
vX - a string holding which verb vS is
vtX - what type of verb vS is <i.e. any second words, etc.)
oS - a string holding each of the things understood
oX - which object a thing is
sS - as oS, but for special words
sX - as or., but for special words

Line 20 sets mode 7 (never forget to do that!) and
sets nr, no, nv, nt, and ns to the number of rooms,
objects, verbs, things, and special words respectively.
Get into the habit of always working with variables, as
it's easier to modify the program when necessary. Line
20 also initialises the strings x$ and y$, which will
eventually hold verb and object/special input. The
idea of initialising them to rather long strings is to save
space! Originally, BASIC will decide on a default
length for any string if you don't give it one. If at some
later time, the string has to stretch beyond that length,
BASIC will throw away that bit of storage area, as the
string doesn't now fit, and make some more
elsewhere. If x$, say, increases in length several times
during the game, this can waste quite a bit of room. So,
by setting the strings long at the start, we guarantee
that their storage area will not be reduced later.

Line 30 merely gives us a double-height title (ignore
these characters on the Electron). Line 40 initialises
some more variables:

81

DEVEWPING A SIMPLE ADVENTURE GAME: ' MINI'

RX - the current room of the player Cori~inally 2l
Q% - the previous room of the player <set to zero!)
wx - a number to count which of the 'water rising' messages is

printed each turn. More on that below
orXC1 and 2 and 3) - set to the rooms each object is in C2,4,5l.

The occurrence of that Q% may be puzzling, but in
order to know whether he has moved, we need to
compare R% (where he is now) with where he was
before. This is stored in Q %, whose initial value
doesn't matter provided it isn't 2.

Lines 50 to 70 read in the verb, thing, and special
information from the data statements which we
provided previously at lines 3000 to 3200.

After initialising, we proceed to the 'between turns'
portion of the main program:

100REM between turns
110REPEAT IF QX<>RX PROCdescroomCRXl
120QX=RX

Line 110 begins the main game loop with a REPEAT,
and then checks to see if the player has moved; if so,
his new room is described . Then Q % is updated to R%
whether or not he's moved . This has introduced a new
procedure to describe the player's room, and we'll
write that later. Notice that R% is a parameter for the
procedure, as we might want to describe another
room, for some reason .

Now we move to listening to the player:

200FX=O
210REPEAT
2201F FX=O REPEAT INPUT"':"yS:UNTIL yS <> ""
230JX•INSTR(y$," "l:IF JX=O xS=LEFTSCyS,4l:yS•"":GOTO 300
240xS=LEFTSCLEFTS(yS,JX-1l,4l:yS=RIGHTS{yS,LENyS-J%)
250If LEFTSCyS,1)•" " REPEAT yS=RIGHTSCyS,LENyS-1l:UNTIL LEFTS(yS,1><>

II II

260yS•LEFTSCyS,4)

Here's the logic. First dear a flag variable, F%. Thjs
will sometimes be changed by the command
subprograms below so as to inrucate some special
action: to 9 for a fatal act, to 2 if a new game is needed ,
and to 1 if the first word should be ignored and the
second treated as a first word (e.g. GO WEST). By the
way, we can't handle this last case in Hnes 200 to 400 as

82

300 REM command checking

DEVELOPING A SIMPLE ADVENTURE GAME: 'MINI'

other actions may be needed (GO needs a 'go where?'
request before reprocessing can continue, for
example). Line 210 sets up another REPEAT loop, to
be terminated when sensible input has been acquired.
Line 220 prompts the player with a colon provided F%
is still zero (the only time this won't be so is if the first
word has been disregarded , and a new vocabul<!ry
check being done) . Line 220 gets a line of input (y$),
with leading blanks omitted courtesy of BASIC. If the
player didn't say anything, ask again. Line 230 looks to
see if a space was part of y$ (notice that we can't be
afflicted by the INSTR bug in BASIC I because y$ must
be at least one character long) . If there is no space in
y$, the player typed a single word only. So we catch
the first 4 characters of it and deposit them in x$, put
nothing in y$, and skip on to the command decoding .
Assuming there was more than one word (line 240),
we first split before the blank and then take the first 4
characters and put them in x$ again. (Why two sets of
LEFT$? Ask yourself what happens if the player types
'GO N'!) The remainder of y$ is left in y$.

Unfortunately, we don' t know how many blanks
the player typed between verb and second word, and
BASIC's input didn' t help there. So line 250 is devoted
to user-friendlin~ss. We shall not penalise the player
for typing 'GET ROD' instead of 'GET ROD': this
line pulls off all leading spaces. We don't have a
REPEAT WHILE facility, but can get round it with an
IF as shown. Finally, line 260 gets the first 4 characters
and leaves them in y$.

At the end of all this, we arrive at command
checking with x$ holding the first four letters of the
verb typed, and y$ holding the first four letters of the
second word, if there was one (otherwise it's empty).
The command checking now proceeds (with the help
of some more procedures):

310P ROCc:IF CX•O PRINT "Eh??":UNTIL FALSE
320 IF DX=O ANO yS<>"" PROCmC12) :UNTIL FALSE
330 IF yS•"" OX•O:SX•O ELSE PROCo:PROCs:IF 0%•1 ANO O%+SX•O

PROCm C12l:UNTIL FALSE
350 UNTIL TRUE

Line 310 calls PROCc (c for 'check') which examines
x$ and sees if it's on the list v$ of verbs . It returns two
numbers: C% (the number of the verb) and D% (its
type). If it couldn't find the verb, C% is zero. We'll
have to write that later, too . So if the verb wasn't

83

DEVELOPING A SIMPLE ADVENTURE CAME: 'MINI'

understood, tell the player, and end the REPEAT loop
started at 210.

By line 320, then, x$ is recognised . Now, does what
was typed fit with the type of verb? Line 320 itself
looks to see if there was a second word when none was
allowed (verb of type zero). If so, print message 12 and
back for another try. We rapidly jot down message 12
on our list:

12 "I don't understand that!"

(Why both 'Eh??' and 'I don't understand that!'? I use
'Eh??' to indicate that the verb wasn't understood, and
'I don' t..' when the second word either wasn't
understood or wasn't allowed. The player will be told
this in the rules, and if it makes his life easier that's all
the better - user-friendliness again .)

Line 330, if there was no second word, sets 0%
and S% (the values of object and/or special word
respectively) to zero, and continues. The more
detailed checking, in this case, will be done by each
command subprogram.

If there was a second word, PROCo and PROCs are
now called, which, rather like PROCc, set 0 % or S%
respectively to the value of the object or special word
represented by the second word. If the verb is of type
1 (must have a recognised second word), and it
wasn' t recognised, give out message 12 and try again.

Now that the command is understood, we can
acknowledge it with an UNTIL TRUE to finish the
REPEAT loop, and process it in lines 500 to 599:

500REP'I commands
510FX=O
5200N CX GOSUB ••• somewhere!
530IF FX=9 PROCdie
540IF FX=1 THEN 210
550IF FX=2 PROCnewgame

This should be straightforward. Line 510 resets the
marker flag to zero, because we'll be checking on its
value in just a moment. Line 520, which cannot be
finished yet, does a large GOSUB to the appropriate
command subprogram. When we've programmed
that, we can fill in the labels accordingly. Lines 530 to
550 then scan the marker flag, as discussed earlier. If
the action was fatal (F%=9), off to the 'dieprog'. If

84

600RE P'I post-program

DEVELOPING A SIMPLE ADVENTURE CAME: 'Ml I'

the first word should be ignored (F%=1) then jump
back to 210.

(This finally reveals why the word is input
originally to y$: it is so that the second word is stiJJ
available for reprocessing as a first word. We cannot
jump into a REPEAT loop, so we are forced to jump
back to the s tart of it. But then, we don't want any
input, hence the IF check on 220. This also explains
why we had to reset F% at 510: 'GO' in a command
like 'GO WEST would have set F% to 1 on the first
pass through, and directed the program to 210; but
F% would still have been 1 at 500. So, we reset it
before handling the commands.) Finally, if the player
is trying to quit (F%=2), let him do so.

The post-program is equally simple, for this game:

610IF orXC3l=1 PROCmC40l:END
620WX=WX+1:PROCmCWXl:IF WX=23 PROCdie ELSE UNTIL FALSE

Line 610 asks if the crown (object 3) is held by the
player. If so, congratulate the player and end the
game. This needs a new message, number 40. ('Why
40, and not 13?', you may ask. Well, we all make
mistakes, and when I wrote this game I forgot to
include the check on winning until after I'd written
the other messages.) So, message 40 reads:

40 "The crown is yours! Well done!"

Line 620 adds one to the "water-marker" W%, and
prints the appropriate message. If W% has reached
23, the player has run out of time and dies; otherwise
continue around for the between-turns processing.
We thus need a collection of messages numbered 13
to 23, of increasing urgency:

13 "There are faint sounds of water."
14 "The sounds are slightly nearer. "
15 "The water sounds are quite loud ."
16 'That water's getting nearer!"
17 " Water is soaking up through the floor!"
18 "Pools of water are on the ground."
19 "The water is ankle-deep!"
20 "The water is knee-deep!"
21 "The water is waist-deep!"
22 "The water is up to your chest."
23 "The water closes over your head.

85

DEVELOPING A SIMPLE ADVENTURE GAME: 'MINI'

Notice how the last message sounds fatal - it
should do, as it'll be followed by a word from the
death and restart routine at line 1000:
1 0~0 DEFPROCdie:PROCm C 24 l :PROCnewqame
1010 DEFPROCnewqame:PROCm (25 l :INPUT xS:IF LEFTSCxS,1l<>"N" THEN RUN Else £

Line 1000 delivers a suitable death message:

24 "You have departed this world, alas."

and then continues to the restart routine (cunningly
combining the two into one piece of program) at 1010.
This asks about a new game, and checks the player
input to see whether he said no. The restart is
affected by RUN, otherwise the game ends. Both
ends of PROCnewgame leave REPEAT loops
unfinished, but RUN and END both handle those
very efficiently! We write message 25 to complete
the running program's messages:

25 "Would you like another game?"

3.9 Writing the program (3) - the command
subprograms
A program of this level of simplicity enables us
practically to write the command subprograms as we
go along. Unless there are convenience reasons why
we shouldn't, we might as well write and present
them in the order we used when alphabetising. We
start with the magic word, BLAH:
2000REl'I blah
2010IF RX<>4 PROCmC26) ELSE PROCmC27l:RX=~
2020RETURN

Whenever the player is in room 4, BLAH will take
him and what he is carrying to room 2; otherwise
nothing will happen when he uses the word. Line
2010 expresses this . Here are the messages:

26 "Nothing happens"
27 "There is a fanfare of cream horns, and you are

thrown through the air!"

The next program is DROP or THROW:

2030REl'I drop, throw
2040IF OX=O PROCmC28):RETURN
2050IF orXCOX)<>1 PROCmC29l ELSE PROCmCJO):orXCOX)zRX:osXCOXl•O
2060RETURN

Line 2040 checks if an object was the second word. If
not, we mutter at the player:

86

IO

DEVELOPING A SIMPLE ADVENTURE GAME: 'Ml J'

28 "You can't do that!"

and return. In 2050 we think negatively once more. Is
the player not holding the object? If so, say so
(message 29):

29 "You're not holding that!"

and return. (Notice the vague 'that' in message 29; it
handles singular and plural objects without caring.
'It' wouldn't work if the object were a bunch of keys,
for example.) Otherwise, acknowledge with an 'OK',
and move object 0% to the player's room (R%).
Reset the object's state to zero. (Why? Because it
might be the shield, now not being worn.) Then
return . It's hardly worth it, but here's message 30:

30: "OK"

Next comes EAST:

2070REM east
2080PROCroomdata<RX>
2090IF eX=O PR0Cm(J2> ELSE RX=eX
2100RETURN

Line 2080 calls an unwritten procedure
PROCroomdata(R%). This hands back the
destinations of the room's exits in n%, e%, s% and
w%, together with the appropriate message for the
room in m%. (This is clearly an all-purpose
procedure.) Line 2090 looks for an exit. If there isn't
one, say so (message 32) and return, else move the
player there. Notice that there aren't any exit
programs on east-bound traffic in this game. Message
32, another all-purpose one, reads:

32: "You can't go in that direction!"

(Message 31 I wrote at another time; it'll turn up.)
The awkward word GO comes next:
2110REM go
2120IF yS•"" PRINTxS;" where? " :INPUT y$
2130FX=1: RETURN

but surprisingly it's easy to handle . If there is no
second word (2120) ask for one in y$; if there is one,
it's in y$ already. Set the F% flag (2130) and return. I
hope you can now appreciate the uses of flags.

GET and TAKE come next:

87

DEVEl.DPING A SIMPLE ADVENTURE GAME: 'MINI'

2140RE" get, take
2150IF OX=O PROCmC28l:RETURN
2160IX=orXCOX):IF 1%=1 PROCm(33):RETURN
2170IF IX<>RX PROCmC34):RETURN
2180orXCOX>=1:PROCmC30l:RETURN

Again, if there is no object, 2150 uses the same
message and returns . Line 2160 loads 1% with 0 %'s
room, as we'll be using it several times. Negative
thinking now applies. If the room is 1, the player's
already holding 0%, so say so (message 33) and
return. (Don't forget all these returns; you can get
some funny messages otherwise.) If the object isn' t in
room R%, say so as well, (message 34) and return.
Otherwise (2180) put it in room 1, acknowledge with
'OK', and return. Thus we need messages:

33 "You're already holding that!"
34 "That's not here!"

both of which use the neutral 'that' again . INV
(inventory) and LOOK (repeat room description) are
trivial (we merely pass the buck to later on):
2190RE" inventory
2200PROCdescroom(1l:RETURN
2210RE" look
2220PROCdescroomCRXl:RETURN

by simply calling PROCdescroom (already
mentioned) . NORTH is more awkward, because of
the exit programs:
2230RE" north
2240PROCroomdata(R%l
2250IF nX=O PROCmC32>:RETURN
2260IF RX=Z ANO rsXCZl=O PROCm(6):RETURN
22701F RX<>3 RX=nX:RETURN
2280PROCmC35l:IF or~C1l<>1 PROCm(36l:FX=9:RETURN
2290IF os%(1l=O PROCm(37l:FX=9:RETURN
2300PROCmC38l:orXC1l=O
2310RX=nX:RETURN

First, in 2240 we pick up the room data . If there's no
exit (2250), we say so and return. Now the player can
exit, what can go wrong? If the room is 2 (2260) and
the rod hasn't been waved, the door is still there. So
we say so with message 6 (carefully written to serve
the double purpose of description and a blocking
message), and return. Unless the player is now in
room 3 (2270) we may move him to n%, and return .
So what of the knives? Line 2280 tells of the knives,
whatever the circumstances:

35: "The knives stab at you as you pass ."

88

DEVEl.DPING A SIMPLE ADVE TURE GAME: 'MINI'

This does not say what happens to the player. . . So,
if he wasn't carrying the shield (2280 continued) we
kill him (F% =9), say so (message 36), and return:

36 "They slice you to ribbons."

By 2290, the player must at least be carrying the
shield. If he wasn' t wearing it (2290) we also kill him,
but give him the hint message 37:

37 "You're not actually wearing the shield, so the
knives get you."

If he survives all that, he deserves to get through! So
we congratulate him at line 2300 with message 38:

38 "They bounce off the shield, which shatters."

(notice how each of the messages 36 to 38 follows on
after 35). Then we have to get rid of the shield.

Where can we put it? On the face of it, there is no
appropriate room. Fortunately, BASIC's
dimensioning handles it for us, because the index for
an array starts at zero, not one. Hence room zero
exists; and in it we place the shield!

See how easy it is to fail to set up a database flexible
enough for the job at hand, and how important it is to
keep one extra room (zero) to hold all objects which
must be disposed of for one reason or another.

Back to the player. When we left him (line 2300) he
still hadn't gone through the knives. So we destroy
the shield, and then move him at 2310.

The next on the list is QUIT:

2320REM quit, stop
2330FX=2:RETURN

Here we set F% accordingly, and return . After that
comes SOUTH, mercifully simpler than NORTH:

2340REM south
2350PROCroomdata(RXl
23601F sX=O PROCmC32l:RETURN
2370IF RX=4 PROCm(35l:PROCm(36):FX=9:RETURN
2380RX=sX:RETURN

Again we get the data for R% (2350) and check for no
exit (2360) . The only room giving problems is 4 (the

89

DEVELOPING A SIMPLE ADVENTURE GAME 'MINI'

knives again). We mention them (2370) with message
35 (doing yeoman service!) and slice the player with
message 36 (he can't have the shield because he lost it
getting in). The F% flag is set, and that's the end of
the player. Otherwise, we just move the player at
2380. You may be wondering why we don't give the
player a message when he moves. That's because he
automatically gets a new room description during the
between-moves procedure.

SAY is a strange command:
2390REl'I say
24001F yS<>"BLAH" PRINT "OK, '";yS;"' !": RETU RN
2410GOTO 2000

If the second word wasn't BLAH - which has its own
command sequence - then we print an odd message
which ubstitutes the word the player typed (y$). So if
the command was SAY HELLO, out comes "OK,
'HELLO'!" If the second word was BLAH, though, we
jump (not GOSUB) to the BLAH routine at 2000. Then
the RETURN at the end of the BLAH routine takes us
back to the main program. Although GOTOs are
messy, this one avoids repeating program modules.

The last of the directions is WEST:
2420REl'I west
2430PROCroomdataCRX)
2440IF wX=O PROCmC32) ELSE RX=wX
2450RETURN

which presents no problems a , like EAST, there
aren't any exit programs to worry about. Next comes
WAVE:

2460REl'I wave
~4701F OX=O PROCmC28):RETURN
2480IF orXCOX><>1 PROCmC29>:RETURN
2490IF RX<>2 OR rsXCZ>>O OR OX<>Z PROCmC26):RETURN
2500PROCmC39):rsXC2>=1:RETURN

At line 2470 we check if an object was mentioned; at
2480 whether the object is held by the player. Line 2490
now checks negatively for any reason waving an
object might produce no result: wrong room
(R%<>2), wrong state of room 2 (rs%(2)>0, i.e.
already waved) or wrong object (0% <>2). In any
of these cases, use the 'nothing happens' message.
Otherwise (line 2500) remove the door (rs%(2)=1) and
say so with message 39:

39 "The door vanishes quietly."

90

DEVELOPING A SIMPLE ADVE TURE GAME: 'MINI'

The last command is WEAR:

2510REl'I wear
2520IF OX=O PROCmC28l:RETURN
2530IF orXCOX)<>1 PROCmC29):RETURN
2540IF OX<>1 PROCmC28l :RETURN
2550osXC1) =1 :PROCmC30) :RETURN

which is simple enough. ls it an object (line 2520)? ls
the object held (line 2530)? ls it the shield (line 2540)?
Let the player wear it (state goes to 1) in line 2550.

This concludes the commands section of the
program. Our last chore here is to return to line 520
and fill in that list of GOSUBs:

5200 N ex GOSUB 2000,2030,2070,2110,2140,2190,2210,2230,2320,2340,2390,
2420,2 460,2510

3.10 Writing the program (4) - the utility procedures
All that remains is to write the various procedures
referred to in the main playing program. The first is
the ubiquitous PROCdescroom. Here it is:

4990REl'I helpful procedures
5000DE FPROCdescroomCRXl
5010PR OCroomdataCRXl:PROCmCmXl:lF RX=2 AND rsXC2l=O PROCmC6)
5020mX =TRUE:lF RX<>1 PROCmC31l
5030FOR I X=1 TO no
5040IF orXCIXl=RX PROCdescobjCIXl:mX=FALSE
5050NE XT
5060IF mX PROCmC7l
5070ENOP ROC

Line 5010 obtains the room data for R%; we only need
the message number m% here. This is printed out,
followed by message 6 (the door message) in the right
room and under the right circumstances. (Do you find
this checking rather ugly? I do hope so, as we'll
improve on thi later.) We now use m% temporarily as
a logical flag, as it's served its main purpose. Line 5020
sets it to TRUE and, unless we're describing the
player, prints out the last of our messages, number 31:

31: "You can see:"

(whose number shows that I didn't write the game in
the order I'm describing it . The point is, it doesn't
matter what order you write it in as long as it's logical
to you.)

The point of message 31 is that we have to tell the
player about the objects in view. This technique is, 1
think, clumsy; it, too, will be improved later. Lines
5030 to 5050 run through the objects. If any are in R%,

91

DEVEWPING A SIMPLE ADVENTURE GAM E: 'MINI'

we describe them (with PROCdescobj, whose
function should be obvious), and set m % to false . This
last will show that at least one object was mentioned.
Thus, at 5060, if m% is still TRUE, we print 'Nothing'
just to finish the sentence off.

This procedure, and others, mentioned
PROCroomdata . This is easy:

5100DEFPROCroomdataCRX)
5110RESTORE C4000+10•CRX-1)l:READ nX,eX,sX,wX,mX
5120ENDPROC

Line 5110 restores data reading to the appropriate line
(we were working in multiples of 10 for room data,
remember), and reads in the four destinations and the
message number .

PROCdescobj was used above:
5200DEFPROCdescobjCOX)
5210PROCobjdata(OXl
5220PROCmCmXl:IF OX=1 AND osXC1l=1 PROCmC11)
5230ENDPROC

This takes as argument the object number being
described. It obtains the object data in 5210, reading
the object message into m %. This is printed in 5220,
along with the 'which you are wearing' message for
the shield in the right circumstances. This, too, is ugly
programming; more on it later.

This, in turn, referred to PROCobjdata:
5300DEFPR0Cobjdata(0Xl
5310RESTORE C4500+10•COX-1)l:READ mX
5320ENDPROC

which again finds the appropriate data line and gets
the message number. Messages themselves are
handled by PROCm:

5330DEFPROCmCmX)
5340RESTORE C4ROO+mX):READ aS:PRINT aS:ENDPROC

which picks up the appropriate string in a$ and prints
it.

Now only three procedures are left, each one
referred to only in lines 300 to 400. These are PROCc,
PROCo, and PROCs. Each procedure takes either x$
(for PROCc) or y$ (for the other two) and attempts to
match it to one of the pieces of vocabulary . When
programming the main loop, we should have written

92

DEVEW PING A SIMPLE ADVENTURE GAME: 'Ml I'

down just what these procedures were supposed to
pass back, in the event either of failure or of success.
You probably can' t remember now; hence the
necessity for jotting things down in an orderly
fashion.

To remind you, PROCc hands back C% as the verb
number (or zero in the case of failure) and D% as the
verb type. PROCo and PROCs hand back 0 % and 5%
respectively as the object or special word, with zero for
failure. All three procedures are alike, so only PROCc
will be described in detail .

The procedure uses the fact that the verb data is
alphabetical to speed up the search for a match. The
method, or algorithm, used is what' s called a 'binary
search ' . It's like those guessing games when one
player thinks of a number between 1 and 100 and the
other player must guess it. You try 'Is it less than 50?'
first; either answer reduces the area of search to half
what it was before, unless the guess was spot on. One
continues halving the area until the guess is correct;
or, in our case, if it has failed .

The point of doing such a search is speed. With 23
verbs to check, just going through and checking one
by one until you succeeded or passed the command
typed would need on average 12 checks. This
procedure makes that only 7. Not much difference,
you may think. But on 63 verbs, simple checking takes
32 checks on average; binary searching takes only 8 at
most.

5350DEFPR0Cc
5360CX=O:HX=nv:UX=1
5370IF xS<vSCUX) OR xS>vS(HXl ENDPROC
5380IF xS=vSCUXl CX=UX:GOTO 5440
5390IF xS=vSCHXl CX=HX:GOTO 5440
5400IF HX-UX=1 CX=O:ENDPROC
5410CX=CHX+UXl DIV 2:IF xS=vSCCXl THEN 5440
5420IF xS<vSCCXl HX=CX:GOTO 5400
5430UX=CX:GOTO 5400
5440D~=vtXCCXl:CX=vXCCXl:ENDPROC

Line 5360 sets C% to zero in case we don't find
anything, and H% , U% to the highest verb number
(nt) and lowest (1) respectively . As we zero in on the
verb, these will change. Line 5370 checks to see if the
verb typed is outside the range of H% and U%; if so,
we return empty-handed. Lines 5380, 5390 actually
check the first and last verbs for a match, setting C%
accordingly in a procedure PROCsetc below.

93

DEVELOPING A SIMPLE ADVENTURE GAME. 'MINI'

We start the hunt with a repeat loop at 5400. Now, if
H% and U% have become too close to each other, we
missed the verb,end the loop and return . Initially, of
course, this hasn't happened. At 5410, we try halfway
between H% and U% (using C% for this value); if
successful, we set C% and end . Otherwise (5420) we
halve the area of search depending on whether x$ was
less (alphabetically) than the current v$, or more than
v$. In each case we reset one of H% or U% and
continue the loop. Finally, the procedure at line 5440
sets the appropriate D%, then overwrites C% with its
value from the table of verbs.

As I said, PROCo and PROCs, which check the
vocabulary for objects and specials, are very similar.
Here they are, without any further explanation:

5450DEFPR0Co
54600X=O:HX=nt:UX=1
5470IF yS<oS{UXl OR yS>oSCHXl ENDPROC
5480 I F yS=oSCUX) OX=UX:GOTO 5540
5490IF yS=oSCHX) OX=HX:GOTO 5540
5500IF HX-UX=1 OX=O:ENDPROC
55100X=CHX+UX) DIV 2:IF yS=oSCOXl THEN 5540
55201F yS<oSCOXl HX=OX:GOTO 5500
5530UX=OX:GOTO 5500
55400X=oXCOXl:ENDPROC
5550DEFPROCs
5560SX=O:HX=ns:UX=1
5570IF yS<sSCUXl OR yS>sSCHXl ENDPROC
5580IF yS=sSCUXl SX=UX:GOTO 5640
5590IF yS=sSCHXl SX=HX:GOTO 5640
5600IF HX-UX=1 SX=O:ENDPROC
5610SX=CHX+UXl DIV 2:IF yS=sSCSXl THEN 5640
5620IF yS<sSCSX) HX=SX:GOTO 5600
5630UX=SX:GOTO 5600
5640SX=sXCSXl:ENDPROC

I also hope you find it ugly that we have written
three almost identical procedures when (surely?) we
could have made one do the work.

Well, that's the program written. All we have to do
now is to transfer those messages off paper and into
the pr~gram:

4800REM messages
4801DATA "You are holding:"
480ZDATA "You are in a crumbling room full of cobwebs. A

passage leads west."
4803DATA "You are in a cheerful pink room. The word BLAH is inscribed

on the ceiling. A passage leads east, and a doorway
full of whirling knives leads north."

48040ATA "YQu're to the north of the pink room in an alcove. The
only exit seems to be back the way you came."

48050ATA "You're in a vast treasure chamber, with an exit south. "
4806DATA "A barred door bars a north exit."

94

DEVELOPING A SIMPLE ADVE TURE GAME: 'MINI'

4807D ATA "Nothing"
4808D ATA "A shield"
4809D ATA "A black rod"
4810DA TA "A jewelled crown!"
4811DA TA "(which you are wearinq)"
4812D ATA "I don't understand that!"
4813DA TA "There are faint sounds of water."
4814DA TA "The sounds are sliqhtly nearer."
4815DAT A "The water sounds are quite loud."
4816D ATA "That water's getting nearer!"
4817 DATA "llater is soaking up throuah the floor!"
481S OATA "Pools of water are on the qround."
4819 DATA "The water is ankle-deep!"
4820D ATA "The water is knee-deep!"
4821D ATA "The water is waist-deep!"
4822 DATA "The water is up to your chest."
41123 DATA "The water closes over your head ••• "
4824 DATA " You have deoarted this world, alas."
4!!25 DATA " Would you like another game?"
4826D ATA " Nothing happens"
4827D ATA "There is a fanfare of cream horns, and you are thrown

throu gh the air!"
482R OATA "You can't do that!"
4829D ATA "You're not holdinq that!"
4830D ATA "OK" .
4!!31DA TA "You can see:"
4832 DATA "You can't go in that direction!"
483 3 DATA "You're already holding that!"
41134 DATA "That's not herf' ! "
4835 DATA "ThP. knives stab at you as you pass."
4836DA TA "They slice you to ribbons."
4837 DATA "You're not actually wearing the shield, so the knives get you ,
4838D ATA "They bounce off your shield, which shatters."
4839D ATA "The door vanishes quietly."
4840D ATA "The crown is yours! Well done!"

The spacing on some of these looks a little odd, but it's
only to ensure that when that particular string is
printed out, the lines don't do anything nasty when 40
characters are reached.

3.11 Afterthoughts: improvements and debugging
I hope several possible improvements occurred to you
during that long description. There were several quite
crude features. For example, what of that 'You can
see:' message, foUowed by 'A shield'? Surely it would
be better to store a rather more descriptive message
about that shield, like 'There is a battered Saxon
Ex-Army Surplus shield lying slumped on the floor'?

But there's a snag there. When it's being carried by
the player, we don't want a message like:

You are carrying:
There is a battered Saxon Ex-Army .. .

which means that two different messages about the

95

DEVELOP! GA SIMPLE ADVENTURE GAME: 'MINI'

shield are needed . The second one, for use when
carried, would just be 'A shield', as we had it before.

Perhaps you'd have liked a score procedure (on a
game that short?) Feel free to write one-award points
for problems solved. You can count these easily by
checking where the shield is, what state it's in,
whether the door is there, and so on .

The real reason for this section, however, is to talk
about debugging. If you've typed this program in, it's
fairly likely that it won't work. If you've just
programmed a simple game, it's unlikely to work first
time either. Don' t worry - this game didn't work the
first (or even the twentieth) time for me. To begin
with, l fell into the standard trap and used OR%
instead of or%; BASIC took this as OR. This caused a
lot of hunting through the program weeding out every
occurrence of OR% ! Then I had to check each message
to see that its layout was acceptable. Fortunately, BBC
BASIC is flexible, and a simple loop in immediate
mode like:

f FOR 1r. = 1 TO 40: PROCm(lr.) :X=GET:NEXT
sufficed for checking, independent of the rest of the
program . (About half the messages needed adjusting,
if you're interested .) Several other things went wrong,
too; I discovered the lack of the way of ending, which
necessitated message 40, and so on. I've left these in ,
rather than covering my tracks , because real-life
programs are often messier than you or I would think .
So don't be afraid if yours don't work first time; neither
do mine!

You can do a lot of checking of the various
procedures in immediate mode:

xS="ABCD":PROCc:PRINT C~

and so on . But much of the checking of a game like this
must be done during play. A good trick, for example,
is to add an extra line around line 100 which prints out
the values of all the arrays, R%, etc. And if all else fails,
there's always TRACE ON . Or print out a silly
message at some point, to test if your program is
getting there or not. There are many such methods,
and all are worth trying if you get into difficulties. In
the next game, I' ll show you a very useful trick
involving two commands the player doesn' t know
about - purely as debugging aids.

96

4
CREATING AN
ADVANCED
ADVENTURE GAME:
'ROMAN'

4.1 An overview of the rest of this book
Before we start to create an advanced Adventure, it's
worth sketching out the slightly complicated path we
have to take .

In this Part we shall plot the Adventure, and decide
upon the final version of the database system. This is
designed to take up as little space as possible to give
maximum room for programming. In order to achieve
this a separate program must be created to feed the
data into the database. This program is created in Part
5.

Part 6 creates a 'shell' of the main program; this can
be used for any future games you may create.

Part 7 fills in the shell for 'ROMAN', and shows how
to organise all the material into a single game. You
may find the appendices useful to consult on some
awkward matters.

4.2 Plot development
Now we have the material at hand, we can begin to
think about writing a fairly advanced game. As before,
we'll begin with the plot and the puzzles involved . If
you have sent for the cassette tape which goes with

97

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

this book (see page 1), you should play the game
('ROMAN') before continuing reading. I hope you
enjoy it!

Adventure games often arise from concepts - more
about this in Part 8. In this case, the concept was to
replace the usual fantasy setting by historical reality,
namely Caesar's Rome. Ancient Rome itself gerierated
a great deal of the plot; some was deliberately
designed to illustrate how to handle certain
programming problems; and some simply emerged as
the design progressed.

Because all Adventures need a point and this game
has a historical setting, I cast around for a suitable
quest for the player. Acquiring treasure is fun, but
why would the average Roman go treasure hunting?
Suppose he needed money? O.K., but in that case
treasure-hunting might seem extravagantly
adventurous. It was at this point that the idea of o.wing
money to some scheming Roman senator came to
mind. The player will be bound to pay back the debt,
and that will justify involving him in a quest for
treasure. So there is our motivation . In addition, we
can almost certainly arrange a puzzle or two based on
the actual paying back of the debt .

What puzzles, appropriate to our setting, come to
mind? One immediate source is the use of ancient
words. Suppose we chose objects whose names are
not immediately recognisable to modern readers? A
pilum, for example, was a long military spear. If we
refer to it as a pilum, the player will probably not know
its use, which is all to the good (N.B. we must play fair,
however, and also allow 'spear' as an acceptable piece
of vocabulary) . Again, a gladius was a Roman short
sword ... two weapon names suggests some killing,
don't they? If the player has looked up gladius and
pilum, he hould be thinking along the same lines. So
we must remember to include a few objects or people
which must definitely not be killed, as well as some
that can.

What places come to mind when thinking about
Rome? The Coliseum, the temples, and the Senate
occurred to me. No real hope of much treasure lying
about in the Coliseum, which was used for games, but
let's come back to that later. The Senate is the obvious
place in which we'd meet the senator, so no treasure

98

CREATING AN ADVA CEO ADVENTURE GAME: 'ROMAN'

there either. That leaves the temple. Ah yes, how
about a statue or bust? This gives us one treasure . How
can we make getting the bust hard for the player?

Temples are mainly occupied by priests, who won' t
take kindly to players barging in and stealing busts.
Somehow, priests don't sound safe to kill , either! So
how could the player become 'acceptable' to a priest? If
he were another priest perhaps ... ? That will
presumably involve imitating a priest, either in dress
or by action. Not being quite sure how priests dress,
imitating an action sounds a good idea. How about a
sacrifice of some animal? (N .B. We must provide some
hints for the player, who has been given no reason to
think along these same lines.) So, the player must
bring with him a suitable animal for sacrifice; a chicken
is the obvious candidate.

A sacrifice would also provide a use for the gladius
(chopping off the poor bird's head). OK, we have a
puzzle. Now how do we make it hard~r? Any or al~ of
the following will do: (a) make getting the glad1us
more difficult; (b) make getting the chicken more
difficult; or (c) make getting into the temple more
difficult.

If in doubt, go for all three! Here's where we can
introduce two different types of puzzle relating to
obtaining objects: (1) leaving objects in places which
are dangerous to get at (in this case, the gladius'
location) or (2) making getting them dependent upon a
whole chain of actions .

Let's put the gladius (the simpler to arrange) beyo~d
a sheer drop. Jumping over a drop always worries
players, and worry is a key ingredient of Adventure
games . But to lull the player into a false feeling of
confidence let's allow him to make the jump
successfully. Only when jumping with the gladiu~ (or
pilum, come to that) will he miss his hold and fall into
the abyss . The solution he must find is simple enough :
first throw the gladius or pilum to the other side, then
jump to safety.

A good Adventure game contains a mixture of easy
and difficult puzzles. In turn, let's make getting the
chicken hard! Obviously one can't just pick it up;
anyone who has tried knows how hard one is to catch .
We must force the chicken into the player's hands.

99

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

Throwing or dropping a cat will do nicely. When the
chicken jumps with fright it can be caught.

But if we stop here, life will be too simple. Now, we
must make the cat hard to get. Well, the same goes for
picking up cats as for picking up chickens: if they don't
want to be picked up, it can't be done. So, we need a
new puzzle for cat-catching; of course we neither wish
to repeat puzzles nor to bore the player. In any case
cats don't scare easily. Perhaps we should attract the
cat? A mouse could do that, but let's make it a dead
one, else we'll have the problem of picking up the
mouse as well, which may be taking a good idea a little
too far. If the player is holding the mouse when he
says 'GET CAT, the cat will jump into his arms, and
eat the mouse.

The cycle now continues: to get the chicken, we
need the cat; to get the cat we need the mouse; but
where shall we put the mouse? Cunning must prevail.
Suppose we left the chicken and the cat in easy reach
to worry the player, who can't pick them up, but then
left the mouse just a bit further off? It's easy to see that
that wouldn't do at all. It takes very little mental effort
to connect a dead mouse with a cat - we did it in one
sentence just now. Once the player sees the mouse,
the whole chain will become obvious. Thus we must
delay discovery of the mouse as long as possible. From
this we can derive a useful general rule: if you don't
want a player to find something, don't leave it
anywhere! Instead, make the player do something
that will produce the mouse out of nowhere.

What action could produce a dead mouse? Laying a
mousetrap comes immediately to mind. I presume the
Romans had mousetraps; my informants can't tell me.
We could disguise it by calling it a contraption of iron
and wood - but in all fairness we should mention
cheese as well, and let it also answer to 'TRAP' (not
'MOUSETRAP', which is indistinguishable from
'MOUSE' - it's advisable to note down petty details
like that as one goes along). The action, then, is laying
the trap and leaving it down; the player cannot simply
drop the trap. He must leave the room and allow the
mice to come and play. On his return we can present
him with a dead mouse.

I hope this part of the scenario is taking shape in
your mind. Thinking backwards is a standard part of

100

CREATI GAN ADVANCED ADVENTURE GAME: 'ROMAN'

Adventure plot creation. The correct sequence is: find
trap and leave somewhere. Return to collect mouse.
Take to cat and get cat. Take cat to chicken, drop cat
and catch chicken. Take chicken to temple, and, when
confronted by priest, kill the chicken. The priest will
leave, allowing the player to loot the temple.

101

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

A minor point - the place for the trap to be left
should have 'small holes' around the wall. If we made
the room a farmhouse, we could leave the chicken in
the farmyard to annoy the player.

That's tackled the problems of the two objects. But
can we make it harder to get into the temple? If it were
guarded by soldiers, the player would not be able to
pass them unless he took appropriate steps - let's say
that ~e has to resemble a soldier by picking up and
wearing a helmet. Again, we must give him some
help, or he may simply carry the helmet.

Now, the priest won't allow soldiers in the temple,
so the player will have to drop the helmet before
meeting the priest. This will involve his changing in an
anteroom or a courtyard, situated between the
soldiers entrance and the temple itself. With no extra
effort we could run the soldiers program again as the
player leaves the area, forcing him to pick the helmet
up again.

We must either hide the helmet, or make it hard to
get, as once the player sees it and the soldiers, the
solution to the temple entry problem will become
obvious. However, since we have already hidden one
object (the mouse) perhaps we should merely make it
awkward to get the helmet. But how? It certainly
won't run away like the livestock. It occurred to me to
put it in a shop, the shopkeeper watching attentively
over the stock. But then 'GET HELMET' won't put the
helmet into the player's hands. Jn need of yet another
solution, a fairly subtle one came to mind. Let's build
the shopkeeper into the room description, rather than
make him a specific object in the shop. (He will then be
fairly 'low-key' in the player's mind). Once the player
leaves the shop, we'll reset its state and remove the
shopkeeper from the description - he's gone off for
lunch, or something. That'll be the only clue that the
way is now dear to pick up the helmet!

1 would expect players to take some time trying to
get the helmet; fail miserably; go off and do other
t~i~gs; come back later and pick it up with no
difficulty; wonder why; and then, when trying the
gan;ie aU the way through, find that once again they
can t pick up the helmet because by restarting, they
have restored the shopkeeper! A simple puzzle, but
reasonably elegant.

102

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

This convoluted chain leads only to one of three
treasures- the bust. Now let's create a rather different
puzzle combination to lead to a silver ring. We'll use
the fact that light and dark are going to enter the game
- the player must meet the senator only after dark. If
you've played Adventure games before, you'll know
that striding around in the dark tends to be dangerous.
This game will be no exception- in ancient Rome there
were lots of bandits and robbers in the streets after
dark. So eventually, after it gets dark, the player will
need a light source. A wooden torch will do fine. Not
that we'll call it that in the original description of it, of
course - why make it easy for the player?

So let's suppose we tell the player that it is
beginning to get dark, and a number of turns later we
switch all the lights off and arrange matters so that the
player cannot move from a dark area to a dark area
without dying. There will be only two sources of light:
in the Coliseum and his torch, if he can light it. And
therein lies the puzzle. A stick of wood certainly
doesn't burn forever like the torches you see in epic
films. No, it needs soaking in oil first, just as candles
need wax to burn. So we'd better organise a pool of oil
through which the player can walk, thereby drenching
himself and his belongings (including the torch) in oil.
(Memo- we don't want the pool to be inexhaustible.)

When the player gets to a source of flame - how
about a brazier of coals, which will have to be
untakeable? - he can attempt to light his torch. If it
isn't oily, it burns to a stump well-nigh instantly, and
that's the end of the torch. If it is oily, it'll catch fire and
become a first-rate torch. No, that's too simple. If the
player is soaked in oil too, he'll probably catch fire too!
Now that sounds more fun. The player, now on fire,
must find some way to put himself out in a very few
turns, before burning to death!

The solution is an example of the 'apparently
useless, fatal area' puzzle. In this, a 'no-go' area is
provided in which the player dies on entering. He can
waste a lot of time trying out ways of entering, none of
which will work because he has to have achieved
something to 'earn' safe entry. In this case, he must be
on fire! We'll create a damp, misty area, where the
player is assassinated by a runaway slave, unless he
enters while on fire . Then he will he be safe, because
the mist will condense onto his body and put the fire

103

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

out. The slave, revealed, will run away, making the
area, and beyond it, accessible to the player. There we
can leave a silver ring, stolen by the slave, which (a)
provides a treasure and (b) congratulates the player on
solving the problem. A nice puzzle - can we frustrate
the player further, when he solves it? Yes indeed . If
the mist is so active as to put out the player' s fire, it
should do the same to his torch! So the poor player,
staggering around and on fire, will try the mist, but to
his disappointment the torch will go out permanently
too! The solution is trivial - he must drop the torch
before entering the mist!

There will be one further light-and-dark puzzle, and
I'll return to that at the end of this section, when we
discuss the end of the game.

The third, and last, sequence of puzzles relates to
the Coliseum. I thought for some time about how the
player could find a treasure in the Coliseum, and
finally decided that he should win a gold wreath in the
Games being held there (after dark, just to put some
structure on the game). So let's create puzzles related
to entry and exit from Coliseums, together with
fighting in the arena.

Entry to the Games will need money, clearly. The
sesterce was a monetary unit, another suitably ancient
word. 'Coin' and 'Money' will obviously have to be
included in the vocabulary as synonyms, however.
We can leave the sesterce in the anteroom to the
temple. (I prefer my games to 'use' rooms fairly
thoroughly, rather than creating a new one for each
puzzle, or setting up large maps with fewer puzzles,
but it's only a matter of preference). 'PAY SESTERCE',
or any of quite a few alternatives, will gain entry to the
Coliseum - we could mention a pay booth to plant the
idea in the player's mind .

Having transferred the player inside the Coliseum,
it is time for a maze! We haven' t had any mazes yet,
unless you count the whole of 'CAVES'. At its
simplest, a maze is merely a collection of rooms, all of
which have the same description. It is customary for
the player to map such mazes by dropping an object in
each room, thus making each room description
unique. Well, if you want to have mazes like that, go
ahead. They' re bafflers if you've never come across
them before. But for this game, we'll design two

104

CREATING AN ADVA CEO ADVENTURE GAME: 'ROMA '

slightly different mazes, neither of which will be
mappable by object-dropping.

Once inside the Coliseum, the player will find
himself surrounded by crowds forming a four-room
maze of identically-described, interconnecting rooms.
Dropping an object loses it among the feet of the
crowd, thus preventing maze-mapping by object
dropping. However, one of the exits in each room
leads in a unique direction - i.e . only one room has a
north exit, only one an east exit, and so on . So by the
s~ape of the pattern of permissible exits, the player
will be able eventually to deduce first which room he's
in, and second how to get through the maze. Note that
there are only four rooms, as I loathe having to map 37
rooms unless there's a particular point to the structure
of the maze. This won't make the solution to the maze
any easier, as we shall make it hard to find the crucial
exit accidentally.

. Leaving the fourth room correctly will put the player
m the central arena, with a roaring lion bearing down
on him and a crowd egging him on! This, of course, is
where the pilum is useful. 'THROW PILUM' (or, curse
it, 'KILL LION' if he holds the pilum) will get rid of the
lion - any other action results in the player's demise.
His reward will be a gold wreath from Caesar himself,
plus a hint as to how to get out of the arena! There will
be a small gate, which will apparently dump the player
back in the crowd maze again . But this time the maze
structure will be quite different. There will be only
three identical rooms. Let's call them 1, 2, and 3. The
player enters room 1 from the arena. All exits from 1
take the player to the room he's already in, except for
one direction, which leads to room 2. All exits from
room 2 take the player back to 1 again, except for one
exit which leads to room 3. Again, all exits from room 3
lead back to room 1, save for one which leads outside
the Coliseum. Without a clue - and remember, object
dropping isn't permitted - the player won't have a
chance. So we let Caesar tell the player how to leave:
"Use the NEW exit," says Caesar. This may puzzle the
player- it's supposed to. But the correct exit sequence
outside the arena is N (to room 2), E (to room 3) and W
(to leave the Coliseum). So we've told the player the
solution.

The player now has three treasures - time for the
'endgame', or final puzzle, which is always nice to

105

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

have in a game. Entering the Senate in daytime, or
with less than three treasures, results in assassination
by senators waiting to kill Caesar (Ides of March, and
all that). Entering after dark, and with three treasures,
produces the Senator, who will pull a knife on the
player and try to kill him . The only solution is to throw
the torch into a convenient swimming pool, plunging
the room into darkness (memo - hint that to player),
and kill the Senator in the confusion. End of game, and
end of plot!

Here's some specimen dialogue to set the scene:

Yo_u're in your house, which is poor but comfortable.
To the west lies a street.

INV You are carrying: Nothing

W You are in a long east-west street. To the north lies
the Senate, and to the south is a small shop.

MOVE S You are in an old shop, with its exit
northwards. A shopkeeper is keeping his eye on you.
There is a brazier of glowing coals here. A military
helmet lies nearby.

GET HELMET The shopkeeper won' t let you!

KILL SHOPKEEPER You can't do that!

GET BRAZIER You can't take that!

BOTHER (You can probably guess the response to
this ...)

4.3 More on states; introducing properties
Having created our plot- with almost no reference as
to how we shall program it-let's consider whether the
system outlined in Part 3 is adequate to deal with it.
The answer is yes, but only just; and we can do much
better. The previous system involved some ugly
programming; the price to be paid for improving it
will be the creation of a separate program to
ensure that data gets into memory correctly.

To see what new features it would be useful to
include, let's examine which parts of 'ROMAN' look
hard to write. For the time being we'll restrict our
attention to objects and rooms. Consider first the long

106

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

animal chain: trap to mouse to cat to chicken to priest.

Part of the chain is straightforward and demands
unqualified responses: 'GET CAT' either produces a
message saying the cat can't be picked up, or a
me~sage about the cat jumping into your arms and
eatmg t~~ mouse. The state concept is of no help,
though.it 1s fo1~ th~ _tra~ pr?blem. The result of laying
the trap 1s an mv1s1ble exit program on all exits from
the farm: if the trap is in the room and if the mouse is in
room zero (destroyed) and if the state of the mouse is
zero, move the mouse to the room and set the mouse' s
state to I so it won't ever be placed again. (With some
thought, you'll see that one of these tests is
unnecessary: which, and why?) We can also use states
to monitor the priest and lion. Their initial states are O;
when they and the player are in the same room we set
their states to 1 in the pre-program. Then in the post
program, we ~oo~ to see if their states are 1. lf they are,
the. player dtdn t deal with them properly, so we
deliver the appropriate message and kill the player.

So things look good for this set of problems. States
seem to handle the problems easily and neatly. It is the
factors raised by the solutions that yield difficulties.
'KILL' is a verb, useful for the chicken. What about
'KILL GLADIUS'? Or 'EAT GLADIUS'? Wouldn't it
save a long series of IF statements to jot down which
objects were vulnerable, or eatable.

Consider now the light problem. How do we tell the
program when the sun sets, so that it makes the rooms
dark? We can't use states to signify which rooms are
dark as we' re using them for various other things
anyway. How do we let certain objects- here the torch
- be a light source under certain circumstances?
Wouldn't it be useful if 'treasure' could be tagged onto
some objects, for scoring purposes?

Perhaps the most obvious shortcoming of the states
technique is demonstrated by a ttempts to handle the
disappearance of dropped objects in the maze rooms.
We could set each room's state at 10, say, as no other
room would get that big, and lose objects dropped in a
room with state 10, but it's not very neat. Or we could
lose objects only in rooms with certain numbers,
which isn't neat either.

What all this is leading up to is a plea for the addition

107

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

of some properties, different ones for objects and for
rooms. Unlike a state, which is a single number from 0
upwards as high as we need, a p(operty is like an
on-off switch. It's either on or off for each object, like
being a light source, for example. The gladius is never
a light source, so never possesses the property 'light
source'. The torch may sometimes be a light source (its
state may also be different, to signal a different
description, but we'll come to that later). So we can
think of a property as being a TRUE/FALSE flag, or a
1/0, with a given object or room perhaps having
several properties TRUE (or set) and several FALSE (or
unset).

This makes the programming a lot cleaner, and
hence more reliable. 'EAT object' is then handled by 'If
object is not EATABLE, say so and quit. Else check if
held, etc., etc.' 'DROP object' will include a line 'If
room has property DROPLOSE, destroy the object
and say it was lost in the crowd'. Describing the
player's room includes 'If room does not have
property LIGHT, and none of the objects in the room
or in the player's possession has the property LIGHT
SOURCE, print "It is pitch dark" and quit'.

The concept of properties really does make life
easier. Types of property will vary from game to game,
but some, such as light sources, for example, will
probably remain constant from game to game. One
very convenient property for rooms will turn out to be
'VISITED'. We'll really only scratch the surface of the
use of properties in this book, but you'll find you keep
thinking of uses for them.

4.4 A better message system
Now let's look at our message system. 'System?' I can
hear you say, 'What system? We just print a character
string and that's all!' There lies the problem -or rather
two problems. The easier is that we must now extend
the length of messages over 255 characters. The harder
problem is that the printing of messages is an
unintelligent machine response - 'print message 30'
does just that and no more.

Frequently in Part 3 we wished to print a particular
message and then print another under certain
different circumstances (e.g. 'which you are wearing'
when the state of the shield was 1. .. or a description
of the locked door only for a particular room state. In

108

CREATI GAN ADVANCED ADVE TURE GAME: 'ROMA '

'ROMAN' there'll be many more examples of this.
When describing the torch, there will be a choice of
three descriptions (a piece of wood, a lit torch, a black
stump) ?ependi.ng on its state. And more than just
descnptions are mvolved, especially if we want to save
s~ace. When the player tries to get past the guards
with the helmet, we'll need two responses depending
on whether the player is holding the helmet (and one
other for successfully passing the guards, of course).
Either 'The guards see you are not a soldier. They bar
your way' for no helmet, or 'The guards see your
helmet, but realise you are not a soldier. They bar your
way' if the helmet is carried but not worn. The first
part of the message varies, but the second sentence
remains ~he same. It would be nice if the message
syst:m co.u ld handle this without our having to store
two 1denhcal second sentences within the machine, or
to have to ask twice for the same sentence.

The ugly way of doing all this was used in Part 3: IF
statements as and when necessary. As game size
grows, these become more and more clumsy; slower
~nd slower; and more and more space-occupying. So
1s there a better way to produce messages?

Here we will introduce a semi-intelligent message
system. A message will now be stored as a collection of
characters - possibly none - and a collection of
switches, again possibly none. Each switch is the
number of ai:iother message. A call to the message
system to prmt, say, message 19 will then do the
following: first, the characters of message 19 will be
printed out if there are any. If there are no switches
present, the system quits. If switches are present,
however, the system then examines the value of Z%,
which we shall use here as a switching parameter. If
Z% is zero, the system reads the first (really zeroth)
switch, and 'switches' to printing out that (new)
message - which may well have its own switches, and
so on. If Z% is one, the second switch is used; if Z% is
2, the third switch is used, and so on. If Z% is bigger
than the supplied number of switches, the last
(highest) one is used.

This sounds complicated, but it isn't. The idea is to
let the message system handle all the messy details
and so ease the programming burden.

Some examples may be useful here. Think again

109

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

about describing the torch. We'll let its describing
message be 20, say. The appropriate subset of the
messages then looks like this (with message numbers
dehberately spread out to demonstrate that there's no
necessity for switching only to nearby message
numbers):

20 (message is null, or empty)

switches 71, 82, 97

71 A piece of wood

(no switches)

82 A burning torch

(no switches)

97 A black stump

(no switches)

With Z% set to the state of the torch - which the
describing system will do automatically, by the way
printing message 20 gives: first, no message; second, a
switch to71ifZ% =0, 82ifZ% = 1, or97ifZ%> = 2;
third, the appropriate message is printed out; and
fourth, the system quits as none of the latter three
messages has any switches after them.

Hence merely setting the state of the wood is all the
writer has to do to handle all future descriptions of the
wood! Let's try the example of the guards . We set up
messages 83 and 84 as:

83 The guards see you are not a soldier.

switch 85

84 The guards see your helmet, but realise you are
not a soldier.

switch 85

85 They bar your way.

110

CREATING AN ADVA NCED ADVENTURE GAME: 'ROMAN'

(no switches)

In the program, printing message 83 or 84 produces
both the correct first line and the correct second line
(message 85); yet only one printing instruction is
necessary, and we only have to store message 85 once.
We'll see many more examples when we come to the
actual programming.

In Part 3 we identified the need for two types of object
description: a short description ('A shield') for use
when the player is holding the object, and a long
description ('There is a sturdy shield on its side here .')
for use when the object is not held by the player. Here
we cannot switch these messages (i.~ . determine
which message to give the player) on the basis of the
object's state, because merely taking the object doesn't
usually change its state. And it would be impractical to
switch on the property, TAKEN, as it would have to be
set and reset during GET, DROP and THROW.
Instead we must store two message numbers with
each object, one for the short and one for the long
description, and choose which one depending on
whether the object's 'room' is 1 (i.e. the player) . These
descriptions may well switch within the message
system (as is the case with the torch, which will need a
total of 8 messages: a (null) short, switching to one of
three short messages, and another four for the long
descriptions.)

Rooms too will require two descriptions . Hitherto
our rooms had only one description, but it is boring
and unnecessary always to read a lengthy description
no matter how many times one revisits a room. A
message like "You're in the house" is very nice to get
once in a while! So we shall provide each room with a
short and a long description and choose which to use
on the basis of whether the room property VISITED is
set. Requesting a long description with LOOK will
then only involve de-setting VISITED on the current
room before describing it.

These improvements complete those at the
conceptual level. Now we shall turn to improvements
at the programming level.

4.5 Direct memory access
In the games and methods we have studied so far,
information was stored either in arrays or data

111

CREATI GAN ADVANCED ADVENTURE GAME: 'ROMAN'

statements. These are traditional BASIC ways of
holding dynamic and static data respectively . For
many purposes, they are ideal; but for use in games
whose storage may well approach the limits of the
computer, the overheads involved outweigh the
convenience. In Part 2 we saw how to pack a great deal
of information into a single array element, but more
efficient ways were promised.

These efficient methods discard the use of BASIC
variables completely, and address the computer
memory directly. Such methods are, however,
fraught with danger. When we create a variable test%
we know that BASIC will choose a unique location in
memory for it; that it won't place it in the middle of the
screen memory, or the operating system, or your
program. Furthermore, you never need to know
exactly where in memory test% lives; that's BASIC's
problem. But if you decide to put a value somewhere
in the machine yourself, you suddenly have to worry
about all these things. Fortunately, the operating
system and the BASIC on the BBC Micro and Electron
are sufficiently intelligent to let us access memory
directly without disasters.

How one accesses memory directly is described in
the User Guides: Chapter 39 for the BBC Micro and
Chapter 23 for the Electron.

Three new symbols are introduced:?, !, and$. Let's
look at'?' first. If, in some BASJC expression, we write
?8000, we mean the value held in byte number 8000 in
the computer (there being some 32000 bytes available,
roughLy). So 'X=?8000' would set the variable X to the
value held in byte 8000, while '?8000= Y' would put the
value of Y into byte number 8000. (Thus the '?'
operator acts like both PEEK and POKE on other
computers.)

That would be the end of the story, but for one
thing. A byte in the computer can only contain an
integer from zero to 255 inclusiv,e (for example, an
ASCII character). So we can't store 497, 3.62, or-20 in a
single byte, because they are respectively too big, not
an integer, and negative. For most purposes in
Adventure games, this is irrelevant. We tend to work
with integers anyway, and small integers at that.

There will be times when we need to handle bigger

112

byte
8000
8001
8002
8003
8004

CREATI GA ADVANCED ADVENTURE GAME 'ROMAN'

numbers (our messages may number over 255, for
example, even if neither objects nor rooms do). A
BASIC integer, as we saw, can be far bigger than 255. It
achieves this by occupying not one, but four bytes,
one after the other in the machine. Accordingly, Acorn
have supplied the '!' (pronounced 'pling') operator.
Thus !8000 refers to the (possibly very large) 4-byte
integer stored at bytes 8000, 8001, 8002, and 8003. The
actual way it's stored is a little complicated, involving
hexadecimal notation and fortunately doesn't matter
for our purposes. Anyway, 'X=!8000' and '!8000=Y'
are equally permissible BASIC statements. They set X
to the integer at 8000, or the integer at 8000 to Y,
respectively.

The '?' and '!' operators allow us to place and
retrieve information directly in memory without
having to pay the space overheads required by DIM
statements. A table of 100 integers could easily be set
up by statements like 'FOR 1% = 0TO100: ?(8000+ 1%)
= 1%: NEXT', for example, and the table occupies
exactly 100 bytes (well, 101 really!) . The equivalent
BASIC DIM statement would need 412 bytes, even in
immediate mode: net saving, 75%. So frequently is
this operation performed, that Acorn allowed '?' and
'!' to act as partial adding operators: 1% ?8000 is a
synonym for ?(8000+1%). Whether you use this
contraction - which has a few limitations on it - is a
matter of ·personal preference or a despe"rate need to
save 3 bytes of program!

We can also access strings directly, a thing PEEK
and POKE don't easily allow, so we are well off with
Acorn! Just as !8000 meant 'the integer starting at byte
8000', so $8000 means 'the string of characters starting
at byte 8000'. It's worth seeing just what happens
when we write '$8000 = "FRED"' in a BASIC program,
as we'll need the details later. Try typing this, and then
request the contents of memory by 'FOR 1% = 8000 TO
8004: PRINT 1%, ?!%:NEXT'. What we find is:

contents ASCII character
70 F
82 R
69 i:
68 0
13 return

113

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

(you won't see the right-hand column!) Each character
in the string is converted to its ASCII value and stored
sequentiaUy in memory. The end of the string is noted
by a 13, or carriage return.

Once $8000 is in place, we can do aU the things with
it that one would normally do with strings (e.g.
LEFT$, MID$, LEN, etc .). Printing $8001 would give
"RED", for instance, as the string starting at $8001 has
no "F" on it. Printing LEN($8002) gives "2" for the
same reason. Rewriting '$8000 = "GA'" would
overwrite bytes 8000 to 8002; giving:

byte contents ASCII
8000 71
8001 65

G
A

8002 13 return
8003 68 D
8004 13 return

which, you'll see, hasn't altered 8003 or 8004 at all.
Play with this for a little if you' re unused to it, and
you'll see that it's really rather flexible .

We can then make an array of - say - 100 four
character strings by 'FOR I% = 1 TO 500 STEP 5: $I%
= "FRED": NEXT' which takes up 505 bytes. The
equivalent 'DIM A$(100): FOR I% = 1TO100: A$(I%)
= "FRED": NEXT' takes up 812 bytes; again, direct
storage makes a large saving!

4. 6 Use of direct memory access for database handling
Having seen that we can store numbers directly in
memory, and by so doing save a great deal of space,
we need to look at how we can do so safely. For this,
we utilise the 'pseudo-variables' LOMEM and
HIMEM in the computer. These relate to where in the
machine your program and its wprkspace live. Were
we to produce a simplified map of the 32K of our
machine, it would look something Hke this, working
up the memory as we go down the page:

0: Operating system
PAGE: Beginning of your BASIC program

TOP: End of your BASIC program
LOMEM: Beginning of the work-space for your BASIC

program
HIMEM: End of the work-space for your BASIC program

114

character

32KRAM

to &7FFF

CREATI NG AN ADVANCED ADVENTURE GAME: 'ROMAN'

Beginning of screen memory

In this list, I've labelled various locations. Some
you've probably used before, whereas LOMEM and
HIMEM may be new . In sequence, we find that ~he
first few K of the machine are used by the operating
system. After this, your program area - ma~ked by
PAGE - begins. You can set PAGE to anything that
makes sense; your program will then start from that
byte in the machine. TOP, on the other hand, you
have no control over: as you modify your program, so
its value changes. If your program gets longer, so TOP
goes up.

Hex Decimal

&8000 32768

RAM used for high resolution graphics I HlMEM- · --- - Movableb,;undaryl

"' ...
!'.'
g

-" "' u :0

~ ·~
u "'
Vi ~
;:i E

"' c:
>-

0

LlO~EM. Movable -----PP.'GT ____ -------------
TOP

User's BASllC program area

Reserved for operating system use

&4000 16 384

&2000 8192

&EOO 3584

&0000

115

CREATING A ADVA CEO ADVENTURE GAME: 'ROMA '

Normally, BASIC uses all the rest of the machine
apart from the screen memory for its workspace. Thus
it sensibly sets LOMEM to just above TOP. However,
you can modify LOMEM if you wish (but not once any
variables have been set, else BASIC won't be able to
find them again!) So if you want to put some directly
accessible data in memory, you could put it just above
your program and reset LOMEM. The snag with this
method - if your programming ability is like mine,
anyway- is that by the time you've got the bugs out of
your program it's rather longer than it started out, and
the precious data probably disappeared in the middle
of some editing.

My method is a little easier to use, and involves
modifying HIMEM instead. Normally BASIC sets
HlMEM just less than the screen· memory, but again
you're free to reset it sensibly. (Note that any mode
change automatically resets HIMEM, so be careful.) If
we set it about lK above the end of the program, i.e.
TOP, this will give BASIC that lK to use as workspace,
which should be sufficient if we don't introduce too
many variables or too many levels of procedures. All
the space above HIMEM and below screen memory is
then ours, to use as we wish (in this case for storage of
data for our games). The simple setting 'HIMEM =
whatever' guarantees that our data will henceforth be
left alone unless we wish to modify it.

Of course, we don't actually know what value to set
HIMEM to, until we know where TOP is, which first
involves writing the program! We'll see in Part 7 just
how we get everything organised and into the
machine at one time.

116

5
INTERWDE: AN
ADVENTURE GAME
DATABASE WRITING
PROGRAM: 'DATAGEN'

5.1 The database format and binary numbers
Having decided to store data directly in the
computer's memory, we have to ensure that it gets
into memory correctly, as examining it is a little more
awkward than just scanning a program listing with
DATA statements. This Part will describe a general
database-producing program which can be used for
any of your adventures. It will take all the ingredients
of the database, entered in plain English, and convert
them to the correct format within memory. It won't
even matter if you kip the rest of the explanations in
this Part; it isn't necessary to understand 'DATAGEN'
in order to use it!

Exactly when we use this program, and. how it'.s
connected with the Adventure program itself will
emerge in logical sequence in Part 7. You're probably
feeling frustrated that we can' t jump directly into
actually programming the Adventure. Well, we could,
but let's ensure 'we can get the data in, before deciding
how to use it!

We'll begin with the dynamic part of the database .
This, as you' ll recall, contains object and room data,
together with any other odd variables we might need.
Vocabulary and messages make up the static half.

117

INTERLUDE: AN A DVENTURE GAME DATABASE WRITI G PROGRAM · 'DATAGE '

Since objects are simpler than rooms, let' s start with
them .

We identified in Part 3 a need to store the room an
object was in and a numeric variable for the object's
state . In Part 4 we also created the idea of an object' s
properties: a collection of TRUE/FALSE flags . Finally,
objects were to be accorded the numbers of two
descriptive messages, one short and one long, the
short one to be used when the player was holding the
object and the long for when he wasn' t. We shall
assume that there are less than 255 rooms, that the
state lies between 0 and 255, and that both message
numbers are less than 255. Thus all but the properties
will occupy a grand total of four bytes for each object, a
great saving in space.

How are the properties to be stored? On the face of
it, any eight properties, say, will occupy eight bytes.
However, we can take a lesson from 'CAVES' . In that
program, a pattern of zeros and ones (the structure of
the room exits) was held in a single integer: 1001 meant
the pattern one, zero, zero, one. To obtain every
possible pattern of ones and zeros meant storing
numbers from 0to1111. Now our single byte storage
can only hold numbers up to 255. Can we improve on
this? Fortunately, the answer is yes, provided that we
cease working with decimal numbers and use binary
numbers instead.

As far as Adventure writing is concerned, there are
two equally acceptable attitudes towards binary
numbers: ignore them, and hope that they will go
away, or try to understand them. If you already
understand at least vaguely how binary numbers
operate - if you've ever defined new characters, for
example - or if you'd prefer never to understand them,
while still having a usable (but black-box-like)
database system, then skip the next few paragraphs
with my blessing.

To see how to cram more information into less space
by using binary digits, let's return to that Part 2
example of 1001 meaning its four successive digits 1, 0,
0, and 1. We extracted each of the four digits by a
slightly painful process, you' ll recall . To get the
hundreds digit (a zero) we divided by 100 to lose the
tens and units, then MODded with 10 to lose all the
higher digits.

118

INTERLUDE A ADVENTURE GAME DATABASE WRITING PROGRAM . 'DATAGE '

Now powers of 10 were involved all through that
process: dividing i;>y 100, MODding with 10, and so
on. But there was nothing magical about using 10,
except that the answers were especially acceptable to
our decimal-orientated eyes. We can see the 1, 0, 0, 1
pattern when we look at 1001. The fact that it means 1
lot of 1000(or10 cubed), 0 lots of 100(or10 squared), 0
lots of 10, and 1 lot of 1 (or 10 to the zeroth) doesn't
normally impinge on our conciousness - though it
must when we want to extract specific digits from
1001, because computers don' t think in digits .

We could have used 9's instead of lO's for storage .
The 1001 pattern would have become 1 lot of 729 (9
cubed), 0 lots of 81 (9 squared), 0 lots of9, and 1 lot of 1
(9 to the zeroth), which is 738. There's no obvious
point to doing that, since the computer has just as
much work to do extracting information from 9's
storage as it has with lO's, and the eye can' t
immediately see the ones and zeros any more .
However, notice that even the highest possibility,
1111, coded as 729 + 81 + 9 + 1 = 820, now only
occupies 3 digits rather than 4, so we have in fact saved
a digit. Though unfortunately no space has been
saved: a BASIC integer takes up the same space
whether it' s 3 or 4 digits!

So how do we save space? The clue lies in the
shrinking of 1111 (base 10) down to 820 (base 9).
Suppose we continue reducing the base number and
see what happens. 1, 1, 1, 1 in base 8 would be 512 (8
cubed) + 64 + 8 + 1 = 685, which is smaller still; in
base 7, it becomes 400; in base 6, 259; and so on, down
to base 3, 40. The least is to base 2, which gives 8 + 4 +
2 + 1 = 15 - raLher a reduction on 1111, and yet
containing exactly the same information! Note,
though, that we could also handle room codes like 8, 4,
7, 6 in base 10-it's just8476- but we can't go overO's
and 1' sin base 2. This is because 2 lots of 2 squared, for
example, happens to be 2 cubed, so that an en~y of
more than 1 would be confused by the computer when
retrieving the numbers . So, use decimal if you have to
store O's to 9's; or, if space is no object, use binary to
store O's and l's.

How many O's and l's can we cram into a byte - i.e .
and still have a number less than 256? The answer is 8
(which is one of the reasons why the computer is an
8-bit micro, by the way). Thus 1, 1, 1, 1, l, 1, 1, 1

119

INTERLUDE: AN ADVENTURE GAME DATABASE WRITING PROGRAM : 'DATAGEN'

becomes 2 to the 7th power + 2 to the 6th power + . . .
+ 2 + 1 = 255 exactly, while at the other extreme 0, 0,
0, 0, 0, 0, 0, 0 yields 0. Hence we can put 8 binary
properties into a single byte! We shall discuss getting
them out again later.

1 1 1 1 1 1 '-----1 x1 =
.... _._,......,......,_._,......,......,~=-~~_.....zx1=

'--------..2x2=
'--~~~~~~+2x4=

1
2
4
8

'----------· 2 x 8 =
L-~~~~~~~-.2x16=

16
32

L---------~2x32= 64
L...~~~~~~~~~--+2x64=128

255

We can now specify the object database format.
Each object will occupy five bytes in memory. The first
byte will be the object's state; the second will hold its
eight properties, with zeros meaning 'not set' and
ones meaning 'set'; the third byte holds the room of
the object; the fourth the message number of the
object's short description; and the fifth byte the
number of its long description. Each group of five
bytes is strung out one after the other, beginning with
object zero. This one doesn't exist, but it's quite useful
to have it around, just as there are uses for room zero.
The setup is shown diagrammatically below, with the
list being as long as necessary:

state props room short long I short
A A A A A I A

------------- object 0 ---------------!------
(Each 'A' represents a byte in memory)

You may still be feeling that all this complication is
unnecessary. Well, dimensioning a state array, 8
property arrays, a room and two message arrays for 60
objects will take up nearly 2900 bytes of your machine
- about 9% of it. Direct storage of the same 60 objects
takes up only 305 bytes, about one-tenth of the
dimensioning method; but we have to pay for this by
some program to get at the numbers.

I

What of the rooms part of the database? Each room,
too, has a state, 8 properties, and two descriptions.
But in addition, we need to know about exits-all 10 of

120

props
A

object ,
room

A --------

INTERLUDE: AN ADVENTURE GAME DATABASE WRITING PROGRAM: 'DATAGEN'

them: N, NE, E, SE, S, SW, W, NW, UP and DOWN.
You can easily include others, such as lN and OUT, if
you wish - even exits which the player can't use but
the program can! (Did you ever want to have a
monster following the player through magical exits?
Give the monster a spare direction to use, and don't let
the player get at it!) For each exit, we shall provide 2
bytes of information: first the room to which the exit
leads (zero in the case of no exit), and second the
number of an exit program to be obeyed before going
through the exit.

With this exit program number, which is normally
zero indicating no program, we crack the messy
series of tests we had to make in 'MINI' ("are we going
north and in room 3?") All movement becomes a
single program: (a) look up exit; (b) if zero, quit; (c)
check for exit program, obeying it if necessary; (d) if
exit is still permissible, move the player. Not only does
this look far neater and require far less storage, it's also
far more structured and thus infinitely more likely to
work correctly in your program.

The rooms database wiU thus look like this,
beginning also with room zero. Each room occupies 24
bytes (state, properties, 2 messages, and 10 directions
times 2 bytes):

state props Ne•it Nprog NEe•it NEprog ••• De•it Dprog short ton~ I state
A A A A A A A A A AI A

--------------------------- room 0 ------------------------------!
In general, the rooms database would follow on
directly after the last object in the objects database.
After the last room you could leave space for any other
odd variables you might need: the battery life of a
lamp, or whatever. Sometimes such values can be
tucked into unused state areas, etc., as we'll see in
'ROMAN'.

After the rooms will come the static database,
consisting of vocabulary and messages. The
vocabulary begins with the 'doing' words (all verbs in
our parlance). Each verb occupies 6 bytes: four for its
first 4 characters, padded out with spaces for short
verbs like 'E', then one byte for the verb number and
one for the verb type. All vocabulary will be in lower
case. This is because we're going to let our player type
in upper or lower case, convert his input in the
program to lower case, and compare it with the
database. So we have:

121

INTERLUDE: AN ADVENTURE GAME DATABASE WRITING PROGRAM: 'DATAGEN'

verb number type I verb number type I •••
AAAA A A I AAAA A A
--------- verb 1 ----------!------------- verb 2 ----------I

as far as necessary .

The 'things' part of the vocabulary follows on
directly. Each thing occupies 5 bytes: four for the
vocabulary itself, and one for the object number.
Hence:

thing number thing number
A A A A A I A A A A A I
------ thing 1 -------I------ thing 2 ---------I

also as far as necessary. The 'specials' have the same
format, and follow on after the objects:

special number special number
AAAA A I AAAA A I

------ special 1 -------I------ special 2 -------I

This only leaves the messages. The messages will
follow on directly after the special vocabulary. Each
message consists of three sections. The first is a single
byte which contains both the number of switches in
the message, and the number of lines - we'll see how
later. The second section consists of each line of the
message, stored using the $ symbol as in Part 4. The
third section - which may not be there - is a collection
of pairs of bytes, each of which holds a message
switch. These have to be a pair, because there may
well be more than 255 messages; in that case, a swHch
to a number bigger than 255 couldn't be held in one
byte, and it's easier to set up two from the start. Again,
we'll come to exactly how we do that; understanding it
isn't a condition of using it.

Thus the message layout looks like this, where's/I'
stands for 'switch/lines':

s/l line 1 ••• line 2 ••• swO sw1 sw2 s/l •••
A AAAAA •• A 13 AAAAA •• A 13 •• AA AA AA A

----------- message 1 -------------------------!---- message 2 ---

5.2 The driving program
We can now write a straightforward program to read
in data from keyboard and convert it into suitable
direct memory format, and put it in the right place in
memory. This section details the outer core of that
program, 'DATAGEN':

122

INTERLUDE: AN ADVENTURE GAME DATABASE WRITING PROGRAM : 'DATAGEN'

100IMOIRSC10)
ZODATA N,NE,E,SE,S,SW,W,NW,U,D
30NO=O:NR=O:NV=O:NT=O:NS=O:NM=O
40U%=&FFFF0000:LX=&FFFF
50FORIX=1T010:READ DIRSCIX>:NEXT
60INPUT"TIMELAG?"TT
90INPUT"OBJECT,ROOM,VERB,THING,SPECIAL,MESSAGE?"X$

100IFXS="" END
1100~ INSTR("ORVTSM",X') GOTO 400,1000,1500,2000,2500,3500

399REM OBJECT

Line 10 sets up a 10-element array to hold the 10
possible directions. These are listed in the data
statement at line 20, and read in at line 50. Line 30
initialises the number of objects (NO), rooms (NR),
verbs (NV), things (NT), specials (NS) and messages
(NM) to zero. The mysterious line 40 sets U% and L %
to hexadecimal values used in inserting message
switches. Ignore them for now; Appendix 2 explains a
little of how hexadecimal works. Line 60 asks for a
time lag between each set of input in cen tiseconds. The
idea is that you may want a moment to study the
output from each object, or whatever, to see if it's
correct. Hence the breathing space. At line 90 the user
inputs the letter 'O' for object, 'R' for room, etc., to
specify which piece of the database will be input next.
It is cus.tomary for me to input them in the order listed.
Inputting a blank line ends the program (line 100).
Line 110 sends the program off to the appropriate area
to handle the database section required.

5.3 Object, room and vocabulary storage
Now let's first see how we feed in numbers for the
object and room storage, (the dynamic part of the
database) handled at400 and 1000 respectively. A look
at the appendices may be useful here. First the object
storage:

400INPUT "Value of oX=?"XS:oX=EVAL(X')
405REM *EXEC OBJECTS
410REPEAT INPUT'"OBJECT NUMBER?"O:IFO=OENO
420PX=oX+5•0:NO=N0+1
430INPUT"STATE?"IX:?PX=IX
440JX=O
450REPEAT INPUT"PROPERTY?"KX:IFKX<OORKX>7 UNTIL TRUE ELSE

JX=JX+2AKX:UNTIL FALSE
470PX?1=JX
480INPUT"ROOM?"JX:PX?2=JX:PX=PX+3
490 INPUr''SHORT LABEL?" J X: ?PX=J X: PX=PX+1
500INPUT"LONG LABEL?"JX:?PX=JX:PX=PX+1
510PRINT"PX=";.PX,PX
520PRINT"CHECK: ";: PX=oX+5•0:FOR 0:=0 TO 4:PRINTPX?IX; :NEXT
530PRINT'"NO= ";NO
540PROCWAIT
550UNTIL FALSE

123

INTERLUDE: AN ADVENTURE GAME DATABASE WRITING PROGRAM . 'DATAGEN'

Explanations:
400: Input the value of where in memory object zero

will be stored, here called 0%. The EV AL is to enable
you to input it in hexadecimal if you wish. You may
gulp at that, but there are advantages to this even if
you don' t understand hexadecimal! Don' t worry that
we don't know where to put the objects yet; we have to
write the main program before we know that.

405: This is a rather strange line. Ignore it (as it's
REMmed) unless you possess a word-processing
package. If so, you can prepare all your input for these
programs by word-processor, and then *EXEC it in
here.

410: Begin unending repeat loop. Input object
number, and quit if it's zero or blank.

420: Set P% to the place in memory where object 0
will begin, and increase the object count.

430: Input state. This goes exactly at byte P%.
440: Begin property setting by making) % - which

will hold the 8 properties - to zero, i.e. none set.
450: Keep asking for properties to be set until one

out of the range 0 to 7 is input (I use 10 as a terminator) .
If the property is in range, add property K% to the) %
total. Note the power of 2, just like we used powers of
10 before. So don't repeat a property, or chaos will
ensue.

470: Finally set the byte one after P% to the property
count)%.

480: Object's room goes at 2 after P%, then increase
P% for the message labels.

490-500: Get short and long labels, and insert in
memory. Increase P% to point to next byte each time.

510: Let the user know where in memory we've
reached , printing P% in both hexadecimal and
decimal. I repeat that you don' t need to understand
hexadecimal, but occasionally knowing values in
hexadecimal is important, as we'll see. The use of the
tilde(-) is mentioned in Appendix 2.

520-530: Take no chances - print out the contents of
the 5 bytes whose values we just' set, and the number
of objects we've done .

540-550: Wait the prescribed time, then end the
loop.

The rooms portion is well-nigh identical, except for
the addition of the exits and their program numbers.
These latter are part of the static database, since their
contents never change.
999REM ROOM

124

INTERLUDE: A ADVENTURE GAME DATABASE WRlTING PROGRAM. 'DATAGEN'

1 000INPUT"Value of rX?"XS:rX=EVALCX:!il
1 005REM *EXEC ROOMS
1010REPEAT INPllT'"ROOM NUMBER?"R: IF R=OEND
1020PX=r%+24•R:NR=NR+1
1 030INPUT"STATE?"IX:?PX=IX
1040JX=O
1 050REPEAT INPUT"PROPERTY?"Kl(:IFKX<OO~KX>7 UNTIL TRUE ELSE

Jl =JX+2AKX:UNTIL FALSE
1070PI? 1 =J X
1080FORil=2T021:PX?IX=O:NEXT
1090REPEAT INPUT"DIRECTIO•l?"X"
11 00IF XS<">"" U=l'J:REPEATI".=IX+1 :LINTILXS=DIRSCI%):1NPUT"ROOM AND

COD E?"R1,R2:P%?12•IX>=R1:PX?C2•Il+1l=R2
11 20UNTIL XS=""
11 30PY.=PX+27.: INPUT" SHORT LAA EL?" J X:? PX=J X: PX=PX+ 1
11 40 PIPUT"LONG LABEL?" JI:? PX=J X: P7.=PX+1
11 50PRINT"PX=";-P7.,PX
11 60PRINT"CHECK: "; :PX=rX+24•R: FOR 0::=0 TO 23 :PRINT ;P7.?IX; :NEXT
11 70PRINT'"NR=";NR
1 180PROCWAIT
11 90UNTIL FALSE

Explanations, ignoring the identical portions:

1000: Set r% for rooms.
1010: Quit when zero room number entered.
1020-1070: State and properties.
1080: Set the exits-and-exitprogs section all to zero

(no exits, no programs).
1090: Repeatedly input a direction that player may

leave this room by (N, NE, etc.) There is no need to do
these in any specific order. Terminate by a simple
carriage return; such an entry will be ignored by the
next line .

1100: Find which direction it was, so !% has the
value 1 to 10. The program doesn' t check for an error
here, as it' ll tell you if you mistyped by failing! Then
input exit and program number in that direction.
Notice the comma, so you can type '17, 3' to mean
room 17, exit program 3, all on one line. Then se t the
appropriate two bytes of memory.

1120: Keep going!
1130-1190: Pretty much as with objects, save that a

lot of numbers, all scrunched up, are printed out. You
could put spaces between them if you wished.

Just to recap, then , when the time comes to type in
the objects and rooms database, we choose the
appropriate option and steadily, for each object/room,
type in the information required, terminating each
piece as I've indicated . It is wise to jot down the final
value of P% after each set of data in both hexadecimal
and decimal for use later.

125

I TERLUDE: AN ADVENTURE GAME DATABASE WRITING PROG RAM : 'DATAGEN'

The remainder of the database is static, and begins
with the vocabulary input. Verbs are first, at 1500:

1499REM VERBS
1500INPUT"Value of v7.?"XS:vX=EVALCXSl :PX=vX
1505REM *EXEC VERBS
1510REPEAT INPUT"VE~O? "Z.S:IF ZS=""ENO
1520NV=NV+1:IF L~NCZS)>4 THEN ZS=LEFTSCZS,4)
1530IF LENCZ5l<4 THEN ZS=ZS+STRINGSC4-LENCZSl," ")
15401NPUT"PROG LABEL, CODE? " P,C
1550SPX=ZS:P7.=P7.+4:?PX=P:Pr.?1=C:PX=Pr.+2
1560PRINT.PX,P!!
1570PRINTNV:PROCWAIT:UNTIL FALSE

Explanations are fairly obvious. We set v% to be the
byte in which the first verb is placed. A loop is entered
at 1510, terminating with a null input. Line 1520
shortens the verb to 4 letters, and 1530 pads it out to 4
with spaces. Line 1540 accepts the program label- i.e.
which command the verb really is-and its type, which
can come in on one line with a comma separator if you
wish . At 1550 we first store the verb in $P% , which
uses 5 bytes (4 for the verb, one for carriage return),
then overwrite the carriage return with the program
label. Finally, the code is set, and P% modified to
point to the next verb's position. This is printed at 1560
in hexadecimal and decimal, and after a wait at 1570,
the loop continues.

Things and special words are almost identical:
1999REM THINGS
2000INPUT"Va Lue of tX'? "XS: tX=EVAL C XS l: P:>:=tX
2005REM *EXEC THINGS
2010REPEAT:INPUT"THING? "ZS:IF ZS=""END
2020NT=NT+1:IF LENCZS)>4 THEN ZS=LEFTSCZS,4)
2030IF LENCZSl<4 THEN ZS=ZS+STRINGS(4-LENCZS)," ")
2040INPUT"LABEL? " L
2050SPX=ZS:PX=PX+4:?PX=L:PX=PX+1
2060PRINT.PX,PX
2070PRINTNT:PROCWAIT:UNTIL FALSE
2499REM SPECIALS
2500INPUT"Value of sX'?"XS:sX=EVAL(XSl :PX=sX
2505REM *EXEC SPECIAL
2510REPEAT:INPUT"SPECIAL? "ZS:IF ZS=""ENO
2520NS=NS+1:IF LENCZSl>4 THEN Z$=LEFTiCzS,4)
2530IF LENCZS)<4 THEN ZS=ZS+STRINGS(4-LEN(ZSl," "l
25401NPUT"LABEL? " L
2550SPX=ZS:PX=PX+4:?PX=L:PX=P7.+1
2560PRINT"PX,PX
2570PRINT NS:PROCWAIT:UNTIL FALSE

No explanation is needed for either, as the only
difference from verbs is the one less byte used in
storage. Typically, the verbs are stored immediately
after rooms, with things and specials immediately
after them. This wastes no space - but it does mean a

126

INTERLUDE: AN ADVENTURE GAME DATABASE WRITING PROGRAM: 'DArAGEN'

3499R EM MESSAGE

bit of moving if you find you omitted some particular
piece of vocabulary!

5.4 Message and switching storage
The only remaining part of 'DAT AGEN' concerns the
messages, which typically take up most of the
database. Here's the program section. Most of the
going is easy, but life gets tough at the end and you
may want to skip that part unless you enjoy
hexadecimal!

35QQ I NPUT"START FROM NUMBER, AND WHERE?"Ill,MMS:MMMX=EVALCMMSl:NM= III:
P%=MMM X

3505R EM *EXEC MESSAGE
3510RE PEAT:INPUT "NO. OF SWITCHES, MESSAGE NUMBER?"S,MNO
3520I F MNO <>N"+1 PRINTMNO,NM: STOP
3530 IF S>15 PRINT"TOO BIG!":END
3540? P%=16•S:QX=Pr.:P7.=P7.+1:LIN=1
3550R F.PEAT PRINT"LINE ";LIN
3560I NPUT LINF ZS
3570I FZS=""ANDLIN=1THEN$PX=ZS:PX=PX+LENCZSl+1:UNTIL TRUE ELSE IF ZS=""

UNTIL TRUE ELSE LIN=LIN+1:SPX=Z$:PX=PX+LEN(ZS)+1:UNTIL FALSE
3620?GX=?Q~+LIN-1:NM=NM+1:IFS>O FOR IX=O TO CS-1):PRINT"SWITCH LABEL

";IX:I NPUTL:PROCDPCPX,Ll:PZ=PX+2:NEXT
3730P RINT.P7.,PZ:PRINT"NM= ";Nf'I
3740R EM PRINT FOR SECURITY
3750P1 X=MMMX:I=III+1:IFNM=O END
3760RE PEAT IF NM=! UNTIL TRUE ELSE L=?P1XANO&OF:S=?P1XDIV16:P1X=P1X+1:FOR

J%=1TO L:P1X=P1Z+LEN($P1Xl+1:NEXT:I=I+1:P1X=P1X+2•S:UNTIL FALSE
3810L=?P1XAND&OF:S=?P1XDIV16:P17.=P1Z+1
3820FO RJX=1 TOL
31!30ZS =SP1 X
3910P RINTZS:P1X=P1X+LENCZSl+1:NEXT
3920IF S>O FORU=O TO (S-1l:PRINT"SWITCH ";IX;"=";!P1X AND &FFFF:

P1X=P 1 %+2: NEXT
3950P ROCWAIT:UNTIL FALSE

This certainly needs explaining. The first thing to
realise is that you are exceedingly unlikely to type in all
the messages without making an error somewhere -
there is just too much text to expect otherwise. So line
3500 allows for the occasional error by Jetting the user
specify which message and where in memory the
messages will start from. In other words, you can end
the program after an error, and restart from the end of
the last correct entry. Line 3500 then sets P%, (after
evaluation, in case of hexadecimal) to the byte where
that message is to start. Line 3505 gives word
processors their chance, and can be ignored
otherwise.

Line 3510 begins the loop proper. It requests the
number of switches for the new message, and its
number . This latter number is a security precaution

127

INTERLUDE: AN ADVENTURE GAME DALO.BASE WRITING PROGRAM : 'DAlJ\GEN'

that you didn't miss any numbers; I always miss one
somewhere. IfMNO doesn't match with NM+ 1, 3520
terminates the program. Line 3530 objects if more than
15 switches are mentioned. Line 3540 stores the
number of switches in the 'top nibble' of ?P%. This is a
piece of machine-coder's jargon, I'm afraid, but it's
convenient. You'll remember that we want to store
both the number of switches and the number of lines
in the first byte of a message. Either can range from
zero to 15. Now if we were using decimal numbers and
had two digits available, we could store two numbers
between zero and 9. One would be the tens digit, one
the units. We could extract either by the methods in
Part 2.

Well, should we choose to work to base 16
(hexadecimal), we could instead store two numbers
up to 15. One would be the "16's" digit, and one the
units digit. Each of these 'digits', to base 16, is called a
'nibble'. So in 3540, we set 16 times the number of
switches into ?P%. We can't put in the number of lines
yet, as neither we nor the program knows how many
there are. At the moment, that number is implicitly
zero (why?).

16's units

\/
~

Line 3540 continues by jotting down in Q% the
position of this byte, so that we can return later,
moving P% to point to the next byte, and setting a line
counter. Lines 3550-3560 start a REPEAT loop, and
input a whole line of message (note the use of INPUT
LINE to allow commas, etc., in the input). Line 3570
checks whether there were no characters on the line
and it was the first one. In that case the message is
null, and presumably followed by switches, so we
proceed to the switch section by ending the loop, after
putting a carriage return at P% and moving P% on one
byte. If this wasn't the case, we again check for no
input, only this time it's not on the first line and so we
can just end the loop directly - the carriage return will
already be there courtesy of the previous line.

128

INTERLUDE: AN ADVENTURE GAME DATABASE WRITING PROGRAM , 'DATAGEN'

If we're still here, we must have had some text on
that line. So we increment LIN, store the string input
at P%, and move P% on to its new position. We then
go round the loop of input again.

Line 3620, when reached, marks the end of the lines
in the message. We now know how man'y lines there
were: LIN, to be precise. So we tuck LIN in as the
'units nibble' at the beginning of the message (Q%),
and increment the message count. If there were no
switches, that's finished that message altogether.

If there were switches - i.e. S > 0- then we ask for
them in turn. Line 3620 executes a procedure whose
name is supposed to resemble 'Double Poke' to put the
~witch lab~! L into two bytes of memory, followed by
incrementing P% by two. We'll look at this in a
moment. Lines 3740 to 3920 are because I am a coward.
I prefer to see that the message has been entered
correctly by getting the machine to print it all out
again, switches and all. Line 3750 starts at the first
message typed in this session, using P1 % as a counter.
If we have reached the current message, we end this
REPEAT loop. Otherwise, we calculate the number of
lines and switches in the message we've reached so
far. The DIVving by 16 should be obvious - it gets the
top nibble - but the 'AND &OF' to get the units may
look odd. Why not just MOD with 16? The only reason
is that ANDing with &OF (15 in decimal) achieves the
same result but quicker (see the Appendices) . For
now, trust that it works, and if you're unhappy,
change it!

Next, still at 3760, we move through the L messages;
even if Lis zero, there'll be one carriage return, so the
FOR loop will work correctly. Then, we jump over
enough bytes to handle the switches, and go round
agam.

Eventually we reach the message we're testing, at
3810. Again we rea.d in switches and lines into Sand L.
3820-3910 then print out the L lines straight out of
memory, and increment Pl % accordingly. If there are
no switches (3920) we get the next message, else we
print out each switch. Some more hexadecimal has
reared its ugly head here. This relates to getting a
two-byte number out of memory easily. Again, take
this on trust- it works. After a wait (3950) we go round
again.

129

INTERLUDE: AN ADVENTURE GAME DAThBASE WRJTING PROGRAM: 'DAD\GEN'

This leaves just the PROCDP and PROCW AIT
procedures. Here they are:

40000EFPROCOP(P%,JX): !PX=<!PXANDUX>ORCJXANDLX):ENDPROC
4200DEFPROCWAIT:TIME=0:REPEATUNTILTIME>TT:ENOPROC

both one-liners. PROCW AIT is simple, and we'll say
no more about it. But PROCDP contains some rather
splendid logic. What's it all about?

If you're still reading this part, you'll now have to
delve a little further into hexadecimal numbers and
their storage. Acorn, you'll remember, gave us the '?'
operator to catch a one-byte number, and the '!'
operator to catch a four-byte number. But the switches
we are using generally need more than one byte
(though not in 'ROMAN') and less than four. In fact,
exactly two. Had Acorn given us another operator to
grab or load a two-byte number, all we would have
had to do was use it. But we haven't got one, and must
make do.

To be able to store two-byte numbers, we obviously
need to know how four-byte numbers are stored.
Well, they're stored as if to base 256 - but units first,
then 'tens' - here '256s' - then 'hundreds' - here '256
squared' - and finally 'thousands' - here '236 cubed'.
In this system, the 'digits' can go from zero to 255, of
course. For our purposes, the order is the most
important thing. It's units in the first byte, 256s in the
next, and so on. So how do we use this to put two-byte
numbers in and out? Suppose we just wrote !P% =
300, for example. What would happen in the storage?
To find out, we need 300 to base 256. There's one 256,
and a units figure of 300 - 256 = 44. So 300 is
represented as 1, 44.

Thus !P% = 300 puts into memory the following:

PX
44

PX+1
1

P?.+2
0

PX+3
0

since there weren't any 'hundreds' or 'thousands' in
300. The first two bytes have done exactly what we
needed; but we splatted zeros over P% + 2 and P% +
3, which was not what was required, alas.

To get round this, we need to replace 300 by a figure
whose units and 'tens' make up 300, but whose
'hundreds' and 'thousands' are precisely what the

130

10DH!OIRS(10)

INTERLUDE: AN ADVENTURE GAME DAThBASE WRITING PROGRAM: 'DATAGEN'

digits in P% + 2 and P% + 3 were before we started
loading numbers on top of them. We could get at these
by '!P%DIV (256*256)', although logical operations
are faster. Look back at the pattern of U% and L % as
defined in line 40. Although these are written as
hexadecimal - because I don't know what they are in
decimal! - each pair of characters forms a digit in
hexadecimal. In fact, &FFFF is 255, 255 in hexadecimal
characters. So L % is exactly 255, 255 - the biggest
'two-digit' hexadecimal number. U%, however, is
255, 255, 0, 0 - rather like 9900 in decimal. It only has
'hundreds' and 'thousands' digits, with zero 'tens'
and units.

So how does line 4000 operate? First we get !P%
AND U%. This ANDing removes the 'tens' and units
digits, thus retaining only the two digits we wished to
keep. Also,]% AND L % makes sure that we've only
got the 'tens' and units digit of]% here (not necessary
for this program, as that's always the case). We now
OR these two together. The result has the 'thousands'
and 'hundreds' digits of !P% and the 'tens' and units
digits of]% - exactly as required. This then goes back
into !P%.

Getting two-byte numbers back out is much easier,
as 3930 showed. We can just take !P% and strip off the
higher two digits by ANDing with &FFFF.

Again, my apologies for this complexity. Sometimes
we just have to live with complexity. Don't worry if
you didn't follow it all; it doesn't matter a bit.

That concludes the description of the program to
put the data in the machine. In the next Part we'll
discuss how to manipulate the data within our main
Adventure program.

5.5 A listing of 'DAT AGEN'

20DATA N,NE,E,SE,S,SW,W,NW,U,O
30No=O:NR=O:NV=O:NT=O:NS=O:NM=O
40UX=&FFFFOOOO:LX=&FFFF
50FORIX=1T010:~EAD DIRSCI%l:NEXT
60INPUT"TIMELAG?"TT
90INPUT"OBJECT,ROOM,VERB,THING,SPECIAL,MESSAGE?"XS

100IFXS="" END
1100N INSTR("ORVTSM'',XSI GOTO 400,1000,1500,2000,2500,3500
399REM OBJECT
400INPUT "Valu@ of o%=?"XS:oX=EVAL(XSJ
405REM *EXEC OBJECTS

131

INTERLUDE: AN ADVENTURE GAME DATABASE WRITING PROGRAM : 'DATAGEN'

410REPEAT INPUT'"OflJECT NUMBER?"O:IFO=JfENO
420PX=o%+5•0:NO=N0+1
430INPLJT"STATE?"IZ:?PX=IX
440JX=,.O
450REPEAT INPIJT"PROPERTY?"K%:IFKX<OORKX>7 UNTIL TRUE ELSE JX=JX+2"K%:

UNTIL FALSE
470PX?1=JX
480 INPUT"ROOM? "J % : P%?2~J X: PX=PX+3
490INPIJT"SHORT LAREL ?" JX: ?PX=J X: PX=PX+1
SOOINPUT"LONr. LABEL?"JX:?PX=Jl:PX=PX+1
510PRINT"PX=";•PX,PX
520PRINT"CHECK: "; :PX=oX+S•O:FOR IX=O TO 4:PRINTPX?IX; :NEXT
530PRINT "'NO=- ";NO
540PROCWAIT
5501JNTIL FALSE
999REM ROOM

1000INPUT"Value of rX?"XS:rX=EVALCXS)
1005REM *EXEC qOOMS
1010REPEAT !NPllT'"ROOM NUMBER?"R:IF R=OENO
1020PX=rX+24•R:NR=NR+1
1 030 INPUT" STATE?" IX:? PX=! r.
1 040J X=O
1050REPEAT INPUT"PROPERTY?"KX:IFKX<OORKX>7 UNTIL TRUE ELSE JX=JX+2"KX:

UNTIL FALSE
1070PX?1=J%
1080FORIX=2T021:PX?IX=O:'lEXT
1090REPEAT INPUT"OIRECTION?"XS
1100IF XS<>"" IX=O:REPEATIX=IX+1 :UNTILXS=OIRSCIX> :INPUT "ROOM AND CODE?"

R1,R2:P%?(2•IX)=R1:PX?(2•I%+1)=R2
1120UNTIL XS=""
1130PX=PX+22:INPUT"SHORT LABEL?"JX:?Pl=JX:PX=PX+1
1140INPUT"LONG LAAEL?"JX:?PX=JX:P%=PX+1
1150PRINT''PX='•;•PX,PX
1160PRINT''CHECK: ";:PX=rX+24•R:FOR IX=O TO 23:PRINT;PX?IX;:NEXT
1170PRINT'"NR=";NR
111\0PROCWAIT
1190UNTIL FALSE
1499REM VERBS
1500INPUT"Value of vX?"XS:vX=EVALCXS>:PX=vX
1505REM *EXEC VERBS
1510REPEAT:INPUT"VERB? "ZS:IF ZS=""END
1520NV=NV+1:IF LEN(ZS)>4 THEN ZS=LEFTSCZS,4)
1530IF LENCZS)<4 THEN ZS=ZS+STRINGSC4-LENCZS) " ")
1540INPUT"PROG LABEL, CODE? " P, C ,
1550$PX=ZS:P7.=P7.+4:?PX=P:PX?1=C:P7.~PX+2
1560PRINT-PX,PX
1570PRINTNV:PROCWAIT:UNTIL FALSE
1999REM THINGS
2000INPUT"Value of tX?"X$:tX=EVAL(X$):P'l:~tz

2005REM •EXEC THINGS
2010REPEAT: INPllT"THING? "ZS: IF ZS;""HID
2020NT=NT+1 :IF L~N<Z~)>4 THEN Z$=LEFTSCZ$,41
2030IF LEN(Z$)<4 THEN ZS=ZS+STRINt;S(4-LEt.ICZ!:l," ")
2040INPUT"LAREL? " L
2050SPX=ZS:PX=PX+4:?P~=L:PX=P~+1

2060PRINT"PX,PX
2070PRINTNT:PROCWAIT:UNTIL FALSE
2499REM SPECIALS
2500INPUT"Value of s%?"XS:sX=EVALCXS) :PX=sX
2505REM *EXEC SPECIAL
2510REPEAT:INPUT"SPECIAL? "ZS:IF ZS=""END

132

INTERLUDE: AN ADVENTURE GAME DATABASE WRITING PROGRAM : 'DATAGE '

2520NS=NS+1:IF LEN(ZS)>4 THEN ZS=LEFTS<ZS,4)
2530IF LEN(ZSl<4 THEN ZS=ZS+STRINGSC4-LEN(ZSl," ")
Z540INPUT"LABEL? " L
2550SPX=ZS:PX=PX+4:?P%=L:P%=P7.+1
2560PRINT"PX,P7.
Z570PRINT NS:PROCWAIT:UNTIL FALSE
3499REM MESSAGE
35001NPUT''START FROM NUMBER, ANO WHERE?"IIl,MMS:MMMX=EVALCMMS):NM= Ill

PX=MMMX
3505REM •EXEC MESSAGE
3510REPEAT:INPUT "NO. OF SWITCHES, MESSAGE NUMBER?"S,MNO
3520IF MNO <>NM+1 PRINTMNO,NM: STOP
3530IF S>15 PRINT"TOO BIG!":ENO
3540?P%=16•S:GX=P7.:P%=PX+1:LIN=1
3550REPEAT PRINT"LINE ";LIN
3560INPUT LINE ZS
3570tFZS=""ANDLIN=1THENSPX~zs:PX=P'l:+LENCUl+1 :UNTIL TRUE ELSE IF ZS=""

UNTIL TRUE ELSE LIN=LIN+1 :SPX=ZS:PX=P%+LEN(ZS)+1:UNTIL FALSE
3620?QX=?QX+LIN-1:NM=NM+1:IFS>O FOR IX=O TO CS-1l:PRINT"SWITCH LABEL

IX:INPUTL:PROCDPCP%,Ll:P7.=P7.+2:NEXT
3730PRINT-PX,P%:PRINT"NM= ";NM
3740REM PRINT FOR SECURITY
3750P1%=MMMX:I=III+1:IFNM=O END
3760REPEAT IFNM=I UNTIL TRUE ELSE L=?P1XAND&OF:S=?P1XOIV16:P1X=P1X+1:F

JX=1TO L:P1X=P1X+LENCSP1XJ+1:NEXT:I=I+1:P1X=P1X+2•S:UNTIL FALSE
3810L=?P1XAND&0F:S=?P1XDIV16:P17.=P1%+1
3820FORJX=1TOL
3830ZS=SP1X
3910PRINTZS:P1X=P1%+LEN(ZSl+1:NEXT
3920IFS>O FORIX=O TO CS-1l:PRINT"SWITCH ";IX;"=";!P1% AND &FFFF:P1X=P1

NEXT
3950PROCWAIT:UNTIL FALSE
4000DEFPROCOP(P%,J%l: !P%=(!PXANOU%)OR<JXANOL%):ENOPROC
4200DEFPROCWAIT:TIME=O:REPEATUNTILTIME>TT:ENDPROC

133

134

6
ORGANISING AN
ADVANCED
ADVENTURE GAME

6.1 The object and room handling subprograms
This part will develop all the 'manipulating' routines
between lines 5000 and 5999 to handle our new
database. You will be delighted to hear that most of
them are straightforward, and, of course, they are all
usable time and again in other Adventures. Thjs is
'bottom-up' programming, but worth it nonetheless.

The first two are fundamental. These are functions
FNOL(O%) and FNRL(R%) which give the value of
what I call the 'Object Label ' and the 'Room Label', i.e.
the byte in memory where the piece of the relevant
database for that object or room begins:
SORODEFF~OL<OZ>~or.•S+o7.

5090DEFFNRLIRZl=RX•24+r"
These should be obvious. Object zero begins at 0%,

so object 0 % begins 0 % times 5 beyond that; the
room label is exactly simJar, only each room takes up
24 bytes and not 5. Now we know where a given object
or room 'lives' in the machine, we can get hold of the
information in its database .

Getting information is achieved by a collection of
functions. For each object, we need to know its room,
its state, and a logical TRUE/FALSE for each of the
eight possible properties for that object. Here they are:·

135

ORGANISI GAN ADVANCED ADVENTURE GAME

5100DEFFNRIO%l=?IF•OL!C~l+ZI
5110DEFF~SIOZl=?F,OLIOZJ

513DDEFFNPIO%,Pll:LOCALIZ:I1=?1F~OLI01)+1)AND2•PX:=IIX>Ol

Line 5100 provides FNR(O%), which returns the
room which object 0% is in. It merely looks up
what's in the byte two beyond FNOL(O%), which is
where the room is stored. Similarly, 5110 gives
FNS(O%), which returns the state of 0%. And 5130
gives FNP(O%,P%) which is TRUE or FALSE
according as property P% of object 0% is set or
unset. This first evaluates the logical AND of the byte
containing the properties - FNOL(0%) + 1 - with
2 i P%, which separates the single property we're
interested in (see Appendix 1 for more details). If this
quantity is nonzero, we return TRUE, else FALSE. By
the way, powers are very slow to evaluate, so you
might want to set an array POWER%(P%) equal to
2 j P% before the program ran; or a byte array.
Another tip is that colons aren't needed after
FNP(O%,P%); BASIC is clever enough to notice
when a bracketed definition finishes. For clarity,
though, I've left them in.

The room functions are identical, except there is no
corresponding one for the room of an object. Their
names are FNRS(R%) (Room State) and
FNRP(R%,P%) (Room Property). Notice how I use
short but suggestive names to save memory and
execution time.

5310DEFFNRSCRXl=?FNRLIRXl
5320DEFFNRP(RX,PXJ:LOCALIX
5330!X=?CFNRLIRXl+1)AND2"PX:=CIX>0)

In addition to examining the contents of the
object/room database, we'll also need to change
them. This is done by procedures, again suggestively
named. Here are the object manipulators:

5140DEFPROCOSP(OX,PX,1Xl
5150AX=FNOLCOXl;IFIZ=OA~?1=AX?1A~OC~FF-2'PXlELSEAZ?1=AX?10R2~PX
5160ENOPROC
5170DEFPROCOSSIOX,1Xl:?FNOL<OT.l=IX:ENDPROC
5200DEFPROCRCOZ,RT.l:?CFNOLCOXl+2'=RX:ENOPROC

Explanations:
5140 provides PROCOSP(O%,P%,1%) (Object Set
Property). This sets property P% of object 0% to 1%,
which should therefore be 0 or 1. This is achieved by
line 5150 (refer to Appendix 1 if in doubt). Either a
logical AND is used to clear property P% without
disturbing the others, or else a logical OR is used to

136

ORGANISI GA ADVANCED ADVENTURE GAME

set property P%. Notice the use of the '?' operator as
an addition tool here. Line 5170 gives
PROCOSS(0%,I%) (Object Set State) which sets the
state of object 0% to 1%. And line 5200 gives the very
useful PROCR(O%,R%) (Room) which sets the room
of object 0% to be Ro/o. I think these should be
straightforward to understand.

A similar pair are required for room manipulation:
PROCRSP(R%,P%,I%) (Room Set Property) and
PROCRSS(R%,1%) (Room Set State). Neither should
need further discussion.

5340DEFPROCRSPIR%,P7.,17.l
5350AZ=FNRL(RZl+1:1FIX=O?A7.=?AXANOl&FF-2"PXlELSE?AX=?AXOR2"PX
5360ENDPROC
5370DEFPROCRSS(R~,1Zl:'FNRL(RZl=IX:ENDPROC

6.2 The message procedure
We also need a procedure PROCM(M%) to print out
message M%, and then, depending on the value of
Z%, jump to the appropriate switched message.
Getting at the message is fairly similar to the test
method we used while putting the message in the
machine:

5610DEFPROCMCM'.0 :LOCALU
56201FM7.=0ENOPROC ELSE PX=mX:IZ=1
5630AX=?PXANO~F:8X=?PXDIV16:PY.=P1.+1
56401FIZ=MXTHEN5670
5650FORDZ=1TOAX:PX=P7.+LEN$P7.+1:NEXT
5660PT.=PT.+2•BX:IX=I7.+1 : GOTC5630
5670IFAZ=OPX=PX+1 :GOT05710ELSEFORDZ=1TOAX
5680PRINT $PY.:PX=PX+LEN$P7.+1
5690NEXT
5710IFBY.=OENDPROC
5720H7.=ZX:IFNX>IBZ-1l•Z=BT.-1
5730MZ=PZ! (2•MXlAND&FFFF:PROCMCMZl
5740ENOPROC

Explanations: line 5620 terminates if message 0 is
requested, else sets the counter P% to m%, the
location in memory where the messages start. It sets
the 'current message marker', 1%, to 1. Line 5630
reads the number of lines of the current message into
A% and the number of switches into B%, then
increments P%. The method used is the unpacking-a
nybble we used before. At 5640, we jump to printing
if 1% equals M%, the required message. Otherwise
(5650) we skip through A% lines (which, again,
works even if A% is zero), then jumps over 28%
switches, adds one to 1%, and returns to 5630. This
loop would be neater if we had a REPEAT WHILE
structure, since we need to test at the beginning of
the loop, not the end, which REPEAT UNTIL is
designed for.

137

ORGANISING AN ADVANCED ADVENTURE GAME

At 5670 we start to print the message itself. If it
hasn' t any lines, skip over the carriage return and try
the switches at 5710, else (5670-5690) print out A%
lines of text. At 5710, we terminate if there aren't any
switches. Otherwise, at 5720, we use M%
temporarily to hold which number switch we' re
jumping to. At 5730 we extract the message number
at that switch using Part 5's methods, and call
PROCM with that value message.

Notice two things about this procedure. First, it's
recursive. By this is meant that the definition of
PROCM may use a call to PROCM. Recursion is a
very powerful feature of BBC BASIC if used properly.
One has to be careful because in theory this could go
on for ever: if message 2 switched to message 3,
which switched to message 2, etc. It's up to you to
ensure it doesn't! Second, A%, B%, and D% are all
used. You could make these local if you like; I merely
choose not to use them elsewhere, to avoid nasty
accidents.

6.3 Other utilities - descriptions, light, etc.
This section will detail the other utilities. The first
pair describes a given object - PROCDO(O%) - or
room - PROCDR(R%). First is the object description:

5220DEFPROCDO<Or.>
5230MX=?CFNOLCOXl+4+CFNRC07.l=1))
5240Z%=FNSCO%):PROCMCM7.>:ENDPROC

Line 5230 has to pick out the appropriate message
number. This is 3 on from FNOL(O%) if we want the
short description, and 4 on for the long description.
We choose which by whether FNR(O%) = 1 or not. If
it is, the value of the (logical) expression
(FNR(0%)=1) is TRUE, or -1 numerically. If not, the
value is FALSE, or zero. So line 5230 puts the correct
value of the message into M%. All line 5240 has to do
is set Z% to 0%'s state, and call PROCM(M%).

The room describing procedure has some similar
features:
5520DEFPROCDRCRXl:LOCAL Ii.,JX
5530IFFNL OR RX=1 ELSEPRINT"It is pitch dark":ENDPROC
5540MX=?CFNRL(R%)+23+FNRP(Ri.,1))
5550ZX=FNRSCRXl:PROC~(MX>
5560Jr.=TRUE
5570FORI%=1T015:IFFNR(IX)=RX PROCOOCIX):JX=FALSE
5580NEXT
5590IFJX AND Ri.=1 PRINT"Nothing"
5600ENDPROC

138

ORGANISING AN ADVANCED ADVENTURE GAME

Line 5530 decides anything can be seen. It uses FNL,
which is yet to be written, but returns a logical value
TRUE/FALSE depending on whether there is a light
of any kind in room R%. So if there isn' t a light and
we aren ' t describing room 1 - i.e . the player for
whom light is irrelevant - we print 'It is pitch dark'
and quit. Once over that hurdle, 5540 decides on
short or long description based on room property 1
(visited); the short description is chosen if R% is
visited, the long one otherwise. Line 5550 sets Z% to
the room's state, and prints the appropriate message.
The next line sets a flag J% to TRUE, for use later.
Line 5570 describes each of the 15 objects if it's in
room R% , and clears J% . Line 5590 is used only for
when the room is 1 - i.e . the player. If no objects were
mentioned, then we print 'Nothing' to follow after
'You are carrying' or whatever the player's message
reads.

A small point: the number of objects has been set to
15 in line 5570, since that's how many there will be in
'ROMAN' . You should of course change the number
yourself for other games. The only reason I didn't set
the number to a variable at the beginning of the game
is because it's so seldom used.

This procedure used FNL, the light function. Here
it is:

5440DEFFNL:LOCALIX,J%
5450IFFNRPCR,0)THEN=TRUE
5460IX=FALSE:FORJ%=1T015:IFFNPCJX,0)ANDCFNRCJX)=10~FNR(Ji.)=RlIX=TRUE:

J % =1 5
5470NEXT: =IX

Line 5450 sets FNL to TRUE if the player's current
room (which will have the value R) has property zero
(lit). If not, then we cycle through the 15 objects (reset
this for other games) to see if any have the property
light source and are either carried by the player or in
the current room . [f one does, finish the loop and
return TRUE or FALSE accordingly .

The next pair of procedures relate to the handling
of the player's input. The use of direct storage allows
us to combine all three of the binary searches we used
previously for verbs, things, and special words into a
single procedure PROCW(X$,1%). This takes as
arguments X$ as a (four-character) string and !% as a
flag which marks which vocabulary is to be
examined. If 1% is 1, check verbs; 2, check things; and

139

ORGA ISING AN ADVANCED ADVENTURE GAME

3, check specials. The procedure sets J% to zero if X$
isn't found in the appropriate list, and to its code
otherwise. If 1% is 1 (i.e. a verb check), K% is set to
the verb type, otherwise 1.

57500EFPROCWCXS,!Xl:JX=O:KX=O:UX=1:0N IX GOTO 5760,5765,5770
5760H%=NC:P%=vX:JX=6:GOT05780
5765H%=NT:P%=t%:J~=5:GOT05780
5770H%=NS:PX=s%:J%=5
5780IFXS<FNSTRCUX,!Xl0RXS>FNSTRCHZ,I~)JX=O:ENOPROC
5790IFX$=FNSTRCU%,I%lM%=UX:PROCSET:ENDPROC
5800IFXS=FNSTRCH%,1%)M%=HX:PROCSET:ENDPROC
5810REPEAT IFCH%-U%l=1J%=0:K%=0:UNTIL TRUE:ENOPROC
5820MX=CUZ+H%)OIV2:IFXS=FNSTRC~X,IX) UNTIL TRUE:ENDPROC
5830IFXS>FNSTRCMr.,IXlU%=~%:UNTIL FALSE ELSE HX=MX:UNTIL FALSE
5850DEFPROCSET:P%=PX+CMX-1>•JZ+4:JX=?P%:1FIX=1THENK%=PX?1ELSEKX=1
5860ENOPROC

The structure is very similar to that in Part 3. Line
5750 sets U% to the lower end of the range of
vocabulary, which is 1 no matter what part of
vocabulary we're checking. Lines 5760-5770 then set
H% to the higher end of the range of vocabulary (NC,
NT, or NS are the numbers of Commands, Things,
and Specials), put our counter P% to v%, t%, ors% -
the appropriate location in memory - and set the
length of the data entry into J% as 6, 5, or 5
depending on the vocabulary type.

Life now proceeds as before. Line 5780 checks for
vocabulary out of range; 5790-5800 for vocabulary at
the endpoints of the range. These lines all use
FNSTR(M%,I%) which returns the M%th string of
type !% (the same flag as in PROCW). We then
proceed until we fail to find a match, or, at line 5850,
to look up the number of the vocabulary and, if
necessary, the verb type . These are then returned in
]% and K% .

The function used above, FNSTR, is easily written:

5880DEFFNSTRC~~,I%)
5890IFIZ=1TZ=v%+6•CM7.-1lELSEIFIX~2TX=tZ+S•CMX-1)ELSET%=s%+5•CM%-1)
5900!Z=!TX:Z?4=13
591 OIF R IGIHS C $Z, 1 l =" "REPEATH=LE FTS C SZ ,LEN <SZ) -1): UNTIL RIGHTS CSZ, 1)

<>" II

5920=SZ

Line 5890 sets T% to point at the first byte of the
appropriate vocabulary . Line 5900 dumps the first 4
bytes over to Z - which is a location we haven't
defined yet, but will. It will be &COO, normally used
for user-defined characters, but not in this game. We
shall ensure that this choice doesn't interfere with
anything, later. Normally it's bad practice to address

140

ORGANISING AN ADVANCED ADVENTURE GAME

below the normal PAGE value, but it saves quite a bit
of room. If you're unhappy, feel free to say DIM Z 40
at the start of your program; it'll achieve the same
thing. We then place a 13 (carriage return) after these
four characters . Should the string contain blanks
(5910) we shrink it. Line 5920 eventually returns the
string at location Z, as required.

One other short procedure completes our list. It
takes Z$ and converts it to lower case. This will allow
the player to type in upper or lower case, provided
that all our database is written in lower case:

59 400EFPROClc:FORAr.=1TOLENZS:R'.=ASCC~IOSCZS,AX,1llOR32
5 95 0ZS=LEFTt < 7S,AX-1l+CHRSOr.+RIGHT~<zs,LENZS-AX):NEXT:ENOPROC

BREM ONERRORGOT01005
9MODE7:HIMEM=?•??

Line 5940 may look a little odd. The point is that
lower case ASCII codes are 32 above upper case.
Simple adding 32 to the ASCII code of a given
character fails for several reasons - if it's already
lower case, or a space, or whatever. But logical
ORring with 32 wi)I set that particular bit (like a
property!) and give the right answer. Line 5950 then
replaces that character in Z$ by its lower cased
version.

6.4 The overall running program
We may now program in the rest of the 'shell' of the
Adventure program, for your use in other
Adventures . We begin with the initialisation section
1-99:

10NC =?•:NT=??:NS=??:NZ=????:Z=&C00
11 oX=????:rX~????:vX=????:tX=????:s%=????:mX=????
15ZS =STRINGSC20 " ")
20F OR I X=7T08:PRiNTTABC10,1%l;CHRSC141l;''Roman Adventure":NEXT
30P RI NT' I :P~OOIC??)
40P RI NT' ':PROCINOUT(1):PRINT' I

SOQ X=O

Line 8, at present REMmed out, allows a jump to a
'would you like another game?' line at 1005 in case of
ESCAPE being pressed, or some other error. Please
do not remove the REM until you are convinced there
are no errors in your program! Line 9 sets the screen
mode, and then resets HIMEM to a value which at
the moment we don't know. l recommend leaving
strings like '????' in, because if you forget to set them,
the program will fault immediately rather than do
something drastic. We' ll know where to put HIMEM
- which will be one below the beginning of the object

141

ORGANISING AN ADVANCED ADVENTURE GAME

database - when we have written the main
program.

Line 10 sets the number of commands, things,
specials, and a counter locatipn for the time of day.
(I.e. N% is a location in memory, in fact within the
objects database, so will be dumped out when the
player saves or loads a game. There might be many
such odd locations in general. We can access them all
through N% ?1, etc. These would probably be put just
after the objects.) We also set Z, which we've seen
before. Line 11 sets the beginnings of the object, room,
verbs, things, specials, and message databases. Again
we don't yet know what these are! Line 15 initialises
the string for player input, Z$. Line 20 gives a banner
for the game - Electron users should modify
accordingly.

Line 30 prints out a suitable 'story so far' message.
Again, we don't know which message it will be. Line
40 Jets the player read in the dynamic part of the
database, and start the game. Initially this will be on a
file we will provide called INIT, but he will certainly
make others as he plays, and can start from any of
these. This uses PROCINOUT, which will be defined
in a moment. Finally, line 50 sets Q%, the player's
previous room, to zero, to guarantee a room
description first time round.

PROCINOUT(I%) relates to saving and loading the
game in its various stages; loading for 1% = 1, saving
for!% = 2. If you're using a cassette-based system,
and wanted to save the game, the file you created
could be called anything, since you have to keep track
of where on tape each file is. Thus we could require all
files to have the same name; INIT, say. But this can't
work for disc-based machines because writing a file
called INIT onto a disc with a file of that name already
present would delete the first file. So we must give the
player a choice of names for his file.

Why the problem? Well, we will be using the
operating system commands *SAVE and *LOAD,
rather than BASIC, to save the database. Unlike SAVE
and LOAD, we can't pass BASIC strings to these
commands (e.g. we cannot ask the player for a
filename in X$ and then say *SAVE X$.) Those with
BASIC II have no problem; there's an OSCLI
command. Those with BASIC I need the only machine

142

ORGANISING AN ADVANCED ADVENTURE GAME

code call in this book (or use PROCoscli in 'Creative
Assembler on the BBC Microcomputer', also available
in the Penguin Acorn Computer Library):

5960DEFPROCINOUTC!X):PROCM(??l:INPUTYS
5970SZ=YS+" 2AOO":IFI%=1SZ="L. "+SZ ELSESZ="S. "+SZ+" 2050"
5980XX=O:YX=&C:CALL lFFF7:ENDPROC

Line 5960 prints a specific message, to be defined. It
relates to asking about a filename and so will obviously
change from game to game. The player supplies its
name in Y$. Line 5970 then builds around Y$ either the
string '*L. "Y$" 2AOO' or '*S. "Y$" 2AOO 2D50'. ('*L.'
and '*S.' are shorthand for *LOAD and *SAVE.) Here
I've used "Y$" to mean whatever the actual string in
Y$ was, not the characters "Y$"! So if Y$ was "FRED",
we'd have a string '*L. FRED 2AOO', for example.

The use of *LOAD and *SA VE is covered in your
user guide. They allow the dumping or retrieval of
specified sections of memory. Let's look at *LOAD
first. Its format is:

*LOAD filename address

which takes the contents of the file whose name is
'filename', and places it into memory beginning at the
hexadecimal location 'address'. There! I told you we'd
need hexadecimal for something! Now this is an
operating system call, so the machine doesn't care in
any way what's in 'filename'. It can be BASIC,
machine code, word-processed material, databases, or
just plain junk! What you do with it is up to you, too.
*SA VE is a little more lengthy. Its format is:

*SA VE filename startaddress finishaddress+ 1

which takes the memory between startaddress and
finishaddress inclusive and places it into a file called
'filename'. Again, both addresses must be in
hexadecimal, without the '&'; the contents can be
anything you please. In our case they're going to be
the dynamic part of the database, i.e. from the
beginning of the objects (0%) to the end of the rooms
(one less than v%).

So, symbolically, we could write '*SAVE filename
"0%" "v%"' to save the dynamic part of the database,
where we'd insert the values of 0% and v% once we
knew what they were. Above, I've used the fact that I
know they're &2AOO and &2D50 respectively.

143

ORGANISING AN ADVANCED ADVENTURE GAME

That concludes all you need to know about the use
of *LOAD and *SA VE. The problem for us is to get the
input filename into the operating system. That's
where lines 5970 and 5980 come in. We construct the
string containing what we want the operating system
to do at byte Z (&COO, you'll recall). Line 5980 then
does what the manual tells you to do, and the result is
passed to the operating system. I don't know how it
works either; I just follow instructions and you should
do the same! (Incidentally, always get into the habit of
writing for the lowest common denominator; don't
say 'Ah, but I have BASIC II so I can use OSCLI'
because one of your users may not have it!)

Next comes the between-turns section (lines 100-
199):
100REPEAT R=FNR(Q):IFR<>QX ORNOTFNRPCR,1)PROCDR(R)
110PROCRSP(R,1,1l:QX=R:FX=O

We shall store the player's room in object zero's room,
as well as letting it be the variable R. The point is that
when we do a save or a load, the program must be able
to find out where the player is! If the player has
moved, or if room R is unvisited, we describe the
room. (This makes the response to 'LOOK' trivial: we
just unset visited on the current room, and return.)
Line 110 sets room R to be visited willy-nilly, and sets
Q% to R as well; finally our flag F% is cleared .

Any other 'special' bits you want to add for a given
game would go here.

Next comes the player input, in lines 200-299:

200REPEAT
2101F FX=O REPEATINPUT"':"ZS:UNTILZS<>""
220PR0Clc
230JX=INSTR(ZS," "):IFJX=OXS•LEFTSCZS,4>:YS="":GOT0300
240XS=LEFTSCLEFTS<ZS,JX-1),4):YS=RIGHTSCZS,LENCZS)-JX)
2501FLEFTS(YS,1l=" "REPEAT YS=RIGHTS(YS,LEN(YS)-1):UNTIL

LEFTSCYS,1)<>" "
260YS=LEFTS(YS,4)

We prompt him with a colon, and input to Z$,
repeating if he merely hits carriage return. Line 220
lower-cases Z$. We then follow exactly the same
sequence as in 'MINI' to split Z$ into up to two words,
both of at most 4 characters.

Next comes the vocabulary handling, in lines 300-
399:

300PROCW(XS,1l:CX=JX:IFJ%>0THEN3JO

144

ORGANISING AN ADVANCED ADVENTURE GAME

310YS=XS:PROCWCYS,2):DX=JX:PROCWCYS,3):1FDX+JX•OPRINT"EH?":UNTIL FALSE
320PRINT"What do you want to do with the ";YS;"?'':INPUTZS:PROClc:

XS•LEFTSCZS,4>:PROCWCXS,1):CX=JX:IFJX=OPRINT"EH?":UNTIL FALSE
330DX=KX:IFDl=OANDYS<>""PROCMC??l:UNTIL FALSE
3400X•O:SX•O:IFYS=""THEN360
350PROCW(YS,2l:OX=JX:IFJX>0ELSEPROCW(YS,3):SX=JX:

IFJX=OANDDX<>3PROCM(??l:UNTIL FALSE
360IFDX=1ANDSX>0PROCMC??l:UNTIL FALSE
3701FDX>OANDDX<3ANDYS=""PRINTXS;" what?":INPUTZS:PROClc:

YS•LEFTS(ZS,4):GOT0330
380UNTIL TRUE

Line 300 checks X$ - the presumed command -
against its vocabulary using PROCW, and puts the
command number into C%. As long as this is positive,
we can proceed to 330 to check for second words. (I
apologise for the GOTOs here, but the lines are too
long for IFrfHEN constructs .) If not, it wasn't
recognised (line 310) . Then we try it out as a second
word (Y$ = X$) and test this hypothesis for things and
specials. If it wasn't either, we print 'EH?' and get
some more input. If we did recognise the first word as
a thing or a special (i.e. a proper second word) we ask
what the player wants to do with it; lower-case the
result and truncate it to 4 characters, and see if that is
understood as a first word. If not, we give it up as a bad
job!

By line 330, we have an understood first word, so we
store its type in 0%. If there's a second word and there
shouldn't be, we print a message of as yet unknown
number saying 'I don't understand that!' and quit.
Notice that we use D% in PROCM and to hold the verb
type . However, no messages get printed if all is well,
so the overlap doesn't matter. At line 340, we're
probably expecting a second word, so we set 0% and
S% to zero, and skip to line 360 if there was no second
word. Line 350 has to check that second word . We try
it as a thing, and then as a special word. Only if the
verb type is 3 (a new numbering system to be detailed
later) which allows unrecognised second words) can
we proceed, else we didn't understand. Line 370 finds
that D% = 1or2, which will require a second word . If
there wasn't one, ask for it, lower-case it, and skip
back to check it out at line 330. If all was well, end the
REPEAT loop at 380.

Next will come the preprogram at lines 400-499. This
will be totally specific to the individual game and so
can't be written here.

The command handling routine comes at lines
500-599:

145

ORGANISING AN ADVANCED ADVENTURE GAME

500FX=O
5100N ex GOSUB ????,????, ••• etc.
520IFFX =9 PROCOIE
530IFFX=1ZS=YS:GOT0200
540IFFX =2PROCNEWGAME

which is again a little sketchy because the important
line is game-dependent. We set F% to zero at line 500,
and then GOSUB at 510 to whichever chunk of
program C% pointed at. At 520 we see if it was fatal
(F% =9); if so, to the deathprog at line 1000. Line 530
checks if the command required ignoring the first
word, and treating tlie second as a new first word; if
so, make the changes and back to 200. Finally, 540
checks to see if the player wants to stop (F% =2); if so,
let him. Nearly all of this is identical with 'MINI'.

This leaves only death and restarting, at lines
1000-1005:

10000EFPROCDIE:PROCMC??l:GOSUB2730:PROCNEWGAME
10050EFPROCNEWGAME:PROCMC??l:INPUTXS:IFCASCCXSlOR32l<>110RUN ELSEENO

Line 1000 delivers a suitable death message, then calls
the scoring subprogram (more of which later). In a
general case, this line number would vary, of course. I
just didn't want to leave in too many question marks!
Line 1005 asks if the player would like another game,
then scans the first character of his response, lower
cased, to see if it's 'n'. If it is, end the program, else
re-run.

At lines 6000 and beyond we shall tuck in the exit
programs, which are stored, remember, with the exits
they belong to.

And that completes the 'shell' program. We may
now proceed to use this for the game 'ROMAN' (at
last!)

146

7
PROGRAMMING AN
ADVANCED
ADVENTURE GAME:
'ROMAN'

7.1 The map and initial layout
We now have all the technical 'equipment' necessary
to write an Adventure, and specifically to write
'ROMAN'. So out with pencils and paper, and let's get
to work! The order in which I have worked is the order
in which I always work. I use it because it is logical and
I know that it succeeds, but there are other viable
orders, so don't feel hide-bound by my suggestions.
By the end of this Part, we'll have assembled the entire
Adventure and have a working, testable program.

The first requirement is perhaps obvious: we must
draw a map depicting all rooms and objects. Without it
we cannot write any code. At the same time we should
depict exit programs and the like. I suggest naming all
objects, rooms, and programs as you draw the map,
although of course internally, we deal only with
numbers.

Another advantage of the map is that it enables us to
see whether we've 'cooked' any problems- i.e. killed
an intended solution stone dead! For example, the
player needs the sesterce to enter the Coliseum.
Drawing the map and placing the sesterce on it should
indicate to us if we had mistakenly placed the sesterce
inside the Coliseum! Actually that's why we program

147

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

in pericil - because there will be mistakes .. . Here is
my version of the map. It's about Mark 3, in fact;
typicaIJy there are one or two rough versions as I get
my ideas straight. The act of drawing often suggests a
puzzle or two!

W end of temple
bronze bust 22

second maze

chasm
~

gulley

19

gladius
trap

148

waste ground

16

slaves' cottage

17
ring

E end of temple
priest 21

N 7

COLISEUM

arena

27
lion

S II

entry to temple

farm

14

farmyard

pi/um 15
chicken

PROGRAMMING AN ADVANCED ADVE TURE GAME: 'ROMA '

I' ve indicated with various symbols where exit
programs occur, together with most of the exits. In the
case of mazes, these get fairly complicated, as does
showing multi-level maps; in which case, do the best
you can! You'll notice that no exit patterns have been
shown for the two Coliseum mazes; we'll fill those in
later.

You should also decide on an 'official route' for the
game and make sure, by reference to the map, that this
can be followed successfully. Here's my order:

1. Get helmet (in and out of shop)
2. Pass through oil once
3. Do valley, get gladius and throw it; collect

mousetrap
4. Leave trap at farm, get pilum and pick up mouse
5. Get cat (losing mouse); get chicken (losing cat)
6. Wear helmet to pass guards; drop helmet and get

sesterce
7. Into temple, kill chicken (losing gladius to priest)
8. Get bust, leave temple and re-wear helmet
9. Past guards again
10. Get wood
11. To shop through oil again
12. Light wood, catch fire
13. To misty area, dropping wood just before entering

it
14. Be duly put out, then go back to wood - which is

why it must be dropped there, as else can't move
from dark to dark

15. Collect ring from cottage
16. Pay at toIJ-booth
17. Through maze 1 into arena
18. Throw pilum to kill lion (losing pilum)
19. Collect wreath and NEW hint
20. Enter maze 2, then go N, E, W to leave Coliseum

(memo - need a message when we leave!)
21. To senate
22. Throw torch when confronted by senator, to win

game.

Do check the route listing against the map when you
get to this stage. It can reveal fundamental flaws in
game-planning at a stage when they can be cured with
the stroke of a pencil.

It's worth noticing the odd touches. We avoid
people trying 'PAY SHOPKEEPER' for the helmet

149

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMA N'

because the player can't get the sesterce until after he's
got the helmet - which means there's no real need to
pay anything then! Mind you, he might still say it, in
which case an uninformative 'You can't do that!' will
handle him . The brazier had better be untakeable, as
had various other objects like priest, lion, etc. -
otherwise we'll have an embarrassing situation on our
hands . Notice also that both exits from the farmhouse
must have the 'mouse-producing' program set on
them - we can' t be sure how the player will tackle that
problem, after all.

During the rest of the coding, your map should
always be in front of you, as you'll refer to it
constantly.

7.2 The object list
Out with another sheet of paper ready for the next
item on our agenda, namely the preparation of the list
of objects. First what properties do we need
(remember we have up to eight available)? Already the
database handler assumes property 0 is LIGHT
SOURCE, and we will keep that as it is . The brazier
and some other objects will be untakeable, and will be
assigned property NOT AKE. The property
TREASURE will simplify the scoring. Property
KILLABLE will also ease the handling of KILL;
EAT ABLE will do the same for EAT. Finally, as we're
using states for the wood, we might as well define a
property OILY, although we do not really need it.
Thus our list of properties, together with the numbers
I' ve given them, are:

0 LIGHT SOURCE
1 NOT AKE
2 TREASURE
3 KILLABLE
4 EA TABLE
5 OILY

Write this list down on top of the 'object' sheet of
paper so that you don't lose it. A quick count of objects
in the game yields 15. Notice that that the senator
doesn't make it into the list-he's a set of programs and
descriptions. You could quite easily make him into an
object if you prefer.

Now we make a table, with headings like this:

150

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

NUMBER OBJECT STATE PROPERTIES ROOM SHORT LONG
and proceed to fill it. The order of the objects is of
course arbitrary. I strongly recommend filling in both
the number of the object and your name for it, even
though that doesn' t get into the database . The point is
that when you want to refer to the table to see what
number the pilurn was, you' re thinking ' pilum', not
'9'! So provide both .

Well, here's my list:

NUMBER OBJECT STATE PROPERTIES ROOM SHORT LONG
1 brazier 0 0,1 4 0 1
2 helmet 0 4 2 4
3 cat 0 3,4 6 5 6
4 torch 0 8 7 11
5 gladius 0 19 1 5 16
6 trap 0 19 17 18
7 ring 0 2 17 19 20
8 chicken 0 3,4 15 21 24
9 pilum 0 15 27 28

10 seosteorce 0 0 20 29 30
11 priest 0 1,3 21 0 31
12 bust 0 2 22 32 33
13 lion 0 1,3 27 0 34
14 wreath 0 2 0 35 36
15 mouse 0 4 0 37 38

Let's go through these just to check you understand
everything. All the states are initially zero; for other
games this might not be the case, of course. The
brazier has properties LIGHT SOURCE and NOT AKE;
the first because that's logical - it's full of burning coals
- and the second because we don' t want it taken. Thus
it has no short message associated with it, because the
player will never hold it. It has a long message,
however. Out with another sheet of paper - which will
stretch to several - dedicated to writing out messages .
This is number 1, then:

1
There is a brazier of glowing coals here.

The helmet has no properties at all , but has both short
and long messages. The short message will vary
depending on the state of the helmet (state 0 means
not worn, state 1 means worn) . The long message
won't vary, because if the helmet's on the ground it
can' t be being worn, can it? So the short message
contains a switch:

2
(switches 0, 3) A helmet

151

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

3
(which you are wearing)

4
A military helmet lies nearby.

Just check to make sure you understand the switching.
If the helmet is in state zero, message 2 prints 'A
helmet'. If it's in state 1, the player will see

A helmet
(which you are wearing)

The cat has properties 3 and 4: KILLABLE and
EAT ABLE.

5
A contented cat

6
A tabby cat frisks here.

It needs only simple messages because we won't
actually let the player kill it (which would necessitate
more messages, as we'll see below when we describe
that poor chicken). Nonetheless, we don't want the
KILL program to retort 'You can't do that!' to 'KILL
CAT', which it will do if we fail to set KILLABLE on the
cat.

The torch is a little more complicated. Its state will
vary dramatically during the game. Initially it has no
properties, but it will acquire several. Its messages are
7 and 11, each of which is switched:

7
(switches 8, 9, 10) -- null --

8
An unlit torch

9
A burning torch

10
A blackened stump

11
(switches 12, 13, 14) -- null --

152

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

12
A tapered piece of wood as long as your arm lies here.

13
There is a burning torch here.

14
There is a black stump here.

These reflect the torch in state 0 (unlit), state 1
(burning merrily) and state 2 (useless and burned up).
The gladius is straightforward:

15
A gladius

16
A vicious-looking gladius lies here.

So is the mousetrap:

17
A trap

18
There is a contraption of sharp iron, wood and cheese
here.

Notice, please, the hints in messages 16 and 18 as to
the objects' uses. Being kind to the player is a useful
habit to acquire! The ring, being treasure, has property
2 set, and just two messages:

19
A ring

20
There is a silver ring, stolen by the slave, here!

The standard Adventure 'signal' for treasure - an
exclamation mark- is visible here, though if the player
doesn't realise that's what he's after, he shouldn't be
playing games like this. Next comes the chicken,
which, like the cat, has properties 3 and 4. Because it
can be alive (state 0) or dead (state 1) it needs message
switching:

21
(switches 22, 23) -- null --

153

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

22
A chicken

23
A dead chicken

24
(switches 25, 26) -- null --

25
A chicken struts around, clucking.

26
A dead chicken lies sadly here.

The pilum and sesterce are simple enough, needing
one pair of messages apiece:

27
A pilum

28
Someone has left a pilum here.

29
A sesterce

30
An old sesterce is on the floor.

Note the variant type of description in message 28; it
just makes a change! The priest, object 11, is NOTAKE
but also KILLABLE. This may sound odd, but the cat is
the same. We'll actually kill the player if he tries to kill
the priest! Since he's untakeable, the priest only gets a
long message:

31
A priest, his hands red with blood, looks at you
expectantly.

This message again contains a hint about sacrificing
things. Otherwise I claim it's a very long haul for the
player's mind to guess the correct action here - and
recall that he doesn't get any second chances, either.
The bust has property 2:

32
A bronze bust

154

PROGRAMMING A ADVANCED ADVENTURE GAME: 'ROMAN'

33
A bronze bust of Cicero is yours for the taking!

Again, we signal treasure to the player. The lion,
object 13, has NOTAKE and KILLABLE (in this case,
he really is!) and thus only one message. We may as
well use it to clue the player into the situation and do
away with a second message. Instead of 'There is a lion
here' plus 'As you enter, he bears down on you', we
have:

34
A roaring lion bears down on you, its jaws agape!

The final two objects begin life in the destroyed
room, room zero. They are the wreath, to be given to
the player on killing the lion, and the mouse, to be
delivered to the farmhouse. The wreath is treasure,
and the mouse is - ugh! - EATABLE:

35
A gold wreath

36
The gold wreath of victory is here!

37
A dead mouse

38
There is a dead mouse here.

That finishes the objects. Fifteen objects have
generated 38 messages! You may begin to understand
my earlier comments about computer space. Good
space handling distinguishes the good progrnms from
the mediocre.

7.3 The room list
Set the object list to one side for future reference, and
let's move on to the room list; there are 31 rooms,
you' ll remember, including zero (the destroyed room)
and one (the player's carried objects) .

The table is in the same form as the one we drew up
for objects . But the 'room of object' column is replaced
by an 'exits and exitprogs' column, which should be
fairly wide because maze rooms, for example, tend to
have many exits!

155

PROGRAMMING AN ADVANCED ADVENTURE GAME : 'ROMAN'

What room properties shall we define? Again,
property zero is already defined (LIT), as is property 1
(VISITED). Only two other useful ones come to mind:
NODROP, for use in the mazes, and JUMPSPEC, for
use on either side of the chasm, to indicate that JUMP
is treated specially there. So our final list of properties
reads:

0 LIT
1 VISITED
2 NODROP
3 JUMPSPEC
Jot this list down on top of the first page of the room list
for future consultation.

Because there are so many exits, I'll detail each room
on the list as we go along. We begin with room 1, the
player:

NUMBER NAME STATE PROPERTIES EXITS SHORT LONG
1 player 0 0 none 0 39

The 'player room' is lit in case we later fool around
with the room description routine ('It is pitch dark'
would be a stupid response to INV!) Since room 1 is
never VISITED, we'll always need the long
description:

39
You are carrying:

The first 'real' room is 2:

house 0 0 w 3 40 41

As with all rooms, its original property is zero (lit). It
has a single exit West, to room 3. Its messages are:

40
You're at home.

41
You're in your house, which is poor but comfortable:
To the west lies a street.

Room 3 is the street, a little more complicated. If in
doubt, check the map here:

3 street 0

156

E 2 42 43
N 31 P1 Csen•te
entrance>
s 4
W 5 P2 Coil
pool>

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

We have to keep track of how much the oil pool is
used, and I've chosen to track this by the state of the
street. This is set at 2 originally, SQ the player can make
two passes through the oil - he'll need them both, as
you'll see by looking at the map. Once through to get
the torch, and once back to light it. The exits to East
and South are ordinary. That to the North needs exit
program 1, the senate entrance - I'm using 'P1' as
shorthand for 'exit program 1' in the room list. That
program will attend to getting stabbed, or confronting
the senator. To the West, we need program 2, the oil
pool progrnm. We'll use it again in a minute! The
appropriate messages are:

42
You're in the street.

43 You are in a long east-west street. To the north lies
the Senate, and to the south is a small shop.

On to the shop, room 4:

4 shop 0 N 3 P3 (shop- 44 45
keeper)

The shop begins life in state 1- i.e. with a shopkeeper
in the room description. After leaving North, and
executing program 3, we'll lose the shopkeeper. Here
are the messages, which contain a switch in the long
description but, cunningly, not in the short:

44
You're in the shop.

45
(switches 0, 46) You are in an old shop, with its exit
northwards.

46
A shopkeeper is keeping his eye on you.

Thus the shopkeeper is only mentioned in state 1!
Now we begin the long round of Coliseum rooms.
Most of these have identical long and short
descriptions. This obviously saves space, but also
helps the player not make a mistake when he's
running furiously round to put his fire out.

E Co li s 0 0 W 5 P4 47 47
Cent ranee to
Col h. l
NW 6
SW 12
E P2 Coil pool>

157

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

Let's look at the exits. West actually takes the player to
the room he's already in, room 5. But the room
description will refer to interesting things to the West,
and the player needs some response. To the East lies
the oil pool program which will work from either
direction. The long and short messages are the same,
namely:

47
You're east of the Coliseum, a large circular building.
A road around it leads northwest and southwest.
There is a toll-booth west and a street east.

Room 6 is straightforward:
6 HE Col1s 0 o

with again a single message:

48

w 7 48 48
SE 5

You're northeast of the Coliseum. The road goes west
and southeast.

Room 7 will get used a fair amount, so we'll give that a
short message as well:

7 N colh o 0

49
You're north of the Coliseum.

50

w 8 49 50
E 6
NE 20 P5
(guardprog>

You're north of the Coliseum. The road goes east and
west, and an archway leads northeast through some
barracks.

Rooms 8 and 9 are normal:
8 NW Celis 0 0 E 7 51 51

SW 9

9 II Celis 0 o NE 8 52 52
SE 10
w 18

51
You're northwest of the Coliseum; the road goes east
and southwest.

52
You're west of the Coliseum; the road goes northeast

158

PROGRAMMJNG AN ADVANCED ADVENTURE GAME: 'ROMAN'

and southeast. A valley stretches west, and a closed
door bars the way east.

Room 10 will change its description after the misty
area has been solved, so its message structure is more
co~plicated. We also need an exit program for the SW
exit:
10 Sii Celis 0 o NW 9 53 53

E 11
SW 16 P6 (mist)

53
(switches 54, 55) You're Southwest of the Coliseum·
the road goes northwest and east. '

54
To the southwest is a dank, misty area .

55
To the southwest is some waste ground.

Rooms 11 to 13 are normal:

,, s. Col is 0 0 w 10 56 56
E 12
SE 13

12 SE.Col is 0 o NE 5 57 57
w 11

13 Lane o o NW 11 58 58
s , 4

56
You're south of the Coliseum; the road leads east and
west. A narrow lane goes southeast.

57
You're southeast of the Coliseum; the road leads
northeast and west.

58
You're in a lane winding from northwest to south.
14 Form 0 0 N 13 P7 <•ouse) 59 60

s 15 P7

and messages:

59
You're in the farm .

60
This is a crude farm with little furniture . Small holes
dot the base of many of the walls . Doors lead north
and south.

159

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

Rooms 15to17 are normal. Note, though, that room 16
is never described as dank and misty; the only time the
player gets in there is when it isn't so any more!

15

16

17

Farmyard 0

Waste gr. 0

Cottage 0

0

0

0

N 14 61 61

NE 10 62 63
s 17

N 16 64 64

We save on messages here as the player is unlikely to
return to places like the cottage - thus no short
description is needed:

61
You' re in an enclosed farmyard. The only exit is north.

62
You're on the waste ground.

63
You are on some damp waste ground. A cottage is
south, and the road is to the northeast.

64
You find yourself in a cottage, the hideout of the slave.
The only exit is north.

The valley and gully are unusual because they have
property 3 OUMPSPEC), and because the gully has no
exits!

18 Valley

19 Gully

with messages:

65

0

0

You're in the valley.

66

0,3 E 9 65 66

0,3 none 67 67

You are in a valley curving from the east and ending at
a chasm to the south. A gully is visible across the
chasm.

67
You're in a gully across the chasm, with no obvious
exits.

The anteroom has programs on -all exits . Since its

160

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

description will refer to stairs up to the northwest, we
arrange for exits up and northwest, both going to the
east end of the temple via the priestprog. We can
re-use the guardsprog on the other exit:

20 Anteroom 0 0 NII 21 PS 6S 69
Cpriest>
U 21 PS
SW 7 PS

Messages:

68
You're in the anteroom.

69
You find yourself in an anteroom to the temple, to
which steps lead up to the northwest. A passage leads
back southwest through the barracks.

Rooms 21 and 22 are normal. The west end of the
temple only gets a long message:
21 E. temple 0

Messages:

70

0 II 22 70 71
SE 20
D 20

You're at the east end of the temple.

71
You are at the eastern end of an east-west temple to
Zeus. Stairs exit down to the southeast.

72
You're at the west end of the temple.

22 w. temple 0 0 E 21 72 72

Now come rooms 23 to 26, the first Coliseum maze.
These have property 2 (DROPLOSE) and have to
satisfy certain requirements. First, each must have a
unique exit that the others don't have, so the player
can map the maze. Room 23 has an E exit, room 24 a N
exit, room 25 a S exit, and room 26 a W exit. Second,
room 26 must be hard to find: so only room 25 goes
there . Indeed, .there's a tendency to move back to 23.

Notice also that an exit from a room may lead back to

161

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

the room the player's already in: E from room 23 will
lead to 23, for example. And it's vital that we place an
exit program here! If not, the program will duly move
the player to the room he's already in, but fail to print
out any room description because to the program, the
room is still VISITED. Thus all the player will see is the
colon prompt, which breaks the cardinal rule that all
player actions must get some sort of response .

To prevent this, we add repeatprog to all such exits,
which merely unsets VISITED on the current room,
thus ensuring its description next time round. We
must also, by the way, ensure that long and short
descriptions are the same in a maze (or alternatively
set all rooms VISITED beforehand) otherwise a long
description will indicate to the player that he has
reached a new room. We don't want to be too helpful,
do we?

23 1st maze1 0 0,2 E 23 P9 73 73
(repeatprogl
NE 24
NW 24
SW 24

24 1 s t maze2 0 0,2 NW 23 73 73
N 25
SE 23
NE 24 P9
(repeatprog)

25 1st 01aze3 0 0,2 SW 26 73 73
s 23
SE 25 P9
NW 24

26 1st maze4 0 0,2 w 27 73 73
SW 23
SE 24
NE 25

The sole message reads:

73
You're in a maze of milling crowds, here for the
Games, and jostling you about.

The arena is normal, with but a single exit to the
second maze:

27 Arena 0 0 SW 28 74 74

and message (only one is needed, the player won't be
coming back):

74

162

PROGRAMMING A ADVANCED ADVENTURE GAME: 'ROMAN'

You are in the Coliseum arena, surrounded by excited
crowds. A postern gate leads southwest out of the
arena.

The next three rooms are the second maze. We can
use the same room description . Note the exit pattern,
with all exits but the correct one leading back to room
28. Room 28 itself needs the repeatprog set. Again,
property DROPLOSE is set. The final exit, to west of
the Coliseum, deserves a message to congratulate the
player, so we set gateprog on the exit.

28 2nd 111aze1 0

29 2nd maze2 0

30 2nd maze3 0

0,2 N 29 73 73
NE 28 P9
E 28 P9
SE 28 P9
S 28 P9
SW 28 P9
W 28 P9
NW 28 P9

0,2 E 30 73 73
N 28
NE 28
SE 28
s 28
SW 28
w 28
NW 28

0,2 W 9 P10 73 73
Cgateprog)
N 28
NE 28
E 28
SE 28
s 28
SW 28
NW 28

There are no new messages of course. The final room
is the Senate itself. Since we aren' t setting the senator
as an object, we' ll handle all the final action with room
states (you don' t have to do this - I'm merely
demonstrating the flexibility of the database system) .
The senate's original state is 2; every beat the player
spends in it, reduces it by one in postprog. When it
hits zero, the player dies by stabbing. Thus he gets his
turn of entry (down to state 1) and then a turn to defeat
the senator, as we desire. Thus we get:

31 Senate 2 0 none 75 75

and message:

75
You are in the Senate, a luxurious area , but unlit at this

163

PROGRAMMIN G AN ADVANCED ADVENTURE GAME: 'ROMAN'

late hour. Ganopus meets you by the bathing pool.
Instead of taking your three treasures, he
treacherously draws a knife and moves towards you to
silence you forever!

This has built in the senator - now named Ganopus
(which will now have to be part of the vocabulary).

That concludes the room list. For the sake of clarity,
here's the complete list:

NUMBER NAME STATE
1 player 0

2

3

4

6

7

8

9

10

11

12

164

house 0

street 2

shop

E Colis 0

NE Colis 0

N Col is 0

W Colis 0

SW Colis 0

S. Colis 0

SE.Celis 0

Lane 0

PROPERTIES EXITS SHORT LONG
0 none 0 39

0

0

0

0

0

0

0

0

0

0

0

0

w 3 40 41

E 2 42 43
N 31 P1 Csenate
entrance)
s 4
w 5 P2 Coil
pool)

N 3 P3 Cshop
k eepe rl

44

W 5 P4 4 7
(entrance to
Colis.>
flW 6
SW 12
E P2 (oil pool>

w 7 48
SE 5

48

w B 49 50
E 6
NE 20 PS
(guardprogl

E 7 51
SW 9

51

NE B 52 52
SE 10
w 1B

NW 9 53 53
E 11
SW 16 P6 (mistl

w 10 56 56
E 12
SE 13

NE 5 57 57
w 11

NW 11
s 14

5B SB

45

47

14

15

16

18

19

20

21

22

23

24

25

26

28

29

Farm 0

Farmyard 0

Waste gr. 0

Cottage 0

Valley 0

Gully 0

Anteroom 0

E. temple 0

w. temple 0

1st maze1 0

1st maze2 0

1st maze3 0

1st maze4 0

2nd maze1 0

2nd maze2 0

0

0

0

0

0,3

0,3

0

0

0

0,2

0,2

0,2

0,2

0,2

0,2

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

N 13 P7 (mouse> 59
S 15 P7

N 14 61 61

NE 10 62 63
s 17

N 16 64 64

E 9 65 66

none 67 67

llW 21 PB 68
(priest)
U 21 PB
SW 7 PS

"' 2 2 70 71
SE 20
D 20

E 21 72 72

E 23 P9 73
Crepeatprogl
NE 24
NW 24
SW 24

NW 23 73 73
N 25
SE 23
NE 24 P9
Crepeatprogl

SW 26 73
s 23
SE 25 P9
NW 24

w 27 73
SW 23
SE 24
NE 25

N 29 73
NE 28 P9
E 28 P9
SE 28 P9
S 28 P9
SW 28 P9
W 28 P9
NW 28 P9

E 30 73
N 28
NE 28
SE 28
s 28
SW 28
w 28
NW 28

73

73

7~

73

69

73

60

165

PROGRAMMI GAN ADVA CED ADVENTURE GAME: 'ROMAN'

30 2nd maze3 0

31 Senate 2

7.4 The exit programs

0,2 W 9 P10 73 73
(gateprog)
N 28
NE 28
E 28
SE 28
s 28
SW 28
NW 28

0 none 75 75

Keep the room list by you for easy reference too. The
next part of the programming actually involves
writing some BASIC! We do the exit programs next,
largely because they should still be fresh in your mind
after writing the room list. Don't put these on the
machine yet. Program on paper, with plenty of verbal
comments by the lines of program. In a week's time
you'll need to understand what you meant by line
6050. A pencilled comment alongside is just as
efficient as a REM in BASIC, but takes up no space!

Each exitprog will be discussed in turn. They may
use three of the work variables, I%, J%, and K%; L%
will be storing something in the main moving
command and should be left alone. The first is the
senate entrance, Pl:

6000IFFNRC7l<>10RF~RC12l<>10RFNR(14l<>1PROCM(76l:FX=9:RETURN ELSE
PROCMC77):R~TURN

The idea is not to let the player enter unless he has all
three treasures; so we check that objects 7, 12, and 14
are all held. If not, we assassinate the player with
message 76, set the fatal flag (F% = 9) and return. If he
has all the three treasures, we let him in, and say via
message 77 that the assassins have all gone home:

76
As you enter, a group of senators leap on you,
mistaking you for Caesar. They plunge their daggers
into you as one man, before noticing their sad error.

77
The conspirators have given up waiting for Caesar and
gone home.

The next program, P2, is the oil pool:

60201X=FNRS(3):1FIX=O~ETURN
6030PROCM(77+1Xl:IFFNRC4l-1PROCOSPC4,5,1l
6040PROCRSS(3,IX-1l:RETURN

166

PROGRAMMING A ADVANCED ADVENTURE GAME: 'ROMAN'

We first check (6020) to see if the pool has run out- i.e.
examine the state of room 3. If so, ignore the exitprog.
Otherwise (6030) send message 78 or 79, and if object
4, the torch, is being carried, make it oily (property 5).
Finally, decrease the state of room 3. The messages
are:

78
(switch 80) You stride through a half-full patch of oil.

79
(switch 80) You stride through a patch of oil .

80
You and your belongings are soaked.

which both use message 80, to save storage . This trick
is very useful, especially as the size of your
Adventures gets bigger.

The shopkeeper program, P3, is trivial:
6060PROCRSS(R,Ol:RETURN
as it always sets the state of the shop to zero. To be
sure, we only ever need do it once, but it doesn't hurt
to make it automatic.

The entrance to the arena, P4, merely involves an
appropriate message depending on time of day:
6090PROCMC82+FNRPCR,0)):RETURN
FNRP(R,O) will be -1 (TRUE) if it's daylight, and 0
(FALSE) if it's after dark. So we print message 81 in the
light, and 82 in the dark:

81
The booth is closed, as the games don't start till dark.

82
The man on the booth demands payment and won't
let you in otherwise.

which also delivers a fairly hefty hint about the verb
'PAY'!

The guards program, PS, takes various forms
depending on what the player has done with the
helmet:

61201FFNRC2l<>1PROCM(83l:GX=1:RETURN
61301FFNS (2)=0PROCl'IC84) :GX=1 :RETURN
6140PROCMC86l:RETURN

167

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMA N'

If object 2 (the helmet) isn't held, print message 83 and
abort the exit. This involves setting another flag, G%,
to 1, which simply marks the fact that the player's
destination as scheduled in the static database is not
his actual destination. In the main moving program -
of which, more later - we shall set G% to zero, try to
move, and see if G% is 1. If so, we'll forget the exit. By
line 6130, the player has the helmet. If he isn't wearing
it, out with message 84 and abort the exit. Otherwise
(6140), tell him how clever he is, and let him pass. The
messages are, using 85 for both messages 83 and 84:

83
(switch 85) The guards see you are not a solclier.

84
(switch 85) The guards see your helmet, but realise
you are not a soldier.

85
They bar your way.

86
The guards assume you are a solclier, and Jet you pass.

The next progTam, P6, is the exit to the misty area.
We'll have to decide now how we're going to handle
the burning player. I've chosen to set the state of the
player to a nonzero value while he's burning; in fact it
will count downwards in postprog until the player
burns up. We don't yet have to work out exactly how
many game .turns are involved in that, simply note
that that's what we are going to do . Thus we have:
6170IFFNRS(R)RETURN
6180IFFNRSC1l=OFX=9:PROC"(87l:RETURN
6190PROC"C88l:PROCRSSC1,0l:PROCRSSCR,1)
6200IFFNR(4)=1ANDFNS(4l=1PROCOSS(4,2l:PROCOSPC4,0,0l:PROC"(89l
6210RETURN

Line 6170 asks if the exit has been used once, thus
setting the state of the room we're in to 1. If so, ignore
the program. Otherwise (6180) if the player's state is
zero, he isn't on fire. Hence kill him, and say how we
did it (message 87). By 6190 he must have been on fire .
We say that the fire has been put out (message 88);
turn off the fire; reset the state of the room he's leaving
to (a) alter its description and (b) remove the program
in future . We now need to check for the torch. If we got
to 6200, the player was on fire, and if he has the torch,
we put it out (state to 2), deset it as a light source (deset
property 0), and tell the player. You may note that the

168

PROGRAMMlNG AN ADVANCED ADVENTURE GAME: 'ROMAN'

additional check if FNS(4) = 1 isn't needed (why?).
The relevant messages are (note the 'touch' in message
88):

87
In the mist, an escaped slave grabs you and chokes
you to death.

88
With a hiss, the mist condenses and extinguishes you.
You catch a glimpse of a slave running away.

89
The mist also puts out your torch, worse luck.

Next comes the mouseprog, P7:
6230IFR<>FNR(6)0RFNSC15lRETURN
6240PROCRC15,Rl:PROCOSSC15,1):RETURN

If the mousetrap - object 6 - isn't in the room, or the
state of the mouse - object 15 - is nonzero, don' t do
anything. Otherwise (6240) move the mouse to room
R, and set its state to 1, thus preventing the program
happening again. This program is an example of an
'invisible' one, like the shopkeeper program.

The priest program, P9, merely depends on
whether the player has the helmet (he doesn't have to
be wearing it):
6260IFFNRC2l=1FX=9:PROC"C90):RETURN ELSERETURN

Possession of the helmet is therefore fatal:

90
(switch 91) A priest appears. "No soldiers in the
temple!" he shouts.

91
You are rapidly arrested and executed.

The reason for the switch is that we can use message 91
again later. I didn't think of this as I was programming
the first time, but it is good practice to use messages
several times, if you can. That's why we write in
pencil!

Program P9, repeatprog, merely unsets VISITED on
room R (this works for any of the rooms with P9 set on
exits, by the way).
6280PROCRSP(R,1,0 l :RETURN

169

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

Finally, program P10 is the gateprog, used when the
player finally gets out of maze 2 and staggers out to the
west of the Coliseum:

6300PROCMC92l:RETURN

which uses:

92
To your relief, you fall out of a door which is slammed
behind you.

7.5 The pre- and post-programs
There isn' t much to do in the preprogram at line 400.
We have to check whether the player's room is lit, in
case he moves in the dark . We also must note whether
he's in the same room as the lion or priest, so that we
can kill him at the end of the turn if he hasn' t done the
right thing:

400YX=FNL
410FORIX=11T013STEP2:1FR=FNRCIX)PROCOSS(IX,1)
420NEXT

So we set Y% to TRUE/FALSE depending on the
lighting, and if either object 11 or 13 is in the player's
room, we set its. state to 1. In the postprog at line 600
we can see if that's still the case.

Predictably, the postprog is a little more
complicated:

600PROCP. CO,R)
610IFYX=OANONOTFNL ANDR<>QXPROCMC93l:PROCDIE
620IX=?NX+1+C?NX=25S>:?NX=IX:IFIX=35PROCM(94)
630IFIX=SOPROCMC95>:FORIX=2T022:PROCRSPCIX,0,0):NEXT:PROCRSPC31,0,0)
640IX=FNRSC1>:IFIX=OELSEPROCRSSC1,IX-1l:PROCM(96):

IFIY.=1PROCMC97):PROCDIE
650IFFNSC13lPROCMC98):PROCDIE
660IFFNSC11)PROCMC99):PROCDIE
670IFR<>31ELSEIX=FNRS(R)-1:PROCRSSCR,IX):IFIX=OPROCM(100):PROCD1E
680UNTIL FALSE

We first move object 0 to room R (that's to allow
saving, etc., also to interact with the between-turns
part of the main program). Then, at 610, we look to see
if the player's moved in the dark: if his room at the start
of the turn was dark and his current room was dark
and he has moved, kill the player and say so.

Next, at 620, we add one to the time counter stored in
?N%. However, should the player still be going at turn
255, we don't want the counter to get back to zero (as
byte storage will) because later on the program will

170

PROGRAMMING A ADVANCED ADVE TURE GAME: 'ROMAN'

again say it's getting dark. So we use a logical addition:
(?N% ==255) is -1 if N% ==255, else it's zero. Then, if the
player's has 35 turns, we tell him the sun is setting.
Why 35? Well, I set it at 180 to start with, and tried out
the daylight puzzles. After I felt the player had had
long enough, I halted the game and printed ?N%!

Line 630 continues the darkening process; by turn 50
we say the sun has set, and make all the rooms dark
except those in the Coliseum - I thought the games
might should remain lit!

This concludes the main housekeeping. Now for
specific points related to puzzles. Line 640 checks the
progress of the burning player. If he isn't on fire ,
ignore this line . Otherwise, drop his state by one, say
he's on fire, and if the state has hit 1, kill the player.
Notice the lack of an THEN clause, so that we can have
two lFs in the line without chaos.

Lines 650 and 660 check on the lion and priest
respectively. If their states are still 1, the player didn't
do the right thing. We then kill him accordingly.

Finally , line 670 checks for the endgame puzzle. We
drop the state of room 31, the Senate, by 1. If this hits
zero, Ganopus gets his man. At 680, finishe the main
program loop.

Here are the messages for the postprogram - note
the re-use of 91:

93
Thieves kill you while you flounder around in the
dark, unfortunately.

94
The sun is setting.

95
The sun has set.

96
You're on fire!

97
You burned to a crisp!

98

171

PROGRAMMING AN ADVANCED ADVENTURE GAME 'ROMAN'

The lion grabs you and eats you.

99
(switch 91) The priest shouts "Imposter!"

100
Ganopus' knife slits your throat.

7.6 The vocabulary lists
After that lapse into BASIC, we return to non
programming. Before we can write the main
command handlers (which deal directly with what the
player says), we need to have the vocabulary sorted
out. The system is almost identical to that used in
'MINI', but with a few improvements.

First, the verb type can be one of 4 values:

0 no second word allowed
1 second word must be a thing
2 second word must be a thing or a special
3 any second word may exist, or none

We've come across this already in the 'shell' progTam.

Next, all directions will be command 1. We shall
differentiate between them by their types (and ignore
the list above!). In fact, we'll use only types above 3,
and the moving program can use the value of the type
to find the exit in the database. So North becomes
command 1, type 4; NE is command 1, type 6; E is
command 1, type 8; and so on, round to D, which is
command 1, type 22. By lopping 2 off these types, we
get the position of the exit relative to the room label,
and will use this later.

The other main improvement is the addition of two
extra commands which the player doesn't know
about. These are 'magic take' and 'magic move'
commands. Their use is purely for debugging, so
remove them for the final version. (We do this by
putting them at the end of the alphabet; to remove
them just reduce NY by two so that the program never
looks for them!)

We'll call these commands 'ZZT' and 'ZZM'
respectively . 'ZZT object' will take that object even if
it's not in the room, unless it can't be taken for some
reason! 'ZZM object' will move the player to that
object unless it's destroyed.

172

catch
2,2

d
1,22

down
1,22

drop
3,2

e
1,8

east
1,8

eat
4,1

get
2,2

give
5,2

go
6,3

VERBS

inv
7,0

j Ul'IP

8,3

kill
9,2

l; qht
10,1

look
11,0

move
6,3

n
1,4

ne
1,6

north
1,4

nw
1, 18

PROGRAMMING AN ADVANCED ADVENTURE GAME: "ROMA '

These two commands allow easy access to bits of the
program for testing purposes. Do you want to check
out the lion problem? 'ZZTPILUM', followed by 'ZZM
LION', will do the trick - you're there in two beats.

All we have to do is make a list, which may as well be
in lower case. The first list is for verbs . The numbering
is: directions get a 1, all other commands are
numbered alphabetically on the order of occurrence of
the first synonym. So 'TAKE' has a high position,
because 'GET' means the same. The list lives on paper
for now, not in the machine.

pay south west
5,2 1, 12 1,16

q stop ZZl'I
12,0 12,0 19,1

quit SW zzt
12,0 1, 1 4 20,1

run take
6,3 2,2

s throw
1, 12 16,1

sacrifice u
9,2 1,20

save up
13,0 1,20

say w
14,3 1, 16

score wait
15,0 17,1

se wear
1,10 18,1

Notice the synonyms. A few useless words like SAY
and RUN are also included; their cost is very little,
after all. The total is 43 verbs - 41 without the two
magic verbs.

Next come the things. Although there are 15 objects,
there are 27 things owing to synonyms:

braz

THINGS

javelin
9

stu01p
4

173

PROGRAMMING A ADVANCED ADVENTURE GAME: 'ROMAN'

bronze lion sword
12 13 5

bust money tabby
1 2 10 3

cat mouse torch
3 15 4

chicken pilum trap
8 9 6

coin priest wood
10 11 4

cont rap r;ng wreath
6 7 14

gladius sesterce
5 10

gold silver
14 7

helmet spear
2 9

SPECIALS

booth ,
coliseum
1

door ,
ganopus
1

guard ,
hole ,
01an
2

oil ,
pool ,

Finally, we have the special words, 12 in all: shopkeeper

We separate 'man' and 'toll' because we want to allow
'PAY TOLL' or 'PAY MAN' outside the Coliseum.

Having conduded the vocabulary, we can write the
main command programs.

7.7 The command programs
We may as well program these in numerical order,
although ther~'s no reason why any order is
preferable. First comes movement:

1) Movement

,

slave
1

toll
2

2000LX=FNRL(Rl+DX-2:IF?LX=OPROCM(101l:RETURN ELSEJX=LX71:GX=O
2010IFJX>OONJXGOSUB6000,6020,6060,6090,6120,6170,6230,6260,6280,6300
2020IFFX=90RGX=1RETURN ELSER=?LX:RETURN

Line 2000 computes which byte in memory holds the
exit corresponding to 'type' 0%. If there is no exit, we
say so and quit. If there is an exit, we look to see
whether there is an exit program involved 0%), and
set the abort flag G% to zero. Line 2010 then sends the
program on a further GOSUB- we're already in one,
from lines 500 to 599- to the appropriate exit program.
We can easily fill in the ten GOSUB addresses because
we've already written those in Section 4. On return, at
2020, if the exit was fatal or aborted, we return; else

174

2050IFSX>OTHEN3000

PROGRAMMI GAN ADVA NCED ADVENTURE GAME: 'ROMAN'

reset R to the destination. (We could move the player
m the fa ta! case, but he'll never have the chance to
discover where he went anyway!) We use one of our
work variables, L%, here; so be sure not to use it in any
of the exit programs, or chaos will ensue. Obviously
one could modify this in 2020 if the need arose .
Otherwise, we can use!%,]%, K% , and L% to do all
the minor computations in the command sequences.
A suitable message is:

101
You can't go in that direction!

2) Get, Take

2060IFR <>FNR(OXlPROCMC103l:RETURN
2070IFFNP COY.,1lPROCMC104l:RETURN
2080IFFNR (OY.l=1PROCM(105):RETURN
2090IFOX =ZANO FNRSCRlANDR=4PROCMC106l:RETURN
2100IFOX< >3ELSEIFFNRC15l=1PROCMC107l:PROCRC15,0l:PROCR(3,1l:RETURN

ELSEPROCM C108l :RETURN
2110IFOr.=8ANDFNSC8l~OPROCMC109l:RETURN
2120PROCRC0%,1 l
2130PRINT"OK ":RETURN

We start by not allowing a special word to be taken.
Message 102:

102
You can't do that!

Obviously, this will turn up fairly often, so put its
printing at line 3000, and.frequently GOTO that line
(whose RETURN then acts as a RETURN from the
GOSUB, conveniently). Hence we add:
3000PROCl'I(102): RETURN

At line 2060, we're talking about an object. If it isn't in
the player's room, we say so:

103
That's not here!

and quit. Line 2070 checks if the object is untakeable
(property NOT AKE, number 1). If so, we say so and
quit:

104
You can't take that!

Continuing on the negative aspects again, just as in
'MINI', perhaps the player is already holding the

175

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

object (line 2080)?

105
You're already holding that!

By line 2090, all the necessary qualifications are
present to actually take the object. Now, what could
stop the player? Nothing fatal (always check fatal
problems first) . So, let's do each special case.
Line 2090 checks whether we're getting the helmet in
the shop with the shopkeeper present (can you see
why?). If so, we don' t let it happen:

106
The shopkeeper won't let you!

Or (line 2100) we can check for the cat (object 3). If we
have the mouse, print a message, destroy the mouse,
and move the cat to the player; otherwise say he can't
pick up the cat:

107
With a loud miaow, the cat jumps into your arms and
scoffs the mouse.

108
The cat refuses to be picked up.

Or again (line 2110) it might be the chicken the player's
trying to pick up. If it's dead (state 1), no problem; but
if state 0, he can't get it:

109
The chicken flutters away from you.

That concludes all the negative thinking; now for
positive action. Line 2120 moves the object to the
player and (2130) prints "OK". There must always be a
response, remember. The 'PRINT "OK":RETURN'
line is so useful, we can send other commands there
too. Of course, "OK" could have been a message; it
just takes up less room as a direct BASIC statement.

3) Drop

2170IFSX>OTHEN3000
2180IFF~RIOXl< > 1PROCMC110l:RETURN

21QOIFFNRPIR,2)PROCMl111):PROCRC07.,0l:RETURN
2200IF0h=2PROCOSSC2,0l
2210IF0~~3A~DR=FNR(8)PROCMC112l:PROCR<8,1l:PROCRC3,R):RETURN
2220PROCRIO%,Rl:GOT02130

176

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

Explanations: Line 2170 checks for specials again, and
won't allow them. Line 2180 objects if the player
doesn't have the object he's dropping:

110
You're not holding that!

The object is now droppable. What could happen to
avoid that simple action succeeding? In the mazes,
(property DROPLOSE, number 2), the object will
disappear (line 2190):

111
The object you dropped is soon lost among the feet of
the crowd.

If it's the helmet, he certainly isn't wearing it any
more, so reset its state to zero (line 2200). Now nothing
else unpleasant can happen; what of pleasant things?
Line 2210 checks for dropping the cat- object 3- in the
same room as the chicken - object 8. After telling the
player, we move the cat to room Rand the chicken to
the player:

112
On seeing the cat coming, the chicken gives a squawk
and flutters up. You grab it and hold onto it.

The only other possibility is that the player actually
drops the object without anything happening; hence
2220!

4) Eat
2250IFNOTFNPC0~,4)THEN3000
2260IFFNR(0Xl<>1PROCMC110l:RETURN
2270PROCRCOX,Ol :PROCMC113l :RETURN

This is an example of a 'useless' verb. In no sense does
eating help the player-but we provide it for 'colour'. If
the object isn't ea table, say so (2250). If the player isn't
holding it, say so (2260). Otherwise, let him eat it
(destroying the object) and say so:

113
It tastes awful, but you force it down your throat.

5) Give, Pay

2300IFSX=20X=10
2310IFFNR(0%)<>1PROCMC110l:RETURN

177

PROGRAMMlNG AN ADVANCED ADVENTURE GAME: 'ROMAN'

2320IFOX<>10THEN3000
2330IFR<>50RFNRP(R,0lPROCMC114l:RETURN
2340R=23:PROCM(115l :PROCRC10,0l :RETURN

Think negatively as always . The player may have
said 'PAY TOLL' or 'PAY MAN' - hence the special
words - in which case we convert what he said into
'PAY SESTER' by line 2300. He can't have said 'GIVE
MAN' because GIVE has a different code . Line 2310
checks i£ the player is holding the object. Line 2320
then checks if the object is 10, the sesterce, else refuses
to do anything. By 2330, it was the sesterce. If the room
isn't east of the Coliseum or it isn't dark, say so; finally,
at 2340, everything is fine, so move the player to room
23, tell him, and destroy the sesterce (we don't really
want him going through again!)

114
Nobody seems interested in that!

115
You pay your sesterce and enter the crowded
Coliseum.

6) Go, Move, Run

2360FX=1:IFYS=""PRINTXS;" where?":INPUTYS
2370RETURN

This is handled just as in 'MINI', setting the 'second
word as first' flag F% = 1.

7) Inv

2380PROCDR<1) :RETURN

This too is the same; just describe the 'player room'
and return.

8) Jump
2400IFNOTFNRPCR,3lPROCM(116l:RETURN
24101FFNRC5l=10RFNR(9)=1FX=9:ZX=OELSEZX=1:R=37-R
2420PROCMC117): RETURN

If the room hasn't got JUMPSPEC set, give a silly
message and quit. If (2410) the player is carrying the
pilum or javelin, kill him; otherwise move him to the
room on the other side of the chasm (think about R =
37 - R- it works!) . Print message 117, which switches
on Z%, set in line 2410:

116
Whoopeee!

178

PROGRAMMING AN ADVANCED ADVENTURE GAM E: 'ROMAN'

117
(switches 118, 119) You leap across the chasm, and
scrabble for a handhold.

118
You're carrying something awkward , which causes
you to miss your hold and fall to your death.

119
You find a hold and haul yourself to safe ground .

9) Kill, Sacrifice
2450IFSX>OORNOTFNPCOX,3lTHEN3000
24601FR<>F~RC07.)ANDFNRCOXl<>1PROCMC103l:RETURN

2470IFOX=11THEN2510ELSEIF07.=13THEN257.0ELSEIFOX=8ELSEPROCM<120l:RETURN
2480IFFNRl8l<>1PROC~(110l:RETURN ELSEIFFNRl5l<>1PROCMC121l:RETURN
2490PROCOSSCll,1) :PROCOSPC8,3,0l :PROCMC122l
2500IFR<>FNR<11lRETURN ELSEPROCOSSC11,0l:PROCR(11,0l:PROCR(5,0l:

PROCMC123l :RETURN
2510PROCMC124l:FX~9:RETUR~
2520IFFNRC9l<>1PROCMC121l:RETUR~ ELSEOX=9:GOT02800

This is among the more compllcated subprograms, a~
there are a variety of killable things around! At 2450 we
are negative; if it's a special, like the shopkeeper, or
hasn't got KILLABLE set, we don't let the player do it.
In 2460 we examine whether the object is either in the
player's possession or in his room; if not, object again.
The reason for this double check is that it's possible to
try killing objects the player isn't carrying, for example
the lion. Next, at 2470, we split to various Unes
depending on what the object being killed is: if the
priest (11) to 2510, if the lion (13) to 2520, if the chicken,
to 2480. This only leaves the cat, and we won't let the
player kill that (message 120).

Line 2480 tries to kiU the chicken. Thinking
negatively, the player must be holding it - otherwise
say so, and quit . Unless he's also holding the gladius,
he's wasting his time; we tell him in such a way that
what we say will serve for other combinations here
(message 121) . By 2490 he has satisfied the chicken
killing requirements, so we kill it by changing its state,
making it not KILLABLE any more, and delivering
message 122. Should the player kill it anywhere other
than room 11, under the eyes of the priest, that's the
end of that. But in that case (line 2500), we set the
priest's state back to zero ('turning him off'); move him
to 'destroy' along with the gladius; and print message
123. Some thought will convince you we don't need to
check if the priest is in room 11 when we do this
(why?) .

179

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

Line 2510 kills the player for trying to kill the priest.
Message 124 uses the ubiquitous switch to 91 again.
Line 2520 tries killing the lion. Should the player have
no pilum - object 9 - we mutter about no suitable
weopon and quit; postprog will take care of the player!
Otherwise we reset the object to be 'pilum', and go off
to 2800, which is (will be?) the THROW routine. In
other words, we redefine the player's action from
KlLL LION to THROW PILUM, and let THROW
worry about what happens. I dislike 'hanging
GOTOs', but this one saves rewriting the same code
twice.

120
You can't bring yourself to kill the cat, alas .

121
You have no suitable weapon.

122
You slice its head off with the gladius.

123
The priest nods approvingly, removes your gladius
with a prayer, and leaves.

124
(switch 91) You attack the priest, who calls loudly for
help.

10) Light

2550IFOX<>4THEN3000ELSEIFFNRC4 l <>1PROtr<110l:RETURN
2560ZX=FNSC4l:IFZXPROCM<124+ZXl:RETURN
2570IFR~ > 4PROCMC127l:RETURN

2580zx ~ -FNP C 4,5):PROC~C128l:IFZX=OPROCOSSC4,2l:RETURN
2590PROCOS5(4,1l:PROCOSPC4,0,1l:PROCRSSC1,9l:RETURN

Only one object (4) can be lit (2550); if the player's not
holding it, say so. All good negative thinking . At line
2560 we're still negative; is there some reason why the
torch cannot be lit? Yes there is. First, it might be lit
already, or have been lit before and now be out. So we
say so, using Z% to choose the message. We might not
be in the right room (2570). By 2580 all the conditions
for success have been checked. We jot down the
oiliness of the torch in Z%, tell the player it is lit
(message 128) and what happens to it. In the case of a
non-oily torch, we reset it to the stump state and exit.
Otherwise (2590) we set it to its burning state; set it as a
light source; and set the player on fire (state of room 1

180

PROGRAMMING AN ADVANCED ADVENTURE GAME: 'ROMAN'

equals.9). This will give the player eight turns to get to
the misty area and drop his torch first, which is
eno~gh and to spare. The relevant messages are
(notice how we use 130 to notify the player what
happened to him as well) :

125
It's already lit!

126
It's too damp to light.

127
There's nothing to light it with here.

128
(switches 129, 130) You light the wood at the brazier.

129
It flares up, but rapidly burns down to a black stump.

130
The oily wood catches fire and burns smoothly,
making a fine torch. Alas, your clothes are also soaked
in oil and you catch fire too!

11) Look

2630PROCRSPCR,1,0l:RETURN

Just set room R to not VISITED, thus guaranteeing a
description between-turns.

12) Q, Quit, Stop

2650FZ=2:RETURN

The F% flag will make the program quit when we
leave the GOSUB.

GOSUB .

13) Save

2680PROCINOUTC2)
2":90RETUR N

Having gone to such trouble with PROCINOUT, we
can now use it. The argument '2' indicates that a save
is occurring. The player will be prompted with a
message which we'll write when putting the whole
program together, next section.

181

PROGRAMMJNG AN ADVANCED ADVE TURE GAME: 'ROMAN'

14) Say

2710PRINT " OK, '" ;YS; '"! ": RETURN

Need I say more? It's a useless command .

15) Score

2730JX=O
2740FORIX=7T014:IFFNP(I%,2)ANDFNR(1%l=1JXzJX+10
2750NEXT:JX=JX-1Q•(FNRP(19,1l+FNRP(22,1 l +FNRP(16,1l+FNRP(27,1))
2760PRINT"You have scored '';STRS(JXl; " out of 80":RETURN

This is quite subtle, as we'll see shortly. At 2730 we set
the score counter, J%, to zero. We then scan the
objects (2740) to see which of them is treasure
(property 2) and held by the player; each time, we give
the player 10 points. We need only scan objects 7 to 14
because none of the others are treasure; alternatively,
we could drop TREASURE as a property and just tot
up the three values concerned. If you had a game with
20 treasures, the method here is rather preferable!
Then, at2750, we give the player 10 points for each of 4
difficult rooms to reach: 19, 22, 16, and 27 (because
FNRP's value will be-1 if that room is visited). We then
tell the player his score. A message would have
difficulty in substituting J%'s value in unless we
rewrote the system, so we just do a print here.

If you're awake, you'll have noticed the maximum
score is 70, not 80. We shall dole out the last 10 points
for solving the endgame, and re-use line 2760 into the
bargain.

16) Throw

2780IFFNR(0Xl<>1PROCM<110l:RETURN
2790IFFNRP(R,3lPROCM(131l:PROCR(OX,37-R>:RETURN
2800IFR=27ANOFNS(13)ANOOX=9PROCM<132l:PROCOSS(13,0l:PROCR(13,0l:

PROCR<14,Rl:PROCR<9,0>:RETURN
2810IFR=31ANOOX=4PROCM(134l:JX=80:GOSUB2760:ENO
2820GOT02190

The nice thing about 'THROW' is its similarity to
'DROP', which means that we can use the DROP
program again. The only special things about THROW
which don't apply to DROP are THROW uttered from
a position either side of the chasm, THROW PILUM
(to handle the Lion), and THROW TORCH (to win the
endgame). So we must first check if it is carried (2780).
If the room has property JUMPSPEC we tell the player,
and move the object to room 37 - R. At 2800, we handle
pilum-throwing. We check the room, the state of the
lion (13), and the object thrown (9) - again, one of

182

PROGRAMMING AN ADVA CED ADVE TURE GAME: 'ROMAN'

these is unnecessary if you think about it . Assuming
all is well , we tell the player what happens, reset the
lion's state, move it and the pilum to destroy, move
the wreath to the arena, and quit. (You should check
what happens if one of these conditions isn' t satisfied
- for example, by throwing the pilum in the shop).

Line 2810 does the torch-throwing in room 31, the
Senate. If all is well, we tell the player how clever he is,
set J% to 80, and borrow the last line of the score
program to print that he's scored 80 out of 80, and end
the game.

Finally, if none of these special cases apply,
THROW = DROP, and we go off to the DROP
program (with another hanging GOTO). Some of the
checks will be done again, but that doesn' t matter. The
relevant messages are:

131
You fling it across the chasm to the other side.

132
You hurl the pilum, killing the lion dead. It is dragged
away, to waves of applause. A gold wreath is thrown
to your feet by Caesar himself, who calls to you "Leave
by the NEW exit!"

133
(this got out of order in programming, and is used in
WEAR below)

134
You hurl the torch into the pool. It sputters and dies,
plunging the room into darkness. You grab Ganopus'
knife in the dark and use it on him before making your
escape. You still have your treasures! You've won!

17) Wait

All we need is a simple 'OK'; we already have one at
2130, followed by a RETURN. So 2130 is the line we
need; end of problem.

18) Wear

28401FOX<>2THEN3000ELSEIFFNS(2JPROCM<133l:RETURN
2850IFFNR(2)<>1PROCMC110l:RETURN
2860PROCOSS (2,1) :GOT02130

183

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

If the object isn't the helmet - object 2 - wearing is
impossible. If its state is not zero, it's worn already. If
(2850) it isn't held, say so. Otherwise (2860) set the
state to 1, print OK, and return.

133
You're already wearing it!

19) Zzm - magic move

2870IFFNRCO%lR=FNRCOXl:RETURN ELSE3000

As long as 0%'s room is not zero, move the player
there, else tell him it's impossible.

20) Zzt - magic take

We scan the 'GET command, and discover that 2060 is
checking if the object is in the player's room. But 2070
is checking if the object is untakeable - even with
magic takes, we don't want to take an untakeable
object! So ZZT can join in at 2070. Should we have
programmed GET in the wrong order, we can easily
re-order the BASIC to suit the magic take
req ufremen ts.

7.8 Assembling the program
Now we come to the part we've all been waiting for -
assembling the program.

The first thing to do is to decide what type of
machine you're writing for. Are we deaUng with a
cassette-based BBC Micro or Electron, or a disc-based
BBC Micro? For each, PAGE, the bottom of the
program, is set differently. On a cassette-based
system, it is usually &EOO in hexadecimal. On a
disc-based system, it's normally &1900, though we
can cut that down. With Econet or Teletext, PAGE will
be higher still. Where your program starts will define
where your database starts.

For the purposes of this book, I've tried to be all
things to all men! Rather than start at &EOO, which will
suit most readers but annoy those with discs who'll
have to download the program to make it work, I've
tried to choose a va lue of PAGE which will suit
everybody. The advantage of this is that anybody can
run the game - rather useful if you have commercial
instincts! However, there is no complete solution to
this problem. The ideal would be a program which

184

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

worked at any value of PAGE, like most BASIC
programs; but whereas this would work with
'ROMAN', which is small enough, it certainly won't
work with a bigger, commercial size game.

. The relevant value of PAGE, which doesn't appear
m the manuals, is &1100. This will allow *LOAD and
*SA VE, for example. The disc operating system (on the
BBC; at the time of writing no decision has been made
about Electron disc fiUng systems) only uses &1100 to
&1900 when writing individual bytes with BPUT.

OK, so for now we'll use &1100, but for the moment
ignore the fact and simply type in the program as we
have it.

On the way, you'll find various gaps and question
marks, which now need to be filled in. Some we can do
now, some in a little while. The order you fill these in
doesn't really matter. For example, we can do much of
line 10 now:

10NC=43:NT=27:NS=12:NX=????:Z=&C00

because we know how much vocabulary we have . We
need to create an 'I don't understand that!' message
for 330 and 350:

3300%=K%:IFDX=0ANOYS<>""PROCMC135):UNTIL FALSE
350PROCWCYS,21:0%=JX:IFJX>OELSEPROCWCYS,3J:SX=J%:

IFJX=OANDDX<>3PROCMC135):UNTIL FALSE

135
I don't understand that!

and can use message 102 ('You can't do that'') in line
360:

360IF0%=1ANOSX>OPROCMC102J:UNTIL FALSE

Also, we can complete lines 1000 (death) and 1005
(new game), using two suitable messages and the
scoring program to tell the player how well he did:

1000DEFPROCDIE:PROCMC136):GOSUR2730:~ROCNEWGAME
1005DEFPROCNEWGAME:PROCMC137>:INPUTXS:If(ASCCXSlOR32l<>110RUN ELSEEND

136
The gods welcome you to Hades (i .e. you're dead!)

137
Would you like another game?

The first line of PROCINOUT also needs a message.

185

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

We'll use one which will do for loading and saving,
message 138:

5960DEFPROCINOUT(I7.):PROCMC138):1NPUTYS

138
Type the filename

and we also need a 'story so far' for line 30:

30PRINT'':PROCMC139l

139
You are a poor Roman and owe money to a swindler
called Ganopus. He insists that you must pay him
today, March 15th, by finding three valuable objects:
one of gold, one of silver, and one of bronze. "Bring
these to me in the Senate after dark and I'Li forget your
debt," he assures you. It is now noon . ..

We can also fill in the GOSUB calls in line 510:

5100NCXGOSUB2000,2050,2170,2250,2300,2360,2380,2400,2450,2550,2630,2650,
2680,2710,2730,2780,2130,2R40,2870,2070

You will have noticed that the program is rather
short on spaces. This isn't vital in this game, but
spaces do become important when you have a big
game to fit into a similar space: they both slow the
response and take up room. The decision is yours. If
you like legibility is of prime importance, use spaces,
but if you want a big game, don't use spaces. The
player probably w.on't mind either way!

So having typed it, we save the program onto tape
or disc depending on your system. Then, assuming
that you want to follow my method, type

PAGE = &1100

(If you use a cassette system and don't want to bother,
you will have to subtract - or get the computer to
subtract - &300 from all my numbers henceforth!)
Now type

LOAD "ROMAN"

followed by

PRINT ·roP

to get TOP in hexadecimal- because now you're going
to have to do a little in hexadecimal, whether you like it
or not. When I first programmed this, I got 256B for the
value . This is extremely likely to increase, because

186

CREATI GAN ADVANCED ADVENTURE GAME: 'ROMAN'

more program lines will be required to solve errors (in
fact, I used about 150 extra bytes).

Now we shall need about 1000 bytes for BASIC
workspace; you can get away with about half of this,
but it doesn't hurt to be on the safe side. So ask BASIC
to add 1000 to TOP, and tell you the answer in
hexadecimal. You might as well round it up to an easy
number. [got &2AOO.

So if HIMEM is set just under this, the objects part of
the database can begin at &2AOO. So, load in
'DAT AGEN' (your regular PAGE will do fine) . Run it,
and answer 'O' for Objects, and '&2AOO' for the value
of 0%. Continue to feed in all the 15 objects, ending
with a return to terminate the program.

You now have a choice. If you are supremely
confident of your ability to type in perfect data all
evening, continue immediately with the rooms. If, like
me, you are more cautious, you should now save the
objects onto tape/disc. The information you need is
that last value of P%, which points to where the rooms
will be going. This should be &2A50 (16 objects,
counting object zero, times 5 bytes should also tell you
this, with some arithmetical help from the computer) .
So you act cowardly, and save all the object data to a
file named 'ODATA' by typing:

•SAVE ODATA 2AOO 2A50

Now continue the procedure. Rerun DATAGEN,
this time for the rooms. Answer '&2A50' for r%, since
that's immediately after the objects . Feed in all the
room data, again finishing with return. That should
leave P% as &2050, which is where the verbs will
start. Save the rooms away with

*SAVE RDATA 2A50 2050

(If nothing disastrous has happened, the object data
will still be in memory. You could save the two
together iI you preferred.)

Next, do the vocabulary, starting with verbs. Run
the program for the verbs, answering '&2050' for v%.
At the end of the verbs, P% should be &2E52; again,
only a matter of arithmetic really! Save these:

•SAVE VDATA 2050 2E52

and continue with the things (t% = &2E52), ending

187

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

with P% = &2ED9. Put these away:

•SAVE TDATA 2E52 2ED9

and put in the specials (s% = &2ED9), ending with
P% = &2F15. Save these also:

•SAVE SDATA 2ED9 2F15

Next, and mercifully last, come the messages. Start
them with message 1, at &2F15. Type steadily. You
can always halt the program and save what you have
at any time, then continue from where you left off,
with whatever value P% was last quoted. If you
should then make a mistake, *LOAD the MDATA
back to &2F15, and start up where you last saved from .
That way you avoid having to re-type everything.

When you've got all that data in, save it with

*SAVE MDATA 2F15 4B6A

The last number was where my typing finished. Your
typing may differ slightly, depending on where you
put carriage returns in, and so on. Use your number,
not mine!

We are now ready to assemble the whole program.
Clear the computer, set PAGE = &1100, and 'LOAD
"ROMAN'" . While you have it in front of ybu, you can
attend to a few final details:

9~0DE7:HIMEM=&29FF
10NC=43:NT=27:~S=12:NX=&2A03:Z=&COO
1loX=&2AOO:rX=&2A50:vX=&2D50:t%=&2E52:sX=&2ED9:mX=&2F15

5970SZ=YS+" 2A00":IFI%=1SZ="L. "+SZ ELSESZ="S. "+SZ+" 2D50"

In line 9, set HIMEM one under 0% (get the computer
to do the sum if you are uneasy with hexadecimal) . In
line 10, we need a value for N% to store the number of
turns the player has had . We here use the short
message number for object zero, which of course isn't
being used- we could have used any of the other bytes
between &2AOO and &2A04 inclusive. In line 11, fill in
the values you used for 0%, r%, v%, t%, s%, and
m%. Finally, in line5970-part of PROCINOUT- fill in
the start address for the objects (0% , equal to &2AOO)
and the finish address for the rooms (&2D50, equal to
v%). ThusPROCINOUTwill load/save just the objects
and rooms, as desired .

Now *LOAD in the objects, rooms, verbs, things,
specials, and messages to their appropriate places in
memory:

188

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

*LOAD ODATA 2A00
*LOAD RDATA 2A50
*LOAD VDATA 2D50
*LOAD TDATA 2E52
*LOAD SDATA 2ED9
*LOAD MDATA 2F15

Two last actions, and we're set. We have to make the
roo~ of object zero be the player's room, because
that s where the playmg program expects to find it.
Just type

?&2A02 = 2

which sets the value of byte &2A02 (room of object
zero) to be 2. The other action is to set ?N % to be zero,
for the turn counter. Type

?&2A03 = 0

Now again, play it safe. Type
*SAVE ROMAN 1100 4B6A

which will save both the playing program and the
database, calling the result 'ROMAN' once more. You
may not have realised, but when you perform a
regular SA VE, what happens is *SA VE name 'PAGE'
'TOP', where BASIC substitutes the values . So there is
nothing wrong with *SAVEing a program.

We also need to create an initial database file to start
the player off. Of course, the position in memory is the
initial position. Now type

*SAVE INIT 2A00 2D50

which will store objects and rooms - which contain the
entire dynamic part of the database - in a file called
!NIT. You might think that PROCINOUT(2) would
suffice. Butitwon'tbecauseuntil m% is initialised, we
can't print the messages. If you prefer, though, set
m% = &2F15 in immediate mode and try
PROCINOUT (2), which should work.

7.9 On debugging
This program should work first time. But it didn' t
when I first programmed it. I kept a list of the bugs I
found as I went along- there were 25 at the final count.
One can never be sure such programs are totally
bug-free ...

It's worthwhile looking at some of my errors,
because often the fear of making a lot of errors on a big
program is what stops people from writing a program!
Seldom are errors fatal, especially if you remember to
*SA VE once in a while as you go along.

189

CREATING AN ADVANCED ADVENTURE GAME : 'ROMAN'

My first bug came immediately after RUN. I'd
forgotten to set a variable while I was creating the
database system. Since I knew which line number it
was, thanks to the error message, it was only a
question of printing out the value of each variable
mentioned in the line until I found an undefined one.

The program now ran, only I got no" room
description. I escaped, and printed R, the room
number. It was zero, not 2. A quick check convinced
me l' d forgotten to load object zero's room to be 2
('PRINT FNR(O)'). I was tempted to set it by
'PROCR(0,2)' until I remembered that INIT is pulled in
every game, and it's INIT that needed setting. In fact,
it's good practice to set the main program's initial
database as well, even though that never gets used. If
you should make a blunder and lose INIT, you've got a
back-up copy in the main program. So we
PROCINOUT(1), giving INIT as the filename, and
then PROCR(0,2), followed by a cautious PRINT
FNR(O) to be certain. Then PROCINOUT(2) to put
!NIT away again.

This time I got the wrong initial message because I
had mistyped m%'s value in the program? Then INV
wouldn't work, because of a stray 'I' when I meant
1% ... Note that I have yet to leave the first room.
Simply by testing INV, LOOK, etc., you have tested a
lot of code.

Then came line 610. 1 had missed out a vital space,
and so created a nonexistent variable. None of these
bugs had necessitated a resave yet. I then tried 'OOH'
to see how my parser handled a word it didn't
understand. The program collapsed, owing to an
infinite loop I'd misprogrammed in PROCW. 'TRACE
ON' soon found that one.

Then I ventured into the shop. No shopkeeper! I
escaped and checked the state of the shop. It was 1, as
it should be. So the message was wrong. This called
for a little investigation of the message structure itself.
First, I needed the message before 45, the faulty
message. So I' typed 'PROCM(44)' and received, as
expected, 'You're in the street.' The point of doing this
was to set P% to point at the first byte of message 45,
the one I was interested in. Now in immediate mode I
typed:

FOR IX = 0 TO 60: PRINT IX, PX?IX: NEXT

190

CREATING AN ADVA CED ADVENTURE GAME: 'ROMA '

with CTRL/N on, which printed out the contents of
P% and the next 60 bytes, all numbered . If you think
about the structure, what we should see is a lot of
ASCII codes for the 'You are in an old shop ... ',then a
13 (carriage return for the end of the first line) then
some more ASCII - the message takes up two lines -
and another 13. Next came the switches, beginning at
1% = 51. These ought to have been - remember two
bytes per switch, low byte first - 0, 0, 46, 0. They
weren't. They read 46, 0, 0, 0. I'd put the switches in
the wrong order! Now it was necessary to be
methodical. I reloaded !NIT, putting the game into a
pristine state. Then I typed

PX?51=0
PX?53=46

which changed around the two message switches. I
then did a *SAVE of the whole program again.

Several more times I had to dive into the database
and hunt up something silly. But most of the time it
was just wrong BASIC! I found eventually, on using
magic moves to test out the priest that I had switched
the lion and priest in postprog: apparently I would die
from the lion in the temple, and from the priest in the
arena! You must test exhaustively, and not just by
giving the program the instructions you expect it to
accept.

Sometimes the logic was wrong. I forgot to check if
chickens were held before they were killed . . . I forgot
to leave any exit from the first maze into the arena ... I
somehow had defined the mouse as a light source .. .
one room description said 'northeast' when I meant
'northwest' . . . picking up a dead chicken still
provoked 'the chicken flutters away', which kept me
in giggles for some little time ... and so on.

One problem you'll have to watch out for as your
games get larger is the 'No Room' message. You can
monitor how your space is going by sticking in the

PRINT - !2 AND &FFFF

around line 100. This will print out the top of BASIC's
work space at the moment. It'll fill up gradually as the
program uses all its procedures, and will then steady
down. You print in hexadecimal, by the way, because
you know 0% in hexadecimal; for no other reason.

7.10 A listing of the (non-database part of) 'ROMAN'
It's probably worthwhile to see the entire BASIC part

191

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

of the program in one listing, so here it is:

8RE" ONERRORGOT01005
9"0DE7:HI"E"=&29fF

10NC=43:NT=27:NS=12:MX=&2A03:Z=&C00
11oX=&2AOO:rX=&2A50:vX=&2050:tX=&2E52:sX=&2ED9:mX=&2F15
15ZS=STRINGS(20," ")
20FORIX=7T08:PRINTTABC10,IXl;CHRSC141J;"Ro~an Adventure":NEXT
30PRINT'':PROCMC139)
40PRINT'':PROCINOUT(1J:PRINT''
50QX=O

100REPEAT R=FNR(Q):IFR<>Ql ORN0TfNRP<R,11PROCDR(R)
110PROCRSPCR,1,1J:QX=R:FX=O
200REPEAT
210IFFX=OREPEAT INPUT'":"ZS:UNTILIS<>""
220PR0Clc
230JX=INSTR(ZS," "l:IFJX=OXS=LEFTSCZS,4J:YS="":GOT0300
240XS=LEfTSCLEFTS<ZS,JX-1J,4l:YS=RIGHTSCIS,LEN(ZSJ-JXJ
250IFLEFTSCYS,1)=" " REPEATYS=RIGHTSCYS,LENCYS)-1l:UNTIL LEFTSCYS,11<>'
260YS=LEfTSCYS,4)
300PROCWCXS,1J:CX=JX:IFJX>OTHEN330
310YS=XS:PROCWCYS,2J:DX=JX:PROCWCYS,3J:IFOX+JX=OPRINT"EH?":UNTIL FALSE
320PRINT"What do you want to do with the ";YS;"?":INPUTZS:PROClc:

XS=LEFTSCIS,4J:PROCWCXS,1l:CX•JX:IFJX=OPRINT"EH?":UNTIL FALSE
330DX•KX:IFDX=OANDYS<>""PROCMC135J:UNTIL FALSE
3400X=O:SX=O:IFYS=""THEN360
350PROCWCYS,2J:OX=JX:IFJX>OELSEPROCW(YS,3J:SX=JX:

IFJX=OANDDX<>3PROCM(135J:UNTIL FALSE
360IFDX=1ANDSX>OPROC"C102l:UNTIL FALSE
370IFDX>OANDDX<3ANDYS=""PRINTXS;'' what?":INPUTIS:PROClc:

YS=LEFTSCIS,41:GOT0330
380UNT!L TRUE
400YX=FNL
410FORIX=11T013STEP2:IFR=FNR(IXJPROCOSS(IX,1l
420NEXT
500FX=O
5100NCXGOSUB2000,2050,2170,2250,2300,2360,2380,2400,2450,2550,2630,2650,

2680,2710,2730,2780,2130,2840,2870,2070
520IFFX=9PROCDIE
530IFFX=1IS=YS:GOT0200
540IFFX=2PROCNEWGA"E
600PROCR(0,R)
610IFYX=OANDNOTFNL ANDR<>QXPROCMC93l:PROCDIE
620Il=?NX+1+(?NX=2551:?NX=IX:IFIX=35PROC"C94l
630IFIX=50PROCMC95l:FORIX=2T022:PROCRSP(IX,0,0l:NEXT:PIOCISPC31,0,0)
640IX=FNRSC1J:IFIX=OELSEPROCRSSC1,IX-1l:PROCMC96l:

IFIX=1PROCMC97l:PROCDIE
650IFFNSC13JPROCMC98J:PROCDIE
660IFFNSC11lPROCMC99J:PROCDIE
670IFR<>31ELSEIX=FNRSCRJ-1:PROCRSSCR,ll):IFIX=OPROCMC100):PROCD1E
680UNTIL FALSE

1000DEFPROCDIE:PROC"(136J:GOSUB2730:PROCNEWGA"E
100SOEFPROCNEWGAME:PROCM<137l:INPUTXS:IFCASCCXSIOR321<>110RUN ELSEEND
2000LX=FNRL(R)+DX-2:1F?LX=OPROCMC101J:RETURN ELSEJX=LX?1:GX=O
20101FJX>OONJr.GOSUB6000,6020,6060,6090,6120,h170,6230,6260,6280,6300
20201FFX=90RGX=1RETURN ELSER=?LX:RETURN
2050IFSX>OTHEN3000
2060IFR<>FNRCOXlPROCMC103J:RETURN
2070IFFNPCOX,1lPROCMC104J:RETURN
20801FFNRCOXl=1PROCMC105l:RETURN
2090IFOX=2AND FNRS(RJANDR=4PROCM(1061:RETURN
21001FOX<>3ELSEIFFNR<1Sl=1PROCMC107J:PROCR(15,0J:PROCRC3,11:RETURN

ELSEPR0Ct'C1081 : RETURN
2110IFOX=8ANOFNS(8)=0PROCMC109):RETURN
2120PROCR(OX,1)

192

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

2130PRINT"OK":RETURN
2170IFSX>OTHEN3000
21801FFNRCOX)<>1PROCMC110>:RETUR~
2190!FFNRPCR,2lPROCH<1111:PROCRCOX Ol:RETURN
2200IFOX=2PROCOSSC2,0l ,
2210IFOX=3A~OR=FNR(8)PROC~ 1 112l:PROCR(R 1J: PROCRC3 Rl:R ETURN
2220PROCR COX, R): GOT02 1 30 ' ,
2250IFNOT FNP<OX,4lTHEN3000
2260IFFNRCOXl<>1PROCMC110J:RETURN
2270PROCRCO%,OJ :PROCMC113J :RETURN
2300 IFSX=20X=10
2310 IFFNRCOX)<>1PROCMC110):RETURN
2320IFOX<>10THEN3000
2330IFR<>SORFNRPCR,OlPROCMC114J:RETURN
2340R=23:PROCMC11SJ:PROCR<10,0J:RETURN
2360FX=1: I FYS=""PRlNTU;" where?": INPUTYS
2370RETURN
2380PROCDRC1):RETURN
2 4001FNOTFNRP(R,3)PROCMC1161:RETURN
2410IFFNRC5l=10RFNR(9)=1F7.=9:ZX=OELSEZX=1:R=37-R
2420PROCJ'IC 117l: RETURN
2450IFSl>OORNOTFNPCOX,3lTHEN3000
2 460IFR<>FNRCOXIANDFN~COXJ<>1PROCM(103l:RETURN

2470IFOX=11THEN2510ELSEIFOX=13THEN2520ELSEIFOX=8ELSEPROCMC120l:RETURN
2480IFFNRC8l<>1PROCMC110J:RETURN ELSEIFF NR(5l<>1PROCMC121>:RETURN
2490PROCOSS(8,1l:PROCOSPC8,3,0l:PROCMC122J
2500IFR<>FNRC111RETURN ELSEPROCOSSC11,0J:PROCRC11 OJ:PROCRCS OJ•

PROCMC123l:RETURN ' '•
25 10PROCMC124l:FX=9:RETURN
2520IFFNR(9l<>1PROCMC121J:RETURN ELSEOX=9:GOT02800
2550IFOX<>4THEN3000ELSEIFFNRC4J<>1PROCMC110l:RETURN
2560ZX=FNS(4) :IFZXPROCMC124+Hl :RETURN
2570!FR<>4PROCMC127l:RETURN
2580Z%=-FNPC4,5J:PROCMC128l:IFZ%=0PROCOSSC4,2l:RETURN
2590PROCOSS<4,1J:PROCOSP(4,0,1l:PROCRSSC1,9l:RETURN
2630PROCRSPCR,1,0l:RETURN
2650FX=2: RETURN
2680PROCINOUTC2l
2690RETURN
2710PRINT"OK, '"; YS;"' !":RETURN
2730J%=0
2740FORIX=7T014:IFFNPCIX,2JANOFNRCIXl=1JX=JX+10
2750NEXT:JX=JX-10•CFNRPC19,1l+FNRPC22,1l+FNRPC16,1l+FNRPC27 1)1
2760PRINT"You have scored ";ST RSCJXl;" out of 80":RETURN ,
?.780IFfNRCOXJ<>1PROCMC110l:RETURN
2 790IFFNRPCR,3)PROCMC131l:PROCRC0~,37-Rl:RETURN
2800IFR=27ANOFNSC13lANDOX=9PROCMC132):PROCOSSC13,0l:PROCRC13,0J:

PROCRC14,Rl:PROCRC9,0J:RETURN
2810IFR=31ANOOX=4PROCMC134) : JX=80:GOSUB2760:END
2820GOT02190
2840IFOX<>2THEN3000ELSEIFFNSC2JPROCMC133l:RETURN
2850IFFNRC2l<>1PROCMC110l:RETURN
2860PROCOSSC2,1l:GOT02130
2870IFFNRCOXlP.=FNR(Oi.):RETURN ELSE3000
3000PROCM C 102): RETU RN
5080DEFFNOLCOXl=OX•S+oX
50900EFFNRLCRXl=RX•24+r7.
51000EFFNRCOXl=?CFNOLCOXl+2>
51100EFFNSCOX)=?FNOLCOXJ
5130DEFF~PCOX,PXJ:LOCALIX:IX=?CFNOLC07.)+1)AN02APX:=CIX>OJ
51400EFPROCOSPC07.,P7.,I7.l
5150A7.=FNOLCOXl:IFli.=0Ai.?1=AX?1AND(&FF-2APi.)ELSEAX?1=AX?10R2APX
5160ENOPROC
5170DEFPROCOSSCOZ,Ii.l:?FNOLIOXJ=I7.:ENDPROC
5200DEFPROCRCOX,Ri.l:?CFNOLC07.l+2J=RX:ENDPROC
52200EFPROCOOCOY.)

193

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

5230MX=?CFNOLCOXl+4+CFNRCOXl=1ll
5240ZX=FNS(OXJ:PROCM(M?.l:ENDPROC
5310DEFFNRS(R?.l=?FNRL<RXl
5320DEFFNRPCRX,P?.l:LOCALIX
53301X=? (f NRL (R~l+1) A~D2AP'.:: = (I X>Ol
5340DEFPROCRSP<RY.,Pr.,1Xl
5350AX=FNRL(R7.)+1:1FIX=O?AX=?AXANOC&FF-2APXlELSE?AX=?AXOR2APX
5360ENDPROC '
5370DEFPROCRSSCRX,I7.l:?f~RLCRXl=IX:ENDPROC

5440DEFFNL:LOCALIX,J7.
5450IFFNRPCR,0)THEN=TRUE
5460IX=FALSE:FORJ%=1T015:IFFNP(J7.,0lANDCFNR(J%)=10RFNR(JXl=RlIX=TRUE'

JX=15
54 70NEXT: =IX
5520DEFPROCDR<Rr.l :LOCAL U,J7.
5530IFFNL OR R7.•1 ELSEPRINT"It is pitch dark":ENDPROC
5540MX=?CFNRLCRXl+23+FNRPCRX,1ll
5550ZX=FNRS(R7.l:PROCMCMXl
5560JX=TRUE
5570FORIX=1T015:1FFNR(I7.)=RX PROCD0(!1l:J7.=FALSE
5580NEXT
5590IFJX AND RX=1 PRINT"Nothing"
5600ENDPROC
5610DEFPROCMCMXl:LOCALIX
5620!FMX=OENDPROC ELSE PX=mX:IX=1
5630AX=?P7.AND&F:BX=?PXDIV16:PX=PX+1
5640IFIX=MXTHEN5670
5650FORD7.=1TOAX:PX=PX+LENSPX+1:NEXT
5660PX=PX+2•BX:IX=IX+1:GOT05630
5670IFAX•OPX=PX+1:GOT05710ELSEFORDX=1TOAX
5680PRINT SPX:PX=PX+LEN$PX+1
5690NEXT
5710IFBX=OENDPROC
5720MX=ZX:IFMX>CBX-1lMX=BX-1
5730MX=PX!C2•MXlAND&FFFF:PROCM(~Xl
5740ENDPROC
5750DEFPROCW(XS,1Xl:JX=O:KX=O:UX=1:0N IX GOTO 5760,5765,5770
5760HX=NC:PX=vX:JX=6:GOT05780
5765HX=NT:PX=tX:JX=5:GOT05780
5770HX=NS:PX=sX:JX=5
57801FXS<FNSTR(UX,IXlORXS>FNSTR(HX,IXlJX=O:ENDPROC
5790IFXS=FNSTRCUX,1XlMX=UX:PROCSET:ENDPROC
5800IFXS=FNSTR(HX,Il)MX=HX:PROCSET:ENDPROC
5810REPEAT IFCHX-UXl=1JX=O:KX=O:UNTIL TRUE:ENDPROC
5820MX=CUX+HXlDIV2:IFXS=FNSTRCMX,IXlUNTIL TRUE:PROCSET:ENDPROC
5830IFXS>FNSTR(M%,IXlUX=MX:UNTIL FALSE ELSE HX=MX:UNTIL FALSE
5850DEFPROCSET:PX=PX+(~X-1l•JX+4:JX=?PX:IFIX=1THENKX=PX?1ELSEKX=1

5860ENDPROC
5880DEFFNSTRCMX,IX)
5890IFIX=1TX=vX+6•CMX-1lELSEIFIX=2TX=tX+5•(MX-1lELSETX=sX+5•CMX-1l
5900!Z=!TX:Z?4=13
59101FRIGHTSCSZ,1)=" "REPEATSZ=LEFTSCSZ,LENCSZ)-1) :UNTIL RIGHTSCSZ,1)

<>" "
5920=SZ
5940DEFPROClc:FORAX=1TOLENZS:AX=ASC(MID$(ZS,AX,1llOR32
5950ZS=LEFTSCZS,AX-1l+CHRSBX+RlGHTS(ZS,LENZS-AXl:NEXT:ENDPROC
5960DEFPROCINOUTCIXl:PROCM(138):1NPUTYS
5970SZ=YS+" 2A00":IFIX=1SZ="L. "+$Z ELSESZ="S. "+SZ+" 2050"
5980XX=O:YX=&C:CALL &FFF7:ENDPROC
6000IFFNR(7)<>10RFNRC12)<>10RFNRC14l<>1PROCMC76):FX=9:RETURN ELSE

PROCM(77) :RETURN
6020IX=FNRS(3):1FIX=ORETURN
6030PROCM(77+IX):IFFNR<4l=1PROCOSPC4,5,1)
6040PROCRSSC3,IX-1l:RETURN
6060PROCRSS(R,Ol:RETURN
6090PROCMC82+FNRP(R,0)):RETURN

194

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

6120IFFNRC2l<>1PROCMC83l:GX=1:RETURN
6130IFFNS(2J=OPROCM(84) :GX=1 :RETURN
6140PROCK(86l:RETURN
61701FFNRS(R)RETURN
6180IFFNRS(1l=OFX=9:PROCM(87l:RETURN
~190PROCM(88l:PROCRSS(1,0l:PROCRSSCR,1)

l

200IFFNRC4l=1ANDFNSC4l=1PROCOSSC4 2l:PROCOSPC4 O 0)•PROC~C89)
210RETURN , , ' .
230IFR<>FNR(6lORFNSC15lRETURN
240PROCR(15,R):PROCOSS(15,1l:RETURN
2601FFNR(2l=1FX=9:PROCM(90l:RETURN ELSERETURN
280PROCRSPCR,1,0l:RETUQN

6300PROCM(92l:RETURN

7.11 The input for 'DATAGEN'
It's.also useful to see the 'model' input to 'DATAGEN'
which produced the version of the database I used.
I've chopped it up into the appropriate sections.
Where a blank line appears, a carriage return only was

1) Objects - at &2AOO
typed.

2) Rooms - at &2A50

1, 0 13,13 1, ROOM 1 0
0 2 0 0 10

0 10 1 0 w
1 17 3 10 5,4

10 19 10 NW

4 20 27 0 6,0

0 8,8 0 39 SW

1 0 34 2, ROOM 2 12,0

2, 2 3 14, 1 4 0 E

0 4 0 0 3,2

10 10 2 10

4 15 10 II 47

2 21 0 3,0 47

4 24 35 6, ROOM 6
40 0 3,3 9,9 36 41 0 0 0 15,1 5 3, ROOM 3 10 3 10 0 2 w 4 15 4 0 7,0 10 27 10 10 SE 6 28 0 E s;o 5 10,10 37 2,0 6 0 38
N 48 4,4 10 0 31,1 48

0 20 s 7, ROOM 7 10 29 4,0 0 8 30 w 0 7 11, 11 5,2 10 11 0 w
5,5 1 42 8,0
0 3 43 E 10 10 4, ROOM 4 6,0
19 21 1 NE
1 5 0 0 20,5
16 31 10
6,6 12,12 N 49
0 0 3,3 50 10 2 8, ROOM 8 19 10 44 0
17 22 45 0 18 32 5, ROOM 5 10 7,7 33 0 E

195

CREATING AN ADVA CEO ADVENTURE GAME: 'ROMAN' CREATING AN ADVANCED ADVENTURE GAME: 'ROMA '

58 21,8 SW
28,9 3) Verbs - at &2050 4) Things - at &2E52 7,0 26,0 14, ROOM 14 SW 73 SW s

9,0 0 7,5
23,0 73 catch pay braz coliseum

0 29, ROOM 29 2,2 5,2 1 1
51 10 68 SE

q
69 25,9 0 Q bronze door 51 N

0 1,22 1 2 ,0 12 1 13,7 21, ROOM 21 NW 9, ROOl'I 9 down quit bust 0 24,0 2 ganopus 0 s
10 1,22 12,0 1 0 15,7 0 12

10 10 73 E drop run cat guard
NE 59 w 73 30,0 3,2 6,3 3 1
8,0 60 22,0 25,9 N e s chicken hole
SE 1 5, ROOM 1 5 SE NW 26,0 1,8 1,12 8 1
10,0 0 20,0 24,0 NE east sacrifice coin man
w 0 D 28,0 1,8 9,2 10 2
18,0 10 20,0 73 SE eat save cont rap oil

N 73 28,0 4,1 13,0 6 1
52 14,0 70 26, ROOM 26 s get say gladius pool
52 71 0 2,2 14,3 1 ROOM 10 61 22, ROOM 22 28,0 5 10,

0 0 SW give score gold shopkeep
0 61 2 28,0 5,2 1 5 ,O 1 o 16, ROOl'I 16 0 14

10 10 w go se helmet slave 10 o w 28,0 6,3 1,10 1 NW 0 E 2
9,0 10 21,0 27,0 NW inv south javelin toll
E NE SW 28,0 7,0 1 , 1 2 Q 2
11,0 10,0 72 23,0 j Ufllp stop lion
SW s 72 SE 73 8,3 12,D 13 16,6 17,0 23, ROOM 23 24,0 73 k i l l SW money 0 NE 30, RCIOM 30 9,2 1,14 10 53 62 0 25,0 0 light take mouse 53 63 2

0 10, 1 2,2 1 5 11, ROOM 11 17, ROOM 17 10 73 2 look throw pi lum 0 0 E 73 11, 0 16, 1 10 9 0 0 23,9 27, RODI'\ 27 w move u priest 10 10 NE
w 24,0 0 9,10 6,3 1,20 11 N
10,0 16,0 NW 0 N n up ring
E 24,0 10 2!1,0 1,4 1,20 7
12,0 64 SW SW l'IE ne w sesterc
SE 64 24,0 28,0 28,0 1,6 1, 16 10
13,0 18, ROOM 18 E no rt wait silver

0 73 74 28,0 1,4 17,D 7
56 0 73 74 SE nw wear spear
56 3 24, ROOM 24 28, ROOM 28 28,0 1,18 , 8, 1 9 1 2, ROOM 1 2 10 D 0 s west stump 0 E 0 0 28,0 1,16 4 0 9,0 2 2 SW zzm sword 10 10

10 28,0 19, 1 5 NE 65 NW
5,0 66 23,0 N NW zzt tabby
w 19, ROOl'I 19 N 29,D 28,0 20,1 3
11,0 0 25,0 NE 73 torch

0 SE 28,9 73 4
57 3 23,D E

31, ROOH 31 trap
57 10 NE 28,9

2 6
13, ROOM 13 24,9 SE

0 wood
0 67 28,9

10 4
0 67 73 s wreath
10 20, ROOM 20 73 28,9

75 14 NW o 25, ROOM 25 SW
11, 0 o 0 28,9

75
s 10 o 0 5) Specials - at &2ED9 w 14,0 NW 2

28,9 booth 21,8 10
58 u NW 1

196 197

CREATI G AN ADVANCED ADVENTURE GAME: 'ROMA '

6) Messages - at &2Fl5

These are laid out exactly as typed in, and fit fairly
neatly onto 40-column modes.

0, 1
There is a brazi•r of glowing coals
h•r•.

2,2
A h•lmet

0
3
0,3
<which you are wearing)

0,4
A military helm•t lies nearby.

0,5
A contented cat

0,6
A tabby cat frisks h•re.

3,7

8
9
10
0, I!
An unlit torch

0,9
A burninq torch

0,10
A blacken•d stump

3,11

12
13
14
0,12
A tap•r•d pi•ce of wood as long as
your arm lies h•r•-

0, 13
There is a burning torch her•.

0,14
There is a black stump her•.

0,15
A gladius

0,16
A vicious-looking gl•dius li•s h•r•.

o, 17
A trap

198

0,18
Th•r• is • contraption of sharp iron,
wood and ch•es• h•r•.

0,19
A ring

0,20
Th•r• is a silver ring, stol•n by the
slave, here!

2,21

22
23
0,22
A chick•n

0,23
A d•ad chicken

2,24

25
26
0,25
A chick•n struts around, clucking.

0 , 26
A dead chicken li•s sadly h•r•.

0 ,27
A pilu•

0 ,28
So••on• has left a pilu• h•r•.

0,29
A sesterce

0,30
An old ••st•rce is on the floor.

0,31
A priest, his hands red with blood,
looks at you expectantly.

0,32
A bronze bust

0,33
A bronze bust of Cicero is yours for
the taking!

0,34
A roaring lion b•ars down on you, its
jaws agap•!

0, 35
A gold wreath

0 ,36
The gold wreath of victory is her•!

0 ,37
A dead mouse

0, 38
There is a dead mouse h•r•.

0, 39
Yo u are carrying:

0 ,40
You' re at home.

0 ,41
You'r• in your house, which is poor but
co•fortable. To the west lies a
st reet.

0 ,42
You're in the street.

0, 43
Yo u are in a long east-west street.
To the north lies the Senate, and to
t h• south is a small shop.

0, 44
Yo u're in the shop.

2, 45
Yo u are in an old shop, with its exit
nor thw•rds.

0
46
0, 46
A shopkeeper is keeping his ey• on you.

0, 47
Yo u're east of the Coliseum, a larg•
c ircular building. A road around it
l• ads northwest and southw•st. There
i s a toll-booth west and a str••t
ea st.

0, 48
Yo u're north•ast of th• Colis•um.
Th • road goes w•st and south•ast.

0, 49
Yo u're north of the Colis•um.

0, 50
Yo u're north of th• Coliseum. Th• road
go es east and west, and an archway
le ads north•ast through some barracks.

0, 51
Yo u'r• northw•st of the Coliseum; the
ro ad goes east and southwest.

CREATING A ADVANCED ADVENTURE GAME: 'ROMAN'

0,52
You're west of the Coliseum; the road
goes northeast and southe•st. A
valley stretches west, and a closed
door bars the way east.

2,53
You're southwest of the Coliseum; th•
road goes northwest and ••st.

54
55
0,54
To the southw•st is a dank, misty area.

0,55
To the southwest is some waste ground.

0,56
You're south of the Coliseum; the
road leads •ast and west. A narrow
lane go•s south•ast.

0,57
You're south•ast of the Colis•um; the
road leads northeast and w•st-

0,58
You're in a lane winding from northwest
to south.

0,59
You're in the farm.

0,60
This is a crude farm with little
furniture. Small holes dot the base
of many of the walls. Doors lead
north and south.

0,61
You'r• in an •nclos•d farmyard. The
only exit is north.

0,62
You're on th• waste ground.

0,63
You are on some damp waste qround. A
cottage is south, and th• road is to
th• northeast.

0,64
You find yourself in a cottage, the
hid•out of the slav•. The only exit
is north.

0,65
You'r• in the vall•y.

0,66
You ar• in a vall•Y curvinq from th•
•ast and •nding at a chasm to the
south. A gully is visible across th•
chasm.

199

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

0,67
You're in a gully across the chasm,
with no obvious exits.

0,68
You're in the anteroom.

0,69
You find yourself in an anteroom to
the temple, to which steps lead up
to the northwest. A passage leads
back southwest through the barracks.

0,70
You're at the east end of the temple.

0,71
You are at the eastern end of an east
west temple to Zeus, Stairs exit
down to the southeast.

0,72
You're at the west end of the te•ple.

0,73
You're in a maze of Milling crowds,
here for the Games, and jostling you
about.

0,74
You are in the Coliseum arena,
surrounded by excited crowds. A
pastern gate leads southwest out of
the arena.

0,75
You are in the Senate, a luxurious
area, but unlit at this late hour.
Ganopus •eets you by the bathing pool.
Instead of taking your three
treasures, he treacherously draws a
knife and moves towards you to silence
you forever!

0,76
As you enter, a group of senators
leap on you, mistaking you for
Caesar. They plunge their daggers into
you as one man, before noticing
their sad error.

o, 77
The conspirators have given up waiting
for Caesar 1nd gone home.

1,78
You stride through a half-full patch
of oil.

80
1,79
You stride through a patch of oil.

80
0,80
You and your belongings are soaked.

200

0,81
The booth is closed, as the games
don't start till dark.

0,82
The •an on the booth demands payment
and won't let you in otherwise.

1,83
The guards see you are not a soldier.

85
1,84
The guards see your helmet, but
realise you are not a soldier.

85
0,85
They bar your way.

0,86
The guards assume you are a soldier,
and let you pass.

0,87
In the mist, an escaped slave grabs
you and chokes you to death.

0,88
With a hiss, the mist condenses and
extinguishes you. You catch a glimpse
of a slave running away.

0,89
The mist also puts out your torch,
worse luck.

1,90
A priest appears. "No soldiers in
the te•ple!" he shouts.

91
0,91
You are rapidly arrested and executed.

0,92
To your relief, you fall out of a
door which is slammed behind you.

0,93
Thieves kill you while you flounder
around in the dark, unfortunately.

0,94
The sun is setting.

0,95
Th• sun has set.

0,96
You're on fire!

0,97
You burned to a crisp!

0,98

The lion grabs you &nd eats you.

1, 99
The priest shouts "Imposter!"

91
0 ,100
Ganopus' knife slits your throat.

0 , 101
You can't go in that direction!

0 ,102
You can't do that!

0, 103
That's not here!

0, 104
You can't take that!

0 ,105
You're already holding that!

0 ,106
The shopkeeper won't let you!

0 ,107
With a loud miaow, the cat jumps
i nto your arms and scoffs the mouse.

0 ,108
The cat refuses to be picked up.

0, 109
Th e chicken flutters away from you.

0, 110
Yo u're not holding that!

0, 111
Th e object you dropped is soon lost
among the feet of the crowd.

o, 112
The chicken, seeing the cat coming,
gi ves a squawk and flutters up. You
gr ab it and hold onto it.

0, 113
It tastes awful, but you force it
do wn your throat.

0, 114
No body seems interested in that!

0,1 15
Yo u pay your sesterce and enter the
cr owded Coliseum.

o, 116
Wh oopeee!

2, 117
Yo u leap across the chasm, and
sc rabble for a handhold.

CREATING AN ADVANCED ADVENTURE GAME: 'ROMAN'

118
119
0,118
Vou're carrying somethinq awkward,
which causes you to miss your hold
and fall to your death.

0,119
You find a hold and haul yourself
to safe qround.

0,120
You can't bring yourself to kill the
cat, alas.

0,121
You have no suitable weapon.

0,122
You slice its head off with the
gladius.

o, 123
The priest nods approvingly, removes
your gladius with a prayer, and
leaves.

1, 124
You attack the priest, who calls
loudly for help.

91
0,125
It's already lit!

0,126
It's too damp to light.

0,127
There's nothing to light it with here.

2,128
You light the wood at the brazier.

129
130
0,129
It flares up, but rapidly burns down
to a black stu•o.

0,130
The oily wood catches fire and burns
smoothly, making a fine torch. Alas,
your clothes are also soaked in oil
and you catch fire too!

o, 131
You fling it across the chas• to the
other side.

0,132
You hurl the pilum, killing the lion
dead. It is dragged away, to waves of
applause. A gold wreath is thrown
to your feet by Caesar himself, who
calls to you "Leave by the NEW exit!"

201

CREATING A ADVA CED ADVENTURE GAME 'ROMA '

0, 133
You're already wearing it!

0, 134
You hurl the torch into the pool. It
sputters and dies, plunging the room
into darkness. You grab Ganopus'
knife in the dark and use it on hi•
before ••king your escape.
You still have your treasures!
You've won!

0, 135
I don't understand that!

0,136
The gods welco•e you to Hades <i.e.
you're dead!>

o, 137
Would you like another game?

o, 138
Type the filenam~

0,139
You are a poor Roman and owe money
to a swindler called Ganopus. He
insists that you must ray him today,
Harch 15th, by finding three
valuable objects: one of gold, one
of silver, and one of bronze. "Bring
these to me in the Senate after
dark and I'll forget your debt," he
assures you. It is now noon •••

202

8
WHERE DO I GO FROM
HERE?

8.1 On plots and player enjoyment
In this book, we've paid a great deal of attention to the 'nuts and bolts' of Adventure
games. In this last Part I want to forget about programming almost entirely and pay
attention to what makes or breaks a game, namely the plot. A game can only become
a 'classic' if it is fun to play, mystifying, and periodically give the player that warm
glow which comes from solving a well designed puzzle, without the aid of a crib
sheet. The first rule to plot building i to forget almost entirely about game
mechanics! Figure out the plot in words, not BASIC. Only when you've found
something that holds together should you stop to ask if it's programmable.

The easiest way to explain how to go about creating one of those convoluted,
'multi-level' puzzle sequences is by giving an example of how it all begins.

I start with a pair of concepts and let them interact to form the foundation of a
puzzle; although a plot theme can serve equally well. In this case, let's start with the
first concept I ever thought up, but develop it differently. I remember programming
it on my local mainframe over several lunch hours, purely for my own amusement. I
went home on a Friday evening, having mentioned its existence to one person. On
return to work Monday morning, my message space was full of notes from people I'd
never heard of, relating bugs they'd found in my mini-game!

This concept is illustrated in Figs. 1 and 2. The idea was of an unclimbable cliff-face
with an unreachable cavern, set high up and leading into the cliff. How was the
player to reach it? He is provided with a long horizontal plank, several 'rooms' long,
just off the ground and parallel to it. By 'room' I mean a describable area, not
necessarily a real room. The plank is easily accessible along its entire length from the

203

WHERE DO I GO FROM HERE?

sheer cliff

cavern

~ledge

pivot player

ground, and can be walked upon. Near one end is a pivot. fixed to the cliff, .on wl~ich
the plank can theoretically turn. On the other side of the pivot 1s a bucke~ wit~ a fairly
wide opening, but too narrow for the player to enter. Scattered around m fairly easy
reach are a collection of extremely heavy objects, each as heavy as the player: an old
lead bath, a locked coffin, and so on.

To reach the cavern, the player had to climb onto the pivot with one of the heavy
objects and drop it in the bucket. As you can imagine, this weight causes the whole
affair to tilt over, as in Fig. 2, with the plank now reaching seductively up to the
cavern. All the player has to do - apparently- is to walk along and up the plank for
several 'rooms' until the cavern entrance is attained.

That's the original concept in full. I wanted to create a problem where the geometry
of the game could be drastically modified by the player's actions. Now, what can we
do with the concept? Put another way, how can we make it more difficult for the
player?

First of all, does it stand up to the Jaws of physics? Well, no, not really! Remember
that the weight in the bucket is about the player's weight. Simple balances for levers
will convince you that once the player has walked more than one 'room' along the
tilted plank, his weight should cause the plank to tilt back downwards, throwing the
player into the air with fatal consequences.

That's easy to handle. We allow the player to walk safely along the plank only the
same number of steps as the number of heavy weights he has dropped in the bucket
so, in Fig. 2, three weights would be needed for the player to make it safely to the
cavern. Obviously the player can only carry one of these weights at a time, which will
make carting them around difficult; so a mental note is made not to leave them too far
from the bucket (unless, of course, we can use one of them for another puzzle) . Also,
climbing the plank while carrying a heavy weight should be made fatal - the plank
will break. Finally, let's make the plank break underneath the player just as he gets to
the cavern, thus blocking his return . There will be another way out, even if we
haven't thought of it yet, but creating a little honest worry in the player's mind never
comes amiss!

204

WHERE DO I GO FROM HERE?

On the face of it, we've exhausted the concept of the plank and pivot. It remains a
single puzzle, certainly not one of those convoluted puzzles, which can take days to
solve rather than minutes and usually involve interaction between more than one
puzzle or concept.

Let's now consider what the player might find when he gets into the cavern.
Obviously we must confront him with a problem whose solution will require the use
of some object, objects, or information which he should have brought with him from
below. Let's keep it simple. The cavern is a corridor leading into the cliff, ending in a
huge sheet of glass, as in Fig. 3. (Ignore the alcove for a moment, we haven't thought
of that yet). Beyond the glass, fish are swimming. (It was Alfred Hitchcock who said
that for maximum enjoyment, an audience should be primed with all pertinent
information before the denouement.) For the fun of it, let's put a large plug with a
handle right in the middle of the glass . Given the facts, how is our player to get past
the glass?

J Plan of corridor glass sheet -
plug

x Indicates an area, or 'room' x N

corridor
alcove

x x

ledge

Now put ourselves in the player's place. After making a save of his positio~, the
player will obviously try 'break glass' or 'pull plug' or 'push plug'. Equally obviously
he'll be drowned as the glass breaks and the water pour~ o".er him. He'll. n.eed a ~o~l
for survival; so we give him an old diving suit. We can ms1st that the d1vmg suit 1s
actually worn to avoid drowning when he pulls the plug.

Yet, that seems too simple a solution. Sur~ly the force of the water would swoosh
him out through the corridor and over the cliff. Now that woul.d be rathe~ good. Our
player finds out the hard way that breaking the glass.dr~wns him; he realises that t~e
old diving suit he saw earlier would be useful; cames 1t up the plank and wears 1t,
tries again, and dies a different way! Excellent. If we can only make it m~re difficult to
get the suit up to the cavern in the first ~lace, he'll be even more certain he has t~e
solution . (Have you noticed that we don t have a soluho~ yet?) Our next problem is
to stop him carrying the suit up the plank. How? A slippery patch between t~e
second and third 'rooms' on the plank will do fine. When he is not carryu:g the su1~,
he can be warned that he nearly fell over because it was so slippery. Wean~g the suit
makes him so clumsy that he does fall off. What if he tries throwing the suit past the
slippery patch? In that event, we must make it fall to the ground.

205

WHERE DO I GO FROM HERE?

The astute player will wear his suit while climbing, thus avoiding the problem of
clumsiness. We should applaud such astuteness by allowing him to get so far, but no
further. If the suit is old, it won't have much oxygen left, each 'beat' that it is worn
uses up one notch of oxygen . If we arrange the solution so that it requires all but one
notch of the suit's oxygen, then walking up in the suit will use up a minimum of two
notches (one to wear it, one to walk past the slippery area) . The longer we can keep
the player convinced that he has the solution, the more frustrated he will be when he
finds out that he does not have it (and the more he'll appreciate his efforts when he
finds the real solution).

So how does the player get the wretched suit up to the cavern, and what does he do
with it there? Let's use the motion of the plank. If he leaves the suit on the end of the
plank nearest the cavern and then goes and drops the weight into the bucket, it'll be
waiting for him when he gets up there. But, no, that won't do, because we were
going to have the plank break just as he reached the end, and we don't want to give
him a game-turn to pick something up. So instead, we can have the suit thrown
upwards by the plank and land on the ledge, as in Fig. 4. A fine solution, but indeed
he'll never think of it! So how can we suggest it to him?

4 Flipping up the diving suit
,___~~"--~~~---~~~~------~~,

diving suit

Thi~ brings up the aspect of fairness to player . If a solution is in any way unlikely,
or difficult to think of, then the player has to be given a clue. Now presumably he' ll
have messed around with that plank Jong before he gets to the stage of worrying
about the suit. So when the plank tilts over, we can add a message about 'Particles of
rubble on the end of the plank shoot up and land on the ledge', modifying the
message if there were any objects on the end of the plank. This will plant a clue, but
far, far before it can be used. (Another rule: give clues, yes, but it' s quite fair to
provide them well before they are useful!)

Now both the s~it and the player are up in the corridor. How can the player break
the glass and survive? 1f he could only be out of the way of the water's rush when it
came, he c~uld survive. So clearly he needs to be a little distance from the plug or
glass when 1t breaks. Hence the corridor structure: if he can break the glass from one
room away, he has every reason to hope for survival. He won't succeed, of course ...

206

WHERE 00 I GO FROM HERE?

To pull the plug from some way away, we must supply a coil of rope, and let him 'TIE
RO~E' to .the plu~. He can then back away, keeping hold of the rope (mental note:
th.at ll be interestmg. to program!), put the suit on, and try 'PULL ROPE' . The plug
will come off, breaking the glass, and the water will pour out, filling up the area in
~ront of the glass . If our player stands there stupidly, the water gets him next turn
instead of the one when the glass broke - but not quite with the same results.

Th~re's an~t~er important point about puzzles. The player is now very near the
solution, and 1t 1s vital that he be told this , or else he'll never find the real solution. So
when the water hits him, he should get a very different message from what
happened before. Something like "The force of the water has much decreased, but
you're still swept out and over the cliff" will do. He has to realise that he's nearly
correct, that's all.

His solution, given this knowledge, should now be obvious to him . He can't back
away any further, because the geometry won't let him (i.e. the corridor hasn't any
more rooms). But he can dodge sideways, into the alcove. So now he tries this, with
'PULL ROPE' ("The glass breaks, and water begins to pour .. . ") followed by 'WEST',
or whatever, to get into the alcove, which gets a "Just in time, too! The water
swooshes past the end of the alcove, carrying rope, plug and everything in its path
over the cliff. After a while, the waters die away."

Did you notice how we avoided handling that awkward rope with a plug tied on
the end? This cleaning-up operation is easy to program and saves us much labour.

Now, how many notches of oxygen does that take? 'WEAR SUIT' is one; 'PULL
ROPE' is another; 'WEST' is a third . One more for kindness is four notches of oxygen
which we must supply-after that he starts choking, and must drop the suit. So as we
surmised, if he wears the suit on the way up, he'll run out of oxygen too soon to solve
the problem!

8.2 More on plots
There's a whole lot more we can do with this puzzle, both before and after the
set-piece itself.

First of all, we can seek to use objects in unfamiliar ways . That avoids the dreadful
setup typical of so many Adventure games in which the solution to every puzzle is
'do action A with object B'. At one level, this must always happen -you have to say
something in the game to achieve your ends! But we can make it fun, too. Well, what
objects have we so far? The two objects in the game (the suit and the rope) plus the
heavy weights, have all been used 'normally' : you would expect to wear a diving
suit, tie a rope, and so on.

Can we add to the player's enjoyment by using some of these differently? For
example, what of the heavy weights? Suppose we protected the diving suit against
discovery by having a large scorpion run out and sting the player when he tried to
take the suit? We could allow the player one game-turn to avoid the threat. This is
rather a nice puzzle, as the obvious solution - put the suit on to protect your skin - (a)
will not be allowed (the scorpion gets you anyway) and (b) wouldn't work as it would

207

WHERE DO I GO FROM HERE?

waste too much oxygen. If the player tries throwing something at it, it can 'bounce .off
the scorpion's scaly hide'. This again is a non-null response from the game "."h1e.h
signals to the player that he's on the right track; what. he s~ould have. tne~ 1s
throwing (or dropping, if we feel kind) one of the heavy ob1ects. There 1s a sickening
squelch, and a foul odour of squashed scorpion ... '

On the same lines, can we re-use the suit? How about having a door some way
beyond the glass area marked 'OGRE - DO NOT DISTURB', and a pair of glasses
hanging high up by the door. The door is unopenable, but 'KNOCK' produces an
irritable ogre who peers out short-sightedly, grabs his glasses and puts them on,
mutters 'Oh, there you are!', and eats the player. The solution could be to jump up
and grab the glasses (the noise from which brings the ogre anyway). But provided
the player has left the suit standing up in the room, when the ogre enters, he can't
find his glasses, so stares around until he sees the suit. Being short-sighted, he
assumes it's the player and grabs itand eats it, while the player slips past him. Again,
we must signal this to the player when he's near the solution. So if he's tried taking
the glasses, but hasn't left the suit on the floor, we provide text like "~he og.re peers
around until he sees a man-sized object - you!" Or perhaps something a Little less
blatant; it depends how kind you're feeling!

This puzzle is an example of another key feature of Adventure game plots:
interaction with other beings. Nothing is worse than a lifeless game in which the
player meets only objects and words which he must manipulate to achieve ends.
People make a game much more-friendly.

Another, unfortunately rather rare Adventure problem is apparently no problem
at all! Suppose, as is often the case, it was fatal to move without a light from one dark
area to another. Further, suppose that the player was not allowed to carry anything
else while carrying one of our heavy weights. We, the game's creators, then put a
weight inside a dark region. The problem? to get the weight to the bucket? The poor
player sees no problem at all, until he tries to do something. (The solution? Drop the
lamp one move towards light from the heavy weight; move to weight, which is from
a lit area and therefore safe; pick up weight; carry it past the lamp one move, which is
also safe; drop the weight; get the lamp and piggy-back it past the weight one move;
drop the lamp; etc., until daylight is reached.)

A similar example might concern a maze. Most mazes, as we have seen, are
collections of contiguous areas, all of which share the same description. We all know
the sinking feeling of 'You are in a collection of twisty little passages, all the same'!
However, mazes can be made much more interesting, especially if the player is
encouraged not to recognise the area as a maze. Suppose the maze was no more nor
less than a room description which 'does' nothing at all. While manipulation of some
object in the game becomes the cause a reaction which can enable the player to trace a
tortuous path to reach his goal. Alternatively one could organize a what appears to be
a maze solution, but is in fact a complete red herring. We have already met a maze
which cannot be mapped the usual way - by dropping objects - because for some
reason the objects won't stay put. Concocting such mazes is one of my delights in
programming, I must confess.

208

WHERE DO I GO FROM HERE?

One can also set explicit puzzles. For example, a piece of code written on a wall,
which must be deciphered before the player can make use of the information it
contains. Since not all players are expert cryptanalysts, a collection of equally cryptic
hints must be left around to enable a player to decipher the code. Walls are very
useful here; graffiti writers have a field day in Adventure games. By scattering the
hints suitably, it may take the player a long time before he figures the solution out. In
cases like that, placing the code near the player's starting area adds to the
puzzlement.

Two other sources of puzzles are mathematics and thematic problems. The former
can be disguised, and yet based firmly on some well-known mathematics problem,
theorem, or whatever. With a little thought I suspect even Pythagoras' theorem
could be made to serve for a puzzle. (Now there's an idea! Suppose our rope was five
rooms long, however that's measured, but we have to pull it around two sides of a
right-angled triangle, sides three and four rooms. Yes, there might be something
there . ..) Thematic ideas often provide the smaller, 'filling-in' problems, essential to

Adventures. After all, not every puzzle should be earth-shatteringly difficult, or our
players will never get anywhere! So a few of the 'you can't do this until you've done
this action' puzzles, which stand alone, are important, and can often be added while
the main plot is being written down in legible form for the first time. That rope, for
example- can we make it a little harder to get? It could be holding up a rotting corpse
on a gallows, perhaps. But the stench of the corpse drives the player back. Could
'HOLD BREATH' be the solution? Or an approach from another direction to avoid
the prevailing wind? The point is that (a) the problem stands alone, involving no
other objects or problems and (b) it isn't too difficult.

209

210

APPENDICES

Al What you need to know about bitwise logic
In the latter half of this book we have made frequent use of bitwise logical operations
to insert, modify, or retrieve single zeros or ones from a byte holding eight
properties. This technique uses what is known as 'bitwise logic'. This appendix very
briefly discusses what is going on, but takes the subject only as far as we need.

When, in Part 2, we accessed individual digits in a decimal number, we had to use
arithmetic operations to get at or change the digits. If we work to any base other than
10, we can stiIJ use arithmetic if we wish. Thus, to retrieve property 3 from a value
X%, say, we can use (X% DIV 4) MOD 2. Here the 4 is 2 to the power (3 - 1).
However, the beauty of binary storage - apart from the saving in space- is that there
are neater ways of accessing the digits using bitwise logic.

You'll have used AND, OR, etc. in your other programming. They act on two
logical expressions, each of which might be TRUE or FALSE, and produce the
appropriate logical answer: AND yields TRUE only if both expressions are TRUE, OR
gives TRUE if either expression is TRUE. You're less likely to have used them for
comparing individual binary digits, although this is fully covered in the manuals.

Suppose we have the contents of two bytes, stored in X% and Y%. These,
remember, are numbers, not logical expressions! What, then, is the result of X%
ANDY%? Well, what happens is that BASIC writes out X% and Y% underneath
each other, as if they were each a string of eight binary properties. For example, we
might have:

X% 0 0 1 0 I 1 0 I
Y% 0 100 1011

211

APPE DICES

X% AND Y% is then evaluated by going through each vertical pair of digits and
doing an AND on them. So the result for each pair is 0 unless both digits are l's,
giving X% AND Y% as

X% AND Y"o 0 0 0 0 100 1

because only the l's pairs yield l's for answers . The answer is then treated as binary,
giving 1 lot of 2 cubed plus 1 unit = 9 in base 10.

We can also try X% ORY%, where each pair of digits gives 1 unless both are zero .
Thus we have

X'lo OR Y'r .. 0 1 I 0 1 1 I 1

which converts to I lot of 64 (2 to the 6th power) plus 1 lot of 32 plus 1 Iot of 8 plus 1 lot
of4plus1 lotof2plus1=111.

So how do we use these operations - which are vastly faster than arithmetic, hence
their use - to access properties? Suppose first of all we want to retrieve property N,
say, where N can be 0, 1, 2, ... , or 7. Then if X% holds all the properties, we write

which miraculously is nonzero if the Nth property is set, and 0 if it isn't! The reason
can be found by a Little experimentation. Let's write out X% symbolically like this -
I've assumed N is 3 for definiteness:

PROPS 7 6 5 4 3 2 1 0
X%???? p???

where '?' means a 1 or a zero, and we don' t care which, and P means the property
we're after. Now Let's write 2N in the same form:

r 00001000

and now we AND this with X% . Each of the '?' digits is ANDded with a zero, so gives
zero . The 'P' digit isANDded with a 1. Now if P were 1, the answer would be 1; and if
P were zero, the answer would be zero . Thus P AND 1 is P here, and the answer is :

X" .. \ 112 I'I lllllll'Ollll

and this, as I claimed, is nonzero if P is 1 and zero if it isn' t! As I noted earlier, you
might want to make a table of values for 2N to speed things up a bit.

We can also use AND and OR to put specific digits into the set of properties. If we
wish to put a 0 into digit N, we write

X% - X"1., AND (2"i5 - 2"N)

212

APPENDICES

which looks a little odd. Suppo e again that N is 3. Then 255 - 2N = 255 - 8 = 243.
This, written out in binary, is

11110111

which is all l 's except for the digit corresponding to property 3. ANDding this with
X% will not alter any of the other digits (ANDding with l gives you what you had
before, remember) but forces a zero into digit 3 (ANDding with zero forces zero) .
Thus we set property 3 to zero!

To set property N to 1 instead, we switch to ORring, and write

X, - Xu OR 2"N

because 2"N in binary looks like:

00001000

with a 1 only at digit N. If we OR this with X%, all the zeros don' t alter the
appropriate digits of X% (ORring with zero gives you what you already had) and
ORring with the 1 for digit N forces a 1 at that digit.

There' s a lot more you can do with bitwise logic; but that suffices for our purposes.

A2 Hexadecimal notation

The other convenient piece of notation we use when creating Adventures is,
occasionally, hexadecimal notation . Just as we've used numbers to base 10 in Part 2,
and numbers to base 2 (or binary numbers) in Parts 4 to 7, there are occasional
advantages to using other bases. The most useful of these is base 16 (or hexadecimal) .
There are three reasons for this. First, hexadecimal keeps the convenience of binary
for logical operations, although we seldom need this. Second, the BBC BASIC
interpreter is equally at home in hexadecimal or decimal notation, unlike most of us!
Third, there are occasional things we do with the computer which require
hexadecimal notation, and won' t work in decimal.

BBC BASIC recognises numbers as hexadecimal if we begin them with an
ampersand ('&'). Thus '15' is a decimal number, and means what it says. '&15' ,
however, is a hexadecimal number because of the '&' at the beginning. You can write
things like 'P% = &85' in BASIC and they' ll be quite happily understood. Most
people, myself included, can't look at a hexadecimal number and know how much it
is in decimal, nor can they take a decimal number and immediately write it in
hexadecimal. Acom are obliging here . If one writes 'PRINT P% ', say, out comes the
value of P% in normal decimal. If one puts a tilde - " - before the expresssion to be
printed, out it comes in hexadecimal (but without the '&', by the way). Thus
converting from one to the other is easy. 'PRINT &54A6' will convert that
hexadecimal expression to decimal; 'PRINT 81456' will convert that decimal
expression to hexadecimal. End of conversion problem!

21J

APPE DICES

The actual notation looks nasty but isn't. Since we can have digits up to 15- just as
in decimal we could have digits up to 9, which is one less than 10, the base - we have
to invent names for digits corresponding to 10, 11, 12, 13, 14 and 15. We use letters for
these, with A standing for 10, B for 11, C for 12, D for 13, E for 14, and F for 15. The
next number, 16, is '1 lot of 16 and zero units' and is thus &10. And so the counting
goes. You can, of course, use the computer for any hexadecimal calculations you
want to do; I do all the time.

Another advantage of hexadecimal is that bytes hold numbers from zero to 255.
We can think of these as two-digit hexadecimal numbers, running from &00 to &FF
i.e. every possible combination in hexadecimal. Thus hexadecimal is in some sense
more 'natural"than decimal for working with bytes. We shall use either, as it suits us.
If you are even slightly unhappy, use decimal wherever you can manage it. Only the
*LOAD and *SA VE commands used in the game positively require hexadecimal, and
mere jottings on paper will solve that problem for you .

214

INTERESTED IN THE LATEST COMPUTER BOOKS
AND SOFTWARE!

Penguin have many exciting future projects to share with
you . There will be books on new models and machines,
specific handbooks on graphics, sound and other functions,
plus a terrific range of Penguin Software covering everything
from arcade games to dieting!
We will keep you regularly in touch with the latest news. Just
send your name, address and any special interests to:

Penguin Books Dept. CMD
536 Kings Road
LondonSWIOOUH

How To Write
ADVENTURE GAMES

This book is designed to teach readers who have started
programming in BBC BASIC how to create and write fairly
complicated adventure games, though the text is structured
so that simple games can be written after reading only the
first few parts.

Three games are created in the book: CAVES , a game of
exploration through a random network of caves and
passages in search of treasure and allies; MINI, a simple
four-room adventure; and ROMAN , a complex adventure
set in Ancient Rome.

Unlike other books on the subject, the reader is taken far
beyond programming any specific adventure game. A
multi-purpose 'shell' adventure program and a database
creation program are provided for use when compiling any
adventure. Several chapters are devoted entirely to plotting
and puzzle creation, with the stress on new and different
puzzle types.

How to Write Adventure Games is the complete book on
the subject and particularly easy to follow.

PENGUIN ACORN COMPUTER LIBRARY

United l(ingdom £5.95
AUST. $14.95 (recommended)
N.Z.S16.95

6 Computer Studies
ISBN 0 14
00 . 78142

