An A-Z of essential facts

Howard Feldmgq

m

MICRO FACTS

COMMODORE
64

Simon Beesley

@

Collins
London and Glasgow

NOTE
Entered words that we have reason to believe
constitute trademarks have been designated as
such. However, neither the presence nor absence
of such designation should be regarded as affecting
the legal status of any trademark.

First published 1985
Reprint 10 9 87 65 4 3 2 |

© William Collins Sons & Co. Ltd. 1985
ISBN 0 00 458859-2

Phototypesct and illustrated by
Parkway Group, London and Abingdon

Printed in Great Britain by
Collins Clear-Type Press. Glasgow

word

This ‘Micro Facts’ is a comprehensive refer-
ence guide to the Commodore 64. It is organ-
jsed on the principle of a dictionary and with
over 300 entries covers almost every aspect of
the computer.

~ The intention of this book is that it should
be both practical and easy to use. Although the
Commodore 64 is one of the most powerful
home computers around, many of its facilities
are not readily available. Commodore BASIC
— unlike other versions of the language — has
no commands to handle sound and graphics.
To display sprites, for example, the user needs
to POKE values into a series of memory
locations.

All these features are explained in detail. The
memory locations which control them are
presented in tables alongside the relevant en-
tries. The alphabetical order ensures that the
reader will have no problem in finding any
particular reference.

The basic rule for finding information in this
book is to look under the most obvious word.
If that fails — and it may only be ‘obvious’ to
you — then try a related word. Where a topic
has been developed further under another

heading, bold print in the text indicates the
heading of a separate entry. Related topics arc
also extensively cross-referenced in this way.

All the BASIC keywords have been
included, and are usually accompanied by
a program example. In addition, the book
covers the machine code instructions for the
computer’s 6510 microprocessor — the same
instructions as those used with the 6502 micro-
processor in some other home computers.
Each instruction is given its own entry,
together with a table showing the different
forms it can take.

As far as possible, jargon has been avoided,
but where specialized terms are needed, they
are used, and explained elsewhere under their
own entries.

‘Commodore’ and ‘VIC’ are registered trade
marks of Commodore Business Machines.
The names or terms ‘Atari’, ‘Centronics’,
‘CP/M’, ‘Prestel’ and ‘Z80" are also legally
protected and exclusive to their respective
owners.

: abs

‘lp-bbreviations Most of the BASIC
keywords can be entered as abbreviations.
Usually these take the form of a letter followed
W a graphics character. The most com-
monly used abbreviation is the question mark
to replace the PRINT keyword. For example
22 PEEK (197)" is the same as ‘PRINT
PEEK(197)". Each keyword is stored in mem-
ory as a 1-byte token, so entering an abbrevi-
ation does not save space in memory, but it
makes it possible to put more than 80 charac-
ters on a program line.

When a program is LISTed abbreviations
are expanded to their normal keywords.

ABS (ABSolute value) A numeric function
which turns negative numbers into positive
numbers leaving positive numbers unchanged.
Thus the absolute value of —3.75 is 3.75 while
the absolute value of 8.3 is 8.3. It requires its
argument to be placed in parentheses, as in ‘10
Y=ABS(X)’ or ‘10 PRINT ABS(5%N)’. One
of the uses of the ABS function is for calculat-
ing the difference between two numbers when
you do not know which is larger. If, for
example, ‘M=5" and ‘N=9', then ‘M-N’
equals ‘—4’, but ‘ABS(M—N)’ returns a posi-

abs

tive value.

Associated keyword: SGN.

absolute addressing Treats the two
bytes following the op code as the address of a
byte in memory, e.g. ‘STA $0423’ stores the
value of the accumulator at location $0423.

accumulator The most frequently used
register in the 6510 microprocessor. All arith-
metic and logical operations are carried out in
the accumulator.

ADC The only 6510 microprocessor addi-
tion instruction. It adds the contents of a given
memory location to the contents of the accu-
mulator. If the carry flag is set 1 is added to
the result. The carry flag should therefore be
set to zero with CLC when 2 single byte
numbers are added together, e.g:

LDA $FB

CLC

ADC $FC
adds the contents of locations FB and FC, and
leaves the result in the accumulator.

After an ADC instruction the carry flag is
set to 1 if the result is greater than 255. This
allows multi-byte numbers to be added

9 add

together with just a few instructions.

Status register L e el - b - s

W\g mode | assembly languageform | op | No. | No.
b code | bytes |cycles
immediate ADC # operand 69 2 2
zero page ADC operand 65 2 3
zero page, X ADC operand, X 75 2 4
absolute ADC operand 6D 3 4
absolute, X ADC operand, X 7D 3 4"
absolute, Y ADC operand, Y 79 3 4
(indirect, X) ADC (operand, X) 61 2 6

| (indirect), Y ADC (operand), Y 7 2 5*

* Add 1 if page boundary is crossed.

address A number which identifies a loca-
tion in the computer’s memory. Each byte in
memory has an address, in the range 0 to
65535. The contents of a particular address can
be examined or altered by means of the BASIC
keywords PEEK and POKE.

See memory map.

addressing modes The way in which an
mstruction accesses data. An instruction’s
addressing mode indicates whether its oper-
and is to be treated as data, or the address of
data, or as a vector to the address of data.
Some instructions operate on registers, and
have no operands; in which case the operand

and 10

and addressing mode is said to be implied. In
the 6510 microprocessor there are 9 different
addressing modes.

See absolute addressing; immediate
addressing; implied addressing; indexed
addressing; indirect addressing; pre-
indexed indirect addressing; post-indexed
indirect addressing; relative addressing;
zero page addressing.

AND (1) A logical operator which can also
act as a bitwise operator. In logical operations,
AND tests whether two conditions are true at
the same time. It is commonly used with
I THEN g

IF X>99 AND X<1000 THEN PRINT X;"IS

A THREE DIGIT NUMBER”
and can also test for more than two conditions.
The following example will only print ‘COR-
RECT if all three conditions are true:

IF A$=B$ AND M=5 AND K<12 THEN

PRINT "CORRECT”

When used as a bitwise operator, AND tests
or alters the individual bits in a number. It
compares each bit in a number with the
equivalent bit in another number. If both are
equal to one then it sets the bit in the answer to

11 and

one. Otherwise — if one or both bits equal zero
_ it returns a value of zero. AND is often used
in this way to mask one or more bits in a
pnumber. For example to find out what the
pottom four bits in 213 are, AND it with 15.
In binary 15 is @0001111. Thus the first four
bits of 213 will be ignored since they are being
compared with zero:

DECIMAL BINARY
213 11010101

AND 15 00001111
"5 00000101

Associated keywords: OR; NOT.
(2) A 6510 instruction mnemonic which logi-
cally ANDs the contents of a memory location

Status register N oV B Y NG
addressing mode | assembly language form | op No. No.
code | bytes [cycles
immediate AND # operand 29 2 2
zero page AND operand 25 2 3
zero page, X AND operand, X 35 2 4
absolute AND operand 2D 3 4
absolute, X AND operand, X 3D 3 4
absolute, Y AND operand, Y 39 3 4
(indirect, X) AND (operand, X) 21 2 6
(indirect), Y AND (operand), Y 31 2 5

* Add 1 if page boundary is crossed.

arg 12
with the contents of the accumulator, lcaving
the result in the accumulator. Can be used to
mask bits in the accumulator, e.g. ‘AND
#8$F0’ masks off the bottom 4-bits in the
accumulator.

See truth tables.

argument The number or string which a
function operates on. Every function must be
followed by an argument enclosed in parenth-
eses, ¢.g.: SQR(25)

where 25" is the argument.

Among the built-in functions, FRE and
POS take dummy arguments. The value of
their arguments is unimportant and can be any
number. User-defined functions can also take
dummy arguments, ¢.g.: ‘10 DEF FN H(N) =
INT(X/Y)".

arithmetic operators Thc symbols used
in arithmetic operations. In the table of oper-
ators given below they are listed in order of
precedence. This means that some operations
are performed before others if their operators
have a higher precedence, e.g., the multipli-
cation opcerator has precedence over the sub-
traction operator so

9—-2%3

arr

‘3", and not ‘21",

Parentheses can be used to override pre-
cedences. Thus
~(9-2)%3 4
equals 21"
gxmbol Use Example
£ positive number 45
- negative number —8
T raise to power of 21 3=8
* multiply 4%5=2(
/ divide 12/4=3
+ add 7+7=14

subtract 15—6=9

array A variable which is used to store sets
of data. A number of data items can be
assigned to one array and can be identified by
their position in the array. This is often a more
convenient way of storing data than assigning
a variable name to cach item. For example a
list of names can be stored in a string array as
follows:

N$(1) = "SMITH"

N§(2) = "TOMKINSON”

N$(3) = "JONES”
N$(4) = "sCOTT”
N$(5) = "COLEMAN"

arr 14

The alternative would be to define a dif-
ferent variable for each name. Not only is it
simpler to store a large amount of data in an
array but it also makes it easier to manipulate
the data. The list above can now be printed out
using just three program lines:

10 FOR X = 1 T0 5

20 PRINT N$(X)

30 NEXT

Arrays can have up to 32768 elements and

any number of dimensions. T(3), for example,
refers to the fifth element in a one-dimensional
numeric array. Two-dimensional arrays can be
thought of as arranging their variables in a
matrix of rows and columns. Thus A(4,6) =
6.5 assigns 6.5 to the sixth item in the fourth
row:
A DIM statement is required to set up an
array. It defines the number of elements and
dimensions. The number of elements is
counted from zero. So, for example,

DIM T(2,1)
sets up a numeric array with a total of 6
clements, arranged as follows:

T(0,0) T(0,1)

T(1,0) T(1,1)

T(2,0) T(2,1)

asc

~ When a number is used to refer to a parti-
cular clement it is termed a subscript.
Attempts tQ refer to an element outside the
range of an array produce a ‘BAD SUB-
SCRIPT’ error message.

ASC A string function which gives the
ASCII code for a character. It needs to be
followed by a string or a string variable be-
tween parentheses. If the string has more than
one character in it ASC returns the code
number of the first character, e.g.: ‘PRINT
ASC(“B”)’ which prints ‘66’, the ASCII value
of the letter ‘B’. ‘X=ASC(“123”)’ assigns ‘49",
&h’jch is the ASCII value for ‘1’, to the variable

One of its many uses is to check input from
the keyboard. This program asks you to type a
number. If the ASCII code of the character
you enter is not that of a number it asks you to
try again, e.g.:

10 SRINT “TYPE A NUMBER FROM 0 TO

20 GET AS:IF A$=""THEN GOTO 20

30 IF ASC(A$)<48 OR ASC(A$)>57 THEN

PRINT "TRY AGAIN":GOTO 20
40 PRINT A$

asc 16

Note that a character’s ASCII code is not the
same as its screen code. When a character is
displayed on screen of the Commodore 64 the
code stored in the screen memory is its

screen code.
Associated keyword: CHRS.

ASCIl (American Standard Code for In-
formation Interchange) Before it can store
letters or graphics characters in memory the
computer needs to represent them as numbers.
To do this the Commodore 64 — in common
with almost every other microcomputer — uses
the ASCII code. It represents each character by
a single byte number between 0 and 255. The
letter A, for example, is stored in the computer
under the ASCII code 65, while the space
character is assigned the code number 32.

See ASC; CHRS.

Characters, however, are not always repre-
sented by their ASCII codes. The Commodore
64 uses its own screen codes to store characters
in screen memory. And BASIC keywords are
stored as one byte tokens. Note that this
version of the ASCII code is not completely
standard. The codes for letters, digits, and
punctuation are the same as clsewhere but

asc

‘pther codes such as those for certain control
acters are unique to the Commodore 64.
See program area.

ascll CHARACTER ASCIl CHARACTER
04 (not used) 37 %
5 white ' 2
67 (not used) 39 ;
8 disable shift 40 (
Commodore 41)
9 enable shift 42 *
Commodore 43 +
10-12 (notused) 44 -
13 return 45 ==
14 lower case 46 y
15-16 (not used) e N
o7 cursor down 48 0
18 reverse-video on 49 1
19 home 50" 2
20 delete 51 3
21-27 (notused) 52 4
28 red 53 5
29 cursor right 54 6
30 green 55 7
31 blue 56 8
32 space of 9
33 | 58 :
34 : S nlg:
35 4 60 <
36 $ 61 =

asc

15 .

ASCIl CHARACTER ASCIl CHARACTER ASCIl CHARACTER

62
63
64
65
66
67
68
69
70
ra

>

N-<><§<C—lmIO'UOZZT_X‘——IG)ﬂmUOUil)@'O

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

[
£

AEOe0NNZNNEPIEE00O00ssm 1 -~

 JLl
118
119
120
121
122
123
124
125
126
nar
128
129

133
134
135
136
137
138
139
140
141
142
143
144
145

W [Ellsls I =l S @2

130-2 (not used)
1

f3

{5

f7

f2

f4

f6

8

shifted return
upper case
(not used)
black
cursor up

167
168
169

CHARACTER
reverse-video off
clear screen
insert »
brown

light red
gray 1

gray 2

light green
light blue
gray 3
purple
cursor left
yellow

cyan

shifted space

NEIU@EODOOn=-

ASCIl CHARACTER
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

HOEEMUDO0EIEORAIBRDOPIHeED

The graphic characters for 192-223 are the same as 96-127.
The graphic characters for 225-254 are the same as 161-190.
Character 255 is the same as 126 and 222.

asc

asl 20)

ASL A 6510 instruction mnemonic which
shifts the contents of the accumulator or a
memory location one bit to the left. Bit () is sct
to () and bit 7 moves into the carry flag. It has
the effect of multiplying a byte by two,
e.g.:

LDA 08

STA $C000

ASL $C000
loads location CO00 with 8 (V0VO1000) and
then shifts it to 16 (00010000).

Status register N VOB ODNPrZ D
[et Sl 1 By
addressing mode | assembly language form [op No. No.

code | bytes |cycles
accumulator ASLA 0A 1 2
zero page ASL operand 06 2 5
zero page, X ASL operand, X 16 2 6
absolute ASL operand 0E 3 6
absolute, X ASL operand, X 1E 3 7

assembler A program which converts
assembly language instructions into
machine code. With an assembler you can
write machine code programs using mnemo-
nics instead of numbers — a much easier task.
Assemblers usually allow numbers to be writ-
ten either in decimal, hexadecimal, or binary

ation. In addition they allow you to give
sels for the destinations of relative and un-
itional jump instructions. If you were
riting a program directly in machine code,
alternative would be to work out the
merical addresses of the destinations.

The most common format for an assembly
guage listing is to show three columns of
formation. Alongside the mnemonic in-
ructions it gives (in hexadecimal) their
nachine code equivalents and the addresses at
which they are stored.

MACHINE ASSEMBLY
CODE LANGUAGE
INSTRUCTIONS INSTRUCTIONS
o A583 LDA $83
19EC A200 LDX #0
1 8696 STX $96
19F0 A204 LDX #4
19F2 8697 STX $97
19F4 A0 00 LDY #0
19F6 9196 LOOP STA ($96),Y
~ 19F8 cs INY
19F9 DO FB BNE LOOP
~ 19FB E696 INC $96
~ 19FD A6 96 LDX $96
19FF EO0 08 CPX #8
1A01 DO F3 BNE LOOP
1A03 60 RTS

ass 22

assembly language A language for
writing machine code programs in which
cach machine code instruction is represented
by a mnemonic. Assembly language instruc-
tions consists of operators and operands -
the mnemonics themselves and the data or

addresses they operate on. The operand part of

the instruction also indicates what addressing
mode the operator is in.

Additionally, assembly language instruc-
tions may also contain variables, labels and
comments. Labels are the equivalents of line
numbers in BASIC. Variables, likewise, have
the same function as they do in BASIC. Com-
ments are usually preceded by semi-colons and
are the same as REM statements.

Although numbers can be given in decimal
most machine code programmers find it more
convenient to use hexadecimal.

Before a program written in assembly lan-
guage can be executed it must be converted
into machine code by an assembler. The terms
source code and object code refer respectively
to the program before and after it has been
converted.

ATN A numeric function used to find an

att

igle whose tangent is already known. The
sult, the arctangent, is given in radians. It
an be converted to degrees by multiplying
0/7. For example, 30 degrees in radians is
).52359878 and its tangent is (.57735027
PRINT ATN(0.57735027) gives 0.52359878
'PRINT ATN(0.57735027)>180/= gives 30
Associated keywords: TAN; SIN; COS.

ack/decay The first two phases of a
und envelope. In the attack phase, the
lume of a note rises from zero to its max-

num level, which is set before the envelope is
defined. During the decay phase, the volume
drops from its maximum to the level set for
he sustain phase. Registers 54277, 54284, and
4291 control the attack/decay rates for voices
1, 2 and 3. The duration of the attack and
gccay phases is determined by the top and

yottom four bits in each register. To set these
rates, find the value (1st column) correspond-
ing to the desired attack rate, multiply this by
16 add to it the value of the decay rate.
A 500 millisecond attack rate and a 300 milli-
second decay rate gives 10%16+8=168, so for
wvoice 1 (register 54277):

POKE 54277, 168

aud 24
VALUE ATTACK RATE DECAY/RELEASE RATE
[} 2 millisecond 6 millisecond
1 g ey (e [
2 BB s 488 s
3 [T T2 . sale
Bl D Ny
5 86 =2 1681 1S
6 B8 _ .2 204 s
7 . o L e
8 00 —= 300 —
9 V.o ——— fis, e
10 500 1.5 second
1 800} st 2 e
12 1 second < P o
13 LR gy L
14 1 = 18—
15 8 2N L

See sound; sustain/release; envelope.

audio/video port Connects the computer
to a monitor or a hi-fi system. Sending the
SID chip’s sound output to an amplifier in-
stead of a TV loudspeaker generally improves
the sound quality.

BAD DATA An error message: the pro-
gram has received a string when it expected a
number, e.g. after a READ.

BAD SUBSCRIPT An error message: the

subscript in an array variable is too big.

bank switching A mecthod of giving a

ymputer more than 64K of memory. 8-bit

roprocessors, like the 6510, can only
ress a maximum of 64K. The Commodore
however, has 64K of RAM and 20K of
M. It manages the extra memory by
: ‘,’tching banks of 4 or 8K in and out of the
saame address space. Thus, normally the area
rom 40960 to 49151 is occupied by the BASIC
rpreter ROM. But it can be switched out
leave an extra 8K of RAM free for machine
pde programs. Similarly, the character
snerator ROM is switched in and out of the
ea from 53248 to 57343. This area is also
occupied by the colour memory and I/O

M.

BASIC (Beginners All-purpose Symbolic In-
struction Code) The most commonly used
high-level language for home computers.
On the Commodore 64 a BASIC interpreter
i built-in and allows programs to be typed in
or loaded into memory as soon as the
machine is switched on.

BASIC extensions Programs which add
extra commands to the resident BASIC's set of
commands. They are supplied on cassette or
disk, or, like Simon’s BASIC, in cartridge

bas 26

form. The extensions usually provide graphic
and sound commands, programming utili.
ties, and sometimes structured program-
ming commands.

BASIC stack Anarca of RAM used by the
BASIC interpreter to store addresses. When
BASIC executes a GOSUB instruction it
stores its address on the BASIC stack. When it
meets a RETURN command it removes the
address from the stack and branches back to
the command after the GOSUB. The addres-
ses cnable BASIC to keep track of where it
branches from.

A GOSUB command within a subroutine is
known as a nested GOSUB.

BASIC handles nested GOSUBs by storing
cach address in turn on top of the previous
address. Like the microprocessor’s stack it
then operates on the last-in, first-out principle
and takes addresses from the top of the stack
downwards. As the stack is limited to 256
bytes it is possible (but unlikely) for a program
to run out of space on the stack by nesting too
many GOSUBs. This produces an ‘OUT OF
MEMORY' error message.

Failing to end a subroutine with a RE-

vice to another. Usually it is taken to mean
number of bits passgd per second. It is
then given as the speed of a computer’s
~cassette storage. On the Commodore 64,
_programs are saved and loaded at 300 baud.

BCC A 6510 instruction mnemonic which
“causes a branch if the carry flag is set to 0. This
Jinstruction has only one addressing mode,
relative addressing. It can branch to any loca-
tion 129 bytes forward or 126 bytes backward.

Status register N V. BoD | SEC

messingmode assembly language form | op No. No.

code | bytes |cycles
relative BCC operand 90 2 =

* Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.

BCS A 6510 instruction mnemonic which
causes a branch with relative addressing if
the carry flag is set to 1,

beq 28

c.g.:
SEC
BCS LABEL
sets the carry flag to 1 and causes a branch to
the LABEL address.
Status register N .V B, D ; &

|addressing mode | assembly language form | op No. No.

relative BCS operand BO 2 2

* Add 1 if branch occurs to same page.
Add 2 if branch occurs to next page.

BEQ A 6510 instruction mnemonic which

causes a branch with relative addressing if

the zero flag is set to 0. Often used after a
comparison instruction, €.g.:

LDA
CMP 465
BEQ LABEL

checks whether location FB contains the
ASCII code for the letter A (65). If it does,

Status register NECY e SE

ddressing mode bly language form | op No. No.
code | bytes |cycles

relative BEQ operand FO 2 e

* Add 1 if branch occurs to same page.
Add 2 if branch occurs to next page.

icn the zero flag is set to @ and the program
ranches to the LABEL address.

inary A number system which uses only
wo digits, # and 1. Since data is stored as a
eries of binary digits (bits) binary is fun-
mental to all computer operations. In par-
cular, the microprocessor works in binary
rithmetic.

ust as the standard number system (deci-
al) uses ten digits and is said to be to the base
), 50 binary numbers are to the base two.
1is means that the value of each binary digit,
assing from right to left, increases by a power
ftwo. In other words cach digit is worth two
mes as much as the digit to its right. To
onvert a binary number add up its column
ues, ¢.g.:

2864 32 16 8 4 2 1

|1 [ofo[1][1]0]1]=64+8+4+1=77

nary coded decimal (BCD) A way of
presenting decimal numbers in machine
ode. In BCD form each decimal digit is
epresented by 4 bits, e.g. 36 in BCD is
110110: 0011 0110

3 6

bit R

By this method a byte can store a numbg,
from 0 to 99. When the 6510 microprocesso,
has been put in decimal mode by a SED
instruction, it adds and subtracts numbers i,
BCD form. In binary, 4 bits can store ;
number from @ to 15. BCD is therefore lesg
efficient in using memory space. For thig
reason it is rarely used except in certain busi-
ness and scientific applications.

bit Each Blnary digiT is known as a bit and
can either have the value 0 or 1. This is the
smallest unit of computer memory. In electro-
nic terms bits can be seen as switches which arc
either on or off. Most memory operations arc
performed on bytes, but it is sometimes
necessary to alter or examine individual bits in
a byte. In such cases the bits are referred to by
the numbers @ to 7, with the least significant
bit, on the right, being bit 0.

bit No. (4 6 5 4 3 2 i 0
128 | 64 | 32 | 16 8 4 2 4]

bit value

BIT A 6510 instruction mnemonic which
copies bits 6 and 7 of a specified memory
location into the N and V flags in the status
register. It also performs a logical AND with

bit

e contents of the accumulator and sets the
ero flag accordingly. If the memory byte
ND the accumulator equals () then the zero
g is set to 1. Note that BIT only alters the
us register and not the accumulator or
pemory byte. It i1s often used before the
ch instructions BPL or BMI, and BVS or
BVC.

Status register NeVL.B Dol #2.C
My Me = =~ 3 (0=
assembly language form | op No. No.
code | bytes |cycles
BIT operand 24 2 3
BIT operand 2C 3 4

bit map mode This mode gives high re-
lution graphics with 320 pixels across by
down. In character mode cach character
s represented in memory by its code. By
~contrast, in bit map mode each pixel is repre-
sented by a bit. Bit map mode is selected by
entering ‘POKE 53265,PEEK(53265) OR 32'.
This sets bit 5 in the VIC chip’s control
register at 53265 to 1. To turn it off set bit 5 to
® with ‘POKE 53265, PEEK(53265) AND
- 223’ It is now necessary to tell the VIC chip
where the bit map is located. ‘POKE
53272,PEEK(53272) OR 8’ puts it at 8192. The

bit 32

area froni 8192 to 16191 now serves as the high
resolution screen memory.

In this mode this POKE also makes the are,
from 1024 to 2047 act as the bit map colour
memory. Note that 1024 is normally the start
of screen memory in character mode. Each
byte in the colour memory controls the colour
of a group of pixels in an 8 by 8 character
space. Unless multicolour bit map mode is
selected all the pixels in an 8 by 8 group take
the same colour. In this respect the bit map
colour memory acts in the same way as the
standard colour memory. The difference is
that it is also possible to set the background
colour for each group of pixels. The lower bits
of a byte in colour memory control the colour
of the background, and the top 4 bits control
the pixel colour. For example, ‘POKE
1024,33’ colours the pixels in the top Jeft hand
* character space red, and makes the background
white. It does this by giving the lower 4 bits
the value 1, the colour code for white, and
the top 4 bits the value 2, the colour code for
red. To set the foreground and background
colours for an 8 by 8 block of pixels, use the
following formula ‘POKE CB, FCx16 +
BC’. *CB’ is the corresponding byte in colour

bit

emory, ‘FC’ is the colour code for the
preground, and ‘BC’ is the background col-
pur code.

The BASIC instruction PRINT does not
york with high resolution graphics. Nor does
he CLR/HOME key operate. Instead, to
Jear the screen, each byte in the screen mem-
ory (8192 to 16191) must be set to 0, and the
bytes in colour memory (1024 — 2047) must
se given the same value. This program switch-
on bit map mode and then clears the screen,
making the background colour red. Any pixels
which are set later will appear in white.

10 REM TURN ON BIT MAP MODE
20 POKE 53265,PEEK(53265) OR 32
30 REM PUT START OF BIT MAP AT
A 8192

40 POKE 53272 PEEK(53272) OR 8

50 FOR N = 1024 TO 2047

60 POKE N,18:REM COLOURS RED AND
WHITE

70 NEXT

80 FOR N = 8192 TO 16191

90 POKE N,0:REM CLEAR SCREEN
100 NEXT
A pixel's position can be described in terms
of its X and Y coordinates. The X coordinates

2

bit 34

range from left to right, from 0 to 319. Y
coordinates from top to bottom run from 0 to

o COLUMN® COLUMN 1 COLUMN 39
byte 0 byte 8 byte 312
byte 1 byte 9 byte 313
byte 2 byte 10 byte 314
ROW | byte3 byte 11 byte 315
1 byte 4 byte 12 byte 316
byte 5 byte 13 byte 317
byte 6 byte 14 byte 318
byte 7 byte 15 byte 319
Row |_bvte320
| e BIT MAP SCREEN MEMORY
byte 322 ORGANISATION

Turning on (or plotting) a particular pixel
involves setting its corresponding bit to 1.
First it is necessary to work out which byte in
tl}:c bit map (screen memory) holds the bit,
thus:
B=8192+320xINT(Y/8)+8xINT(X/8)+(Y AND7)
where X’ and ‘Y’ give the pixel’s coordin-
ates and ‘B’ is the address of the byte required.
This formula is based on the way the screen
memory is organised. Each byte has 8 bits
which define 8 pixels. The first byte at 8192

Qi

'ﬂgﬁnes the first 8 pixels along the top row, the
second holds the data for the first 8 pixels in
the second row, and so on down to the cighth
row. The next block of 8 bytes define the
pixels in the next character space along. Thus
the ninth byte represents the second row of 8
ixels across the top of the screen.
" The bit corresponding to a pixel at a given
byte is calculated by ‘BIT = 7 —(X AND AP
To plot the pixel at location X, Y set the bit to
1 with ‘POKE B,PEEK(B) OR (21 (7—(X
AND 7)))’ where ‘B’ is the address of its
corresponding byte. To turn off a pixel use
‘POKE B,PEEK(B) AND (255 — 21 (7—(X
AND 7)))’. _ .

For a demonstration of high resolution
graphics add the following lines to the pro-
gram above. The resulting program calculates
two random points on the screen and then
draws a line between them. To stop the pro-

ram and return to the normal display press
RUN/STOP and the RESTORE key
together.

110 X1=RND(0)>100:X2=RND(0)>100+219

120 Y1=RND(0)>200:Y2=RND(0)>200

130 M=(Y2-Y1)/(X2—X1)

140 C=Y1-X1xM

bit 36

150 FOR X=X1 TO X2

160 Y=X*M+C

170 GOSUB 200

180 NEXT

190 GOTO 110

200 REM PLOT PIXEL AT XY

210 B=8192+320xINT(Y/8)+8>INT(X/8)+

(Y AND 7)

220 POKE B,PEEK(B) OR (21 (7—(X AND 7)))

230 RETURN

BASIC is comparatively slow in handling
high resolution graphics. For a faster responsc
use machine code or graphics commands as
supplied by BASIC extensions.
bitwise Sce AND.
BMI A 6510 instruction mnemonic which
causes a branch with relative addressing if

the negative flag is set to 1; otherwise the next
instruction is executed.

Status register Nb VN D 250

addressing mode [assembly language form | op No. | No.
code | bytes |cycles

relative BMI operand 30 2 2"

* Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.

"BNE A 6510 instruction mnemonic which

causes a branch with relative addressing if
?c zero flag equals 0. Often used to create a
Joop, €.g.:
' LDX #25
LABEL —

DEX

BNE LABEL
BNE causes the program to branch back to
LABEL 25 times until X=0 and the zero flag is
setto (.

Status register Ny M aniB . D aliss 750G

laddressing mode | assembly language form | op No. No.
code | bytes |cycles

relative BNE operand DO 2 2"

* Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.

BPL A 6510 instruction mnemonic which
causes a branch with relative addressing if
the negative flag is set to (0. This instruction is
the opposite of BML

See overleaf,

bre 38

Status register My SB*aD A1 2MC

addressing mode | assembly language form | op No. No.
code | bytes |cycles

relative BPL operand 10 2 e
* Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.
BREAK An crror message: the STOP key
has been pressed.

BRK A 6510 instruction mnemonic which
forces an interrupt. When the program ex-
ecutes a BRK instruction it sets the break flag
to 1, pushes the program counter (plus one)
and the status register onto the stack, and
then passes control to a BRK service routine.
The vector for this routine is located at 790
and 791.

BRK is often used to provide a debugging
facility. By intercepting the BRK vector a
programmer can insert a routine to display the
contents of the machine’s registers. The pro-
gram can then be interrupted and examined by
inserting BRK instructions at selected points.
As the value of the program counter is stored
on the stack it is easy enough to calculate the
return address and resume execution.

bvec
Status register NN IB 4D, | & i
S e T e
ing mode | assembly language form | op No. No.
code | bytes |cycles
BRK 00 1 7

puffer A buffer is a temporary storage area
in RAM used for holding data when it is
uansfcrrcd from one part of the system to
another, c.g. programs are loaded into the
computer via the cassette buffer.

)

‘bug An crror in a program cither causing it
to stop or preventing it from doing what it is
intended to do. Most programs in their early
stages of development contain bugs. Few peo-
ple can write a long program that runs per-
fectly the first time. Debugging a program
often takes as long as writing it. Syntax
errors arc usually easy to cure, and any bug
that produces an error message can, gener-
ally, be tracked down without too much
trouble. The most stubborn bugs are those
that do not cause the program to crash.

BVC A 6510 instruction mnemonic which
causes a branch with relative addressing if
the overflow (V) flag is set to @. This instruc-

F

bvs 40

tion is used in signed arithmetic operations.
See two’s complement.
Status register N VB DT 2C

|addressing mode | assembly language form | op No. No.
code | bytes |cycles
BVC operand 50 2 i

* Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.

relative

BVS A 6510 instruction mnemonic which
causes a branch with relative addressing if
the overflow (V) flag is set to 1. Used in signed
arithmetic operations when the sign of a num-
ber has been changed.

See two’s complement.
Nty S ERIp Rz e

Status register

addressing mode | assembly language form | op No. No.
code | bytes [cycles

BVS operand 70 2 2

* Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.

relative

byte The basic unit of computer memory.
One byte is made up of 8 bits. 1024 bytes form
one kilobyte, usually abbreviated to K.

One byte can hold a number from @ to 255.
It takes 2 bytes to store any number up to

!; car

| §5535. The byte with the higher value is
termed the most significant byte, while the
pyte with the lower value is the least signi-
ficant byte. Each byte in the computer’s mem-
ory has an address which specifies its location.

CAN’T CONTINUE An error message:
the CONT command will not work, because
either the program has been altered, or it
contains an error.

cartridge A plastic box which plugs into
the computer and holds a program in ROM.
Because the program is stored in ROM it is
instantly available as soon as the cartridge is
plugged in. The program is usually written in
machine code and takes over the top 8K of the
BASIC program area, lcaving the user with
30K RAM rather than the usual 38K. Word-
processors, BASIC extensions, games, and
other languages such as FORTH are some of
the programs to be found on cartridge. If a
program is used regularly this is often a more
convenient form of storage than cassette or
disk: cartridges are more durable and can be
left plugged into the cartridge slot, ready for
use when the machine is turned on.

cas 42

cassette The cheapest form of data stor-
age. Cassette recorders enable the computer to
store programs and data files on cassette tape
so that they can be loaded into RAM at a later
date. Unlike most other home computers the
Commodore 64 only takes Commodore’s
own make of cassette recorder, the Datasette.
SAVEing, LOADing, and locating programs
on cassette is relatively slow in comparison
with other forms of data storage such as disk.
Unless a program is located by winding the
tape forwards or backwards, the computer
searches for a program at the same speed at
which it loads programs in.
See cassette files; fast loading.

cassette file Sequential files are the only
type of data files that can be stored on cassette.
They are written to tape with the commands
OPEN, PRINT#, and CLOSE. Creating a
cassette file requires the following steps:

(1) OPEN the file. The third parameter of the
OPEN command, the secondary address or
command number, is normally 1 to indicate
that the file is being written rather than read. A
value of 2 means that an end of tape marker is
added to the end of the file when it is closed.

‘ﬁg cas

8 Any attempt to read other files after an end of
rape marker will cause a ‘FILE NOT OPEN’
message.

(2) Write to the file using PRINT#.
(3) CLOSE the file. The CLOSE command
places an end of file marker at the end of tape.
[fit is not given data may be lost.

Example:

10 OPEN1,1,1,"FILENAME"

20 FOR N=1 TO 10

30 INPUT A$
40 PRINT#1,A8
50 NEXT

60 CLOSE1

When a file is read in to memory, the
secondary address must be zero. INPUT#
reads each record into a variable, GET# reads
a character at a time, e.g.:

10 OPEN1,1,0,"FILENAME"

20 FOR N=1 TO 10

30 INPUT+#1,A8:PRINT A$

40 NEXT

50 CLOSE1

This program simply reads records in and
prints them on the screen. Usually they are
stored in an array.

If the number of records on the file is not

cha 44 N

known, the BASIC command STATUS can
be used to search for the end of file marker,
e.g.:

20 INPUT#1,A$:PRINT A$

30 IF ST<>64 THEN GOTO 20

channel A sound output. The SID chip
has three channels which can produce sounds
singly or together. Each channel is controlled
by its respective sound registers. Channels arc
often referred to as voices.

character code The code by which a
character is represented in memory. In fact the
Commodore 64 uses two sets of codes, screen
codes and ASCII codes, but the term charac-
ter code is generally taken to mean screen
code. Each code is a number between () and
255 and can be stored in one byte.

character designer A program which
allows the user to design characters on an 8 by
8 grid by moving a cursor around with the
keys or a joystick. Once one or more charac-
ters have been designed the program displays
the numbers which define each character - to
be held in DATA statements. Or it may offer
the option of storing the definitions on tape or

cha

k as a data file. Sprite designers are pro-
grams which provide a similar facility for
sprites.
character generator ROM The arca of
memory where the character definitions are
held. When a character is displayed on the
screen the VIC chip reads its definition from
the character generator. As ecach character
‘occupies an 8 by 8 matrix of pixels, 8 bytes (64
bits) are needed to define one character. 256
definitions for the first character set (upper
case/graphics) are stored in ROM from 53248
to 55295; locations 55296 to 57343 contain the
definitions for the second set (upper/lower
case). The definitions are stored in order of the
characters’ screen codes. Thus the screen code
for the letter B is 2, so the 8 bytes which define
it are found from 53248 + 2%8 onwards. The
definition of a character with screen code X
starts at
53248 + (8% X) for character set 1
55296 + (8% X) for character set 2
Normally, the character generator ROM can-
not be accessed from BASIC, and the area
from 53248 to 57343 is occupied by RAM.
Locations 53248 to 53293, for example, hold

cha 46
ADDRESS BIT PATTERN DECIMAL
64 16 4 1
128 32 8 2
53256 00011000 24
53257 00111100 60
53258 01100110 102
53259 01111110 126
53260 01100110 102
53261 01100110 102
53262 01100110 102
53263 00000000 0

the VIC registers, but within a program it is
possible to switch the ROM in so that charac-
ters can be copied into RAM.

See user defined characters; bank
switching.

character mode The normal display
mode, in which the screen has 25 rows of 40
character spaces. Each space can contain any
of the symbols on the keyboard. When the
computer is turned on the keyboard gives
upper case letters. Pressing the SHIFT key
displays the graphics characters at the right
side of the keys, while the graphics characters
at the left side of the keys can now be obtained
by pressing the Commodore key. If the Com-
modore key and SHIFT key are pressed the
display switches to upper and lower case.
See character set; colour.

e

47 chr
character set The set of all the characters
which can appear on the screen. Most of them
are available from the keyboard, but a few can
only be displayed by POKEing their screen
codes into memory.

There are two character sets, but only one
can be used at a time. The first gives upper case
and graphics characters; the second which is
switched on by pressing the Commodore
key and SHIFT key, holds upper and lower
case and other characters. In addition it is
possible to define a new character set. (See
user defined characters). To switch character
sets in a program PRINT the required control
character, c.g. ‘PRINT CHRS$(14)’ selects
upper/lower case. ‘PRINT CHR$(142)’ selects
upper case/graphics.
character space An 8 by 8 block of dots
or pixels — the space occupied by one char-
acter.

See character mode.

CHR$ A string function — the opposite of
the ASC function. CHR$ generates the char-
acter associated with an ASCII code. As its
argument it takes a number between () and
255, e.g. as the code for the letter A is 65, so

chr 48

PRINT CHRS$(65) prints A on the screen.
CHRS is used in the following program to
print out all the graphic characters on the
keyboard.
10 FOR N=96 TO 127
20 PRINT CHRS$(N);
NEXT

40 FOR N=161 TO 191

50 PRINT CHRS$(N);

60 NEXT

Generally to print a character or string of
characters it is simpler to enclose them in
quotation marks rather than use CHRS. Thus
PRINT “EGG” has the same effect as PRINT
CHRS$(69); CHR$(71);CHR$(71) but is easier
to use. But CHRS$ is useful for handling
characters that are not easily printed from the
keyboard, such as certain control characters.
This program uses character 14 to switch all
the letters on screen to lower case. When a key
is pressed it then prints character 142 which
switches them back to upper case.

10 PRINT CHR$(14)

20 PRINT "TEST”

30 GET AS$:F A$="" THEN 30

40 PRINT CHR$(142)

CHRS$ also provides a way of testing

cli

‘whether a function key has been pressed.

CLC A 6510 instruction mnemonic which
SLears the Carry flag, setting it to 0. It is
ways used before an ADC instruction when
ewo single byte numbers are to be added
CthCr.

CLC can also force a branch, e.g.:

CLC
- BCC LABEL
4 Status register) A T e ks g
ﬁsing mode | assembly language form | op No. No.
L code | bytes |cycles
implied CLC 18 1 2

CLD A 6510 instruction mnemonic which
CLears the Decimal flag, setting it to 0. It
returns the 6510 microprocessor to binary
mode after being in decimal mode.

See SED.

Status register N VB WDl & T
- - -0

laddressing mode | assembly language form | op No. No.
code | bytes |cycles

implied CLD 08, |p.2 2

CLI A 6510 instruction mnemonic which

clo 50)
enables IRQ interrupts by setting the interrupt
flag to 0.
See SEL
Status register NG EE S LD SR
LTHE g =L
addressing mode | assembly language form | op No. No.
code | bytes |cycles
implied CLI 58 1 2

clock A hardware timing source which
sypchroniscs operations within the computer’s
microprocessor. The rate at which the clock
emits pulses is measured in megahertz (MHz).
One megahertz equals one million pulses per
second. Roughly speaking, the higher a com-
puter’s clock rate is, the faster it can process
data. The time taken for the microprocessor to
carry out a machine code instruction is given
in clock pulses or cycles. For example, the
instruction INY takes 2 cycles. As the Com-
modore 64’s 6510 microprocessor runs at 1
MHz, this instruction takes two millionths of a
second to execute.

CLOSE A BASIC input/output statement
used to close a channel previously OPENed
to a peripheral device. For example, when a
data file has been written to or read from tape

disk it must then be CLOSEd. Although
pot always necessary, it is good practise to
CLOSE a channel when it is no longer re-

i This command must be followed by the
Jogical file number which identifies a channel,

gCLOSE 3
CLOSE J
- CLOSE 2xX
Associated keywords: OPEN; CMD;
GET#; INPUT3#; PRINT #.

BLR A BASIC statement: on top of the area
of memory occupied by a program itself, the
computer takes up RAM space to store the
program’s variables, arrays, and user-defined
nctions (See DEF FN). CLR CLeaRs these
from memory, but leaves the program un-
“touched. It also frees the RAM occupied by
files and the BASIC stack.

A CLR operation is automatically carried
out when the RUN command is entered. This
means that before numeric variables are
assigned a value within the program, the com-

!putcr gives them a value of zero and makes
string variables empty. The following pro-

1

cir 52 '

gram shows the CLR statement in action:
10 A=7
20 A$="HELLO"
30 PRINT AA$
40 CLR
50 PRINT AAS$
Associated keywords: RUN; NEW.

CLR/HOME key Takes the cursor to the
HOME position at the top left-hand corner of
the screen. Pressing the SHIFT key and CLR/
HOME together homes the cursor and clears
the screen at the same time. To perform thesc
actions 1n a program enter CLR/HOME as a
control character or use its ASCII code with

CHRS. e.g.:
10 PRINT "&2”
and

10 PRINT CHR$(147);
have the same effect as pressing SHIFT and
CLR/HOME.
10 PRINT "H"
and
10 PRINT CHR$(19);
take the cursor to the HOME position.

CLV A 6510 instruction mnemonic which
CLears the oVerflow flag. Only used in signed

cmd

arithmetic operations.
~ See two’s complement.

Status register N SRR T TS
Sl e plved o e
essing mode | assembly language form | op No. No.
| code | bytes |cycles
CLv B8 1 2

CMD A BASIC input/output statement.
Normally the computer’s output is directed to
the screen. After a CMD statement, output is
redirected to another device. If the device is a
printer, PRINT and LIST now send text to the
printer instead of displaying it on screen.
CMD must be preceded by an OPEN state-
‘ment, and followed by the file number given
as the first parameter in the OPEN statement,
e.g. ‘OPEN 5,4:CMD5:LIST’ lists a program
to the printer.

~ With tape or disk the main use for CMD,
together with LIST, is in storing a program as
a sequence of ASCII codes. By contrast the
SAVE command stores programs in token
format. In ASCII format a program can be
incorporated as text on a wordprocessor.

~ To stop the effect of a CMD statement, a
CLOSE command on its own is not sufficient:

cmp R

it is necessary to send a blank line to the devic
using PRINT#, e.g. ‘PRINT#5:CLOSES5, 4
cancels the action of the CMD statement to th
printer given in the example above.

Associated keywords: OPEN; CLOSE
PRINT; LIST.

CMP A 6510 instruction mnemonic whic|
CoMPares the contents of a memory locatio,
with the contents of the accumulator and sct
the zero, negative, and carry flags accordingly
CMP works by subtracting the memory loca.
tion from the accumulator but does not alte,
their contents, e.g.:

LDA #27

CMP §$FB

BEQ LABEL

loads 27 into the accumulator and then com-

pares it with the contents of FB. If the content:
are equal then the zero is set to 1; if the
contents of FB are less or greater than 27 the
zero flag 1s set to 0. The carry flag is set to |
before this operation and is only cleared (C=0)
if the contents of memory are greater than 27.
Note that other operations such as LDA set
the zero flag to 1 when the accumulator con-
tains); so in this example:

col
P +00
LABEL
CMP instruction is not necessary
Status register N YR Rl &G
ing mode | assembly language form | op No. No.
code | bytes |cycles
nediate CMP # operand Cc9 2 2
page CMP operand C5 2 3
page, X CMP operand, X D5 2 4
CMP operand CcD 3 4
olute, X CMP operand, X DD 3 4*
olute, Y CMP operand, Y D9 3 &
, X) CMP (operand, X) C1 2 6
s g CMP (operand), Y D1 2 5*

page boundary is crossed.

solour 16 colours are available. In character
mode they are selected in the following ways:
REGROUND cOLOUR. Each character can
¢ a different colour. Pressing the CTRL
sy together with one of the colour keys along
e top row selects one of the first 8 colours.
select one of the second 8 colours press the
Jommodore key and one of the colour keys.
nce a colour has been chosen all future
haracters are printed in that colour until
other colour key is pressed. The current
aracter colour is held in location 646, and it
possible to set a colour by POKEing its

col 7 col
colour code into this location, e.g. ‘POK For details of how to set the colour of high

646,7" makes the next character printed on t]r‘@lutiOH graphics, see bit map mode.
screen yellow. 3

ithi ed i
From within a program colours can also be _golour control characters Used in

_ o . e the same effect
by using colour control characters or altcP™ T.Stat:}rln_t::)S]")T:i?;;k:h}lky cause any

ing the values in colour memor ;s pressing the :) !
g e _further characters to PRINTed in a given
COLOUR: | BLACK | WHITE | RED [CYAN |PURPLE | GREEN | BLUE |YELLOW COlm'“‘ 5 cc e
Inside quotation marks the key presses

cooe: | © 1 |2|3| 4| s |6| 7 whichnormally determine the next character’s

colour instead produce graphics symbols.

LIGHTDARK [MEDIUM| LIGHT |LIGHT| LGHT oL il KEYBOARD DISPLAY
COLOUR: [ORANGE |BROWN [1CHT [DARK IMEDIU! COLOUR AsC!

GREEN | BLUE | GRAY

144 s g
white -]
cooe | 8 | 9 [10|11] 12| 13 [14| 15 red | fera <
ot 159 G n
% purple 156 |
See multicolour mode. freen 30 0
BACKGROUND COLOUR. Location 53281 conblue 1:; -
trols the background colour for the whol!5 129 a B
screen except the border, e.g. ‘POKE 53281, |brown e & = .!:
, =
uses colour code 1 to make the backgroun\ﬂziy 12? o 9
white. mediumgrey 152 8 A
In extended colour mode the backgroun @hgeen I = 4
toleach character space can take a differen jghgrey 155 a =
colour.

BORDER COLOUR. This is controlled by chgis."[‘hf:sc represent the colour control characters
ter 53280, e.g. ‘POKE 53280,4' Pmduces~ and only take effect when the PRINT state-
purple border. b ‘ment is executed,

col 5

e.g.: PRINT "EATEST”

prints the word TEST in yellow. To insert th
control character for yellow press the CTR]
key and 8.

The same characters can be PRINTed b,
using their ASCII codes with the CHRS$ func.
tion.

PRINT CHR$(30)
is equivalent to

PRINT "1 ”

colour memory The area of memor
where the colour codes of characters on screc
are stored. In character mode it runs fron
addresses 55296 to 56295. Unlike screen
memory colour memory cannot be movee
elsewhere.

The colour of characters on screen can be se;
by POKEing colour codes into their corres-
ponding locations in colour memory. When 2
character has already been PRINTed to the
screen its colour can be changed in this way
Otherwise the PRINT statement assigns the
current foreground colour, irrespective of the
values in colour memory.

When characters are displayed by POK Eing
their screen codes into the screen memory it

_ essential to set the corresponding locations
olour memory. If this is not done they take
e same colour as the background and are not
ssible. As an example, the following program
gisplays character set 1 in cach of the 16

PRINT CHR$(147)

FOR N=0 TO 255

POKE 1024+N,N

NEXT

FOR C=0 TO 15

FOR N=0 TO 255

POKE 55296+N,C

NEXT

NEXT

bit map mode the normal screen mem-
ory acts as the colour memory and the area
from 55296 to 56295 is not used.

commodore key The key at the left of
the keyboard which bears the Commodore
ymbol. It has three functions: when pressed
vith the SHIFT key it switches between the
two character sets; when held down while
pressing a colour key it gives the colours with
codes from 8 to 15; when held down while
ﬁ-essing a graphics key it produces the left-

hand graphics character.

compiler A program which converts |

program written in a high level languag, pro

into machine code. Normally, a BASIC pro.
gram is translated into machine code by th
computer’s BASIC interpreter, but the intcr.
preter only operates while the program i
running, converting one instruction at a time
Consequently, interpreted BASIC is compara.
tively slow. By contrast, a compiler converts |
program into machine code before it is ex.
ecuted. Once compiled a program can then by
run or saved as machine code on cassette or
disk. Compiled programs typically run at leas;
ten times faster than normal BASIC program:s.

composite video A type of video signal
which allows a monitor to be used instead of
a television. Normally the video output is fed
through a modulator which raises the fre-
quency of the signal so that it is equivalent to
UHF TV signal. Because composite video
signals are not modulated but sent directly to
the monitor they give a higher quality picture.
See audio/video port.

CONT A command used to restart (CON-

con

) a program after it has been halted. A
TOP or an END statement will halt a
oegram while it is running, as will pressing
. RUN/STOP key. CONT may then be
rered as a direct command to resume execu-
at the next statement. Its principal use is in
jebugging programs. To locate an error in a
srogram it is often a good idea to insert STOP
ements at various stages. When the pro-
am halts you can examine its progress by
srinting out crucial variables. Then you can
o—start by typing CONT. If you edit a line, or
e program has been halted by an error,
ONT will not work. Attempts to resume
program cxecution will produce the error
message ‘CAN'T CONTINUE'.

" The following program simply adds up all
he numbers from 1 to 1000. Press the RUN/
STOP key while it is running. By typing
PRINT N, TT’ you will be able to see how far
thas got. Then type CONT to continue.

- 5 TT=0

10 FOR N=1 TO 1000

20 TT=TT+N

30 NEXT

40 PRINT "THE TOTAL IS "TT

- Associated keywords: END; STOP.

con

control character Characters which
control output to the screen or any other
device. When they are PRINTed they do not
appear on screen but reproduce the effect of
pressing their corresponding keys, e.g. ‘10
PRINT CHR$(14)’ is equivalent to pressing
the RUN/STOP and SHIFT keys. It switch-
es the character set to upper/lower case.

Some control characters can appear in
strings between quotation marks. They arc
represented by graphics characters. (See col-
our control characters; cursor control
characters; reverse characters). Like an
other characters they can be assigned to string
variables, e.g.:

10 A$ = CHRS$(20)+CHRS$(20)

20 PRINT "TWIST"A$"N"
prints

TWIN
20 is the ASCII code for the delete character:
here it has the same effect as pressing the
INS/DEL key twice.

COS A function which calculates the cosine
of an angle. The angle must be given in
radians. To convert an angle in degrees (Y) to
radians multiply it by /180, e.g.:

628

63

10 X=CO0S(Yxw/180)
Associated keywords: SIN; ATN.

CP/M (Control Program for Microprocessors)
A disk operating system which allows a
wide range of business and application soft-
ware to be run. CP/M only works with Z80
microprocessors. On the Commodore 64 it
requires a CP/M cartridge which contains a
Z80 chip.

CPX A 6510 instruction mnemonic which
ComPares the contents of X index register
with the contents of memory. This instruction
acts in the same way as CMP except that the
memory byte is subtracted from the X register
instead of the accumulator.

Status register R ¥ BOD | & G
laddressing mode | assembly language form | op No. No.
code | bytes |cycles
immediate CPX # operand EQ 2 2
zero page CPX operand E4 2 3
‘absolute CPX operand EC 3 4
It is often used inaloop, e.g.:
LDX 200

LAB1 DEX

cpy 64

CPX #100
BNE LAB1

CPY A 6510 instruction mnemonic which
ComPares the contents of the Y index regis-
ter with the contents of memory. It acts in the
same way as CMP except that the memory
byte is subtracted from the Y register instead
of the accumulator. Commonly used to con-

trol a loop.
Status register N V.B:iD Jogds C
|addressing mode | assembly language form | op No. No.
code | bytes |cycles
immediate CPY # operand co 2 2
zero page CPY operand C4 2 3
absolute CPY operand cC 3 4

CTRL key Sclects the first 8 colours when
pressed with keys 1 to 8. CTRL plus key Y
(RVS ON) gives reverse characters; CTRL
and key 0 (RVS OFF) turns them off. Holding
down CTRL after a LIST command slows
down the rate at which program lines arc
displayed on screen.
See reverse characters.

cursor The flashing white square which

S

cur

indicates where the next character typed at the
keyboard will appear on the screen. When a
program 1s running the cursor disappears. Its
reappearance bencath the READY message
shows that a program has ended and that the
computer will respond to commands.

See cursor keys.

‘cursor control characters Whon the
rsor keys are pressed between quotation
Qarks instead of moving the cursor they pro-
“duce control characters. These arc shown as
“graphics symbols, and only take effect when a
RINT statement is exccuted.

iOURSOR KEY SHIFT ASCHl GRAPHICS
KEY CODE CHARACTERS

CLR J 147 k.l

HOME 19 s
cursor up J 145 C

‘cursor down 17

 cursor right 29 1]

~ cursor left 157 [1]

For example:

& 10 PRINT "x4”

sends the cursor to the HOME position and
clears the screen. In other words. within a
program it is equivalent to pressing the CLR/
HOME and SHIFT keys. Another way of

PRINTing these characters 1s to use their

cur 66

ASCII codes with the CHRS function, e.g.
‘10 PRINT CHR$(147)’ has the same effect as
the line above.

Cursor control characters are useful for
fixing the position at which characters are
printed.

10 PRNT’AB @O Q@ OEB"

PRINTs B four rows down from A, two
spaces along.

cursor keys Primarily used in editing a
program line, these keys can take the cursor to
any position on the screen. Any character
typed at the keyboard will appear at the new
position. (See screen editor). Pressing the
up/down and right/left keys moves the cursor
up and to the right. When the SHIFT key is
held down these keys move the cursor down
and to the left. If the cursor keys are pressed
between quotation marks they produce cursor
control characters.

DATA A BASIC statement which when
used in conjunction with the READ state-
ment, holds numeric or string data which will
be needed by a program. The data may either
be assigned to variables of arrays, or used
immediately in the program. For example, one

way of storing a tune is to put the values of the

notes in DATA statements and read them in to

be played.

Each item in a list of data following a

DATA statement must be separated by a

comma. If the list contains two consecutive

commas the computer will interpret this as a

zero or an empty string. Normally string

items do not need to be enclosed in quotes

less the string includes commas, colons,

graphics characters, leading or trailing spaces.

DATA statements can be placed anywhere in a

program but they are usually put together at

¢ end. Here they are used to hold the months

of the year and the number of days in each:

10 FOR N=1 TO 12

20 READ M$,D

30 PRINT M$;” HAS ",D;" DAYS"

40 NEXT

50 DATA JANUARY,31,FEBRUARY,29,
MARCH,31

60 DATA APRIL,30,MAY,31,JUNE,30

70 DATA JULY,31,AUGUST,31,SEPTEMBER,30

- 80 DATA OCTOBER,31,NOVEMBER,30,
DECEMBER, 31

Note that the string data items are read into

a string variable, M$, and the numeric items

dat 68

Into 4 numeric variable, D. Attempts to assign
data items to the wrong variable type are a
common cause of error, and will produce the
message ?SYNTAX ERROR’.

Associated keywords: READ; RESTORE.

data base A computerised filing system.
Database programs allow large amounts of
data to be organised in a file in RAM, and then
saved on cassette or disk. Each file is usually
made up of records which hold sets of related
data. For example, a single record could con-
tain a name, address, and telephone number.
By means of a database, data can be entered or
deleted, formatted, sorted, and — most impor-
tantly — accessed rapidly.

debugging The process of finding and eli-
minating a bug. If a bug brings a program to a
halt the resulting error message usually gives
a clue to its whereabouts. But note that the
crror is not necessarily in the line referred to in
the message, but may be in an earlier line.
Otherwise, a “TRACE' utility is a useful aid
to debugging. It prints out the numbers of
program lines as they are executed, enabling
the user to see which parts of the program are
working correctly. Another technique is to

def

insert STOP statements at crucial points in the
program. When it halts the user can examine
the ‘contents of selected variables by PRINT-
ing them out as a direct command. In this
way the location of a bug can be narrowed
down to one section of the program.

DEC A 6510 instruction mnemonic which

‘DEC $D864° decreases the byte at

0, c.g.

D864,

Status register NV B D b e
laddressing mode | assembly language form | op No. No.
code | bytes |cycles
| zero page DEC operand Cé6 2 5
| zero page, X DEC operand, X D6 2 6
absolute DEC operand CE 3 6
! absolute, X DEC operand, X DE S 7

DEF FN A statement used to create a user-
defined function which can be called later in
the program by the keyword FN. If the same
formula is to be used in several different places
in a program it is convenient to assign it toa
user-defined function. Unlike some versions
of BASIC, on the Commodore 64 you can
only define a mathematical function: DEF FN

def 70

will not handle string functions.

It takes the form ‘DEF FN F(X)’ where ‘F’ is
the name of the function and ‘X’ is a variable.
The variable does not need to be included in
the formula. In the second of these two exam-
ples the variable B is not used in the function:

DEF FN A(C)=9x%C/5+32

DEF FN A(B)=SQR(X»X+YxY)

The first function converts temperature
given in centigrade to fahrenheit by operating
on the variable C, but in the second the value
of the variable B has no effect on the result.

The following program defines a function to
work out the decimal fraction part of a
number:

10 DEF FN F(X)=X—INT(X)

20 PRINT FN F(3.75)

30 PRINT FN F(12/5)

40 A=7:B=3:X=A/B

50 IF FN F(X)<>0 THEN PRINT B;" IS

NOT A FACTOR OF "A

Note that although a DEF FN statement can
be placed anywhere in a program, it must
occur before its corresponding FN statement is
first used.

Associated keyword: EN.

dim
EVICE NOT PRESENT An error mes-

sage: an I/O device such as a printer or disk
rive has not been connected.

DEX A 6510 instruction mnemonic which
DEcreases the contents of the X index regis-
er by one, and sets the zero flag to 1 if the
esult is (). Often used with indexed addres-
ing and to decrease the value of X when it
icts as a loop counter.
Status register M VEEB TID I 2

v

‘ﬂ essing mode | assembly language form | op No. No.
code | bytes |cycles

DEX CA 1 2

JEY A 6510 instruction mnemonic which
DEcreases the contents of the Y index regis-
by one, and set the zero flag to 1 if the
esult is 0. Often used with indexed addressing
see addressing modes) and to decrease the
7alue of Y when it acts as a loop counter.

Status register NY B B T & 8

dressing mode | assembly language form | op No. No.
code | bytes |cycles

DEY 88 1 2

MIM A statement. Before an array can be

dim 72

used in a program it needs to have been set up
by a DIMension statement. It tells the compu-
ter how many dimensions the array has and
how many clements there are in cach. It takes
the form ‘DIM variable (integer, integer,. .)",
ep

DIM C$(5,6)

The variable ‘C$’ gives the array a name and
indicates what type of array it is. In this case it
1s a string array and will only accept strings.
Other types are integer or numeric arrays. The
integers, 5 and 6, specify the number of cle-
ments in each dimension. As the elements arc
numbered from () onwards there is always onc
more in cach dimension than is specified, ¢.g.:
‘DIM A(20)’ defines a numeric array with onc
dimension containing 21 eclements. ‘DIM
B$(3,6)’ defines a 4 by 7 string array. ‘DIM
N%(10,2,15)" defines an integer arr'ay with
three dimensions, 11 by 3 by 16.

A single DIM statement can be used to sect
up more than one array.

10 DIM A$(9),B$(3,5),T(8)
is equivalent to

10 DIM AS$(9)

20 DIM B$(3.5)

30 DIM T(8)

73 dis

A DIM statement may only be executed
‘once in a program. Executing it twice will
cause a ‘REDIM'D ARRAY" error. If you do
not DIM an array before using it the computer
will assume it has 11 elements.

{direct command As direct commands,

single keywords or lines of BASIC can be
~entered from the keyboard and executed im-
mediately by pressing the RETURN key.
Although the command may remain on the
screen the computer does not store it in mem-
“ory after it has been executed. By contrast,
program commands, which are preceded by
line numbers, are stored in memory when the
RETURN key is pressed.

One of the many uses for direct commands
is to make the computer serve as a calculator.

€.
PRINT 3.5%9 + 42

It is also possible to enter multi-statement lines

~directly:

FOR N = 1 TO 1000:PRINT N:NEXT

disassembler A program for converting
machine code into assembly language. By
substituting mnemonics for numerical instruc-
tions disassemblers make machine code pro-

dis 74

grams casier to follow. They are often used to
examine the computer’s built-in programs in
ROM such as the BASIC interpreter or the
operating system.

disk See floppy disk.

disk commands On top of the BASIC
commands for handling data such as SAVE
and GET#, the disk operating system (DOS)
supplies its own commands. These fall into
two groups, disk maintenance commands and
disk utility commands. The first group is as
follows:

NEW formats a disk.
RENAME renames a file.
COPY copies a file.

SCRATCH erases a file.

VALIDATE re-organises the files on disk to

make more space available.

INITIALIZE prepares a disk for use.

LOAD "$" loads the directory which can then

be listed.

Apart frgm ‘LOAD “$”” commands of this
sort are given as command strings after a
PRINT# statement, e.g.:

OPEN 1,8,15

PRINT+1,"SCRATCH:PROG1"

?5 dis
~ erases PROG1

- The disk utility commands are documented
in the Commodore 1541 disk drive User’s
Manual. They include commands for creating
relative files and using the disk drive with
‘machine code.

disk drive A faster and more flexible way
f storing data than cassette. Whereas it may
ke over 10 minutes to SAVE or LOAD a
program on tape, the same process can be
completed in a matter of seconds on disk. In
ddition to this, the disk drive can access data
rapidly at any part of the disk. The other
advantage of disk over cassette is that the disk
perating system (DOS) supervises the way
rograms are stored on disk, thus saving the
user the trouble of locating programs. When a
‘program is saved the DOS finds space for it on
the disk and records its name in the disk
irectory. By LISTing the directory the user
can sec what programs are stored and how
much space is left. The DOS also provides a
set of disk commands for manipulating files
on disk. They include commands to rename a
le, erase it, or copy it.

Only the Commodore disk drive, the 1541,

dis 76

can be connected to the Commodore 64.
Other drives require an interface. Up to 4
disk drives can be linked up to the computer in
a ‘daisy-chain’ arrangement via the serial
port. The type of disk used is a floppy disk.

See sequential files; relative files.
displacement A I|-bytc number follow-
ing a branch instruction which indicates how
far backward or forward the program should
branch.

See indexed addressing.

display mode The way in which charac-
ters or graphics are displayed on screen. When
the computer is turned on it is in character
mode. Within this mode multicolour mode
and extended colour mode can be selected as
options. Bit map mode and multicolour bit
map mode allow high-resolution graphics.

DIVISION BY ZERO An error message:
this is not allowed. It is usually caused by
dividing a number by a variable.

DOS (disk opcrating system). The program
that controls and supervises data storage on
disk, and provides a range of different disk
commands. Unlike most other disk drives,

the Commodore 1541 disk drive contains its
own DOS in 16K of ROM together with 2K
f RAM and a 6502 microprocessor. Whenev-
r a program or data file is stored, the DOS
ccords details of which tracks and sectors
ave been used in the BAM (Block Availabil-
ty Map) which is held at track 18. In this way
t can calculate how much space is available.
The DOS also keeps a list of the names of the
iles on a disk in a directory, which is also
tored at track 18.

mpty string A string variable with no
haracters in it. Use two quotation marks to
empty a string variable, ¢.g.:

10 A = "

10 IF A$="" THEN

END A BASIC statement. When the com-
puter meets an END statement in a program it
stops running the program and returns control
to the user. The only difference between END
and STOP is that whercas STOP indicates the
Jine at which the program has halted END
simply displays the READY message. A prog-
ram will finish when the last line as been
‘exccuted, so it is not necessary to put an END
statement at the end. Within a program it may

env

be used any number of times, as required.

Here it stops the program if ‘NO’ is entered:
100 PRINT "DO YOU WANT TO PLAY

AGAIN?"

INPUT AS

IF A$="NO" THEN END

GOTO 100

110
120
130

999 END
Associated keywords: STOP; CONT.

envelope Dctermines the way a note rises
and falls in volume. An envelope has four
phases, attack, decay, sustain and releasc
(ADSR) and is defined by POKEing the
attack/decay and sustain/release sound reg-
isters. Each type of sound has a characteristic

t
/ peak volume

volume

attack decay sustain release

time

78 W

envelope shape and waveform: For example,
a piano sound rises sharply and then decays
more slowly, while an organ has fast attack
and decay phases but a prolonged sustain level.

EOR A 6510 instruction mnemonic which
performs an Exclusive OR operation between
the contents of the accumulator and the
contents of a memory location, leaving the
result in the accumulator. In an EOR opera-
tion the corresponding bits in two bytes are
mpared. If one bit is @ and the other 1 then
he result is 1; otherwise the result is zero.

Status register Ny MiB Dt 25496
ressing mode| assembly language form | op No. No.
code | bytes |cycles
‘immediate EOR # operand 49 2 2
| zero page EOR operand 45 2 3
zero page, X EOR operand, X 55 2 4
absolute EOR operand 4D 3 4
‘absolute, X EOR operand, X 5D 3 4*
| absolute, Y EOR operand, Y 59 3 4
(indirect, X) EOR (operand, X) 41 2 6
(indirect), Y EOR (operand), Y 51 2 5*

Add 1 if page boundary is crossed.

ORing a byte with 255 (11111111) has the
effect of inverting (or flipping) its bits. Invert-

—b fng a byte gives its complement,

c.g.: Decimal Binary
181 10110101
EOR 255 11111111

74 01001010

error message A mcssage produced by
the computer, indicating a program error,
¢.g.: '10 POKE 1024,300" results in ‘ILLEGAL
QUANTITY ERROR IN LINE 10 since a
location cannot be POKEd with a value grea-
ter than 255. ‘

EXP A numeric function that calculates ‘¢’
(2.71828183) raised to a given power. For
example, ‘EXP(3)" returns 20.855369, the
value of ‘¢’ cubed.

Associated keyword: LOG.

expansion port Also known as the car-
tridge slot, this is a 44-pin edge connector. It
gives access to the Commodore 64’s main
address and data lines, thus providing a large
measure of control over the computer’s func-
tioning and memory configurations. Generally
it is used to take programs in ROM, such as
games, or to connect interfaces to a varicty of
dc.vxccs, c.g. light pens and speech synth-
esisers.

80 ‘381

ext

expression A combination of numbers,
strings, or variables with logical or arithmetic
operators, ¢.g.:

A <> 8B

(A=5) AND (B=6)

Expressions are mainly used in IF. . . THEN
Statements, c¢.g.: ‘'IF A$ = “NAME"
THEN. . ." where A$ = “NAME" is an ex-
pression.

- extended colour mode A display mode
- which allows different character spaces to have
- different backgrounds. In the standard char-
acter mode the screen takes the same back-
tjground colour throughout. In extended colour
‘mode cach space can take one of four back-
~ground colours. Bits 6 and 7 of the corres-
- ponding bytes in the screen memory are used
to hold the colour information. This leaves
ionly 6 bits for the screen code of a character.
As a result, in this mode only the first 64
characters in the character set can be displayed.
! Note that these are the characters associated
- with the first 64 screen codes, not the ASCII
codes.
When a character whose code is greater than
63 is POKEd to the screen it is converted to

F i

ext 82

one of the first 64 characters. The top two bits
of its code are ignored and serve instead to
select the background colour. For example
POKEing code 66 into screen memory dis-
plays the letter B, whose code is 2, with
background colour 1. Normally 66 is the code
for a graphics character. The background col-
ours are selected by POKEing colour codes
into registers 53281 to 53284. The following
table shows which how to set each of the four
backgrounds. Note that characters whose code
is less than 64 take the normal screen colour.

CHARACTER | BACKGROUND BACKGROUND

CODES COLOURNUMBER | COLOUR REGISTER
0-63 0 53281

64-127 1 53282

128-191 2 53283

192-255 3 53284

~ Extended colour mode is controlled by bit 6
in register 17 (53265) of the VIC chip. ‘POKE
53265,PEEK(53265) OR 64’ turns it on.
fP(%tl-(E 53265,PEEK(53265) AND 191’ turns
it off.

EXTRA IGNORED An error message:
too many items have been entered in response
to an INPUT prompt.

‘3 fil

fast loader A program that speeds up the
rate at which the Commodore 64 loads and
saves programs. Normally the computer saves
programs at 300 baud. By the standard of
“many other home computers this a compara-
ively slow rate. Long programs can take over
10 minutes to load. (The computer stores each

rogram twice so that it can check for errors
‘when loading it back to RAM; dispensing
‘with this precaution is enough to double the
Joading rate.) Fast loaders load programs up to
 times faster than normal. They work by
copying the computer’s cassette filing routines
om ROM into RAM and then modifying
em; or by replacing them entirely.
Commercially sold software often includes a
‘short machine code routine at the front of the
tape to fast-load the main program. Programs
“are also available for speeding up the Com-
modore disk drive’s loading rate. Again, the
ommodore disk drive is substantially slower
than drives used with other computers.

le A set of data stored on cassette or disk.
he word data is used here in the widest sense
o include programs as well as the data they
work on. Thus files are sometimes divided

fil 84

into program files and data files. There are two
types of data file, sequential and relative
files. Relative files cannot be held on cassette.
Data files generally store sets of related data.
E.g. alist of addresses or a set of figures.

See database.

FILENOT FOUND An error message: an
attempt has been made ecither to read a file after
an END OF TAPE marker, or to load a
non-existent file from disk.

FILE NOT OPEN An error message:
the OPEN command has not been given pre-
viously.

FILE OPEN An crror message: the file has
already been OPENed.

filter Uscd to suppress or attenuate certain
sound frequencies above or below a cut-off
point. Four registers control the filters. Regis-
ters 54293 and 54294 hold the cut-off frequen-
cy value; register 54295 determines which
voices are to be filtered: and register 54296
selects the type of filter. There are three types:
high-pass, low-pass and band-pass filters.
See opposite.

8

register 54293
BIT FUNCTION:
0-2 filter cutoff value (least significant bits)
3-7 Not used
| register 54294
BIT FUNCTION:
| 0-7 filter cutoff value (most significant bits)
[register 54295
| 87 FUNCTIONS:
0 filter voice 1
1 filter voice 2
b2 filter voice 3
3 filter
4-7 resonance

| register 54296

FUNCTIONS:

ﬂjrr
| o3

volume

4 low pass filter
i 5 band pass filter
high pass filter
turn off voice 3

Indicates whether an event has or has

flo 86

not occurred. Flags are generally represented
by single bits in memory or in a register, and
take a value of either 1 or 0.

See status register.

floating point variables Store wholc
and fractional numbers, and are accurate up to
nine digits, e.g.:

T = 9.88
N = —0.06
F2 = 25

Numbers larger than 999999999 or less than
0.01 are displayed in scientific notation, e.g.:
3567000000000 is converted to 3.567E+12. In
this form numbers are expressed as the pro-
duct of their exponents and a number between
land 10, e.g.:

2500 = 2.5 x 10° = 2.5E+3

0.0000756 = 7.56 x 10°° = 7.56E—5

floppy disk The type of disk used by the
Commodore disk drive. As on many other
home computers, the Commodore drive takes
5.25-inch soft-sectored, single-sided, disks.
Each disk has a storage capacity of almost
170K. Information is stored in concentric cir-
cles known as tracks. Each track is divided into
sectors which hold blocks of 256 bytes. Before

for

a disk can be used it needs to be formatted. In
formatting a disk the disk operating system
efines the tracks and sectors it is going to use.
he Commodore disk format has 35 tracks
vith 17 to 21 sectors.

A numeric function used to call a func-

IN statement. It must be followed by the
name of the function, and a number or numer-
¢ variable in parentheses, e.g. ‘DEF FN
A(X)=(X—32)/9%5" defines function A which
converts Fahrenheit temperatures to centig-
ide. Here are some of the ways it could be
ed:
10 PRINT FNA(66)

10 C=FNA(120)

10 IF FNA(X)=100 THEN PRINT "BOILING”
Associated keyword: DEF FN.

'OR A statement, used together with TO
and NEXT, which tells the computer to re-
peat an action a given number of times: it sets
up a loop. The statements which are to be
repeated are those between FOR and NEXT.
In this example a FOR. . .NEXT loop is used
o print the word TEST five times:

10 FOR T=1 T0 §

for 88
20 PRINT "TEST”
30 NEXT

FOR requires you to specify the following
elements: »
a numeric variable to act as a loop counter

an initial value for the counter

a limiting value
In the example above, the variable “T" acts as
the loop counter. Initially ‘T’ is set to ‘1.
When the program reaches ‘NEXT' it in-
creases ‘T’ by one, until ‘T’ equals ‘5’. Then it
passes on to the first statement after ‘NEXT".

You can use the value of the loop counter
within the loop itself, as in this program which
prints the numbers 200 to 300:

10 FOR N=200 TO 300

20 PRINT N

30 NEXT

It is also possible to supply variables for the
initial and limiting values of the counter. This
program performs the same action as the onc
above, using variables:

10 S=200:F=300

20 FOR N=S TO F

30 PRINT N
40 NEXT
If one FOR. . .NEXT loop is contained in

for

#

another it is known as a nested loop. Here two
Joops are used to print out the multiplication
tables:

~ 10 FOR N=1 TO 12
20 FOR T=1 TO 12
30 PRINT N;” X T = "NxT
40 NEXT
50 NEXT

Normally the loop counter is increased by
ne. By including the STEP statement you can
specify the size of the increment.
See STEP.
Associated keywords: NEXT; STEP: TO.

FORMULA TOO COMPLEX An ecrror

essage: a string or an arithmetic expression is
too complex and should be split into two
arts.

FORTH An alternative high-level lan-
guage to BASIC. Originally devised for con-
trolling external devices, FORTH is now used
for more general purposes. One of its unusual
features is that it allows the user to add new
keywords — called words in FORTH - to its
dictionary. New words are defined as a sequ-
ence of existing words. Not only is FORTH
more flexible than BASIC but it is also much

fre

faster: cach word is compiled before it enters
the dictionary. FORTH is available for the
Commodore 64 on cartridge.

See compiler.

90

FRE A function which returns the number
of bytes in memory which are unused and frec
for your program. It takes the form FRE(X)
where the value of X is unimportant and can
be any number. Somectimes FRE returns a
negative result, in which case add 65536 to find
the actual number of unused bytes.

‘FRE(0)— (FRE(0)<0) %65536’ always gives
the correct positive result. FRE(0) is useful for
finding out how much space you have left for a
program and its variables, or for working out
its length. When the machine is turned on,
38911 bytes are available to the user, The
following program takes up 48 of them. Line
30 prints out the length of the program.

10 REM

20 REM
30 PRINT 38911—(FRE(0)—
(FRE(0)<0) %65536)

frequency Dectermines the pitch of a
sound: the higher the frequency, the higher the
sound. Each voice has a high and a low byte

value into two bytes use:
FL=INT(F/256):FH=F—FL256

vhere ‘F’ is the frequency and ‘LF’ and ‘HF’

are its low and high values, e.g. ‘POKE

54272,135:POKE 54273,33" sets the pitch of

voice 1 to middle C. This note has a frequency

number of 8583, which equals 256x33 + 135.

FREQUENCY | FREQUENCY

LOW BYTE HIGH BYTE
voice1 | 54272 54273
voice2 | 54279 54280
voice3 | 54286 54287

See music note values.

anction A BASIC instruction which per-
orms a calculation on a number or a string.
Che argument of a function must be enclosed
in parentheses, e.g.:

L = SQR(55)

A$ = LEFT$("WEDNESDAY",3)

lunction key The four keys at the right of
he keyboard marked f1 to f7. Each funcn_on
key has an associated CHRS$ code which
llows its keystroke to be tested. Otherwise,
they have no effect. Holding down the SHIFT
key while a function key is pressed gives four

get

more testable keystrokes from f2 to 8.

When a function key is pressed between
quotation marks it produces a graphics charac-
ter. This provides an alternative way of check-
ing for its keystroke, ¢.g.:

10 GET AS:IF A$=CHRS$(133) THEN.
or

10 GET AS:IF A$="3" THEN. ..

On some other computers the function keys
can be programmed to produce a string of
commands, as if they were entered from the
keyboard. This is also possible on the Com-
modore 64, using a machine code routine.

GET A statement which reads a character
from the keyboard into a variable. It must be
followed by either a string or numeric vari-
able. GET MS$ and GET N are examples of
each. If the variable is numeric it expects a
number. Pressing a non-numeric key will then
produce a ?SYNTAX ERROR' message.
GET is similar to INPUT except that it does
not wait for RETURN to be pressed, and does
not display the character it picks up on the
screen. If fact, it does not wait for a keystroke,
and if no key is pressed it assigns zero to a
numeric variable or the empty string to a

get

string variable.

If you want GET to wait until a key is
essed you need to place it in a loop, as in line
10 here:

10 GET AS$:IF A$="" GOTO 10

20 PRINT A$

Strictly speaking, GET does not read the
keyboard but the keyboard buffer. As the
buffer stores keystrokes, GET may return a
haracter even though no key is pressed. It is
ometimes necessary to clear the keyboard
bufter before using GET.

If GET is used to input numeric data it 1s
sften preferable to assign the data to a string
ather than a numeric variable. By doing this
you avoid the risk of crashing the program by
pressing a non-numeric key. The following
input routine only accepts numbers. Note that
it checks whether the RETURN key has been
pressed by looking for its associated character
code, CHR$(13). Then it converts the string
data in B$ to numeric form using the VAL
function.

10 GET AS:IF A$="" GOTO 10

20 IF A$=CHRS$(13) THEN GOTO 60

30 IF A$<"0" OR A$>"9" THEN GOTO 10
40 PRINT AS$;:B$=B$+A$

get

50 A$="":GOTO 10
60 N=VAL(BS)
Associated keyword: INPUT.

GET+# An input/output statement that
works in the same way as GET except that it
inputs data from a peripheral device rather
than the keyboard. It is primarily used for
reading one character at a time from a data file
on tape or disk. GET# needs to be followed
by a logical file-number and a variable, as in
‘GET#2,A$’ or ‘GET#1,N’. The file number
directs GET# to a particular device and must
have been previously specified in an OPEN
statement. In this program GET3# reads 20
characters from a sequential file on tape and
displays them on screen:

10 OPEN 2,11

20 FOR T=1 to 20

30 GET#2,A8$

40 PRINT AS$

50 NEXT

60 CLOSE 2

If the device number in the OPEN state-
ment is 3, GET# reads characters from the
screen. It can be used to dump a copy of the
screen to the printer.

94 ?

Associated keywords: CLOSE; INPUT #;
ORINT #: OPEN.

GOSUB A statement. Like the GOTO
atement, this command (short for GO to a
SUBroutine) transfers control to a different
of the program: it causes the program to
ranch to the line number following the
GOSUB statement. But unlike GOTO, it
remembers where it branched from. When the
ogram meets a RETURN statement it
jumps back to the first statement after the
priginal GOSUB.

In the following example, the subroutine

tarting at line 100 is called three times and is
used to calculate the length of the word stored
n ‘A$’. Note that the END statement at line
70 is necessary to prevent the program running
on to line 100.
10 A$="FLOWER"
20 GOSUB 100

30 A$="IMMEDIATELY"

40 GOSUB 100

50 A$="CONSTANTINOPLE"

60 GOSUB 100

70 END

00 L=LENS$(AS)

got 9¢

110 PRINT AS;” HAS "L;” LETTERS
IN 1T

120 RETURN

Associated keywords: ON; RETURN.

GOTO A statement. Normally when the
computer has executed a statement it they
proceeds to the next one. GOTO followed by
a line number causes it to jump to the linc
specified which may be elsewhere in the prog-
ram. It can also be followed by a variablc.
‘A=200: GOTO A’ has the same effect as
‘GOTO 200

It is often used for skipping onc or two lincs
if a particular condition is not met, as in:

10 PRINT "HAVE YOU HAD ENOUGH?”

20 INPUT AS$

a0 IF LEFT$(AS$,1)="Y" THEN GOTO 50

40 GOTO 10

50 PRINT "GOODBYE"

Within a program, GOTO, like GOSUB.
changes the order in which lines are executed.
But it can also be used as a direct command to
start a program at any given point. GOSUB
300, for example, acts like RUN 300. The
difference is that it does not force a CLR
operation and so leaves the variables intact.

hex

Associated keyword: ON.

graphics Any part of the display that is not
{ ecoyusabla as text, such as sprites, prctures,
es, circles, graphs.

graphics characters Part of the charac-
ter set, these are the non-alphanumenc charac-
ters which are displayed at the front of the
keys. They can be used in the same way as any
other characters in strings and string vari-

ables.

graphics tablet A graphics aid which
allows the user to create graphics on screen by
drawing on a board. Some graphics tablets
(known as digital tracers) work by reproduc-
ing the line traced by a moveable arm. More
sophisticated tablets usc light or pressure sensi-
tive pads, and offer paintbrush as well as line
drawing facilities.

hardware The clectronic and mechanical
components of a computer in contrast 1o its
software.

hexadecimal A number system which

uses 16 digits, 0123456789ABCDEF. repre-
senting the decimal numbers 10 to 15 by the

hex 98

letters A to F. The word hexadecimal is often
abbreviated to hex.

Like any other number system, the value of
a digit depends on which column it is in. As
hexadecimal is to the base 16 the column
values increase in powers of sixteen. Thus the
digit in the first column indicates the number
of units, the second indicates the number of
16s, the third the number of 16X 16s (256), the
fourth the number of 16X16X16s (4096), and
SO on.

DECIMAL HEX BINARY
1 1 1
2 2 10
3 3 1
4 4 100
5 5 101
6 6 110
7 7 11
8 8 1000
9 9 1001

10 A 1010
11 B 1011
12 Cc 1100
13 D 1101
14 E 1110
15 F 111
16 10 10000

To convert a hex number to decimal, first find
the decimal equivalent for any letter digit and
then multiply by its column value, e.g.:

&

hig
B D7 = 13x16 + 7x1 = 215
. F58C = 15x4096 + 5x256 + 8x16 +
L 12x1 = 62860

A simple way of converting a number from
decimal to hex is to break it down into 4096s,
256s, 16s, and units. Then change each num-
ber over 9 into its hex equivalent, e.g.:

248 = 15x16 + 8 = F8
50347 = 12x4096 + 4x256 + 10x16 +
11x1 = C4AB

Because 16 is a power of two, hex serves as a
kind of shorthand for binary. Machine code
programmers find it more convenient to use
than decimal. In hex, four bits can be repre-
sented by a single digit, and all one byte
numbers can be shown as two hex digits. Most
assemblers present numbers in hexadecimal
form.

To distinguish a hex number from decimal,
precede it with a § sign.

e

high-level language A programming
language that needs to be translated into
machine code by an interpreter or a com-
piler before it can be run. A single statement
in a high-level language such as BASIC gener-
ally represents a series of machine code in-

hig 100

structions. Programs in high level languages
are therefore easier to write and understand
than programs written directly in machine
code. Usually they are also slower. Machine
code and assembly language arc sometimes
referred to as low-level languages.

See FORTH; LOGO.

high-resolution graphics A display
mode which gives a screen made up of 320
horizontal dots by 200 vertical dots and allows
cach dot (or pixel) to be turned on or off. In
figh-resolution graphics the pixels are repre-
sented by bits in memory: cach pixel is said to
be mapped on to a bit. The pixels and back-
ground can be assigned any one of 16 colours.
but, as in character mode, normally all the
pixcls in cach 8 by 8 group must take the same
colour. However, more than one colour can be
chosen if the multicolour option is selected.
For setting up a high-resolution screen, see bit
map mode.

IEEE (IEEE-488) Thc ‘I-triple-E is a stan-
dard parallel interface for connecting the
computer to another device, usually a disk
drve. Devices that run on this standard re-
quire an IEEE interface to be plugged into one

01 ill

of the computer’s ports.

F A statement which allows the computer
0 make decisions. Used in conjunction with
THEN it sets up a condition to be tested. IF
he condition is true it executes the statement
fter the THEN statement. IF the condition is
falsc the program passes on to the next line.
(See truth value.) The following examples
llustrate some of the ways in which it is used:
IF A>B THEN PRINT A;” IS ";GREATER
THAN ;"B
IF B$="" THEN B$=A$
IF N=3 THEN GOTO 200
IF W=3 AND X=0 THEN PRINT "I WIN"
ere may be more than one statement after
" THEN, as in
100 IF A$="2" THEN Y=Y+1:GOTO 300
200 GOTO 50
ote that if the condition is not true, i.e. A$
does not equal Z, then the program does not
roceed to the second statement in line 100,
but to line 200.
Associated keyword: THEN.

LLEGAL DIRECT An error message: an
attempt has been to give as a direct command
an instruction that can only be used in a

£

il 102

program, e.g: DEF FN, INPUT.
ILLEGAL QUANTITY An error mes-

sage: a number or variable is outside the
computer’s range. It is often caused by trying
to POKE a value greater than 255.

immediate addressing Trcats the
operand as data rather than the address of
data. Used with the accumulator and index
registers, this mode operates on the byte fol-
lowing the op code. In assembly language the
operand is always preceded by a # character to
show that it is to be treated as immediate data.
e.g. ‘LDA #55’ loads 55 into the accumulator.
and “CPY #120° compares the contents of the
Y register with 120.

implied addressing Indicates that the in-
struction operates one of the registers. In this
mode the operand (a register) is not specified
since it is implied by the instruction itself
Implied addressing instructions occupy only
one byte, ¢.g. INY, CLC, RTS.

INC A 6510 instruction mnemonic which
INCreases the contents of a memory by one,
and sets the zero flag to 1 if the result is 0, e.g.:

INC $C108

103 ind
BEQ LABEL ‘

increases the contents of memory C108 by

one. If its previous value was 255 the zero flag

set to) and causes a branch.

Status register NV B DVl o
.: dd i assembly language form | op No. No.
ressing mode ly languag S Pl s
2 [
zZero page INC operand E6
zero page, X INC operand, X F6 2 6
absolute INC operand EE 3 6
| absolute, X INC operand, X FE 3 4

indexed addressing Adds the value of
the Y or X index registers to a base address
specified by the operand. This gives the effec-
tive address of the byte in memory that thc:
instruction operates on, e.g. ‘STA $C000,Y
stores the contents of the accumulator at loca-
tion CO00 + Y. If Y contains 5 then the
address is C005. In zero page indexed addres-
sing, the operand is only one byte long and the
base address is between () and 255, e.g. ‘LDA
$6F,X’. This mode is often used to process a
block of up to 256 consecutive bytes.

index registers The X and Y registers.
Although their primary use is to provide an
index for addressing modes, they can also

ind 104

transfer data to and from the accumulator or
a memory location. In addition they often
serve as loop counters.

indirect addressing Only used with the
JMP instruction. The two bytes following the
op code give the address of a memory loca-
tion which in turn holds the address of the
Jump destination, e.g. ‘IMP (8C450)’ jumps to
an address whose location is held at C450 and
C451.

INPUT A statement which allows the user
to enter numbers or words into the computer
while a program is running. INPUT reads
characters from the keyboard into a variable.
Unlike GET, it accepts more than one charac-
ter and waits until the RETURN key has
been pressed. To indicate that it is waiting for
input the computer prints a question mark on
the screen. The variable which follows the
INPUT statement must be of the right type.
For example, ‘INPUT N’ expects numbers. If
you enter a letter the error message ‘?REDO
FROM START" appears. It is also possible to
follow INPUT with more than one variable.
In response to ‘10 INPUT A,B,C’ you can
either type in three numbers separated by

105 inp
commas and then press RETURN, or press
RETURN after each. When the computer
expects further input it prints 22",

If text, in quotation marks and followed by
a semi-colon, is inserted between INPUT and
~ a variable, it prints a prompt message on the
screen. When ‘INPUT “ENTER YOUR
NAME "3’ is run, the screen displays ‘ENTER
YOUR NAME 7.
Associated keywords: GET; INPUT#.

INPUT# An input/output Statement. Us-
ing this command is the most common way of
inputting data from a file on tape or disk. It
reads up to 80 characters into a variable until it
reaches a separator — cither a return character
(CHR$13), a comma, or a St:l‘lll-COlOll.
INPUT# must be followed by a file numbcr
previously given in an OPEN statement. Like
INPUT it can take more than one variable,

eg.:
gIY,NPUT#1,A$
INPUT#2,A8,B$,N
- Associated keywords: GET3#; CLOSE;
PRINT#; OPEN.

input/output (I/0) The term covers any
i part of the computer’s hardware or software

|1

ins 106

that is involved in communicating with an
external device, e.g. an I/O port is one that
can both input and output data.

INST/DEL key Uscd to edit a program line
or a direct command. Pressing the INST/
DEL key deletes the character to the left of the
cursor and closes up the line. When the shift
key is held down at the same time INST/DEL
Inserts a space at the cursor position and shifts
the following characters to the right.
See screen editor.

INT An integer function which gives the
integer part of an expression by stripping off
the decimal fraction. For example, ‘PRINT
INT (2.56)" returns 2. If the number is nega-
tive it returns the next lower integer. One of
its many uses is for finding the remainder of a
number after division. This line will give the
remainder when 18 is divided by 5:

PRINT 18—(INT(18/5)x5)
INT does not supply the integer value of an
expression to the nearest whole number. To
do this add 0.5, as in:

10 INPUT N

20 PRINT INT(N-+0.5)

-

107 int

integer variables Store whole numbers
between —32768 and +32767. The names of
integer variables must end with a % sign, e.g.
‘T2%’, ‘N%’, ‘FIRST%’. Operations involv-
ing integer variables are generally slower than
those with floating point variables, but inte-
ger variables consume less memory. BASIC
takes 2 bytes to store an integer variable, and 5
for a floating point variable. If a floating point
number or variable is assigned to an integer
variable, the fractional part of its value is
stripped off, e.g.:
10 T% = 12.08

r 20 PRINT T%

prints 12.

interface The hardware and software that
- allows two devices — usually the computer and
an external device — to be connected. On the

- Commodore 64 the ports at the back of the
- machine provide connections to Com-

Iy

- modore’s own disk drive and printer, but

~ devices from other manufacturers generally
require extra interfaces to be plugged in. These
take the form of cables or cartridges and
accompanying software.

~ interpreter The program which translates

int 108

BASIC programs into machine code. As
machine code is the only language that the
computer’s microprocessor understands,
high level languages like BASIC have to be
converted before they can run. In contrast to a
compiler, the interpreter turns a BASIC pro-
gram into machine code while it is running by
dealing with cach statement in turn. If, for
example, a program repeats a PRINT state-
ment ten times in a loop, then that statement is
interpreted ten times over. As the task of
interpreting takes time, interpreted BASIC
runs substantially slower than low level lan-
guages. The interpreter is itself a machine code
program. In the Commodore 64 it is 8K long
and is stored permanently in ROM at addres-
ses 40960 to 49151.

interrupt When the computer’'s 6510
Microprocessor receives an interrupt signal it
stops cxecuting the current program and
jumps to a routine which handles whatever
caused the interrupt. Then it resumes execut-
ing the program where it left off. Interrupts
enable the 6510 to respond to external events
or carry out regular tasks internally, while a
program is running. They make it possible,

0 iny

for example, to stop a program by pressing the

UN/STOP key: every 1/50th scc. the 6510
is interrupted by a signal from a timer and,
among other things, scans the keyboard and
checks for key presses.

There are three kinds of interrupts: IRQ and
INMI hardware interrupts and a software inter-
rupt caused by the BRK instruction. By
intercepting the routine which handles IRQ
interrupts machine code programmers can add
their own interrupt-driven routines. These
allow a task to be performed independently of
another program.

See raster; interrupt; wedge.

INX A 6510 instruction mnemonic which

INcreases the contents of the X index register
by one, and sets the zero flag to 1 if the result is
0. Used with indexed addressing and to
increase the value of X when it acts as a loop
counter.

Status register NV EB . D, e

laddressing mode | assembly language form | op No. No.
code | bytes |cycles

implied INX E8 1 2

INY A 6510 instruction mnemonic which

irq 110

INcreases the contents of the Y index register
by one and sets the zero flag to 1 if the result is
0. Used in the same way as INX.

Status register NSNEB « D |

AT

)

addressing mode bly language form | op No.

No.
code | bytes |cycles

implied INY o I T]

IRQ A hardware interrupt. The 6510 mic-
roprocessor has two interrupt pins, IRQ and
NMI. Unlike NMI interrupts, IRQ interrupts
can be disabled by setting the interrupt flag in
the status register. The instruction SEI dis-
ables interrupts; CLI enables them. When the
6510 receives an IRQ interrupt it stores the
contents of the program counter and status
register on the stack, and then jumps to an
interrupt service routine via a vector in RAM.
The IRQ vector is located at 788 and 789.

The IRQ service routine is called every
1/50th sec. Its main purpose is to scan the
keyboard and update the interval timer which
handles the TI and TI$ functions. By changing
the address held in the IRQ vector a machine
code program can be inserted into the normal
routine. Such a program is said to be Interrupt-

111 joy

driven.
See time; wedge.

JMP A 6510 instruction mnemonic which
j'u':/ll’s to a new location. JMP has two
ipddressing modes, absolute (direct) and in-
direct. In an absolute JMP the program bran-
ches to the address following the instruction.
In an indirect jump it branches to the address
held in the two bytes following the instruc-
tion, e.g. JMP ($C100)’. If locations C100 and
'C101 hold the address 12288 then JMP bran-
ches to that address. Note that the 6510
microprocessor stores addresses in the order:
least significant byte followed by most signi-
ficant byte. In the example above, C100 con-
tains O and C101 contains 48. 12288 = 48 X
256.

Status register NaV. Bwb! | & (_:
language form | op No. No.
addressing mode | assembly languag oo | by |
absolute JMP operand 4C 3 g
indirect JMP (operand) 6C 3

joystick A movcable stick attached to a
base with a fire button. Joysticks are used
mainly as an alternative to the keyboard for

5

joy 112

game control. There are two joystick ports at
the right of the computer, for any joystick
with a D-type plug. As well as the Commod-
ore’s own joysticks, Atari Jjoysticks can be
fitted.

The Commodore 64 takes digital as opposed
to analogue joysticks. They contain four
switches to register movement and one for the
fire button. Moving the stick left, right, up, or
down, closes a single switch: moving it diago-
nally closes two switches. The values of regis-
ters 56320 and 56321 indicate which switches
are closed or open in joysticks fitted to ports 1
and 2 respectively. One of the first five bits i
set to O when a switch is closed or the firc
button is pressed, and set to 1 when a switch is
open.

address: bit4 bit3 bit2 bit 1 bito
53620 FIRE |RIGHT | LEFT
53621 FIRE |RIGHT | LEFT
bits 5, 6 and 7 not used

joystick :
DOWN| uP 1
DOWN| uP 2

To check the movement of a joystick in port
1 use

D = 15 — (PEEK(56320) AND 15)
D gives the direction shown in the table
opposite.

' 113 joy

DIRECTION

upP
DOWN

VALUE OF D

LEFT
UP & LEFT
DOWN & LEFT

RIGHT
UP & RIGHT
DOWN & RIGHT

WO NOOAWN -6

-

PEEK(56320) AND 16 ‘
returns ® when the fire button is pressed.
ubstitute 56321 for 56320 to read port 2.
The following program shows how a joy-
stick can control movement on screen:
10 SC=1564:CL=55836
20 D=15—(PEEK(56320)AND15)
30 M=0
40 IF D=1 THEN M=-40
50 IF D=2 THEN M=40
60 IF D=4 THEN M=-1

[_—

70 IF D=8 THEN M=1

80 IF SC+M < 1024 OR SC+M >
I 2023 THEN 20

90 POKE SC,32
100 SC=SC+M:CL=CL+M
110 POKE SC.81:POKE CL,0

jsr

120 GOTO 20

JSR A 6510 instruction mnemonic which
causes a Jump to a SubRoutine. JSR is equiva-
lent to a GOSUB instruction in BASIC
When the computer executes JSR it stores the
address of the next instruction on the stack
When the program meets an RTS instruction

it pulls the return address off the stack and
returns from the subroutine.

114

Status register NoaVs BaeD ol #C
addressing mode | assembly language form | op No. No.
code | bytes |cycles
absolute JSR operand 20 3 6
Kernal

The Commodore 64’s o i

system. It performs such tasks as rcrdeil:;l;%
keyboard and printing what is typed on the
screen, loading and saving programs, moving
the cursor, and organising memory resources
(see b:.mk switching). The Kernal is an 8K
machine code program held in ROM from
addresses 57344 to 65535. It consists of a
collection .o_f subroutines, each one handling its
own specific task. The address of each sub-
routine is given in a table known as a jump
table located at the end of the ROM. When the

115

Key

Kernal calls a routine it first consults the table
to find its address. CHROUT, for example is
the subroutine which prints character to the
screen. Its address is held in the jump table at
64590. Many of these routines can be called via
the jump table by machine code programs in
RAM. Together with the BASIC interpreter
OM, the Kernal uses the first 1K of RAM
(locations 0 to 1023) for storing its own vari-
ables.
~ See system variables.

I'\
eyboard buffer Whenevera key is press-
ed its keyboard code is stored in the keyboard
‘buffer, addresses from 631 to 640. The
keyboard buffer enables the user to enter char-
acters while the computer is occupied with
another task. Without it, characters might
sometimes get lost when typed rapidly. The
‘operating system extracts characters from the
‘buffer in the order they were stored. In prac-
tice, they are removed as soon as they are
~ stored. But while a program is running they
~ queue up until a GET statement is performed.
This means that GET occasionally picks up a
character from an earlier keypress. Location
197 holds the code of the current keystroke. It

lan 116
can be used as an alternative to GET for
reading the keyboard. The following program
PEEKSs location 197 and prints the code associ-
ated with each keystroke. If no key is pressed,
the value 64 is returned.

10 K=PEEK(197)

20 PRINT K;"":

30 GOTO 10

LAN Seenetwork.

LDA A 6510 instruction mnemonic which
LoaDs the Accumulator with 2 given valuc
or the contents of a memory location. If) is
loaded the zero flag is set to 1. This mstruction
is probably used more often than any other. It
has 8 addressing modes, of which here are 3:

Status register NEFNG BRSBL | RN
ddi ing mode assembly language form op No. No.
code | bytes |cycles
immediate LDA + operand A9 2 2
zero page LDA operand A5 2 3
zero page, X LDA operand, X BS 2 4
absolute LDA operand AD 3 4
absolute, X LDA operand, X BD 3 4*
absolute, Y LDA operand, Y B9] 4
(indirect, X) LDA (operand, X) Al 2 6
(indirect), Y LDA (operand), Y B1 2 5

*Add 1 if page boundary is crossed.

7 Idy

‘LDA #55" loads 55 into the accumulamr.
‘LDA $FB’ loads the byte at FB into the
: ‘LDA (252),Y’ loads the byte
from the address held at location 252 +Y.
LDAis typically used to transfer dafa to fmd
from memory, cither for storage or for arith-
metic and logical operations.

DX A 6510 instruction mnemonic which
LoaDs a given number or Ehe contents of a
memory location into the X index register. It
s in the same way as LDA but offers fewer
ddressing modes.

Status register NOVWWIBLD: | (PREE C_:
[i languageform| op | No. | No.
\: ddressing mode | assembly languag b Pt B
ediate LDX #* operand A2 g g
zero page LDX operand A6 £ 2
zero page, Y LDX operand,Y B6 .
| absolute LDX operand AE 3 v
| absolute, Y LDX operand,Y BE 3

'Add 1 if page boundary is crossed.

LDY A 6510 instruction mnemonic which
LoaDs a given number or .thc contents of a
memory location into the Y index register. It
acts in the same way as LDA but ofters fewer
addressing modes.

lea 118

Status register NtV B Dl n27 .6
|addressing mode | assembly language form | op No. No.
code | bytes |cycles
immediate LDY # operand A0 2 2
zero page LDY operand A4 2 3
zero page, X LDY operand, X B4 2 4
absolute LDY operand AC 3 4
absolute, X LDY operand, X BC 3 4
* Add 1 if page boundary is crossed.
least significant bit Bit 0, which can

only be worth 1, is the least significant. Bit 7,
the most significant, is also used in some
situations (see two’s complement) as a flag to
indicate negative numbers.

least significant byte Where numbers

greater than 255 need to be POKEd into

memory, two, or occasionally three, bytes arc

used. The number is then stored in the form:
number = Ist byte + 256 % 2nd byte (+ 256
% 256 * 3rd byte)

The first byte is the least significant byte, and

the final byte is the most significant.

LEFTS$ A string function used to extract one

or more characters from a string, starting at

the left-hand end of the string. It has the form:
LEFT$(AS,N)

19 ien

where A$ is the source string and N specifies
he number of characters required, ¢.g.
EFTS(“DICTIONARY"’,7)' extracts the
substring DICTION. If N is zero the function
] an empty string. _

ﬁ ’tl:mtilc follgv\?,ing p%ogram it is used with
MIDS to separate a first name from a surname:
10 INPUT "YOUR FULL NAME"A$

20 FOR N=1 TO LEN(AS)

30 IF MID$(AS,N,1)="" THEN S=N

0 NEXT

g@ PRINT “HELLO ";LEFT$(AS,S)
Associated keywords: LEN; MIDS:

RIGHTS.

LEN A string function which counts the
aumber of characters inda string. For f}):ar:f:;é
h nine letters and one space 1n the
POLN SMITH, so ‘L=LEN(*JOHN
SMITH”)' assigns the value 10to L. ‘

" In the following program, LEN 13 used with
to reverse the letters in a word:

M0 INPUT “TYPE IN A WORD':AS

20 FOR N=1 TO LEN(AS)

30 B$=MIDS(AS,N,1)+BS

40 NEXT

50 PRINT B$

Associated keywords: LEFTS: -
iy i $; MIDS:

I.ET A statement which assigns a value to
variable, as in

LET A$="TABLE"

LET B%=22

LET N=3.65
However ‘LET A$=“TABLE” is the same as
‘A$=“TABLE"". The word LET is optional,
and is often omitted.

Ilg!li pPen A device in the shape of a pen
w.l'uch allows the user to create pictures in
high resolution graphics by moving the tip
around the front of the screen. It can also bc
used to select items from a menu by pointing
to screen boxes. A light pen uses a photosen-
sitive cell to detect the TV’s raster beam. By
sending a signal when the beam passes beneath
it, it enables the VIC chip to work out its
position. The VIC registers 19 and 20 give the
X and Y coordinates of the light pen’s posi-
tion.

_ Befo'rc a light pen can “draw” on the screen.
It requires a program to read its position and
plot the corresponding pixels.

e number Every program line must be
preceded by a line number, which can be from
D to 63999. Lines are deleted by typing the line
number and pressing RETURN. It is a good
idea to number lines in steps of 10 so that new
lines can be inserted later at the numbers in

between.

IST A command which makes the compu-
ter print out a program on the screen, line by
line. If the program is a long one it will scroll
down the screen too quickly to be read. It can
be slowed down by pressing the CTRL key.
To stop it press the RUN/STOP key.

LIST followed by a line number prints a
single line. Or you can list a range of lines:
LIST 120-200

displays all the lines from 120 to 200.

LIST -120

ists a program from the beginning up to line
120. And

LIST 120-
lists the lines from 120 to the end.

When it is preceded by printer commands,
LIST prints a program out on a printer, €.g.:
‘OPEN4,4:CMD4:LIST’. A printout of a
program is generally known as a listing.

loa 122 ‘23 log

LIST is usually entered as a direct command
but can be used in a program.

LOAD (1) A command which transfers a
program from tape or disk into memory. On
its own, LOAD will load in the first program
it finds on tape. It can also be followed b
three optional parameters: LOAD “file-
name”, device, address.

When the file-name is given, LOAD will
look for a particular program: ‘LOAD
"GAME"™ secarches the tape until it finds the
program GAME. If you are loading from disk
the file-name must be specified along with the
device number. 8 is the device number for
disk, 1 for tape. To load the program
““PROG3™ from disk you would enter:
‘LOAD “PROG3" 8. There. is generally no
need to supply a device number for tape
loading. If none is given it is assumed to be 1,
Normally, programs load into the BASIC
program area starting at address 2048. If the
last parameter is 1 then a program will be
loaded at the memory location from which it
was SAVEd. This option can be used for
loading machine code programs or blocks of
data. (See machine code.) To load data files

see cassette files, relative files, sequential
files. When the LOAD is executed as a direct
?(‘)mmand it forces a CLR statement to be
rformed. When it is used within a program
loads and RUNSs another program but leaves
the variables intact. Note that the second

rogram will overwrite the first.
Agssociatcd keywords: SAVE; VERIFY.

| loads next program on tape
Bﬁg "PROGNAME" searches for then loads PROGNAME
LOAD “PROGNAME”, 1,1 | loads program intomemory at the

location at which it saved tron_'n
LOAD AS loads program whose name is held
in AS 3
d "PROGNAME"8 | loads PROGNAME from disk !
tgﬁg "%"8 loads first program found on disk

PRI IAME” 8,1 | loads first program from disk at the
’LOAD i location at which it was saved from

'LOAD"$" 8 loads disk directory

(2) An error message: there is a problem with
the program on tape, e.g. the program has
been corrupted.

local area network (LAN) See net-
work.

OG A floating-point function which calcu-

ates the natural logarithm of a number to the
base ¢. In common with other mathematical

log 124
functions on the Commodore 64, it gives the
result to an accuracy of nine decimal places. To
convert a natural logarithm to a common
logarithm to the base 10, divide it by
LOG(10). For example LOG(5) gives
1.60943791 while LOG(5)/LOG(10) gives
0.698970004, the logarithm of 5 to the base 10.
Associated keyword: EXP.

logical operators AND, OR, NOT.
which can be used with relational and arith-
metic operators, together with strings,
numbers, and variables, to form expressions
which can have a value of “true’ or ‘false’. The
logical operators determine the truth value of
an expression depending on which conditions
are met, e.g. the expression “Y>9 AND X=¢'
is evaluated as true only if *Y" is greater than ‘9’
at the same time as ‘X’ equals ‘0.

Logical operators also act as bitwise oper-
ators, comparing the bits of one number with
the bits of another, e.g. ‘PRINT 18 OR 137’
gives 155,

See truth table.

LOGO A high level language originally in-
tended for educational use. Although some
versions of LOGO are as extensive as BASIC,

125

aws as it moves. LOGO instructions give

e turtle a path to follow, in course of which

draws pictures or patterns on the paper it is

laced on. One of the attractions of the lanl—
ildren i the instructions, such

uage for children is that

s FORWARD, PENUP, PENDOWN,

| P hics. A
is primarily used to create turtle graphics.

Furtr;c" is a small robot which holds a pen and

RIGHT and LEFT, are familiar and easy to

- LOGO is more commonly used to crcahtc
ics on screen, where it represents the

It :5:1 by a small triangle. Like FORTH it has

the merit of allowing the user to dc.tmc new

instructions. For example, the following com-

mands draw a triangle:

FORWARD 50

LEFT 120

FORWARD 50

LEFT 120

FORWARD 50

. LEFT 120 .)
By giving it a name, such as TRIANGLE, this
sequence of commands, can be defined as a
single instruction.) b

- LOGO can be loaded in from cassette, disk,

“or cartridge and run as a BASIC alternative.

Isr 126
LSR A 6510 instruction mnemonic which
moves a ‘byte in the accumulator or a mem-
ory]ocqtnon one bit to the right. Bit 7 becomes
0 and bit) moves into the carry flag. LSR has
the effect of dividing the value of a byte by
two, e.g.: '

LDA #32

LSR

LSR

LSR
leaves 4 in the accumulator.

Status register B VB D 1. Zic
i Tl e

ddi 'g mode | assembly language form op No. No.
code | bytes |cycles
accumulator LSRA 4A 1 2
zero page LSR operand 46 2 5
zero page, X LSR operand, X 56 2 6
absolute LSR operand 4E 3 6
absolute, X LSR operand, X 5E 3 7

machine codg The language understood
by the computer s microprocessor, the 651().
Programs written in any other language need

to be translated into machine code before they
can be executed. -

See interpreter; compiler.
Not only do machine code programs run

127 mac
many times faster than BASIC but they also
allow the programmer to access parts of the
computer that are closed to BASIC. Making
use of the interrupts, for example, is only
possible in machine code. Almost all commer-
p'al software is written in machine code, as is
the computer’s operating system and BASIC
Interpreter.

The 6510 instruction set contains 56
machine code instructions. They are usually
referred to by their assembly language mne-
‘monics, but are stored in memory and ex-
cuted as op codes — 1-byte numbers in the
ge 0 to 255. An instruction may take a
umber of different forms depending on its
iddressing mode.
add memory to accumulator with carry
AND memory with accumulator
shift left one bit (memory or accumulator)
branch on carry clear
branch on carry set
branch on result zero
test bits in memory with accumulator -
branch on result minus
branch on result not zero
branch on result plus
force break
branch on overflow clear
branch on overfiow set

clear carry flag
clear decimal mode

mac
cu clear interrupt disable bit
CLV clearoverfiow flag
CMP compare memory and accumulator
CPX compare memory and index X
CPY compare memory and index Y
DEC decrement memory by one
DEX decrementindex X by one
DEY decrement index Y by one
EOR exclusive-OR memory with accumulator
INC increment memory by one
INX increment index X by one
INY increment index Y by one
JMP jump to new location
JSR jump to new location saving return address
LDA load accumulator with memory
LDX load index X with memory
LDY load index Y with memory
LSR shift right one bit (memory or accumulator)
NOP no operation
ORA OR memory with accumulator
PHA push accumulator on stack
PHP push processor status on stack .
PLA pull accumulator from stack
PLP pull processor status from stack
ROL rotate one bit left (memory or accumulator)
ROR rotate one bit right (memory or accumulator)
RTI return from interrupt
RTS return from subroutine
SBC subtract memory from accumulator with borrow
SEC setcarry flag
SED setdecimal mode
SEI set interrupt disable status
STA store accumulator in memory
STX store index X in memory
STY store index Y in memory
TAX transfer accumulator to index X
TAY transfer accumulator to index Y
TSX transfer stack pointer to index X

128 499 mac

] transfer index X to accumulator
XS transfer index X to stack pointer

TYA transfer index Y to accumulator

Each form has a different op code. Thus the
pstruction JMP can take two forms depending
whether it jumps to a location directly or
idirectly. They are represented in assembly
anguage as

JMP operand

JMP (operand)

and their op codes in hexadecimal are 4C and

Although there are many ways of classifying
the instructions, most of them fall into the
following broad categories:

DATA TRANSFER INSTRUCTIONS. Move data
‘between registers and memory, e.g. LDA,
BTY.

REGISTER TRANSFER INSTRUCTIONS. Move data
betwcen registers, e.g. TXA, TSX.

. CONDITIONAL BRANCH INSTRUCTIONS. Branch
to a different part of the program when a flag is
set, c.g. BPL, BNE.

jUMP AND PROGRAM CONTROL INSTRUCTIONS.
Equivalent to the BASIC commands GOTO
and GOSUB, ¢.g. JMP, JSR.
INCREMENT/DECREMENT INSTRUCTIONS. Alter

mac

the value of registers or memory by one, e.g.
INC, DEY.

ARITHMETIC AND LOGICAL INSTRUCTIONS.
Perform operations on the contents of the
accumulator or memory, e.g. ADC, ORA.

STACK TRANSFER INSTRUCTIONS. Transfer the
contents of the accumulator or status register
to and from the stack, e.g. PHA, PHP.

COMPARE INSTRUCTIONS. Test the contents of

a memory location with the contents of the
accumulator or index registers, e¢.g. CMP,
CPY:

SHIFT AND ROTATE INSTRUCTIONS. Move each
bit in the accumulator or memory to an adja-
cent position, ¢.g. LSR, ROL.

FLAG INSTRUCTION. Alter the flags in the
status register, e.g. CLC, SEI.

Information on each instruction is given in
its dictionary entry in a table with the follow-
ing columns:

ADDRESSING MODE. The way it operates on
data or addresses.

ASSEMBLY LANGUAGE FORM. The instruction
itself followed by its operand (if any).

Op cODE. The single byte by which an
instruction is stored in memory, given in
hexadecimal.

130 @1 mac

.~ NUMBER OF BYTES. The number of bytes
occupicd by an instruction and its operand.

- NUMBER OF cYCLES. The number of clock
cycles taken to execute an instruction. If the
instruction crosses a page boundary it takes an

See zero page. _
Each dictionary entry also shows which
flags in the status register may be affected
when an instruction is executed.

See register.

A machine code program can be stored
anywhere in RAM. The area from 49152 to
53247 is particularly suitable since it cannot be
overwritten by a BASIC program. =

- To enter a machine code program it is
‘easiest to use an assembler. The alternative is
to hand assemble a program and store it in
memory with a hexloader. Hand asg‘mbly
‘means translating each instruction into its hex-
adecimal op code. A hexloader takes the
nstructions from DATA statements, converts
hem into decimal and then POKEs them into

nemory.

chine code monitor A program for

mas 182
entering and testing machine code. Monitors
allow the programmer to examine and alter
sections of RAM or the registers, and movc
blocks of code. They may also provide .
facility for stepping through a machine codc
program one instruction at a time. Somc
monitors include an assembler and dis-
assembler.

mask Uscd to read or alter one or morc
bits in a byte. Many of the computer’s facili-
ties such as sprites and sound are only availablc
by setting (or examining) particular bits in a
register to 1 or @, while leaving the rest
unchanged. Masks (sometimes called bit
masks) employ the logical operators AND and
OR. AND allows bits to be read or set to zero.
If a bit in the number which acts as a mask is ¢
then the corresponding bit in the number
being read is ignored; while if a bit in the mask
is 1 the value of its corresponding bit is
returned. Thus ANDing a number with 15
gives the value of its bottom four bits since 15
in binary is 000@1111. For example:
181 10110101

15 00001111

5 00000101

AND

133 mem

To read bit number N in byte B use

PEEK(B) AND 21N

To set bit N to zero use

POKE B, PEEK(B) AND (255-2 1 N)

- OR allows particular bits to be set to one.
When a bit in the mask is one then the
orresponding bit is set to one, whether it is
zero or one already. For example, ORing a

Jeaves the other bits unchanged:

113 01110001

R 136 10001000

249 11111001

Use this formula to set bit N in byte B to
one:

POKE B, PEEK(B) OR 21N

memory The part of the computer’s hard-
ware that stores data of any kind. Numbers,
characters, variables, programs, etc., are all
held in memory.

See ROM; RAM; address; bit; byte.

memory map Shows how the computer’s
64K of memory is allocated to different parts
of the system — programs, the BASIC inter-
preter, screen memory, and so on, e.g.
colour memory extends from 55296 to 56319.

mem 134

Note that some addresses are occupied by
either ROM or RAM. The BASIC interpretcr
and operating system are normally in place
from 40960 to 49151 and 57344 to 65535, but
can be switched out to give a different mem-
ory configuration. Similarly, the program arca
extends to 40959 unless a cartridge is plugged
in; while the character generator ROM is
continuously switched in and out.
See bank switching.

addresses contents
65535
8K operating system ROM
57344 ki
/
cata /O RAM
55208 1K colour memory 4K character
VIC and SID s
sazdg registers
49152 -
8K BASIC interpreter ROM
or RAM
BASIC program area
32768 or 8K cartridge ROM
BASIC
program
2048 orea
1004 1K screen memory
0 system variables

memory map appendix

DESCRIPTION

6510 Data direction register

6510 1/O register

not used

vector for floating point-integer conversion
vector for integer-floating point conversion
BASIC counter; search for end of statement
scan for quotes at end of string flag

cursor position on line after TAB

load/verify flag

BASIC input buffer pointer/number of subscripts
default DIM flag

BASIC variable flag: $FF=string, $00=numeric
numeric variable flag: $80=integer, $00=numeric
DATA scan/LIST quote/memory flags
subscript/FNx flags

INPUT/GET/READ flag

ATN/comparison result flags

INPUT prompt flag

BASIC temporary store for integers

pointer to temporary string stack

last temporary string vector

temporary string stack

utility pointer area

holds product of multiply

start of BASIC pointer

start of BASIC variables/end of program pointer
start of arrays pointer

start of arrays/end of variables pointer

start of strings pointer

end of strings pointer

top of program area pointer

current BASIC line number

previous BASIC line number

pointer to statement for CONT

current DATA line number

current DATA item pointer

ADDRESS
67-68
69-70
71-72
73-74
75-96
97-112
113-114
115-138
139-143
144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159
160-162
163-164
165-182
183

184

185
186
187-188
189-192
193-194
195-196
197

DESCRIPTION

INPUT routine vector
current variable name
current variable pointer
FOR-NEXT variable pointer

miscellaneous pointers/work area
fioating point accumulator workspace

cassette buffer pointer

CHRGET subroutine: get next BASIC character

RND function seed value
status word ST
STOP/REVERSE key flags
timing constant for tape
LOAD/VERIFY flag

serial buffered character flag
serial buffered character
cassette sync number
register save

number of OPEN files

input device number

output device number

tape character parity

tape byte received flag
direct/program mode flag
tape pass 1 error log

tape pass 2 error log
internal timer used by TITI$
temporary data area
cassette/RS232 data area
length of filename

logical file number
secondary address

device number

file name pointer
cassette/RS232 data

1/O start address

Kernal setup pointer

last key pressed

DESCRIPTION
number of characters in keyboard buffer
reverse characters flag
end of line for INPUT pointer
cursor position at start of INPUT
current key pressed
cursor blink fiag: 0 blink on; 1 blink off
cursor blink delay
character under cursor
cursor on/off flag
INPUT/GET flag
cursor row position pointer
cursor column position pointer
cursor inside quotes flag
40/80 screen line length
current line number of cursor position
ASCII value of character printed
number if INS outstanding
screen line link table)
current location in colour memory pointer
keyboard decode table pointer
RS232 input buffer pointer
RS232 output buffer pointer
free zero page locations for user's program
BASIC temporary data area
floating point— ASCII work area
tape error log
6510 stack
BASIC input buffer
logical file table
device number table
secondary address table
keyboard buffer)
operating system's start of RAM pointer
operating system’s end of RAM pointer
serial timeout flag
colour code of current character
colour under cursor

ADDRESS
648
649

651
652
653

655-656
657

659-670
671-672
673
674
675
676
677
678
679-767
768-769
770-771
772-773
774-775
776-777
778-779
780
781
782

784-786
787

788-789
790-791
792-793
794-795
796-797
798-799

DESCRIPTION

screen memory high byte
maximum size of keyboard buffer
key autorepeat flag: 0=cursor, 128=al|
delay time before key repeat
delay time between key repeat
SHIFT/CTRL/C= key press flag
last SHIFT/CTRL/C= press flag
keyboard table setup pointer
SHIFT mode enable/disable

auto scroll down flag: 0=on
RS232 data

IRQ vector during tape /0

NMI interrupt control

timer A control log

interrupt log

timer A enable flag

screen row marker

PALNTSC flag

not used

vector for error message routine
vector for BASIC warm start
vector for convert to token

vector for convert token to ASCI|
vector for start new BASIC code
vector for perform arithmetic function
storage for A register during SYS
storage for X register during SYS
storage for Y register during SYS
storage for status register during SYS
USR JMP followed by address
not used

IRQ vector
BRK vector

NMI vector
OPEN vector
CLOSE vector
setinput device vector

mer

DESCRIPTION
set output device vector
restore I/O vector
input vector
output vector
test STOP key vector
GET vector
abort |/0 vector
user defined vector
LOAD vector
SAVE vector
not used
cassette buffer
not used
screen memory
sprite pointers
program area
ROM cartridge area
8K BASIC interpreter ROM
4K RAM for data storage or machine code
4K character generator ROM
VIC registers
SID registers
colour memory
/0 RAM
8K operating system ROM

nu A sclection screen where the prog-
tions are displayed, with a routine to

merge The facility for joining two prog-
rams by loading one program from cassette or

mic

disk while the other is already in RAM. There
are a number of ways of merging programs
although there is no BASIC command to do
so. The simplest way is as follows:
1: Note the program start address by PEEKing
the pointers at 43 and 44. ‘PRINT PEEK (43)
PEEK(44)". This normally gives 1 and 8.
2: Alter their contents to point to the end of
the program, ‘POKE 43, PEEK(45) -2
POKE 44, PEEK (46) .
3: Load another program.
4: Restore the original start address, ‘POKE
43, 1:POKE 44,8’.

This procedure only works if the second

Frogram has higher line numbers than the
irst.

microprocessor The singlc chip that ex-
ccutes programs and in doing so carries out all
data processing in the computer. Sometimes
referred to as the central processing unit, the
microprocessor receives and stores data in
memory, and performs operations on data.
Thc Commodore 64 uses an 8-bit 6510
microprocessor, which can only transfer and
operate on 8 bits of data at a time. However it
has 16 address lines which allow it to move

140 ‘41

data — 8 bits at a time — to and from 2'* (65536)
different memory locations. In other words, it
‘can address 64K of memory. To store and
operate on data the 6510 has 6 internal regis-
‘ters, 5 of them 8-bits wide and one 16-bit
register which holds addresses. Each group of
8 bits represents a binary number between ()
and 255. Depending on the order in which it
receives them the 6510 treats certain numbers
as instructions, others as data. In all there are
56 different types of instruction, and together
they make up the machine code instruction
sct.

In almost all respects the 6510 is identical to
the widely-used 6502 microprocessor, and
shares the same instruction set. The major
difference between the two is that the 6510 has
an internal 8-bit input/output port which it
uses for bank switching and to control the
cassette unit. Along with the Z80, the 6502 is
the most widely used microprocessor in home
computers.

MID$ A string function which returns one
or more characters from within a given charac-
ter string. This function is more flexible than
LEFTS or RIGHTS as it can extract characters

mod 142

from any point in the source string. It takes the
form MID$(AS$,S,X) which gives a substring
X characters from the string A$ starting at
position S, e.g.:

10 A$="IMMEDIATELY"

20 PRINT MID$(AS,3,5)
prints MEDIA.

If the last value X’ is left out, the function
assumes that the rest of the string is wanted,
from the start position to the end. Thus ‘MID$
("WORDPROCESSOR”,5)’ gives ‘PRO-
CESSOR".

Associated keywords: LEFTS$; RIGHTS.
modem A device which allows computers
to communicate with each other over the
telephone lines. By means of a modem, a user
can link up with other owners via bulletin
boards, or access viewdata systems such as
Prestel, which hold large amounts of informa-
tion on mainframe computers.

monitor An alternative display unit to a
television. Because monitors take a com-
posite video signal from the audio/video
port they give a clearer and steadier picture
than televisions. Wordprocessors which offer
an 80-column display need to be used with a

»
143 mul

monochrome monitor.
‘most significant s least significant.

multicolour bit map mode A high-
resolution mode in which each pixel can take
one of four different colours. In the standard
bit map mode all the pixels in a character
space take the same colour. The multicolour
option gives a greater choice of colour at the
cost of reduced pixel resolution: colours can
only be assigned to pairs of pixels. In effect this
halves the resolution from 320 by 200 to 160
by 200.

BIT PAIR COLOUR INFORMATION

00 background 53281

o1 top 4 bits of screen memory,
usually 1024—-2047

10 bottom 4 bits of screen memory
1024-2047

1 colour memory
55296-56295

In this mode each pixel is represented by a
pair of bits in the bit map area. Depending on
the value of its bit pair, a pixel’s colour is
determined by the colour code in one of four
locations: the top and bottom four bits of the
corresponding byte in screen memory; the
corresponding byte in colour memory; and the

mul 144

background colour register. Note that in bit
map mode the screen memory, which extends
from 1024 to 2047, stores colour information
rather than character codes. To select bit map
mode set bit 5 in location 53265, as follows:

POKE 53265,PEEK(53265) OR 32
The multicolour option can then be selected by
setting bit 4 in location 53270:

POKE 53270,PEEK(53270) OR 16
To turn both options off enter:

POKE 53265, PEEK(53265) AND 223

POKE 53270,PEEK(53270) AND 239

multicolour mode A display mode
which allows characters to take up to 4 col-
ours. High resolution graphics and sprites can
also be multicoloured. See bit map; multi-
colour sprites.

Multicolour mode is selected by setting bit 4
of location 53270 to 1. If the display is already
in character mode then any character with a
colour code of 8 or more becomes multi-
coloured. In other words, each multicoloured
character must have bit 3 of its corresponding
byte in colour memory sct to 1. Characters
whose colour code is less than 8 are displayed
in the normal way. The following program

145 mul

demonstrates multicolour mode by printing
two rows of the alphabet. When a key is
essed multicolour mode is selected for the
second row (in line 60). Pressing a key again
turns it off (line 80).
10 PRINT CHR$(147)
20 B=0:GOSUB 100
30 PRINT CHRS(13);
40 B=8:GOSUB 100
50 GET AS:IF A$="" THEN 50
60 POKE 53270 PEEK(53270) OR 16
70 GET AS:IF AS="" THEN 70
80 POKE 53270, PEEK(53270) AND 239
90 GOTO 50
100 FOR N=65 TO 91
110 POKE 646,RND(0)*8+B
120 PRINT CHRS$(N);
130 NEXT
140 RETURN
The normal character set is generally not
recognisable in multicolour mode. But user
defined characters can be designed specifi-
cally for this mode. The reasons for this lie in
the way the colours are assigned. Normally
the dots or pixels in a character space can take
only one colour. But cach pixel in the 8 by 8
block can be on or off. In multicoloured mode

mul 146

colours are assigned to horizontal pairs of
pixels. This has the effect of halving the re-
solution: 1 pixel now has the width of
2 standard pixels.

It now takes 2 bits to represent a pixel in
memory, and each pair of bits determines
what colour the pixel takes. The colours are
assigned as follows:

BITPAIR | COLOUR ADDRESS

00 background 53281

o1 multicolour 1 53282

10 multicolour 2 53283

1 foreground colour RAM (lower 3 bits)

To set colours 1 and 2 POKE the required
colour codes into locations 53282 and 53283.
Colour 0 is the screen background colour, and
colour 4 is set by the code in the correspond-
ing colour memory byte. As only the lower
3 bits at each colour memory location deter-
mine multicolour 4, it can only be assigned
codes (~7. The fourth bit, however, must be
set to 1, so 8 needs to be added to the normal
colour code, e.g. ‘POKE colour memory loca-
tion, 15° makes multicolour 3 yellow at a
given location.

multicolour sprites [ikc multicoloured

147 mul

characters, sprites can be given up to
4 colours, although one colour is that of the
screen background. The cologrs are .d'ctcr-
mined by pairs of bits in the sprite definitions.
This means that the horizontal resolution is cut
by half: each pair of pixels must take the same

colour. s

L5180) (G
sprite colour

background multicolour 1 multicolour 2
[]=00 (= o1 .-
The colours associated with each bit pair are
given below. Bit pair 00 takes the background
screen colour, and so disappears. Multicolours

mul 148

1 and 2are the same for all multicoloured
sprites. The sprite colour is set in the normal
sprite colour registers, 53287 to 53294 (V+39
to V+46).

BITPAIR | COLOUR REGISTER
00 background colour | 53281

o1 multicolour 1 53285

10 sprite colour 53287-53294
11 multicolour 2 53286

To turn on a multicolour sprite set the
corresponding bit in register 53276 (V+28)
to 1 by using the statement ‘POKE
53276,PEEK(53276) OR (2 1 SN)’ where ‘SN’
is the sprite number.

POKE 53276,PEEK(53276) AND (255-2 1 SN)

multi-statement line A program linc
with more than one statement. Each statement
must be separated by a colon. As the computer
takes 2 bytes to store a line number, reducing
the number of lines by using multi-statements
saves memory space. But note that REM
should not appear as the first statement and
IF . . . THEN passes control to the next line
when a condition is false.

music There are a number of ways of play-
ing music on the Commodore 64. At the most

149 mus

advanced level, sheet music can be translated
and played in three voices simultancously and
in a variety of different instrument sounds. To
synthesise an instrument exactly and coordin-
ate the timing of multiple voices generally
involves using the SID chip’s more specialised
facilities — synchronisation, resonance, filter,
and ring modulation, but satisfactory results
can also be achieved with one voice by setting

only the envelope and waveform para-

meters. The simplest method of playing a tune
in one voice is to store cach note’s frequency
and duration in DATA statements. This is the
method used in the following program which
plays the first eight bars of Greensleeves:
10 SD=54272: TE=40
20 DIM N(2,20)
30 FOR T=1T0 19
40 READ F,D
50 FH=INT(F/256):FL=F—256%FH
60 N(0,T)=FL:N(1,T)=FH:N(2,T)=D=TE
70 NEXT
80 FOR T=SD TO SD+24
90 POKE SD,0
100 NEXT
110 POKE SD+24,15
120 POKE SD+5,9

130 POKE SD+6,0

140 FOR T=1TO 19
150 POKE SD,N(@,T):POKE SD+1,N(1,T)
160 POKE SD+4,33
170 FOR D=1 TO N(2,T):NEXT
180 POKE SD+4,32

190 NEXT

150

200 DATA 5407,4,6430,8,7217,4,8101,8
210 DATA 9094,2,8101,2,7217,8,6069,4
220 DATA 4817,8,5407,2,6069,2,6430,8
230 DATA 5407,4,5407,6,5103,2,5407 4
240 DATA 6069,8.5103,4,4050,8
By changing the value of “TE’ in line 10 the
tempo at which the tune is played can be
speeded up or slowed down.

INSTRUMENT | ATT/DEC| SUS/REL| WAVEFORM | PULSE
WIDTH
trumpet 96 128 sawtooth —
violin 168 169 sawtooth —
piano 9 9 pulse 1000
flute 154 0 triangle —
harpsichord 9 '] sawtooth —_
accordeon 102 240 triangle —
organ 0 242 sawtooth —_
clarinet 101 197 pulse 2048

Instrument sound can be changed by altering
the envelope settings in lines 120 and 130
together with the waveform setting in line
160. The above table provides some possible

151 mus

settings to approximate the sound of different

instruments.

music note values

frequency
octave decimal high low

c-0 268 1 12
C#-0 284 1 28

| oo 301 1 45
D#-0 318 1 62
E-0 337 1 81
F-0 358 1 102
F#-0 379 1 123
G-0 401 1 145
G#-0 425 1 169
A0 451 1 195
A#-0 477 1 221
B-0 506 1 250
c-1 536 2 24
C#-1 568 2 56
D-1 602 2 90
D#-1 637 2 125
E-1 675 2 163
F-1 716 2 204
F#-1 758 2 246
G#-1 803 3 35
G#-1 851 3 83
A1 902 3 134
A#-1 955 3 187

“B-1 1012 3 244
c-2 1072 4 48
C#-2 1136 4 112
D-2 1204 4 180
D#-2 1275 4 251
E-2 1351 5 7
F-2 1432 5 152
F#-2 1517 5 237

mus 152
frequel

octave decimals high " ncylw
G-2 1607 6 71
G#-2 1703 6 167
A-2 1804 7 12
A#-2 1911 v 119
B-2 2025 v 233
Cc-3 2145 8 97
C#-3 2273 8 225
D-3 2408 9 104
D#-3 2551 9 247
E-3 2703 10 143
F-3 2864 1 48
F#-3 3034 1 218
G-3 3215 12 143
G#-3 3406 13 78
A-3 3608 14 24
A#-3 3823 14 239
B-3 4050 15 210
c4 4291 16 195
C#—4 4547 17 195
D4 4817 18 209
D#-4 5103 19 239
E-4 5407 21 31
=4 5728 22 96
F#—4 6069 23 181
G4 6430 25 30
G#-4 6812 26 156
A4 7217 28 49
A#—4 7647 29 223
B4 8101 31 165
C-5 8583 33 135
C#-5 9094 35 134
D-5 9634 37 162
D#-5 10207 39 223
E-5 10814 42 62
F-5 11457 44 193
F#-5 12139 47 107

‘53 net

frequency

octave decimals high low

G-5 12860 50 60

| G#-5 13625 53 57
| A5 14435 56 99
A#-5 15294 59 190

| B-5 16203 63 75
| C6 17167 67 15
| c#-6 18188 7 12
D-6 19269 75 69
D#-6 20415 79 191
E-6 21629 84 125
F-6 22915 89 131
F#-6 24278 94 214
G-6 25721 100 121
G#-6 27251 106 115
A-6 28871 112 199
A#-6 30588 119 124
B-6 32407 126 151
c-7 34334 134 30
C#-7 36376 142 24
D-7 38539 150 139
D#-7 40830 159 126
E-7 43258 168 250
F-7 45830 179 6
F#-7 48556 189 172
G-7 51443 200 243
G#-7 54502 212 230
A-7 57743 225 143
A-7 61176 238 248
B-7 64814 2538 .. 46

network A method of linking a number of
computers so that they can communicate with
each other and share the same peripheral de-
vices. Sometimes known as local area network

new 154

(LAN). A network enables different
Commodore 64s to use the same printer or
disk drive. They are connected by cables to
interfaces which usually plug into the expan-
sion port. The term also refers to telephone
networks which link computers via modems.

NEW A command which clears a program
from memory and resets the variables. NEW
is typically used to remove a program from
memory before typing in a new one. Generally
itis entered as a direct command but it could
be used at the end of a program, so that the
program would erase itself after completing its
task. Note that you can not recover a program
after NEW has been performed.

NEXT A command used together with
FOR to indicate the end of a FOR . . . NEXT
loop. NEXT can be followed by the variable
which acts as the loop counter. If the loop
starts with ‘FOR S=1 TO 20" the NEXT
statement could take the form ‘NEXT S’. But
the counter variable is optional and only serves
to improve legibility. When a program con-
tains several nested loops, adding the counter
variable to the end of a NEXT statement helps
to show which NEXT is linked to which

MSS nex

FOR.
The following program uses nested loops to
‘read values into an array. The v?rlablcs A and
‘B in lines 50 and 60 could be omitted:
~ 10 DIM AR(2.4)
~ 20 FOR A=0TO 2
30 FOR B=0 TO 4
40 READ AR(A,B)
50 NEXT B

- 60 NEXT A

70 DATA 1,3,4.2/4

80 DATA 0,09,84

90 DATA 6,5,5,7,3 ,

A single NEXT can also terminate several
nested loops. In this case the variable names
must be added in the correct order. The vari-
able attached to the innermost loop should
appear first.

10 FOR G=1 TO 50

20 FOR H=3 TO 30

30 FOR K=0 TO 100

40 NEXT G,H.K

Associated keywords: FOR; TO; STEP.

NEXT WITHOUT FOR An error mes-
sage: cither a FOR or NEXT is missing, or the
program has jumped past a FOR statement

nmi 156

into a loop (possibly because a GOTO state-
ment has mis-directed it).

NMI (non-maskable interrupt.) NMI inter-
rupts can not be disabled. On receiving an
NMI interrupt the computer jumps to a ser-
vice routine via a vector at 790 and 791.

See IRQ.

NOP A 6510 instruction mnemonic with
NO oPeration. This instruction does nothing,
but as it takes up two clock cycles it can be
used to adjust timing delays.

Status register L R R - A o R L S o]

ing mode | assembly language form | op No. No.
code | bytes |cycles
implied NOP EA 1 2

NOT A logical operator which reverses the
truth value of an expression. It is most com-
monly used with IF ... THEN statements.
For example, ‘IF A>10 THEN PRINT "TOO
BIG™ only prints “TOO BIG’ if ‘A’ is above
‘10’. ‘IF NOT (A>10) THEN PRINT "JUST
RIGHT™ prints JUST RIGHT’ when ‘A’ is
less than or equal to ‘10",

NOT also acts as a bitwise operator. It

-
157

produces what it is known as the two’s cori-
& erding each bi
plement of a number. by reversing cach ©
and then adding one.
Associated keywords: AND: OR

NOT INPUT FILE An error message.
‘ 3 Loooh

caused by trying to read a file which has
pre\'iou.\l\' been designated for output by an

OPEN statement.
NOT OUTPUT An error message. caused

by trying to write to a file which hus p{ch
viously been designated for input by an ¢)PEN
statement.

ON A statement used in conjunction with
GOTO or GOSUB to Call_lsc the plrm:ml]‘ vhs‘o
i one of a selection line numbers has
Jtll:re]l?(:::’!"l ON variable GOTO/GOSUB line
number, line number, . . . The value of the
variable determines which line numlwr‘tln:
program jumps to. For cxamplf. ‘ON X
GOTO 100,200, 150,2000, 1000, 1f X cqu;ﬂ_ﬂ |
the program performs a GOTO to hne 150,
the third item in the list. The alternative to
using ON here would be a series of
IF . . . THEN statements:

IF X=1 THEN GOTO 100

IF X=2 THEN GOTO 200
I;IX=3 THEN GOTO 150
he ON construction, howev aves space
and takes less time to execute. I:rc,a:l:ltssosf:l:t‘
an expression involving a variable, as in:
8:\\: ;(+(2X G:J)TO 400,200,50,1000 '
*(X=4)—(X<0)x

9500 ng0 (X<@)=2 GOSUB 100,200,

If the value of the variable or expression i
zero or greater than the number ofﬁin?;ol;lmlf
bers, the program passes on to the next state-
gf\rlltc Thbc toll(ziwinghprogram illustrates how

an be used with a me 1Vi ice
of mathematical functionls].lmu ks v

10 PRINT "1. SQUARE ROOT”

20 PRINT "2. SQUARE”

30 PRINT "3. CUBE”

40 PRINT "4, LOG”

50 GET AS:IF A$="" GOTO 50

60 X=VAL(AS)

70 INPUT” TYPE A NUMBER ":N

80 ON X GOSUB 10@,200,300,4'00

9 GOTO 10

100 PRINT "THE SQUARE ROOT OF "N:
" IS ":SQR(N) '

110 RETURN

200 PRINT "THE SQUARE OF ":N:" IS " NxN

159 ope
210 RETURN
300 PRINT "THE CUBE OF "N;" IS ";
N»N>N
310 RETURN

400 PRINT "THE LOG OF ";N;" IS ";,LOG(N)

410 RETURN
Associated keywords: GOSUB; GOTO

op code (Operating Code) The single byte
number that a mnemonic stands for; that part
of a machine code instruction which specifies
the operation to be performed. Op codes are
usually given in hexadecimal, e.g. CMP’s op
code is D8.

OPEN An input/output statement. Before
using a printer or creating a data file on tape or
disk, the computer requires you to open a
channel directing the data to or from a specific
device. The command which does this is
OPEN. It is also needed for input/output
operations between the computer and other
devices such as a modem or a plotter.

NUMBER DEVICE DIRECTION
[} keyboard input
1 cassette input/output
2 RS232 interface input/output
3 screen input/output
4 printer output

160

NUMBER DEVICE DIRECTION

5 pninter output

6 plotter output

7 plotter output

8 disk drive input/output

9 2nd disk drive input/output
10-255 not assigned e

OPEN takes the form ‘OPEN file-number,
device, command number, “string™’. It is not
always necessary to supply all four of these
paramcters. Printer commands generally
only contain two of them. The file-number
can range from 1 to 255, and simply serves to
identify a particular channel. Other input/
output commands to the same channel must be
followed by the same file-number, ¢.g.,
"OPEN 1,1,2’ opens a channel to create 2 data
file on cassette, using 1 as the file-number. The
command PRINT#1 will now send data to
the cassette.

The device parameter specifies the device
being used, c.g. "OPEN 3,8,15,
"SCRATCH:FILE1™ sends a command to
disk. ¥ is the device number for a disk drive, so
1t must occur as the second parameter.

DEVICE
DEVICE NUMBER COMMAND NUMBER STRING
casselle | Q = input
= output file name

161 ope
DEVICE

DEVICI ER COMMAND NUMBER STRING
i 2 = output with end

of tape (EOT)
o 0
phter' ior 5 0 = upper/graphics control registers
| 7 = upper/lower case
] 1 0= ram LOAD
& gid 1= ggram SAVE drive no: program name
2-14 = data channel drive no: file name, file
type, read/write

15 = command channel command

The third parameter, the cqmmgnd number,
indicates what sort of operation is to be per-
formed. In the following example, ‘7" tells the
printer to print in uppcr/lowcr.cast.: mode
rather than in upper case/graphics: ‘OPEN
*.'4I:Zst]y. the string parameter has various
functions. For cassette files it can be used to
give the file a name. With disk drives it can
also specify a file type, or contain al.command.

See disk commands; sequential files; re-

i les.
!;lf)‘t‘::etgat the file number is sometimes called
the logical file numbelr, qndl ;}}L OPEN com-

is said to open a logical file.

m?gs:)ciatcd klzywords: CMD: CLOSE;
GET#; INPUT#; PRINT #.

operand That part of an assembly lan-

guage instruction that contains data or the
address of data, as opposed to the mnemonic
instruction itself, the operator, e.g. ‘AND
$FB’. The operand $FB gives the address in
memory of a number rather than the number
itself. The term operand is also used to refer to
variables, strings or numbers when they arc
part of an expression, ¢.g.‘IF X > Y THEN
" where ‘X’ and ‘Y’ are the operands.

operating system The program that su-
pervises all the computer’s operations. On the
Commodore 64 the operating system is
known as the kernel.

operator Anassembly language mnemo-
nic. The term operator is used to distinguish
the mnemonic part of an assembly language
instruction from the operand part. More
generally, an operator can be a logical, arith-
metic, or relational operator. As such it is part
of an expression and tells the computer what
operation to perform, e.g. +, AND, <.

OR A logical operator which, like AND.
can also be used as a bitwise operator. In its
capacity as a logical operator it usually appears
in IF . . . THEN statements to test two con-
ditions,

162 163

&pgm IF A>9 OR B=6 THEN GOSUB 300
IE either condition is true or both are true then
gc program proceeds to the GOSUB state-
ment. OR only returns a value of false if both
conditions are false.
~ As a bitwise operator OR is commonly used
to alter one or more bits in a byte by prov1dmg‘
a mask. Thus ‘POKE B,PEEK(B) OR 8
could be used to set bit 3 at location B to 1. OR
compares the equivalent bits in two numbers.
If either or both are equal to 1 then it gives 1 as
aresult.

~ See truth tables.

Associated keywords: AND; NOT

ORA A 6510 instruction mnemonic whéch
performs a logical OR between a specified
yyte and the accumulator, leaving the result
ﬁthe accumulator. It is used as a ma‘sk to set
émicular bits to 1, e.g. ‘ORA #8$OC’ sets bits
3and 2 in the accumulator to 1, and leaves the
rest of the byte untouched.

Status register N V B By b 2 E:
ddressi bly language form | op | No. | No.
" A code | bytes |cycles
b:ﬁinediate ORA # operand 09 | 2 2

out
Status register MY B D | Far
s A E
addressing mode assembly language form op No. No.
code | bytes |cycl
zero page ORA operand 05 Y; y3 =
zero page, X ORA operand, X 15 2 4
absolute ORA operand oD 3 4
absolute, X ORA operand, X 1D 3 4*
qbsplme, Y ORA operand, Y 19 3 4"
(!ﬂd!f@d. X) ORA (operand, X) 01 2 6
(indirect), Y ORA (operand), Y 1 2 5

*Add 1 on page crossing.

OUT OF DATA An error message: there
are not enough data items in a DATA statc.
ment for the computer to READ.

OUT OF MEMORY A, error message:
cither the program is too big for the available
RAM, or too many GOSUBs have been
called but not RETURNED from.

OVERFI.QW An error message: the result
of a calculation is larger than 1.70141884% 10"
= the largest number the computer can handle.

Parallel An interface that transmits 2
number of bits at a time through multiple datll
lines. The most common form of parallcll
interface is the Centronics. It has 8 data lines
enabling one character to be sent at a time.

164 165

Devices that use this standard require a Cen-
tronics interface to be plugged in to one of the
Commodore 64’s ports before they can be
connected.

PEEK An integer function which returns

the value of a single byte at a given address.

PEEK can be used to examine the contents of

any memory location from 0 to 65535,

whether in RAM or ROM, e.g., ‘10 PRINT

PEEK (1400)° ‘10 X=PEEK(53277) AND 16’.
Associated keyword: POKE.

peripheral An cxternal device which can
be connected to the computer, c.g. disk
drive, printer, modem, joystick.

PHA A 6510 instruction mnemonic which
stores (PusHes) the contents of the Accumu-
lator on the top of the stack. It is often used to
store bytes temporarily; for example, to save
the contents of the accumulator before bran-
ching to an interrupt service routine.

See PLA.

Status register NFONTTBYER: U ZASS
laddressing mode | assembly language form | op No. No.
I code | bytes |cycles
| implied PHA 48 1 3

php 166

PHP A 6510 instruction mnemonic which
stores the contents of the status register on
the top of the stack. It is generally used to save
the flags before a subroutine call. On return
from the subroutine PLP restores the status
register to its previous condition.

Status register NSOV BRI AC

addressing mode | assembly language form | op No. No.
code | bytes |cycles
implied PHP 08 1 3

pixel The smallest point or dot on the
screen which can be controlled by the compu-
ter. A computer’s screen resolution is mea-
sured in terms of the number of pixels it
contains. The more pixels there are, the smal-
ler each one i1s, and the higher the resolution.
The Commodore 64 offers a resolution of 32()
by 200 pixels.

PLA A 6510 instruction mnemonic which
PuLls the first byte off the top of the stack and

Status register N z. 0

MisBe B o]

v

addressing mode | assembly language form | op No. No.
code | bytes | cycles
implied PLA 68 1 4

167 poi
Joads it into the Accumulator. Used to res-
tore the contents of the accumulator and other
registers after a subroutine.

plotter A type of printer used mainly for
graphics output such as graphs and charts.
Plotters use a set of pens to transfer ink to
paper in different colours. Rather than print a
character at a time they draw text and
graphics, by moving either the pen or the
paper beneath it. The Commodore’s printer/
plotter, the 1520, can be used botE for graphics

d program listings. It accepts the same com-=
‘:‘angls gas a standard printer — OPEN,
PRINT# and CMD — but is assigned device
number 6.

PLP A 6510 instruction mnemonic which
loads the status register with the first byte at
the top of the stack.

See PHP.

Status register N v BB

from stack

Wss ssembly language form | op No. No.
A PR code | bytes |cycles

| implied PLP 28 | 1 4

z2:1C

pointer Pointers are 2-byte locations used
by the operating system to keep a record of

pok

where a program and its variables are stored.
They hold addresses in the order: low byte,
high byte, e.g. locations 43 and 44 normally
contain the values 1 and 8, which give the
address of the first BASIC program line: ‘1 +
256%8 =2049’,

POINTER ADDRESS POINTS TO

43,44 start of BASIC program area
45,46 start of BASIC variables
47,48 start of arrays

49,50 end of arrays

51,52 start of strings

53,54 end of strings

55,56 end of BASIC program area

PQKE A statement which alters the value of
a single byte at a given location in memory. It
takes the form ‘POKE add,n’ where ‘add’ is an
address in the range 0 to 65535, and ‘n’ is .
number between () and 255, Only addresses in
RAM can be POKEJ. Attempts to POKE
values into ROM will have no effect.

Man).' of the Commodore 64’s features such
as sprites, sound and high-resolution
graphics are only available by POKEing spe-
cific registers in memory. To plot pixels from
a BASIC program it is necessary to POKE
values into the high-res screen memory. In

168

pos

aracter mode it also possible to POKE the
een memory as an alternative to printing to
the screen. ‘POKE 1024,1:POKE 55296,8'
places the letter ‘A’ at the top-left hand corner
f the screen, and colours it orange. ‘1024’ is
he first address of the screen memory, ‘1’ is
the screen code for the letter ‘A’. In the
>cond statement ‘55296’ is the first address in
colour memory, while ‘9’ is the colour
ode for orange.
Associated keyword: PEEK.

C Usually a socket or an edge connector,
.~ port provides an entry or exit point for
ansferring data between the computer and
sther devices. The Commodore 64 has two
oystick ports at the side, and, at the back, a
erial port, an expansion port, and a user
Ort.

DS An integer function that reports the
tion of the cursor in a line. The value of its
argument is not important and can be any
number. POS is most commonly used for
ontrolling the format of a display. In this
cample it ensures that characters are not
ted beyond column 30. When the cursor
eaches column 30 the program prints a car-

pos 170
riage return character, CHR$(13), which sends
it back to the start of the next line.

10 FOR N = 1 TO 200

20 PRINT CHRS(INT(RND(0)=27)+65);

30 IF POS(0) > 30 THEN PRINT CHR$(13)

40 NEXT

Associated keywords: TAB; SPC.

post-indexed indirect addressing
Uses a location in zero page as a vector to .
base address. It then adds the contents of the Y
register to give the effective address, e.o.
‘LDA ($FB),Y’. If locations FB and FC hold
the address of a byte at 0400, and the value of
Y is 7, the effective address is 0407.

pre-indexed indirect addressing
Adds the contents of the X register to an
address in zero page which acts as a vector.
Unlike post-indexed addressing the index
register is added to the base address and not to
the address it points to, e.g.

LDX #4

STA (831,X)
stores the contents of the accumulator at the
address pointed to by locations $35 and $36.
Note that it takes 2 bytes to store an address in
memory; and they hold the address in reversc

order with the low byte first. If in example
‘LDA ($40),Y’ locations $40 and $41 contain
$55 and $CO respectively, the address they
point to is $C055.

RINT A statement that prints characters to
the screen. Any characters on the keyboard,
‘whether text or graphics, can be displayed on
the screen by enclosing them in quotation
ks after PRINT. In addition, the statement
orints out the contents of variables, and num-
bers without quotation marks. PRINT can be
followed by a list of different items separated
by punctuation marks. These determine the
position at which the characters are printed. A
semicolon after an item causes the next item to
be printed immediately afterwards on the same
ine. Numbers and numeric variables are,
however, followed by a space, while positive
numbers are also preceded by a space.

- The Commodore 64 treats the screen as if it
vere divided into four print zones, each 10
haracters wide. If the previous item has a
omma at the end then the next characters are
rinted from the start of the next print zone.
Vhen the list following PRINT does not
ontain punctuation then the next PRINT

173 pri

PRINT can also take a list of variables
without any punctuation between them. It
srints them out adjacent to each other as if
they were separated by semicolons.

There are some characters which can appear
in quotation marks but are not displayed on
the screen. These are control characters and
have a range of different effects on the way the
following characters are printed. Colour con-
trol characters, for example, can be used to
change or reverse the colour of output to the
screen.

Colour control characters allow one to de-
termine the position at which characters are
printed more precisely than by using punctu-
ation marks. Another way of doing this is
offered by the TAB, POS, and SPC functions.
Preceding the PRINT statement by CMD
causes output to the screen to be diverted to
another device, such as a printer or disk drive.
Associated keywords: PRINT#; TAB:
POS; SPC
PRINT# An input/output statement which
rites data items to an external device, such as
a cassette or printer. It is followed by the
logical file number given in a previous OPEN

pri 172

statement displays characters from the start of
a new line. PRINT on its own prints a blank
line.

2|5

L|A[CIK|B| I |R[DIS

HIOMIE| |3]

SCREEN DISPLAYS

[o[+]2]3[4[s]e]7[e]olo[1]2]a[4]5[6[7]e[e]o] 1]2[a]s
o[N|E| Twio| T[HIRIEE

HEllT] 1Mo

1[T[E[MS

Flolulr| [alNi [TWfe[nT]v

FIOIOID

r 3

X
“FOUR AND"
"BLACKBIRDS"

TWENTY"

pZ|m

10 PRINT "AWAY":8, "HOME"3|A

10 PRINT "FOOD"

10 PRINT "ONE";TWO":
20 PRINT

20 PRINT "THREE"
30 PRINT "HEATING"
10 AS$="ITEMS"

20 PRINT A$.7.25
5
T

PRINT EXAMPLES

10 PRINT ASBSCS

N

Pi
10 AS
20 BS
30 C$

pri 174

statement and a list of variables or strings or
numbers, e.g. ‘PRINT#1,“TEST™

If PRINT# is used to write records to a
sequential file on tape or disk, each record
must .bej correctly separated;. e.g.
‘PRINT#1,A8$,B$,C$" does not separate the
variables ‘A$’, ‘B$’, ‘C$’ but sends them out as
one data item with spaces in between. When
the file is read back, ‘INPUT#1,;A$’ will read
in the contents of all three variables. PRINT #
followed by one variable automatically ends
the data item with a carriage return character,
CHR$(13), which acts as a separator. Commas
and semicolons can act as separators if they are
enclosed in quotation marks or are assigned to
variables themselves, e.g. a list of records can
be written in any of the following ways:

10 R$=CHR$(13):PRINT4#1,A$;R$;BS;RS;CS

10 PRINT#1,A$;",";BS;",";C$

10 R$=CHRS$(44):PRINT+41,A$ RS BS R$ C$

printer A device which transfers text and
graphics from the computer to paper. Printers
are commonly used to copy programs listings
on to paper, or to print out text from a
wordprocessor. Other applications include
taking a copy of the computer’s screen display,

7 pri

known as a screen dump. :

5 Among the various types of printer, dot-
matrix printers are the most widely used.
They work by controlling a print head which
has a matrix of metal points and forms charac-
ters out of dots. The print head strikes a ribbon
to transfer the character pattern to paper.

Thermal printers use the same mechanism but
rint directly to heat-sensitive paper wlthout a

ribbon. Daisy wheel printers work with a font

of moulded letters and operate in the same way
as typewriters. They give a better quality of
printout but are less versatile than dot-matrix
printers, which can offer different print sizes
and typefaces. a1V

The Commodore’s own dot-matrix printers
are pre-programmed to print graphics charac-
ters. They also have the advantage of plugging
directly into the serial port whereas other
makes of printer require an interface.

See plotter; printer commands.

printer commands OPEN, PRINT#,
'CMD are used to print text or take listings
on any make of printer, ¢.g. ‘OPEN4,
4:PRINT#4,”"EXAMPLE™ prints a string;
‘OPEN4,4:CMD4:LIST’ prints a listing. Note

pro 176

that after a CMD instruction the computer
diverts all output to the printer. A CLOSE
statement by itself is not sufficient to close a
channel. It is also necessary to send an empty
string to the printer using ‘PRINT#4’ with-
out any following characters, e.g.
‘CLOSE4:PRINT#4".

In addition to these commands, there are a
number of control codes which generally
operate only with Commodore printers, e.g.:
PRINT#4,CHR$(14) selects double width
characters.

PRINT#4,CHRS$(18) prints reverse charac-
ters.

PRINT#4,CHR$(17) selects the upper case/
lower case character set.

Another way of printing in the alternative
character set is to give a command number (a
secondary address) of 7 as the third parameter
in the OPEN statement, ¢.g. ‘OPEN#4,4,7".
To return to upper case/graphics characters
use ‘OPEN#4,4,0".

program A sequence of instructions writ-
ten in a computer language. Programs enable a
computer to carry out a task by breaking it
down into simple stages.

ram area The arca of memory that
Ids BASIC programs. When the machine is
ed on this extends from address 2048 to
59, giving the user amost 38K. As .wcll as
ograms, this area also stores their variables.
Numeric variables and arrays are sto'rcd at
e end of a program, while string variables
stored from the top of the program area
wnwards. The operating system uses

top of BASIC RAM —start of strings
STRING
VARIABLES
----------- bottom of string variables
----------- end of arrays
ARRAYS I
----------- start of arrays
NUMERIC
VARIABLES
___________ start of variables
end of program
BASIC
PROGRAM
start of BASIC

pro 178

pointers to keep track of the start and end
addresses of a program and its variables. By
changing the contents of the pointers the prog-
ram area can be altered; usually in order to
reserve memory space for sprite or user-
defined character definitions, or machine
code programs.

To lower the top of the program area POKE
the new address into the locations which point
to the top of the program area and the start of
string variables — 55,56 and 51,52 — e.g. ‘10
POKE 56,12:POKE 52,12’ lowers the top to
12288. Note that locations 55 and 51 do not
need to be altered since they normally contain
0.

To raise the bottom of the program area
POKE locations 43 and 44, e.g. ‘POKE
4096,0:POKE 44,16:NEW’ raises the bottom
from 2048 to 4096. This line should be entered
as a direct command. The first POKE is
necessary since the operating system expects to
find a @ at the start of BASIC; NEW resets the
other pointers.

program counter A 16-bit register
which holds the address of the next instruction
to be executed. When a JSR instruction is

R

executed the program counter, which holds
the address the subroutine will return to, is
automatically pushed onto the stack. In a
pranch instruction such as BNE the byte
following its op code is added to the program
counter.

program storage format The way
programs are stored in memory. The first and
Tast 2 bytes of a program always contain zero.
Each program line starts with 2 bytes that hpld
‘the address of the next line, known as the link
address. Following them the line number is
stored in 2 bytes. BASIC keywords are stored
as tokens; numbers, strings and variables are
stored by their ASCII codes. The end of a
program line is indicated by a 0. Thus, the
program

10 PRINT "A”
20 REM

is stored in memory as follows:

Address Contents ~ Meaning
2048 0 Start of program
2049 1 Link address low byte
2050 8 Link address high byte
2051 10 Line number low byte
2052 0 Line number high byte

pul 180 181 rea

Address Contents Meaning
2053 153 PRINT token
2054 32 space
2055 34 §
2056 65 A
2057 34 3
2058 0 End of line
259 17 Link address low bytc
2060 8 Link address high bytc
2061 20 Line number low byte
2062 0 Line number high bytc
2063 143 REM token
2064 0 End of line
2065 0 End of program
2066 0 End of program

Note that the link addresses at 2049 and 2050

pomt to start of the next line at 2059, i.c

8256 +11 = 2059, - -4
See token; program area: memory map.

Pulse width Spccifies the width of a pulse
wave peak. It is set by POKEing a valuc
between 0 and 4096 into the high and low
puls'c width registers. Varying the width gives
a different sound quality. A value of 2048
produces a square wave which is often used to
synthesise the sound of woodwind instru-

‘ments such as the clarinet.

‘MM (Random Access Memory) The con-
tents of this type of memory can be altered but
are not retained when the computer’s power

supply is switched off. The user's programs

and data are stored in RAM. The Commapdore
64 has 64K of RAM but only 38K is available

for BASIC programs.
See bank switching; memory map.

raster interrupts Interrupts which are
triggered by the position of the TV raster
beam. The raster beam draws the television
image by rapidly scanning each line in turn
from top to bottom. As it does so its position
is stored in the VIC registers at 53265 and
53266. By writing to these registers the user
can generate an IRQ interrupt every time the
beam reaches a specified position. The process
also involves setting the interrupt status and
interrupt enable registers at 53273 and 53274.
Raster interrupts have many applications in
machine code programs. For example, they
can be used to display more than 8 sprites at a
time.

READ A statement that reads the data given

rea 182
3;r;b?A$A statement and assigns it to 4
€. One or a list of varj
ables, separated
qu commas, must follow the READ state-
ex;r;::.tjacg must agree with the type of data
4. Assigning a string data i
. . item to
g;ggnc variable causes a ‘?SYNTA)?
DATARStar:;c:sage. The computer treats the
€nts as a single conti i
' nuous list,
isso xtl dogs not matter where a READ statement
Ealcahatcg or how many statements there are.
] ime a READ is executed it takes the next

plf:]] READ is followed by three variables i
Iv{/éArBad the next three items, Attempting to
. Aan item when the list has alread be
read will cause an ‘OUT OF DATA’ye B
message. READ is commonly used to ﬁ];r;:

array. In the followi i i
names to the array A$:ng ot isace g

10 DIM A$(5)

20 FORN = 170 5

30 READ A$(N)

g NEXT

0 DATA JACK JILL,PETER
60 DATA PAUL,MARY

Associ :
TORE‘Clated keywords: DATA; RES-

L. B

183 -

REDIM’'D ARRAY An error message,
caused by attempting to DIMension an array
twice.

REDO FROM START An error message,
caused by entering a character string in re-
sponse to an INPUT prompt when a number
is expected. The message will be repeated until
the correct input is given.

register Mecmory locations inside the com-
puter’s microprocessor. Registers provide
temporary storage locations for data and work
space for processing data. The 6510 microp-
rocessor has 6 registers: the accumulator, 2
index registers, the status register, the stack
pointer, and the program counter. All the
registers are 8 bits wide, with the exception of
the program counter which is 16 bits wide.
The program counter needs to be twice as
wide as the others because its function is to
hold the addresses of instructions, With 16 bits
(2 bytes), it can hold the address of any
location in memory, from @ to 65535. The
sound and video display chips, SID and VIC,
also have their own internal registers, which
control sound and screen output. Unlike the
6510’s registers these are memory mapped to

rel 184
RAM. This means that the sound and video
chips copy valu.cs stored in certain locations in
RAM into their internal registers. It allows

these registers to be accessed fro BA
See SID; VIC. ek

bit 7 bit 0
A accumulator
X index register
Y index register
S status register
bit 15 SP stack pointer
,&mgh byte PC low byte program counter

relational operators Uscd to compare
numbers or strings. They usually figure in
IF. .. THEN statements, e.g. ‘10 IF X > Y
THEN GOTO 20¢°.

OPERATOR

MEANING

less than

equal to

greater than

less than or equal to
greater than or equal to
not equal to

AVAVIA

v

_ They can also be part of an expression which
is evalgatcd as cither ‘true’ or ‘false’. If the
expression is true, it gives a result of —1: if
false, a result of ¢ (see truth value), c'.g.

}5 rel

“PRINT 6 > 3’ prints ‘—1". ‘PRINT 5 = 4
rints ‘(. In this capacity, relational operators
metimes provide programming shortcuts,

& g50 Y=Y — (Y=4)%10 — (Y=3)%5

is equivalent to

- 50 IFY = 4 THEN Y=Y+10
60 IFY = 3 THEN Y=Y+5

relative addressing Used with con-
ditional branch instructions such as BNE and
BEQ. The byte following the op code is
treated as a displacement (or offset) from the
current address, and determines how far for-
wards or backwards the program branches to.
Numbers from @ to 127 cause a forward
branch; numbers from 128 to 255 cause a
branch backwards. The displacement is mea-
sured from the end of the instruction, and
since the instruction occupies 2 bytes this
allow branches in the range +129 to —126
rbytes, c.g. ‘BNE 08" causes a branch to an
address 10 bytes forward if the zero flag is 0.
Note that assemblers allow labels to be used,
‘making it unnecessary to calculate the dis-
‘placement, e.g. ‘BEQ START".

relative files A type of data file on disk.

Also known as random access files, they allow
the user to read or write individual data items
(records) without accessing the rest of the filc.
Relative files are therefore more flexible than
sequential files, although more difficult to
create. Their principal limitation is that each
record must be of a fixed length up to 254
bytes. Details of how to create a relative file
are given in the 1541 disk drive User Guide.

REM A statement used to insert comments
or REMarks in a program. Any characters
after a REM statement are ignored. Examples
are

100 REM START OF SOUND SUBROUTINE

100 REM SPRITE DATA
Note that colons are treated as part of a REM
line, so the statement cannot be placed at the
‘start of a multi-statement line. Thus,

10 GOSUB 300:REM BRANCH TO SUBROUTINE
causes the program to branch to line 300, but

10 REM BRANCH TO SUBROUTINE:

GOSUB 300

does not.

RESTORE A statement used in conjunction
with READ and DATA statements, it in-
structs the computer to start again at the first

186 @7

ret

DATA statement. This means that a set of
DATA items can be read mo;c th_an ox;]cc. The
following program reads and prints the same
(&ll:loof cigat}: cgominuously until the RUN/
:$TOP key is pressed:
10 RESTORE
20 FORN =1T09
30 READ A$
40 PRINT AS
50 NEXT \
GOTO 10
y gg DATA THIS,IS,AN,EXAMPLE,OF
- 80 DATA THE,USE,OF RESTORE
Associated keywords: DATA; READ.

RESTORE key Used with the RUN/
STOP key to reset the computer. Pressing
RUN/STOP and RESTORE together does
not erase a program already in memory, but
otherwise has the same effect as turning the
computer off then on again. Note that the two
keys need to be tapped sharply at the same
time.

RETURN A statement which marks the end
of a subroutine. When the computer mects a
RETURN it jumps back to the point in the
program which originally called the sub-

ret 188 %89 rig

routine — the first statement after a GOSUB. A
subroutine may have more than one RE-
Tl_JRN statement in it, to provide several exit
points, as in the following example:

300 REM START OF SUBROUTINE

310 X=X +Y

320 IF X > 20 THEN RETURN

330 PRINT TAB(X) AS$

340 RETURN
Associated keyword: GOSUB.

RETURN key Pressing this key causes the
computer to carry out a direct command, or
store a program line in its memory.

RETURN WITHOUT GOSUB An crror
message: either a corresponding GOSUB is
missing, or the program has dropped into a
subroutine, e.g. because a GOTO statement
has mis-directed it.

reverse characters Characters whose
foreground and background colours are re-
versed. Any characters on the keyboard can be
reversed in this fashion. To display reverse
characters press the CTRL key plus 9 (RVS
ON). To return to normal press CTRL plus ¢
(RVS OFF). When the RVS ON and RVS

OFF keys are pressed between quotation
rks they produce control characters which
have the same effect. These can be used to
select reverse characters within a program.
~ Another way of setting RVS ON and RVS
OFF is to use the ASCII codes for the contro!
characters, c.g. ‘PRINT CHRS$(18)" turns on
reverse mode. The reverse characters them-
selves have no ASCII codes. Instead. the
screen codes 128-255 give the reversed images
‘of codes 0-127.

RIGHTS$ A string function used to extract

one or more characters from a string, starting

from the right-hand end. It takes the form
RIGHT$(AS,N)

‘where ‘A$’ is the source string and ‘N is the

length of the string to be extracted. Thus,
RIGHT$("PAUCITY" 4)

‘would give ‘CITY". If ‘N’ is zero it returns an

empty string. The following program illus-

trates the way RIGHTS$ works by building up

~ a word letter by letter from the right:

10 INPUT "TYPE A WORD’;AS
20 FOR N=1 TO LEN(AS)

30 PRINT RIGHTS(AS,N)

40 NEXT

Associated keywords: LEFTS$; MIDS.

RND A floating-point function. It generates
a random number between @ and 1. If its
argument is zero the function returns a diffe-
rent number each time, by consulting the
system clock. Here it is used to give random
numbers between 1 and 100:

10 PRINT INT(RND(@)>100)+1

20 GOTO 10
When its argument is positive the computer
generates random numbers by performing cal-
culations on a given initial value, known as a
seed. This means that if the same value is used
as a seed, RND will return the same sequence
of numbers. The seed can be set by using a
negative argument. This program prints the
same set of numbers every time it is run. Linc
10 sets the seed:

10 X=RND(-3)

20 FOR N=1TO 10

30 PRINT RND(1)

40 NEXT

ROL A 6510 instruction mnemonic which
ROtates the accumulator or a given memory
location, together with the carry flag, one bit
to the Left. It moves the bit in the carry flag to

190 —}9]

ror

bit 0, and places bit 7 in the carry flag. It can be
used with ASL to multiply a multi-byte num-
ber by two.

Status register N N DM Dl R
i form| of No. No.
Fﬁs&ng mode| assembly language ooge e B
2A 1 2
accumulator ROLA
: | zero page ROL operand 26 g 2
zero page, X ROL operand, X 36 - b
absolute ROL operand 2E 3
| absolute, X ROL operand, X 3E 3

ROM (Rcad Only Memory) The contents of
this type of memory cannot be altered. Prog-
rams or data in ROM are held there per-
manently. They can be PEEKed, but not
POKEJ. The Commodore 64 .has 20K of
ROM which contains the operating system,
the BASIC interpreter, and the character
generator.

ROR A 6510 instruction mnemonic which
ROtates the accumulator or a memory loca-
tion one bit to the Right through the carry
flag. When used with LSR it has the effect of
dividing a multi-byte number by two.

See overleaf.

rs

Status register N V

.

192

3 run
) tus register N MBI T S
) By e from Stack

i assembly language form | op No. No.
iaian e code | bytes |cycles
ied RTI 40 1 6

|addressing mode assembly language form | op No. No.
code | bytes cycles
accumulator ROR A 6A 1 2 |
zero page ROR operand 66 2 5
zero page, X ROR operand, X 76 2 6
absolute ROR operand 6E 3 6
absolute, X ROR operand, X 7E 3 7
RS232 A

standard serial interface widely
used for transmitting data between the compu-
ter and peripherals. The Commodore 64
serial port does not conform to the RS232
standard so devices such as modems and
printers often require an RS232 interface be-
fore they can be connected to the computer.
Depending on the application, RS232 inter-
faces plug into the expansion port, the user
port, or the serial port, and sometimes include

softwarc on cassette, disk, or cartridge.

RTI A 6510 instruction mnemonic which
causes a ReTurn from an IRQ Interrupt. After
an interrupt has occurred RTI restores control
to a program. In the process it pulls the first
byte off the stack and places it in the status
register thus restoring the flags to their condi-
tion before the interrupt.

ITS A 6510 instruction mncmoqic whic_h

leTurns from a Subroutine. Used w1thJSR in

e same way as the BASIC instructions
SUB and RETURN.

Status register N VA BD . g C
m i assembly language form | op No. No.
i B v code | bytes |cycles
implied RTS 60 1 6
RUN Instructs the computer to start execut-

ing the program in its memory. If the com-
mand is followed by a line number it exccutes
the program from that line. Otherwise it starts
with the first line. RUN also forces the CLR
statement to be performed. If you wish to
avoid this use the GOTO statement. The
RUN command only starts BASIC and not
machine code programs. It is generally entered
as a direct command, but it can also be used
within a BASIC program.
Associated keywords: NEW; CLR.

194

RUN/STOP key Stops a program while it
1s running. Pressing this key together with
SHIFT loads a program from cassette and runs
it automatically.

See RESTORE key.

RVS Seereverse characters.

SAVE A command used to store a program
on tape or disk. SAVE can take three para-
meters:

SAVE program name, device, command
The program name must be inclosed in quota-
tion marks unless a string variable is given,
e
SAVE "PROG1”

SAVE "PROG1",8

SAVE A$
When it is not followed by a parameter, SAVE
stores a program on tape without a name. The
device number specifies disk or tape — 1 for
tape, 8 for disk. If no number is given the
computer assumes the program is to be stored
on tape. If the program is at a different location
in memory from normal, a command number
of 1 tells the computer to save it so that it
LOADs back at the same location, instead of
2048.

195

j -

See program area.
ommand number of 2 causes an end of tape
ker to be written after the program. When
computer reads this marker it assumes that
reached the end of the tape (EOT), and
lays a ‘FILE NOT OPEN’ message. A
ommand number of 3 combines the effects of
land 2, e.g.: SAVE "GAME",1,3

adds an EOT marker, and saves the program
from a different memory location. Although
LOAD can load in machine code programs,
SAVE only stores BASIC programs. It cannot
be used directly to save a machine code

program.
~ Associated keyword: LOAD.

SBC A 6510 instruction mnemonic which
SuBtraCts a given value or the contents of a
memory location from the contents of the
accumulator. If the number being subtracted
is greater than the number in the accumulator
SBC borrows 1 from the carry flag. The carry
% should therefore be set to 1 by a SEC
instruction before a subtraction, e.g.:

SEC

LDA #45

SBC #32

scr 19¢

subtracts 32 from 45 and leaves 13 in thc
accumulator. After an SBC instruction the
carry flag is set to 0 if a borrow has occurred.

Status register NTYSER AR RSSE C

addressing mode | assembly language form | op No. No. |

code | bytes |cycles

immediate SBC # operand E9 2 2 |
zero page SBC operand ES 2 3

zero page, X SBC operand, X F5 2 4 |

absolute SBC operand ED 3 4 |

absolute, X SBC operand, X FD 3 4 |

absolute, Y SBC operand, Y F9 3 4° ‘
(indirect, X) SBC (operand, X) E1 2 6

(indirect), Y SBC (operand), Y F1 2 5 J

* Add 1 when page boundary is crossed.

screen codes The codes by which char-
acters are represented in screen memory.
Screen codes are not the same as ASCII codes.
The following table shows how the two sets of
codes are related. (Note that some codes such

as those for reverse characters have no corres-
ponding ASCII code.)

UPPERCASE LOWERAND UPPERCASE LOWERAND

AND FULL UPPER CASE AND FULL UPPER CASE
GRAPHICS SET GRAPHICS SET

0 @ @ S0 c

1 A a 4.0 d

2 B b 5 E e

17

CASE

.

BeLRRNRRRYNN

T_>“‘N'_‘N-<><§<C-4MIIO'UOZZ|—X‘——IG)'“

space

LOWER AND
UPPER CASE

— N XSE<EC~O -‘Quoza—x"—'—':'@"‘

—

«—

space

UPPER CASE

AND FULL

GRAPHICS SET

33

"

4
$
%
&
(

)
»*
%

OO NONAON—=S T

scr

LOWER AND
UPPER CASE

CONOOERWON=-6 ™

scr

UPPER CASE
AND FULL

GRAPHICS SET

60 <
61 =
624>
63 ?
64
65
66
67
68
69
70
71
72
79
74
75
76
77
78
79
80
81
82
83
84

FeD@0ONOEEAPIEE00O008Em

—iCD:UO'UOZgI_XL_IG)TImO(')m)m.QV"/\

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

LOWERAND UPPER CASE
UPPER CASE ANDFULL
GRAPHICS SET

dEHEHEEROXA]

2]
©
I
o
@

HEONEOBCD0On=™

198 b scr

LOWER AND
UPPER CASE

DTN <X s<Cc

w
2
(o]
(]

(He HUNEIOEOOOD™

wEﬂ CASE LOWERAND UPPERCASE LOWER AND

“FULL UPPER CASE AND FULL UPPER CASE
SRAPHICS SET GRAPHICS SET
10 R A 119 |
e O O {On ety i
12 [4 [d 121 (o
13 BH H 122 L]
14 H H 123] Wl
s H H 1oa% I SN
s [L 125 B Hl
117 0 ©L 126 b la Wl
1e O O 127 8 N

128-255 reverse- video of 0-127

screen editor The facility that allows a
program to be altered or corrected. The
Commodore 64 employs a screen editor as
opposed to a line editor. It enables a program
line to be edited anywhere on the screen. Line
editors, by cohtrast, first require a line to be
pulled down to the bottom of the screen. The
screen editor is itself a machine code program
held in ROM. To correct a character in a
program line, position the cursor over it using
the cursor keys, and then type in the correc-
tion. Characters can be inserted or deleted
with the INST/DEL key. Pressing the RE-
TURN key enters the corrected line into

scr 20)
memory, no matter where the cursor is posi.
tioned on the line. To delete a line, type in it
number and press RETURN.

screen memory The area of memory
where information about what is on the screcy
is stored. In character mode it runs from 1024
to 2023, although it can be moved to another
area of RAM. (See VIC.) Each byte in the
screen memory holds the screen code for the
character displayed at the corresponding posi-
tion on screen.

POKEing a screen code into screen mem-
ory causes a character to appear on screen.
Similarly PEEKing a location in screen menm-
ory reveals a character’s code. ‘B = 1024 +
R*40 + C’ gives the screen memory location
of a character at column C in row R. This
program gives an example of how the screcn
memory can be PEEKed and POKEd by
copying its own listing to the bottom of the
screen. Clear the screen, then enter LIST.
followed by RUN.

10 FOR N=0 TO 159

20 POKE (1024+600+N),PEEK(1024+80+N)

30 POKE (55296+600+N),3

40 NEXT

scr

‘Without line 30 the second listing would not
visible. It POKEs colour code 3 into the
responding locations in colour memory. In
map mode the screen memory holds the
rmation about a high resolution display.
o known as the bit map, it occupies 8000
es and is usually located at address 12288.

plling Also known as fine or smooth
ing, this process shifts the display either
tically or horizontally one pixel at a time.
> VIC registers 53265 and 53270 allow the
lay to be scrolled 8 times in this manner,
to one character space. The following
gram scrolls text from left to right:

10 FOR N=1 TO 40:PRINT "A";:NEXT

FOR X=0 TO 7

POKE 53270,(PEEK(53270)AND248)+X

40 NEXT

~ Note that as the display moves right it leaves

uced to 38 columns by 24 rows, new data
can be printed so that it scrolls into view from
the left. Combining this technique with a
ine code routine to shift the entire

en by one character creates a continuous,
mooth, horizontal scrolling effect from left to

sec 202
right, or vice versa.

‘POKE 53270,PEEK(53270)AND 247
shrinks the screen to 38 columns, blanking out
the columns at either side. ‘POKE
53265,PEEK (53265)AND 247)’ gives
24 rows.

SEC A 6510 instruction mnemonic which
SEts the Carry flag in the status register to 1.

It should always be used before a subtraction
operation with SBC.

Status register NoViaBn® Ni¥2 C

- - = = = = 1

addressing mode | assembly language form | op No. No. |
code | bytes cycles|

implied SEC a2y (el |

SED A 6510 instruction mnemonic which
puts the microprocessor into the decimal mode
by SEtting the Decimal flag to 1.

See binary coded decimal.

Status register NV 8B-D § Z: C
= F IS R N _
addressing mode bly language form | op No. No.
code | bytes |cycles
implied SED F8 1 2

SEl A 6510 instruction mnemonic which

‘ seq
disables IRQ interrupts by SEtting the Inter-
rupt flag to 1.

"See CLI.

Status register N,V RLD T B8

1

ssing mode | assembly language form | op No. | No.
code | bytes |cycles

SEI il 2

equential files Used to store a sequence
sf data on cassette or disk. Sequential files can
contain any number of data items (records) of
varying lengths. Records are loaded back into
the computer in the order in which they were
stored; retrieving a particular record means
reading through all the records which precede
it. A further drawback is that it is not possible
to modify a sequential file except by rewriting
the entire file or adding a new record to the
end. These limitations aside, sequential files
are much easier to create than relative files.

Apart from a few differences in the format
of the OPEN command, sequential files are
stored on disk in the same way as on cassctte.

See cassette files.

‘To write a sequential file to disk, use
‘OPEN fn,dn,sa,”"FILENAME,S, W™ where

ser 204
‘fn’ is the logical file number, ‘dn’ the device
number, ‘8", and ‘sa’ the secondary address. 2
is generally given as the secondary address bur,
unlike the equivalent cassette parameter, it has
no significance and can be any number from 2
to 14. ‘S’ indicates that the file is sequential,
‘W’ that the file is being written rather than
read, e.g.:

10 OPEN3,8,2,"NAMES,S,W"

20 PRINT#3,A8
Change the ‘W’ to ‘R’ to read a file in, e.g.:

10 OPEN3,8,2,"NAMES,S,R”

20 INPUT+#3,A8

serial port A 6-pin DIN socket primarily
used to connect Commodore disk drives and
printers. By plugging one device into another,
several disk drives and a printer can be con-
nected to the serial port simultaneously, a
technique known as ‘daisy-chaining’.

SGN An integer function which indicates
whether a number is positive, negative or
zero. It gives a result of 1 if the number is
positive, —1 if it is negative, and 0 if it is zero.

L
10 IF SGN(X) = —1 THEN GOTO 200
20 T = SGN(Y)

SHIFT key Usecd with other keys to dis-
lay the following characters: the symbol at
the top of a key; the graphics character at the
left of a key; upper case letters in upper/lower
se mode. Also used with Commodore key,
cursor keys, CLR/HOME key, INS/DEL, -
UN/STOP.

SID 6581 Sound Interface Device. Controls
the computer’s sound output. As well as pro-
wviding three channels capable of producing
sound over a range of 8 octaves, the SID chip
E as a sound synthesiser. It is capable of
ting a variety of different musical and
on-musical sounds. The sound chip’s regis-
ters arc represented in RAM at addresses
54272 to 54300. They allow the user to define
ge sound from cach channel in terms of its
frequency, envelope, waveform and filter.
It is also possible to link two sounds together
various ways, such as by synchronisation

d ring modulation. In addition, registers
1297 and 54298 read the positions of two
paddles. These devices have the same function
as joysticks but with output values from 0 to

sin 206
REGISTER | ADDRESS | DESCRIPTION
0 54272 voice 1 frequency low byte
1 54273 voice 1 frequency high byte
2 54274 voice 1 pulse width low byte
3 54275 voice 1 pulse width high byte
4 54276 voice 1 waveform type, gate,
ring modulation, synchronisation
5 54277 voice 1 attack/decay rate
6 54278 voice 1 sustain/release rate
7 54279 voice 2 frequency low byte
8 54280 voice 2 frequency high byte
9 54281 voice 2 pulse width low byte
10 54282 voice 2 pulse width high byte
i | 54283 voice 2 waveform type, gate,
ring modulation, synchronisation
12 54284 voice 2 attack/decay rate
13 54285 voice 2 sustain/release rate
14 54286 voice 3 frequency low byte
15 54287 voice 3 frequency high byte
16 54288 voice 3 pulse width low byte
17 54289 voice 3 pulse width high byte
18 54290 voice 3 waveform type, gate,
ring modulation, synchronisation
19 54291 voice 3 attack/decay rate
20 54292 voice 3 sustain/release rate
21 54293 filter cutoff frequency high bits (0-2)
22 54294 filter cutoff frequency low byte
23 54295 filter control for voices,
resonance (4-7)
24 54296 filter type (4-7), volume
25 54297 X position of games paddle
26 54298 Y position of games paddie
27 54299 digitised output of voice 3 high
frequency
28 54300 digitised output of voice 3 waveform

SIN A floating-point function which calcu-

207 sou

Jates the sine of an angle given in radians.'To
convert an angle from degrees to radians
multiply it by PI/180, as in the following

?‘rogram:

10 Pl = 3.14159

" 99 INPUT "TYPE AN ANGLE in DEGREES"A

~ 30 PRINT "THE SINE OF "A" 18 *;
SIN(AxPI1/180)

~ Associated keywords: ATN; COS; TAN.

software Another word for a program or
a set of programs. Often used to contrast a
program with the hardware that runs it.

sound The Commodore 64 can produce
sound through three channels over a range of
8 octaves. Sound is normally output through
the TV but can be also be sent to a hi-fi system
via the audio/video port. The three channcls,
or voices, can produce sound separately or
together, enabling three notes to be played at
the same time. Each channel is controlled by
POKEing its respective register in the SID
chip. By defining a voice’s frequency, wave-
form and envelope, it is possible to synthe-
sise a wide variety of different sounds.

Setting bit @ in one of the waveform cpntrol
registers to 1 turns a voice on, setting it to 0

sou 208
Sound registers 1-20 and 24
S=54272
VOICE 1 | VOICE 2 | VOICE 3 | CONTROLS
S+0 S+7 S+14 frequency low byte
S+1 S+8 S+15 frequency high byte
S+2 S+9 S+16 pulse waveform low byte
S+3 S+10 S+17 pulse waveform high byte
S+4 S+11 S+18 control register for waveform,
gate (on/off), ring modulation,
synchronisation
S+5 S+12 S+19 attack/decay
S+6 S$+13 S+20 sustain/release
S+24 S+24 S+24 volume

turns it off. This bit is known as the gate bit.
The volume of a voice cannot be indepen-
dently controlled but is set for all three voices.
To produce a sound requires a minimum of 6
steps:
“1: Set the volume.

2: Define the envelope for a voice.

3: Set the frequency.

4: Select the waveform and turn sound on.
5: Delay for the duration of a note.

6: Turn sound off.
These steps are demonstrated in the follow-
ing program which runs through the range of

L e

frequencies:

hc%ﬂ SD=54272:REM START OF SID
REGISTERS

~ 20 FOR N=SD TO SD +24

30 POKE N,0:REM CLEAR REGISTERS
40 NEXT N
50 POKE SD+24,15:REM MAXIMUM

VOLUME
60 POKE SD+59:REM DEFINE ENVELOPE
"~ 70 POKE SD+6,0:REM FOR VOICE 1
80 POKE SD+4,33:REM TURN ON AND
' SET WAVEFORM
90 FOR F=256 TO 62000 STEP 128
100 FH=INT(F/256):FL=F—256xFH:REM
‘ ALTER FREQUENCY
110 POKE SD,FL:POKE SD-+1,FH:REM SET
FREQUENCY
120 FOR D=1 TO 100:NEXT:REM DELAY
130 NEXT
140 POKE SD+4,32.TURN SOUND OFF

SPC A function used with PRINT to printa
given number of spaces on the screen. It takes
an argument from 0 to 255. SPC is a useful
alternative to TAB for formatting a display. In
this example it centres a title on the screen:

10 PRINT SPC(10) "COLLINS"

20 PRINT SPC(20) "MICRO FACTS GEM"
Associated keywords: PRINT: TAB.

speech synthesiser A device which re-
produces the sound of human speech. Most
speech synthesisers provide a set of allophones
— sound units from which almost any word
can be built up. Allophones are combinations
of phonemes, the basic units of speech. For
example, a single allophone might give a
standard combination of vowel/consonant
sounds. Speech synthesisers generally use a
custom speech chip held in a cartridge which
plugs into the expansion port. They allow
the user to create speech from a BASIC pro-
gram by representing allophones in a string. In
addition, some synthesisers supply a diction-
ary in ROM of pre-programmed words. It is
also possible to program the SID chip to
synthesise speech.

As a refinement, a few synthesisers allow
cach allophone to be given a high or low
intonation. Although recognisable, synthe-
sised speech is rarely realistic and at best only
resembles the human voice.

sprite Like user defined characters.
sprites are graphic objects whose shape can be

210

n

designed by the user. One of the main differ-
nces is that the VIC chip takes care of sprite
movement. When a sprite is given a new
position it is deleted at its old position.
ﬁ)othcr advantage is that sprites can be
‘moved in any direction a pixel a a time. (See
iprite collision; sprite expansion; sprite
priority; multicoloured sprites.) Up to 8
sprites can be displayed at a time. They are
controlled by POKEing values into the VIC
chip’s sprite registers, which are]ocat.cd from
addresses 53248 to 53294. When dealing with
these registers it is easiest to assign the first
address to a variable, V, at the start of a
program. Thereafter each register can be refer-
red to by adding its number to the va_rmtzla:.
For example, to set the colour of sprite ‘0,
POKE the register at 53287 (53248 + 39) by
entering:
POKE V+39,C :
Displaying a sprite on screen involves the
following stages: . :
(1) perne seriTe. Each sprite occupies an
area 24 pixels across by 21 pixels down. The
shape of a sprite is defined by the bit patterns
in a byte. To set the pattern for one row of 24
pixels requires 3 bytes. As there are 21 rows, in

F -

spr 212

all it takes 21 X 3 or 63 bytes to define a spritc
If a bit is set to 1 then the corresponding pixcl
in the sprite is coloured in, otherwise it is l-ct'[
blank. The following diagram illustrates how
a sprite shape is defined:

byte 1 byte 2 byte 3

LU —

1,184,416 4,1
2 128 32 8 2
[

LU
64 16 4 1 64 16 4
128 32 8 2 128 32 8

row 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
gl DATA row DATA
3 g g: 0 7 0 231 o0
S 19 %4 0 8 1 102 128
P g 9 3 102 192
e 1 10 7 102 224
e Oiract 17 102 224
0o 102 0 12 79 102 242

213 spr

row DATA row DATA
13 91 102 218 18 0 36 0
14 122 231 94 19 " 7. 231 228
15 106 255 86 20 7 255 224
16 126 255 126 21 4 60 32

17 65 231 130
The value of each bit depends on its position.
To work out the decimal value of each byte
add up the values of its 8 bits. For example, in
the diagram above the second byte in the first
row equals 24 since 0 +0+0+16+8+0+
0+ 0=24

The data which defines a sprite is stored in

memory with the bytes for the first row
occupying the first 3 positions, followed by
the bytes for successive rOws. Normally prog-
rams READ and then POKE the 63 numbers
into memory from DATA statements. This
program takes the data which defines the sprite
in the diagram above and POKEs it into
memory from 832 onwards:

10 REM READ DATA

20 FOR N=0 TO 62

30 READ D:POKE 832+N,D

40 NEXT

50 DATA 024,0,0,24,0.0.60.0.0.6@.0,0,126,0

60 DATA 0,102,0,0,231,0,1,102,128

70 DATA 3.102,192,7,102,224,7,102,224

spr 214 FS spr

80 -DATA 79,102.242,91,102.218.122,231.94
90 DATA 106,255,86,126,255,126
100 DATA 65,231,130,0,36,0,7,231,224
110 DATA 7,255,244,4,60 32
(2) STORE DATA FOR sPRITE DEFINITION. Loca-
tions 832 to 1023 are used as a cassette buffer.
If the cassette is not used during a program this
is a convenient place to store the data for up to
3 sprites. Any other free area of RAM can be
used 5o long as its starting address is a multiple
of 64. Another suitable area, which can hold 2
large number of sprite definitions, is from
12288 onwards. This is part of the BASIC
program area so if the program is a long onc
there is a danger that it might overwrite the
sprite data. It is advisable therefore to lower
the top of the program area to 12287 by
making the first line: 10 POKE 55,255:POK E
56,47:CLR
(3) SET SPRITE POINTER TO START OF DATA. The
sprite pointer tells the VIC chip where the data
is stored. It takes the start address divided
by 64. Thus if the definitions for the first
sprite, sprite 0, were started from 832, the
pointer would be set to 13 since 832 divided
by 64 equals 13. The pointer for sprite 0 is
located at 2040 and would be set by the

following instructions: ‘POKE 2040,13’

[V=s3248 RN | POINTER
| Pos:nou xpgszsr:ou Pos:non os::gfn spg"rsou ADDRESS
Sprite® | V+0 V16,1 Vi1 v+39 | ve211 2040
Sprite1 | v+2 V4162 V+3 v+d4o | ve212 2041
“Spriez | Vi V4164 V45 vidl | ve214 2042
‘ ‘t:gwnns V+6 V+168 V+7 v+a2 | v+218 2043
’E;MI V8 | V41616 V49 vz | ve2116 2044
TSpres | vei0 | veteaz Vi vida | vez2132 2045
Spite6 | v+12 | v+1664 V413 vias | ve2164 2046
TSpite? | vere | veteazs | veis V446 | V421,128 | 2047

The table of sprite registers gives the poin-
ters for cach of the cight sprites. It can be seen
that sprite 3 has its pointer at 2043. If its data
was stored from 12480 onwards, ‘POKE 2043,
195’ would set the pointer. 195 is the result of
12480 divided by 64. : .
Note that altering the pointer for a particular

rite to point to a different 64 byte block of

ata gives the sprite a different shape. In fact,
each sprite can have up to 256 definitions.
(4) ser spriTE cOLOUR. To set a sprite to a
particular colour POKE its colour register
with the required colour code. (See colour.)
For instance, as 7 is the code for yellow,
‘POKE V+41,7 sets sprite 2 to ycllpw.
(5) TURN ON spRITE. To turn a sprite on or off

il 216]7 spr

set its corresponding bit in register V+21 to
1 or 0. Thus sprite 3 is controlled by bit 3. As
bit 3 in a byte has a value of 8 to turn on sprite
i

POKE V +21,8

Consult the sprite register table above to
find the values which turn on each sprite. Or
use a bit mask, as used in the formula:

POKE V+21, PEEK(V+21) OR (21 SN)
where SN is the sprite number.

More than one sprite can be turned on at a
time by adding the respective bit values. Bits 3
and 7, for example, have values 16 and 128. So

POKE V+21,16+128
turns on sprites 16 and 128,

As 255 is represented in binary by 11111111

POKE V+21,255
turns on all 8 sprites.

Setting a bit in register V+21 to 0 turns the
corresponding sprite off, and can be done by
using this formula

POKE V+21,PEEK(V+21) AND

(255—2 1 SN)
where SN is the sprite number.

(6) SET SPRITE POSITION. The position of a
sprite is controlled by the registers from 53248
to 53264 (V to V+16). (See sprite register

table.) By poking these locagions a sprite is
given a horizontal and vertical position in
terms of X and Y coordinates. However
sprites are only visible if their X coordinates
are within the range 24 to 343, and the Y
coordinates are from 50 to 249. Outtﬂ'de these
.ﬁnges a sprite is off the screen. Positioning a
Qpritc horizontally involves two registers, an
X register for each sprite number, and the
nost significant bit (MSB) register at V+16.
Normally the bits at V+16 are set to ¥ and the
i registers control horizontal positions from 0
t0 255. To move a sprite from position 256 to
gl requires that its corresponding bitin V+16
is set to 1. For example:

POKE V+16,8:POKE V+6,25 . _
puts sprite 3 at X position 300 by setting bit 3
in the MSB X register tosl. Position 300 is
calculated by adding 25 to 255.
cﬂlTCl}llL tfollo};ving ligncs can be added to the
program above to provide a demonstration:

120 V = 53248
125 REM SET POINTER
i POKE 2040,13,

138 REM SET COLOUR TO RED
~ 140 POKE V+39,2,

145 REM TURN ON SPRITE

150 POKE V+21,1,

155 REM SET X POSITION

160 POKE V,180,

170 FOR Y = 250 TO 50 STEP —1
175 REM MOVE SPRITE UP

180 POKE V+1.Y,

190 NEXT

200 GOTO 170

sprite collision Collisions between
sprites or between sprites and other objects are
indicated in registers 53278 and 53279, V+30
and V+31, where V = 53248. When two
sprites collide their respective bits are set to 1
in V+30. To check for a collision use:

IF PEEK (REGISTER) AND X = X THEN. ..
where X is the bit value for a given sprite. For
example:

IF PEEK(V+30) AND 2 = 2 THEN. ..
only takes a specified action if sprite 1 touches
another sprite.

V=53248

sprite-sprite collision: register V+30

sprite—background collision: register V+31

bit no./sprite no. A e U (R T R - e]
bit value 128(64 (32 |16| 8 [4 | 2 | 1

ﬁg spr
Note that after the register has been read all its
bits are reset to @ again. If it is often a go_od
idea to store the contents of the coll}sno_n
egisters in a variable and then test fo‘r indi-
vidual bits. Thus ‘CD = PEEK(V+31)’ could
followed by ‘IF CD AND 4 = 4 THEN . ..

to detect whether sprite 3 has collided with a
character.

sprite expansion Sprites can be ex-
panded to twice their size, n the horizontal
direction, the vertical direction, or both
together. Setting the bit, which cor‘respox}ds7 to
the sprite number, to 1 in register 53277

expands a sprite horizontally.

| V=53248

vertical expansion: register V+23

horizontal expansion: register V+29

bit no./sprite no. 7|le|5|4]|]3|]2]1]0
| bitvalue 12864 (32|16 8|4 |2]1

For example to expand sprite 5 enter
POKE V+29,32 _
where V equals the start of the registers,
53248.)
Register 53271 (V + 23) controls vertical
expansion, and is set in the same way:

- 22()

POKE V+23,8
expands sprite 3 vertically.

Alternatively, use the following formulac,
in which SN gives a sprite number between ()
and 7: ‘POKE (V+29),PEEK(V+29) OR
(21 SN)’ for horizontal expansion. ‘POKE
(V+23),PEEK(V+23) OR (21 SN)’ for ver-
tical expansion.

To reduce a sprite after expansion use:

POKE V+29,PEEK(V+29) AND (255 — 21 SN)
for horizontal reduction, and

POKE V+23,PEEK(V+23) AND (255 — 21 SN)

tor vertical reduction.

sprite priority Register 53275 (V+27) de-
termines whether sprites appear to pass behind
or in front of other objects on the screen.
Setting the bit corresponding to the spritc
number to 1 gives any other object on the
screen priority over the sprite. This means that
the sprite will pass behind other objects. If, for
example, the screen shows a program listing in
character mode. ‘POKE V+27.8 causcs
sprite 3 to appear behind the listing, by setting
bit 3 to 1. When the corresponding bit is set to
0 the sprite passes in front of other objects.
Between themselves, lower numbered

1 sta

prites have priority over higher l}umbcrgd
prites. Sprite 0 has the highest priority, sprite
the lowest. Thus sprite 4 appears in front of
orite 5.

SQR A floating-point function which re-
turns the square root of a number. It cannot
&ndlc negative numbers, e.g.:

~ 10 PRINT SQR(81)

- 10 IF F > SQR(N) THEN GOTO 200

STA A 6510 instruction mnemonic which
STores the contents of the Accumulator at a
specified memory location, e.g.:

LDY #8
LDA #32
STA $0400,Y
stores 32 in location $0408.

Status register NS N B "R e (_:
la bly language form [op | No. | No.
Mmlm mode | assembly languag g A i

page 3
zero STA operand 85 2
2ero page, X STA operand, X 95 2 4
absolute STA operand 8D | 3 4
| absolute, x STA operand, X 9 | 3 5
| absolute, Y STA operand, Y : g:) g g
 (indirect, X) STA (operand, X
(Indirect), Y STA (operand), Y 91 2 6

sta 222

stack An arca of RAM used for temporary
storage in machine code programs. The stack
extends from addresses $100 to $1FF (256 to
511). It operates on the last in, first out princi-
ple, storing numbers on top of each other, and
removing them from the top.

Although the first available number is said
to be at the top of the stack, it has the lowest
address in memory since the stack stores num-
bers downwards from $1FF. When the 6510
microprocessor places (pushes) a number on
the stack, or removes (pulls) a number, the
stack pointer is automatically decreased or
increased to point to the next free space.

See PHA; PHP; PLA; PLP.

One of the functions of the stack is to hold
the address that a program returns to after a
subroutine.

See JSR.

stack pointer An 8-bit register which
points to the first free location on the 6510
microprocessor’s stack. When an instruction
such as PHA pushes a byte onto the stack, the
stack pointer is decreased by one. Note that it
is decreased rather than increased since the
stack expands downwards in memory.

sta

TATUS A function which gives informa-
on about input/output operations. It returns
single byte number. Depending on which
in the byte are set to one, it reports the

of the last operation. (See the table of
ATUS bit codes below.) STATUS is com-
only used in cassette file operations to test
for an end of file marker.

ATUS STATUS CASSETTE SERIAL TAPE VERIFY
NUMERIC READ BUS +LOAD
VALUE TE
1 time out
write
2 time out
read
4 short block short block
8 long block long block
4 16 unrecoverable any mismatch -
read error
32 checksum checksum
error error
64 end of file end of file
P 7 -128 end of tape device not end of tape
present

:Associatcd keywords: GET#; INPUT#;
RINT #.
status register Also known as the pro-

essor status register, it holds 7 flags. They
ve various types of information about the

state of the 6510 microprocessor or the effects
of the instructions it executes. Each flag cor-
responds to a bit which can be either 1 or 0.
When a bit equals 1 its flag is said to be set;
when it equals 0 the flag is clear. From left
right the flags are as follows:

7 0
N|V B(D|I]|Z|C
K
| Ecarry = 1if carry occurred
zero = 1 if result zero
IRQ = 1 if interrupt disabled

decimal = 1 if using BCD
break = 1if BREAK occurred
notused = 1 always
——— overflow = 1 if overflow occurred
——————————— negative = 1 if result negative
NEGATIVE FLAG (N). Set after an operation when
the most significant bit in the result equals 1.
In signed arithmetic this indicates that the
result is negative. (See two’s complement.)

OVERFLOW FLAG (V). Used in two’s comple-
ment arithmetic to indicate an overflow. It is
set when an operation results in a carry from
bit 6 to bit 7.

BREAK FLAG (B). Set after a BRK interrupt.

DECIMAL FLAG (D). Set if the 6510 microp-

rocessor is in decimal mode. (See binary
coded decimal)

224 ;

INTERRUPT FLAG (1). Set to disable an IRQ

nterrupt. 4
mmopruc (z). Set when the result of an

operation is 0. .

?gmmv FLAG (C). Set when adding two bytes
gives a result greater than 255; cleared if
subtracting one byte from another does re-
ire a bit to be borrowed. Also acts as a 9th
bit for the accumulator in shift and rotate

rations. . : n
Bit 5 in the status register is not used and is
lways set.

E i - the
STEP A statement which, as part of t
gl(r)R .. . NEXT loop, STEP allows you to
specify the amount by which the loop variable
is increased. When STEP is pmittcd the vari-
able is increased by one. In this line
gl"|0 FORN = 07T0 30 STEP5 .
the loop variable, N, is increased six times in
steps of 5.
s“;% FOR N = 10 TO 1 STEP —1
counts down from 10 to 1.

10 FOR N = 0 TO 10 STEP 0.25

increments the variable in steps of a quarter.

STOP A statement which halts a program
and displays a message indicating the line

number where it occurs. Thus

200 STOP
would display ‘BREAK IN 20",

It has the same effect as pressing the RUN/
STOP key during the execution of a prog-

ram. If the STOP statement is not at the end of

a program execution can be resumed by enter-
ing CONT as a direct command.
Associated keywords: FOR; NEXT: TO.

string Characters between quotation
marks. Strings can hold any combination of
letters, numbers, symbols, graphics and con-
trol characters, to a maximum of 255 charac-
ters.

See string variables.

STRING TOO LONG An error message,

caused by trying to form a string longer than
255 characters.

string variables They store string data.
The names of string variables must end with 4
$ character.

Two or more string variables can be joined

together (concatenated) using the plus sign,
e

v-X
10 A$ = "HAPPY”

226

str

B$ = "BIRTHDAY"
= A8 + ", " + BS

they can also be used with relational
erators, in which case they are comparesl)
the basis of their ASCII codes, e.g. ‘IF I

“A” THEN PRINT “TRUE” prints
RUE ' since 4 has a lower code than A. '

$ assigns a single character to a vari-
e, and is often used to insert control char-
fers in a string, €.g.:

10 AS — CHRS(146) + CHRS(26) + 'TEST"

0 PRINT AS$

s the word ‘TEST’ in blue reverse charac-

A string function which converts
imbers into their equivalent string charac-
. Thus

$(3.06)

3.06"

the number is positive STRS, inserts a space
the front of the string. So,

PRINT LEN(STRS(3.06)

ves a length of 5.

ssociated keyword: VAL.

ructured programming A way of

stx g

writing programs so that their structure i
evident. Structured programming tries tq
make programs easy to understand and mod.
ify. It does this by breaking the program down,
into a series of modules or subroutines, cach
one of which handles a specific task. The star
of the program can then contain a control
section which calls the subroutines and clearly
exhibits the flow of the program.

Proponents of structured programming
strongly object to the GOTO statement
Programs that rely heavily on GOTO ar
difficult to follow and even harder to modify.
However, in Commodore BASIC it is not
easy to dispense with GOTO entirely, parti-
cularly within a subroutine. Writing properly
structured programs requires a set of struc-
tured programming commands such as IF . . .
THEN . . ELSE, REPEAT . . . UNTIL, and
DO . .. WHILE. These are sometimes sup-
plied by BASIC extensions.

STX A 6510 instruction mnemonic which
STores the contents of the X index register in
a specified memory location. It acts in the
same way as STA but has fewer addressing
modes.

3 assembly language form | op No. No.
1 ' i . code | bytes |cycles

E

J Status register NV B TR NG

‘

| e STX operand 86 2 3
j ::ga 2 4 STX operand, Y 96 2 4
psolute STX operand 8E 3 4

E A 6510 instruction mnemonic whigh
STores the contents of the Y index register in
aspecified memory location.

. Status register NN 8D 2. Z4:6G
ssembly language form | op No. No.
e Ll code | bytes |cycles
2 3
zero page STY operand 84
zero page. X STY operand, X 94 2 4
absolute STY operand 8C 3 4

subroutine Onc or more program lines
which may perform a specific task and can be
~called from different places within the main
program. Subroutines are useful if the same
task needs to be performed at several different
Stages in the program. Instead of repeating a
group of lines, it saves space and is more
convenient to put them in a subroutine. Alter-
1atively, it is often a good idea to put cach
Stage of a program in a subroutine, even if it is

sub 23()
only used once. The program can then includc
a control section consisting of a series of
GOSUB statements.

See structured programming.

In BASIC, the GOSUB instruction calls 1
subroutine and RETURN marks the end of 4
subroutine. The equivalent commands in
machine code are JSR and RTS.

subscript The number inside parenthescs
by which an element in an array is identificd.
If the subscript is too big for the array it causcs
a‘BAD SUBSCRIPT’ error message, €.g.:

10 DIM A(10)

20 A(30) = 2.3

sustain/release The last two phases of 4
sound envelope. After the attack/decay
phase the volume falls to the sustain level, and
a note continues to play at this level until it is
turned off. It then dies away at the rate set for
the release phase. Sustain and release for
voices 1, 2, and 3, are controlled by POKEing
values into registers 54278, 54285, 54292, The
top four bits of each register set the volumec
level for the sustain phase, as a proportion of
the pre-set volume, e.g. a sustain value of 9
gives a sustain volume which 60% of that set

sys

.:"'o the envelope is defined (9/15 = 60%).
The release value is held in the bottom four
bits and acts in the same way as the decay
e. It determines the time it takes tor_a note
from its sustain volume to zero, after the
bit has been set to 0.

A statement which causes the com-
to jump to the machine code program
hich starts at the address following SYS.
d ecither as a direct command or within a
SIC program it is the most common way
xecuting machine code. When it appears i
BASIC program it has the samc'cffcct o
OSUB except that the program jumps to a
hine code program rather than a BASIC
broutine. In this line

control passes to the GOTO statement after
machine code at address 49152 has been
ted. There must, however, be a RTS
ruction at the end of the machine code if it
o return to BASIC.

~ Associated keyword: USR.

stem variables Locations in RAM
m 0 to 1023, which are used by the operat-
system and BASIC interpreter. Many of

J

tab X

o

them can be usefully PEEKed or POKEd, e.g.
‘POKE 650,128' makes all the keys auto-
repeat. ‘POKE 198,0" clears the keyboard but-
fer. ‘POKE 646,C’ sets the colour of the next
character printed.

TAB A function. Together with PRINT, i
specifies the position at which the next charac-
ter will be printed in a line. It moves the cursor
to a given column position. Thus,

PRINT TAB(12) "TEST”
prints “TEST’ starting at the thirteenth col-
umn. The left-hand column is numbered 0, the
right-hand column is 39. Although more than
one TAB functions can appear in a singlc
PRINT statement, TAB cannot be used to
print back to the left, e.g.:

10 PRINT TAB(5) "ONE” TAB(20) "TWO"
works, but

10 PRINT TAB(20) "ONE” TAB(5) "TWO"
does not.

Associated keyword: PRINT.

TAN A floating-point function which calcu-
lates the tangent of an angle which is given in
radians. ATN, in turn, gives the angle from its
tangent. Examples:

10 PRINT TAN(0.5666)

-

tim

10 X = TAN(Y)
Associated keywords: ATN; COS; SIN.

See cassette.

A 6510 instruction mnemonic which
Transfers the contents of the Accumulator to
X index register. Often used after PLA
to restore the contents of the Y register.

- Status register VB Dl & O

%‘wlng mode| assembly language form | op No. No.
code | bytes |cycles

implied TAX A | 1| 2

TAY A 6510 instruction mnemonic which

‘ransfers the contents of the Accumulator to
the Y index register. Often used in conjunc-
tion with PLA.

‘j Statusregister N V B D | Z C

ing mode | assembly language form | op No. No.
code | bytes |cycles

TAY A8 1 2

IME A numeric function which, usually
‘written ‘TI, reads the computer’s internal
clock. The clock is set to zero when the

F

tim 234
computer is turned on and, thereafter, is in-
creased every 1/60th sec.

TIME is useful for timing intervals. In the
following program it measures the amount of
time taken to press a key:

10 PRINT "PRESS THE FOLLOWING KEY”

20 X = INT(RND(0)»27)

30 PRINT CHR$(65+X)

40 TT =T

50 GET AS:IF AS = "” THEN 50

60 PRINT "YOU TOOK”; (Tl — TT) / 60;

" SECONDS”
70 GOTO 10
Associated keyword: TIMES.

TIMES$ Like the TIME function, TIMES
reads the computer’s internal clock but re-
turns a string of six characters which give the
elapsed time in hours, minutes, and seconds.
Unlike TIME, its initial value can be specified:

TIME$ = "HHMMSS”
sets the clock to HH hours (up to 24), MM
minutes, and SS seconds. The following pro-
gram sets the timer to 8.30 am and prints a
message at 9.00 am:

10 TIMES = "083000"

20 IF TIMES < "090000" THEN 20

30 PRINT "PHONE OFFICE AT ONCE"
Associated keyword: TIME.

en The code by which a BASIC
vord is stored in memory. Rather than
o stored as series of ASCII codes, BASIC
i ords are represented in RAM by 1-byte
tokens, in the range 128 to 255, e.g. PRINT is
presented by 153. Not only does this save
emory space but it also speeds up the rate at
j programs run. To recognise a keyword
e BASIC interpreter needs only to consult a
of the tokens held in ROM from 41118
ards. When a program is LISTed,
eywords are converted back into characters
| screen.
table A table showing the results of

" aring different combinations of 1 and 0
ogical operators.

=1 1 OR 1=1 NOT 1=0
=0 1 OR 0=1 NOT 0=1
=0 0 OR 1=1

) AND 0=0 0 OR 0=0

an ranslating 1 and 0 into TRUE and FALSE,
‘ e tables give the results of comparing two
onditions in an IF . . . THEN statement.

tru 234 ‘7

truth value The number which the con-
puter assigns to an expression depending on
whether it is true or false. True expressions arc
given a value of —1, false expressions a valuc
of 0, e.g. ‘PRINT A = B’ prints ‘0’ if ‘A’ docs
not equal ‘B’. ‘PRINT 6 < 5’ prints ‘—1".

InIF . . . THEN statements the truth valuc
acts as a kind of flag which gives the result of
evaluating the expression. It tells the computer
cither to execute the instruction after THEN
or proceed to the next line. Conversely, when
single numbers or variables appear inan IF . . .
THEN statement, the computer acts as if they
were expressions, and treats them as false if
they have a value of 0, and true if they have
any other value, e.g. ‘IF X THEN PRINT
“TEST™ prints TEST for all values of X
except .

TSX A 6510 instruction mnemonic which
Transfers the Stack pointer to the X index
register. This is the only 6510 microprocessor
instruction that allows the contents of the stack
pointer to be accessed, ¢.g.:

TSX
STX $FB

stores the contents of the stack pointer at FB.

E Status register REBVUBE Bt EhaE
L

ing mode | assembly language form | op No. No.
code | bytes |cycles

TSX BA 1 2

le See LOGO.

two’s complement A way of represent-
m negative numbers in machine code pro-
grams. In two’s complement (signed)
arithmetic the most significant bit (bit 7) of a
byte indicates the sign of a number. If bit 7is 1
the number is negative; otherwise it is posi-
tive. The first 7 bits represent the number
itself, giving a range from —128 to +127.
Numbers from 0 to 127 ($7F) are cons)dcrgd to
be positive, and numbers from 128 to ‘233 are
considered negative. To obtain the two’s com-
plement form of a negative number, add it to
256. Thus —100 is 156 in signed arithmetic. In
binary, first find the complement of the num-
ber by inverting (flipping) its bits, then add 1.

g, : binary
34 00100010
complementof 34 11011101

‘ add 1 1
—34 11011110

txa 238

Note that the 6510 microprocessor treats
signed numbers in the same way as unsigned
numbers. Although signed numbers only
occupy the first 7 bits, the 8th bit, bit 7, is st
to 1 when two numbers add up to more than
127. This has the effect of giving the result the
opposite sign if two numbers with the same
sign are added together. To show that an
overflow has occured from bit 6 to bit 7 the
6510 sets the overflow (V) flag.

Generally, after an operation, bit 7 in the
result is copied into the negative (N) flag. In
signed arithmetic this shows whether the re-
sult is positive or negative.

TXA A 6510 instruction mnemonic which
has the opposite effect to TAX, and transfers
the X index register to the accumulator.
See PHA.
Status register W YABY DL 4P ¢

v \

|add ing mode oly language form | op No. No.
code | bytes |cycles

implied TXA 8A 1 2

TXS A 6510 instruction mnemonic — the
only one that allows the value of the stack
pointer to be set, it transfers the contents of the

und

{ index register to the stack pointer.

1 See TSX.
Status register NiNaB 0 1 Z2he

op No. No.
code | bytes | cycles

XS 9A 1 2

ssing mode | assembly language form

ansfers the contents of the Y index register
the Accumulator.
- See PHA.

Wi Status register N EoBosBors vdiu

v

ing mode | assembly language form | op No. No.
code | bytes |cycles

TYA 98 1 2

PE MISMATCH An error message: a
umber has been used where a string is ex-
ected, or vice versa.

UNDEF'D FUNCTION An error mes-

sage, caused by trying to use a function which
'ﬂns not been defined by a DEF FN statement.

UNDEF'D STATEMENT An error mes-
‘sage: an attempt has been made to GOTO or
GOSUB to a line number that does not exist.

2

use 240

user defined characters Characters
which are designed by the user and replace the
built-in characters. The standard character set
is defined in the character generator ROM.
By telling the computer to fetch definitions
trom an area in RAM it is possible to design up
to 512 new characters. To do this requires the
following steps:

(1) DEFINE A cHARACTER. Each character is
defined by the bit patterns in 8 bytes. Thus it
takes 512 bytes to define 64 characters. The
bits in the first byte represent the first row, the
bits in the second byte the second row, and so
on.

See character designer.

64 16 4 1

128 32 8 2 o
byte 1 127
byte 2 - 34
byte 3 20
byte 4 8
byte 5 20
byte 6 34
byte 7 127
byte 8 o

(2) RESERVE MEMORY. Since the new character
setis to be held in RAM, memory needs to be
allocated for it. From 12288 onwards is a
convenient area to store definitions, but runs

241 use
the risk of being overwritten by a BASIC
rogram.

10 POKE 52,48:POKE 56,48
reserves memory by lowering the top of the
BASIC program area. Other areas of mem-
ory can also be used.

(3) CHANGE THE ADDRESS OF CHARACTER
MEMORY.

20 POKE 53272,(PEEK(53272) AND 240) OR12

switches the start address of the character
definitions from ROM to 12888. As the new
character data has not yet been stored in RAM,
any characters on the screen will now be
unrecognisable: the computer is taking its de-
finitions from random numbers in RAM.
(4) copy ROM DEFINITIONS INTO RAM. This
step is optional if only user defined characters
are needed, but if it is not taken none of the
normal character set can be used. For example,
if the space character (32) is not defined it will
not be possible to clear the screen.

To copy the existing character set, enter
these lines:

30 POKE 56334, PEEK(56334) AND 254

40 POKE 1,PEEK(1) AND 251

50 FOR N=0 TO 511

60 POKE N-+12288,PEEK(53248+N)

use 242

70 NEXT

80 POKE 1,PEEK(1) OR 4

90 POKE 56334, PEEK(56334) OR 1
Lines 30 and 40 disable interrupts and switch
the ROM character set to start at 53248. Lincs
50 to 70 then copy the first 64 character into
RAM starting at 12288 onwards. Lines 80 and
90 switch out the ROM and enable Interrupts.
(5) STORE NEW CHARACTER DEFINITIONS.
Where a character is stored depends on which
screen code it is given. The 8 bytes defining a
character with code C are stored at location
‘CM + (C%8)’ onwards where CM is the start
of the area of memory reserved for definitions.
In this program, which can be added to the
lines above, the character defined in the dia-
gram replaces the letter T and is assigned the
code 20. Line 110 READ:s the 8 bytes held in
DATA statements, and POKEs them into
memory from location 12288 + (20%8) on-
wards.

100 FOR N= 070 7

110 READ D:POKE (12288+20%8+N),D

120 NEXT

130 DATA 127,34,20,8,20,34,127,0
(6) DISPLAY USER DEFINED CHARACTER. When
using a PRINT statement simply press the key

ssociated with the character it replaces. Alter-
atively, POKE its code into the screen mem-
ory. Lines 150 and 160 illustrate both methods.
Line 140 clears the screen.

50 PRINT "T"
123 POKE 1024,20:POKE 55296,6:REM SET

COLOUR

er port The edge connector next to the
cassette socket. It has 8 lines for inputting or
P tputting data and two control lines. th)en
used to provide an RS232 or centronics inter-
face, it allows the computer to be connected to
»umbcr of different devices, e.g. a modem,

aprinter, or a robot arm.

' floating-point function which per-
ggs inAthe samg vl:/ay as SYS but is less easy
to use. It executes a machine code program,
but before the machine code is called its start
address must be placed ll]’OKEd into memory
locations 785 and 786. Thus,

hﬁ;;(E 785,0:POKE 786,192:X = USR(7)

calls a machine code routine located at 49152.
785 takes the low order byte of the address anc’i’
786 takes the high order byte. In this case 19;
is POKEd into 786 since 49152 equals 192

5

k)
3 var
uti 244 245

times 256. USR has one advantage over SYS
in that it allows a number to be passed from
BASIC and used in the machine code prog-
ram. The number is given as the function’s
argument. It is placed in the computer’s float-
ing point accumulator at locations 97-102.
When control returns to BASIC, USR gives
the final number stored in the accumulator as a
result. In the above example, 7 is passed to the
floating-point accumulator and the result is
stored in the variable X.
Associated keyword: SYS.

utilities Programs that provide useful and
commonly needed facilities, often supplied as
new commands in BASIC extensions. They
assist programmers in the task of writing or
modifying a program. The following utilities
are among the most common:

RENUMBER renumbers program lines

by a given increment.

DELETE deletes a block of program lines.

AUTO prints line numbers automatically.

TRACE a debugging aid which prints the

number a line before it is executed.

See merge.

VAL A string function which converts a

string which contains a number intE)_t,!l? num-
ber itself. For example ‘“VAL(“3.55")" gives
*3.55’. This function is coEnmonly. used to
assign numbers held in string variables to
numeric variables. In this program numbers
are input to a string variable and then con-
ed to numeric form.
veﬁ) PRINT "INPUT A NUMBER BETWEEN 0
ET Ko N$="" THEN 20
GET N$:IF N§=""
gg IF N§ < "0" OR N§ > "10" THEN 20
40 N = VAL(N$) '
Note that the first character in the string must
be a digit or a plus or minus sign. cherwme
VAL returns zero. Thus PRIN'I:
VAL(STR$(7.5)" displays ‘0’, as ‘STR$(7.5)
inserts a space in front of ‘7.5".
Associated keyword: STRS.

variables Used to store data within a
program. Each variable is identified by its
name which must start with a letter, and can
be followed by any number of letters or
numbers. There are four kinds of variables T
string, integer, floating point, array vari-
ables. Examples:
NAMES - string variable

var 246

1% — integer variable

T — floating point variable
N$(4) — string array

N%(2) - integerarray

B1(5) — floating point array

Although variable names can be of any length
only the first two characters are significant.
TEMPS$ and TELS, for example, are treated as
the same variable. Long variable names.
however, make programs easier to under-
stand.

Variable names must not incorporate
BASIC keywords. These are known pas rtt-
served words. Using them in a variable will
cause a SYNTAX ERROR, e.g. “TOP = 20¢’
contains the BASIC keyword TO.

The equals sign is used to assign a value to a
variable, e.g.:

A$ = "HELLO”
T2% = 35

N = 3.666
AR(3) = 0.5

Variables must take the correct type of value.
Attgmptmg to assign a string to a numeric
variable — integer and floating point — or vice
versa, results in a “TYPE MISMATCH’ error
message, €.g.:

247 ver

B$ = 3
T = "ALPHA”
See VAL; STRS.

rector A 2-byte location in RAM which
holds the address of another location in mem-
ry. Many of the operating system’s sub-
sutines in ROM are called indirectly via their
ors in RAM. See JMP. By changing a
or to point to a different address the user
can insert a new routine.

- See wedge.

VERIFY (1) A command used to check
that a program has been correctly SAVEd.
VERIFY compares the program stored on tape
‘or disk with the program in the computer’s
" memory. If they do not match, it displays a
VERIFY ERROR message. VERIFY on its
own checks the first program on tape.
“VERIFY “PROGNAME" searches for
‘PROGNAME’ and checks it if found.
VERIFY ‘“PROGNAME”,8 checks ‘PROG-
'NAME' on disk.

* This command is also useful for finding the
first unused part of a tape, since it reads the
e without overwriting the program in

vic 248

Associated commands: SAVE.
(2) An error message: the program on tape
or disk has not been saved correctly, and does
not match the program in memory.

VIC This 6566 Video Interface (VIC II) chip
generates the screen display. Whatever the
display mode, the VIC chip is responsible for
converting codes or bits in memory into char-
acters, colours and graphics on the screen. In
character mode the VIC chip reads character
codes in the screen memory and then con-
sults the character generator ROM to find
the pattern of bits which represent characters
on screen. Since the computer’s microp-
rocessor and the VIC chip cannot access mem-
ory at the same time, the 6510’s operations are
suspended while the VIC generates the dis-
play. Although this slows down the 6510
sometimes by as much as 20%, it has no effect
on the way the 6510 executes programs. But it
can cause problems in I/O operations wherc
exact timing is important. It is for this reason

that the screen is blanked when the cassette is

running.

The VIC chip has 47 registers which arc
represented in RAM from 53248 to 53294.

249 vic

‘Most of them are used for controlling sprites,
or sclecting the display mode. They also pro-
vide control over various other features of the
ﬁisplay: screen memory: screen width and
height; fine scrolling; screen blanking. ¥
SCREEN MEMORY The top four bits in VIC
register 53272 locate the screen memory at one
of sixteen 1K blocks. This allows alternate
screens to be set up although it is not possible to
shift the location of colour memory. Notc
~that the system wvariable at location 648,
which points to the screen address, also needs
to be changed.

REGISTER ADDRESS FUNCTION

0 53248 sprite @ X-position
1 53249 sprite 0 Y-position
2 53250 sprite 1 X-position
3 53251 sprite 1 Y-position
4 53252 sprite 2 X-position
5 53253 sprite 2 Y-position
6 53254 sprite 3 X-position
7 53255 sprite 3 Y-position
8 53256 sprite 4 X-position
9 53257 sprite 4 Y-position
10 53258 sprite 5 X-position
1 53259 sprite 5 Y-position
12 53260 sprite 6 X-position
13 53261 sprite 6 Y-position
14 53262 sprite 7 X-position
15 53263 sprite 7 Y-position
16 53264 sprites 0—7 most significant bit

of X-position

vic 25()
REGISTER ADDRESS FUNCTION

17 53265 control register 1

18 53266 raster register

19 53267 light pen X-position

20 53268 light pen Y-position

21 53269 sprites 0-7 enable

22 53270 control register 2

23 53271 sprites 0-7 vertical expansion

24 53272 memory pointers

25 53273 interrupt flag register

53274 interrupt enable

53275 sprite (0-7)-background priority
53276 sprites 0—7 multicolour select
53277 sprites 0-7 horizontal expansion
53278 sprite (0-7)-sprite collision
53279 sprite (0-7)-background collision
53280 screen border colour

53281 screen background colour
53282 background colour 1

53283 background colour 2

53284 background colour 3

53285 sprite multicolour 1

53286 sprite multicolour 2

53287 sprite 0 colour

53288 sprite 1 colour

53289 sprite 2 colour

53290 sprite 3 colour

53291 sprite 4 colour

53292 sprite 5 colour

53293 sprite 6 colour

53294 sprite 7 colour

SCREEN WIDTH AND HEIGHT. Setting bit 3 to
0 in VIC registers 53265 and 53270 reduces the
screen width to 38 columns and the height to
24 rows, ¢.g

POKE 53265, PEEK(53265)AND 247

SHRENEBBUBRLERLEBRYA

ga vol

POKE 53270,PEEK(53270)AND 247
- FINE SCROLLING. Controlled by bits 0 to 2
in VIC registers 53265 and 53270.
~ SCREEN BLANKING. Sctting bit 4 in VIC
ter 53265 to @ blanks the screen, e.g.
?OKE 53265,(PEEK (53265)AND239)". To
switch the screen back enter ‘POKE 53265,
PEEK (53265)OR16’.
- Seescrolling.
REGISTER
NO. [bit7 | bité | bits | bita | bit3a [vit2]bit1[vite

| raster |extended| bit screen | screen vertical

17| most | colour | map [blanking | height scroll

- | signif. | mode | mode
bit

multi- | screen | horizontal
=l — — — colour | width scroll
mode
24 screen memory character memory
address address

@Ice Either a sound channel or the sound
produced by a channel.

volume The first four bits of register 54296

- control the overall volume of sound for the

three channels. Volume is measured from 0 to
15 where 15 gives a maximum volume and 0
turns the sound off altogether.

wai 252

WAIT A command which halts a program
and waits until a given address contains
specified value. It is generally used to test for
some external event. For example, it could be
used to suspend a program until a key is
pressed or a joystick is pushed in a particular
direction. Thus *“WAIT 197,28 waits until the
B key is pressed. “WAIT 145,1,1" waits until
the joystick in PORT 1 is pushed to the left. It
should, however, be noted that there are sim-
pler ways of testing for these events.

WAIT must be followed by an address and
one or two numbers which act as masks. If the
second number is not given it assumes it is
zero. WAIT tests the value at the address by
comparing it with the first mask in a bitwisc
AND operation. Then it performs an Exclu-
sive OR operation with the second mask. IF
the result of these two operations is 1 the
program proceeds to the next statement. In
contrast to the normal OR operation, an Ex-
clusive OR gives a result of 1 if only one bit is
set to 1. If both bits are 1 the result is 0.

waveform Determines the tonal quality or
timbre of a sound. Each voice can take one of
four waveforms: triangle, sawtooth, pulsc.

253 wav

and noise. The triangle waveform produces a
hollow or mellow sound suitable for repro-
ducing a note from a piano or a flute. By
contrast the sawtooth sound is more brassy or
twangy. Sometimes known as the square
wave, the pulse waveform gives a range of
different sounds depending on the pulse
width. The noise waveform is useful for
producing non-musical sound effects such as
explosions. To assign a waveform to one of
the voices, set the appropriate bit in its wave-
form control register to 1. Note that bit @ in
the same registers turns a sound on or off, e.g.
‘POKE 54283,33" selects the sawtooth wave-
form and turns the sound on.

triangle
sawtooth
i e
pulse | l/ l/

A

-

wed 254

waveform registers

54276, 54283, 54290 - Voices 1, 2, 3

BIT No. | FUNCTION BIT VALUE
"] gate (on/off) 1

1 synchronisation 2

2 ring modulation 4

3 test 8

4 triangle 16

5 sawtooth 32

6 pulse 64

7 noise 128

wedge A machine code program inserted
into one of the operating system’s sub-
routines. Wedges are set up by redirecting
one of the operating system’s vectors to point
to the user’s program. They allow the normal
subroutine to be modified or rewritten, e.¢.
fast loading programs insert a wedge in the
input/output routines. Interrupt wedges can
be used to harness IRQ interrupts so that the
user’s routine is executed every 1/50th sec.
Another type of wedge modifies the BASIC
interpreter’s CHARGET subroutine at lo-
cations 115 to 138. CHARGET passes BASIC
tokens and characters from RAM to the Inter-
preter. By intercepting it, the user can add new

255 zer

BASIC commands.

ordprocessor A program for entering
ext into the computer so that it can be edited,
é{ored, and printed out. The adyantagc of a
‘wordprocessor over a typewriter is that ymkcs
t much easier to correct, rearrange and format
ext. All this can be done first on the screen
efore a document is printed. As well as
r’g’i]owing words to be deleted or inserted,

%ﬂg}‘xoccssors usually provide facilities for
| L

ifting paragraphs, lining up the left or right
margins (justifying text), searching for and
replacing words, taking a word count, and
merging different documents. In some cases
they provide spelling checks from a dictionary
held on disk. Some wordprocessors offer an
80-column option. To run these the
‘Commodore 64 needs a hardware adaptor
“which converts the display to give 80 charac-
ters a line.
zero page Each block of 256 bytes in
memory is known as a page. Zero page is the
block from addresses 0 to 255 (0 to $FF). In
‘zero page addressing mode instructions move
data to or from (or via) zero page addresses.
The advantage of this mode is that it allows an

F

zer 256

address to be specified with one byte rather
than two. Note that when an instruction oper-
ates on a byte in a different page its execution
time is increased by one clock cycle, e.g.:

LDX #8

LDA $05FF X
crosses the boundary between pages 5 and 6,
and so adds one cycle to the normal execution
time.

zero page addressing In this mode the
instruction operates on a byte in zero page,
whose address is given by the operand. Since
one byte is sufficient to specify any address in
zero page, the whole instruction only occupics
two bytes. By contrast, instructions in ab-
solute addressing mode occupy three bytes.
Zero page addressing thus saves space and is
quicker to execute, e.g. ‘LDA 56 loads the
accumulator with the contents of the byte at
location 56; ‘AND $FB’ performs an ‘AND’
operation between the accumulator and the
contents of location FB.

R]

COLLINS GEM

Key Commodore C64 facts simply
accessed and explained
® 6510 instructions
® BASIC keywords e Sound
® Graphics @ Sprites

£2.25net

ISBN 0-00-458859-2

LA

0004"58859

G

