
Ill · i COLLINS-GEM -<
MICRO FACTS

'

MICRO FACTS

COMMODORE
64

MICRO FACTS

COMMODORE
64

im n Beesley

ollin
Lond n and Gia gow

NOTE
Entered words that we have reason to bdicvc

constirute trademarks have been designated as
such. However, neither the presrncc nor absence

or such designation should be regarded as affccrin1:1
the legal status or any trademark .

Firsr published J 'JH5
Reprint JO 9 8 7 6 5 4 J 2

©Wilham Colltn > Sons & Co. Ltd . 1985

ISl:IN !I !Ml 458859-2

l'horo1ypc·se1 Jnd 1llustrJ1c·d b\'
Parkway Group. London .1nd Ab111gdon

Pnnred 111 Grt .. 'Jr Urira111 b)'
Collins Clear-Type· i'rc·•s. GIJ>!(O\\'

foreword
This 'Micro Facts' is a comprehensive refer
ence guide to the Commodore 64. It is organ
ised on the pnnciple of a dictionary and with
over 300 entries covers almost every aspect of
the computer.

The intention of this book is that it should
be both practical and easy to u c. Although the
Commodore 64 is one of the most powerful
home computers around, many of its facilities
arc not readily available. Commodore BASlC
- unlike other versions of the language - has
no commands to handle sound and graphics.
To display sprites, for example, the user needs
to POKE values into a series of memory
locations.

All these features arc explained in detail . The
memory locations which control them are
presented in tables alongside the relevant en
tries. The alphabetical order ensures that the
reader will have no problem in finding any
particular reference.

The basic rule for finding information in this
book is to look under the most obvious word.
If that fails - and it may only be 'obviou ' to
you - then try a related word. Where a topic
has been developed further under another

heading, bold print in the text indicates the
heading of a separate entry. Related topics arc
also extensively cros -referenced in this way .

All the BASIC keywords have been
included , and arc usually accompanied by
a program example. In addition, the book
covers the machine code instructions for the
computer's 6510 microprocessor - the same
instructions as those used with the 6502 micro
processor in some other home computers .
Each instruction is given its own entry ,
together with a table hawing the different
forms it can take.

As far as possible, jargon has been avoided,
but where specialized terms arc needed , they
are used, and explained elsewhere under their
own entries.

'Commodore' and 'VIC' arc registered trade
marks of Commodore Business Machines.
The names or terms 'Atari', 'Ccntronics',
'CP/M', 'Prcstcl' and 'Z80' are also legally
protected and exclusive to their respective
owners.

7 abs

abbreviations Most of the BAS IC
keywords can be entered as abbreviations.
Usually these take the form of a letter followed
by a graphics character. The most com
monly used abbreviation is the question mark
ro replace the PRINT keyword . For example
'? PEEK (197)' is the same a 'PRINT
PEEK(197)'. Each keyword is stored in mem
ory as a I-byte token, so entering an abbrevi
ation docs not ave space in memory, but it
makes it possible to put more than 80 charac
ters on a program line.

When a program is LISTcd abbreviations
are expanded to their normal keywords.

ABS (ABSolute value) A numeric function
which turns negative numbers into positiw
numbers leaving positive numbers unchanged .
Thus the absolute value of -3. 75 is 3. 75 while
the absolute value of 8.3 is 8.3. It requires its
argument to be placed in parcnthese . as in '10
Y=ABS(X)' or '10 PRINT ABS(S*N)' . One
of the uses of the ABS function is for calculat
ing the difference between two numbers when
you do not know which i larger. If, for
example, 'M=S' and 'N=9', then 'M-N'
equals '-4', but 'AB (M-N)' returns a pmi-

abs

tl\' C value.
Associated keyword: SGN.

absolute addressing Treats the two
bvtes following the op co de as the address of a
byte in memory. e.g. ' TA 0423' stores the
value of the accumulator ac location 0423.

accumulator The most frequently u ed
register in the 6510 microprocessor. All arith
metic and logical operations are carried out in
che accumulator.

ADC The only 6510 microproces or addi
tion instrucnon. It adds the contents of a given
memory location ro the content of the accu
mulato r. If the carry Rag is et I is added to
the result. The carry Aag should therefore be
set ro zero with CLC when 2 ingle byte
numbers arc added together, e.g:

LOA $FB
CLC
AOC $FC

adds the content of locations FB and F , and
leaves the result in the accumulator .

After an ADC inscrucrion the carry Rag i
et to I if the resulc is greater than 255. This

allows multi-byce numbers co be added

9 add

cogether with ju ta few instructions .
Status register N V B D i!' c

ad<fress1ng mode assembly language form op No. No.
code bytes cycles

1mmed1ate ADC • operand 69 2 2
zero page ADC operand 65 2 3
zero page. X ADC operand. X 75 2 4
at>sOlute ADC operand 6D 3 4
absolute. X ADC operand, X 7D 3 4'
absolute. Y ADC operand, Y 79 3 4'
(indirect, X) ADC (operand. X) 61 2 6
(indirect), Y ADC (operand), Y 71 2 5·

• Add 1 11 page boundary Is crossed.

address A number which identifies a loca
non in the computer' memory. Each byte in
memory ha an address, in the range 0 to
65535. The content of a particular address can
be examined or altered by means of the BASIC
keywords PEEK and POKE.

ee m e m o ry m ap.

addressing modes The way in which an
instruction accesses data . An instruction'
addressing mode indicates whether its oper
and is to be treated a data, or the address of
data, or as a vecto r to the address of data.
Some in tructions operate on regi ters, and
have no operand ; in which case the operand

and 10

and addrc ing mode is said to be implied. In
the 6510 microprocessor there arc 9 different
addressing modes.

See absolute addressing; immediate
addressing; implied addressing; indexed
addressing ; indirect addressing ; pre
indexed indirect addressing; post-indexed
indirect addressing; relative addressing;
zero page addressing.

AND (1) A logical operator which can also
act as a bitwise operator. In logical operations ,
AND tests whether two conditions arc true at
the same time. It is commonly used with
IF ... THEN, e.g.:

IF X> 99 AND X< 1000 THEN PRINT X;"IS
A THREE DIGIT NUMBER"

and can also test for more than two conditions.
The following example will only print' OR
RECT' if all three conditions arc true:

IF A$= B$ AND M= 5 AND K< 12 THEN
PRINT "CORRECT"
When used as a bitwise operator, AND tests

or alters the individual bits in a number. It
compares each bit in a number with the
equivalent bit in another number. If both arc
eq ual to one then it sets the bit in the answer to

11 and

one. Otherwi c - if one or both bits equa l zero
_ it returns a value of zero . AND is often used
in thi way to mask one or more bits in a
number. For example to find ou t what the
bottom four bits in 213 are, AND it with 15.
In binary 15 is 00001111. Thus the first four
bits of 2 13 will be ignored since they arc being
compared with zero:

DECIMAL BINARY

213 11010101
AND 15 00001111

5 00000101

Associated keywords: OR; NOT.
(2) A 6510 instruction mnemonic which logi
cally ANDs the contents of a memory location

Status register NVBD i!C

addressing mode assembly language form op No. No.
code bytes cycles

immediate AND 1f operand 29 2 2
zero page AND operand 25 2 3
zero page, X AND operand, X 35 2 4
absolute AND operand 2D 3 4
absolule, X AND operand, X 3D 3 4•
absolute, Y AND operand, Y 39 3 4•
(indirect, X) AND (operand, XJ 21 2 6
(indirect), Y AND (operand), Y 31 2 5·

• Add 1 1f page boundary is crossed.

arg 12

with the contents of the accumulato r, leaving
the result in the accumulator. Can be used to
mask bit in the accumulator, e.g. 'AND
F0' ma ks off the bonom 4-bits in the
accumulator.

Sec tru th ta bles.

argument The number or string which a
function operates on. Every function must be
followed by an argument enclosed in parenth
eses, e.g.: SQR(25)
where '25' is the argument.

Among the built-in functions, FRE and
POS take dummy arguments. The value of
their argument is unimportant and can be any
number. User-defined funcnons can also take
dummy arguments, e.g. : '10 DEF FN H(N) =
INT(X/Y)'.

arithmetic operators The ymbols mcd
in arithmetic operations. In the tabk of oper
ators given below they arc listed in order of
precedence. This means that some operations
arc performed before others if their operators
have a higher precedence, e.g., the multipli
cation operator has precedence over the sub
traction operator o

9-2*3

13

equ <1 l '3', and not '21 '.
l'Jrenthcse can be used

cc:dences. Thu
(9-2)*3

eq uals ·21 ·.
'y111/w/ SC
+ posltlvc number

i
* I
+

negative number
rai e to power of
multiply
divide
add
subtract

arr

to override prL'-

Example
+5
-8
2 i 3=8
~*5=20
12/4=3
7+7=14
15-6=9

array A vari,1blc which is used to store sets
of data. A number of data item can be
assigned to one array and can be identified by
their position in the array. This is often a more
convenient way of coring data than assigning
a variable name to each item . For example a
list of names can be stored in a string array a
follows:

N$(1)
N$(2)
N$(3)
N$(4)
N$(5)

"SMITH"
"TOM KINSON"
"JONES"
"SCOTI"
"COLEMAN"

arr

The alternative would be ro define a dif
ferent variable for each name. Not only is it
simpler to store a large amount of data in an
array but it also makes it easier ro manipulate
the data. The list above can now be printed out
usingjust three program lines:

10 FOR X = 1 TO 5
20 PRINT N$(X)
30 NEXT
Arrays can have up to 32768 elements and

any number of dimensions . T(5), for example,
refers ro the fifth clemen t in a one-dimensional
numeric array. Two-dimensional arrays can be
thought of as arranging their variables in a
matrix of rows and columns. Thus A(4,6) =
6.5 assigns 6.5 to the sixth item in the fourth
row:
A DIM statement is required ro set up an
ar ray . It defines the number of elements and
dimensions. The number of elements is
counted from zero. So, for example,

DIM T(2,1)
sets up a numeric ar ray with a total of 6
elements, arranged as follows:

T(0 ,0) T(0 ,1)
T(1 ,0) T(1 , 1)
T(2 ,0) T(2 ,1)

asc

When a number is used to refer t0 a parti
cular clement it is termed a subscript.
Attempts to refer to an clement outside the
range of an array produce a 'BAD SUB
SCRIPT' error message.

ASC A st ring func tion which gives the
ASCII code for a character. It needs to be
follo wed by a string or a strin g variable be
tween parentheses. If the string has more than
one character in it ASC returns the code
number of the first cha racter, e.g.: 'PRINT
ASC("B")' which prints '66', the ASCII va lue
oft_hc kttcr 'B'. 'X=ASC("l23")' assigns '49',
which ts the ASCII va lue for 'I', to the variable
·x·.

One of its many uses is to check input from
the keyboard. This program asks you ro type a
number. If the ASCII code of the character
you enter is not that of a number it asks you to
try again , c. g.:

10 PRINT "TYPE A NUMBER FROM 0 TO
9"

20 GET A$:1F A$=""THEN GOTO 20
30 IF ASC(A$)< 48 OR ASC(A$)> 57 THEN

PRINT ''TRY AGAIN": GOTO 20
40 PRINT A$

asc 16
~

17 asc

Note that a character's A C ll code is not the
same as its screen code. When a character is
displayed on screen o f the Commodore 64 the
code stored 111 the screen memory is its
screen code.

other codes such as those fo r certain con trol
characters arc uniq ue to the Commodore 64.

Associated keyword : CHRS.

ASCII (America n Standard ode fo r In
fo rmation Interchange) Before it can store
letters o r graphics characters in memory the
computer needs to represent them as numbers.
T o do this the Commodore 64 - in common
with almost every other microcomputer - uses
th e ASC II code. It represents each character by
a single byte number between 0 and 255. The
letter A, fo r example, is stored in the computer
under the ASC II code 65, while the space
character is ass igned the code number 32.

ce ASC; CHRS.
Characters, however, arc not always repre

sented by their ASC II codes. The Commodore
64 uses its own screen codes to store characters
in screen memory. And BASIC key words arc
sto red as one byte tokens. N ote that this
version of the ASC II code is no t completely
standard . The codes for letter , digi ts, and
punctuation arc the sa me as el sewhere but

Sec program area .
ASCII

Q-4
5
6-7
8

9

10--12
13
14
15-16
17
18
19
20
21-27
28
29
30
31
32
33
34
35
36

CHARACTER

(not used)
white
(not used)
disable shift
Commodore
enable shift
Commodore
(not used)
return
lower case
(not used)
cursor down
reverse-video on
home
delete
(not used)
red
cursor right
green
blue
space
!

$

ASCII CHARACTER

37 %
38 &
39
40
41
42 *
43 +
44
45
46
47 I
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58
59
60 <
61

~

asc 18 19 asc

ASCII CHARACTER ASCII CHARACTER ASCII CHARACTER
ASCII CHARACTER ASCII CHARACTER

62 > 91 [117 i:a 146 reverse-video off 170 D
63 ? 92 £ 118 ~

147 clear screen 171 rn
64 @ 93 l 119 D

148 insert 172 [lj

65 A 94 i 120 ~
149 brown 173 c:J

66 B 95 <-- 121 []]
150 light red 174 6J

67 c E3
151 gray 1

96 122 [I) 175 l:J
68 D [!]

152 gray 2

69 E
97 123 EEi 153 light green 176 [i3

70 F
98 rn 124 m 154 light blue 177 ~

71 G 99 E3 125 rn 155 gray 3 178 Ei3

72 H 100 El 126 IITl 156 purple 179 []

73 I 101 L1 127 ~ 157 cursor left 180 D
74 J 102 bJ 128 (not used)

158 yellow 181 (]

75 K 103 ID 129 orange
159 cyan 182 []

76 L 104 [] 130-2 (not used)
160 shifted space 183 D

77 M 105 El 133 11 161 [] 184 ~
78 N 106 C3 134 13 162 .. 185 ~
79 0 107 ~ 135 15 163 D 186 D
80 p 108 0 136 17 164 D 187 ~
81 Q lSI 137 12 165 D
82 R

109 138 14 9
188 ~

IZl 166 eJ
83 s 110 139 16 D

189

84 T 111 D 167 190 ~
140 18 ~

85 u 112 0 141 shifted return
168 191 ~

86 v 113 • 142
169 l!""I

upper case
87 w 114 bJ 143 (not used) The graphic characters for 192- 223 are the same as 96-127.

88 x 115 ~ 144 black The graphic characters for 225-254 are the same as 161- 190.

89 y 116 ID 145 cursor up Character 255 is the same as 126 and 222.

90 z

•if

I

1:

•,

Ii
I

asl 2()

ASL A 6510 instruction mnemonic which
shifts the contents of the accumulator or a
memory location one bit to the left. Bit 0 is set
to 0 and bit 7 moves into the carry flag . It has
the effect of multiplying a byte by two,
e.g.:

LOA #08
STA $C000
ASL $C000

loads location C000 with 8 (00001000) and
then hifts it to 16 (00010000).

Status register N v B 0 I .i! c
- - - - J

addressing mode assembly language form op No. N o.
code bytes cycl es

accumulator ASLA OA 1 2
zero page ASLoperand 06 2 5
zero page, X ASL operand. X 16 2 6
absolute ASLoperand OE 3 6
absolute, X ASL operand, X 1E 3 7

assembler A program which converts
assembly language instructions into
machine code. With an assemb ler you can
w rite machine code programs using mnemo
nics instead of number - a much easier task.
Assemblers usua ll y all ow numbers to be writ
ten ei ther in decimal, hexadecimal , or binary

ass

notation. In addition they allow you to give
]Jbels for the destinations of relative and un
conditional jump instructions . If you were
writing a program directly in machine code,
the alternative wou ld be to work nut the
numerica l addresses of the destination .

The most common format for an assembly
language listing i to show three columns or
1nformation. Alongside the mnemonic in
structions it gi vcs (in hexadecimal) their
machine code equivalents and the add resses at
which they arc stored .

MACHINE ASSEMBLY
CODE LANGUAGE

ADDRESSES INSTRUCTIONS INSTRUCTIONS

19EA A583 LOA$83
19EC A200 LOX 1'0
19EE 8696 STX $96
19F0 A204 LOX * 4
19F2 8697 STX$97
19F4 A0 00 LOY 1'0
19F6 91 96 LOOP STA($96),Y
19F8 CB INY
19F9 00 FB BNELOOP
19FB E696 INC$96
19FO A696 LOX$96
19FF E0 08 CPX*8
1A01 00 F3 BNELOOP
1A03 60 RTS

label

ass

assembly language A language fo r
wri ting machine code programs in which
each machine code instruction is rcp re cntcd
by a mnemonic. Assembly language instruc
tions consists of operators and operands -
the mnemonics themselves .rnd the data or
addrc cs they operate on. The operand part of
the instruction also indicates wha t addressing
mode the operator is in.

Additionally, assembly language instruc
tions may also comain variables, labels and
comments. Labels arc the equivalents of line
numbers in BASIC. Variable , likewise, haw
the same function as they do in BA IC. Com
ments arc usuall y preceded by semi-colons and
arc the same as REM statements.

Although numbers can be given in decim al
most machine code programmers find it more
convenient to u e hexadecimal.

Before a program written in assembly lan
guage can be executed it must be converted
into machine code by an assem bler. The terms
source code and object code refer respectively
to the program before and after it has been
converted.

ATN A numeric function used to find an

att

•111glc who e tangent is already known. The
result , the arctangent, is given in radians . It
CJll be converted to degrees by multiplying
180hr. For example, 30 degrees in radians is
0.52359878 and its tangent is l/J.57735(/)'27

PRINT ATN(0.57735027) gives 0.52359878
PRINT ATN(0.57735027) * 180hr gives 30
Associated keywords: TAN; SIN; COS.

attack/decay The first two phases of a
sound envelope . In the attack phase, the
volum e of a note rises from zero to its max
imum level, which is set before the envelope is
defined. During the decay phase, the volume
drops from its maximum to the le\'el set fo r
the sustain phase. Rcgi rers 54177, 54184, and
5.+291 contro l the attack /decay rates for voices
I, 1 and 3. The duration of the attack and
deca y phases is determined by the top and
bottom four bits in each register. To set these
rate , find the value (1 st column) correspond
ing to the desired attack rare, multiply this by
16 add to it the va lue ofrhe decay rare.
A 500 millisecond attack rate and a 3()0 milli
second decay rare gi\'eS 10* 16+8= 168, so for
voice l (register 54277):

POKE 54277, 168

rl(•

f

II

I

1!

I

1,1

I

,I

I

t '

aud

VALUE ATTACK RATE DECAY/RELEASE RAT E

0 2 m1lhsecond 6 m1lhsecond
1 8 - 24 -
2 16 - 48 -
3 24 - 72 -
4 38 - 114 -
5 56 - 168 -
6 68 - 204 -
7 80 - 240 -
8 100 - 300 -
9 250 - 750 -

10 500 - 1.5 second
11 800 - 2.4 -
12 1 second 3 -
13 3 - 9 -
14 5 - 15 -
15 8 - 24 -

Sec sound; sustain/release; envelope.

audio/video port Connect the comp
to a monitor or a hi-fi system. Sending
SID chip's sound output to an amplifier

uter
the
111-

VCS stead of a TV loudspeaker generally impro
the ound quality.

BAD DATA An error message: the p
gram has received a string when it expectc
number, e.g. after a READ.

BAD SUBSCRIPT An error message:
subscript in an array variable i too big.

ro
d a

the

bank switching A method of givin g a

bas

computer more than 64K of memory. 8-bit

1111croprocessors. like the 6510, can only
Jddress a maximum of64K. The Commodore
(!4, however, has 64K of RAM and 20K of
ROM. It manages the extra memory by
,witching banks of 4 or 8K in and out of the
sJllle address space. Thu , normally the area
from 40960 to 49151 is occupied by the BASIC
1nrerprctcr ROM. But it can be switched out
to leave an extra 8K of RAM free for machine
code programs. Similarly, the character
generator ROM is witched in and out of the
Jrea from 53248 to 57343. This area is also
occupied by the colour memory and I/O
RAM .

BASIC (Beginners All-purpose Symbolic In
struction Code) The mo t commonly used
high-level language for home computers.
On the Commodore 64 a BASIC interpreter
is built-in and al lows programs to be typed in
or loaded into memory as soon as the
machine is switched on.

BASIC extensions Programs which add
extra commands to the resident BASIC's set of
commands. They arc supplied on cassette or
disk, or, like Simon's BASIC, in cartridge

bas

form. The extensions usually provide graphic\
and ound commands, programming util i
ties, and sometimes structured program.
ming commands.

BASIC stack An area of RAM used by the
BASIC interpreter to store addresses. When
BASI executes a GOSUB instruction it
stores its address on the BASIC tack . Whcn it
meets a RETURN command it removes the
address from the stack and branches back to
the command after the GOSUB. The addres-
es enable BASIC to keep track of where it

branches from.
A GOSUB command within a subroutine i<o

known as a nested GOSUB.
BA IC handles nested GQSl:1Bs by storing

each addre s in turn on top of the previom
add res . Like the microprocessor 's stack it
then operates on the last-in, first-out principle
and takes addresses from the top of the tack
downwards. As the stack i limited to 256
bytes it is possible (but unlikely) for a program
to run out of space on the stack by nesting too
many GO UBs. This prod uces Jn 'OUT OF
MEMORY' error message .

Failing to end a subroutine with a RE-

bes

TURN statement also causes this message,
and is more common, e.g.:

10 GOSUB 20
20 GOTO 10

baud The unit of measurement for the rate
Jt which information is transferred from one
device to another. Usually it is taken to mean
the number of bit passed per second. It is
often given as the speed of a computer'
cassette storage. On th e Commodore 64,
programs arc saved and loaded at 300 baud.

BCC A 6510 instruction mnemonic which
causes a branch if the carry flag is set to 0. This
instruction has only one addressing mode,
relati ve addressing. It can branch to any loca
tion 129 bytes forward or 126 bytes backward.

Status register N V B D l C

addressing mode assembly language form op No. No.
code bytes cycles

relative BCC operand 90 2·

• Add 1 if branch occurs to same page.
Add 2 If branch occurs to different page.

BCS A 65 10 instruction mnemonic w hich
causes a branch with relative addressing if
the carry flag is set to 1,

beq 28

e.g.:
SEC
BCS LABEL

cts the carry flag to and causes a branch to
the LABEL address.

Status register N V B D l c

addressing mode assembly language form

relative BCSoperand

• Add 1 if branch occurs 10 same page.
Add 2 if branch occurs to next page.

op
code

B0

No. No.
bytes cycles

2 2·

BEQ A 65 1 (i) instruction mnemonic which
causes a branch wi th relative addressing if
the zero flag is set to 0. Often used after a
compari on instruction, e.g. :

LOA $FB
CMP # 65
BEQ LABEL

checks w hether location FB contains the
ASCII code for the letter A (65) . If it docs,

Status register N V B D l C

addressing mode assembly language form op No. No.
code bytes cycles

relative BEQoperand F0 2 2·

• Add 1 if branch occurs to same page.
Add 2 1f branch occurs to next page.

bin

then the zero flag is set to (i) and the program
branches to the LABEL address.

binary A number system which uses on ly
two digits, (i) and 1. Since data i sto red as a
series of binary digits (bits) binary is fun
damental to all computer operations. In par
ticular, the microprocessor works in binary
arithmetic.

Just as the standard number system (deci
mal) uses ten digits and is said to be to the base
10, o binary number arc to the base two.
This means that the va lue of each binary digit,
passing from right to left, increases by a power
of two . In o ther word s each digit is worth two
rimes as much as the digit to its right. To
convert a binary number add up its column
values, c. g.:
128 64 32 16 8 4 2 1

[0 I 1 J 0 I 0 J 1 I 1 I 0 I 1 I =64+8+4+ 1= 77

binary coded decimal (BCD) A way of
representing decimal numbers in machine
code. In B D form each decimal digit i
represented by 4 bits, e.g. 36 in BCD is
0011011 (i): 0011 0110

3 6

bit

By this method a byte can store a number
from 0 ro 99. When the 6510 microprocessor
has been put in decimal mode by a SED
instruction, it adds and subtracts numbers i11
BCD form. In binary, 4 bits can tore J

number from 0 to 15. BCI is therefore lcs\
efficient in using memory space. For th 11
reason it i rarely used except in certain busi
ness and scientific applications .

bit Each Binary digiT is known as a bit and
can either have the value 0 or J. This is the
smalle t unit of computer memory. In electro
nic terms bits can be seen as switches which an:
either on or off. Most memory operations arc
performed on bytes, but it is sometime;
necessary ro alter or examine individual bits in
a byte. In such cases the bits arc referred to by
the numbers 0 to 7, with the least significant
bit, on the right, being bit 0.

bilNo.

bll value

BIT A 6510 instruction mnemonic which
copies bits 6 and 7 of a specified memory
location into the N and V flags in the status
register . It al o performs a logical AND with

31 bit

the contents of the accumulator and sets the
zero flag accordingly. If the memory byte
AND the accumulator equals 0 then the zero
flag is set to l. Note that BIT only alters the
status register and not the accumulator or
111emory byte. It is often used before the
branch instructions BPL or BMI, and BVS or
BVC.

Status register N V B D
M1 Ms -

addressing mode assembly language form op
code

zero page BIT operand 24
absolute BIT operand 2C

l c

No. No.
bytes cycles

2 3
3 4

bit map mode This mode gives high re
solution graphics with 320 pixels across by
100 down. In character mode each character
ts n:pre ented in memory by its code. By
contrast, in bit map mode each pixel is repre
sented by a bit. Bit map mode is selected by
entering 'POKE 53265,PEEK(53165) OR 32'.
This sets bit 5 in the VIC chip's control
register at 53265 ro l . To turn it off set bit 5 to
0 with 'POKE 53265, PEEK(53265) AND
223'. It is now necessary to tell the VIC chip
where the bit map is located. 'POKE
53272, PEEK(53272) OR 8' puts it at 8192. The

bit 32

area fron18192 to 16191 now serve a the high
resolution screen memory.

In thi mode this POKE also makes the area
from Hl24 to 2047 act as the bit map colour
memory. Note that 1024 is normally the start
of screen memory in character mode. Each
byre in the colour memory control the colour
of a group of pixels in an 8 by 8 character
space. Unless multicolour bit map mode is
selected all the pixels in an 8 by 8 group take
the same colour. In this respect the bit map
colour memory acts in the same way as the
standard colour memory . The difTcrence is
that it is al o possible to set the background
colour for each group of pixels . The lo;er bits
of a byre in co lour memory control the colour
of the background, and the top 4 bits control
the pixel colour. For example, 'POKE
1024,33' colours the pixels in the top Jeft hand
character space red, and makes the background
white. It docs this by giving the lower 4 bits
the value 1, the colour code for white, and
the top 4 bits the value 2, the colour code for
red. To set the foreground and background
colours for an 8 by 8 block of pixels, use the
following formula ' POKE CB, FC*16 +
BC'. 'CB' i the corresponding byte in colour

33 bit

111emory, 'FC' is the colour code for the
foreground, and 'BC' is the background col
our code.

The BASIC instruction PRINT does not
work with high resolution graphics. Nor docs
che CLR/HOME key operate. Instead , to
clear the screen, each byte in the screen mem
ory (8192 to 161 91) must be set to 0, and the
bytes in colour memory (1024 - 2047) must
be given the same value. This program swirch
t'S on bit map mode and then clears the screen,
making the background colour red. Any pixels
which arc set later wi ll appear in white.

10 REM TURN ON BIT MAP MODE
20 POKE 53265 ,PEEK(53265) OR 32
30 REM PUT START OF BIT MAP AT

8192
40 POKE 53272 ,PEEK(53272) OR 8
50 FOR N = 1024 TO 2047
60 POKE N,18:REM COLOURS RED AND

WHITE
70 NEXT
80 FOR N = 8192 TO 16191
90 POKE N,0:REM CLEAR SCREEN

100 NEXT
A pixel 's position can be described in terms

of its X and Y coordinates. The X coordinates

bit 34

range from left to right, from (i) to 319. y
coordinates from top to bottom run from 0 to
199.

ROW

ROW

2

COLUMN 8 COLUMN 1 COLUMN39

byteO bytes byte 312

byte 1 byte 9 byte 313

byte2 byte 10 byte 314

byte3 byte 11 byte315

byte 4 byte 12 byte 316

byte 5 byte 13 byte 317

byte6 byte 14 byte318

byte 7 byte 15 byte 319

byte 320

byte321 BITM AP SCREEN MEMORY

ORGANISATION byte 322

Turning on .(or .plotting) a particular pixel
11~volve. setting its corresponding bit to 1.
First ~t 1s necessary to work out which byte in
the bit map (screen memory) holds the bit,
thus:

B=8192+ 320* 1NT(Y/8)+8* 1NT(X/8) +(YAND7)
where 'X' and 'Y' give the pixel's coordin

ates and 'B' is the address of the byte required .
This fo~mula is based on the way the screen

memory 1s organised. Each byte has 8 bits
which define 8 pixels. The first byte at 8192

}5 bit

defines the first 8 pixels along the top row, the
second holds the data for the first 8 pixels in
the second row, and so on down to the eighth
row . The next block of 8 bytes define the
pixels in the next character space along. Thus
the ninth byte rcpre ents the second row of 8
pixels across the top of the screen.

The bit corresponding to a pixel at a given
byte is calculated by ' BIT= 7 -(X AND 7)'.
To plot the pixel at location X, Y set the bit to
I with 'POKE B,PEEK(B) OR (2 t (7-(X
AND 7)))' where 'B' is the address of its
corresponding byte. To turn off a pixel use
'POKE B,PEEK(B) AND (255 - 2 t (7-(X
AND 7)))'.

For a demonstration of high resolution
graphics add the following lines to the pro
gram above. The resulting program calculates
two random points on the screen and then
draws a line between them. To stop the pro
gram and return to the normal display press
RUN /STO P and the RESTORE key
together.

110 X1 = RND(0) * 100:X2= RND(0) * 100+ 219
120 Y1 = RND(0) * 200:Y2 = RND(0) * 200
130 M=(Y2 - Y1)/(X2-X1)
140 C= Y1 - X1 * M

bit 36

150 FOR X=X1 TO X2
160 Y= X*M+C
170 GOSUB 200
180 NEXT
190 GOTO 110
200 REM PLOT PIXEL AT X,Y
210 B=8192+320*1NT(Y/8)+8*1NT(X/8)+

(Y AND 7)
220 POKE B,PEEK(B) OR (2 j (7 - (X AND 7)))
230 RETURN
BASIC is comparatively slow in hand ling

high resolution g raphics. For a fas ter response
use machine code or graphics commands as
supplied by BASIC extensions.

bitwise See AND .

BMI A 6510 instruction mnemonic which
causes a branch with relative addressing if
the negative flag is set to 1; otherwise the next
instruction is execu ted.

Status register N V B D t: c

addressing mode assembly language form op No. No.
code bytes cycles

relative BMI operand 30 2 2·

• Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.

37 bpi

SNE A 6510 instruction mnemonic which
causes a branch with relative addressing if
the zero flag equal 0. Often used to creatl' .i

loop, e.g .:
LDX #25

LABEL

DEX
BNE LABEL

BNE cause the program to branch back to
LABEL 25 time until X=0 and the zero flag i,
set to 0.

Status register N V B D t: c
- - - -

addressing mode assembly language form op No. No.
code bytes cycles

relative BNE operand D0 2 2·

• Add 1 1f branch occurs to same page.
Add 21f branch occurs to different page.

BPL A 65 10 instruction mnemonic which
causes a branch with relative addressing if
the negative flag i et to 0. This instruction i>
the opposi te ofBMI.

See overleaf.

bre ~

38 39 bvc
Status register N V B D 2 c

addressing mode assembly language form op No. No.
code bytes cycles

relative BPL operand 10 2 2·

• Add 1 1f branch occurs to same page.
Add 2 if branch occurs to different page.

BREAK An error message: the STOP key
has been pressed.

BRK A 6510 instruction mnemonic which
forces an interrupt. When the program ex
ecutes a BRK instruction it sets the break flag
to 1, pushes the program counter (plus one)
and the status register onto the stack, and
then passes control to a BRK ervicc rominc.
The vector for this routine is located at 790
and 791.

BRK is often used to provide a debugging
facility. By intercepting the BRK vector a
programmer can insert a routine to display the
contents of the machine's registers. The pro
gram ca n then be interrupted and examined by
inserting BRK instructions at selected points.
As the value of the program counter is stored
on the stack it is easy eno ugh to calcu late the
return address and resume execu tion .

Status register N V B D
- - 1

addressing mode assembly language form op
code

implied BAK 00

2 c

No. No.
bytes cycles

7

buffer A buffer is a temporary storage area
in RAM used for holding data when it is
transferred from one part of the system to
another, e.g. programs arc loaded into the
computer 1Jia the cassette buffer.

bug An error in a program either causing it
to stop or preventing it from doing w hat it is
intended to do. Most programs in their early
stages of development contain bugs. Few peo
ple can write a long program that runs per
fectl y the first time. Debugging a program
often takes as long as w ritin g it. Syntax
errors are usually easy to cu re, and any bug
th at produces an error message can, gener
ally , be tracked down wi thout too much
trouble. The most stubborn bugs arc those
that do not ca use the progra m to crash.

BVC A 65 10 instruction mnemonic which
causes a branch with relative addressing if
the overflow (V) flag is set to 0. This instruc-

bvs 4()

cion is used in signed arithmetic operations.
Sec two's complement.

Status register N V B D l C

addressing mode assembly language form

relative BVCoperand

• Add 1 1f branch occurs to same page.
Add 2 1f branch occurs to different page.

op
code

SQ

No. No.
bytes cycles

2 2·

BYS A 6510 instruction mnemonic which
causes a branch with relative addressing if
chc overflow (V) flag is sec to I. Used in signed
,1 nthmetic operations when the sign of a num
ber has been changed.

Sec two's complement.
Status register N V B D l C

addressing mode assembly language form

relative BVSoperand

• Add 1 1f branch occurs to same page.
Add 2 1f branch occurs to different page.

op
code

70

No. No.
bytes cycles

2 2·

byte The basic unit of computer memory .
One byte i made up of8 bits. J02-t bytes form
one kilobyte, usually abbreviated to K.

One byte can hold a number from 0 to 255.
Jc cakes 2 bytes to score any number up to

-tl car

65535. The byte with the higher value is
termed the most significant byte, while the
byte with the lower value is che least signi
ficant byte. Each byte in the computer's mem
ory has an address which specific its location.

CAN'T CONTINUE An error message:
the CONT command will not work, because
either the program has been altered, or it
contains an error.

cartridge A plastic box which plugs into
che computer and holds a program in ROM.
Because the program is scored in ROM it is
instantly available as oon as the cartridge is
plugged in . The program is usually wri tten in
machine code and takes over the top 8K of the
BASI C program area , leaving the user with
30K RAM rather than the usual 38K. Word
processors, BASIC extensions, games, and
other languages such as FORTH arc some of
the programs co be found on cartridge. If a
program is used regularly this is often a more
convenient form of storage than ea secte or
disk: cartridges arc more durable and can be
left plugged into the cartridge lot, ready for
use when the machine is turned on.

cas 42

cassette The cheapest form of data stor
age. Cassette recorders enable the computer to
store programs and data files on cassette tape
so that they can be loaded into RAM at a later
date. Unlike most other home computers the
Commodore 64 only takes Commodore's
own make of cassette recorder, the Datascttc.
SAVEing, LOADing, and locating programs
on cassette is relatively slow in comparison
with other forms of data storage such as disk .
Unless a program is located by winding the
tape forwards or backwards, the computer
searches for a program at the same speed at
w hi ch it loads programs in.

Sec cassette files ; fast loading.

cassette file Sequential files arc the only
type of data files that can be to red on cassette.
They arc written to tape with the commands
OPEN, PRINT#, and CLOSE. Creating a
cassette file requires the fo llowing steps:
(1) OPEN the file. The third parameter of the
OPEN command, the seconda ry address or
command number, is normally 1 to indicate
that the file is being written rather than read. A
value of 2 means that an end of tape marker is
added to the end of the file when it is closed.

43 cas

An y attempt to read other files after an end of
cape marker will cause a ' FILE NOT OPEN'
message.
(2) Write to the file using PRINT*.
(3) CLOSE the file. The CLOSE command
places an end of file marker at the end of tape.
If it is not given data may be lost .

Example:
10 OPEN1 ,1,1,"FILENAME"
20 FOR N= 1 TO 10
30 INPUT A$
40 PRINH1 ,A$
50 NEXT
60 CLOSE1
When a file is read in to memory, the

secondary address mu t be zero. INPUT#
reads each record into a variable, GET# read
a character at a time, e.g.:

10 OPEN1 , 1,0,"FILENAME"
20 FOR N= 1 TO 10
30 INPUH1 ,A$:PRINT A$
40 NEXT
50 CLOSE1
This program simply reads records in and

prints them on the screen. Usually they arc
stored in an array.

If the number of records on the file is not

cha

known, the BASIC command STATUS can
be used to search for the end of file marker,
e.g . :

20 INPUT *1,A$:PRINT A$
30 IF ST<>64 THEN GOTO 20

channel A sound output. The SID chip
has three channels which can produce sounds
singly or together. Each channel is controlled
by its respective sound registers. Channels arc
often referred to as voices.

character code The code by which a
character is represented in memory. In fact the
Commodore 64 uses two sets of codes, screen
co des and ASCII code , but the term charac
ter code is generally taken to mean screen
code. Each code is a number between 0 and
255 and can be stored in one byte.

character designer A program which
allows the user to design characters on an 8 by
8 grid by moving a cursor around with the
keys or a j o ystick. Once one or more charac
ters have been designed the program displays
the numbers which define each character - to
be held in DAT A statements. Or it may offer
the option of storing the definitions on tape or

cha

disk as a data file. Sprite designers arc pro
grams which provide a similar facility for
sprite .

character generator ROM The area of
memory where the character definitions arc
held. When a character is displayed on the
screen the VIC chip reads its definition from
the character generator. As each character
occupies an 8 by 8 matrix of pixels, 8 bytes (64
bits) arc needed to define one character. 256
definitions for the first character set (upper
case/graphics) arc stored in ROM from 53248
to 55295; locations 55296 to 57343 contain the
definitions for the second set (upper/lower
case). The definitions are stored in order of the
characters' screen codes. Thus the screen code
for the letter B is 2, so the 8 bytes which define
it arc found from 53248 + 2*8 onwards. The
definition of a character with screen code X
starts at
53248 + (8* X) for character set 1
55296 + (8*X) for character set 2
Normally, the character generator ROM can
not be accessed from BASIC, and the area
from 53248 to 57343 is occupied by RAM.
Locations 53248 to 53293, for example, hold

cha

ADDRESS

53256
53257
53258
53259
53260
53261
53262
53263

64 16 4 1

rl
46 ,....

BITPATTERN DECIMAL

00011000
00111100
01100110
01111110
01100110
01100110
01100110
00000000

24
60

102
126
102
102
102

0

the VIC registers, but within a program it is
possible to switch the ROM in so that charac
ters can be copied into RAM.

See user defined characters ; bank
switching.

character mode The normal display
mode, in which the screen has 25 rows of 40
character spaces. Each space can contain any
of the symbols on the keyboard. When the
computer is turned on the keyboard gives
upper case letters. Pressing the SHIFT key
displays the graphics characters at the right
side of the keys, while the graphics characters
at the left side of the keys can now be obtained
by pressing the Commodore key. If the Com
modore key and SHIFT key are pressed the
display switches to upper and lower ea e.

See character set; colour.

.p chr

character set The set of all the characters
which can appear on the screen. Most of them
are available from the keyboard, but a few can
only be displayed by POKEing their screen
codes into memory.

There arc two character sets, but only one
can be used at a time. The first gives upper case
and graphics characters; the second which is
switched on by pressing the Commodore
key and SHIFT key , holds upper and lower
case and other characters. In addition it is
possible to define a new character set. (See
user defined characters). To switch character
sets in a program PRINT the required control
character, e.g. 'PRINT CHRS(14)' selects
upper/lower case. 'PRINT CHRS(142)' selects
upper case/graphics.

character space An 8 by 8 block of dots
or pixels - the space occupied by one char
acter.

See character mode.

CHA$ A string function - the opposite of
the ASC function. CHRS generates the char
acter associated with an ASCII code. As its
argument it takes a number between 0 and
255, e.g. as the code for the letter A is 65, so

chr 48

PRINT C HR (65) prints A on the screen.
CHR is used in the following program to

print out all the graphic characters on the
keyboard.

10 FOR N= 96 TO 127
20 PRINT CHR$(N) ;
30 NEXT
40 FOR N= 161 TO 191
50 PRINT CHR$(N) ;
60 NEXT
Generally to print a character or string of

characters it is simpler to enclose them in
quotation marks rather than use CHR . Thus
PRINT "EGG" has the same effect as PRINT
C HR (69); CHR$(71);CHR (71) but is easier
to use. But CHR is useful for handling
characters that are not easily printed from the
keyboard, such as certain control characters.
This program uses character 14 to switch all
the letters on screen to lower case. When a key
is pressed it then prints character 142 which
switches them back to upper case.

10 PRINT CHR$(14)
20 PRINT "TEST"
30 GET A$:1F A$="" THEN 30
40 PRINT CHR$(142)
C HR also provides a way of testing

49 cli

whether a function key has been pressed.

CLC A 6510 instruction mnemonic which
CLears the Carry flag, setting it to 0. It is
always used before an ADC instruction when
cwo single byte numbers arc to be added
together.

CLC can also force a branch, e. g.:
CLC
BCC LABEL

Status register NVBDli!C
- - - - 0

addressing mode assembly language form

implied CLC

op
code

18

No. No.
bytes cycles

2

CLD A 6510 in truction mnemonic which
CLears the Decimal flag, setting it to 0. It
returns the 6510 microprocessor to binary
mode after being in decimal mode.

See SEO.
Status register N V B D I i! c

- 0

addressing mode assembly language form op No. No.
code bytes cycles

1mphed CLD DB 2

CLI A 6510 instruction mnemomc which

clo 5() 51 cir

enables IRQ interrupts by setting the interrupt
flag to 0.

See SEI.
Status register N V B D I l C

addressing mode assembly language form

implied CLI

op
code

58

- 0

No. No.
bytes cycles

1 2

clock ~ hardware timing source which
synchro111ses operations within the computer's
microprocessor. The rate at which the clock
emits pulses is measured in megahertz (MHz) .
One megahertz equals one million pulses per
secon.d. Roughly speaking, the higher a com
puters clock rate 1s, the faster it can process
data . T he time taken for the microprocessor to
~arry out a machine code instruction is given
m clock pulses or cycles. For example, the
mstructlon INY takes 2 cycles. As the Com
modore 64's 6510 microprocessor runs at 1
MHz, this instruction takes two millionths of a
second to execute.

CLOSE A BASIC input/output statement
used to close a channel previously OPENed
to a pcnpheral device. For example, when a
data file has been written to or read from tape

or disk it must then be CLO Ed. Although
not always necessary it is good practise to
CLOSE a channel when it i no longer re
quired.

This command must be followed by the
logical file number which identifies a channel,
t:.g.:

CLOSE 3
CLOSE J
CLOSE 2*X
Associated keywords: OPEN; CMD;

GET#; INPUT #; PRINT #.
CLR A BASIC statement: on top of the area
of memory occupied by a program itself, the
computer takes up RAM space to store the
program's variables, arrays, and user-defined
fun ctions (See DEF FN). CLR CLeaRs these
from memory, but leaves the program un
touched. It also frees the RAM occupied by
fil es and the BASIC stack,

A CLR operation is automatically carried
out when the RUN command is entered. This
means that before numeric va ri ables arc
assigned a value within the program, the com
puter gives them a value of zero and makes
string variables empty. The follow ing pro-

cir

gram show the CLR statement in action:
10 A=?
20 A$="HELLO"
30 PRINT A,A$
40 CLR
50 PRINT A,A$
Associated keywords : RUN; NEW.

CLR/HOME key Takes the cursor ro the
HOME position at the top left-hand corner of
the screen. Pressing the SHIFT key and CLR/
HOME together homes the cursor and clears
the screen at the same time. To perform these
action in a program emcr CLR/HOME as a
control character or use its ASCII code with
CHR . e.g.:

10 PRINT "(J"

and
10 PRINT CHR$(147);

have the same effect as pressing SHIFT and
CLR/HOME.

10 PRINT '~"
and

10 PRINT CHR$(19);
take the cursor to the HOME position.

CLY A 6510 instruction mnemonic which
Clears the oVerflow flag. Only used in signed

cmd

Jrithmetic operations .
See two's complement.

Status register NVBD i!C
- 0 - - - - -

addressing mode assembly language form

1mphed CLV

op
code

B8

No. No.
bytes cycles

1 2

CMD A BASIC input/output statement.
Normally the computer's output is directed to
the screen. After a CMD statement, output is
redirected to another device. If the device is a
printer, PRINT and LIST now send text to the
printer instead of displaying it on screen.
CMD must be preceded by an OPEN state
ment, and followed by the file number given
as the first parameter in the OPEN statement,
e.g. 'OPEN 5,4:CMD5:LIST' lists a program
to the printer.

With tape or disk the main use for CMD,
together with LIST, is in storing a program as
a sequence of ASCII codes. By contrast the
SA VE command stores programs in token
format. In ASCII format a program can be
incorporated as text on a wordprocessor.

To top the effect of a CMD statement, a
CLOSE command on its own is not ufficient:

55
it is necessary to send a blank line to the devic
using PRINT#, e.g. 'PRINT#S:CLO Es ,4 CMP *00

cmp

canceb the action of the CMD statement to rh. BEO LABEL
printer given in the example above. rhc CMP instruction is not necessary.

k
Status register N V B D

Associated eywords: OPEN; CLOSE - - - -
PRINT; LIST.

CMP A 6510 instruction mnemonic whi cf
CoMParc the contents of a memory locatio1

with the contents of the accumulator and scr
the zero, negative, and carry flags accordingl y
CM P works by subtracting the memory locJ.
tion from the accumulator but does not altc1

their contents, e.g.:
LDA #27

addressing mode assembly language form

1mmed1ate CMP ii' operand

zero page CMP operand

zero page, X CMP operand, X

absolute CMP operand

absolute, X CMP operand. X

absolute, Y CMP operand, Y

(indirect. X) CMP (operand, X)

(indirect) , Y CMP (operand), Y

• Add 1 if page boundary 1s crossed.

op No.
code bytes

C9 2
CS 2
05 2
CD 3
OD 3
09 3
C1 2
01 2

col

i! c
J

No.
cycles

2
3
4
4
4·
4·
6
s·

CMP $FB colour 16 colours arc available. In character
BEO LABEL mode they arc selected in the following ways:

loads 27 into the accumulator and then corn- 1-0REGROUND COLOUR. Each character can
pares it with the contents ofFB. If the content r.1kc a different colour. Pressing the CTRL
arc equal then the zero is set to 1; if thL key together with one of the colour keys along
contents of FB are less or greater than 27 the the top row selects one of the first 8 colours.
zero Aag is set to 0. The carry Aag is et to I To select one of the second 8 colours press the
before this operation and is on ly cleared (C=0) Commodore key and one of the colour keys.
if the contents of memory arc greater than 27. Once a colour has been chosen all future
Note that other operations such as LDA set characters are printed in that colour until
the zero Aag to l when the accum ulator con- another colour key is pressed. The current
rains 0; so in this example: character colour is held in location 646, and it

is po sible to set a colour by POKEing its

r,, ''"')"# '' l Id
!II

:
Ii

II
Ill

.I ,,

11 Ill

I .

col col

colou; code into this location, e. g. 'POJ< for details of how to set the colour of high
646 7 makes the next characte · cl • • • • r prmte on t lut1on graphics see bit map mode.
screen yel low. cso '
From_ within a program co lours can also be S\coloUr control characters Used in
by usmg colour control characters 1 , oJUNT statements, they have the same effect
. h I or a tci> . h I k h mg t e va ues in colour memory . s press mg t e co our eys: t ey cause any

c
0

rcher characters to PRINTed in a given

COLOUR BLACK WHITE RED CV AN PURPLE GREEN BLUE VELLOwco lour.
Inside quotation marks the key presses

'.:=co=oE:::--c__0 --1_1_L-2-L_3---1_4_JL5LL6:...J~7-wh ich nor ma II y determine the next character's .
1---,---

1
-,--,--.---.-==::;:::::=;:::=colour instead produce graphics symbol

COLOUR loRANGE BROWN LIGHT DARK MEDIUM LIGHT LIGHT LIGHT COLOUR
RED GRAV GRAV GREEN BLUE GRAY

r-----t---+--+--+-+--t=--~~:.i...::::_bl•~ wn1te
CODE 8 9 10 11 12 13 14 15 red

cyan
See multicolour mode. p0rple
8

green
ACKGROUND COLOUR. Location 53281 conblue

trols the background colour for the h !yellow w O orange
creen except the border, e.g. 'POKE 53281] brown

use~ colour code I to make the backgrou~ (Ught red
whi te. dark grey medium grey

ASCII
144

5
28

159
156

30
31

158
1:19
149
150
151
152
153
154
155

KEYBOARD

11111111
11111111 -· 11111111 -· lllllllJ -· llllHI m II m II m II m II m• m II m• mm

DISPLAY
ii]
D
D
~
m
D
Cl
Iii ,,
r.
~· [!]

"
~

BORDER COLOUR. This is controlled by regis-These represent the colour control characters
ter 53280, e.g. ' POKE 53280,4' produces ,and on ly take effrct w hen the PRINT stace-
purple border. ment is executed,

In extended colour mode the backgrounchghtgreen
to each character space can take a differe11 hghtblue
colour. 11 11ghtgrey

l

col

e.g.: PRINT " liJTEST"
prints the word TEST in yellow. To insert th
control character fo r yellow press the CTRt
key and 8.

T he sa_me cha racters can be PRINTed b,
usmg their ASCII codes with the C HR fun c~
t1on.

PRINT CHR$(30)
is eq uivalen t to

PRINT "O "

colour memory The area of memoq
w here the colour codes of cha racters on screc1

are stored . In character mode it runs fron
add resses 55296 to 56295. Unlike scree~
memory colour memory can not be moveo
e1 cwherc.

The colour of cha ractc rs on screen can be e1

by POKEing colo ur codes into their corres
pondmg locations in colou r memory. When a
character has al ready been PRINTed to th . l
screen its colour can be changed in this way.
Otherwise the PRINT statem ent assigns tht
current foreground colour, irrespective of the
values in colour memory.

When characters ~ re displayed by POKEing
their screen codes mto the screen m emo ry it

com

15
essential to set the corresponding locations

111
colour memory. If this is not done they take

chc same colo ur as the background and arc not
,.1sible. As an example, the fo llowing program
displays cha racter se t 1 in each of the 16
colours in turn.

10 PRINT CHR$(147)
20 FOR N=0 TO 255
30 POKE 1024+ N,N
40 NEXT
50 FOR C= 0 TO 15
60 FOR N= 0 TO 255
70 POKE 55296+ N,C
80 NEXT
90 NEXT
In bit map mode the normal screen mem

ory acts as the colour memory and the area
from 55296 to 56295 is not used.

Commodore key The key at the left of
the keyboard w hi ch bears the Commodore
symbo l. It has three functions: when pressed
with th e SHIFT key it switches between the
two character sets ; w hen held down while
pres ing a colour key it gives the colours with
codes from 8 to 15; w hen held down w hile
pressing a g raphics key it produces the left-

com

hand graphics character.

compiler A program which converts l

program written in a high level languag
into machine code. Normally, a BASIC pro:
gram 1s translated into machine code by th
computer's BASIC interpreter, but the inter'.
prete.r only operates while the program 11

runmng, converting one instruction at a tim e
Consequently, interpreted BASIC is compar,1•
nvcly slow. Hy contrast, a compiler convert5 a
program into machine code before it is ex
ecuted. Once compiled a program can then bt
run or saved as machine code on cassette or
disk . Compiled programs typically run at l ca ~t
ten times faster than normal BASIC program5 .

composite video A type of video signJl
which allows a monito r to be used instead ol
a television . Normally the video output is fed
through a modulator which raises the fre
quency of the signal so that it is equivalent to a
UHF TV signal. Because composite video
signals a.re not modulated but sent directly to
the momtor they give a higher quality picture.

ee audio/vid eo port.

CONT A command used to restart (CON-

con

f inue) a program after it has been halted . A
5'fOP or an END statement will halt a
program while it is running, as will pressing
rht: RUN/STO P key. CONT may then be
cntt:red a a direct command to resume cxccu
uon at the next statement. Its principal use is in
di:bugging programs. To locate an error in a
program it is often a good idt:a to insert TOP
statements at various stages. When the pro
gram halts you can examine its progress by
printing out crucial variables. Then you can
re-start by typing CONT. If you edit a line, or
che program has been halted by an error,
CO NT will not work. Attempts to resume
program execution will produce the error
message 'CAN'T CONTINUE'.

The following program simply add up all
chc numbers from 1 to 1000. Press the RUN/
STOP key whi le it is running. Hy typing
'PRINT N,TT' you will be able to sec how far
it has got. Then type CONT to continue.

5 TI=0
10 FOR N=1 TO 1000
20 TI= TI+ N
30 NEXT
40 PRINT "THE TOTAL IS ";TI
Associated keywords: END; STOP.

con 62 (:3
) cpx

control character Characters which
control outpu t to the screen or any other
device. When they are PRINTed they do not
appear on screen but reproduce the effect of
pressing their corresponding keys, e.g. 'Hl
PRINT CHR (14)' is equivalent to pre sing
the RUN/STOP and SHIFT keys. It switch
es the character set to upper/lower case.

Some control characte rs can appear in
strings between quotation marks. They arc
represented by graphics characters. (See col
our control characters; cursor control
characters; reverse characters). Like an y
other characters they can be assigned to string
variables, e. g.:

10 A$ = CHR$(20)+CHR$(20)
20 PRINT "TWIST"A$"N"

prints
TWIN

20 is the ASCII code for the delete character:
here it has the same effect as pressing the
INS/DEL key twice.

COS A function which calculates the cosine
of an angle. The angle must be given in
radians. To convert an angle in degrees (Y) to

radians multiply it by 'TT/180, e.g.:

10 X= COS(Y*'!T/180)
Associated keywords: SIN; ATN.

CP/M (Control Program for Microprocessors)
A d isk operating system which allows a
wide range of business and appli cation soft
ware to be run. P/M on ly works with Z80
microprocessors. On the Commodore 64 it
requires a CP/M cartridge which contains a
Z80 chip.

CPX A 65 10 instruction mnemonic which
ComPares the contents of X index register
with the contents of memory. This instruction
acts in the same way as CMP except that the
memory byte is ubtracted from the X register
instead of the accumulator.

Status register N V B D
I -

addressing mode assembly language form op

immediate CPX * operand
zero page CPX operand
absolute CPX operand

It is often used in a loop, e.g.:
LOX #200

LAB1 DEX

code

E0
E4
EC

l. c

No. No.
bytes cycles

2 2
2 3
3 4

cpy 64 (>:'i cur

CPX #100
BNE LAB1

CPY A 6510 instruction mnemonic which
Com Pares the concents of the Y index regis
ter with the contents of memory. lt acts in the
same way as CMP except that the memory
byte is subtracted from the Y register instead
of the accumulator. Commonly used to con
trol a loop.

Status register N V B D 2 c
J - - - - ' '

addressing mode assembly language form op No. No.
code bytes cycles

1mmed1ate CPY " operand ce 2 2
zero page CPY operand C4 2 3
absolute CPY operand cc 3 4

CTRL key Selects the first 8 colours when
pressed with keys 1 to 8. CTRL plus key 9
(R VS ON) gives reverse characters; CTRL
and key 0 (RVS OFF) turns them off Holding
down CTRL after a LIST command slows
down the rate at which program lines arc
displa ycd on screen.

See reverse characters.

cursor The flashing white square which

md1cates when: the next character t\ P< L ar the
keyboard will appe.1r on the screen . \Vhen a
program 1' running the cursor di,Jppe.tr'. It
n.:appe,1rance brneath the READY me~sagc
~hows that a program has ended .111d hJt the
computer will respond to commamk

er cursor keys.

cursor control characters 'W h.:n the
cursor keys arc pressed between qt• otation
marks instead of moving the cursor they pro
duce control characters. These arL' ,J>own a
graphics symbol , and only take effect when ,1

PRINT tatement j., executed.
CURSOR KEY SHIFT ASCII GRAPHICS

KEY CODE CHARACTERS
CLR 147 u
HOME 19 D
cursor up 145 D
cursor down 17 a
cursor right 29 D
cursor lett 157 II

For example:
10 PRINT " i."~ "

'>ends the cur or to the HOME P• ' n ,. , and
clear the !>Creen . In other word, \\ tthm a
program it is cqu1\'alrnt to pre,sm!! tl1'· CLR /
HOME and SHIFT kevs. Anotl1cr w .iv 01·

PRINTing these characters i> to LI ' « th«ir

cur 66

ASCII codes with the CHRS function, e.g.
'10 PRINT CHR (147)' ha the same effect as
the line above.

Cursor control characters arc useful for
fixing the position at which characters arc
printed.

10 PRINT"A E::U:JEEOD B"
PRINTs B four row down from A, two
spaces along.

cursor keys Primarily used in editing a
program line, these keys can take the cursor to
any position on the screen. Any character
typed at the keyboard will appear at the new
position. (See screen editor) . Pressing the
up/down and right/ left keys moves the cursor
up and ro the right. When the SHIFT key is
held down these keys move the cursor down
and ro the left. If the cursor keys arc pressed
between quotation marks they produce cursor
control characters.

DATA A BASIC statement which when
used in conjunction with the READ state
ment, holds numeric or string data which will
be needed by a program. The data may either
be a signed to variables of arrays, or used
immediately in the program. For example, one

67 dat

way of scoring a rune is to put the values of the
notes in DAT A statements and read them in to
be played.

Each item in a list of data following a
DAT A statement must be separated by a
comma. If the list contains two con ccutivc
commas the computer will interpret this as a
zero or an empty string. Normally string
items do not need to be enclosed in quote
unlcs the string includes commas, colons,
graphics characters, leading or trailing spaces.
DAT A statements can be placed anywhere in a
program but they arc u ually put rogethcr at
the end. Here they arc used to hold the month
of the year and the number of days in each:

10 FOR N=1 TO 12
20 READ M$,D
30 PRINT M$;" HAS ";D;" DAYS"
40 NEXT
50 DATA JANUARY,31 ,FEBRUARY,29,

MARCH,31
60 DATA APR IL,30,MAY,31 ,JUNE,30
70 DATA JULY,31,AUGUST,31,SEPTEMBER,30
80 DATA OCTOBER,31 ,NOVEMBER,30,

DECEMBER,31
Note that the string data items arc read into

a string variable, M , and the numeric items

dat 68

111ro ''. llllllllTic vari.ible, D. Am:mpts to assign
J,1ta items to thL' wrong variable type arc a
common c.1usc of error. and will produce the
mcss,1g<: '?SYNTAX ERROR'.
A~socwcd keywords: READ; RESTORE.

data base A comput<:rised filing ystcm .
D.uabJ~l' programs allow large amounts of
Jara to be organised in a fi le in HAM, and then
sav<:d on c~ssettc or disk. Each fi le is usuJll y
made up ot records which hold sets of related
data. For example, a single record could con
tain a name, add ress, and telephone number.
Uy meam of a database, da ta can be entered or
dektcd, forma tted, sorted, and - most impor
tan tl y- accessed rapid ly.

debugging T he process of finding and cli
rrnnatrng a bug. Ifa bug bring a program to a
halt the r<:s ulting error message usually gives
J clue to its whereabou ts. But note that the
error is not necessari ly in the line r<:fcrrcd to in
the m<:ssage. bur may be in an earlier line.
Otherwise, a T R ACE' utility is a useful aid
to debugging. It prints our the numbers of
program lines as they arc executed, enabling
the user to sec w hich pa rts of the program arc
working correctly. Another technique is to

69 def

111sert STOP statements at crucial points in the
program. When it hairs the user can examine
the contents of selected variables by PRINT
mg them out as a direct co m m and . In this
way the location of a bug can b<: narrowed
down to one section of th<: program .

DEC A 651 (l) instruction mnemonic which
D ECrease the contents of a memory location
by one, and s<:ts the zero flag to I if the re ult is
0, e.g. 'DEC D864' decrcas<:s the byre at
1)864.

Slatus register N V B D l c

addressing mode assembly language form op No. No.
code bytes cycles

zero page DEC operand C6 2 5
zero page, X DEC operand, X D6 2 6
absolule DEC operand CE 3 6
absolute, X DEC operand. X DE 3 7

DEF FN A statement used to create a user
dcfincd function which can be ca lled later in
the program by the keyword FN. lf the same
formula is to be used in several different place
in a program it i convenient to assign it to a
usn-defined function. Unlike some versions
of BASIC, on the Commodore 64 you can
only define a mathematical function: DEF FN

def 70

will not handle string functions.
It takes the form 'DEF FN F(X)' where 'F' is

the name of the function and 'X' is a variable.
The variable docs not need to be included in
the formula. In the second of these two exam
ples the variable Bis not u cd in the function:

DEF FN A(C)=9xC/5+32
DEF FN A(B)=SQR(XxX+YxY)
The first function converts temperature

given in centigrade to fahrenhcit by operating
on the variable C, but in the second the value
of the variable B has no effect on the result.

The followmg program defines a function to
work out the decimal fraction part of a
number:

10 DEF FN F(X)=X-INT(X)
20 PRINT FN F(3. 75)
30 PRINT FN F(12/5)
40 A= 7:B=3:X=AIB
50 IF FN F(X)< >0 THEN PRINT B;" IS

NOT A FACTOR OF ";A
Note that although a DEF FN statement can

be placed anywhere in a program, it must
occur before its corre ponding FN tatemcnt is
first used.

Associated keyword: FN.

71 dim

DEVICE NOT PRESENT An error mes
sage: an I/O device such as a printer or disk
drive ha not been connected.

DEX A 6510 instruction mnemomc which
DEcreases the contents of the X index regis
ter by one, and sets the zero Aag to I if the
result is VJ. Often used with indexed addres
sing and to decrease the value of X when it
acts as a loop counter.

Stalus register N V B D 2 c

addressing mode assembly language form op No. No.
code bytes cycles

1mphed DEX CA 2

DEY A 651 'IJ instruction mnemonic which
DEcreascs the content of the Y index regis
ter by one, and set the zero Aag to I if the
result is 0. Often used with indexed addressing
(see addressing m odes) and to decrease the
value ofY when it acts as a loop counter.

Status reg1sler N V B D I 2 C

addressing mode assembly language form op No. No.
code bytes cycles

implied DEY 66 2

DIM A statement. Before an array can be

dim n
used in a program it needs to have been set up
by a DIMension statement. It tells the compu
ter how many dimensions the array has and
how many elements there arc in each. It takes
the form 'DIM variab le (integer, integer ...)' .
e.g.:

DIM C$(5 ,6)
The variable ·c.' gives the array a name and

indicates what type of array it is. In this case it
is a trin g array and will on ly accept strings.
Other type arc integer or numeric arrays. The
integers, 5 and 6. specify the number of ele
ments in each dimension. As the elements arc
numbered from 0 onward there is always one
more in each dimcn ion than is specified. e.g. :
'DIM A(20)' defines a numeric array with one
dimensio n containing 2 t elements. · D !M
BS(3,6)' defines a 4 by 7 string array. 'DIM
N %(10,2, 15)' defines an integer array with
three dimension , l l by 3 by 16.

A single DIM statement can be u cd to er
up more than one array.

10 DIM A$(9) ,B$(3,5) ,T(8)
is eq ui valent to

10 DIM A$(9)
20 DIM B$(3,5)
30 DIM T(8)

73 dis

A DIM statement may only be executed
once in a program. Executing it rn'.icc will
cause a 'RED!M'D ARRA y· error. It you do
not DIM an array before using it the computer
will assume it has l l elements.

direct command A> direct commands.
single keywords or lines of BA IC c.tn be
entered from the keyboard and executed im
media tely by pressing the RETURN key.
Although the command may rcmam on the
screen the computer docs nor store 1t m mem
ory after it has been executed. By contrast,
program commands, which .lrC preceded by
line numbers, arc stored in memory when the
RETUR key is pressed.

One of the man y uses for direct commands
is to make the computer serve as a calcu lato r.
e.g.:

PRINT 3.5* 9 + 42
It is also possible to enter multi-statement lines
directly:

FOR N = 1 TO 1000:PRINT N:NEXT

disassembler A program for convening
machine code into assembly language. By
substituting mnemonics fo r numerical instruc
tions disas~emblers make machine code pro-

dis 74

grams easier to follow. They are often used to
examme the computer's built-in program in
ROM such a the BASIC interpreter or the
operating sy tern.

disk See floppy disk .

disk commands On top of the BA IC
commands for handling data such as SA VE
and GET.#, the disk operating system (DOS)
supplies its own commands. These fall into
two groups, disk maintenance commands and
disk utility commands. The first group is as
follows:

NEW
RENAME
COPY
SCRATCH
VALIDATE

formats a disk.
rename a fi le.
copies a file.
erases a file.
re-organises the files on disk to
make more space avai lable.

INITIALIZE prepares a disk for use.
LOAD "$" loads the directory which can then

be listed.
Apart from 'LOAD "S"' commands of this

sort are given as command strings after a
PRINT# tatement, e.g.:

OPEN 1,8,15
PRINT # 1,"SCRATCH:PROG1 "

75 dis

erases PROG 1
The disk utility command are documented

in the Commodore 1541 disk drive User's
Manual. T hey include commands for creating
relative files and using the disk drive with
machine code.

disk drive A faster and more flexible way
of storing data than cassette. Whereas it may
take over 10 min utes to SAVE or LOAD a
program on tape, the same process can be
completed in a matter of seconds on disk. In
addition to this, the disk drive can access data
rapidly at any part of the disk. The other
advantage of disk over cassette is that the disk
operating system (DOS) supervises th e way
programs are stored on disk, thus saving the
user the trouble of locating programs. When a
program is saved the DOS finds space for it on
the disk and records its name in the disk
directory. By LISTing the directory the user
can sec what programs arc stored and how
much space is left. The DOS also provides a
set of disk commands for manipulating files
on di k. T hey include commands to rename a
fil e, era e it, or copy it.

Only the Commodore disk drive, the 1541,

Clis 76

can be connected to the Commodore 64.
Other drives require an interface. Up to 4
disk drive can be linked up to the computer in
a 'da isy- chain' arrangement via the serial
port. The type of disk used is a floppy disk.

See sequential files; relative files .

displacement A I-byte number fo llow
ing a branch in truction which indicate · how
far backward or forward the program shoul d
branch.

See indexed addressing.

display mode T he way in which charac
ters or grap hi cs arc displayed on screen. When
the computer is turned on it is in character
mode. Within this mode multicolour mode
and extended colour mode can be selected as
options. Bit map mode and multicolour bit
map mode allow high-resolution graphics .

DIVISION BY ZERO An error message:
this is not all owed. It is usually caused by
dividing a number by a variable.

DOS (di k opera ting system). The program
that controls and supervise data storage on
disk, and provides a range of different disk
commands . Unlike most other disk drives ,

77 end

rhc CommodorL' 1341 di~k drive comJins it
own DO in I 6K of ROM together with 2K
of RAM and a 6302 rnicroproces or. Whenev
er a program or data file is stored. the DOS
records derails f which tracks and sectors
ha ve bcrn used in the BAM (Block Availabil
ity Map) which is held at track 18. In rhi way
it can calculate how much space is available.
The DO also keeps a list of the names of rhc
fil e~ on a disk in a directory, which is al o
stored at track 18.

empty string A tring variable \ ith no
characters in it. Use two quotation marks to
empty a string variable. e.g.:

10 A$ = ""
10 IF A$='"' THEN

END A BASIC rarement. When the com
puter meets an END sratemcnr in a program it
stops running the program and returns contro l
to the user. The only difference between E D
and STOP i that whereas TOP indicates the
line at which the program has halted END
simply di plays the READY message. A prog
ram wi ll finish when the last line as been
executed, so it is nor necess, ry to put an END
statement at rhc end. Within a program ic may

env 78 79 eor

be us.ed any number of times, as required .
Here 1t stops the program if'NO' is entered:

100 PRINT "DO YOU WANT TO PLAY
AGAIN?"

110 INPUT A$
120 IF A$="NO" THEN END
130 GOTO 100

999 END
Associated keywords : STOP; CONT.

envelope Determines the way a note rises
and falls in volume. An envelope has four
phases, attack, decay, sustain and release
(ADSR) and is defined by POKEing the
attack/decay and sustain/release sound reg
isters. Each type of sound has a characteristic

/peak volume

volume

attack decay sustain release

envelope shape and waveform: For example,
a piano sound ri e sharply and then decays
more slowly, while an organ has fast attack
and decay phase but a prolonged sustain level.

EOR A 6510 instruction mnemonic which
performs an Exclusive OR operation between
the contents of the accumulator and the
contents of a memory location, leaving the
result in the accumulator. In an EOR opera
tion the corresponding bits in two bytes arc
compared. lf one bit is 0 and the other 1 then
the result is 1; otherwise the result is zero.

Status register N V B 0 i! c

addressing mode assembly language form op No. No.
code bytes cycles

immediate EOR * operand 49 2 2
zero page EOR operand 45 2 3
zero page, X EOR operand, X 55 2 4
absolute EOR operand 40 3 4
absolute, X EOR operand, X 50 3 4•
absolute. Y EOR operand, Y 59 3 4'
(indirect, X) EOR (operand. X) 41 2 6
(indirect), Y EOR (operand), Y 51 2 5·

' Add 1 if page boundary is crossed.

EORing a byte with 255 (11111111) has the
effect of inverting (or flipping) its bits. Invert
ing a byte gives its complement,

err 80 81 ext

e.g.: Decimal
181

EOR 255
74

Binary
10110101
11111111

01001010

error message A mes'>age produced by
the computer, indicJting ,1 program error.
e.g.: '1(1) POKE 102.J..300' results in 'ILLEGAL
QUANTITY ERROR IN LINE IW since a
location cannot be POKEd with a va lue grea-
ter than 255. c

EXP A numeric function that calculates 'e '
(2. 71828183) raised to a gnTn power. For
example, 'EXP(J)' returns 20.855369, the
value of'e ' cubed.

Associated keyword: LOG.

expansion port Also known as the car
tridge slot, this is a ++-pin edge connector. It
give access to the Commodore 6-fs main
address an~ data lines, thus providing a large
measure ot contro l over the computer' func
tioning and memory configurations. Generalh
it is used to take programs in ROM. such a·s
games, or to connect interfaces to a variety of
devices, e. g. light pens and speech synth
esisers.

expression A combination of numbers.
strings, or variables with logical or arithmetic
operators, e.g.:

A <> B
(A=5) AND (B=6)
Expressions arc m.1mly used in IF ... TI !EN

statements, e.g.: 'IF AS = "NAME"
THEN ... ' w hc;e AS= "NAME" is an ex
pression.

extended colour mode A display mode
which allows different character spaces to have
different backgrounds. In the standard char
acter mode the screen t,1kc the same back
ground co lour throughout. In extended colour
mode each space can take one of four back
ground colours. Bits 6 and 7 of the corre -
pond ing bytes in the screen memory arc used
to hold the colour information. This leaves
only 6 bits for the screen code of a character.
As a result, in this mode on ly the first 6.J.
characters in the character set can be displayed.
Note that these arc tht' characters associated
with the first 6.J. screen codes, not the ASCII
codes.

When a character who e code is greater than
63 is POKEd to the screen it i converted to

Ii

I

I'

I

II

ext 82

one of the first 64 character . The top two bits
of it code arc ignored and serve in tcad to
select the background colour. For example
POKEing code 66 into screen memory dis
plays the letter B, whose code is 2, with
background colour 1. Normally 66 is the code
for a graphics character. The background col
ours are selected by POKEing colour codes
into regi ters 53281 to 53284. The following
table shows which how to set each of the four
backgrounds. Note that characters whose code
is less than 64 take the normal screen colour.

CHARACTER BACKGROUND BACKGROU ND
CODES COLOUR NUMBER COLOUR RE GISTER

0-63 0 53281
64-127 1 53282

128-191 2 53283
192-255 3 53284

Extended colour mode is controlled by bit 6
in register 17 (53265) of the VIC chip. 'POKE
53265,PEEK(53265) OR 64' turns it on .
'POKE 53265,PEEK(53265) AND 191' turns
it off.

EXTRA IGNORED An error message:
too many items have been entered in response
to an INPUT prompt.

83 fil

fast loader A program that speeds up the
rate at which the Commodore 64 loads and
saves programs. Normally the computer saves
programs at 300 baud. By th~ standard of
many other home computers this a compara
tivel y slow rate. Long programs can take over
10 minutes to load. (The computer stores each
program twice so chat it can check ~or errors
when loading it back to RAM; d1spcnsmg
with this precaution is enough to double the
loading rate.) Fast loaders load programs up to
8 times faster than normal. They work by
copying the computer's cassette filing routines
from ROM into RAM and then mod1fy111g
them; o r by replacing them entirely ..

Commercially sold software often mclud_es a
short machine code routine at the front ol the
tape to fast- load the main program. Programs
arc also available for speeding up the Com
modore disk drivc's loading rate. Again, the
Commodore disk drive is substantially slower
than drives used with other computers.

file A set of data stored on cassette or disk .
The word data is used here in the widest ense
to include programs as well as the data they
work on. Thus file are sometimes divided

fil 84 85 fla

into program files and data files . There arc two
types of data file, sequential and relative
files . Relative files cannot be held on cassette.
Data files generall y score sets of related data.
E. g. a list of addresses or a ~et of figures.

See database.

FILE NOT FOUND An error message: an
attempt has been m:idc either to read a file after
an END OF TAPE marker, or to load a
non-existent file from disk.

FILE NOT OPEN An error message:
the OPEN command has not been given pre
viously.

FILE OPEN An error message: the file has
already been OPE ed.

filter Used to suppress or attenuate certain
sound frequencies above or below a cut-off
point. Four registers control th e filters. Regis
ters 54293 and 54294 hold the cut-off frequen
cy va lue; register 54295 determines w hi ch
voices arc to be fi ltered; and register 54296
selects the type of filter. There arc three types:
high-pass, low-pas and band-pass filter .

See opposite.

reg ister 54293

BIT FUNCTION·

0 2 filter cutott value (least significant bits)

3 7 Not used

register 54294

BIT I FUNCTION:

() 7 I filter cutott value (most s1gmficant bits)

register 54295

BIT FUNCTIONS:

() filter voice 1

1 filter voice 2

2 filtervo1ce3

3 filter

4 7 resonance

register 54296

BIT FUNCTIONS:

0 3 volume

4 low pass filter

5 band pass filter

6 high pass filter

7 tum ott voice 3

flag Indicates whether an event ha or has

flo 86 87 for

not occurred. Flags arc generally represented
by single bits in memory or in a register, and
take a value of either 1 or l/J.

See status register.

floating point variables Store whole
and fractional numbers, and arc accurate up to
nine digits , e.g.:

TT = 9.88
N = -0.06
F2 = 25
Numbers larger than 999999999 or less than

l/J.l/Jl arc displayed in scientific notation, e.g. :
356701/Jl/Jl/Jl/Jl/Jl/Jl/Jl/J is converted to 3.567£+ 12. In
this form numbers are expressed as the pro
duct of their exponent and a number between
1and11/J, e.g.:

2500 = 2.5 x 103 = 2.5E+ 3
0.0000756 = 7.56 x 10- 5 = 7.56E-5

floppy disk The type of disk used by the
Commodore disk drive. As on many other
home computers, the Commodore drive takes
5. 25-inch soft-sectored, ingle-sided, disks .
Each disk has a storage capacity of almost
170K. Information is stored in concentric cir
cles known as tracks. Each track is divided into
sectors which hold blocks of256 bytes. Before

a disk can be used it needs to be formatted. In
formattin g a disk the disk operating system
defines the tracks and sectors it is going to use.
The Commodore disk format has 35 tracks
with 17 to 21 sectors.

FN A numeric function used to call a func
tion w hich ha al ready been defined by a DEF
FN statement. It mu t be followed by the
name of the function, and a number or numer
ic variable in parentheses, e.g. 'DEF FN
A(X)=(X-32)/9*5' defines function A which
converts Fahrenheit temperature to centig
rade. Here are some of the ways it could be
used:

10 PRINT FNA(66)
10 C= FNA(120)
10 IF FNA(X) = 100 THEN PRINT "BOILING"
A ociated keyword: DEF FN.

FOR A statement, used together with TO
and NEXT, which tells the computer to re
peat an action a given number of times: ir sets
up a loop. The statements which are to be
repeated are those between FOR and NEXT.
In thi example a FOR .. . NEXT loop is used
to print the word TEST five times:

10 FOR T= 1 TO 5

for 88 89 for

20 PRINT "TEST"
30 NEXT
FOR requires you to specify the followin~

elements:
a numeric variable to act as a loop counter
an initial value for the counter
a limiting value

In the example above, the variable 'T' acts a\
the loop counter. Initially 'T' is set to '1 '.
When the program reaches 'NEXT' it in
creases 'T' by one, until 'T' equals '5'. Then it
pas cs on to the first statement after 'NEXT'.

You can use the value of the loop counter
within the loop itself, as in this program which
prints the num bcrs 200 to 300:

10 FOR N=200 TO 300
20 PRINT N
30 NEXT
It is also possible to supply variables for the

initial and limiting values of the counter. This
program perform the same action as the one
above, using variables:

10 S=200:F=300
20 FOR N=S TO F
30 PRINT N
40 NEXT
lf one FOR ... NEXT loop is contained in

another it is known as a nested loop. Here two
loops arc used to print out the multiplication
tables:

10 FOR N=1 TO 12
20 FOR T=1 TO 12
30 PRINT N;" X ";T;" ";N*T
40 NEXT
50 NEXT
Normally the loop counter is increased by

one. By including the STEP statement you can
specify the size of the increment.

cc STEP.
Associated keyword : NEXT: STEP: TO.

FORMULA TOO COMPLEX An error
me sage: a string or an arithmetic cxprcs ion is
too complex and should be split imo two
parts.

FORTH An alternative high-level lan
guage to BA IC. Originally devised for con
trolling external devices. FORTH is now used
for more general purposes. One of its unusual
feature is that it allows the user to add new
keyword - called words in FORTH - to its
dictionar . New words arc defined as a sequ
ence of existing words. Not only is FORTH
more flexible than BASIC but it is also much

fre 90 91 fun

faster: each word is compiled before it enters
the dictionary. FORTH is available for the
Commodore 64 on cartridge.

See compiler.

FRE A function which return the number
of bytes in memory which arc unused and free
fo r yo ur program. It takes the form FRE(X)
where the value of X is unimportant and can
be any number. Sometimes FRE returns a
negative result, in which case add 65536 to find
the actual number of unused bytes.

'FRE(0)-(FRE(0)<0)*65536' always gives
the correct positive result. FRE(0) is useful for
finding out how much space you have left for a
program and its variablcs, or for working our
its length. When the machine is turned on,
38911 byres arc available ro the user. The
following program takes up 48 of them . Line
30 prints out the length of the program.

10 REM
20 REM
30 PRINT 38911-(FRE(0)-

(FRE(0)<0) * 65536)

frequency Determines the pitch of a
sound: the higher the frequency, the higher the
sound . Each voice has a high and a low byre

frequ ency register. To convert a frequency
value into two bytes use :

FL= INT(F/256):FH = F-FL* 256
where 'F' is the frequency and 'LF' and ' HF'
arc its low and high values, e.g . 'POKE
5~272, l 35:POKE 54273,33' sets the pitch of
voice I to middle C. This note has a frequency
number of8583, which equals 256X33 + 135.

FREQUENCY FREQUENCY
LOW BYTE HIGH BYTE

vo1ce1 54272 54273
vo1ce2 54279 54280
volce3 54286 54287

See music note values.

function A BA I instruction which per
forms a calculation on a number or a tring.
The argument of a function mu t be enclosed
in parentheses , e.g.:

L = SQR(55)
A$ = LEFT$("WEDNESDAY",3)

function key The four keys at the right of
the keyboard marked fl to f7. Each function
key has an associated CHR code wh_ich
allows its keystroke to be tested. Otherwise,
they have no effect. Holding down the SHIFT
key while a function key is pressed gives four

get 92 93 get

more testable keystrokes from f2 to f8.
When a function key is pressed between

quotation marks it produce a graphics charac
ter. This provides an alternative way of check
ing for its keystroke, e.g.:

10 GET A$:1F A$=CHR$(133) THEN . . .
or

10 GET A$:1F A$=" " THEN ...
On some other computers the function key'

can be programmed to produce a string ot"
commands, as if they were entered from the
keyboard. Thi is al o possible on the om
modorc 64, using a machine code routine.

GET A statement which reads a characte r
from the keyboard into a variable. It must be
followed by either a string or numeric vari
able. GET M and GET N arc examples of
each. If the variable is numeric it expects a
number. Pressing a non-numeric key will then
produce a '?SYNTAX ERROR' message .
GET is similar to INPUT except that it docs
not wait for RETURN to be pre scd, and docs
not display the character it picks up on the
screen. If fact, it docs not wait for a keystroke,
and if no key is pressed it assigns zero to a
numeric variable or the empty string to a

string variable.
If you want GET to wait until a key i

pressed you need to place it in a loop, as in line
10 here:

10 GET A$:1F A$="" GOTO 10
20 PRINT A$
Strictly speaking, GET docs not read the

keyboard but the keyboard buffer. As the
buffer stores keystrokes, GET may return a
character i:vcn though no key is pressed. It is
sometimes necessary to clear the keyboard
buffer before using GET.

If GET is used to input numeric data it is
often preferable to assign the data to a string
rather than a numeric variab le. By doing this
you avoid the risk of era hing the program by
pressing a non-numeric key. The following
input routine only accepts numbers. Note that
it checks whether the RETURN key has been
pressed by looking for its associated character
code, CHR (13). Then it converts the string
data in 13 to numeric form using the VAL
fun ction.

10 GET A$:1 F A$="" GOTO 10
20 IF A$=CHR$(13) THEN GOTO 60
30 IF A$<"0" OR A$>"9" THEN GOTO 10
40 PRI NT A$;:8$=8$+A$

get 94 95 gos

50 A$="":GOTO 10
60 N=VAL(B$)
Associated keyword: INPUT.

GET# An input / output statement th at
works in the same way as GET except that it
inputs data from a peripheral device rather
than the keyboard. It is primarily used fo r
reading one character at a time from a data file
on tape or disk. GET# needs to be followed
by a logical file-number and a variable, as in
'GET#2,A 'or 'GET# 1, N' . The file number
directs GET# to a particular device and mu t
have been previously specified in an OPE
statement. In this program GET# reads 20
characters from a equential file on tape an d
displays them on screen:

10 OPEN 2, 1, 1
20 FOR T= 1 to 20
30 GET* 2.A$
40 PRINT A$
50 NEXT
60 CLOSE 2
If the device number in the OPEN state

ment is 3, GET# reads characters from the
screen. It can be used to dump a copy of the
screen to the printer.

Associated keywords: CLOSE; INPUT* ;
PRINT# ; OPEN.

GOSUB A statement. Like the GOTO
statement, this command (short for GO to a
SUBroutine) transfers control to a different
part of the program: it causes the program to

branch to the line number fo llowing the
GOSUB statement. But unlike GOTO, it
remembers where it branched from. When the
program meets a RETURN statement it
JUmps back to the first statement after the
original GOSUB.

In the fo llowing example, the subroutine
starting at line 100 is called three rimes and is
used to calculate the length of the word stored
in 'A '. Note that the END statement at line
70 is necessa ry to prevent the program running
on to line 100.

10 A$="FLOWER"
20 GOSUB 100
30 A$="1MMEDIATELY"
40 GOSUB 100
50 A$="CONSTANTINOPLE"
60 GOSUB 100
70 END

100 L= LEN$(A$)

got 9ri 97 hex

110 PRINT A$;" HAS ";L;" LETIERS
IN IT"

120 RETURN
Associated keywords: ON: RETURN.

GOTO A statement. ormallv when tht
computer has l'.Xecuted ,1 stJte1;1ent it then
proceeds to the next one. GOTO fo ll owed bv
a line number causes it to jump to the li n~
specified which may be elsewhere in the prog
ram. It can also be followed by a variable.
'A=2Vll/J: GOTO A' has the same effect as
'GOT0201/J'.

It is often u. ed for skippmg one or two I inn
ifa particular condition is no~ met, as in:

10 PRINT "HAVE YOU HAD ENOUGH?"
20 INPUT A$
"O IF LEFT$(A$,1)="Y" THEN GOTO 50
<tv GOTO 10
50 PRINT "GOODBYE"
Within a program, GOTO, like GO Ul3.

changes the order in w hich line arc execu ted .
But it can also be used as a direct command to

start a program at any given point . GOSUB
300, for example, acts like RUN 31/Jl/J. Th~
difference is that it does not force a CLR
operation and so leaves the variables intac t.

Associated keyword: ON.

graphics Any part of the displJy th.H ,, not
recognisable as text , such as spritl'.s, ~'rc:ures .

line , circle . graphs.

graphics characters Parr of rill cr.1 rJC
ter set, the'c arc the 11011-alpha11umcri1 r h,1rac
tcrs which arc di pl.1yed at the front ot the
keys. TIKy c.m be usl'.d 111 the same "' .1v ,1, .111v
other cluracters 111 strings and string vari
able .

graphics tablet A graphic' m' w 1ch
allows the ll'>l'r to create gr,1ph1cs on snl'l:n by
drawing 011 1 bc>.1rJ. t..,ome gr Jphrc'> •ablets
(known J« d!!!;1t.1l tracers) work by rcproduc-
111g the lml'. traced bv J moveable .1r111 'Vlorc
sophisttC.lted t.1blcts ~'>e light or p1-cssurc 'cmi
ti ve pads, and offer p.untbrush as \\Tll J' line
drawm g fa 1httes

hardware l hl· dcctronic aud me• I 111ic.1I
components of a co mputer in contr.1 to its
software.

hexadecimal A number s\' 'tl·n1 "·h1ch
uses 16 digits. Vl123456789ABCIJEF. rl'.pre
senting the decimJI numbers 10 to 1- I•· the

hex 98

letters A to F. The word hexadecimal is often
abbreviated to hex.

Like any other number system, the value of
a digit depends on which column it is in. As
hexadecima l is to the base 16 the column
values increase in powers of sixteen. Thus the
digit in the first column indicates the number
of units, the second indicates the number of
16s, the third the number of 16X 16s (256), the
fourth the number of 16X16X16s (4096), and
so on.

DECIMAL HEX BINARY

1 1 1
2 2 10
3 3 11
4 4 100
5 5 101
6 6 110
7 7 111
8 8 1000
9 9 1001

10 A 1010
11 B 1011
12 c 1100
13 D 1101
14 E 1110
15 F 1111
16 10 10000

To convert a hex number to decimal, first find
the decimal equivalent for any letter digit and
then multiply by its column value, e.g.:

99 hig

07 = 13x16 + 7x1 = 215
F58C = 15x4096 + 5x256 + 8x16 +
12x1 = 62860
A simple way of converting a number from

decimal to hex is to break it down into 4096s,
256s, 16s, and units. Then change each num
ber over 9 into its hex equivalent, e.g.:

248 = 15x16 + 8 = F8
50347 = 12x4096 + 4x256 + 10x16 +
11 x1 = C4AB
Because 16 is a power of two, hex serves as a

kind of shorthand for binary. Machine code
programmers find it more convenient to use
than decimal. In hex, four bits can be repre
sented by a single digit, and all one byte
numbers can be shown as two hex digits. Most
assemblers present numbers in hexadecimal
form.

To distinguish a hex number from decimal,
precede it with a S sign.

high-level language A programming
language that needs to be translated into
machine code by an in terpreter or a com
piler before it can be run. A single statement
in a high-level language uch as BASIC gener
ally represents a series of machine code in-

hig I 011

srrucrions~ Programs in high kvel langu,1gc
.m thcn:torc casit' r to writ< .111d undcrsund
r .m progra m written dinnh 111 m,1chinc
coJ.:. U>uJlly they .ire Jbo lm1 er. M.1ch111e
coJL anJ assembly language II< ,omcnmL'.
rd-;.·rred to ,\!> low-lcvel l,111<>uJ•'L

.\ ('(' FORTH; LOGO. ,.., ,..

high-resolution graphics A display
mode which gives .1 '>CrL·rn 111Jde up o f 320
hunzonr.il dots by 200 l'l'rnc,d dm> and allow-,
c.1ch or (or pixel) to be turn ·d on or off. In
r l! .. ~h-ri:-,olution g raphic> rhe p1xeb arc reprL'-
" lied bv bits in memorv: LJCh pixel 1s ;aid ro

n L' mJpped o n to a bir. lhe p1"\cb ,111d back
!!;round CJ 11 be assigned .1111 one of 16 colour>.
J,ur . .is 111 character mode. 11or111allv all the
~ •XL·b in L'Jch 8 by 8 group mu'r r.1kc t.hc -..1me
co our. Howc1'L' r, morc than Olll' colo ur cJ n be
chusL'll 1f the multico lour o pti<m 1s sclected.
J-or setting up a high-rcsolunon ,crecn, see bit
map mode.

IEEE (IEEE-488) The ·J-triple-E' is J stan
l,1rJ parallel interface for co1111cct111g the

n1111put.:r to another device, usuallv ,1 disk
ln1·L. Devices th at run on this '>tJ1;dard re

ljllJrL· .111 IEEE interface to be plu!!;ged mto one

I 01 ill

of the computer's ports.

IF A sta tement w hich all ows the computer
to nuke decisions. Used in conjunction wi th
THEN it sets up a condition to be tested . IF
the condition is true it executes the statement
after the THEN statement. IF the condition is
fal ·e the program passes on to the next line.
(See truth value.) The fo llowing examples
illu trate some of the ways in which it is used:

IF A> B THEN PRINT A;" IS "; GREATER
THAN ;"B
IF 8$=" " THEN 8$= A$
IF N= 3 THEN GOTO 200
IF W= 3 AND X=0 THEN PRINT "I WIN"

There may be more than one tatement after
THEN , as in

100 IF A$="Z" THEN Y= Y+1:GOTO 300
200 GOTO 50

Note that if the condition is not true, i.e. All
docs not equal Z, then the program does not
proceed to the second statemen t in line 100,
but to line 200.

Associated keyword: THEN.

ILLEGAL DIRECT An error message: an
attempt has been to give as a direct command
an instruction that can only be used in a

ill 102 103 ind

program, e.g: DEF FN, INPUT.

ILLEGAL QUANTITY An error mes
sage: a number or variable i outside the
computer's range. It is often caused by trying
to POKE a value greater than 255.

immediate addressing Treats the
operand as data rather than the address of
data. Used with the accumulator and index
registers, this mode opera tes on the byte fol
lowing the op code. In assembly language the
operand is always preceded by a # cha racter to
show that it is to be treated as immediate data
e.g. 'LDA #55' loads 55 into the accumulator '
and 'CPY # 120' compare the contents of th~
Y register with 120.

implied addressing Indicates that the in
struction operates one of the registers. In thi
mode the operand (a register) is not specified
since it is implied by the instruction itself.
Implied addressing instructions occupy only
one byte, e.g. INY, CLC, RTS.

INC A 6510 instruction mnemonic which
IN Creases the contents of a memory by one,
and sets the zero Aag to 1 if the result is 0, e.g.:

ING $C108

BEO LABEL
increa es the contents of memory 108 by
one. If its previous value was 255 the zero Aag
is set to 0 and ca uses a branch.

Status register N V B D i! c

addressing mode assembly language form op No. No.
code bytes cycles

zero page INCoperand E6 2 5
zero page, X INC operand, X F6 2 6
absolute INCoperand EE 3 6
absolute, X INC operand, X FE 3 7

indexed addressing Adds the value of
the Y or X index registers to a base address
specified by the operand. This gives the effec
tive addre s of the byre in memory that the
instruction operates on, e. g. 'ST A S0?00, Y'
stores the content of the accumulator at loca
tion C000 + Y. If Y contains 5 then the
address is C005. In zero page indexed addres
sing, the operand is only one byte long and the
base address is between 0 and 255, e.g. 'LDA
S6F,X'. This mode is often used to process a
block of up to 256 consecutive bytes.

index registers The X and Y registers.
Although their primary use is to provide an
index for addressing modes, they can al o

ind J04

transfer data to and from the accumulator or
a memory location. In addition they often
erve as loop counters.

indir~ct addressing Only used with the
J MP 111struct1on. The two bytes following the
~p code give the address of a memory loca
t1011 which in turn holds the address of the
jump de tination, e.g. 'JMP (C450)'jumps to
an address whose location is held at C450 and
C451.

INPUT A statement which allows the user
to ~nter numbers or words into the computer
while a program is running . INPUT reads
char_acter from the keyboard into a variable.
Unlike GET, it accepts more than one charac
ter and waits until the RETURN key has
been pressed. To indicate that it is waiting for
mput the computer prints a que tion mark on
the screen. The variable which follows the
INPUT statement mu t be of the right type.
For example, 'INPUT N ' expects numbers. If
you enter a letter the error message '?REDO
FROM ST ART' appears. It is al o possible to
fo llow INPUT with more than one variable.
I ~ response to '10 INPUT A,B,C' you can
either type 111 three numbers separated by

105 inp

commas and then press RETURN, or press
RETURN after each. When the computer
expects further input it prints '??'.

If text, in quotation marks and followed by
a semi-colon, is inserted between INPUT and
a variable, it print a prompt message on the
screen . When 'INPUT "ENTER YOUR
N AME";' is run, the screen displays 'ENTER
YOUR NAME?'.

Associated keywords: GET; INPUT#.

INPUT# An input/output Statement. Us
ing this command is the most common way of
inputting data from a file on tape or disk . It
reads up to 80 characters into a variable until it
reaches a separator - either a return character
(CHR 13), a comma, or a semi-colon.
INPUT# mu t be followed by a file number
previously given in an OPEN statement. Like
INPUT it can take more than one variable,
e.g .:

INPUT# 1,A$
INPUT #2,A$,B$, N
Associated keyword : GET#; CLOSE;

PRINT#; OPE N .

input/output (I/O) The term covers any
part of the computer's hardware or software

106

that is involved in communicating with an
external devICe, e.g. an I/O port is one that
can both input and output data.

INST/~EL key Used to edit a program line
or a direct command. Pressing the INST/
DEL key deletes the character to the left of the
cursor and closes up the line. When the shift
key is held down at the same time INST/DEL
inserts a space at the cursor position and shifts
the fo!Jowing characters to the right.

See screen editor.

INT An integer function which gives the
mteger part of an expression by stripping off
the decimal fraction . For example, 'PRINT
INT. (2.56)' returns 2. If the number is nega
tive 1t returns the next lower integer. One of
its many uses is for finding the remainder of a
number after division . This line will give the
remamder when 18 is divided by 5:

PRINT 18-(INT(18/5) * 5)
!NT does not supply the integer value of an
expression to the nearest whole number. To
do this add 0.5, a in:

10 INPUT N
20 PRINT INT(N+0.5)

107 int

integer variables Store whole numbers
between -32768 and +32767. T he names of
integer variables must end with a % sign, e.g.
'T2%', 'N%', 'FIRST% '. Operations involv
ing integer variables are generally slower than
those with floating point variables, but inte
ger variables consume less memory . BASIC
takes 2 bytes to store an integer variable, and 5
for a floating point variable. If a floating point
number or variable is assigned to an integer
variable, the fractional part of its val ue is
stripped off, e. g.:

10 T% = 12.08
20 PRINT T%

prints 12.

interface T he hardware and software that
allows two devices - usually the computer and
an external device - to be connected. On the
Commodore 64 the ports at the back of the
machine provide connections to Com
modore's own disk drive and printer, but
devices from other manufacturers generally
require extra interfaces to be plugged in. These
take the form of cables or cartridges and
accompanying software.

interpreter The program which translates

int 108

BA IC programs into machine code. As
machine code is the on ly language that the
computer 's microprocessor understand ,
high level languages like BAS! have to be
converted before they can run. In contrast to a
compi ler, the interpreter turns a BASIC pro
gram into machine code while it is running by
dealing wi th each statement in turn. If, for
example, a program repeats a PRINT state
ment ten times in a loop, then that statement is
interpreted ten times over. As the task of
interpreting takes time, interpreted BASIC
runs substantia ll y slower than low level lan
guages. The interpreter is itself a machine code
program. In the Commodore 64 it is 8K long
and i stored permanently in ROM at add res
ses 40960 to 49151.

interrupt When the compu ter's 6510
microprocessor receives an interrupt signa l it
stops executin g the current program and
jumps to a routine which handle whatever
cau ed the interrupt. Then it resumes execut
ing the program where it left off. lnrerrupts
enable the 65 1 (/J to respond to external events
or carry ouc regular tasks internally, whi le a
program i running. They make it po sible,

109 iny

for example, to stop a program by pressing the
RUN/STOP key: every 1 /SOch sec. the 6510
is interrupted by a signal from a timer and,
among other things. scans the keyboard and
checks for key presses.

There arc three kinds of inrcrrupts: IRQ and
NMI hardware interrupts Jnd a software inrcr
rupc caused by the BRK instruction. By
intercepti ng the routine which handles IRQ
interrupts machine code programmers c:rn add
their own interrupt-driven routim:s. These
allow a ea k to be performed independently of
another program.

See raster; interrupt; wedge.

INX A 651 (/J instruction mnemonic which
lNcreases the contents of the X index register
by one, and sets the zero Aag to l if the result is
0. Used with indexed addressing and to
in crease the va lue of X when it acts as a loop
counter.

Status register N V B D l c

addressing mode assembly language form op No. No.
code bytes cycles

implied INX ES 2

INY A 6510 instruction mnemonic which

irq
110

IN creases the contents of the Y index register
by one and sets the zero flag to 1 if the result is
0. Used in the amc way as INX.

Status register N V B D z c

addressing mode assembly language form op No. No.

code bytes cycles
implied INY ea 2

IRQ A hardware interrup t. The 6510 mic
roprocessor has two interrupt pins, IRQ and
N MI. Unlike NM! interrupts, IRQ interrupts
can be disabled by setting the interrupt flag in
the status register. The instruction SEI dis
ables interrupts; CLI enables them. When the
6510 receives an IRQ interrupt it stores the
contents of the program counter and status
register on the stack, and then jumps to an
interrupt service routine via a vector in RAM .
The IRQ vector is located at 788 and 789.

The IRQ service routine is called every
1 /50th sec. Its main purpose is to scan the
keyboard and update the interval timer which
handles the TI and TI function . By changing
the address held in the IRQ vector a machine
code program can be in erted into the normal
routine. Such a program is said to be interrupt-

11 1 joy

driven.
See time; wedge.

JMP A 6510 instruction mnemonic which
JuMPs to a new location. JMP has t~o
addressin g modes, absolute {direct) and 111-

di rect. In an absolute JMP the program bran
ches to the address following the instruction.
In an indirect jump it branches to the address
held in the two bytes following the instruc
tion, e.g. 'JMP ($Cl00)'. If locations C100 and
C 101 hold the address l 2288 then JM P bran
ches to that address. Note that the 6510
microprocessor stores addresses in the order:
least significant byte followed by most s1g111-
ficant byte. In the example above, Cl 00 con
tains 0 and C101 contains 48. 12288 = 48 X

256.
Status register N V B D z c

addressing mode assembly language form op No. No.
code by•qs cycles

absolute JMPoperand 4C 3 3
Indirect JMP (operand) 6C 3 5

joystick A moveable stick attached to a
base with a fire button. Joysticks arc used
mainly as an alternative to the keyboard for

joy 112

game control. There arc two joystick ports at
th.c right of the computer, for any joystick
with a D-type plug. As well as the Commod
ore's own joysticks, Atari joysticks can be
fitted.

The Commodore 64 takes digital a oppo cd
to analogue joysticks. They contain four
switche to register movement and one for the
fire button. Moving the stick left, right, up. or
down, clo e a single switch; moving it diago
nally close two swnches. The values of regis
ters 56320 and 56321 indicate which switches
are closed or open in joysticks fitted to ports I
and 2 respectively. One of the fir t five bits is
set to 0 when a switch is closed or the fire
button is pressed, and set to I when a switch is
open.

address:

53620

53621

bit 4 bit 3 bit 2 bit 1 bit o 1oyst1ck.

FIRE RIGHT LEFT DOWN UP

FIRE RIGHT LEFT DOWN UP 2

bits 5, 6 and 7 not used

To check the movement of a joystick in port
1 use

D = 15 - (PEEK(56320) AND 15)
D gives the direction shown in the table
opposite.

113 joy

VALUE OF D DIRECTION

0 -
1 UP
2 DOWN
3 -
4 LEFT
5 UP&LEFT
6 DOWN&LEFT
7 -
8 RIGHT
9 UP&RIGHT

10 DOWN&RIGHT

PEEK(56320) AND 16
returns f/J when the fire button is pressed.
Substitute 56321 for 56320 to read port 2.

The following program shows how a joy-
stick can control movement on screen:

10 SC=1564:CL=55836
20 D=15-(PEEK(56320)AND15)
30 M=0
40 IF D=1 THEN M=-40
50 IF D=2 THEN M=40
60 IF D=4 THEN M=-1
70 IF D=B THEN M=1
80 IF SC+M < 1024 OR SC+M >

2023 THEN 20
90 POKE SC,32

100 SC='SC+M:CL=CL+M
110 POKE SC ,81:POKE CL,0

jsr 114

120 GOTO 20

JSR A 6510 instruction mnemonic which
causes a Jump to a SubRoutine. JSR is equiva
lent to a GOSUB in truction in BASIC
When the computer executes JSR it stores th~
address of the next instruction on the stack
~hen the program meets an RTS instructio1~
it pulls the return address off the stack and
returns from the subroutine.

Status register N V B D

addressing mode assembly language form op
code

absolule JSR operand 20

i! c

No. No.
bytes cycles

3 6

Kernal The ommodore 64' operating
system. It perfor_ms such task as reading the
keyboard and pnntmg what is typed on the
screen, loadmg and saving programs, moving
the cur or, and organising memory resources
(see b~nk switching). The Kernal is an 8K
m achme code program held in ROM fi
dd

~ rom
a resscs :> 7344 to 65535. It consists of a
collecnon _of subroutines, each one handling its
own p~c1fic task. The address of each sub
routine is given in a table known as a jump
table located at the end of the ROM . When the

11 5
key

Kcrnal calls a routine it first consults the tabk
to find its address. CHROUT, for example is
the subroutine which prints a character to the
screen. Its address is held in the jump table at
64590. Many of the c routines can be called JJi11

the jump table by machine code programs in
RAM. Together with the BASIC interpreter
ROM, the Kernal uses the first lK of RAM
(locations 0 to 1023) for storing its own vari-

ables .
See system variables.

keyboard buffer Whenever a key is press
ed its keyboard code is stored in the keyboard
buffer, addresses from 631 to 640. The
keyboard buffer enables the user to enter char
acters while the computer is occupied with
another task. Without it, character might
ometimes get lost when typed rapidly . The

operating system extracts characters from the
buffer in the order they were stored. In prac
tice, they are removed as soon as they arc
stored. But while a program is running they
queue up until a GET statement is performed.
This means that GET occasionally picks up a
character from an earlier keyprcss. Location
197 holds the code of the current keystroke. It

Ian 11 6 117 ldy

can be used as an alternative to GET for
r)ead ing the ~eyboard. The.following program
E EEKs location 197 and prmt the code associ
ated with each key troke. If no key is pressed
the value 64 is returned. '

10 K=PEEK(197)
20 PRINT K;" ";
30 GOTO 10

LAN See network.

LDA A 6510 in truction mnemonic which
LoaDs the Accumulator wi th a givcn value
or the contents of a memory location. If 0 is
loaded the zero flag is set to 1. This instruction
is probably used more often than any other. It
has 8 addressing modes , of which here arc 3:

Status register N v B D 2 c
- - - -

addressing mode assembly language form op No. No.
code bytes cycles

immediate LDA " operand A9 2 2 zero page LOA operand AS 2 3 zero page, X LDA operand, X 85 2 4 absolute LDA operand AD 3 4 absolute, X LDA operand, X BD 3 4· absolute, Y LDA operand, Y 89 ~ 4· (indirect, X) LDA (operand, X) Al 2 6 (indirect), Y LDA (operand), Y 81 2 s·
·Add 1 1f page boundary 1s crossed.

'LOA *SS' loads 55 into the accumulator.
'LOA FB' loads the byte at FB into the
Jccumulator. 'Ll)A (252), Y' loads the byte
from the address held at loca tion 252 + Y.

LDA i typically used to transfer data to and
from memory, either for torage or fo r arith
meti c and logical operations.

LDX A 65J0 instruction mnemonic w hi ch
LoaOs a givl'n number or the contents of a
memory location into the X index register . It
acts in the same way a LOA but offers fewer
addressing modes.

Status register N V B D 2 c

addressing mode assembly language form op No. No.
code bytes cycles

1mmechate LOX 1t operand A2 2 2
zero page LOX operand A6 2 3
zero page, Y LOX operand.Y 86 2 4
absolute LOX operand AE 3 4
absolute. Y LOX operand ,Y BE 3 4·

·Add 1 if page boundary 1s crossed.

LDY A 6510 instruction mnemonic which
LoaDs a given number or the contents of a
memory location into the Y index register . It
acts in the same way a LOA but offers fewer
addressing modes.

lea 11 8 119
len

Status register NVBOl.i!C

addressing mode assembly language form op No. No.
code bytes cycles

immediate LOY 1t operand A0 2 2
zero page LOY operand A4 2 3
zero page, X LOY operand, X 84 2 4
absolute LOY operand AC 3 4
absolute, X LOY operand, X BC 3 4•

• Add 1 if page boundary is crossed.

least significant bit Bit l/J, which can
only be worth 1, is the lea t significant. Bit 7,
the mo t ignificant, is also used in some
situations (see two's complement) as a flag to
indicate negative numbers.

least significant byte Where numbers
greater than 255 need to be POKEd into
memory, two, or occasionally three, bytes arc
used. The number is then stored in the form:

number= lst byte+ 256 * 2nd byte(+ 256
* 256 * 3rd byte)

The first byte is the least significant byte, and
the final byte is the most significant.

LEFT$ A string function used to extract one
or more characters from a string, starting at
the left-hand end of the string. It has the form:

LEFT$(A$,N)

where A is the ource string and t:-J specifics
the number of characters required, e.g.
'LEFT ("DLCTIONARY",7)' extracts ~he

b · l)ICTION If N is zero the fun ct10n su stnng ·
returns an empty string. . . .

In the following program it is used with
MIDS to separate a first name from a surname:

10 INPUT "YOUR FULL NAME";A$
20 FOR N=1 TO LEN(A$)
30 IF MID$(A$,N,1)="" THEN S=N
40 NEXT
50 PRINT "HELLO ";LEFT$(A$,S)
Associated keywords : LEN ; MIDS;

RIGHTS.

LEN A string function which counts the
number of characters in a stnng. For example,
there arc nine letters and one space in the name
JOHN SMITH , so 'L=LEN("JOHN
SMITH")' assigns the value 10 to L .

In the following program, LEN is used with
MID$ to reverse the letters in a word:

10 INPUT "TYPE IN A WORO";A$
20 FOR N=1 TO LEN(A$)
30 B$= MIO$(A$,N,1)+8$
40 NEXT
50 PRINT 8$

let
120 121 lis

Associated keywords: LEFTS; MIDS;
RIGHTS.

LET A statement which assigns a value to a
variable, as m

LET A$="TABLE"
LET 8% =22
LET N= 3.65

However 'LET A ="TABLE"' · h , 1s t e same a'>
AS".""TABLE'" . The word LET is optional.

and 1s ofren omitted.

lig~t pen A device in the shape of a pen
~hJCh allow~ the user . to create pictures in
high resolution graphics by moving the tip
around the front of the creen. It can also be
used to elect items from a menu by pointing
t? _screen boxes. A hght pen uses a photosen
s1t1ve cell to detect the TV's raster beam. B y
sendmg a signal when the beam passes beneath
1t, It . enables the VIC chip to work out its
posmon. The V ~ C registers 19 and 20 give the
~ and Y coordmates of the light pen 's po i
tJon .

. Before a light pen can "draw" on the screen ,
It requires a program to read its position and
plot the corresponding pixels .

line number Every program line must be
preceded by a line number, which can be from
l/J to 63999. Lines arc deleted by typing the line
number and pressing RETURN. It is a good
idea to number lines in steps of 10 so that new
lines can be inserted later at the numbers in
between.

LIST A command which make the compu
ter print out a program on the screen, line by
line. If the program is a long one it will scroll
down the creen too quickly to be read. It can
be slowed down by pressing the CTRL key .
To stop it press the RUN/STOP key .

LIST followed by a line number prints a
ingle line. r you can list a range oflines:

LIST 120-200
displays all the line from 120 to 201/J.

LIST -120
lists a program from the beginning up to line
120. And

LIST 120-
lists the lines from 120 to the end .

When it is preceded by printer command ,
LI ST prints a program out on a printer. e.g .:
'OPEN4,4:CMD4:LIST' . A printout of a
program is generally known as a listing.

loa
122 123 log

LIST is usually entered as a direct command
but can be used in a program.

LOAD (1) A command which transfers a
program from tape o r disk into memory. On
its own, LOAD wil l load in the first program
It finds on tape. It can also be fo llowed by
three optional parameters: LOAD "file
namc", device, address.

When the file-name is given, LOAD will
~.ook fo;,, a particular program: 'LOAD
GAME searches the tape until it finds the

program GAME. If you arc loading from disk
the _fi le-name must be specified along with the
device number. 8 is the device number for
~~~k , I \?.r tape . To load the program 
, l ROG3 from disk you would enter: 
LOAD " PROG3",8'. There is generally no 

need_ to supply . a _device number for tape 
load111g. If none is given it is assumed to be ·1. 
Normally, programs load into the BASIC 
program area starting at address 2048. If the 
last parameter is 1 then a program wi ll be 
loaded at the memory loca ti on from which it 
was SA VEd. This option can be used for 
loading machine code programs or blocks of 
data. (See machine code.) To load data files 

see cassette files , relative files , sequential 
files . When the LOAD is executed as a direct 
command it forces a CLR statement to be 
performed. When it is used within a program 
it loads and RUNs another program but leaves 
the variables intact. Note that the second 
program will overwrite the first . 

Associated keywords: SA VE; VERIFY. 

LOAD examples 

LOAD loads next program on tape 
LOAD "PROGNAME" searches for then loads PROGNAME 
LOAD "PROGNAME", 1, 1 loads program 1nto·memory at the 

location at which tt saved from 
LOAD A$ loads program whose name 1s held 

inA$ 
LOAD "PROGNAME",8 loads PROGNAME from disk 
LOAD " l< ",8 loads first program found on disk 
LOAD "PROGNAME",8, 1 loads first program from disk at the 

location at which it was saved from 
LOAD "$",8 loads disk directory 

(2) An error message: there is a problem wi th 
the program on tape, e.g. the program has 
been corrupted. 

local area network (LAN) See net
work. 

LOG A floating-point function which ca lcu
lates the natural logarithm of a number to the 
base c. Jn common with other mathematical 



log 
124 115 log 

functions on the Commodore 64, ir give the 
resu lt to an accuracy of nine decimal places. To 
convert a natural logarithm to a common 
logarithm to the base 10, divide it by 
LOG (l0). For example LOG(5) gives 
1.60943791 while LOG(5)/LOG(l0) gives 
0.698970004, the logarithm of5 ro the base 10. 

Associated keyword : EXP. 

logical operators AND, OR, NOT, 
which can be used with relational and arith
metic operators , together with strings , 
numbers, and variables, to form expressions 
which can have a value of 'true ' or 'false'. The 
logical operators determine the truth value of 
an expression depending on which conditions 
are met, e.g. the expression 'Y>9 AND X=0' 
is evaluated as true only if'Y' is greater than '9' 
at the same time as 'X' equal '0'. 

Logical operators also act as bitwise oper
ators, comparing the bits of one number with 
the bits of another, e.g. ' PRINT 18 OR 137' 
gives 155. 

ee truth table . 

LOGO A high level language originally in
tended for educationa l use. Although some 
versions of LOGO arc as extensive as BASIC, 

it is primarily used to create turtle graphics. A 
"turtle" is a small robot which holds a pen and 
draws as it moves. LOGO ins t ructio 1~s g!vc 
the turtle a path to follow, in course ot which 
it draws pictures or patcerns on the pdper 1t 1s 
placed on. One of the attractions o_f the lan
guage for children is that the mstrucnons, such 
;s FORWARD, PENUP. PENDOW 
RI GHT and LEFT, arc familiar and easy to 
learn . 

LOGO is more commonly used to create 
graphics on screen, where it represents the 
~urtle bv a small triangle. Like FORTH it has 
the mc;it of allowing the user to define new 
instructi ons. For exam ple, the fo ll owing com
mands draw a triangle: 

FORWARD 50 
LEFT 120 
FORWARD 50 
LEFT 120 
FORWARD 50 
LEFT 120 

By giving it a name, such as TRIA GLE. this 
sequence of commands, can be defined a a 
inglc instruction. . 

LOGO can be loaded in from cas ctte. disk. 
or cartridge and run as a BASIC alternative. 



lsr 
126 127 mac 

LSR A 6510 instruction mnemonic which 
moves a byte in the accum ulator or a mem
ory location one bit to the right. Bit 7 becomes 
0 and bit 0 moves inro the carry flag. LSR has 
the effect of dividing the value of a byte by 
two, e.g.: 

LDA #32 
LSR 
LSR 
LSR 

leaves 4 in the accumulator. 
Status register N v B D l c 

0 
addressing mode assembly language form op No. No. 

code bytes cycles 
accumulator LSRA 4A 1 2 zero page LSRoperand 46 2 5 zero page, X LSR operand, X 56 2 6 absolute LSRoperand 4E 3 6 absolute, X LSR operand, X SE 3 7 

machine code The language understood 
by the computer's micropro cessor, the 6510. 
Programs written in any other language need 
to be translated tnto machine code before the \' 
can be executed. ' 

See interpreter; compiler. 
Not only do machine code programs ru n 

many times faster than BASIC but they al o 
allow the programmer ro access parts of the 
computer that arc closed to BASIC. Making 
use of the interrupts, for example, is only 
po sible in machine code . Almost all commer
cial software is written in machine code, as is 
the computer's operating system and BAS! 
Interpreter. 

The 6510 instruction set contains 56 
machine code instructions. They arc usually 
referred to by their as cmbly language mne
monics, but arc stored in memory and ex
ecuted as op codes - 1-byte numbers in the 
range 0 to 255. An instruction may take a 
nu mber of different forms depending on its 
addressing mode. 
ADC add memory to accumulator with carry 
AND AND memory with accumulator 
ASL shitt lett one bit (memory or accumulator) 
BCC branch on carry clear 
BCS branch on carry set 
BEQ branch on result zero 
BIT test bits in memory with accumulator 
BMI branch on result minus 
BNE branch on result not zero 
BPL branch on result plus 
BAK force break 
BVC branch on overflow clear 
BVS branch on overflow set 
CLC clear carry flag 
CLD clear decimal mode 



mac 

CLI 
CLV 
CMP 
CPX 
CPY 
DEC 
DEX 
DEY 
EDA 
INC 
INX 
INY 
JMP 
JSR 
LOA 
LOX 
LOY 
LSR 
NOP 
ORA 
PHA 
PHP 
PLA 
PLP 
ROL 
ROA 
ATI 
ATS 
SBC 
SEC 
SEO 
SEI 
STA 
STX 
STY 
TAX 
TAY 
TSX 

clear interrupt disable bit 
clear overflow flag 
compare memory and accumulator 
compare memory and index X 
compare memory and index Y 
decrement memory by one 
decrement index X by one 
decrement index Y by one 
exclusive-OR memory with accumulator 
increment memory by one 
increment index X by one 
increment index Y by one 
jump to new location 
1ump to new location saving return address 
load accumulator with memory 
load index X with memory 
load index Y with memory 
shift right one bit (memory or accumulator) 
no operation 
OR memory with accumulator 
push accumulator on stack 
push processor status on stack 
pull accumulator from stack 
pull processor status from stack 
rotate one bit left (memory or accumulator) 
rotate one bit right (memory or accumulator) 
return from mterrupt 
return from subroutine 
subtract memory from accumulator with borrow 
set carry flag 
set decimal mode 
set interrupt disable status 
store accumulator in memory 
store index X 1n memory 
store index Yin memory 
transfer accumulator to index X 
transfer accumulator to index Y 
transfer stack pointer to index X 

128 129 

TXA transfer Index X to accumulator 
TXS transfer index X to stack pointer 
TY A transfer index Y to accumulator 

mac 

Each form has a different op code. Thus chc 
inscruccion JM P can cake cwo forms depending 
on w hether ic jumps co a locacion di recdy or 
in di rccd y. They arc rcprcscmcd in assembly 
language as 

JMP operand 
JMP (operand) 

and chcir op codes in hexadecimal arc 4C and 
6C. 

Alchough there arc many ways of classifying 
chc instruccions, mo~c of chem fall into che 
fo ll owing broad caccgorics: 

DATA TRANSFER INSTRUCTIONS. Move data 
between regi;tcrs and memory, e.g. LDA, 
STY . 

REGISTER TllA 5FER INSTRUCTIONS. Move data 
between registers , e.g. TXA, TSX. 

CONDITIONAL BRANCH I STRUCTIONS. Branch 
to a different part of the program when a flag is 
;er, e.g. BPL, BNE. 

JUMP AND PROGRAM CONTROL I STRUCTIONS. 

Equivah:m to che BASIC commands GOTO 
and GO · ull, c.g. JMP, JSR. 

I UlL tLN I / DL ( IU .Ml·.N"I INS I HU CTION;. Airer 



mac 13(J 131 mac 

the value of register or memory by one, e.g. 
INC, DEY. 

ARITIIMETIC AND LOGICAL INSTRUCTIONS. 

Perform operations on the contents of the 
accumu lator o r memory, e.g. ADC, ORA. 

STACK TRANSFER INSTRUCTION . Transfer the 
contcncs of the accumu lator or status register 
to and from the stack, e.g. PHA, PHP. 

COMPAllE IN TllUCTIONS. Test the contencs of 
a memory location with the contents of the 
accumu lator or index regi ters e g CMP 
CPY. ' . . . 

. s 1_11n AND ROTATE INSTRUCTIONS. Move each 
b1t 111 th~ _accumuJacor or memory co an adj a
cent pos1t1on, e.g. LSR, ROL. 

RAG INSTRUCTION. Alter the flags in the 
status regmc-r , e.g. CLC, SEI. 
. ln~o~mation on e~ch instruction is given in 
~ts d1ct1onary en try 111 a table with the fo llow-
111g columns: 

ADDRESSING MODE. The way it operates Oil 
data or addresses. 
. ASSEMBLY LANG AGE FORM. The instruction 
itself followed by its operand (if any) . 
. OP CODE.. The single byte by which an 
111struct1on 1 scored in memory, given in 
hexadecimal. 

NUMBrn OF BYTES. The number of bytes 
occupied by an imtruction and its operand. 

N MBER OF CY LES. The number of clock 
cycles taken to execute an instruction . If the 
instruction crosse a page boundary it rakes an 
extra cycle to execute. This is indicated by an 
asterisk. 

Sel' zero page . 
Each dictionary entry also shows which 

flags in the status register may be affected 
when an instruction is executed . 

See register . 
A machine code prog ram can be stored 

anywhere in RAM. The area from 49152 to 
53247 is particularly suitable since it cannot be 
overwritten by a BASIC program . 

To enter a machine code program it i 
easiest to use an assembler. The alternative is 
to hand assemble a program and store it in 
memory with a hexloader. Hand assembly 
means translating each instruction into its hex
adecimal op code . A hexloader takes the 
instruction from DAT A statements, converts 
them into decima l and then POKEs them into 
memory. 

machine code monitor A program for 



mas 132 133 mem 

entering and testing machine code. Monitor; 
allow the programmer to ex,1m111c and alter 
sections of RAM or the registers. and mow 
blocks of code. They may also provide J 

facility for stepping through a machine code 
program one instruction ,Jt a time. Some 
montrors include an assembler and dis
assembler. 

mask Used to read or alter one o r more 
bits in a byte. Many of the computer 's facili
tie such as prites and sound arc only available 
by setting (or examining) particular bits in a 
register to 1 or 0, while leaving the rest 
unchanged . Masks (sometimes ccalled bit 
masks) employ the logical operators AND and 
OR. AND allows bits to be read or set to zero . 
!f a btt in the number which act as a mask is 0 
then the corresponding bit in the number 
being read is ignored; while if a bit in the mask 
is 1 the vJ!ue of its corresponding bit i ~ 
returned . Thus ANDing a number with 15 
gives the value of its bottom four bits since 15 
in binary is 00001111. For example: 

181 10110101 
AND 15 00001111 

5 00000101 

To read bit number 111 byte Buse 
PEEK(B) AND 2 j N 
To set bit N to zero use 
POKE B, PEEK(B) AND (255-2 i N) 

R allows particular bits to be set to one. 
When a bit 111 the mask is one then the 
corrc ponding bit is set to one, whether it is 
zero or one already. For example. ORing a 
number with 136 sets bits 3 and 7 to one bur 
leaves the other bits unchanged: 

113 01110001 
OR 136 10001000 

249 11111001 
Use th1 formula to set bit 

one: 
POKE B, PEEK(B) OR 2 i N 

in byte B to 

memory The part of the computer's hard
ware that stores data of any kind. Numbers, 
characters, variables, programs, etc .. arc all 
hel d in memory. 

ec ROM; RAM; address; bit; byte. 

memory map Shows how the computer's 
64K of memory is allocated to different parts 
of the system - programs. the BASIC inter
preter, screen memory. and so on, e.g. 
colour memory extends from 55296 to 56319. 



mem 134 

Note that some addresses arc occupied b) 
either ROM or RAM. The BASIC interpreter 
and operating system arc normall y in place 
from 40960 to 49151 and 57344 to 65535, but 
can be switched out to give a different mem
ory configuration. Similarly, the program area 
extends to 40959 unless a cartridge is plugged 
in ; while the character generator ROM i ~ 
continuously switched in and out. 

ee bank switching. 
addresses 

65535 

57344 

56320 

55296 

53248 

49152 

40960 

32768 

204B 

1024 

(l 

contents 

BK operating system ROM 
or RAM 

I/ORAM 

1 K colour memory 4K character 

VIC and SID 
generator 

registers 
ROM 

4KRAM 

BK BASIC interpreter ROM 
or RAM 

BASIC program area 
or BK car1ridge ROM 

BASIC 
program 

area 

1 K screen memory 

system variables 

135 mem 

memory map appendix 
ADORE SS 

0 
1 
2 
3-4 
5-6 
7 
B 
9 
10 
11 
12 
13 
14 
15 
16 
17 
1B 
19 
20-21 
22 
23-24 
25-33 
34-37 
38-42 
43-44 
4!>-46 
47-48 
49--50 
51-52 
53-54 
55-56 
57-58 
5!Hl0 
6Hi2 
63--64 
65-66 

OESCRIPTION 
6510 Data direction register 
6511.l 110 register 
not used 
vector for floating point-integer conversion 
vector for integer-floating point conversion 
BASIC counter: search for end of statement 
scan for quotes at end of string flag 
cursor position on line after TAB 
load/Verify flag 
BASIC input butter pointer number of subscripts 
default DIM flag 
BASIC variable flag : SFF= stnng, $00= numenc 
numeric variable flag : $80 = integer, $00 = numeric 
DATA scan UST quote/memory flags 
subscript/FNx flags 
INPUT/GET/READ flag 
ATN companson result flags 
INPUT prompt flag 
BASIC temporary store for integers 
pointer to temporary string stack 
last temporary string vector 
temporary string stack 
utility pointer area 
holds product of multiply 
start of BASIC pointer 
start of BASIC variables/end of program pointer 
start of arrays pointer 
star1 of arrays/end of variables pointer 
start of strings pointer 
end of strings pointer 
top of program area pointer 
current BASIC line number 
previous BASIC line number 
pointer to statement for CONT 
current DAT A line number 
current DATA item pointer 



mem 

ADDRESS 
67-£8 
6~70 
71-72 
73-74 
7!>-96 
97- 112 
113-114 
11!>-138 
13~143 

144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
16e-162 
163-164 
16!>-182 
183 
184 
185 
186 
187- 188 
18~192 

193-194 
19!>-196 
197 

DESCRIPTION 
INPUT routine vector 
current variable name 
current variable pointer 
FOR-NEXT variable pointer 
miscellaneous pointers work area 
floating point accumulator workspace 
cassette buffer pointer 

13(, 

CHRGET subroutine: get next BASIC character 
AND function seed value 
status word ST 
STOP REVERSE key flags 
t1m1ng constant for tape 
LOAD VERIFY flag 
serial buffered character flag 
serial buffered character 
cassette sync number 
register save 
number of OPEN files 
input device number 
output device number 
tape character parity 
tape byte received flag 
directiprogram mode flag 
tape pass 1 error log 
tape pass 2 error log 
internal timer used by Tl'TI$ 
temporary data area 
cassette RS232 data area 
length of f1lename 
logical file number 
secondary address 
device number 
Ille name pointer 
cassette RS232 data 
I 0 start address 
Kernal setup pointer 
last key pressed 

137 

ADDRESS 

198 
199 
200 
201-202 
203 
204 
205 
206 
207 
208 
~210 

211 
212 
213 
214 
215 
216 
21 7-242 
243-244 
24!>-246 
247-248 
24~250 

251 -254 
255 
256-266 
256-318 
256-511 
512~ 
601~10 
611~20 
621~30 

631~40 

64Hl42 
64~4 
645 
646 
647 

DESCRIPTION 
number of characters 1n keyboard buffer 
reverse characters flag 
end of line for INPUT pointer 
cursor pos1t1on at start of INPUT 
current key pressed 
cursor blink flag : 0 blink on; 1 blink off 
cursor blink delay 
character under cursor 
cursor on,off flag 
INPUT1GET flag 
cursor row pos111on pointer 
cursor column pos1t1on pointer 
cursor inside quotes flag 
40180 screen line length 
current line number of cursor pos1hon 
ASCII value of character pnnted 
number 1f INS outstanding 
screen line link table 

mem 

current location 1n colour memory pointer 
keyboard decode table pointer 
RS232 input butter pointer 
RS232 output buffer pointer 
free zero page locations for user's program 
BASIC temporary data area 
floating point - ASCII work area 
tape error log 
6510 stack 
BASIC input buffer 
logical file table 
device number table 
secondary address table 
keyboard butter 
operating systems start of RAM pointer 
operating system's end of RAM pointer 
serial t1meout flag 
colour code of current character 
colour under cursor 



mem 

ADDRESS 
648 
649 
650 
651 
652 
653 
654 
655-£56 
657 
658 
659-670 
671~72 
673 
674 
675 
676 
677 
678 
67~767 
768-769 
77(/}-771 
772- 773 
774-775 
776-777 
778--779 
780 
781 
782 
783 
784-786 
787 
788--789 
790--791 
792-793 
794-795 
796-797 
798--799 

DESCRIPTION 
screen memory high byte 
maximum size of keyboard buffer 
key autorepeat flag: 0=cursor, 12B= all 
delay lime before key repeal 
delay lime between key repeat 
SHIFT!CTRUC= key press flag 
last SHIFT/CTRUC= press flag 
keyboard table setup pointer 
SHIFT mode enable/disable 
auto scroll down flag: 0= on 
RS232data 
IRQ vector during tape I/O 
NMI interrupt control 
timer A control log 
interrupt log 
timer A enable flag 
screen row marker 
PAUNTSCflag 
not used 
vector for error message routine 
vector for BASIC warm start 
vector for convert to token 
vector for convert token to ASCII 
vector for start new BASIC code 
vector for perform arithmetic function 
storage for A register during SYS 
storage for X register during SYS 
storage for Y register during SYS 
storage for status register during SYS 
USA JMP followed by address 
not used 
IRQ vector 
BAK vector 
NMlvector 
OPEN vector 
CLOSE vector 
set input device vector 

138 139 

ADDRESS 
80(1}-801 
802~03 
804-805 
806-807 
80H09 
81 (/}-811 
812~13 
81~15 

80H17 
81H19 
82(1}-827 
828--1019 
102(1}-1023 
1024-2023 
204(1}-2047 
2048--40959 
32768--40959 
4096(1}-49151 
491 52-53247 
53248--57343 
53248--53294 
54272-54300 
55296-56319 
5632(1}-56591 
57344-65535 

DESCRIPTION 

set output device vector 
restore I/O vector 
Input vector 
output vector 
test STOP key vector 
GET vector 
abort 110 vector 
user defined vector 
LOAD vector 
SAVE vector 
not used 
cassette buffer 
not used 
screen memory 
sprite pointers 
program area 
ROM cartridge area 
SK BASIC interpreter ROM 
4K RAM for data storage or machine code 
4K character generator ROM 
VIC registers 
SID registers 
colour memory 
I/ORAM 
SK operating system ROM 

mer 

menu A selection screen where the prog
ram options arc disp layed, with a routine to 
direct the program to the · user's choice. Con
trol will normally return to this screen at the 
end of each section. 

merge The facility for joining two prog
rams by loading one program from cassette or 



mic I-HI 

disk while the other is already in RAM. There 
arc a number of ways of merging programs 
although there is no BASIC command to do 
so. The implest way is as follows: 
1: Note the program start addrc s by PEEKing 
the pointers at -13 and -1-1. 'PRINT PEEK(-13f, 
PEEK(44)' . This normally gives I and 8. 
2: Alter their contents to point to the end of 
the program, 'POKE 43, PEEK(45) -2: 
POKE4-1, PEEK(46)'. 
3: Load another program. 
4: Restore the original start address, 'POKE 
43, l:POKE44,8'. 

This procedure only works if the second 
program has higher line n umbers than the 
first. 

microprocessor The single chip that ex
ecutes programs and in doing so carries out all 
data processing in the computer. Sometimes 
referred to as the central processing unit, the 
microprocessor receives and stores data in 
memory, and performs operations on data. 
The Commodore 64 uses an 8-bit 6510 
microproces or, which can only transfer and 
operate on 8 bits of data at a time. However it 
has 16 address lines which allow it to move 

1-1 1 mid 

data - 8 bits at .1 time - to ,md from 21
" (655.36) 

different memorv locatiom. Jn other words. 1t 
can address 6-IK of memory. To store and 
operate on data the 6510 has 6 internal regis
ters, 5 of them 8-bits wide and one 16-bit 
register which holds addresses. Each group of 
8 bits represents a binary number between 0 
and 255. Depending on the order in which it 
receives them the 6510 treats certain numbers 
as instructions. others as data. In all there arc 
56 different types of instruction, and together 
th ey make up the machine code instruction 
set. 

In almost all respects the 6510 is identical to 
the widely-used 6502 microprocessor. and 
shares the same instruction set. The major 
difference between the two is that the 6510 has 
an internal 8-bit mput/output port which it 
uses for bank switch in g and to control the 
cassette unit . Along with the Z80, the 6502 is 
the most widely u ed microprocessor in home 
computers. 

MID$ A tring function which returns one 
or more characters from within a given charac
ter string. This function is more Aexible than 
LEFTS or RIGHT. as it can extract characters 



mod 142 

from any point in the source string. It takes the 
form MID$(A$,S,X) which gives a substring 
X characters from the string A$ starting at 
posmon S, e.g.: 

10 A$="1MMEDIATELY" 
20 PRINT MID$(A$,3,5) 

prints MEDLA. 
If the last value 'X' is left out, the function 

assumes that the rest of the string is wanted, 
from the start position to the end. Thus 'MID$ 
("WORDPROCESSOR",5)' gives 'PRO
CESSOR'. 

Associated keywords: LEFTS; RIGHTS. 

modem A device which allows computers 
to communicate with each other over the 
telephone lines. By means of a modem, a user 
can link up with other owners via bulletin 
boards, or access viewdata systems such as 
Prestel, which hold large amounts of informa
tion on mainframe computers. 

monitor An alternative display unit to a 
television. Because monitors take a com
posite video signal from the audio/video 
port they give a clearer and steadier picture 
than televisions. Wordprocessors which offer 
an 80-column display need to be used with a 

143 mul 

monochrome monitor. 

most significant see least significant. 

multicolour bit map mode A high
resolution mode in which each pixel can take 
one of four different colours. In the standard 
bit map mode all the pixels in a character 
space take the same colour. The multicolour 
option gives a greater choice of colour at the 
cost of reduced pixel resolution: colours can 
only be assigned to pairs of pixels. ln effect this 
halves the resolution from 320 by 200 to 160 
by 200. 
BIT PAIR 
00 
01 

10 

COLOUR INFORMATION 
background 53281 
top 4 bits of screen memory. 
usually 1024-2047 
bottom 4 bits of screen memory 
1024-2047 

11 colour memory 
55296-56295 

In this mode each pixel is represented by a 
pair of bits in the bit map area. Depending on 
the value of its bit pair, a pixel's colour is 
determined by the colour code in one of four 
locations: the top and bottom four bits of the 
corresponding byte in screen memory; the 
corresponding byte in colour memory; and the 



mul 14.+ 

background colou r register. Note that in bit 
map mode the screen memory, which extends 
from 1024 to 2047, tores colour information 
rather than character codes. To select bit map 
mode set bit 5 in location 53265, as fo llows: 

POKE 53265, PEEK(53265) OR 32 
The multicolour option can chen be sclccccd by 
setting bit.+ in location 53270: 

POKE 53270,PEEK(53270) OR 16 
To turn both options off enter: 

POKE 53265, PEEK(53265) AND 223 
POKE 53270,PEEK(53270) AND 239 

multicolour mode A display mode 
w hich all ows characters to cake up to 4 col
ours. High resolution graphics and sprites can 
also be multicoloured. See bit map; multi
colour sprites. 

Multi colour mode is selected by setting bit 4 
of location 53270 to 1. If the display is already 
in character mode then any character with a 
colour code of 8 or more become multi
coloured. In other wo rds, each multicoloured 
character must have bit 3 of its corresponding 
byte in colour memory set to l. Characters 
w hose colour code is less than 8 arc displayed 
in the normal way. The following program 

i-+5 mul 

demonstrates multicolour mode by printing 
two rows of the alphabet. When a key is 
pressed multicolour mode is ~elected for t~e 
second row (in line 60). Prcssmg a key agam 
turns it off(line 80). 

10 PRINT CHR$(147) 
20 B=0:GOSUB 100 
30 PRINT CHR$(13); 
40 B=B:GOSUB 100 
50 GET A$:1F A$="" THEN 50 
60 POKE 53270,PEEK(53270) OR 16 
70 GET A$:1F A$="" THEN 70 
80 POKE 53270,PEEK(53270) AND 239 
90 GOTO 50 

100 FOR N=65 TO 91 
110 POKE 646,RND(0)*8+B 
120 PRINT CHR$(N); 
130 NEXT 
140 RETURN 
The normal character set is generally not 

recognisable in multicolour mo.dc. But user 
defined characters can be designed specifi
cally for this mode. The reasons for this lie in 
the way che colours arc assigned. Normally 
che docs or pixels in a character space can take 
only one colour. But each pixel in the 8 by 8 
block can be on or off. In multicoloured mode 



mul 
146 

colours are assigned to horizontal pairs of 
pixels. Th.is has the effect of halving the re
solution: l pixel now ha the width of 
2 standard pixels. 

It now takes 2 bits to represent a pixel in 
memory, and each pair of bits determines 
what colour the pixel takes. The colours are 
assigned as follows: 

BIT PAIR COLOUR ADDRESS 
00 background 53281 
01 multicolour 1 53282 
10 mult1COlour 2 53283 
11 foreground colour RAM (lower 3 bits) 

To set colours 1 and 2 POKE the required 
colour codes into locations 53282 and 53283. 
Colour 0 is the screen background colour, and 
colour 4 is set by the code in the correspond
ing colour memory byte. As only the lower 
3 bits at each colour memory location deter
mine multicolour 4, it can only be assigned 
codes 0--7. The fourth bit, however, must be 
set to 1, so 8 needs to be added to the normal 
colour code, e.g. 'POKE colour memory loca
tion, 15' makes multicolour 3 yellow at a 
given location . 

multicolour sprites Like multicoloured 

147 

characters, sprites can be given up to 
4 colours, although one colour ts that of the 
screen background. The colo~rs arc .d.cter
mincd by pairs of bits in the spnte dc~111~ons. 
This means that the horizontal resolution is cut 
by half: each pair of pixels must take the same 
colour. 

H-++-+++++-+-- -+++++++++-l 

background multicolour 1 sprite colour mulhcolour 2 

CJ = 00 0 = 01 c;;;J = 10 • = 11 

The colours associated with each bit pair arc 
given below. Bit pair 00 takes the background 
screen colour, and so disappears. Multicolours 



mul 148 

I and 2 arc rhc same for all mulricolourcd 
sprites . The pritc colour i\ scr 111 the normal 
sprite colour registers, 53287 to 53294 (V + 39 
to V+46). 

BITPAIR COLOUR REGISTER 

00 background cclour 53281 
01 multicolour 1 53285 
10 sprite cclour 53287-53294 
11 multicolour 2 53286 

To turn on a multicolour sprite set the 
corresponding bit in register 53276 (V +28) 
ro I by u ing the statement 'POKE 
53276,PEEK(53276) OR (2 j N)' where 'SN' 
i the prite number. 

POKE 53276.PEEK(53276) AND (255-2 j SN) 

multi-statement line A program line 
with more than one statement. Each statement 
must be separated by a colon. As rhe computer 
takes 2 byres ro store a line number, reducing 
the number of lines by using multi-statements 
saves memory space. But note that REM 
hould not appear a the first statement and 

IF ... THEN passes control to the next line 
when a condition is false. 

music There arc a number of ways of play
ing music on the Commodore 64. At the most 

149 mus 

advanced level, heet music can be tramlated 
and played in three voices simultaneou ly and 
in a variety of different instrument sounds. To 
synthesise an instrument exactly and coordin
ate the timing of multiple voices generally 
in volves using the SID chip's more pecia liscd 
fa cil ities - synchronisation. resonance. fi lter, 
and ring modulation, but satisfactory results 
can also be achieved with one voice by setting 
only the en velope and waveform para
meters. The simplest method of playing a tune 
in one voice is to store each note's frequency 
and duration in DATA statement . This is the 
method used in the following program which 
plays the first eight bars of Crec11Slec1•es: 

10 SD= 54272: TE= 40 
20 DIM N(2,20) 
30 FOR T= 1 TO 19 
40 READ F,D 
50 FH = INT(F/256): FL= F- 256* FH 
60 N(O,T)= FL:N(1,T)= FH:N(2,T)= D* TE 
70 NEXT 
80 FOR T = SO TO SD + 24 
90 POKE SD ,0 

100 NEXT 
110 POKE SD + 24, 15 
120 POKE SD + 5,9 



mus 

130 POKE SD+6,0 
140 FOR T =1 TO 19 
150 POKE SD,N(0,T):POKE SD+1 ,N(1 ,T) 
160 POKE SD+4,33 
170 FOR D=1 TO N(2,T):NEXT 
180 POKE SD+4 ,32 
190 NEXT 
200 DATA 5407,4,6430,8,7217,4, 8101 ,8 
210 DATA 9094,2,8101 ,2,7217,8,6069,4 
220 DATA 4817,8,5407,2,6069,2,6430,8 
230 DATA 5407,4,5407,6,5103,2,5407,4 
240 DATA 6069,8.5103,4,4050,8 

150 

By changing the value of'TE' in line 10 the 
tempo at which the tune is played can be 
speeded up or slowed down. 

INSTRUMENT ATT/DEC SUS/REL WAVEFORM PULSE 
WIDTH 

trumpet 96 128 sawtooth -
violin 168 169 sawtooth -
piano 9 9 pulse 1000 
flute 154 0 triangle -
harpsichord 9 0 sawtooth -
accordeon 102 240 triangle -
organ 0 242 sawtooth -
clarinet 101 197 pulse 2048 

Instrument sound can be changed by altering 
the envelope settings in lines 120 and 130 
together with the waveform setting in line 
160. The above table provides some possible 

151 mus 

settings to approximate the sound of different 
instruments. 

music note values 
frequency 

octave decimal high low 

C-0 268 1 12 
C#--0 284 1 28 
D--0 301 1 45 
D#--0 318 1 62 
E--0 337 1 81 
F--0 358 1 102 
F#--0 379 1 123 
G--0 401 1 145 
G#--0 425 1 169 
A--0 451 1 195 
A#--0 477 1 221 
B--0 506 1 250 
C-1 536 2 24 
C#-1 568 2 56 
D-1 602 2 90 
0#-1 637 2 125 
E-1 675 2 163 
F-1 716 2 204 
F#-1 758 2 246 
G#-1 803 3 35 
G#-1 851 3 83 
A-1 902 3 134 
A#-1 955 3 187 
B--1 1012 3 244 
C-2 1072 4 48 
C#-2 1136 4 112 
D-2 1204 4 180 
D#-2 1275 4 251 
E-2 1351 5 71 
F-2 1432 5 152 
F#-2 1517 5 237 



mus 

frequency 
octave decimals high low 

G 2 1607 6 71 
G# -2 1703 6 167 
A- 2 1804 7 12 
A#-2 1911 7 119 
B-2 2025 7 233 
C-3 2145 8 97 
C#-3 2273 8 225 
D-3 2408 9 104 
D#-3 2551 9 247 
E- 3 2703 10 143 
F-3 2864 11 48 
F#-3 3034 11 218 
G-3 3215 12 143 
G#-3 3406 13 78 
A- 3 3608 14 24 
A# -3 3823 14 239 
B-3 4050 15 210 
C-4 4291 16 195 
CN-4 4547 17 195 
D-4 4817 18 209 
D# -4 5103 19 239 
E-4 5407 21 31 
F-4 5728 22 96 
F# -4 6069 23 181 
G-4 6430 25 30 
G# -4 6812 26 156 
A-4 7217 28 49 
M l-4 7647 29 223 
B-4 8101 31 165 
C-5 8583 33 135 
C#-5 9094 35 134 
D-5 9634 37 162 
D#-5 10207 39 223 
E- 5 10814 42 62 
F- 5 11457 44 193 
F#-5 12139 47 107 

153 net 

frequency 

octave decimals high low 

G-5 12860 50 60 

G#-5 13625 53 57 

A-5 14435 56 99 

A#- 5 15294 59 190 

B-5 16203 63 75 

G-6 17167 67 15 

C#~ 18188 71 12 

~ 19269 75 69 

D#~ 20415 79 191 

E~ 21629 84 125 

F~ 22915 89 131 

F#~ 24278 94 214 

~ 25721 100 121 

G#~ 27251 106 115 

A~ 28871 112 199 

A#~ 30588 119 124 

!Hi 32407 126 151 

C-7 34334 134 30 

C#-7 36376 142 24 

D-7 38539 150 139 

D#-7 40830 159 126 

E-7 43258 168 250 

F-7 45830 179 6 

F#- 7 48556 189 172 

G-7 51443 200 243 

G#- 7 54502 212 230 

A-7 57743 225 143 

A-7 61176 238 248 

B-7 64814 253 46 

network A method of linking a number of 
computers so that they can communicate with 
each other and share the sa me peripheral de
vices. So metimes known as loca l area network 



new 154 

(LAN). A network enab les different 
Commodore 64s to use the same printer or 
disk drive. They arc connected by cables to 
interfaces which usually plug into the expan
sion port. The term also refers to telephone 
networks which link computers via modems. 

NEW A command which clears a program 
from memory and resets the variables. NEW 
is typically used to remove a program from 
memory before typing in a new one. Generally 
it is entered as a direct command but it could 
be used at the end of a program, so that the 
program would erase itself after completing its 
task. Note that you can not recover a program 
after NEW has been performed. 

NEXT A command used together with 
FOR to indicate the end ofa FOR ... NEXT 
loop. NEXT can be fo llowed by the variable 
which acts as the loop counter. If the loop 
starts with 'FOR S= I TO 20' the NEXT 
statement could take the form 'NEXT S'. But 
the counter variable is optiona l and only serves 
to improve legibility. When a program con
tains severa l nested loops, adding the counter 
variable to the end of a NEXT sta tement helps 
to show which NEXT is linked to which 

155 nex 

FOR. 
The following program uses ne _ted loops to 

read values into an array. The variables A and 
Bin lines 50 and 60 could be omitted: 

10 DIM AR(2,4) 
20 FOR A=0 TO 2 
30 FOR B= 0 TO 4 
40 READ AR(A,B) 
50 NEXT B 
60 NEXT A 
70 DATA 1,3,4,2,4 
80 DATA 0,0,9,8,4 
90 DATA 6,5,5,7 ,3 
A single NEXT can also termi~1ate several 

nested loops. In this case the variable name 
mu t be added in the correct order. The vari
able attached to the innermost loop hould 
appear first. 

10 FOR G= 1 TO 50 
20 FOR H=3 TO 30 
30 FOR K= 0 TO 100 
40 NEXT G,H,K 
Associated keywords: FOR; TO; STEP. 

NEXT WITHOUT FOR An error mes
sage: either a FOR or NEXT is missing, or the 
program has j umped past a FOR statement 



nmi 156 

into a loop (possibl y because a GOTO st,1tc
ment has mis-directed it). 

NMI (non-maskable interrupt.) NMI inter
rupts can not be di abled. On receiving an 
NMI interrupt the computer jumps to a ser
vice routine 11i11 a vector at 790 and 791. 

See IRQ. 

NOP A 651(/) instruction mnemonic with 
NO oPeration. This instruction docs nothing, 
but a it take up two clock cycles it can be 
used to adjust timing delay . 

Status register N V B D 

addressing mode assembly language form 

implied NOP 

op 
code 

EA 

l c 

No. No 
bytes cycles 

1 2 

NOT A logical operator which reverses the 
truth value of an expression . It is most com
monly used with IF ... THEN statements. 
For example, ' IF A>l0 THEN PRINT "TOO 
BIG"' only prints 'TOO BIG' if ' A' is above 
' lf/J '. ' IF NOT (A>lf/J) THEN PRINT "JUST 
RJGHT'" prints 'JUST RIGHT' when 'A' is 
less than or equal to' 10'. 

NOT also acts as a bitwise operator. It 

1'.i7 
on 

prnduces \\ h,tt it 1< k11c)\u1 ·" th l two·, • o 
plement of .1 number. by n·\·n,1111.:. L'. ' 11 •" 
Jnd then ,1 Jdml,\ one. 

Associ ated keywords· AND: OR 

NOT INPUT FILE An error me ap 
cau.,ed b y trv111g w 1T.1d ,1 tile ' ' h" h 

1 
J' 

prcnou,lv been iL' '>ll!Jl ,Hcd tor our11u• ' 1•1 
OPE statemen t. 

NOT OUTPUT An error message . 11. •.cd 
by trying to write to ~ file which h.' y'. c
viously been desi gnated to r 111put by .111 l) r. 
statement. 
ON A statement used in conjunctH' ll ' 1th 
GOTO or GOSUB ro cause the l' rul'r 11 ' to 

jump to one of a ~elccnon line 11u1~1h T '
1 

11 1l~as 
the form 0 variable GOTO/(,() L 13. ,me 
number. line number .... The \'Jhlc' o th e 
var iable determines which line num bn th l· 
pro~ram JU111 p~ to. For cxa1~1pl:-. ·o'i ~ 
GOTO 1f/\f/\ ,2\ll0, 15\ll, 2f/\Vl\ll. lf/\\llf/\ . It . cq•JJ\'.'.) 
the program performs a GOTO to lmc I )0. 
the third item in the h t. The altL' rtlJtlVc' to. 
u sing ON here wo uld be a crtl'' o f 
IF .. . THE ·tatcments: 

IF X= 1 THEN GOTO 100 



on 

IF X=2 THEN GOTO 200 
IF X=3 THEN GOTO 150 

158 

The ON con~truction, however, saves space 
and take ~ess nme to execute. It can also take 
an expression 111volving a variab le as in· 

ON X+ 2 GOTO 400,200,50,1000, . 
ON 5* (X= 4) - (X< 0) * 2 GOSUB 100 200 
100,300,500 ' ' 
If the va lue of the variable or expression is 

zero or greater than the number of line num
bers, the program passe on to the next state
ment. The fo llowing program illustrates how 
ON can be ~scd with a menu giving a choice 
of mathematical functions. 

10 PRINT "1. SQUARE ROOT" 
20 PRINT "2. SQUARE" 
30 PRINT "3. CUBE" 
40 PRINT "4. LOG" 
50 GET A$:1F A$='"' GOTO 50 
60 X= VAL(A$) 
70 INPUT" TYPE A NUMBER ";N 
80 ON X GOSUB 100,200,300,400 
90 GOTO 10 

100 PRINT ''THE SQUARE ROOT OF "·N· 
" IS ";SQR(N) ' ' 

110 RETURN 
200 PRINT ''THE SQUARE OF ";N;" IS "; N* N 

(59 

210 RETURN 
300 PRINT ''THE CUBE OF ";N;" IS "; 

N* N*N 
310 RETURN 

ope 

400 PRINT ''THE LOG OF ";N;" IS ";LOG(N) 
410 RETURN 
Associated keywords: GOSUB; GOTO 

op code (Opera ting ode) The single byte 
number that a mnemonic stands for; that part 
of a machine code instruction which specifies 
the opera tion to be performed . Op codes are 
usuall y given in hexadecimal, e.g. CMP's op 
code is D8. 

OPEN An input/output statement. Before 
using a printer or creating a data file on tape or 
disk , the computer requires you to open a 
channel directing the data to or from a specific 
device. The com mand which doc this is 
OPEN. It is also needed for input/output 
operations between the computer and other 
devices such as a modem or a plotter. 

NUMBER DEVICE DIRECTION 

0 keyboard input 

1 cassette tnpuVoutput 

2 RS232 interface inpuVoutput 

3 screen 1npuVoutput 

printer output 



ope 
160 161 ope 

NUMBER 
5 
6 
7 
8 
9 

10-255 

DEVICE 
printer 
plorter 
pion er 
disk dnve 
2nd disk drive 
not assigned 

DIRECTION 
output 
output 
output 
inpUVoutpUl 
lnpu~output 

OPE cakes the form 'OPEN file-number 
device. cu mm.rnd number, "string'". It is no; 
alwdy necessary to supply all four of these 
paramctns . Printer commands generally 
onl} L'O IHJ111 two of chem. The file-number 
~an ra _1gc from 1 co 255, and simply serves to 
1dennty J particular channel. Other input/ 
output ommands co the same channel must be 
folio Vl'd h y the same file-number, e.g., 
'OPE I, 1,2' opens a channel to crea te a data 
file on cas ctte, using 1 as the file-number. The 
command l'RINT# I will now send data to 
the ea ette. 

T he device paramc.:cer specifics the device 
bein g used, c.:.g. ' OPEN 3,8,15, 
"S HATCH:FILEl ,., sends a command to 

disk. Kl> che device number for a disk drive so 
H 111Lht oc ur as the second paramc.:cer. ' 

DEVICE 
DEVICE NUMBER COMMAND NUMBER STRING 
C3SStollf' I 0 ; input 

1 = output file name 

DEVICE 
DEVICE NUMBER COMMAND NUMBER STRING 

modem 2 
ponter 4or5 

disk 8to11 

type. read/wnte 

2 = output with end 
ottape(Eon 
0 
0 = upper/graphics 
7 = upper lower case 
0 = program LOAD 
1 = program SAVE 
2- 14 = data channel 

control registers 

dnve no: program name 
dnve no: file name, flle 

15 = command channel command 

The third parameter, the command number , 
indicates what sort of operation is to be per
fo rmed . In the following example, '7' tells the 
printer to print in upper/ lower. cas~ n~ode 
rather than in upper case/graph ics: 01 EN 
4,4,7' 

Lastly, the string parameter has various 
fun ctions . For cassette file it can be u cd to 
give the fi le a name. With disk drives it can 
also specify a fi le type, or contain a command. 

See disk commands; sequen tia l fi les; re
lative files. 
Note that the fi le number is sometimes called 
the logical file number, and che OPEN com
mand is said to open a logical file. 

Associated keywords: C MD; CLOSE; 
GET#; INPUT#; PRINT# . 

operand That part of an assembly Ian-



ope 162 t63 ora 

guage instruction that contains data or the 
address of data, as opposed to the mnemonic 
instruction itself, the operator, e.g. 'AND 

FB'. The operand $FB gives the address in 
memory of a number rather than the number 
itself. The term operand is also used to refer to 
variables, strings or numbers when they arc 
part of an exp ression, e.g. 'IF X > Y THEN 
... ' where 'X' and 'Y' arc the operands. 

operating system The program that su
pervises all the computer's operations. On the 
Commodore 64 the operating system i 
known as the kernel. 

operator An assembly language mnemo
nic. The term operator is u ed to distinguish 
the mnemonic part of an as cmbly language 
instruction from the operand part. More 
generally, an operator can be a logical, arith
metic, or relational operator. As such it is part 
of an expression and tells the computer what 
operation to perform, e.g.+, AND,<. 

OR A logical operator which, like AND. 
can also be used as a bitwise operator. In it~ 
capacity as a logical operator it usually appear 
in IF ... THEN statements to test two con
ditions, 

c.~~ IF A>9 OR B=6 THEN GOSUB 300 
IF either condition is true or both are true then 
the program proceeds to the GO UB. state
ment. OR only returns a value of false 1f both 
conditions arc false. 

As a bitwise operator OR is commonly used 
to alter one or more bits in a byte by prov1d111g 
a m ask. Thus 'POKE B,PEEK(B) OR 8' 
could be used to set bit 3 at locat10n B to 1. 0 R 
compares the equiva lent bits in tw? numbers. 
If either or both are equal to 1 then it gives 1 as 
a result. 

Sec truth tables. 
Associated keywords: AND; NOT 

ORA A 6510 instruction mnemonic w!1ich 
performs a logical OR between a specified 
byte and the accumulator, lcav111g the result 
in the accumulator. It is used as a mask to set 
particular bits to 1, e.g. 'ORA #$0C' sets bits 
3 and 2 in the accumulator to 1, and leaves the 
rest of the byte untouched. 

Status register N V B D i! c 

addressing mode assembly language form C:e No. No. 
bytes cycles 

1mmed1ate ORA ;; operand 09 2 2 



out 
164 !65 pha 

Status register N v B D 2 c 
J - -

' -
addressing mode assembly language form op No. No. 

COde bytes cycles zero page ORA operand 05 2 3 zero page, X ORA operand, X 15 2 4 absolute ORA operand 00 3 absolute, X ORA 4 
operand, X 10 3 4· absolute, Y ORA operand, Y 19 3 (indirect, X) 4• 

ORA (operand, X) Ill 2 6 (indirect), y ORA (operand), Y 11 2 5 
• Add 1 on page crossing. 

OUT OF DATA An error message: there 
arc not enough data item in a DATA state
ment for the computer to READ. 

?UT OF MEMORY An error m essage: 
either the program ts too big for the available 
RAM, or too many GOSUBs have been 
called but not RETURN ED from. 

OVERFLOW An error m essage: the result 
ofa calculation i larger than l.701 41884~ 10J~ 
- the largest number the computer can handle. 

parallel An interface that transmits a 
number of bits at a time through multiple data 
lines. The most common form of parallel 
interface is the Ccntronics. It has 8 data lines. 
cnablmg one character to be sent at a time. 

Devices that use this standard require a Ccn
tronics interface to be plugged in to one of the 
Commodore 64's ports before they can be 
connected . 

PEEK An integer function which returns 
the value of a single byte at a given address. 
PEEK can be used to examine the contcms of 
any memory location from 0 to 65535, 
whether in RAM or ROM , e.g. , '10 PRINT 
PEEK(1400)' '10 X=PEEK(53277) AND 16'. 

Associated keyword: POKE. 

peripheral An external device which can 
be connected to the computer, e.g. disk 
drive, printer. modem, j oystick. 

PHA A 6510 in truction mnemonic which 
stores (PusHes) the contents of the Accumu
lator on the top of the stack. It is often used to 

store bytes temporarily; for example, to save 
the comcnts of the accumulator before bran
ching to an interrupt service routine . 

See PLA. 
Status register N V B D 

addressing mode assembly language form op 
COde 

1mphed PHA 48 

2 c 

No. No. 
bytes cycles 

1 3 



php 166 

PHP A 6510 instruction mnemonic which 
store the contents of the status register on 
the top of the stack. It is generally used to sa ve 
the flags before a subroutine call. On return 
from the subroutine PLP restores the status 
register to its previous condition. 

Status register N v B D l C 

addressing mode assembly language form op No. No. 
code bytes cycles 

implied PHP 08 3 

pixel The smallest point or dot on the 
screen which can be controlled by the compu
ter. A computer's screen resolution i mea
sured in terms of the number of pixels it 
contains. The more pixels there are, the smal
ler each one is, and the higher the resolution . 
The Commodore 64 offers a resolution of 320 
by 200 pixels. 

PLA A 6510 instruction mnemonic which 
Pulls the first byte off the top of the stack and 

Status register N V B D l c 

addressing mode assembly language form op No. No. 
code bytes cycles 

implied PLA 68 4 

167 poi 

loads it into the Accumulator . Used to res
tore the contents of the accumulator and other 
registers after a subroutine. 

plotter A type of printer used mainly for 
graphics output such as graphs and charts. 
Plotters use a set of pens to transfer mk to 
paper in different colours . Rather than print a 
character at a time they draw text and 
graphics, by moving either the p~n o_r the 
paper beneath it. The Commodore s printer/ 
plotter, the 1520, can be used both for graphics 
and program listings. It accepts the same com
mand s as a sta nd ard printer - OPEN, 
PRINT# and CMD - but is assigned device 
numbcr6. 

PLP A 6510 instruction mnemonic which 
loads the status register with the first byte at 
the top of the stack . 

SeePHP . 
Status register N V B D l c 

from stack 

addressing mode assembly language form op No. No. 
code bytes cycles 

implied PLP 28 4 

pointer Pointers arc 2-bytc location used 
by the operating system to keep a record of 



pok 168 169 pos 

where a program and its variables are stored . 
They hold add resses_ in the order: low byte, 
high byte, e.g. locanons 43 and H normall y 
con tam the values J and 8, which give the 
address of the first BASIC program line: · J + 
256~8 =2049' . 

POINTER ADDRESS POINTS TO 

43,44 start of BASIC program area 
45,46 start of BASIC variables 
47,48 start of arrays 
49.50 end of arrays 
51 ,52 start of strings 
53,54 end of strings 
55,56 end of BASIC program area 

POKE A statement which alters the value of 
a single byte at a given location in memory . It 
takes the form 'POKE add,n ' where 'add' is an 
address in the range 0 to 65535, and 'n ' is J 

number between 0 and 255. Only addresses in 
RAM can be POKEd. Attempts to POKE 
values into ROM will have no effect. 

Many of the Commodore 64's features such 
as sp~ites , sound and high-resolution 
g_raph1~s arc only available by POKEing spe
cifi c registers 111 memory. To plot pixel fro m 
a BASIC program it is necessary to POK E 
val ues into the high-res screen memory . In 

character mode it also possible to POKE the 
screen memory as an alternative to printing to 
the screen . ' POKE 1024, J :POKE 55296,8' 
places the letter 'A' at the top-left hand corner 
of the screen, and colours it o range. '1024' is 
the first add ress of the screen memory, 'I' is 
the screen code for the letter ' A'. In the 
second statement '55296' i the first add ress in 
the colour memory, whi le '9 ' is the colour 
code for o range . 

Associated keyword: PEEK. 

port Usually a socket or an edge connector, 
a port provides an entry or exi t point for 
transferring data between the computer and 
other devices. The Commodore 64 has two 
joystick ports at the side, and, at the back, a 
serial port, an expansion port, and a user 
port . 

POS An integer function that reports the 
position of the cursor in a line. The va lue of its 
argument is not important and can be any 
number. POS is most commonly used for 
controlling the format of a display. In this 
example it ensures that cha racters arc not 
printed beyond column 30. When the cursor 
reaches column 30 the program prints a car-



pos 17() 171 pri 

riage return character, CHRS(13), which sends 
it back to the start of the next line. 

10 FOR N = 1 TO 200 
20 PRINT CHR$(1NT(RND(0)*27)+65); 
30 IF POS(0) > 30 THEN PRINT CHR$(13) 
40 NEXT 
Associated keywords: TAB; SPC. 

post-indexed indirect addressing 
Uses a location in zero page as a vector to a 
ba e address. It then adds the contents of the Y 
register to give the effective address, e. g. 
'LDA (SFB), Y'. If locations FB and FC hold 
the address of a byte at 0400, and the value of 
Y is 7, the effective address i 0407. 

pre-indexed indirect addressing 
Adds the contents of the X register to an 
address in zero page which acts as a vector . 
Unlike post-indexed addressing the index 
register is added to the base address and not to 
the address it points to, e.g. 

LDX #4 
STA ($31,X) 

store the contents of the accumulator at the 
address pointed to by locations S35 and 36. 
Note that it takes 2 bytes to store an address in 
memory; and they hold the addrcs in reverse 

order with the low byte first. If in example 
'LDA ($40), Y' locations 40 and 41 contain 
55 and SC0 respectively. the addres they 

point to is SC055. 

PRINT A statement that prints characters to 
the screen. Any characters on the keyboard, 
whether text or graphics, can be displayed on 
the screen by enclosing them in quotation 
marks after PRINT. In addition, the statement 
prints out the contents of variab les, and num
bers without quotation marks. PRINT can be 
followed by a list of different items separated 
by punctuation marks. These determine the 
position at which the characters are printed. A 
semicolon after an item causes the next Item to 
be printed immediately afterwards on the same 
line . Numbers and numeric variables arc, 
however, followed by a space, whi le positive 
numbers are also preceded by a space. 

The Commodore 64 treats the screen as if it 
were divided into four print zones, each 10 
characters wide. If the previous item has a 
comma at the end then the next characters arc 
printed from the start of the next print zone. 
When the list following PRINT docs not 
contain punctuation then the next PRINT 



pri 172 

statement display characters from the start of 
a new line. PRINT on its own prints a blank 
line . 

C/l ... D 

"' a: 

"' CD 
0 "' O> 

"' <{ 
...J 

"' CD 

"' "' ... > 

"' w f-

"' ::; z 
w 

(/) 0 w I <: 
> O> w "' f-
< a: "' ...J 
Q. r-IT 
(/) "' f- (!) z 
i5 <l>IO "' z <{ 

z ... <:: C/l w 
w "' f- > 0 f- ::; a: 
IC "' w « " w 
0 - z , ... w f- 0 
(/) 

0 <{ u.. ~ 

"l 
w ::; ::; 
0 "' b I z 

"' ~w b 0 0 

~ ~ 
Z - IC 

>- b 
z 

"' 
<{/'.:a;"' 

(/) ;· w >=' w W IC <{ 0 <{ "' .... >< ICZQ~ 
...J ZI ~ 0 w Cn r--: "· .. ::J W '.5 CD 
Q. Pr :<: u.. !- ::;"' ~~pl!1 ::IE w< ::;Z 
< f- f- f- f- f- f- t: f- ui f- "t I ~ )( zz z zzz I! ~ I ~ w a: a: a: er oc er tntnfo9ir 
f- "'a: a: 
z 0..0.. 0.. 0..0..0.. <{0.. zo.. < COOQ.. 

ii 00 ~ OOO 00 00 0000 
Q. - "' -"'"' -"' - "' .-(\JC").-

173 pri 

PRINT can al o take a list of variables 
without any punctuation between them. It 
prints them out adjacent to each other as if 
they were separated by semicolons. 

There arc some characters which can appear 
in quotation marks but arc not displayed on 
the crccn. The c arc control characters and 
have a range of different effects on the way the 
following characters arc printed. Colour con
trol characters, for example, can be used to 

change or reverse the colour of output to the 
crecn. 

Colour control characters allow one to de
termine the position at which characters arc 
printed more preci ely than by using punctu
ation marks. Another way of doing this is 
offered by the TAB. POS. and SP functions. 
Preceding the PRINT statement by CMD 
cause output to the screen to be diverted to 
another device. such as a printer or disk drive . 

Associated keywords: PRINT#; TAB; 
POS;SPC 
PRINT 4f An input/output statement which 
writes data items co an external device, such as 
a cassette or printer. It i followed by the 
logical file number given in a previous OPEN 



pri 174 

statement and a list of variables or strings or 
numbers, e.g. 'PRINT# I, "TEST'" 

If PRINT# i used to write records to a 
sequential file on tape or disk, each record 
must be correctly separa ted, e.g. 
'PRINT#l,AS,BS,C ' docs not separa te the 
variables 'A '. 'BS', 'C 'but sends them out as 
one data item with spaces in between. When 
the file is read back, 'IN PUT# 1,AS' will read 
in the contents of all three variables. PRINT # 
followed by one variable automatically ends 
the data item with a carriage return character, 
CHRS(13), which acts as a separator. Commas 
and semicolons can act as separators if they arc 
enclosed in quotation marks or arc assigned to 
variables themselves, e.g. a list of records can 
be written in any of the following ways: 

10 R$=CHR$(13) :PRINT #1,A$;R$;B$;R$;C$ 
10 PRINT #1,A$;",";B$;",";C$ 
10 R$=CHR$(44) :PRINT#1,A$ R$ 8$ R$ C$ 

printer A device which transfers text and 
graphics from the computer to paper. Printers 
are commonly used to copy programs listings 
on to paper, or to print out text from a 
wordprocessor. Other application include 
taking a copy of the computer's screen displa y, 

175 pri 

known as a screen dump. . 
Among the various types of printer, dot

matrix printers are the most widely used. 
They work by controlling a print head which 
has a matrix of metal pomts and f<:>rms charac
ters out of dc;>ts. The print head strikes a nbbon 
to transfer r the character pattern to paper. 
T hermal pr~1ters use the same mechan~sm but 
print directly to heat-sensitive paper without a 
ribbon. Daisy wheel prn1ters work with a font 
of moulded letters and operate in the same way 
as typewriters. They give .a better quality of 
printout but are less versaule than dot-macnx 
printers, which can offer different pnnt sizes 
and typefaces. . . 

The Commodore's own dot-matrix printers 
arc pre-programmed to print graphics char.ac
tcrs. They also have the advantage of pluggmg 
directly into the sedal P?rt whereas other 
makes of printer reqmre an interface. 

See plotter; printer com mands. 

printer commands OPEN , PRINT#, 
CMD are used to print text or take hstmgs 
on any make of printer , e.g. 'OPEN4, 
4:PRINT#4,"EXAMPLE"' prints .a string; 
'OPEN4,4:CMD4:LIST' prints a hstmg. Note 



pro 176 

chat after a CMD instruction the compurer 
divercs all output to the princer. A CLOSE 
statement by itself is not sufficient to close a 
channel. It is also necessary to send an empty 
string to the princer using 'PRINT#4' with
out any fol lowing characters, e.g . 
'CLOSE4:PRINT#4'. 

In addi tion to these command , there arc a 
number of contro l codes which generally 
operate onl y with Commodore printers, e.g.: 
PRINT#4,CHR (14) selects double width 
characters. 
PRINT#4,CHR (18) print reverse charac
ters. 
PRINT#4,CHR (17) select the upper case/ 
lower case character set. 

Another ~ay of printing in the alternative 
character set is co give a command number (a 
secondary address) of 7 as the third parameter 
in the OPEN statement, e.g . 'OPEN#4,4,7'. 
To return to upper case/graphics cha ractcrs 
use 'OPEN#4,4,0' . 

program A sequence of instructions writ
ten in a computer language. Programs enable a 
computer to carry ou t a cask by breaking it 
down into simple stages. 

177 pro 

program area The area of memory chat 
holds BA IC programs. When the machine is 
curned on this extends from address 2048 to 
4Y)959, giving the user amost 38K. As well as 
programs, this area also stores their variables. 

Numeric variables and arrays arc stored at 
the end of a program, while string variables 
arc stored from the top of the program area 
down wa rds. The operating system uses 

40959 

2048 

STRING l 
VARIABLES 

top of BASIC RAM - start of strings 

bottom of string variables 

end of arrays 

start of arrays 

start of variables 
end of program 

start of BASIC 



pro 178 

pointers to keep track of the start and end 
addresses of a program and its variables. By 
changing the contents of the pointers the prog
ram area can be altered; usually in order to 
reserve memory space for sprite or user
defined character definitions, or machine 
code programs. 

To lower the top of the program area POKE 
the new address into the locations which point 
to the top of the program area and the start of 
string variables - 55,56 and 51,52 - e.g. 'Hl 
POKE 56, 12:POKE 52, 12' lowers the top to 

12288. Note that locations 55 and 51 do not 
need to be altered since they normally contain 
0. 

To raise the bottom of the program area 
POKE locations 43 and 44, e.g. 'POKE 
4096,0:POKE 44, 16:NEW' raises the bottom 
from 2048 to 4096. This line should be entered 
as a direct command. The first POKE is 
necessary since the operating system expects to 
find a 0 at the start of BASIC; NEW resets the 
other pointers. 

program counter A 16-bit register 
which holds the address of the next instruction 
to be executed. When a JSR instruction is 

179 pro 

executed the program counter, which hol~s 
the address the subroutine will return to, 1s 
automatically pushed onto the stack. In a 
branch instruction such as BNE the byte 
foll owing its op code is added to the program 
counter. 

program storage format The way 
programs arc stored in memory. The first and 
last 2 bytes of a program always contam zero. 
Each program line starts with 2 bytes that h?ld 
the address of the next line, known as the hnk 
address. Following them the line number is 
stored in 2 bytes. BASIC keywords are stored 
as tokens; numbers, strings and variables arc 
stored by their ASCII codes. The end of a 
program line is indicated by a 0. Thus, the 
program 

10 PRINT "A" 
20 REM 

is stored in memory as follows: 
Address Co11terlfs Mea11i11g 

2048 0 Start of program 
2049 11 Link address low byte 
2050 8 Link address high byte 
2051 10 Line number low byte 
2052 0 Line number high byte 



pul 

Add1'css Co11te11ts 
2053 153 
2054 32 
2055 34 
2056 65 
2057 34 

Mea11i11g 
PRINT token 
space 
" 
A 

180 

2058 0 End ofline 
2059 17 Link address low byte 
2060 8 Lmk address high byte 
2061 20 Line number low byte 
2062 0 Lmc number high byte 
2063 143 REM token 
2064 0 End ofline 
2065 0 End of program 
2066 0 End of program 

N~tc that the link addresses at 2049 and 2050 
pomt to start of the next line at 2059 i c 
8X256+11 = 2059. ' .. 

See token; program area; memory map. 

pulse width Specifies the width of a pulse 
wave peak. It is set by POKEing a value 
betwce1~ 0 and . 4096 into the high and low 
pulse width regmers. Varying the width gives 
a different ound quality. A value of 2048 
produces a square wave which is often used to 
synthesise the sound of woodwind instru-

181 rea 

ments such as the clarinet. 

RAM (Random Access Memory) The con
tents of this type of memory can be altered but 
arc not retained when the computer's power 
supply is switched off The user 's programs 
and data arc stored in RAM. The CommS)dore 
64 has 64K of RAM but only 38K is available 
for BASIC program . 

See bank switching; memory map. 

raster interrupts Interrupts which are 
triggered by the position of the TV raster 
beam . The raster beam draws the television 
image by rapidly scanning each line in turn 
from top to bottom . As it docs so its po ition 
is stored in the VIC registers at 53265 and 
53266. By writing to these rcgi ters the u er 
can generate an IRQ interrupt every time the 
beam reaches a specified position. The process 
also involves setting the interrupt status and 
in terrupt enable registers at 53273 and 53274. 
Raster interrupts have many application in 
machine code programs. For example, they 
can be used to display more than 8 sprites at a 
ti me. 

READ A statement that reads the data given 



rea 
182 

in a DATA . 
. bl statement and assigns it to a 

vana e One 0 r f . b . r a ist o variables, separated 
y commas, must fo llow the READ 
m~t fu~ s~~ 

~~pe~tc?. A:~~ti~:r~e s::~~ t~~t?ft:~f !at: 
meni; variable causes a '?SYNTAX 

ERROR message Th 
DAT A . e computer treats the 

. d statements as a single continuous list 
so It oes not matter where a READ ' 
1s placed or how statement 
E h . many sta tements there arc 
. ac time a R~AD is executed it takes the nex . 
item or items m the DAT A list If c , t 
pie READ · fj · , LOr exam-
wiii read th is ollohwed by three variables it 
READ . e next t ree items. Attempting to 

d .~1n item when the list has already been 
rea w1 cause an 'O UT OF DATA ' 

::;;:;~g~~ ~;:~ /i·s commonly used to fi~rr~~ 
0 owing program it · 

names to the array A . assigns 
10 DIM A$(5) . 
20 FOR N = 1 TO 5 
30 READ A$(N) 
40 NEXT 
50 DATA JACK,JILL,PETER 
60 DATA PAUL.MARY 
Associated keywords· DATA· 

TORE. · . RES-

183 reg 

REDIM'D ARRAY An error message, 
caused by attempting to DIMension an array 
twice. 

REDO FROM ST ART An error message, 
caused by entering a character string in re
sponse to an INPUT prompt when a number 
is expected. The message will be repeated until 
the correct input is given. 

register Memory locations inside the com
puter's microprocessor. Registers provide 
temporary storage loca tions for data and work 
space for processing data. The 6510 microp
rocessor has 6 registers: the accumulator, 2 
index registers, the status register, the stack 
pointer , and the program counter . All the 
registers arc 8 bits wide, with the exception of 
the program counter which is 16 bits wide . 
The program counter needs to be twice as 
wide as the others because its function is to 
hold the addresses of instructions, With 16 bits 
(2 bytes), it can hold the address of any 
location in memory , from 0 to 65535. The 
sound and video display chips, SID and VIC, 
also have their own internal registers, which 
control sound and screen output. Unlike the 
6510's registers these arc memory mapped to 



rel 
184 

~M. This means that the sound and video 
chips c?PY values stored in certain locations in 
RAM m.to their internal registers . It allows 
these regmers to be accessed from BAS! 

See SID; V IC. . 
bit 7 b1t0 

bit 15 

/ PC high byte 

A 

x 
y 

s 
SP 

PC low byte 

accumulator 

index register 

index register 

status register 

stack pointer 

program counter 

relational operators Used to compare 
numbers or strings. They usually figure in 
IF .. . THEN tatements, e.g . '10 IF X > y 
THEN GOTO 200' . 

OPERATOR MEANING 

< less than 
= equal to 
> greater than 
<= less than or equal to 
>= greater than or equal to 
<> not equal to 

. They can al o be part of an expression which 
is evaluated as either 'true ' or 'false'. If the 
expre s1on is true, it gives a result of - l · if 
false, a result of 0 (see truth value) , e'.g. 

185 rel 

'PRINT 6 > 3' prints '-1'. 'PRINT 5 = 4' 
prints '0'. In this capacity, relational operators 
sometimes provide programming shortcuts, 
e.g. 

50 Y = Y - (Y=4)*10 - (Y=3)*5 
is equivalent to 

50 IF Y = 4 THEN Y=Y+10 
60 IF Y = 3 THEN Y=Y+5 

relative addressing Used with con
ditional branch instructions such as BNE and 
BEQ . The byte following the op code is 
treated as a displacement (or offset) from the 
current address, and determines how far for
wards or backwards the program branche to. 
Numbers from f/J to l 27 cause a forward 
branch; numbers from 128 to 255 cause a 
branch backwards. The displacement i mea
sured from the end of the instruction, and 
smce the instruction occupies 2 bytes this 
all ow branches in the range + 129 to -126 
bytes, e.g. 'BNE 08' causes a branch to an 
address 10 bytes forward if the zero flag is 0. 
Note that assemblers allow labels to be used, 
making it unnecessary to calculate the dis
placement, e.g. 'BEQ START'. 

relative files A type of data file on disk . 



rem 186 187 ret 

Also known as random access files, they allow 
the user to read or write individual data items 
(records) without accessing the rest of the fil e. 
Relative files are therefore more flexible th an 
sequential files, although more difficult to 
create. Thei r principal limitation is that each 
record must be of a fixed length up to 254 
bytes. Details of how to create a relative file 
are given in the 1541 disk drive User Guide. 

REM A statement used to insert comments 
or REMarks in a program. Any characters 
after a REM statement arc ignored . Examples 
arc 

100 REM START OF SOUND SUBROUTINE 
100 REM SPRITE DATA 

Note that colons arc treated as part of a REM 
line, o the statement cannot be placed at the 
start of a multi-statement line. Thus, 

10 GOSUB 300:REM BRANCH TO SUBROUTINE 
causes the program to branch to line 300, but 

10 REM BRANCH TO SUBROUTINE: 
GOSUB 300 

docs not. 

RESTORE A statement used in conjunction 
with READ and DATA statements, it in
struct the computer to start again at the first 

DAT A statement. This means that a et of 
DAT A items can be read more than once. The 
follo wing program reads and prints the same 
set of data continuously until the RUN/ 
STOP key is pressed: 

10 RESTORE 
20 FOR N = 1 TO 9 
30 READ A$ 
40 PRINT A$ 
50 NEXT 
60 GOTO 10 
70 DATA THIS,IS,AN ,EXAMPLE,OF 
80 DATA THE,USE,OF,RESTORE 
Associated keyword : DATA; READ . 

RESTORE key Used with the RUN/ 
STOP key to reset the computer. Pressing 
RUN /STOP and RESTORE together docs 
not erase a program already in memory, but 
otherwise has the same effect a turning the 
computer off then on again. Note that the two 
keys need to be tapped sharply at the same 
time. 

RETURN A statement which marks the end 
of a subroutine. When the computer meets a 
RETURN it jumps back to the point in the 
program which originally called the sub-



ret 
188 

routine- the first statement after a GOSUB. A 
subroutine may have more than one RE
TURN statement in it, to provide several exit 
points, as in the following example: 

300 REM START OF SUBROUTINE 
310 x = x + y 
320 IF X > 20 THEN RETURN 
330 PRINT TAB(X) A$ 
340 RETURN 
Associated keyword: GOSUB. 

RETURN key Pressing this key cau es the 
computer to ca rry out a direct command, or 
store a program line in its memory. 

RETURN WITHOUT GOSUB An error 
mess.age: either a corresponding GOSUB is 
m1ss111g: or the program has dropped into a 
subroutme, e.g. because a GOTO statement 
has mis-directed it. 

reverse characters haracters whose 
foreground and background colours arc re
versed. Any ch.aracter on the keyboard can be 
reversed 111 this fashion. To di play reverse 
characters press the CTRL key plus 9 (RVS 
ON). To return to normal press CTRL plus 0 
(RVS OFF). When the RVS ON and RVS 

rig 

OFF key'> are pressed between quot.1t1rn' 
marks they proJuce control char.Kter' whi ch 
have the same effect. These can be u,ed to 
select reverse characters within a program . 

Anoth.:r wav of ~etting RV 0 .111d R " 
OFF is to w,e the ASCII code-. for the control 
character~ . e.g . "PR INT HR (18)" turm on 
reverse mode. The revn e chJracters them
selves have no ASCII codes . ln ste,1d. the 
screen codes I 28- 255 give the revcr ed 1m.1ge' 
or codes 0--1 '27 . 

RIGHT$ strmg fun ction used to L"XtrJct 
one or more charJctcrs from a strin g , st.1rtmg 
from the right-hand end. It takes the form 

RIGHT$(A$,N) 
where 'A 'is thL· source string and "N' i' th t 
kngth of the trin g to be extracted. Thus. 

RIGHT$("PAUCITY" ,4) 
would give 'C ITY '. If'N' i zero it return'> Jn 
empty string. The fo llowing program illu'
trates the w,1y RIGHT, works by building ur 
a word letter by letter from the right : 

10 INPUT "TYPE A WORD";A$ 
20 FOR N= 1 TO LEN(A$) 
30 PRINT RIGHT$(A$ ,N) 
40 NEXT 



rnd 190 

Associated keywords: LEFTS; MIDS. 

RND A floating-poinr function. It generate' 
a random number between (/) and 1. If it' 
argument is zero the function returns a diffe
rent number each time, by consulting thl' 
system clock. Here it is used to give random 
numbers between 1 and 100: 

10 PRINT INT(RND(0)*100)+1 
20 GOTO 10 

When its argument is positive the computer 
generates random numbers by performing cal
culation on a given initial value, known as a 
seed. This means that if the same value is used 
as a seed, RND will return the same sequence 
of numbers . The seed can be set by using a 
negative argument. This program prints the 
same set of numbers every time it is run . Line: 
l (/) sets the seed: 

10 X=RND(-3) 
20 FOR N=1 TO 10 
30 PRINT RND(1) 
40 NEXT 

ROL A 6510 instruction mnemonic which 
ROtates the accumulator or a given memory 
location, together with the carry flag , one bit 
to the Left. It moves the bit in the carry flag to 

191 
ror 

bit 0, and places bit 7 in the carry flag . It can be 
used with ASL to multiply a mult1-byte num-
ber by two. 

Status register N V B D 2 c 

addressing mode assembly language lonm op No. No. 

code bytes cycles 

accumulator ROLA 2A 1 2 

ROLoperand 26 2 5 
zero page 36 2 6 
zero page, X ROL operand, X 

ROLoperand 2E 3 6 
absolute 

3E 3 7 
absolute, X ROL operand, X 

ROM (Read Only Memory) The contents of 
this type of memory cannot be altered. Prog
rams or data in ROM are held there per
manently. They can be PEEKed, but not 
POKEd. The Commodore 64 has 20K of 
ROM which contains the operating system, 
the BASIC interpreter, and the character 
generator. 

ROR A 6510 instruction mnemonic which 
ROtates the accumulator or a memory loca
tion one bit to the Right through the carry 
flag . When used with LSR it has the effect of 
dividin g a multi-byte number by two. 

See overleaf. 



rs 
192 

Status register N V B D l c 

address1nq mode assembly language form op No. No. 
code bytes cycles 

accumularo RORA 6A 1 2 zero page ROA operand 66 2 5 zeropage.x ROA operand.X 76 2 6 absolute ROA operand 6E 3 6 absoh.11~.x ROA operand.X 7E 3 7 

RS2~2 A standard serial interface wide! ; 
used tor tran~mitting data bctwcrn rhc compu~ 
ter. and peripherals . The Commodore 64\ 
enal port docs not conform to rhe RS232 
st~ndJrd ~o devices such ,1., modems and 
printers nttc11 require Jn HS232 interface be
fore rhq c.tn be connected ro rhe compurcr. 
Dcpendmg on the application, RS232 inter
faces plug inro the expansion port, rhe user 
port, or the serial port, and sometimes include 
ofrw,1re 011 cassette, disk, or cartridge. 

RTI A 6510 instruction mnemonic which 
cau;e; J ReTurn from an IRQ Interrupt. After 
an mtcrrupr has occurred HT! restores conrrol 
to a pr~t{r.1111 . In the process it pulls the firsr 
byt<; ott rhe stack and places it in the status 
r_eg1ste~ thus restoring the flags to their condi
non bdt>re the interrupt. 

193 run 

Status register NVBD 2C 

addressing mode assembly language form 

implied RTI 

from Stack 

op 
code 

40 

No. No. 
bytes cycles 

1 6 

RTS A 6510 instruction mnemonic which 
ReTurns from a Subroutine. Used with JSR in 
the same way as the BASIC instructions 
GOSUB and RETURN. 

Status register N V B D l c 

addressing mode assembly language form op No. No. 
code bytes cycles 

implied RTS 60 1 6 

RUN Instructs the computer to start execut
ing the program in its memory. If the com
mand is followed by a line number it executes 
the program from that line. Otherwise it starts 
with the first line. RUN also forces the CLR 
statement to be performed . If you wish tO 

avoid this use the GOTO statement. The 
RUN command only sta rts BASIC and not 
machine code programs. le is generally entered 
as a direct command, but it can also be used 
within a BASIC program . 

Associated keywords : NEW; CLR. 



run 
194 J95 sbc 

RUN/STOP key tops a program while it 
is running. Pressing this key together with 
SHIFT loads a program from cassette and runs 
it automaticall y. 

See RESTORE key. 

RYS See reverse characters . 

SAVE A command used to store a program 
on tape or disk. SA VE can take three para
meters: 

SAVE program name, device, command 
The program name must be inclosed in quota
tion marks unless a string variable is given, 
e.g.: 

SAVE "PROG1 " 
SAVE "PROG1 ",8 
SAVE A$ 

When it is not followed by a parameter, SAVE 
stores a program on tape without a name. The 
device number specifics disk or tape - 1 for 
tape, 8 for disk. If no number is given the 
computer assumes the program is to be stored 
on tape. Ift he program is at a different location 
in memory from normal, a command number 
of 1 tells the computer to save it so that ir 
LOADs back at the same location, instead of 
2048. 

See program area . 
A command number of2 causes an end of tape 
marker to be written after the program. When 
the computer reads this marker it assumes that 
it has reached the end of the tape (EOT), and 
displays a 'FILE NOT OPEN' message. A 
command number of3 combines the effects of 
1and2, e.g .: SAVE "GAME",1,3 
adds an EOT marker, and saves the program 
from a different memory location. Although 
LOAD can load in machine code programs, 
SAVE only stores BASIC programs. It cannot 
be used directly to save a machine code 
program. 

Associated keyword: LOAD. 

SBC A 6510 instruction mnemonic which 
SuBtraCts a given value or the contents of a 
memory loca tion from the contents of the 
accumulator . If the number being subtracted 
is greater than the number in the accumulator 
SBC borrows 1 from the carry flag. The carry 
flag should therefore be set to 1 by a SEC 
instruction before a subtraction , e. g.: 

SEC 
LDA # 45 
SBC #32 



scr 19(, }97 

subtracts 32 from 45 and leaves 13 in the 
accumulator. After an SBC instruction the 
carry flag is set to 0 if a borrow has occurred. 

Status register N V B D I Z C 

addressing mode assembly language form op No. No. 
code bytes cycles 

immediate SBC II operand E9 2 2 
zero page SBC operand ES 2 3 
zero page, X SBC operand, X FS 2 4 
absolute SBC operand ED 3 4 
absolute, X SBC operand, X FD 3 4· 
absolute, Y SBC operand, Y F9 3 4· 
(indirect, X) SBC (operand, X} E1 2 6 
(indirect), Y SBC (operand), Y F1 2 s· 

• Add 1 when page boundary is crossed. 

screen codes The codes by which char
acters are represented in screen memory. 
Screen codes are not the same as ASCII codes. 
The following table shows how the two sets of 
code are related. (Note that some codes such 
as those for reverse characters have no corres
ponding ASCII code.) 

UPPER CASE LOWER AND UPPER CASE LOWER AND 
AND FULL UPPER CASE AND FULL UPPER CASE 
GRAPHICS SET GRAPHICS SET 

0 @ 
1 A 
2 B 

@ 
a 
b 

3 c 
4 D 
5 E 

c 
d 
e 

uPPfRCASE LOWER AND 
ANO FULL UPPER CASE 
GRAPHICS SET 

6 F f 
7 G g 
8 H h 
9 I 

10 J j 
11 K k 
12 L I 
13 M m 
14 N n 
15 0 0 

16 p p 
17 Q q 
18 R r 
19 s s 
20 T t 

21 u u 
22 v v 
23 w w 
24 x x 
25 y y 
26 z z 
27 [ [ 
28 £ £ 
29 l l 
30 t t 
31 +- +-

32 space space 

scr 

UPPER CASE LOWER AND 
ANO FULL UPPER CASE 
GRAPHICS SET 

33 ! 
34 
35 * * 36 $ $ 
37 % % 
38 & & 
39 
40 
41 
42 * * 43 + + 
44 
45 
46 
47 I I 
48 0 0 
49 1 1 
50 2 2 
51 3 3 
52 4 4 
53 5 5 
54 6 6 
55 7 7 
56 8 8 
57 9 9 
58 
59 



scr 198 199 
scr 

UPPER CASE LOWER AND UPPER CASE LOWER AND UPPER CASE LOWER AND UPPER CASE LOWER AND 

AND FULL UPPER CASE AND FULL UPPER CASE AND FULL UPPER CASE AND FULL UPPER CASE 

GRAPHICS SET GRAPHICS SET GRAPHICS SET GRAPHICS SET 

60 < < 85 ea u 110 @ @ 119 D D 
61 86 ~ v 111 Q Q 120 ~ ~ 
62 > > 87 D w 112 LI3 LI3 121 i;J ~ 
63 ? ? 88 ~ x 113 e3 e3 122 D [ZJ 

64 El El 89 DJ y 114 53 53 123 ~ ~ 
65 ~ A 90 [I] z 115 BJ BJ 124 ~ ~ 
66 m B 91 EB EB 116 D D 125 ~ ~ 
67 El c 92 m m 117 (] (] 126 [] [] 
68 El D 93 m m 118 [] [] 127 ISl ISl 
69 El E 94 [IT] rn 128-255 reverse- video of 0-127 
70 bl F 95 r!!!I ~ 
71 [[] G 96 space space screen editor The faci lity that allows a 

72 DI H 97 IJ IJ program to be altered or corrected. The 

73 DJ I 98 .. .. Commodore 64 employs a screen editor as 
74 ~ J 99 D D opposed to a line editor. It enables a program 
75 ~ K 100 0 0 line to be edited anywhere on the screen. Line 
76 D L 101 D D editors, by contrast, first require a line to be 
77 lS1 M 102 ~ ~ 

pulled do wn to the bottom of the screen. The 
78 IZl N 103 D D screen editor is itself a machine code program 
79 D 0 104 8 8 held in ROM. To correct a character in a 
80 D p 105 ~ ~ 

program line, position the cursor over it using 
81 • a 106 D D the cursor keys, and then type in the correc-
82 bl R 107 rn rn tion. Characters can be inserted or deleted 
83 ~ s 108 ~ ~ with the INST/DEL key. Pressing the RE-
84 [[] T 109 [g [g TURN key enters the corrected line into 



scr 2()( 201 scr 

memory, no matter where the cursor is posi
tioned on the line. To delete a line, type in it1 
number and press RETURN . 

screen memory The area of memory 
where information about what is on the screen 
is scored. In character mode it runs from 1024 
to 2023, although it can be moved co another 
area of RAM. (See VIC.) Each byte in th l' 
screen memory hold the screen code for thl' 
character displayed at the corresponding posi
tion on creen. 

POKEing a screen code into screen mem
ory causes a character to appear on screen. 
Similarly PEEKing a location in screen mem
ory reveals a character's code. 'B = 1024 + 
R~H0 + C' gives the screen memory location 
of a character at colum n C in row R. Th is 
program gives an example of how the screen 
memory can be PEEKed and POKEd by 
copying its own listing to the bottom of the 
screen. C lear the screen, then enter LIST. 
fo llowed by RUN. 

10 FOR N= 0 TO 159 
20 POKE (1024+600+N),PEEK(1024+80+N) 
30 POKE (55296+600+N),3 
40 NEXT 

Withour line 30 the second listing would not 
be visible. It POKEs colour code 3 into the 
corresponding locations in colour memory. In 
bit map mode the screen memory holds the 
information about a high resolution display . 
Also known as the bit map, it occupies 8000 
bytes and is usually located at address 12288. 

scrolling Also known as fine or smooth 
scrolling, this process shifts the display either 
vertically or horizontally one pixel at a time. 
The VIC registers 53265 and 53270 allow the 
displa y to be scrolled 8 times in this manner, 
up co one character space. The following 
program scrolls text from left to right: 

10 FOR N=1 TO 40:PRINT "A";:NEXT 
20 FOR X= 0 TO 7 
30 POKE 53270,(PEEK(53270)AND248)+X 
40 NEXT 
Note that as the display moves right it leaves 

a space at the left . If the size of the display is 
reduced to 38 columns by 24 rows, new data 
can be printed so that it scroll s into view from 
the left. Combining this technique with a 
machine code routine to shift the entire 
screen by one character creates a continuous, 
smooth , horizontal scrolling effect from left to 



sec 202 103 seq 

right, or vice versa . 
'POKE 53270, PEEK(53270)AND 247' 

shrinks the screen to 38 columns, blanking out 
th e columns at either side. 'POK E 
53265,PEEK(53265)AND 247)' giv es 
24 rows. 

SEC A 6510 instruction mnemonic which 
SEts the Carry Aag in the status register to l . 
It should always be used before a subtraction 
operation with SBC. 

Status register N V B D i! c 
- 1 

addressing mode assembly language form op No. No. 
code bytes cycles 

implied SEC 38 2 

SED A 6510 instruction mnemonic which 
puts the microprocessor into the decimal mode 
by SEtting the Decimal Aag to 1. 

See binary coded decimal. 
Status register N V B D 

1 

addressing mode assembly language form op 
code 

implied SEO F8 

i! c 

No. No. 
bytes cycles 

1 2 

SEI A 6510 instruction mnemonic which 

disables IRQ interrupts by SEtting the Inter
rupt Aag to 1. 

See CLI. 
Status register N V B D 

- 1 
i! c 

addressing mode assembly language form op No. No. 
code bytes cycles 

implied SEI 78 2 

sequential files Used to store a sequence 
of data on cassette or disk . Sequential files can 
contain any number of data items (records) of 
varying lengths . Records are loaded back into 
the computer in the order in which they were 
stored; retrieving a particular record means 
reading through all the records which precede 
it. A further drawback is that it is not possible 
to modify a sequential file except by rewriting 
the entire file or adding a new record to the 
end. These limitations aside, sequentia l files 
arc much easier to create than relative files . 

Apart from a few differences in the format 
of the OPEN command, sequential files arc 
stored on disk in the same way as on cassette. 

Sec cassette files . 
To write a sequential file to disk, use 

'OPEN fn,dn,sa,"FILENAME,S,W'" where 



ser 204 205 sid 

'fn' is the logical file number, 'dn' the device 
number, '8', and 'sa' the secondary address . 2 
is generally given as the secondary add ress but, 
unlike the equivalent cassette parameter, it has 
no significance and can be any number from 2 
to 14. 'S' indicates that the file is sequential, 
'W' that the file is being written rather than 
read, e.g.: 

10 OPEN3,8 ,2,"NAMES,S,W" 
20 PRINT # 3,A$ 

Change the 'W' to 'R' to read a file in, e.g.: 
10 OPEN3,8,2,"NAMES,S,R" 
20 INPUT # 3,A$ 

serial port A 6-pin DIN socket primarily 
used to connect Commodore disk drives and 
p,rinters. By plugging one device into another, 
several disk drives and a printer can be con
nected to the serial port simultaneously, a 
technique known as 'daisy-chaining'. 

SGN An integer function which indicates 
whether a number is positive, negative or 
zero. It gives a result of 1 if the number is 
positive, -1 if it is negative, and 0 if it is zero. 
e.g.: 

10 IF SGN(X) = -1 THEN GOTO 200 
20 T = SGN(Y) 

Associated keyword: ABS . 

SHIFT key U ed with other keys to dis
play the following characters: the symbol at 
the top of a key; the graphics character at the 
Jcft of a key; upper case letters in upper/lower 
case mode. Also used with Commodore key, 
cursor keys, CLR/HOME key , INS/DEL, 
RUN/STOP. 

SID 65 1 ound Interface Device. Controls 
the computer's sound output. As well as p:o
viding three channels capable of producmg 
sound over a range of 8 octaves, the SID chip 
acts as a sound synthesiser. It is capable of 
creating a variety of different musi.cal and 
non-musical sounds. The sotmd ch ip regis
ters arc represented in RAM at addrcs cs 
54272 to 54300. T hey allow the user to define 
the sound from each channel in terms of its 
frequency, envelope, waveform and filter . 
It is also possible to link two sounds to.get?er 
in various ways, such as by ynchroms~tion 
and ring modulation . In addition, registers 
54297 and 54298 read the positions of two 
paddles. These devices have the same function 
as joysticks but with output values from 0 to 
255. 



sin 206 

REGISTER ADDRESS DESCRIPTION 

0 54272 voice 1 frequency low byte 
1 54273 voice 1 frequency high byte 
2 54274 voice 1 pulse width low byte 
3 54275 voice 1 pulse width high byte 
4 54276 voice 1 waveform type, gate, 

ring modulation, synchronisation 
5 54277 voice 1 attack/decay rate 
6 54278 voice 1 sustain/release rate 
7 54279 voice 2 frequency low byte 
8 54280 voice 2 frequency high byte 
9 54281 voice 2 pulse width low byte 

10 54282 voice 2 pulse width high byte 
11 54283 voice 2 waveform type, gate, 

ring modulation, synchronisation 
12 54284 voice 2 attack/decay rate 
13 54285 voice 2 sustain/release rate 
14 54286 voice 3 frequency low byte 
15 54287 voice 3 frequency high byte 
16 54288 voice 3 pulse width low byte 
17 54289 voice 3 pulse width high byte 
18 54290 voice 3 waveform type, gate, 

ring modulation, synchronisation 
19 54291 voice 3 attack/decay rate 
20 54292 voice 3 sustain/release rate 
21 54293 filter cutoff frequency high bits (0-2) 
22 54294 f!lter cutoff frequency low byte 
23 54295 filter control for voices, 

resonance ( 4-7) 
24 54296 filter type (4-7), volume 
25 54297 X position of games paddle 
26 54298 Y position of games paddle 
27 54299 digitised output of voice 3 high 

frequency 
28 54300 digitised output of voice 3 waveform 

SIN A floating-point function which calcu-

207 sou 

!ates the sine of an angle given in radians. To 
convert an angle from degrees to radians 
multiply it by Pl/180, as in the following 
program : 

10 PI = 3.14159 
20 INPUT ''TYPE AN ANGLE in DEGREES";A 
30 PRINT "THE SINE OF ";A;" IS "; 

SIN(A*Pl/180) 
Associated keywords: ATN; COS; TAN . 

software Another word for a program or 
a set of programs. Often used to contrast a 
program with the hardware that runs it. 

sound The Commodore 64 can produce 
sound through three channels over a range of 
8 octaves. Sound is normally output through 
the TV but can be also be sent to a hi-fi system 
via the audio/video port. The three channels, 
or voices, can produce sound separately or 
together, enabling three notes to be played at 
the same time. Each cl;i.annel is controlled by 
POK.Eing its respective register in the SID 
chip. By defming a voice's frequency, wave
form and envelope, it is possible to synthe
sise a wide variety of different sounds. 

Setting bit 0 in one of the waveform control 
registers to 1 turns a voice on, setting it to 0 



sou 208 

Sound registers 1-20 and 24 

8 = 54272 

VOICE1 VOICE2 VOICE3 CONTROLS 

S + 0 S+7 S+14 frequency low byte 

S+1 s+a S +1 5 frequency high byte 

S+2 S+9 S+16 pulse waveform low byte 

S +3 S +1 0 S+17 pulse waveform high byte 

S+4 S+11 S+18 control register for waveform, 
gate (on/off), ring modulation, 
synchronisation 

S+5 S+12 S+19 attack/decay 

S+6 S+13 S+20 sustain· release 

S+24 S+24 S+24 volume 

turns it off. This bit is known as the gate bit. 
The volume of a voice cannot be indepen
dently controlled but is set for all three voices. 
To produce a sound requires a minimum of 6 
steps: 
1: Set the volume. 
2: Define the envelope for a voice. 
3: Set the frequency. 
4: Select the waveform and turn sound on. 
5: Delay for the duration of a note. 
6: Turn sound off. 

These steps arc demonstrated in the follo w
ing program which runs through the range of 

209 

frequen cies: 
10 SD = 54272:REM START OF SID 

REGISTERS 
20 FOR N= SD TO SO +24 
30 POKE N,0:REM CLEAR REGISTERS 
40 NEXT N 
50 POKE SD+24 ,1 5:REM MAXIMUM 

VOLUME 

spc 

60 POKE SD+5,9:REM DEFINE ENVELOPE 
70 POKE SD+6,0:REM FOR VOICE 1 
80 POKE SD +4,33:REM TURN ON AND 

SET WAVEFORM 
90 FOR F=256 TO 62000 STEP 128 

100 FH=INT(F/256):FL=F- 256* FH:REM 
ALTER FREQUENCY 

110 POKE SD,FL:POKE SD+1 ,FH:REM SET 
FREQUENCY 

120 FOR 0= 1 TO 100:NEXT:REM DELAY 
130 NEXT 
140 POKE SD+4,32:TURN SOUND OFF 

SPC A function used with PRINT to print a 
given number of spaces on the screen. It take 
an argument from 0 to 255. SPC is a u eful 
alternative to TAB for formatting a display. In 
this example it centres a title on the screen: 

10 PRINT SPC(10) "COLLINS" 



spe 

20 PRINT SPC(20) "MICRO FACTS GEM" 
Associated keywords: PRINT; TAB. 

210 

speech synthesiser A device which re
produces the sound of human speech. Most 
speech synthesisers provide a set of alJophones 
- sound units from which almost any word 
can be bmlt up . Allophones are combinations 
of phonemes, the basic units of speech. For 
example, a single allophone might give a 
standard combination of vowel/consonant 
sounds. Speech synthesisers generally use a 
custon: speech chip held in a cartridge which 
plugs mto the expansion port. They allow 
the user to create speech from a BASIC pro
grai:n. by representing allophones in a string. In 
add1_t1on, some synthesisers supply a diction
ary m ROM of pre-programmed wo rd s. It is 
also possible to program the SID chip to 

synthesise speech. 
As a refinement, a few synthesisers allow 

each al lophone to be given a high or low 
mtonauon. Although recognisable, synthe
sised speech 1s rarely realistic and at best only 
resembles the human voice. 

sprite Like user defined characters 
sprites are graphic objects whose shape can b~ 

211 spr 

designed by the user. One of the main differ
ences is that the VIC chip takes care of sprite 
movement. When a sprite is given a new 
position it is deleted at its old position. 
Another advantage is that sprites can be 
moved in any direction a pixel a a time. (See 
sprite collision; sprite expansion; sprite 
priority; multicoloured sprites .) Up to 8 
sprites can be displayed at a time. They are 
controlled by POKEing values into the VIC 
chip's sprite registers, which are located from 
addresses 53248 to 53294. When dealing with 
these registers it is easiest to assign the first 
address to a variable, V, at the start of a 
program. Thereafter each register can be refer
red to by adding its number to the variable. 
For example, to set the colour of sprite '0', 
POKE the register at 53287 (53248 + 39) by 
entering: 

POKE V+ 39 ,C 
Displaying a sprite on screen involves the 

followin g stages: 
(1) DEANE SPRITE. Each sprite occupies an 
area 24 pixels across by 21 pixels down. The 
shape of a sprite is defined by the bit patterns 
in a byte. To set the pattern for one row of24 
pixels requires 3 bytes. As there are 21 rows, in 



spr 21 2 

all it ~a~es 21 X 3 or 63 bytes to define a sprite 
~fa bit is ~et ~o l then the corresponding pixei 
m the spnte is coloured in, otherwise it is left 
blank. The fo ll owing diagram illustrates how 
a sprite shape is defined: 

byte 1 byte2 byte 3 

row 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

row DATA row DATA 
1 0 24 0 7 0 231 0 
2 0 24 0 8 1 102 128 
3 0 60 0 9 3 102 192 
4 0 60 0 10 7 102 224 
5 0 126 0 11 7 102 224 
6 0 102 0 12 79 102 242 

213 

row DATA 
13 91 102 218 
14 122 231 94 
15 106 255 86 
16 126 255 126 
17 65 231 130 

spr 

row DATA 
18 0 36 0 
19 7 231 224 
20 7 255 224 
21 4 60 32 

The value of each bit depends on its position. 
To work out the decimal value of each byte 
add up the values of its 8 bits. For example. in 
the diagram above the second byte in the first 
row equal 24 since 0 + 0 + 0 + 16 + 8 + 0 + 
0 + 0 = 24 

The data which defines a sprite is stored in 
memory with the bytes for the first row 
occupying the first 3 positions, followed by 
the bytes for successive rows. Normally prog
rams READ and then POKE the 63 numbers 
into memory from DAT A statements. This 
program takes the data which defines the sprite 
in the diagram above and POKEs it into 
memory from 832 onwards: 

10 REM READ DATA 
20 FOR N= 0 TO 62 
30 READ D:POKE 832+ N,D 
40 NEXT 
50 DATA 0,24 ,0,0,24 ,0,0,60 ,0,0,60 ,0,0,126,0 
60 DATA 0, 102,0,0,231 ,0, 1,102, 128 
70 DATA 3,102,192,7,102,224,7 ,102,224 



214 

80 DATA 79, 102,242,91, 102,218, 122,231,94 
90 DATA 106,255,86, 126,255,126 

100 DATA 65,231, 130,0,36,0,7,231,224 
110 DATA 7,255,244,4,60,32 

(2) STORE DATA FOR SPRJTE DEFINITION. Loca
tions 832 to 1023 a re used as a cassette buffer. 
If the cassette is not used during a program this 
is a convenient place to store the data for up to 
3 sprites. Any other free area of RAM can be 
used so long as its starting addres is a multiple 
of 64. Another suitable area, which can hold a 
large number of sprite definitions, is from 
12288 onwards. Thi is part of the BASIC 
program area so if the program is a long one 
there is a danger that it might overwrite the 
sprite data. It is advisable therefore to lower 
the top of the program area to 12287 by 
making the first line: 10 POKE 55,255:POKE 
56,47:CLR 

(3) SET SPRITE POINTER TO START OF DATA . The 
sprite pointer tells the VI chip where the data 
is stored. It takes the start address divided 
by 64. Thus if the definitions for the first 
sprite, sprite 0, were started from 832, the 
pointer would be set to 13 since 832 divided 
by 64 equal 13. The pointer for prite 0 is 
located at 2040 and would be et by the 

215 spr 

following instructions: 'POKE 2040, 13' 
y .. 53241 x XPO~TION y SPRITE TURN POINTER 

POSmON > 255 POSITION COLOUR SPRITE ON ADDRESS 

SpnteO V+ 0 V+ 16,1 V+ t V+39 V + 21 1 2040 

Spnle 1 V+ 2 V+ 16,2 V+ J V+40 V+21 ,2 2041 

Spnte 2 V+ 4 V+ 16.4 V+ 5 V+41 V +.21 ,4 2042 

Spnte3 V+ 6 V+ 16.8 V+ 7 V+4.2 V+ 21 ,8 2043 

Spnte4 V+ B V+ 16.16 V+9 V+43 Vt21 ,16 2044 

SpnteS V+ IO V+ 16.32 V+ 11 V+44 v ... 21 .32 2045 

Spme6 V+ 12 V+ 1664 V+ 13 V+45 V+ 21 .64 2046 

Spnte 7 V+ 14 V+ 16.128 V+ 15 V+46 V+ 21 .128 2047 

The table of sprite registers gives the pom
tcrs for each of the eight sprites. It can ?e seen 
that sprite 3 has its pointer at 2043. If its data 
was stored from 12480 onwards, 'POKE 2043, 
195' would set the pointer. 195 is the result of 
12480 divided by 64. . 
Note that altering the pointer for a particular 
sprite to point to a different 64 byte block of 
data gi c the sprite a different shape. In fact, 
each sprite can have up to 256 definmons. 
(4) SET SPRITE COLOUR. To set a spnte to a 
particular colour POKE its colour register 
with the required colour code. (See colour .) 
For instance, as 7 is the code for yellow, 
'POKE V+4l,7' sets sprite 2 to yellow. 
(5) TURN ON SPRITE. To turn a spnte on or off 



spr 
216 

set its corresponding bit in register V + 21 to 
I or 0. Thus sprite 3 is controlled by bit 3. As 
bit 3 in a byte has a value of8 to turn on sprite 
3: 

POKE V +21,8 
Consult the sprite register table above to 

find the values which turn on each sprite. Or 
use a bit mask, as used in the formula: 

POKE V+21, PEEK(V+21) OR (2jSN) 
where SN is the sprite number. 

More than one sprite can be turned on at a 
time by adding the respective bit values. Bits 3 
and 7, for example, have values 16 and 128. So 

POKE V+21,16+128 
turns on sprites 16 and 128. 

As 255 is represented in binary by 11111111 
POKE V+21 ,255 

turns on alJ 8 sprites. 
Setting a bit in register V+21 to 0 turns the 

corresponding sprite off, and can be done by 
using this formula 

POKE V+21,PEEK(V+21) AND 
(255-2 j SN) 

where SN is the sprite number. 
(6) SET SPRITE POSITION. The position of a 
sprite is controlled by the registers from 53248 
to 53264 (V to V + 16). (See sprite register 

217 spr 

table.) By poking these locations a sprite is 
given a horizontal and ver.t1cal posmon 111 

terms of X and Y coordinates. However 
sprites are only visible if their X coordinates 
are within the range 24 to 343, and the Y 
coordinates are from 50 to 249. Outside these 
ranges a sprite is off the screen. Posi.tioning a 
sprite horizontally invol~es two registers , an 
X register for each spnte nu1:iber, and the 
most significant bit (MSB) register at V + 16. 
NormalJy the bits at V+16 are set to 0 and the 
X registers control horizontal positions from (/J 
to 255. To move a sprite from pos1t1on 256 to 

511 requires that its corresponding bit in V + 16 
is set to 1. For example: 

POKE V+16,8:POKE V+6,25 
puts sprite 3 at X position 30(/J by swing bit _3 
in the MSB X register to 1. Posmon 300 is 
calculated by adding 25 to 255. 

The following lines can be added to the 
program above to provide a demonstration: 

120 v = 53248 
125 REM SET POINTER 
130 POKE 2040,13, 
135 REM SET COLOUR TO RED 
140 POKE V+39,2 , 
145 REM TURN ON SPRITE 



spr 

150 POKE V+ 21 ,1, 
155 REM SET X POSITION 
160 POKE V,180, 
170 FOR Y = 250 TO 50 STEP - 1 
175 REM MOVE SPRITE UP 
180 POKE V+ 1,Y, 
190 NEXT 
200 GOTO 170 

21 8 

sprite collision Collisions berween 
sprires or berween sprires and orher objecrs arc 
indicarcd in rcgisrers 53278 and 53279, V + 30 
and V + 31, where V = 53248. When rwo 
sprire collide rheir respecrivc birs are ser ro I 
in V + 30. To check for a collision use: 

IF PEEK (REGISTER) AND X = X THEN .. . 
where X is rhe bir value for a given sprire. For 
example: 

IF PEEK(V+ 30) AND 2 = 2 THEN .. . 
only rakes a specified acrion if sprire 1 rouches 
anorher sprire. 

V= 53248 

sprit&-sprite collision: register V +30 

sprite-background colhs1on: register V+ 31 

bit no./sprite no. 1716151413121 1 I 0 

bit value l12al64 l32l 16l a I 4 I 2 I 1 

219 
spr 

Nore rhar afrer rhe register has been read all irs 
birs arc reser to 0 again. If it is often a good 
idea ro store rhe conrenrs of the colli ion 
rcgi ters in a variable and rhen test for md1-
vidual bits. Thus 'CD= PEEK(V+31)' could 
followed by ' IF CD AND 4 = 4 THEN . . . ' 
ro detect whcrher sprite 3 has collided with a 
character. 

sprite expansion Sprites can be ex
panded to twice their size'. in ~he horizontal 
direction, the vertical d1rect1on, or both 
together. Setting the bit, which corresponds to 
the sprite number, to l in register 53277 
expands a sprite horizontally. 

V= 53248 

vertical expansion: register V + 23 

honzontal expansion: register V+29 

1716\5\413\2\ , I o 
bit no. sprite no. 

bit value \12aJ64\32\16\ a\ 4 \ 2 J 1 

For example to expand sprite 5 enter 
POKE V+29,32 

where V equals the start of the registers, 
53248. 

Rcgisrer 53271 (V + 23) controls vertical 
expansion , and is ser in the same way: 



spr 220 

POKE V+23,8 
expands sprite 3 vertically . 

Alternatively, use the following formulae, 
in which N gives a sprite number between 0 
and 7: 'POKE (V+29) ,PEEK(V+29) O R 
(2 j SN)' for horizontal expansion . 'POKE 
(V+23) ,PEEK(V+23) OR (2 j SN)' for ver
tical expansion. 

To reduce a sprite after expansion use: 
POKE V+29,PEEK(V+29) AND (255 2 j SN) 

for horizontal reduction, and 
POKE V+23 ,PEEK(V+23) AND (255 2 j SN) 

for vertical reduction. 

sprite priority Regi ter 53275 (V + 27) de
termines whether sprites appear to pass behind 
or in front of other objects on the screen. 
Setting the bit corresponding to the sprite 
number to 1 gives any other object on the 
creen priority over the sprite. This means tha t 

the sprite wiJI pass behind other objects. If, for 
example, the screen shows a program listing in 
character mode. 'POKE V +27,8' causes 
sprite 3 to appear behind the listing, by erring 
bit 3 to 1. When the corresponding bit is set to 
0 the prite passes in front of other objects. 

Between themselves, lower numbered 

221 sta 

sprites have priority ov~r highe: ~umbered 
sprites. Sprite 0 has the highest pno~1ty, sprite 
7 the lowest. Thus sprite 4 appears 111 front of 
sprite 5. 

SQR A Aoating-point function which re
turns the square root of a number. It cannot 
handle negative numbers, e.g.: 

10 PRINT SQR(81) 
10 IF F > SQR(N) THEN GOTO 200 

STA A 6510 instruction mnemonic which 
STores the contents of the Accumulator at a 
specified memory location, e. g.: 

LOY #8 
LOA #32 
STA $0400,Y 

stores 32 in location S0408. 
Status register N V B 0 

addressing mode assembly language form op 
code 

zero page STAoperand 85 
95 zero page, X STA operand, X 
80 absolute STAoperand 

absolute, X STA operand, X 90 
absolute, Y STA operand, Y 99 
(indirect. X) STA (operand. X) 81 
(Indirect), Y STA (operand), Y 91 

l c 

No. No. 
bytes cycles 

2 3 
2 4 
3 4 
3 5 
3 5 
2 6 
2 6 



sta 222 

stack An area of RAM used for temporary 
storage in machine code programs. The stack 
extends from addresses $100 to $1FF (256 to 
511). It operates on the last in, first out princi
ple, storing numbers on top of each other, and 
removmg them from the top. 

Although the first available number is said 
to be at the top of the stack, it has the lowest 
address in memory since the stack stores num
hns downwards from $1FF. When the 6510 
m 1c roproces or places (pushes) a number on 
the stack,_ or removes (pulls) a number, the 
~tack pomter is automatically decreased or 
mcreased to point to the next free space. 

See PHA; PHP; PLA; PLP. 
One of the functions of the stack is to hold 

the address that a program returns to after a 
subroutine. 

See JSR. 

stack pointer An 8-bit register which 
pomts to the first free location on the 6510 
microprocessor's stack. When an instruction 
such as PHA pushes a byte onto the stack the 
~tack pointer is decreased by one. Note tl;at it 
is decreased rather than increased since the 
stack expands downwards in memory. 

223 sta 

STATUS A function which gives informa
tion about input/output operations. It returns 
a single byte number. Depending on which 
bits in the byte are set to one, it reports the 
status of the last operation. (See the table of 
STATUS bit codes below.) STATUS is com
monly used in cassette file operations to test 
for an end of file marker. 

STATUS STATUS CASSETTE SERIAL TAPE VERIFY 

BIT NUMERIC READ BUS +LOAD 

POSmON VALUE READ/WRITE 

0 
, time out 

write 

, 2 t1meou1 

••ad 
2 • short block short block 

3 8 long block long block 

4 16 unrecov9fable any mismatch 

read error 

5 32 checksum checksum 

error error 

6 64 end of Ille endofflle 

7 - 128 endol1ape device not end of tape 

present 

. 

Associated keywords: GET #; INPUT#; 
PRINT #. 

status register Also known as the pro
cessor status register, it holds 7 flags . They 
give various types of information about the 



sta 224 

state of the 6510 microprocessor or the effects 
of the instructions it _executes. Each flag cor
responds to a bit which can be either 1 or 0. 
When a bit equals 1 its flag is said to be set· 
when it equa ls 0 the flag is clear. From left t~ 
right the flags are as follows: 

7 

carry = 1 if carry occurred 
zero = 1 if result zero 
IRQ = 1 if interrupl disabled 

'---- decimal = 1 if using BCD 
'----- break = 1 if BREAK occurred 

'----- not used = 1 always 
'------- overflow = 1 If overflow occurred 

'------- negative = 1 if result negative 

NEGATIVE FLAG {N). Set after an operation when 
the i:nost significant bit in the result equals 1. 
In signed anthmetic this indicates that the 
result is negative. (See two's complement.) 

OVERFLOW FL~G (v). l'.sed in two's comple
ment ari thmetic to indicate an overflow. It is 
set when an operation results in a carry from 
bit 6 to bit 7. 

BREAK FLAG (B). Set after a BRK interrupt. 
DECIMA~ FLAG (o~. Set if the 6510 microp

rocessor 1s m decimal mode. (See binary 
coded decimal) 

sto 

INTERRUPT FLAG (1). Set to disable an IRQ 
interrupt. 

ZERO FLAG (z). Set when the result of an 
operation is 0. 

CARRY FLAG (c). Set when adding two bytes 
gives a result greater than 255; cleared if 
subtracting one byte from another docs re
quire a bit to be borrowc~. Also acts as a 9th 
bit for the accumulator 111 shift and rotate 
operations. . 

Bit 5 in the status register is not used and 1s 
always set. 

STEP A tatcment which, as part of the 
FOR ... NEXT loop, STEP allows you to 
specify the amount by which the_ loop variabl_e 
is increased. When STEP 1s ommed the vari
able is increased by one. In this line 

10 FOR N = 0 TO 30 STEP 5 
the loop variable, N , is increased six rimes in 
steps of5. 

10 FOR N = 10 TO 1 STEP -1 
counts down from 10 to I. 

10 FOR N = 0 TO 10 STEP 0.25 
increments the variable in steps of a quarter. 

STOP A statement which hairs a program 
and di plays a message indicating the line 



str 
226 117 str 

number where it occurs. Thus 
200 STOP 

would display 'BREAK IN 200'. 
It has the same effect as pressing the RUN/ 

STOP key during the execution of a prog
ram. If the STOP statement is not at the end of 
a program execution can be resumed by enter
ing CONT as a direct command. 

Associated keywords: FOR; NEXT; TO. 

string Charac ters between quotati on 
marks . Strings can hold any combination of 
letters, numbers, symbols, graphics and con
trol characters, to a maximum of 255 charac-
ters . 

See string variables . 

STRING TOO LONG An error message. 
caused by trying to form a string longer than 
255 characters. 

string variables They sto re string data. 
The names of strin g variables must end with ,1 

$ character. 
Two or more string variables can be joined 

together (concatenated) using the plus sign. 
e.g. : 

10 A$ = "HAPPY" 

20 B$ = "BIRTHDAY" 
30 A$ = A$ + " " + B$ 
They can also be used with relational 

operators, in which case they are co~1pa,~e?, 
011 the basis of their ASCII codes, e.g. IF 4 
< "A" THEN PRINT "TRUE'" prints 
'TRUE' since 4 has a lower code than A. . 

CHRS assigns a single character to a van
able, and is often used to insert control char
acters in a string, e.g.: 

10 A$ = CHR$(146) + CHR$(28) + "TEST" 
20 PRINT A$ 

prints the word 'TEST' in blue reverse charac
ters. 

STR$ A string function which converts 
numbers into their equivalent string charac
ters. Thus 

STR$(3 .06) 
gives 

"3.06" 
lf the number is positive STR$, inserts a space 
at the front of the string. So, 

PRINT LEN(STR$(3.06) 
gives a length of5. 

Associated keyword: VAL. 

structured programming A way of 



stx 228 229 sub 

writing programs so that th eir structure ii 
evident. Structu red programming tries to 
make programs easy to understand and mod. 
ify. It does this by breaking the program down 
mto a senes of modules or subroutines, each 
one of w hi ch hand les a specific task. The start 
of the program can then contain a control 
section w hi ch calls th e subroutines and clearly 
exhibits the flow of the program. 

Proponents of structured programming 
strong ly object to the GOTO statemenc. 
Programs th at rely heavily on GOTO arc 
difficult to ~ollow and even harder to modify. 
However, m Commodore BASIC it is nor 
easy to di p~nsc with GOTO entirely, parti
cu larly w1thm a subroutine. Writing properl y 
structured programs requires a set of struc
tured programming commands such as IF ... 
THEN . . ELSE, REPEAT . .. UNTIL, and 
DO ... WHILE. These arc omctimcs sup
plied by BASIC extensions. 

STX A 6510 instru ction mnemonic whi ch 
STores the contents of the X index register in 
a specified memory location. It acts in th~ 
same way as ST A but has fewer addressing 
modes . 

Status register N V B D i! c 

addressing mode assembly language form op No. No. 
code bytes cycles 

zero page STX operand S6 2 3 
zero page, Y STX operand, Y 96 2 4 
absolute STX operand SE 3 4 

STY A 6510 instru ction mnemonic which 
ST ores the contents of the Y index register in 
a specified memory location. 

Status register N V B D i! C 

addressing mode assembly language form op No. No. 
code bytes cycles 

zero page STY operand S4 2 3 
zero page, X STY operand, X 94 2 4 
absolute STY operand SC 3 4 

subroutine One or more program lines 
which may perform a specific ta k and can be 
called from different places within the main 
program. Subroutines arc useful if the same 
task needs to be performed at several different 
stage in the program . Instead of repeating a 
group of lines, it saves space and is more 
convenient to put them in a subroutine. Alter
natively, it is often a good idea to put each 
stage of a program in a subroutine, even if it is 



sub 
230 231 sys 

only used once. The program can then include 
a control section consisting of a series of 
GOSUB statements. 

See structured programming. 
In BASIC, the GOSUB in truction calls a 

subroutine and RETURN marks the end of a 
subroutine. T he equivalent commands in 
machine code are JSR and RTS. 

subscript The number inside parentheses 
by which an element in an array is identified. 
If the subscrip t is too big fo r the array it causes 
a 'BAD SUBSCRIPT' error message, e.g.: 

10 DIM A{10) 
20 A{30) = 2.3 

sustain/release The last two phases of a 
sound envelope. After the attack/decay 
phase the volume falls to the sustain level, and 
a note continues to play at this level until it is 
turned off. It then dies away at the rate set for 
the release phase. Sustain and release for 
voices 1, 2, and 3, are controlled by POKEing 
values into registers 54278, 54285, 54292. The 
top four bits of each register set the volume 
level for the sustain phase, as a proportion of 
the pre-set volume, e.g. a sustain value of 9 
gives a sustain volume which 60% of that set 

before the envelope is defined (9/15 = 60%). 
The release value is held in the bottom four 
bits and acts in the same way as the decay 
value. It determines the time 1t takes forfi a no~e 
to fall from its sustain volume to zero, a ter t e 
gate bit has been set to 0. 

SYS A statement which_ causes the com
puter to jump to the machine code program 
which starts at the address fo llowing. SYS. 
Used either as a direct command or within a 
BASIC program it is the most common w~y 
of executing machine code. When Lt appears m 
a BASIC program it has the same.effect as a 
GOSUB except that the program JUmps to a 
machine code program rather than a BASIC 
subroutine. In this line 

10 SYS 49152:GOTO 300 
control passes to the GOTO stat_ement after 
the machine code at address 49 l:i2 has been 
executed. There must, however, be a RTS 
instruction at the end of the machine code 1f it 
is to return to BASIC. 

Associated keyword: USR. 

system variables Locations in RAM 
from 0 to 1023, which are used by the operat
ing system and BASIC interpreter . Many of 



tab 232 233 tim 

them can be usefully PEEKcd or POKEd, e.g. 
'POKE 650,128' makes all the keys auto
repeat. 'POKE 198,0' clears the keyboard bu f. 
fer. 'POKE 646,C' sets the colour of the next 
character printed. 

TAB A function. Together with PRINT. it 
specifies the position at which the next charac
ter wi ll be printed in a line. It moves tht.: cursor 
to a given column position. Thus, 

PRINT TAB(12) ''TEST" 
prints 'TEST' starting at the thirteenth col
umn. The left-hand column is numbered 0, the 
right-hand column is 39. Although more than 
one TAB functions can appt.:ar in a single 
PRINT statement, TAB cannot be used to 

print back to the left, e. g.: 
10 PRINT TAB(5) "ONE" TAB(20) ''TWO" 

works, but 
10 PRINT TAB(20) "ONE" TAB(5) ''TWO" 

does not. 
Associated keyword: PRINT. 

TAN A floating-point function which calrn
latcs the tangent of an angle which is given in 
radians. A TN, in turn, give the ang le from it> 
tangent. Example : 

10 PRINT TAN(0.5666) 

10 X = TAN(Y) 
Associated keywords: ATN; COS; SIN. 

tape See cassette. 

TAX A 6510 instruction mnemonic which 
Transfers the contents of the Accumulator to 
the X index register . Often used after PLA 
to restore the contents of the Y register. 

Status register N V B D I Z C 

addressing mode assembly language form C:e No. No. 
bytes cycles 

unphed TAX AA 1 2 

TAY A 6510 instruction mnemonic which 
Transfers the con tents of the Accumulator to 
the Y index register . Often used in conjunc
tion with PLA. 

Status register N V B D z c 

addressing mode assembly language form op No. No. 
code bytes cycles 

implied TAY AS 1 2 

TIME A numeric function which, usually 
written 'TI, reads the computer's internal 
clock. The clock is set to zero when the 



tim 234 235 tru 

computer is turned on and thereafter, is in-
creased every 1 /60th sec. ' 

T IME is useful for timing inrerva ls. In the 
following program it measures the amount of 
time taken to press a key: 

10 PRINT "PRESS THE FOLLOWING KEY" 
20 X = INT(RND(0) ~ 27) 
30 PRINT CHR$(65+ X) 
40 TI = TI 
50 GET A$:1F A$ = "" THEN 50 
60 PRINT "YOU TOOK "; (TI - TI) I 60· 

" SECONDS" ' 
70 GOTO 10 
Associated keyword: TIME$. 

TIME$ Like the TIME function T IME$ 
reads the computer's internal clock but re
turns a s~ring. of six characters which give the 
e lap~ed time 111 hours, minutes, and seconds. 
Unlike TIME, its initial value can be specified: 

TIME$ = "HHMMSS" 
sets the clock to HH hours (up to 24), MM 
mmutes, and S~ seconds. The following pro
gram sets the timer to 8.30 am and prints a 
message at 9.00 am: 

10 TIME$ = "083000" 
20 IF TIME$ < "090000" THEN 20 

30 PRINT "PHONE OFFICE AT ONCE" 
Associated keyword: TIME. 

token The code by which a BASIC 
keyword is stored in memory. Rather than 
being stored as series of ASCII codes, BASIC 
keywords are represented in RAM by I-byte 
tokens, in the range 128 to 255, e.g. PRINT is 
represented by 153. Not only does this save 
memory space but it also speeds up the rate at 
which programs run. To recognise a keyword 
the BASIC interpreter needs only to consult a 
list of the tokens held in ROM from 41118 
onward s. When a program is LISTed, 
keywords are converted back into characters 
on screen. 

truth table A table showing the results of 
comparing different combinations of 1 and 0 
using logical operators . 

1 AND 1=1 1 OR 1= 1 
1 AND 0=0 1 OR 0= 1 
0 AND 1= 0 0 OR 1=1 
0 AND 0=0 0 OR 0= 0 

NOT 1 = 0 
NOT 0= 1 

Translating 1 and 0 into TRUE and FALSE, 
these tables give the results of comparing two 
conditions in an lF . . . THEN statement. 



tru 236 

truth value The number which the com
puter assigns to an expression depending on 
whether it is true or false. True expressions arc 
given a value of -1, fa! e expressions a value 
of0, e.g. 'PRINT A= B' prints '0' if ' A' dol's 
not equal 'B'. 'PRINT6 < 5' prinrs '-1'. 

In IF .. . THEN statements the truth value 
acts as a kind of flag which gives the result of 
evaluating the expression. It tells the computer 
either to execute the instruction after THEN 
or proceed to the next line. Conversely, when 
single numbers or variables appear in an IF . .. 
THEN statement, the computer acts as if they 
were expressions, and treats them as false if 
they have a value of 0, and true if they ha ve 
any other value, e.g. 'IF X THEN PRINT 
"TEST"' prints TEST for all values of X 
except 0. 

TSX A 6510 instruction mnemonic which 
Transfers the Stack pointer to the X index 
r egister. This is the on ly 65 J 0 microprocessor 
instruction that allows the contents of the tack 
pointer to be accessed, e. g.: 

TSX 
STX $FB 

stores the contents of the stack pointer at FB . 

237 two 

Status register N V B D l c 

addressing mode assembly language form op No. No. 
code bytes cycles 

implied TSX BA 2 

turtle See LOGO. 

two's complement A way of represent
ing negative numbers in mach ine cod e pro
grams. In two's complement ( igned) 
arithmetic the most significant bit (bit 7) of a 
byte indicates the sign of a number. ff bit 7 is _1 
the number is negative; otherwise 1t 1s posi
ti ve. The first 7 bits represent the number 
itself, giving a range from -128 to +127. 
Num bers from 0 to 127 ($7F) are considered to 
be positive, and numbers from 128 to 255 arc 
con idcred negative. To obtain the two's com
plement form of a negative number, add_ it to 
256. T hus -100 is 156 in signed arithmetic. In 
binary, first find the complement of the num
ber by inverting (flipping) its bits, then add 1. 
E. g.: binary 

34 00100010 
complement of 34 11011101 

add I 1 
-34 11011110 



txa 238 

Note that the 6510 microprocessor treats 
signed numbers in the same way as un igned 
number . Althoug_h signed number only 
occupy the first 7 bits, the 8th bit, bit 7, is set 
to I when two numbers add up to more than 
127. This has the effect of giving the result the 
opposite sign if two numbers with the same 
sign arc added together. To show that an 
overflow has occured from bit 6 to bit 7 the 
6510 sets the overflow (V) flag . 

Generally, after an operation, bit 7 in the 
result is copied into the negative (N) flag. In 
signed arithmetic this shows whether the re
sult is po itive or negative. 

TXA A 6510 in truction mnemonic which 
has the opposite effect to TAX, and transfers 
the X index register to the accumulator. 

ee PHA. 
Status register N V B D I 2 C 

addressing mode assembly language form 

implied TXA 

op 
code 

SA 

No. No. 
bytes cycles 

1 2 

TXS A 6510 instruction mnemonic - the 
only one that allows the value of the stack 
pointer to be set, it transfers the contents of the 

239 und 

X index register to the stack pointer. 
SeeTSX . 

Status register N V B D I 2 C 

addressing mode assembly language form op No. No. 
code bytes cycles 

implied TXS 9A 1 2 

TYA A 6510 instruction mnemonic which 
Transfers the contents of the Y index register 
to the A ccum ulator. 

See PHA. 
Status register N V B D I 2 C 

addressing mode assembly language form op No. No. 
code bytes cycles 

implied TVA 98 2 

TYPE MISMATCH An error m essage: a 
nu mber has been u ed where a string 1s ex
pected, or vice versa. 

UNDEF'D FUNCTION An error mes
sage, caused by trying to use a function which 
has not been defined by a D EF FN statement. 

UNDEF'D STATEMENT An error mes
sage: an attempt has been made to GOTO or 
GOSUB to a line number that docs not exist. 



use 240 

user defined characters Characcers 
which are designed by the user and replace the 
built-in characters. The standard character set 
is defined in the character generator ROM. 
By telling the computer to fetch definitions 
from an area in RAM it is possible to design up 
to 512 new characters. To do this requires the 
following steps : 
(1) DEANE A CHARA CTER. Each character is 
defined by the bit patterns in 8 bytes. Thus it 
takes 512 bytes to define 64 characters. The 
bits in the first byte represen t the first row, the 
bits in the second byte the second row, and so 
on. 

See character designer. 
64 16 4 data 

byje 1 

a 
127 

byle2 34 
byje3 20 
byje 4 8 
byle 5 20 
byle6 34 
byje 7 127 
byje8 0 

(2) RESERVE MEMORY. Since the new character 
set is to be held in RAM, memory needs to be 
allocated for it. From 12288 onwards is a 
convenien t area to store definitions, but runs 

241 use 

the risk of being overwritten by a BASIC 
program. 

10 POKE 52,48:POKE 56,48 
reserves memory by lowering the top of the 
BASIC program area . Other areas of mem
ory can also be used. 
(3) C HAN CE TH E ADDRESS OF CHARACTER 

MEMORY . 

20 POKE 53272 ,(PEEK(53272)AND 240) OR12 
switches the start address of the character 
definitions from ROM to 12888. As the new 
character data has not yet been stored in RAM, 
any characters on the screen will now be 
unrecognisable: the computer is taking its de
finitions from random numbers in RAM . 
(4) COPY ROM DEFINITIONS INTO RAM . This 
step is optional if only user defined characters 
are needed, but if it is not taken none of the 
normal character set can be used. For example, 
if the space character (32) is not defined it will 
not be possible to clear the screen. 

To copy the existing character set, enter 
these lines: 

30 POKE 56334,PEEK(56334) AND 254 
40 POKE 1,PEEK(1) AND 251 
50 FOR N=0 TO 511 
60 POKE N+ 12288,PEEK(53248+N) 



use 242 

70 NEXT 
80 POKE 1,PEEK(1) OR 4 
90 POKE 56334,PEEK(56334) OR 1 

Lines 30 and 40 disable interrupts and switch 
the ROM character set to start at 53248. Lines 
50 to 70 then copy the first 64 character into 
RAM starting at 12288 onwards . Lines 80 an d 
90 switch ou t the ROM and enable interrupts. 
(5) STORE NEW CHAR ACTER DEFINITION S. 

Where a character is stored depends on which 
screen code .it is given. The 8 bytes defining a 
character wah code C are stored at location 
'CM + (C*8)' onwards where CM is the start 
of the area of memory re erved for definition . 
In this program, which can be added to the 
lines above, the character defined in the dia
gram replaces the letter T and is assigned the 
code 20. Line 110 READs the 8 bytes held in 
DAT A statements, an d POKEs them into 
memory from loca tion 12288 + (20*8) on
wards. 

100 FOR N= 0 TO 7 
110 READ D:POKE (12288+20*8+N),O 
120 NEXT 
130 DATA 127,34 ,20,8,20 ,34,127,0 

(6) DISPLA y USER DEFINED CHARACTER. When 
using a PRINT statement imply pre s the key 

243 usr 

associated with the character it replaces. Alter
nativel y, POKE its code into the screen mem
ory. Lines 150 and 160 illustrate both methods. 
Line 140 clears the screen . 

140 PRINT CHR$(147) 
150 PRINT ''T'' 
160 POKE 1024,20:POKE 55296,6:REM SET 

COLOUR 

user port The edge connector. next w the 
cassette socket. It has 8 lines for mputtmg or 
outputting data and two control line.s. Often 
used to provide an RS232 or cen tromcs mter
face, it allows the computer to be com1ected to 

a number of different devices, e.g. a modem, 
a printer , or a robot arm. 

USR A floating-point function which per
forms in the same way as SYS but is less easy 
to use. It executes a machine code program, 
but before the machine code is called its start 
address must be placed POKEd into memory 
locations 785 and 786. Thus, 

POKE 785,0:POKE 786 , 192:X = USR(7) 
calls a machine code routine located at 49152. 
785 takes the low order byte of the address and 
786 takes the high order byte. In this case 192 
is POKEd into 786 since 49152 equa ls 192 



uti 244 

times 256. USR has one advantage over SYS 
in that it allows a number to be passed from 
BASIC and used in the machine code prog
ram. The number is given as the function 's 
~rgum~nt. It is placed in the computer's ftoat
mg pomt accumulator at locations 97-102. 
When control returns to BASIC, USR gives 
the final number stored in the accumulator as a 
result. In the above example, 7 is passed to the 
floating-point accumulator and the result is 
stored in the variable X. 

Associated keyword: SYS. 

utilities Programs that provide useful and 
commonly needed facilities, often supplied as 
ne':"' commands in BASIC extensions. They 
ass1s~ p~ogrammers m the task of writing or 
mod1fymg a program. The following utilities 
are among the most common: 

RENUMBER renumbers program lines 
by a given increment. 
DELETE deletes a block of program lines . 
AUTO prints line numbers automatically . 
TRACE a debugging aid which prints the 
number a line before it is executed. 
See merge. 

VAL A string function which converts a 

245 var 

string which contains a number into the num
ber itself. For example 'VAL("3.55")' gives 
'3.55'. Thi function is commonly used to 
assign numbers held in string variables to 
numeric variables. In this program numbers 
arc input to a string variable and then con
verted to numeric form. 

10 PRINT "INPUT A NUMBER BETWEEN 0 
AND 10" 

20 GET N$:1F N$="" THEN 20 
30 IF N$ < "0" OR N$ > "10" THEN 20 
40 N = VAL(N$) 

Note that the first character in the string must 
be a digit or a plus or minus sign. Otherwise 
VAL returns zero . Thus 'PRINT 
VAL(STRS(7.5)' displays '0', as 'STRS(7.5)' 
inserts a space in front of'7.5 ' . 

Associated keyword: STRS. 

variables Used to store data within a 
program. Each variable is identified by its 
name which must start with a letter, and can 
be followed by any number of letters or 
numbers. There are four kinds of variables -
string, integer, floating point, array vari
ables. Examples: 

NAME$ - string variable 



var 246 

TT% - integer variable 
TT - floating point variable 
N$(4) - ~tring array 
N%(2) - mteger array 
81 (5) - floating point array 

Although variable names can be of any length 
only the first two characters are significant. 
TEMPS and TEL$, for example, arc treated as 
the same variable. Long variable names, 
however, make programs easier to under
stand. 

Variable names must not incorporate 
BASIC keywords. These are known as re
served words. Using them in a variable will 
cause a SYNTAX ERROR, e.g. 'TOP= 200' 
contains the BASIC keyword TO. 

The equals sign is used to assign a value to a 
variable, e.g. : 

A$ = "HELLO" 
T2% = 35 
N = 3.666 
AR(3) = 0.5 

Variables must take the correct type of value . 
Attempting to assign a string to a numeric 
variable - integer and floating point - or vice 
versa, results in a 'TYPE MISMAT H' error 
message, e. g.: 

247 ver 

8$ = 3 
T = "ALPHA" 

eeVAL; STR 

vector A 2-bytc location in RAM which 
holds the address of another location in mem
ory. Many of the operating system's sub
routines in ROM are called indirectly via their 
vectors in RAM. ee JMP. By changing a 
vector to point to a different address the user 
can insert a new routine. 

See wedge. 

VERIFY (1) A command used to check 
that a program has been correctly SA VEd. 
VERIFY compares the program stored on tape 
or disk with the program in the computer's 
memory. If they do not match, it displays a 
VERIFY ERROR message. VERIFY on its 
own checks the first program on tape. 
'VERIFY "PROGNAME"' searches for 
'PROGNAME' and checks it if found. 
VERIFY '"PRO NAME",8' checks 'PROG
NAME' on disk. 

This command i also useful for finding the 
first unused part of a tape, since it reads the 
tape without overwriting the program 111 

memory. 



vie 248 

Associated commands: SA VE. 
(2) An error message: the program on tape 
or disk has not been saved correctly, and docs 
not match the program in memory. 

VIC This 6566 Video Interface (V IC II ) chip 
generates the screen display. Whatever the 
display mode, the VIC chip is responsible for 
converting codes or bits in memory into char
acters, colo urs and graphics on the screen. In 
character mode the VIC chip reads character 
codes in the screen memory and then con
sults the character generator ROM to find 
the pattern of bits which represent characters 
on screen. Since the computer's microp
rocessor and the VIC chip cannot access mem
ory at the same time, the 6510's operations arc 
suspended while the VIC generates the dis
play. Although thjs slows down the 6510, 
sometimes by as much as 20%, it has no effect 
on the way the 6510 executes programs. But ir 
can cau e problems in I/O operations where 
exact timing is important. It is for this reason 
that the screen is blanked when the cassette is 
run rung. 

The VIC chip has 47 registers which arc 
represented in RAM from 53248 to 53294. 

'.!-19 vie 

Most of them arc used for controlling sprites, 
or selecting the di play mode. They al o pro
vide control over various other feature~ ot the 
display: screen memory; screen . width and 
height" fine scrolling; screen blankmg. 
SCREE~ MEMORY The top four bits in VIC 
register 53272 locate the screen memory at one 
of sixteen I K blocks. This allows alternate 
scrccm to be set up although it is not po ~1blc to 
hift the location of colour memory . ore 

that the system variable at location 6-lts. 
which points to the screen address, also lll'l'd> 

to be changed. 

REGISTER ADDRESS 
0 53248 
1 53249 
2 53250 
3 53251 
4 53252 
5 53253 
6 53254 
7 53255 
8 53256 
9 53257 

1() 53258 
11 53259 
12 53260 
13 53261 
14 53262 
15 53263 
16 53264 

FUNCTION 
sprite o X-pos1t1on 
sprite o Y-pos1t1on 
sprite 1 X-pos1t1on 
sprite 1 Y -pos1t1on 
sprite 2 X-position 
sprite 2 Y-pos1t1on 
sprite 3 X-pos1t1on 
sprite 3 Y-pos1tion 
sprite 4 X-pos1t1on 
sprite 4 Y-pos1t1on 
sprite 5 X-pos1t1on 
sprite 5 Y-pos1tton 
sprite 6 X-pos1t1on 
sprite 6 Y-pos111on 
sprite 7 X-pos1t1on 
sprite 7 Y-pos1t1on 
sprites o-7 most significant bit 

of X-pos1t1on 



vie 250 

REGISTER ADDRESS FUNCTION 
17 53265 control register 1 
18 53266 rasterreg1ster 
19 53267 ltght pen X·posit1on 
20 53268 ltght pen Y ·pos1t1on 
21 53269 sprites 0- 7 enable 
22 53270 control register 2 
23 53271 sprites 0- 7 vertical expansion 
24 53272 memory pointers 
25 53273 interrupt flag register 
26 53274 interrupt enable 
27 53275 sprite (0- 7)-background priority 
28 53276 sprites 0- 7 multicolour select 
29 532n sprites 0- 7 horizontal expansion 
30 53278 sprite (0- 7)-sprite collts1on 
31 53279 sprite (0- 7)-background collts1on 
32 53280 screen border colour 
33 53281 screen background colour 
34 53282 background colour 1 
35 53283 background colour 2 
36 53284 background colour 3 
37 53285 sprite multtcolour 1 
38 53286 sprite multicolour 2 
39 53287 sprite 0 colour 
40 53288 sprite 1 colour 
41 53289 sprite 2 colour 
42 53290 sprite 3 colour 
43 53291 sprite 4 colour 
44 53292 sprite 5 colour 
45 53293 sprite 6 colour 
46 53294 sprite 7 colour 

SCREEN WIDTH AND HLI GllT. Setting bit 3 ro 
0 in VIC regi ters 53265 and 53270 redu ces the 
screen width t0 38 columns and the height to 

24 rows, e.g.: 
POKE 53265, PEEK(53265)AND 247 

251 vol 

POKE 53270, PEEK(53270)AND 247 
FINE SCROLLING. Controlled by bits 0 to 2 

m VIC registers 53265 and 53270. 
SCREEN BLANKING. Setting bit 4 in VI 

rcgi ter 53265 to 0 blanks the screen, e.g . 
'POKE 53265,(PEEK(53265)AND239) '. To 
switch the screen back enter 'POKE 53265, 
PEEK (53265)0R16' . 

Sec scrolling. 
REGISTER 
NO. bit 7 

raster 
17 most 

s1gmf. 
bit 

22 -

24 

bit6 b115 

extended bit 
colour map 
mode mode 

- -

screen memory 
address 

bit4 bit3 bit2jbit1 jbit0 

screen screen vertical 
blanking height scroll 

multi· screen horizontal 
colour width scroll 
mode 

character memory 
address 

voice Either a sound channel or the sound 
produced by a channel. 

volume The first four bits of register 54296 
control the overall volume of sound for the 
three channels . Volume is measured from 0 tO 

15 where 15 give a maximum volume and 0 
turns the sound off altogether. 



wai 

WAIT A command which halts a progra m 
and waits until a given address contains a 
pecificd value. It is generally used to test for 

some external event. For example, it cou ld be 
used to suspend a program until a key is 
pressed or a joystick is pushed in a particular 
direction. Thus 'WAIT 197,28' waits until the 
B key is pressed . 'WAIT 145, 1, 1' waits unt il 
the joystick in PORT 1 is pushed to the left. It 
should , however, be noted that there arc sim
pler ways oftc ting for these events . 

WAIT must be followed by an address and 
one or two numbers which act as m asks. If the 
second number is not given it assumes it i ~ 
zero. WAIT tests the value at the address by 
comparing it with the first mask in a bitwise 
AND operation. Then it performs an Exclu
sive OR operation with the second mask. IF 
the result of these two operations i I the 
program proceeds to the next statement. In 
contrast to the normal OR operation , an Ex
clusive OR gives a result of I if only one bit is 
set to I. If both bits arc 1 the result is 0. 

waveform Determines the tonal quality or 
timbre of a sound . Each voice can take one of 
four waveforms: triangle, sawtooth, pulse. 

253 wav 

and noise. The triangle waveform produces a 
hollow or mellow sound suitable for repro
ducing a note from a piano or a flute. By 
contras t the sawtooth sound is more brassy or 
twa ngy. Sometimes known as the square 
wave, the pulse waveform gives a range of 
different ounds depending on the pulse 
width . The noise waveform is useful for 
producing non-musical sound effects such as 
explosions. To assign a waveform to one of 
the voices, set the appropriate bit in it wave
fo rm control register to I. Note that bit 0 in 
th e same register turns a sound on or off, e.g. 
' PO KE 54283,33' selects the sawtooth wave
fo rm and turns the sound on . 

tnangle 

/\_ /'\. 
v 
pulse 

F1°o9J -pulse width 

sawtooth 

/1 /1 /1 v v v 
noise 



wed 254 

wavefonn registers 
54276, 54283, 54290- Voices 1. 2, 3 

BIT No. FUNCTION BIT VALUE 

0 gate(on off) , 
1 synchronisation 2 

2 nng modulation 4 

3 test 8 

4 triangle 16 

5 sawtooth 32 

6 pulse 64 

7 noise 128 

wedge A machine code program inserted 
into one of the operating system's sub
routines . Wedges arc set up by redirecting 
one of the operating system' vectors to point 
to the user's program. They allow the normal 
subroutine to be modified or rewritten, e.g . 
fast loading programs insert a wedge 111 th l 
input/output ro utines. Interrupt wedges can 
be used to harness IRQ interrupts so that the 
user's routine i · executed every l /50th sec. 
Another type of wedge modifies the BASIC 
interpreter's CHARGET subroutine at lo
cations 115 to 138. CHARGET pa cs BASIC 
tokens and characters from RAM to thc Inter
preter. By intercepting it, the uscr can add ne"' 

'.!55 zer 

BA IC commands. 

wordprocessor A program for entering 
trxt mto the computer so that it can be edited, 
stored, and printed out. The advantage of a 
wordproce or over a typewriter is that makes 
it much easier to correct, rearrange and format 
text. All this can be done first on the screen 
before a document is printed. As well as 
allowing words to be deleted or inserted, 
wordprocessors usually provide faci lities for 
sh1ft111g paragraphs, lining up the left or right 
margms Gustifying text), searching for and 
replacing words, takmg a word count, and 
merging different documents. In some cases 
they provide spelling checks from a dictionary 
held on disk. ome wordprocessors offer an 
80-column option. To run these the 
Commodore 64 needs a hardware adaptor 
which converts the display to give 80 charac
ters a line. 

zero page Each block of 256 bytes in 
memory is known as a page. Zero page is the 
block from addresses 0 to 255 (0 to $FF) . In 
zero page addressing mode in tructions move 
data to or from (or via) zero page addresses. 
The advantage of this mode is that it allows an 



zer 256 

address to be specified with one byte rather 
than two. Note that when an instruction oper
ates on a byte in a different page its execution 
rime is increased by one clock cycle, e. g.: 

LDX # 8 
LDA $05FF,X 

crosses the boundary between pages 5 and 6, 
and so adds one cycle to the normal execution 
time. 

zero page addressing ln this mode the 
instruction operates on a byte in zero page, 
whose address is given by the operand. Since 
one byte is sufficient to specify any address in 
zero page, the whole instruction only occupies 
two bytes. By contrast, instructions in ab
solute addressing mode occupy three bytes. 
Zero page addressing thus saves space and is 
quicker to execute, e.g. 'LDA 56' loads the 
accumulator with the contents of the byte at 
location 56; 'AND $FB' performs an 'AND' 
operation between the accumu lator and the 
contents oflocarion FB. 





r ... ---- ---~ -----.-.-.~,T----- __ _ , ____ t: i 
II 

I 
MICRO FACTS 

I 

! 
9 780004 588599 


