

Games Computers Play

Create Your Own

Games Computers Play

Keith S. Reid-Green

mamaama~
DIGITAL PRESS

Copyright © 1984 by Dig ital Equipment Corporation.

All rights reserved . Reproduct ion of this book, in whole or in part, is strictly prohibited. For
copy information contact : Dig ital Press, Educational Services, 12 Crosby Drive, Bedford, Mass.
01730.

Printed in the U.S.A.
10 9 8 7 6 5 4 3 2 1

Documentation Number: EY-00025-DP
ISBN : 0-932376-29-0

Library of Congress Cataloging in Publication Data

Reid-Green, Keith .
Create your own games computers play.

1. Computer games. 2. Games- Data processing.
I. Title.
GV1469.2.R44 1984
ISBN 0-932376-29-0

TRADEMARKS

794.8'2 83-21014

Apple is a registered trademark of Apple Computer, Inc.
CADDS is a registered trademark of Computervision, Inc.
The DIGITAL logo, DECSYSTEM-20, and Professional are trademarks of Dig ital Equipment Cor
poration.
Othello is a trademark of Gabriel Industries, Inc.
Tektron ix is a registered trademark of Tektronix, Inc.

CREDITS
Part 1: Courtesy the Computer Museum.
Part 2: Courtesy the Computer Museum
Part 3: Courtesy the Computer Museum
Chapter One: Arthur Grace. Stock, Boston
Chapter Two: Anestis Diakopoulos, Stock, Boston
Chapter Three : Interior of the casino at Baily's Park Place Casino Hotel
Chapter Four : © 1982 Walt Disney Productions
Chapter Five : Courtesy National Aeronaut ics and Space Administration
Chapter Six: Courtesy Suffolk Downs Photofinish.
Chapter Seven : The Bettmann Archive
Chapter Eight : © 1982 Walt Disney Productions
Chapter Nine: Phyllis Graber Jensen. Stock, Boston
Chapter Ten : Courtesy of Trustees of Boston Publ ic Library
Chapter Eleven : Courtesy the Rodin Museum, Philadelphia. Gift of Jules E. Mastbaum.
Page 57 : Courtesy The International Museum of Photography at George Eastman House
Page 103: Courtesy The International Museum of Photography at George Eastman House

Copyed itor : Mary Skousgaard
Proofreaders : Lynn Hamilton and Mary Skousgaard
Art : Keith Reid-Green
Designer: Diane Jaroch
Typesetter : York Graphic Services
Printer: Kingsport Press
Cover Art: Janis Keating , Computer Images, Digital Equ ipment Corp.

Preface
When I ask my students in computer graphics to do a project, many of them
want to develop a computer game. That's fine with me-computer games can be
just as exacting as "serious" projects. The next question is usually, "Where can I
find a book that tells me how to do a game?" Since I couldn't answer that ques
tion, I had to write that book myself.

Computer games are not the same as arcade games. Most arcade games are
finely tuned combinations of hardware and software that run only one program.
On the other hand, a personal computer is a general-purpose machine that al
lows you to enjoy many different programs. You can write computer games if
you have enough skill, knowledge, and patience. This book may add to your skill
and knowledge-the patience part is up to you.

The color photographs were taken from a Chromatics high-resolution termi
nal driven by a DEC-2020 computer. Line drawings throughout the book were
made on a Computervision CADDS4 system and output to a CalComp 960 plotter.
Programs were written and tested on a Tektronix 4054 intelligent terminal.
Thanks are due to Brian Astle and Dawn Kleinfield for permission to reproduce
their work, and to Stanley Reid-Green, who suggested the title. Errors in English
are the responsibility of Marcia Reid-Green . Technical errors are due to Dennis
Quardt. The good stuff is mine.

Contents

1

Part One
Getting Started

Fundamental Computer
Know-How

How to Use This Book 4
The Subject.· Games and Sports 5

The Computer Display Screen 5

Character Graphics 6
Bit Mapping 6
Requirements for Good Programs 6
First Steps 7

Coding Conventions Used in Examples 8

2

Software Tool Kit
Windowing and Viewporting 14
Clipping 16
Lines 16
Drawing 20
Scaling 21
Translating 21

Rotating 22
Arcs 22
Filling 23

Things to Do 29

3

Randomness
Random Numbers 34
Goaltender Game 36
Refinements 44
Things to Do 44

Part Two
Some Familiar Games

viii Contents

4

Realism and Animation
Realism

Perspective

Details

Animation

Target Practice Game

Refinements

5

Ballistic Trajectory Games
Gravity

Vectors

Dropping a Ball

Bouncing Ball

Cannon Shooting Game

Refinements

6

Racetrack Games
Designing the Track

Adding Horses

Wagering

Race Commentary

Designing Racehorses

Refinements

7

Maze and Fantasy Games
Simple Mazes

Fantasy Games

Defining a Maze Numerically

Generating a Maze

Solving or Traversing a Maze

How to Move the Maze Runner

54

55
56
56
57
63

68
68
69
70
73
79

82
85
88
97

707
107

110
110
111
112
115
125

ix Contents

The Maze Runner's View of the Maze 127
Perspective Maze 136
Refinements 143

8

Outer Space Games
Newton's Laws 146
Space Race Game 147
Applying Gravity 147

Detecting Collisions 150
Controlling the Spacecraft 151
Refinements 155

9

Instructional Games
Artificial Intelligence 158
Concentration Game 159
Memory Drills 164
Refinements 165

10

Part Three
Computer-Aided Design

Finishing Touches
Digitizing 172
Text Definition 173

Text Sequence 174

Font Table Storage and Retrieval 175
Horizontal Letters 177
Slanted Letters (Italics) 178
Character Rotation 179

Sequence Angle 181

Filled (Shaded) Polygons 182

Nontext Fonts 186
Hard Copies 186
Picture Maker 187

Insertions 187

x Contents

Deletions

Moves

Copies

Codes

11

Ideas for Hobbyist Graphics and Games Programs
Hobbyist Programs

Games

Appendix

Notes and Derivations

Bibliography

189
191
191
191

194
196

201

209
241

Create Your Own

Games Computers Play

Part One

Fundamental Computer
Know-How

1

Getting Started

4 Fundamental Computer Know-How

If you bought Create Your Own Games Computers Play or got it as a gift, you
probably own or use a personal computer. You are likely to have played and en
joyed arcade games but they're expensive. You may own several game disks or
cassettes but you've found they're getting boring. Obviously, it's time to expand
your enjoyment of computing by writing your own game programs.

The first aim of this book is to help you write a program for yourself, a game
you will like and have fun w ith. The best way to do this is to start with some
thing simple and then build on it as your skills increase.

Sooner or later, you'll reach the point where you want to show your work to
friends. That is the time to improve the code to make it easier to use and to pay
more attention to the visual effects, the graphics.

How to Use This Book

There are three parts to this book. Part One describes the fundamentals needed
for writing game5. Part Two consists of several "no-frills" descriptions of game
types, using concepts drawn from trigonometry, geometry, or physical laws. Fi
nally, Part Three provides ideas for more games and a way to improve their ap
pearance.

Please do not be in too big a rush to get started on the games themselves,
because you will need the information found in the first chapters to understand
the way the games are coded and described. Even if you are already a good pro
grammer, you should look over Part One first. For instance, a description of the
coding conventions used in all examples is found in Chapter 1.

If your computer doesn't have a good set of software tools for graphics,
work through the Things to Do section in Chapter 2. You ' ll also find that the sub
routines throughout the book will be useful whenever you are doing a graphics
application.

The games early in the book, such as Goaltender in Chapter 3, are very sim
ple. The level of difficulty will increase later in the book as your skills have a
chance to develop.

In Part Two, each chapter covers a specific type of game. Each game chapter
emphasizes a different idea or technique. The chapter on Ballistic Trajectories
Games illustrates the importance of realism while teaching the application of
physical principles to computer games. Racetrack Games introduces polar coordi
nates and rudimentary animation.

The Maze and Fantasy Games chapter incorporates perspective projection,
and Outer Space Games applies vectors. Finally, Instructional Games introduces
artificial intelligence. Students who feel the need to justify writing a computer
game may like the fact that each of these games allows them to learn something
about mathematics, physics, or computer science.

Part Three contains ways to simplify the development of pictures and text
used in games. It also has some ideas for projects that go beyond those found in
this book.

Program codes have been carefully debugged but are not intended to be
copied verbatim. The code is there only to support the written description of the
program and to provide additional detail if necessary. You are urged to concen
trate on the descriptive code when going through a program.

You may notice that the language describing the programs is a little more

9 t--t--+--+--+--+--i
8
7
6
5
4
3
2
I

I 23456

The letter A in a 6 x 9 array of pixels

5 Getting Started

formal than the rest of the book. Formal language is more precise and, therefore,
less subject to misinterpretation.

Although you need some mathematics to develop almost any kind of com
puter game, this book does not go very deeply into theory. Since readers' back
grounds will vary, the math sections, including the Appendix and the Notes, will
be of interest to some, while others will use them only for occasional reference.

The Subject: Games and Sports

In the English language we distinguish between games and sports by classifying
games as generally sedentary in nature, while sports are principally physical.
Games played with equipment such as cards, dice, or a board are not actually
improved by turning them into computer programs. However, computerizing
them provides an opponent for a solitary player.

As a consequence of the attributes of computers, the best simulations of
sporting events deal with the cerebral aspects of the sport, where the user of the
computer is not acting as a player but rather, is managing the participants. A
manager in a computer baseball game exercises options such as pinch hitting and
having a base runner attempt to steal, but the computer controls play of the
game by sampling from the statistics of the simulated players. Coordination is the
principal physical skill that a computer can measure, because most peripheral de
vices available for playing games cannot measure strength or endurance.

Computer games as a category may consist not only of sports and games but
also of hobbies and pastimes, thereby including entertainments in which the user
participates only by watching. Generally speaking, such non-participatory com
puter games do not hold the user's interest, although it is possible to think of
some that are a lot more fun than others. A computerized kaleidoscope is not
nearly so intriguing as an animated cartoon in which the characters perform a
randomly varied script, as in the scene from "Fencing Fools," described and illus
trated in Chapter 11 .

Good computer games take advantage of the machine's attributes. A com
puter can monitor a large set of rules at high speed, perform calculations, vary
the game to fit the skill of the players, allow controlled random variation, display
complex and moving images, and accept various input information. The computer
is much better than people at most of these tasks, so it is also necessary to tem
per the computer's ability in order not to make it an overpowering opponent
(See Chapter 9, Instructional Games) .

The Computer Display Screen

Personal computers may be divided into two broad classes depending on the way
their screens display graphic information. Both types process text in about the
same way-each character is made up of a rectangular array of pixels ("pixel" is
short for "picture element," the smallest spot that the computer can display on
the screen). For more information, see the Appendix, The Display Screen.

A character in a typical computer may be made up of a 6 x 9 array of pixels.
The letter A could be depicted as in the adjacent illustration. Column 6 and rows
8 and 9 are blank to allow for spaces between characters and for spaces between
the rows of characters.

6 Fundamental Computer Know-How

Character Graphics

In character graphics machines, pictures are made by redefining standard charac
ters, such as "A,""*," " 3," and so on. To display a square on a character graphics
screen, a programmer might elect to redefine two characters, say A and B, by
changing the pixels so that A looks like the left-hand half of a square and B
looks like the right-hand half.

The command

PRINT "AB"

will now display a square, not AB.
There are major restrictions to the quality of the display that can be

generated on a character graphics computer. For example, if the programmer
wants to rotate the square or change its size, it is necessary to redefine the
characters or to have another pair of characters previously defined to look like
the rotated square. Using character graphics, it is not possible to define all
rotations of a square because there aren't enough characters.

Bit Mapping

A reasonable representation of three-dimensional images requires a
"bit-mapped" display with high resolution. A bit-mapped display is one in which
each pixel is represented in the computer's memory. The resolution of the display
is dependent on the density of pixels-the more pixels per square inch, the higher
the resolut ion. Since each pixel requires a well -defined amount of memory, the
cost of a computer is proportional to the quality of its resolution .

Because of the characteristics of the human eye, it is necessary that a com
puter display be rewritten or "refreshed" at least 30 times per second in order to
eliminate flickering. As resolution increases, and with it the amount of memory
needed, the computer must be fast enough to read out all the screen buffer, or
bit map, at least 30 times per second.

The primary advantage of a bit-mapped display is that each pixel can be
changed independent of any others, whereas in the character graphics display
described above, pixels are changed in one-character groups of 54. The ability to
change individual pixels is very important in the production of realistic graphics.

Requirements for Good Programs

The first rule of any computer program, including a game, is that it be complete.
Ignoring statistically improbable events can only lead to results that are disap
pointing to the user. It is unlikely, for example, that five-of-a-kind will be thrown
on any roll of five dice. If, however, the programmer of a dice game omits this
possibility due to laziness or ignorance, the game is incomplete. Suppose that
1296 copies of this program are sold . There is a 50 percent chance that one of
those customers will discover the omission on the first roll of the dice.

Good programs are made from

(1) A sound algorithm (definition of the program)
(2) Completely debugged code (every step in the program has been tried out)
(3) Thoroughly edited input (illegal or invalid data are rejected-see below)

Pixel array of the letters A and B

Pixel array of the letters A and B rede
fined as a square

7 Getting Started

First, a complete and accurate algorithm is essential. Without it, steps 2 and 3
won't help.

Next, debug your program. One of the best ways to debug code is to test all
paths through the program so that every instruction is exercised. Then ask a
friend or colleague to find ways to make the program fail.

Finally, the program should respond to any input in a nonfailing way. If a
program asks a user, "What is your name?" and the user replies, "3," the com
puter can proceed without error by referring to the user by the name "3." How
ever, if an income tax preparation program asks, "How many dependents?" and
the user replies, "K," the program must detect that the input was not numeric
and repeat or simplify the request : "How many dependents? Please enter a num
ber not less than zero."

A good program will prompt the user-that is, explain the nature of the an
ticipated input: "How many dependents (O to 20)?"

Then, after the input is accepted, it will be tested for validity and, if invalid,
the request will be repeated :

REPEAT
PRINT "How many dependents (0 to 20)?"
INPUT D

UNTIL D >= 0 AND D <= 20

which is the same as the BASIC statements

100 PRINT "How many dependents (O to 20)?"
110 INPUT D
120 IF D < 0 OR D > 20 THEN 100

First Steps

It is a serious mistake to begin a computer program by writing code. The first
steps should be to design the application and make notes of some kind that de
fine the overall idea.

Computer games, for example, consist of three fundamental sections- set
ting the initial conditions, playing the game, and determining a winner. Initial
conditions include establishing the number of players, apportioning the props
among the players (13 cards each for a hand of Hearts, for instance), and initiat
ing play.

During play, the algorithm or set of rules defining the game must be fol
lowed. When people play games, the rules are either well -known to all partici
pants, in which case there is no question about when a rule has been broken
(failure to follow suit in Hearts, for example), or it is necessary to provide impar
tial referees to pass judgment on events that might be evaluated differently by
opposing players. In some cases referees are needed to maintain order among the
players.

In any computer game, the computer must referee. Therefore, it is essential
that the game algorithm cover every contingency, including cheating, and disallow
any illegal move made by the players.

At the end of a game, the computer program must indicate that the game is
over, who the winner is, and any other appropriate information, such as the

8 Fundamental Computer Know-How

score, the player's won-lost record, and so on . The opportunity to play again
should be presented either w ith the same contestants or new ones.

Coding Conventions Used in Examples

Most personal computers are programmed in BASIC, although there is movement
toward use of languages like PASCAL that have better structure and allow the
programmer to conform to modern programming practice. The programming
examples in this book conform as much as possible to structured coding practice
and machine independence. To avoid code tnat depends on the characteristics of
an ind ividual machine, some subroutines are explained but not shown in the ex
amples. To compromise between BASIC and PASCAL, a form of structured BASIC is
used in which PASCAL-like structures and top-down code are combined with
standard BASIC.

Except for the four structured statements described below, the coding con
forms to the rules for Tektronix BASIC. There are four graphics statements that
require explanation :

PAGE This instruction clears the display screen and moves the cursor to the
upper left-hand corner of the screen.

HOME The cursor is moved to the upper left-hand corner of the screen.

MOVE The instruction MOVE X,Y moves the cursor to the point X,Y.

DRAW The instruction DRAW X,Y draws a line from the existing position of the
cursor to the point X,Y and moves the cursor to X,Y.

So the program

PAGE
MOVE 10 , 10
DRAW 20 , 10
DRAW 20 , 20
DRAW 10, 20
DRAW 10, 10

will erase the screen and then draw a square of 10 units on a side.
The LET statement may be written w ith or without the word LET.

LET A = 2

is the same as

A = 2

The variable Pl is the same as the constant 3.14159
Tektron ix BASIC supports the operators MAX and MIN . The statement

A = 3 MAX B

will set the value of A as the greater of 3 and the value of B.
Logical variables are also supported . The statement

IF F THEN 300

w ill cause a branch to statement 300 if F is " true"-in th is code, " true" means
the value of F is not zero. The NOT operator may be used to invert the meaning

9 Getting Started

of a logical variable :

A = NOT(A)

sets A to 1 if A was O; otherwise A is set to zero.
The value of a true expression is 1, of a false expression, 0. In the statement

A = (L < 5)

if L is less than 5, then A becomes 1; otherwise A becomes 0.
Logical variables can reduce the amount of code- many personal computers

suffer from small memories, so code min imization is often important. Consider
this problem : if A = 3, then add 2 to B. The code can be

100 IF A <> 3 THEN 120
110 B = B+ 2

or

100 B = B + (A = 3)*2

The four structured statements are

I F condition THEN expression-list ELSE expression-list
WHILE condition DO expression-list ;
REPEAT expression- l ist UNTIL co nditi on
CASE expression OF case: expression-list

The IF statement has two forms : IF .. . THEN or IF ... THEN ... ELSE. In the f irst
form, the code

100 IF A = 3 THEN
110 B 5
120 c = 0
130

will cause lines 110 and 120 to be executed only if A is 3 when line 100 is
executed. In BASIC, these statements are converted to

100 REM IF A 3 THEN
101 IF NOT(A = 3) THEN 130
110 B = 5
120 c = 0
130 REM ;

As an example of IF ... THEN ... ELSE, look at the following :

100 IF A = 3 THEN
110 B = 5
120 c = 0
130 ELSE
140 B = 4
150 c = -1
160

If A = 3, B will become 5 and C, 0. If A is not equal to 3, then B becomes 4
and C, - 1, because the structured statements are converted to the following
BASIC code :

10 Fundamental Computer Know-How

100 REM I F' A 3 THEN
101 IF' NOT(A 3) THEN 130
llO B = 5
120 c = 0
129 GO TO 160
130 REM ELSE
140 B = 4
150 c = -1
160 REM ;

The WHILE ... DO statement will loop through all the statements below the
WHILE ... DO to the terminating statement (;) until the condition stated in the
WHILE ... DO is no longer true. The code

100 J = 0
110 WHILE J < 3 DO
120 PRINT J
130 J = J + 1
140

will cause the numbers

0
1
2

to print out. This code, in BASIC, is

100 J = 0
110 REM WHI LE J < 3 DO
111 IF' NOT(J < 3) THEN 140
120 PRINT J
130 J = J + 1
139 GO TO llO
140 REM ;

Code for the REPEAT ... UNTIL is similar, but the condit ion test is done at the
bottom of the loop:

100 J = 0
llO REPEAT
120 PRINT J
130 J = J + 1
140 UNTIL J 3

This code does the same thing as the WHILE ... DO above. In BASIC, it becomes

100 J = 0
llO REM REPEAT
120 PRINT J
130 J = J + 1
139 IF' NOT (J = 3) THEN 110
140 REM UNTIL J = 3

The CASE statement allows various pieces of code to be executed depending
on the value of an expression :

100 CASE J - 3 OF'
llO 0 :

11 Getting Started

120 K 1
130
140 1:
150 K 2
160
170 2 :
180 K = 4
190 L = 0
200
210

If the expression J - 3 is equal to 0, then statement 120 will be executed. If
J - 3 = 1, statement 150 will be executed. If J - 3 = 2, statements 180 and 190
will be executed. No code will be executed between statements 100 and 210 if
J - 3 is equal to any other value. Note that a semicolon ends each individual
case, and a terminating semicolon closes the CASE statement.

The example above converts to the following BASIC code:

100 REM CASE J - 3 OF
llO REM 0:
lll IF J - 3 <> 0 THEN 130
120 K = 1
130 REM
140 REM 1 :
141 IF J - 3 <> 1 THEN 160
150 K = 2
160 REM
170 REM 2 :
171 IF J - 3 <> 2 THEN 200
180 K = 4
190 L = 0
200 REM
210 REM

Complex structures can be built up using structured statements within other
structures. Whenever multiple statements are terminated by semicolons, these
pairings occur with the earliest semicolon applying to the latest statement. For
instance:

100 CASE J OF
llO 1 :
120 IF K = 3 THEN
130 A 5
140 B = 4
150
160 PRINT B
170
180 3 :
190 PRINT c
200
210

Remarks may be inserted on the same line as an instruction by using '!' as a
separator. Thus

100 READ B Load the 8-array

12 Fundamental Computer Know-How

the same as

100 REM Load the B-array
110 READ B

Don't copy the programs. They won't work on your machine because the
language, although similar to ordinary BASIC, has been deliberately modified to
provide structured programming capability . Use the algorithms and the code as a
gu ide. They are not aimed at a specific type of computer. In general, it is possible
to implement them on most bit-mapped personal computers, and in some cases
on character machines, but some reductions are necessary for those with small
memories, slow processors, or low graphics resolution.

The algorithms used throughout the book are built by degrees from the
simplest examples. Users of small-memory microcomputers should develop the
first algorithms and improve them as hardware permits. Owners of larger
machines will find that this same stepwise refinement is a good way to write and
debug programs. Although the games tend to get more complex in later
chapters, the initial algorithm is as simple as possible.

If your computer is going to play games well, it will be because of you . No
matter what its scale, it can do just what it is programmed to do. Likewise, the
algorithm by itself is only a skeleton of an idea. You may expand any algorithm
to make it more interesting and easy to use by the addition of realistic details
and attention to visual effects. Then the game as you imagined it will really
appear on the screen.

2

Software Tool Kit

14 Fundamental Computer Know-How

Most computers do not have a complete set of subroutines for all purposes.
While some of the most widely used routines are available (trigonometric func
tions like sine and cosine, for example), it is usually necessary for you to develop
a series of software tools to simplify program development. Otherwise, you spend
a lot of time " reinventing the wheel" whenever a new program is written .

In this chapter, we are going to develop a tool kit for graphics. You will need
to know how to scale things down so they fit on your screen, develop objects
from points, lines, circles, and arcs, change the sizes, shapes, and orientations of
predefined objects, and fill outlines with colors. Once you have mastered these
tools, you can concentrate on developing games without getting bogged down in
the details of how to draw the pictures.

At the end of the chapter is a section called Things to Do. It describes in de
tail the steps you might take to debug a subroutine for drawing a picture. If you
prefer not to wait, go ahead and do the examples as you go along. Be sure to
convert them so they will make sense on your machine, and write them as sub
routines so they can be used in more than one place in your game.

Windowing and Viewporting
It is natural to think of events in terms of their actual measurements; for exam
ple, a horse racetrack is one mile around. To display a track on a computer, you
must scale it down to fit the dimensions of the display screen. The units in which
a display is generated are not miles or any other "real world" units, but pixels. As
seen in the ill ustrations, one computer may measure pixels from the lower left
hand corner of the screen, whereas another begins in the upper left-hand corner.
One screen may have 768 rows of 1024 pixels, another 190 rows of 240 pixels.

Automatic conversion from real-world units ("windowing") to pixels tends to
simplify programming and debugging, because real-world numbers are used in
program variables.

To convert Y-values (vertical) , four numbers are involved: the pixel Y-address
of the bottom left-hand corner Y1S, the pixel Y-address of the top right-hand
corner Y2S, the real-world units associated with the bottom left-hand corner of
the screen Y1W, and the upper right-hand corner Y2W. To find a pixel Y-address
YS from an arbitrary real -world number YW, it is necessary to set up a ratio be
tween the two scales :

Y2W - YlW
Y2S - YlS

YW - YlW
YS - YlS

So to find YS,

Y2S - YlS
Y2W _ YlW (YW - YlW) + YlS YS

The pixel X-addresses (horizontal) must be converted from real-world units in
the same way. Then two funct ions FNX and FNY may be coded so that when an
X,Y pair of real-world coordinates is given to these functions, they return a pixel
address.

X2S - XlS
FNX(X) = X

2
W _ XlW (X - XlW) + XlS

-----1024-----·:

'----.....
0,767

0,0
_/

,--/ r
'°"·"' I

' 02~I
Computer screen, with 768 rows of
1024 pixels, measuring from lower left
hand corner

:-----240 -------.., ...____ ~ r-
o.o m.o I

0,189 _____.,

190

"'~ l_
Computer screen, with 790 rows of 240
pixels, measuring from upper left-hand
corner

pixel
0,767

12 "

0.25 ,- 0.3 mi
639.537 pixel

pixel 1023.0

9"

A 9" x 72" computer screen showing
pixel address of one edge of the grand
stand

Aspect ratio of a circle with a radius of
five pixels on a screen having square
pixels. Aspect ratio of a circle with a
radius of five pixels on a screen having
pixels twice as tall as they are wide.
Pixel aspect ratio compensated for by
use of windowing.

15 Software Tool Kit

and

FNY (Y) = Y2S - YlS (Y - Y 1 W) + YlS
Y2W - YlW

For example, a racetrack is to be displayed such that the center of the oval
is in the middle of the screen. Because the screen is not square and scale must be
preserved, the extents in the horizontal will be different from those in the verti
cal.

If in the X-direction (horizontal) a distance of one mile is to be seen on ei
ther side of the center of the track, 0.75 miles will be visible above and below
the center in the Y-direction . If one edge of the grandstand is 0.25 miles east and
0.3 miles south of the center of the track, what is the pixel address of this point?
(See the illustration.)

If the center of the track is at 0,0 miles, the screen shows the real world from
- 1 to + 1 miles west to east (X-direction) and - 0.75 to + 0.75 miles south to north
(Y-direction).

Using the variable names in FNX and FNY above

Variable

X1S
X2S
X1W
X2W

x

so FNX

and FNY

Quantity Units Variable Quantity

0 pixels Y1S 767
1023 pixels Y2S 0

- 1 miles Y1W - 0.75
1 miles Y2W 0.75

0 .25 miles y - 0.3

1023 - 0
1 - (- 1) (0.25 - (-1)) + 0

- 1023 (1. 25)
2

639 . 375

Units

pixels
pixels
miles
miles
miles

0 - 767
0 . 75 - (- 0 . 75) (- 0 . 3 - (- 0 . 75)) + 767

- 767 = -1~- (0. 45) + 767 = 536 . 9
.5

Since pixel addresses must be integers (whole numbers), it is clear that the
functions should be

FNX(X) = INT((X2S - XlS)/(X2W - XlW)*(X - XlW) + XlS + . 5)
FNY(Y) = INT((Y2S - YlS)/(Y2W - YlW)*(Y - YlW) + YlS + . 5)

which yields the pixel address 639, 537 .
There is another definite advantage to working in real-world units. On some

display screens pixels are square (as in the first illustration here), but most pixels
are taller than they are wide (as in the second illustration). Thus, for example, if
a circle with a radius of five pixels is drawn using pixels taller than they are wide,
the result will be an ellipse whose aspect ratio is the same as the aspect ratio of
a pixel. Using real-world units, the circle will be circular, although nothing can be
done to alter the pixel shape.

16 Fundamental Computer Know-How

Frequently an application requires that parts of the display screen be used
for different functions. One section may contain graphics, another text. Each sec
t ion is referred to as a " viewport." The extents of the viewport are usually ex
pressed in terms of pixel addresses, so four numbers are required to define a
viewport.

A viewport in the upper left quarter of the screen can be described by the
pixel addresses of the two opposite corners 0, 384 and 512, 767, as seen in the
viewport diagram. To scale real-world units to this viewport, the variables X15,
Y15, X25, and Y25 become

XlS 0
YlS = 384

Clipping

X2S 512
Y2S = 767

If, as above, these screen coordinates represent - 1 to + 1 miles horizontally and
- 0.75 to + 0.75 miles vertically, it is possible to express values such as 2, - 1 that
are outside the viewport but on the screen. If a line is drawn from 0,0 to 2, - 1, it
will exceed the boundaries of the viewport and should be "clipped"- only the
part inside the viewport should be displayed.

The test to see if an individual pixel x,y is outside the viewport is

IF' x < XlS or x > X2S or y < YlS or y > Y2S THEN outside

Simple. All that is necessary is to display only those pixels that fail the "out
side" test. However, clipping every pixel is too slow, because the conversion from
world units is done even on pixels that are to be clipped . It is much faster to clip
a line in its world coordinates and to convert to pixels only the portion within
the viewport.

All lines fall into one of three categories : entirely within the viewport, en
t irely outside, or partly within . Notice in the clipping illustration that a line is not
necessarily entirely outside the viewport merely because its endpoints are outside
the viewport.

The visible portion of this line is the segment from XA,Y25 to X25,YA, where
XA and YA are as of yet unknown. All lines may be cl ipped by examination with
the four lines defining the viewport and by clipping off any parts that pass
through each of the four lines. This is done by replacing, in the above case, the
point X1 ,Y1 with XA,Y25 and X2,Y2 with X25,YA. (The process for determining
the intersection of two lines is discussed in the Cartesian Coordinates section of
the Appendix.)

Lines
Most personal computers allow the user to draw a line on the display screen by
specifying the endpoints of the line. For example, to draw a line from X1,Y1 to
X2,Y2 it may be necessary to write

MOVE Xl , Yl
DRAW X2 , Y2

or simply

1024
...___,__

51256-(0.767

0.384 512.384
j --------.

0.0
_./

,,.---/
1023. 767

1023.0
'--..._.,

I

T
r

Viewporting part of a screen

XI .YI

XIS.Y2S X2S. Y2S

,--1
XA.Y2S

X2S .YA

X2.Y2

XIS.YIS X2S.YIS

Clipping endpoints outside the viewport

X2 Y2 '.:---....

I

XI.YI

1•i:::
I~ ~ ~ •• ~f-

~ •• ~

Automatic computer generation of line
from X1, YJ to X2, Y2

X2 Y2 --.....,

I
11

XI.YI

Beginning of slow line-drawing
algonthm

X2 Y2
~

I I II
11 • -1 •
I B --- I -

B 11
,1 I I

I

XI . YI

Completed slow line-drawing algorithm

X2 Y2

I I
I I
I II
Ill -"' I

r. I
Ill I

I I

XI.YI

Faster line-drawing algorithm

17 Software Tool Kit

DRAW Xl ,Yl TO X2.Y2

The computer automatically finds which pixels lie on the theoretical line and
illuminates them, as shown here. However, software that generates lines auto
matically is not always available, especially for microprocessors or very inexpensive
computers .

All display processes are ultimately reduced to illuminating individual pixels,
including the drawing of a straight line. As we shall see, parametric curves such
as circles and ellipses are usually reduced to short straight lines, which means that
a lot of lines will be converted to pixels during the generation of a display. Con
sequently, the conversion should be fast .

Suppose a line is to be drawn between two world-coordinate points V,W and
X,Y. After windowing and clipping to the viewport boundaries, these points are
converted to the pixel addresses X1 ,Y1 and X2,Y2 . The accompanying drawings
illustrate the following discussion.

A valid algorithm to find the pixels on a nonvertical line consists of illuminat
ing the pixel at the intersection of the line with each of the vertical lines that
pass through pixels between X1 and X2.

To complete the algorithm, if any pair of consecutive pixels is not connected,
it is filled (illuminated) vertically. This is a slow algorithm because the equation
for the intersection of two lines must be solved for each pixel between X1
and X2.

A much better algorithm uses the ratio of horizontal to vertical distance be
tween the endpoints. If Y2 - Y1 is three times as big as X2 - X1, then it is clear
that for every horizontal step, three vertical steps must be filled .

Here is the code for this faster line-drawing algorithm :

Line Program Code

X = Xl
Y = Yl
GOSUB 500
F = 0

REPEAT
Fl F + ABS(X2 - Xl)
F2 = F - ABS(Y2 - Yl)

I F ABS(Fl) >= ABS(F2) THEN
F = F2

Line begins at Xl,Yl

Color the pixel at X.Y

Set ratio values

X = X + SGN(X2 - Xl) Increase X if ho r izontal ~vertical

ELSE
F Fl

Y = Y + SGN(Y2 - Yl)

GOSUB 500
UNTIL X = X2 AND Y = Y2

Increase Y if vertical > horizontal

Co l or the pixel at X,Y
Continue to end of line X2,Y2

Sequence
Number

330
340
350
360

370
380
390

400
410
420

430
440
450
460

470

480

Compare the algorithmic description below with the code above by matching
the sequence numbers. Notice the simplicity of the code- no multiplication or
division is necessary and only the very fast ABS and SGN functions are used. In

18 Fundamental Computer Know-How

fact, ABS(X2 - X1) and SGN(X2 - X1) might be assigned to variables before the
REPEAT (the same could be done for Y2 - Y1), thereby further reducing the nec
essary computations.

Line Code Description

X and Y are set to the beginning point on the line X1,Y1 .

Subroutine 500 fills the pixel whose address is X,Y. F is used to establish
the ratio of the number of address increments in X with those in Y.

F1 is set to F plus the horizontal distance between the endpoints of the
line.

F2 is set to F minus the vertical distance between the endpoints of the
line.

If the X-ratio is currently not less than the Y-ratio, F is set to the Y-ratio
and a step of - 1, 0, or + 1 is added to the X-address, depending on
whether X2 < X1, X2 = X1, or X2 > X1, respectively.

If the X-ratio is currently less than the Y-ratio, F is set to the X-ratio and
a step of - 1, 0, or + 1 is added to the Y-address, depending on whether
Y2 < Y1, Y2 = Y1 , or Y2 > Y1, respectively.

The pixel whose address is X,Y is filled.

The process is continued until the end of the line is reached .

Sequence
Number

330

330

380

390

400

430

470

480

An elegant but not very fast line drawing algorithm may be defined recur
sively. (A recursive procedure is one that calls itself, similar to a BASIC subroutine
beginning at statement 100 that contains a GOSUB 1,00 within the subroutine.)

Suppose a green line is to be drawn from X1 ,Y1 to X2,Y2. A recursive line
drawing algorithm is

LINE(Xl . Yl,X2 , Y2) :
IP Xl = X2 AND Yl = Y2 THEN

PIXEL(Xl,Yl) =GREEN
RETURN

ELSE
LINE(Xl , Yl,(X2 + Xl)/2 .(Y2 + Yl)/2)
LINE((X2 + Xl)/2, (Y2 + Yl)/2 , X2 , Y2)

This procedure is called LINE and requires as inputs the pixel addresses of the
endpoints. If the endpoints of the line are on the same pixel, color it green and
end the procedure. Otherwise, call the procedure with the endpoints of the two
halves of the line.

A programmer using BASIC cannot normally use recursion but instead must
write a program that builds a stack of the pertinent data (in this case the end
points of the line) and repeatedly refers to the stack until it is empty.

It is necessary to establish how big the stack must be. Since the stack is in
creased each time the line is halved, the stack depth depends on the number of
times the longest possible line might be halved before the endpoints lie on the
same pixel. This in turn depends on the size of the display. If the screen contains
1024 by 1024 pixels, it is possible to halve 1024 to get 512, halve 512 to get 256,
and so on, 10 times before reaching 1. In other words, 1024 = 210

. The stack must
be ten deep, and since the values X1 ,Y1 ,X2,Y2 are to be retained, the stack array
5 can be defined as S(10,4).

19 Software Tool Kit

Because of roundoff and the halving process, extra points will be generated.
They can be omitted by comparing a generated point with the previously dis
played point and displaying it only if their pixel addresses (X or Y depending on
the slope of the line) differ. Study the recursive line-drawing code and then its
explanation :

Recursive Line Program Code

p = 1
F = 0
X4 = -999
Y4 = -999
S (1, 1) = Xl
S(l,2) = Yl
S(1,3) = X2
S(l,4) = Y2
G = 0

Set counter F to top of stack
Initialize

Save endpoints on stack

[

IF ABS(X2 - Xl) < ABS(Y2 - Yl) THEN
G = 1 G = 1 if line slope ~

REPEAT
V S(P,l)
W S(P,2)
X S(P , 3)
Y S(P,4)
p p - 1

Get most recent stack entry

and reduce stack size

IF ABS (V - X) MAX ABS(W - Y) < 0.5 THEN
X3 INT(V) If endpoints are the same,
Y3 = INT(W) ! set X3,Y3

45°

[

IF F = 0 OR NOT(X3 = X4 AND NOT(G) OR (Y3 = Y4 AND G))
F = 1 ! If no pixel has been colored
X4 = X3 ! or this point has not been colored,
Y4 = Y3
GOSUB 660 ! color the pixel at X3,Y3

ELSE

THEN

p = p + 2
S(P,l) V
S(P,2) W
S(P,3) (V + X)/2

If endpoints are not the same,
halve the line between V,W and X,Y
and put these two sets of
endpoints on the stack

s (p. 4) (w + y) /2
S(P - 1,1) S(P,3)
S(P - 1,2) S(P,4)
S(P - 1 , 3) X
S(P - 1 , 4) Y

UNTIL P 0 Keep going until the stack is empty

Recursive Line Code Description

Set stack counter P to 1.

Set "pixel processed" flag F to 0.

Set X4,Y4, the address of the last pixel processed, to an impossible ad-

Sequence
Number

290
300
310
320
330
340
350
360
370

371
372
373

380
390
400
410
420
430

440
450
460
470
480
490
500
510
520

530
540
550
560
570
580
590
600
610
620
630

640

Sequence
Number

290

300
310

20 Fundamental Computer Know-How

dress. This is not necessary in most versions of BASIC- however, in line
470 a comparison with X3 and Y3 is made. Even though the first com
parison is not meaningful since F = 0, in one or two BASIC interpreters
the values for X4 and Y4 must have been preset in order to avoid an
'undefined' error. (In other BASICs, an undefined variable is presumed
equal to zero.)

Put the endpoints of the line on the stack. 330

Set G to reflect the slope of the line. If Y2 - Y1 is greater in magnitude 370
than X2 - X 1, then G = 1; otherwise G = 0.

Set V,W,X,Y to the most recently stacked endpoints. 390

Reduce the stack counter by 1. 430

If the endpoints are at the same pixel address, set X3,Y3 to that address. 440

If either no pixel has been filled or this point has not been filled previ - 470
ously, set the "pixel processed" flag to 1, set X4,Y4 to the address of the
last pixel processed, and fill that pixel (subroutine 660).

If the test in line 470 failed, halve the line and put the resulting two 530
sets of endpoints on the stack. Add 2 to the stack counter.

Continue until the stack is empty. 640

Drawing

Let us define " drawing" as beginning at a point XO,YO, making a straight line
from XO,YO to X1 ,Y1 , making another straight line from X1 ,Y1 to X2,Y2, and so
on, until a specified number of X,Y pairs has been used.

For instance, to define a triangle, four pairs of points are needed :
- 2, - 1 2,- 1 0,3 and - 2, - 1 again, as illustrated in the drawing. If these
points are put into a DATA statement after the number 4 to define how many
pairs there are, a simple routine to draw the figure can be constructed .

DATA 4 ,-2, - 1,2 ,-1 ,0 , 3, - 2, - 1
READ J Read '4'
READ X8 , Y8 Read - 2 .-1
MOVE XS.YB Move to - 2 ,-1
WHILE J >= 2 DO Repeat thru next ; until J < 2

READ X8 , Y8 Read next point
DRAW XS . YB Draw from previous point to this point
J = J - 1 Reduce J

If more than one draw sequence is necessary, the program must recognize
the end of each group of lines. Let us say that any number less than - 999 or less
signals "quit" when read into J. Thus

DATA 4, - 2 ,-1 , 2 , - 1 ,0 , 3 ,-2 ,-1
DATA - 9999

REPEAT
READ J
IF J > - 999 THEN

READ X8 , Y8
MOVE XS.YB
WHILE J >= 2 DO

+Y

-x

-Y

Four pairs of points needed to define a
triangle : -2, -7 2, - 1 0,3 - 2,- 7

-2. -I 2. -I

Drawing needing more than one draw
sequence

10.7

7,2 10.2

Triangle before scaling

5,3.5

3.5,I 5 .1

Triangle after scaling by a factor of 0. 5

21 Software Tool Kit

READ XS.YB
DRAW X8,Y8
J = J - 1

UNTIL J < - 999

These data statements describe the accompanying f igure, wh ich has two
draw sequences :

DATA 4, - 2, - 1,2, - 1,0,3, -2,-1
DATA 2. - 2,1.5,2,1 . 5
DATA - 9999

Scaling

Having defined a figure's dimensions, it may be necessary to redraw it in a differ
ent size. Th is process, scaling , is done by multiplying each X,Y pair by a scaling
factor 59. If 59 = 1, the figure will remain the same. A factor of 0.5 will reduce
each dimension by half. For instance, a figure 4 un its wide by 4 un its tall will be
come, after a scal ing factor of 0.5, 2 units wide by 2 un its tall .

To allow for scaling, the program becomes

REPEAT
READ J
IF J > - 999 THEN

READ XS . YB
MOVE X8*S9 , Y8*S9
WHILE J >= 2 DO

READ X8 , Y8
DRAW X8*S9,Y8*S9
J = J - 1

UNTIL J < - 999

Scaling can cause an unexpected side effect if a figure is not defined around
the origin (the point 0,0). For example, in the accompariying illustrations, a tri
angle is shown before and after scaling by a facto r of 0.5.

Not only have the triangle's dimensions halved, but so has its distance from
the origin.

Translating
A set of X,Y pairs may be moved so that the origin of the set (the pa ir 0,0)
moves to the point X9,Y9 by add ing X9 to each of the X-values and Y9 to each
of the Y-values in the set. Th is must be done after scaling otherwise X9 and Y9
will also be scaled. The above MOVE and DRAW commands become

MOVE X8*S9 + X9 , Y8*S9 + Y9
DRAW X8*S9 + X9 , Y8*S9 + Y9

22 Fundamental Computer Know-How

Rotating
A set of X,Y pairs may be rotated around the local origin by computing a rotated
pair X7,Y7 as follows :

X7 = X8*cos(8) - Y8*sin(8)
Y7 = X8*sin(8) + Y8*cos(8)

where 8 is the counterclockwise angle of rotation in radians. (If T is the angle in
degrees, f) = T*0.0174533.) Rotation may be done before or after scaling but
must be done before translation because rotation is always about the origin.

A program to :

Rotate through T degrees

Sca le by S9

Translate to X9,Y9

Draw a figure

using the data statements defined above, is

CO = COS(T*0 .0174533)
SO = SIN(T*0 .0174533)
REPEAT

READ J
IF J > -999 THEN

READ X8,Y8
MOVE (X8*CO - Y8*SO)*S9 + X9,(X8*SO + Y8*CO)*S9 + Y9
WHILE J >= 2 DO

READ X8 , Y8
DRAW (X8*CO - Y8*SO)*S9 + X9,(X8*SO + Y8*CO)*S9 + Y9
J = J - 1

UNTIL J < -999

Arcs

Although many figures may be drawn using only straight lines, the quality of
most figures is improved by the addition of circular or elliptical arcs. The general
elliptical arc may be described fully by the coordinates of its center, its horizontal
and vertical rad ii, and the starting and ending angles of the arc as measured
from the center. Similarly a circular arc may be described, where the radius of the
circle is used in place of the horizontal and vertical radii of the ellipse.

To draw the arc, first set

XO.YO center of arc
Ml horizontal axis length
M2 vertical axis length
Al starting angle, converted to radians
A2 ending angle, converted to radians

The cursor is moved to the first point on the elliptical arc, at

XO+ Ml*COS(I),YO + M2*SIN(I)

23 Software Tool Kit

and then short line segments are drawn in one-degree increments between A 1
and A2. The program must therefore increase or decrease the angle by one-de
gree increments depending on whether A 1 is less than or greater than A2.

The program code and description for drawing an ellipse are as follows:

Ellipse Program Code

I = Al
MOVE XO+ Ml*COS(I),YO + M2*SIN(I)

Set I to starting angle
Move to beginning of arc

IF Al < A2 THEN

REPEAT
I = I + PI/180

[

IF I > A2 THEN
I = A2

If Al < A2 go counterclockwise

Be sure not to go past ending angle

Sequence
Number

150
160

170

180
190

200
210
220

DRAW XO+Ml*COS(I),YO+M2*SIN(I) ! Draw to next point on arc 230
UNTIL I = A2 240

ELSE

REPEAT
I = I - PI/180

[

IF I < A2 THEN
I = A2

If Al ~ A2 go clockwise

DRAW XO+ Ml*COS(I),YO + M2*SIN(I)
UNTIL I = A2

Ellipse Code Description

Having set XO, YO, M 1, M2, A 1, and A2, set I equal to A 1.

Move the cursor to the start of the elliptical arc.

If A 1 is less than A2, execute the code between lines 180 and 240.

Increase I by ?T/180 radians, or 1 degree.

If I is greater than A2, set I equal to A2.

Draw this arc segment.

If A 1 was greater than A2 in line 170, execute the code between lines
260 and 330.

Decrease I by 7T/180 radians, or 1 degree.

If I is less than A2, set I equal to A2.

Draw this arc segment.

If I is not equal to A2, continue at line 260.

Filling

250

260
270

280
290
300

310
320
330

Sequence
Number

150

160

170

190

200

230

250

270

280

310

320

Having developed the capability to draw outlines of figures, the next step is to
color segments of figures in order to add realism. It is relatively. easy to color rec
tangles-given the opposite corners X1,Y1 and X2,Y2 an algorithm is:

24 Fundamental Computer Know-How

I = Yl
REPEAT

I = I + O.Ol*SGN(Y2 - Yl)
MOVE Xl, Yl + I
DRAW X2 , Yl +I

UNTIL I >= Y2

A better one would replace 0.01 with a number which guaranteed that ex
actly one pixel row at a time would be filled by the MOVE-DRAW commands. To
fill a circle or circular arc, a similar procedure can be followed by drawing con
centric circles, reducing the radius by approximately one pixel each time.

Irregular polygons are more difficult to fill. One possible procedure entails
examining a horizontal line that passes through the polygon. When the line
reaches the first line on the polygon, start filling . Continue to fill until the second
line on the polygon is encountered, start again on the third line, and so forth.

If this is done for every pixel row between the biggest and smallest Y-values,
the polygon will be filled . The algorithm requires a table of the nodes (end
points) of each line, sorted to simplify determining whether a pixel is inside or
outside the polygon.

To set the window for your machine, use the windowing functions described
in the Windowing and Viewpointing section of this chapter, with the numerical
values required by your computer. Then change all MOVE and DRAW commands
to use these functions. For example,

MOVE FNX(X(l)) , FNY(Y(l))

and so forth .

260

In the following code for filling a polygon, the screen has 100 rows of 130
pixels :

Shade a Polygon Program Code

DATA 6 , 65 , 50,85 , 45 ,80,20 ,70 , 30 , 60,20 . 50 , 40 Define polygon
READ N Read number of nodes
DELETE X, Y,T Define arrays to contain N nodes
DIM X(N + l) , Y(N + l),T(N,4)
Yl = 9999 Initialize
Y2 = - 9999
I = 0

REPEAT
I = I + 1
READ X(I), Y(I)
Yl Yl MIN Y(I)
Y2 = Y2 MAX Y(I)

IF I = 1 THEN
MOVE X(l),Y(l)

ELSE
DRAW X (I) , Y (I)

UNTIL I = N

X(N + 1) X(l)
Y(N + "l) = Y(l)

Get a node
Find the smallest Y
and the largest Y so far

Move to first node

or
draw to this node

Duplicate first node
as last node to close polygon

Sequence
Number

130
140
150
160
170
180
190

200
210
220
230
240

250
260

270
280
290

300

310
320

25 Software Tool Kit

DRAW X(1) , Y(1) and draw closure 330
I = 0 340

REPEAT 350
I = I + 1 360

IF X(I) <=X(I+l) THEN ! Save each line with smallest x first 362
T(I,l) X(I) 364
T(I,2) Y(I) 366
T(I,3) X(I + 1) 368
T(I,4) Y(I + 1) 370

ELSE
T(I,l)
T(I , 2)
T(I , 3)
T(I,4)

UNTIL I = N

REPEAT

X(I + 1)
Y(I + 1)
X(I)
Y(I)

c = 0 Sort T on smaller X of each line
I = 1

REPEAT
I = I + 1

IF T(I - 1,1) > T(I,l) THEN
s = 0

REPEAT
s = s + 1
C = T(I - l,S)
T(I - l , S) = T(I , S)
T(I,S) = C

UNTIL S 4

If a pair of lines is
out of sequence ,

switch the pair of lines

372
374
376
378
380
382

410

420
430
440

450
460

470
480

490
500
510
520
530
540
550

UNTIL I N Test all pairs 560

UNTIL C

S = Yl

REPEAT
s = s
c = 0
I = 0

0

+ 0.233

Do it again if a pair was switched 570

Begin at Ymin 580

590
Move up 0.233 units 600

610
620

R~E~ ~O

I = I + 1 640

IFS >= T(I,2) MIN T(I ,4) AND S <= T{I , 2) MAX T(I , 4) THEN 650
Xl = T(I , l) 660

IF T{I , l) <> T{I,3) THEN 670
Xl=(S-T(I,2))/(T{I,4)-T{I , 2))*(T(I , 3)-T(I,l))+T(I , l) 680

690

IF C=O THEN If horizontal line crosses a polygon line, 700

26 Fundamental Computer Know-How

MOVE Xl,S
ELSE

DRAW Xl ,S

C NOT(C)

UNTIL I = N

UNTIL S >= Y2

move or draw
depending on whether inside or outside
the polygon

Change "lines crossed" flag

Process all polygon lines

End when at Ymax

Shade A Polygon Code Description

On a screen defined as 0 to 130 in X and 0 to 100 in Y, define 6 nodes
at 65,50 85.45 80,20 70,30 60,20 and 50,40.

Read the number of nodes.

Define arrays X and Y to hold the coordinates of all the nodes, repeat
ing the first node as the last node to close the polygon. Define array T
to hold the X,Y values of the endpoints of each line.

Set Y1, which will become the smallest Y-value Ymin, to a large number.
Set Y2, which will become the largest Y-value Ymax, to a small number.

Put the coordinates of each node into the X and Y arrays and collect
Ymin and Ymax. Draw the polygon.

Put the coordinates of the first node into the (N + 1)st node and draw
to the first node to close the polygon.

Put pairs of nodes into T such that the node with the smallest X-value is
entered first.

Sort the T array so that the line with the smallest X-value is first, and
the other lines follow in sequence by ascending X.

Move up the polygon from Ymin to Ymax in steps of 0.233.

Set C = 0 to indicate that an even number of polygon lines have been
looked at.

If the horizontal line intersects a polygon line, then compute X1, the X
intersection of the lines.

If this line is an even count (C = 0), then move to the intersection.

If it is an odd count, draw to the intersection, filling from the previous
intersection.

Change C to reflect that another line has been counted.

Process all polygon lines.

Process until S has reached Ymax.

The above code will result in a polygon shaded as illustrated here.

710
720
730
740

750
760

770

780

Sequence
Number

140

160

170

200

310

350

420

580

610

650

700

720

750

770

780

If the programmer has access to the display memory (that is, access to pixel
addresses), an easy way to implement a filling algorithm is to define it recur
sively. Given an arbitrary polygon drawn in white on a black background, a pixel
address X,Y known to be inside the polygon and the polygon to be colored red,
a recursive algorithm is

FILL(X , Y):
IF PIXEL(X , Y) = BLACK THEN

Polygon in the process of being shaded

27 Software Tool Kit

RETURN
ELSE PIXEL(X,Y} RED

FILL(X - l,Y)
FILL(X + 1. Y)
FILL(X,Y - 1)
FILL(X,Y + l}

This procedure is called FILL. If the pixel being examined is black, qu it . Other
w ise, color it red and examine the pixels above, below, t o the left, and to the
right of the pixel at X,Y.

Fill Program Code

REPEAT

IF P(X,Y) <> 0 THEN
X INT(S(C)/1000)
Y = S(C) - X*lOOO
c = c - 1

ELSE
P(X,Y} = 4
GOSUB 880
S(C+l}=(X-l)*lOOO+Y
S(C+2)=(X+l)*l000+Y
S(C + 3) = X*lOOO + Y - 1
S(C + 4} = X*lOOO + Y + 1
c c + 4

If the pixel at X,Y is not 0,
get another pixel address
from the stack
and reduce the stack counter

If the pixel at X,Y is= 0,
set it to 4,
process the color change ,
and stack the addresses of
the four pixels above , below,
left , and right of X, Y

increase the stack counter

Sequence
Number

520

530
540
550
56.0

570
580
590
620
660
700
740
750
760

UNTIL C 0

Fill Code Description

Repeat until the stack is empty 770

Sequence
Number

If the pixel at X,Y is not wh ite, get an address from t he stack and re
duce the stack counter by 1.

If P{X,Y) is white, set it to red. Depending on hardware characteristics, it
may be necessary to redraw the screen expl icitly . This is done by Subrou
tine 880.

Put the address X - 1,Y on the stack.

Put the address X + 1,Y on the stack.

Put the address X,Y - 1 on the stack.

Put the address X,Y + 1 on the stack.

Add 4 to the stack counter.

If the stack is not empty, cont inue.

530

570

620
660
700

740

750

770

Pixels are accessed from an array P, and X and Y are set to a pixel address
inside a previously drawn polygon. An array S that w ill serve as a stack has been
defined. The stack counter C has been set to zero. In P, the number 0 indicates
that the pixel is colored wh ite, 7 is for black, and 4, red . To conserve memory, X
and Y will be saved on the stack in the form X* 1000 + Y. {If the number of pixels

28 Fundamental Computer Know-How

in the Y-direction is more than 1000, an appropriately larger multiplier must be
chosen.)

This program will fill the polygon shown here, beginning at P(X,Y), but will
not fill the central island because the black pixels will act as a barrier in the same
way as the perimeter of the polygon.

Given this polygon, the stack for this algorithm has to hold as many as 308
addresses at once. Since there are only 244 pixels to be filled, there is obviously
something very inefficient about the algorithm.

Look at the sequence of three illustrations of pixels being filled . Whenever a
pixel P(X,Y) is found to be white, it is colored red and the four pixels next to its
edges are put on the stack, as shown in the first drawing.

In the second drawing, two pixels have been colored red and there are seven
pixels on the stack, including a red one. The last pixel address put on the stack is
the first to be removed for processing. Therefore, the seventh pixel stacked is
now removed from the stack and processed, which causes another red pixel to be
put on the stack (see third drawing). Even though red pixels from the stack are
not reprocessed (since they are not white), time and memory are wasted . An ob
vious refinement is, therefore, not to stack red pixels. This improvement reduces
the stack size to a maximum of 132 pixels.

Refer to the partially shaded polygon while studying the following code and
description for recursive filling .

Recursive Fill Program Code

REPEAT

IF P(X , Y) <> 0 THEN
X INT(S(C)/1000)
Y = S(C) - X*lOOO
c = c - 1

ELSE
P(X,Y) = 4
GOSUB 880

IF P(X - l,Y) = 0 THEN
c = c + 1
S(C) = (X - 1)*1000 + Y

IF P(X+l,Y)=O THEN
c = c + 1
S(C) = (X + 1)*1000 + Y

IF P(X,Y - 1) 0 THEN
c = c + 1
S(C) = X*lOOO + Y - 1

IF P(X,Y + 1) = 0 THEN
c = c + 1
S(C) = X*lOOO + Y + 1

UNTIL C 0

Sequence
Number

520

530
540
550
560

570
580
590

Only stack the pixel to the left 600
of X, Y if it is white 610

620
630

Only stack the pixel to the right 640
of X.Y if it is white 650

660
670

Only stack the pixel below 680
X, Y if it is white 690

700
710

Only stack the pixel above 720
X, Y if it is white 730

740
750
760
770

P(X,Yl"

A polygon to be shaded by the recursive
fill algorithm

4

Shading first pixel

4

3

Shading second pixel

7
4

3

Shading third pixel

NEXT PIXEL TO BE FILLED
• PIXELS ON THE STACK
• PI XELS FILLED

Next pixel to be filled, • pixels on the
stack, • pixels filled

-10,10 10.10
I

I I
I I
I I
I I
I 0 ,0 I
I I
I + I
I I
I I
I I
I I
I I

-10,-10 10 , - 10

29 Software Tool Kit

The improved recursive procedure is

F'ILL (X. Y):
IF' PIXEL (X, Y) = WHITE THEN

RETURN
ELSE PIXEL (X,Y) = RED

IF' PIXEL (X - l, Y) WHITE THEN
F'ILL (X - l , Y)

IF' PIXEL (X + l ,Y)
F'ILL (X + l . Y)

I F' PIXEL (X.Y - 1)
F'ILL (X, Y - 1)

I F' PIXEL (X, Y + 1)
F'ILL (X, Y + 1)

WHITE THEN

WHITE THEN

WHI TE THEN

And the program to implement it is

Recursive Fill Code Description

If the pixel at X,Y is not white, get a new pixel address from the stack
and decrease the stack counter.

If P(X,Y) is white, color it red, and

If the pixel at X - 1,Y is wh ite, put its address on the stack and add 1 to
the stack counter.

If the pixel at X + 1,Y is white, put its address on the stack and add 1 to
the stack counter.

If the pixel at X,Y - 1 is white, put its address on the stack and add 1 to
the stack counter.

If the pixel at X,Y + 1 is white, put its address on the stack and add 1 to
the stack counter.

Continue until the stack is empty.

Things to Do

Sequence
Number

530

570

600

640

680

720

770

Before proceed ing to the next chapter, prepare the functions and subroutines
suggested here, which can be used as tools to simpl ify display of graph ics. Refer
back to the relevant sections if you need to refresh your memory.

Windowing
Prepare a pair of w indowing functions FNX and FNY that convert your computer's
screen into the workspace illustrated by the f irst of the accompanying drawings.

Notice that the required window is square, whereas the ratio of length to
w idth of your screen is probably about 13 to 10. Test the functions by drawing a
line on the screen from - 10, - 10 to 10, 10 using the equ ivalent of

MOVE F'NX (- 10) , F'NY(- 10)
Defining desired workspace DRAW F'NX (10) . F'NY (10)

30 Fundamental Computer Know-How

Drawing
Write the drawing subroutine so it uses FNX and FNY by modifying the MOVE
and DRAW statements to

MOVE FNX(X8), FNY(Y8)

and

DRAW FNX (X8), FNY (Y8)

and by adding a RETURN statement at the end. Renumber the subroutine to
beg in at 500. To test the subroutine, use

DATA 4, - 2, - 1 , 2 ,-1 , 0 ,3 ,-2 ,-1
DATA 2 ,-3 ,3 , 2.2 , 0
DATA - 9999
RESTORE 100
GOSUB 500 Draw a figure
END

The result should be a triangle centered on the local origin, w ith a line
drawn through its top, as illustrated in the second drawing.

Scaling

100
110
120
130
140

Improve the subroutine to include the scal ing capability and test it again, using
the same test program as above with the added statement

S9 = 2 131

The picture produced by this test should be the same as the one above, ex
cept twice as big .

Translating
Change the MOVE and DRAW commands in the subroutine to allow for transla
tion as well as scaling

MOVE FNX(X8*S9 + X9), FNY (Y8*S9 + Y9)

and

DRAW FNX (X8*S9 + X9), FNY(Y8*S9 + Y9)

Test again, using the same data statements, but using

RESTORE 100
S9 2 Double scale
X9 = 2 Translat e 2 units horiz .
Y9 = 1 Translate 1 unit vert .
GOSUB 500 Draw figure

130
131
132
133
140

The resulting picture should have the lower left-hand corner of the triangle
in the middle of the screen, with the triangle scaled and translated as illustrated.

Rotating
Add the rotation capability to the subroutine by including the lines

' I

I
I
I
I
I

~ I
I
I
I
I
I
I

'

Correct result of picture-drawing exercise

I

I

b
I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

After scaling and translating picture

I I

I v I
I
I
I
I
I
I
I
I
I
I

I I

After scaling, translating, and rotating
picture

I

Drawing an ellipse inside a circle

31 Software Tool Kit

CO = COS(T*0 . 0174533)
SO = SIN(T*0 .0174533)

~11so = 0.0174533

and by changing the MOVE and DRAW commands to

MOVE FNX ((XB*CO - YB*SO) *S9 + X9) , FNY ((X8*SO + Y8*CO) *S9 + Y9)

and

DRAW FNX((XB*CO - Y8*SO)*S9 + X9), FNY ((X8*SO + Y8*CO)*S9 + Y9)

Test the subroutine with

RESTORE 100
S9 2
X9 = 2
Y9 = l
T = 30 Rotate 30 degrees
GOSUB 500

130
131
132
133
134
140

The scaled, translated, and rotated picture is shown in the fourth illustration.
The line cutting through the triangle should now be very close to horizontal.

The completed subroutine may be used throughout the programs in this
book. Another possibility is to save copies of the subroutine for unmodified f ig
ures {SIMPLE DRAW) and for figures to be translated {TRANSLATE A FIGURE,
above), as well as a copy of the complete subroutine {ROTATE A FIGURE) because
the latter will do some unnecessary work on figures that don't need rotation .

Completing the Subroutine
Add FNX and FNY to the ELLIPSE routine and put a RETURN statement at the
end. Renumber the subroutine to begin at 1000.

Test the subroutine, which generates a circle in the center of the screen, as
follows:

XO = 0 Center at 0,0
YO = 0
Ml 5 Circ l e o f radius 5
M2 5
Al 0 Begin at 0 degrees
A2 2*PI End at 2~ radians
GOSUB 1000

Now add the statements

M2 = 3
GOSUB 1000

(360 degrees)

100
llO
120
130
140
150
160

170
180

to draw an ellipse inside the circle. The result is shown in the accompanying illus
tration .

Change A 1 and A2 and observe the results.
Change line 100 .to XO = 1 and observe the results.

3

Randomness

34 Fundamental Computer Know-How

Accuracy is the most valuable characteristic of a digital computer. Given a pro
gram and a known set of inputs, it is essential that a computer program invaria
bly produce the same output.

In the development of a computer game, however, randomness is an impor
tant element. A player will quickly tire of a game unless it includes marginally
unpredictable events within its rules. There is no point to playing a racing game
if the order of finish is always the same. Action games involving the skill of one
or more players have a built-i n randomness, but if the computer participates in
any way, its actions must be variable to make the game worthwhile.

Random Numbers
The usual means of introducing variability into computer programs is through
random numbers. Ways to produce what are called pseudo-random numbers must
be available not only to the programmer of games but also to statisticians, re
searchers, operations research analysts, and anybody who needs to use the com
puter for simulation.

Pseudo-random numbers are so called because, while a sequence of these
numbers conforms to most of the required tests for randomness, the sequence is
always repeatable from the same set of initial conditions.

Most personal computers have a built-in RND function that supplies an un
known number between 0 and 1. In some applications, a random but repeatable
sequence is required, as in the generation of a computer maze that must be the
same every time the game is played. The Power Residue method generates such a
sequence. Two numbers are used-a "seed" and a "multiplier." The multiplier
should have half as many digits as the seed, so to select sizes for these numbers
it is necessary to know how big a number your computer can handle without los
ing any digits.

Suppose N digits are allowed for the multiplier. The seed will have 2N digits
and the computer must be capable of retaining a number 3N digits long without
loss of accuracy. The subroutine will multiply the seed by the multiplier, yielding
a number having 3N digits. The rightmost, or least significant, 2N digits become
both the random number and the next seed .

In the case where a computer can retain a 12-digit number, a random num
ber algorithm is as follows.

Having set the starting seed S to an appropriate 8-digit number and the mul
tiplier M to an appropriate 4-digit number, execute the following routine to get
a random fraction :

T S*M
S = T - INT(T/10f8)*10f8
R = S/10f8

T becomes the 12-digit product of the seed and the multiplier. Then the
new seed for the next random number is taken from the least-significant eight
digits of the product. Finally, the random number is developed by converting the
seed to an 8-digit decimal fraction.

Care must be taken to select the seed and multiplier in a way that avoids
propagation of zeros. Choosing the seed 16777216 and the multiplier 3125 is
clearly not a good idea :

35 Randomness

Seed Multiplier Product Truncated

16777216 3125 52428800000 28800000
28800000 3125 90000000000 00000000

0 3125 0 0

It is important to select values that cannot propagate zeros and will not gen
erate sequences that repeat the same set of numbers over and over. The nature
of this method is such that a repeating sequence is inevitable eventually, but that
is unimportant as long as the number of random values developed before the
sequence repeats is large enough.

The following program uses a seed S of 87654321 and a multiplier M of
2303

s = 87654321
M = 2303
I = 0

REPEAT
I = I + 1
T = S*M
S = T - INT(T/10f8)*10 f8
R =S/10f8
PRINT R, II !::!" ;

UNTIL I = 100
!::! is control-!:!, or backspace

and generates as its first 100 numbers the values shown :

0.67901263 0.76608689 0.29810767 0.54196401
0.14311503 0.59391409 0.78414927 0.89576881
0.95556943 0.67639729 0.74295887 0.03427761
0.94133583 0.89641649 0.44717647 0.84741041
0.58617423 0.95925169 0.15664207 0.74668721
0.62064463 0.34458289 0.57439567 0.83322801
0.92410703 0.21849009 0.18267727 0.70575281
0.34872143 0.10545329 0.85892687 0.10858161
0.06344783 0.12035249 0.17178447 0.61963441
0.01804623 0.56046769 0.75709007 0.57843121
0.12707663 0.65747889 0.17388367 0.45409201
0.73389903 0.28946609 0.64040527 0.85333681
0.23467343 0.45290929 0.05009487 0.36848561
0.62235983 0.29468849 0.66759247 0.46545841
0.95071823 0.50408369 0.90473807 0.61177521
0.91830863 0.86477489 0.57657167 0.84455601
0.01249103 0.76684209 0.03733327 0.97852081
0.53342543 0.47876529 0.59646287 0.65398961
0.13807183 0.97942449 0.61460047 0.42488241
0.50419023 0.15009969 0.67958607 0.08671921
0.71434063 0.12647089 0.26245967 0.44462001
0.95988303 0.61061809 0.25346127 0.72130481
0.16497743 0.94302129 0.77803087 0.80509361
0.13058383 0.73456049 0.69280847 0.53790641
0.79846223 0.85851569 0.16163407 0.24326321

36 Fundamental Computer Know-How

Multiplying any pair of numbers in the manner described above will cause
the rightmost digit to cycle through a predictable sequence. Reading across the
above list of numbers, you can see that as long as multiplying continues, the
lowest digit will repeat the 3,9,7, 1 pattern. Although this digit is cycling every
four multiplications, the second lowest digit's cycle is longer :

6,8,6,0,0,0,2,8,4,2,8,6,8,4,4,4,2,6,0,2

Obviously it is not random, since it consists entirely of even numbers. Similar
examination of the next digit to the left reveals that its cycle is even longer and
that all the digits 0 through 9 occur : this digit is more "random" than the second
lowest digit . In fact, each sequence gets more random, with the digit to the right
of the decimal point having a very long cycle.

Therefore, it pays to choose digits from the high-order end of the number or
to use the random number as a fraction, as above, by putting the decimal point
on the left-hand -:!nd. Values for the seed and multiplier should end in 1,3,7 or 9
to avoid propagating Os or Ss.

If this method is used to generate numbers w ith a random starting value, it
is necessary to find a way to choose a potentially different seed each time the
program is used. (The multipl ier can be a constant.) One way to get a varying
seed is to ask the user to provide the date, such as 12/31 /83, and the time of day,
say 11 :30. Concatenate month, day, hour and minute to get 12311130. Examine
the units digit. While it is not 1,3,7, or 9, add 1, getting 12311131 in this case.
Use this value for the starting seed .

PRI NT "Enter numeric month, day, and year (mm/dd/yy): 11
•

INPUT M,D,Y
PRINT "Enter time of day (hh : mm) : "·
INPUT H, Y
S = ((M*lOO + D)*lOO + H)*lOO + Y
M = S - INT(S/10)*10

IF M = INT(M/2)*2 THEN
s = s + 1
IF M = 5 THEN

s = s + 2

Random fract ions may be employed in appl ications requiring whole numbers.
Because the random number is always greater than 0 and less than 1, the
expression

INT(N*R)

where R is the random number and N is an integer, will yield a whole number
between 0 and N - 1. To roll dice, for example, JNT(6*R) + 1 gives a number
between 1 and 6.

Goaltender Game
Random numbers are put to good use in Goaltender, a game in which the com
puter shoots "pucks" and you try to stop them with a "hockey stick." Random

37 Randomness

variables are used to control the starting point and direction of the puck. If the
screen extents are assumed to be 0 to 130 in X and 0 to 100 in Y, 'goal posts may
be drawn by the Ellipse subroutine described in Chapter 2, as circles of radius 2 at
30,5 and 100,5. The hockey stick may be drawn as a rectangle 7 units long and 2
units deep so that its top edge is on the line Y = 11.

The stick must move between X = 30 and X = 100 to protect the goal. If your
computer has a game paddle, use it to control the stick by reading a value that
represents the rotational position of the game paddle and use it as the center of
the stick X2.

In the following game, Subroutine 2000 will be used for reading the game
paddle and drawing the stick. Part of Subroutine 2000 depends on how your
machine reads the game paddle (or other similar input device). Let's say your
paddle gives values between 0 and 255 when you use the function PDL(1). Sub
routine 2000 will be

Hockey Stick Controller Program Code

X2 = PDL (l)
X2 > 126 . 5 THEN

X2 = 126 . 5

IF' X2 < 3 .5 THEN
X2 = 3.5

MOVE X2 - 3 .5,11
DRAW X2 + 3. 5 , 11
DRAW X2 + 3 . 5 ,9
DRAW X2 - 3 . 5 , 9
DRAW X2 - 3 . 5 , 11
RETURN

Read paddl e i nto X2
Adjust X2 if paddl e
off right edge of scree n

Adjust X2 if paddl e

off l eft edge of screen

Move to one cor ner of stick
and dr aw it

Hockey Stick Controller Code Description

The paddle value is read into X2. Since paddle values can exceed screen
X-coordinates, X2 must be examined. The right-hand edge of the hockey
stick will be off the screen when it is greater than 130, or when X2, the
center of the stick, is greater than 126.5. Likewise, the left-hand edge of
the stick will be off the screen whenever X2 is less than 3.5. So X2 is set
to 126.5 if it was greater than 126.5 and to 3.5 if it was less than 3.5.
Steps 2000 through 2060 can be replaced by

X2 = PDL (1) MAX 3 . 5 MIN 126 . 5

in computers supporting the MAX and MIN functions.

Sequence
Number

2000
2010
2020
2030

2040

2050
2060

2070
2080
2090
2100
2110
2120

Sequence
Number

2000

The upper left-hand corner of the stick is on the line Y = 11 and 3.5 2070
units to the left of (less than) X2. Move to that corner and draw the
stick.

In most computers, whenever a new stick position is read, the previous stick
must be erased. Suppose a reserved word COLOR is used by your computer to
define the color in which lines are to be drawn and that color 0 is black and
color 1, white. Subroutine 2000 then becomes

38 Fundamental Computer Know-How

Hockey Stick Controller Revised Program Code

COLOR = 0
MOVE T2 - 3 . 5.11
DRAW T2 + 3 . 5 , 11
DRAW T2 + 3 . 5 , 9
DRAW T2 - 3 .5,9
DRAW T2 - 3 . 5 , 11
COLOR = 1
X2 = PDL(l) MAX 3.5 MIN 126 . 5
MOVE X2 - 3 .5,11
DRAW X2 + 3 . 5 , 11
DRAW X2 + 3.5,9
DRAW C2 - 3 . 5 , 9
DRAW X2 - 3 . 5. 11

Set 'black'
Draw hockey stick at T2
in black to erase

Set 'white'
Get valid paddle value

Draw hockey stick at X2

T2 = X2
RETURN

Save location of stick for erasing next time

Sequence
Number

2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140

Notice that the first t ime the subroutine is used, T2 has not been assigned a
value. After the first t ime, T2 is set on line 2130. To avoid problems w ith unde
fi ned va ri ables, T2 can be set to a va lid value, say 65, at the beginning of the
program.

To test Subroutine 2000, add it t o the following program. Also, in order to
draw the goal posts and t he puck, add the ELLIPSE subroutine, renumbered to
start at 700.

Test Hockey Stick Program Code

XO 30
YO 5
Ml 2
M2 2
Al 0
A2 2*PI
GOSUB 700
XO = 100
GOSUB 700
REPEAT

GOSUB 2000
UNTIL XO <> XO

Set center at 30,5

Ellipse radii 2 and 2 , giving
a circle of radius 2
Starting angle 0°
Ending angle 360°
Draw left post
Set center at 100 , 5
Draw right post

Call hockey stick routine
again and again

Sequence
Number

100
110
120
130
140
150
160
170
180
190
200
210

The program draws goal posts at 30,5 and 100,5 and repeatedly calls Subrou
ti ne 2000. Twist the game paddle knob back and forth as far as you can . The
hockey stick should move on a horizontal line from one edge of the screen to the
other.

To keep the game simple, we might decide that all shots will be "on goal" -
none w ill hit a goal post nor miss the goal mouth. If all shots originate above
Y = 80 and travel on a straight line, values of X for the goal end of the shot may
be determined so that all shots are on goal, as shown in the Goaltender diagram.

So the coord inate values of the point from which the shot is to be taken,
X5,Y5, must be chosen from the ranges 0 s XS s 130 and 80 s YS s 100. If the
funct ion RND(- 2) returns a value between 0 and 1, it is clear that 130*RND(- 2)
will have values between 130*0 and 130* 1, so

PUCK STARTS

l~E~ ~ Y=SO

PUCK STAYS
/IN HERE~

Y=ll

Determining that all shots will be "on
goal"

Determming next puck position

39 Randomness

X5 = 130* RND (-2)

For YS, the minimum value must be 80. Since the difference between 80 and
the maximum value, 100, is 20,

Y5 = 80 + 20 * RND (-2)

The point at the other end of the line on which the puck travels, X1 ,Y1 , is at
Y1 = 0 and SO s: X1 s 80, so

Xl = 50 + 30 * RND (-2)
and Yl = O

To make the puck move along the line between XS,YS and X1,Y1 , we will
successively draw a new puck at a distance D along the line away from the previ
ous position. The current puck location will be X3,Y3. The first puck position is
therefore

X3 = X5
Y3 = Y5

If we assume that D = 3, where is the next puck position? In general (refer
ring to the accompanying diagram), A is the angle whose tangent is flX/fl Y, but
the angle to be used here is (}, the angle whose tangent is fl Y/flX ((} = arctan
fl Y/flX), fl Y = YS - Y1, and flX = XS - X1 . YS - Y1 will always be greater than
zero, but XS - X1 may be less than, greater than, or equal to zero. Since the
puck must be made to travel toward X1,Y1, a positive value for (} can be com
puted from

8 = arctan ((Y5 - Yl) /ABS (X5 - Xl))

So the next value of Y3 can be computed :

Y3 = Y3 + D * SIN (8)

If X3 is computed from

X3 = X3 + D * COS (8)

the puck will always travel from left to right. If X1 < XS, it should travel from
right to left, or

X3 = X3 - D*COS (O)

Therefore, we could write

IF Xl >= X5 THEN
X3 = X3 + D*COS (8)

ELSE
X3 = X3 - D*COS (8)

or simply

X3 = X3 + D*COS(8)*SGN (Xl - X5)

In the determination of the value of (}there is a chance for error if XS = X1 ,
because division by zero is undefined in

8 = ATN ((Y5 - Yl)/ABS (X5 - Xl))

40 Fundamental Computer Know-How

If we treat XS = X1 as a special case, in which the puck is traveling straight
down, then

X3 = X5
Y3 = Y3 + D

The puck travels downward until a goal is scored or a save is made. Since the
puck will always go in the goal unless saved, a goal can be inferred from a "no
save" condition. To determine a save, we have to see if the center of the puck is
horizontally within 3.5 units of the center of the stick when the puck reaches
Y = 11 . Although it is not difficult to determine the exact value of X3 when
Y = 11, a good approximation is to test for this condition (see illustration):

Is ABS(X3 - X2) < 3 . 5?

A better approximation is to check if either the last puck above Y = 11 or
the first one below Y = 11 is on the stick. If so, it's a save; if not, a goal.

For realism's sake it is a good idea to show the puck bouncing off the stick if
a save is made. That's easy to do- after a save, reverse the direction of Y. Instead
of subtracting D*SIN(8) from Y3, add it. Continue to display the puck until it
passes through Y = 50 or goes off the side of the screen.

A minimum version of Goaltender can now be coded . The proper way to con
vert this game for use on your machine is first to understand how the algorithm
works. Then you may want to use the code as a guide in writing your own ver
sion . Remember, though, that you must accommodate the differences between
your machine and the example. For instance, most versions of BASIC require an
explicit definition of Pl :

PI = 3 . 14159 .. .

Also, you must add DEF FNX and DEF FNY statements as described in Chapter
2. An example of the use of these statements is shown at the end of this chapter
in versions of Goaltender that run on various personal computers.

Goaltender Program Code

REPEAT
XO
YO
Ml

30
5
2

M2 2
Al 0
A2 2*PI
GOSUB 700
XO = 100
GOSUB 700
X5 =130*RND(- 2)
Y5 80 + 20*RND(- 2)
X3 X5
Y3 Y5
Xl 50 + 30*RND(- 2)
Yl 0
D = 3
Ml = 1

Set values for ELLIPSE subroutine

Draw left goal post

Draw right goal post
Generate random starting
point X5 , Y5
Start the puck at X5 , Y5

Generate random ending
point Xl,Yl
Set puck travel increment
Reset ellipse radii

Sequence
Number

100

llO
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

e.:SC X3-X:,J

I I
: X3 .Y3 I

cV l
I I
I I
I I
I I X2.l l

-pucK-\-~--------
w1 LL PASS\
THROUGH 1
Y= ll ON :1·,

NEXT MO VE '"

Determining a goal

0 l
0 0

0 0

Bouncing the puck off the hockey stick

41 Randomness

M2 = l
s = -1

REPEAT
GOSUB 2000

to puck size
Set "not saved" flag

Read paddle and move hockey stick

280
290

300
310

IF X5 = Xl THEN If puck is traveling straight down , 320
Y3 = Y3 + D*S change Y-location 330

ELSE 340
T = ATN((Y5 - Yl)/ABS(Xl - X5)) Otherwise , 350
X3 X3 + D*COS(T)*SGN(Xl - X5) change X 360
Y3 = Y3 + D*SIN(T)*S and Y of puck 370

380

IF Y3=>11 and Y3+D*SIN(T)*S<ll THEN ! If puck at stick line 390

IF ABS(X3-X2) <3.5 OR ABS(X3+D*COS(T)*SGN(Xl-X5))<3 .5 THEN 400
S = l set "saved" flag if puck hi ts stick 410

XO = X3 Put puck coordinates in ellipse
YO = Y3 subroutine variables, and
GOSUB 700 draw puck

UNTI L Y3 < 2 OR X3 < 0 OR X3 > 130 OR (Y3 > 50 AND S 1)

PAGE
UNTI L XO <> XO

If finished, clear screen
and play again

Goaltender Code Description

After drawing the goal posts, randomly generate the endpoints of the
line along which the puck will travel.

Set the puck travel increment D and prepare rad ii M1 , M2 to draw the
puck.

Set "not saved" flag S = - 1.

Move the hockey stick to the position read from the game paddle.

Change the Y-location of the puck if puck travel is vertical.

Change X and Y if puck travel is not vertica l.

If the puck is crossing the line along wh ich the stick travels, or if it w ill
cross on the next move, determine if the X-value of the center of the
puck in either position is within 3.5 un its of the center of the stick.

If so, set S, the "saved" flag. Notice on lines 330 and 370 that since S
has been changed from - 1 to + 1, the Y-direction of the puck w ill re
verse. Since the X direction is not changed, the puck w ill appear to
bounce off the stick {see illustration).

420

430

440
450
460
470

480
490

Sequence
Number

190

260

290

310

320

340

390

410

Prepare the ELLIPSE Subroutine for drawing the puck, and draw it . 440

Continue until a goal {Y3 < 2) or t he puck has left the side of the screen 370
{X3 < 0 OR X3 > 130) or the puck has passed Y = 50 after a save.

Clear screen and play aga in. 480

42 Fundamental Computer Know-How

Some small but important changes are required before this game will run
fast enough to be worth playing. The Ellipse Subroutine approximates circles and
ellipses by drawing a short line every degree around the arc-360 lines are
needed for a complete circle. For this program, change lines 740 and 820 to

I = I + PI/9
and I = I - PI/9

740
820

Now a puck will be drawn with straight lines every 20 degrees, eighteen lines
per puck. If necessary, reduce the divisor even further, to 4.5 for nine lines or to
3 for six lines per puck. If the program is still too slow, replace lines 440-460
with code that draws a six-sided puck directly:

MOVE X3 + l , Y3 440
DRAW X3 + .5.Y3 + . 866 443
DRAW X3 - . 5,Y3 + .866 447
DRAW X3 - l,Y3 450
DRAW X3 - . 5 , Y3 - .866 453
DRAW X3 + . 5,Y3 - . 866 457
DRAW X3 + l,Y3 450

Having written and debugged the above algorithm for your machine, you
may now consider one or two improvements. First of all, let's add some code for
scorekeeping . Secondly, the angle 8 is being recomputed every time the puck
moves. The value of 8, and consequently SIN(8) and COS(8), can be determined
before beginning the shot. Finally, there is no need to make a special case of the
vertical shot if 8 is set to 0 in this case. The "cleaned-up" algorithm is

Sequence
Goaltender Revised Code Number

GO = 0
so = 0
REPEAT

XO 30
YO 5
Ml 2
M2 2
Al 0
A2 2*PI
GOSUB 700
XO = 100
GOSUB 700
X5 130*RND(- 2)
Y5 80 + 20*RND(-2)
X3 X5
Y3 Y5
Xl 50 + 30*RND(-2)
D = 3

Set "goals" and "saves" to zero 100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

T = 0 Preset 6 = 0 280

IF X5 <> Xl THEN
T = ATN (Y5/ABS (X5 - Xl))

If line not vertical.
find 6

290
300
310

43 Randomness

Cl D*COS (T)
Sl D*SIN(T)
Ml 1
M2 1
s = - 1
REPEAT

GOSUB 2000
X3 = X3 + Cl*SGN(Xl - X5)
Y3 = Y3 + Sl*S

Compute X and
Y increments

Since 8 is defined for a
vertical line , test is
not necessary

320
330
340
350
360
370
380
390
400

IF Y3 => 11 AND Y3 + Sl*S < 11 THEN 410

IF ABS(X3-X2)<3 .5 OR ABS (X3 +Cl*SGN (X5-Xl)-X2)<3.5 THEN 420
s = l 430

XO = X3
YO = Y3
GOSUB 700

UNTIL Y3 < 2 OR X3 < 0 OR X3 > 130 OR (Y3 > 50 ANDS = 1)

PAGE

IF Y3 < 2 THEN
GO GO + 1

ELSE
so so + 1

PRINT GO; " GO ALS"
PRINT SO ; " SAVES"

UNTIL XO <> XO

If puck passed the goal line,
increase "goals"
If not ,
increase "saves"

Print score

Play again

Goaltender Revised Code Description

Let GO be the number of goals, SO the number of saves. Set them to
zero.

440

450

460
470
480
490

500

510
520
530
540
550
560
570
580

Sequence
Number

100

Draw goal posts. 130

Compute random variables. 220

Preset (} to zero. If the shot line is not vertical , compute 0. Notice that 280
the variable Y1, which is always zero, has been omitted .

Compute C1 and S1, the X and Y puck increments. 320

Set puck radii and "not saved" flag . 340

Begin shot. 379

Add puck increments to puck position . 390

Test for a goal. 410

Display puck. 460

Continue until goal or save. 490

Clear screen. 500

If the puck crossed the goal line, add 1 to goals. If not, add 1 to saves. 510

Print number of goals and saves. 560

Shoot again. 580

44 Fundamental Computer Know-How

Refinements

• Determine accurately if the puck hits the stick (see illustration).
The value of X4 is the X-coordinate of the center of the puck and may be calcu
lated by the proportion :

Xl - X3
X4 = y

3
_ Yl (Y3 - 11) + X3

If ABS(X4 - X2) < 3.5, the puck hits the stick.

• Vary the speed of the shot by making D a random variable between 3 and 6.
• When a goal is scored, flash a green light at the top center of the screen and

sound a buzzer. (In most computers, a tone can be sounded by printing "Con
trol-G" characters.)

Things to Do

Convert Goaltender to run on your own machine. Some examples follow.

IBM Personal Computer Version Of Goaltender

In converting Goaltender for use on a specific computer, it is helpful to incorpo
rate any special features of that computer's version of the programming lan
guage. The IBM personal computer has a command called CIRCLE, so that the
ELLIPSE/CIRCLE routine (Subroutine 700 in the code above) can be omitted and
CIRCLE commands used instead.

The IBM random number generator is invoked by using the keyword RND to
get a random number between 0 and 1. However, the sequence of numbers pro
duced by successive RNDs is always the same unless a RANDOMIZE(n) is used at
the beginning of the program. This will change the random number sequence
based on the value of n. N should be different each time the program is run . For
tunately, there is a clock in the IBM computer that may be read through the key
word TIME$, giving hours, minutes, and seconds- for example, 13:25:30 is 1 :25PM
and 30 seconds. Part of the time value may be used in the RANDOMIZE statement,
preferably seconds or seconds times minutes.

Since the IBM personal computer does not have a game paddle, use its arrow
(direction) keys to move the hockey stick.

Despite changes to the code, the algorithm is the same as before. To convert
the X and Y units used in the original Goaltender to fit the IBM screen, remem
ber that in the original (see Chapter 2 section, Windowing and Viewporting)

XlW 0
X2W 130
YlW 0
Y2W 100

whereas the IBM screen coordinates are

XlS = 0
X2S 319
YlS 199
Y2S 0

; ·Y3
I
I
I

------~~~~------
\
I XI.YI

.:~

Determining if puck hits or misses stick

45 Randomness

That is, while the original version was coded for a screen measuring 0 to 130
units in X, 0 to 100 units in Y, reading from the bottom left-hand corner, the IBM
screen is 0 to 319 units in X, 0 to 199 units in Y, reading from the top left-hand
corner. Using the windowing transformation

FNX(X)
X2S - XlS

(X - XlW) + XlS
X2W - XlW

FNY(Y)
Y2S - YlS

(Y - YlW) + YlS = Y2W - YlW

FNX(X)
319 - 0

(X - O) + 0 or
130 - 0

FNY(Y)
0 - 199

(Y - O) + 199 = 100 - 0

which simplifies to

FNX(X) = 319 x
130

FNY(Y)
- 199 - -Y
100

+ 199

Goaltender for IBM Personal Computer Program Code

100 DEF FNX(X) = X*319/130 ! Define windowing function
110 DEF FNY(Y) Y*(- 199)/100 + 199
120 DEFSTR A Establish data types
130 DEFINT I - N
140 DEFSNG B - H.O - Z
150 A$ = 1111

160 SCREEN 1
170 I = VAL(RIGHT$(TIME$,2))

Set medium resolution
Get seconds from time of day

180 RANDOMIZE(I) Randomize the random number generator
190 GO = 0: SO = 0: X2 = 65 Set score and hockey stick location
200 WHILE 1 = 1
210 CIRCLE (INT(FNX(30)),INT(FNY(5))),5.2 ! Draw goal posts
220 CIRCLE (INT(FNX(lOO)) , INT(FNY(5))) . 5 , 2
230 X5 130*RND Establish line of shot
240 Y5 = 80 + 20*RND
250 X3 X5
260 Y3 = Y5
270 Xl = 50 + 30*RND
280 D = 3
290 T = 0
300 IF X5 <> Xl THEN T ATN (Y5/ABS(X5 - Xl))
310 Cl = D*COS(T)
320 Sl = D*SIN(T)
330 s = - 1
340 WHILE Y3 > 2 AND X3 > 0 AND X3 < 130 AND (Y3 < 50 ORS = - 1)
350 LINE (FNX(X2- 3 .5) , FNY(ll))-(FNX(X2+3 .5),FNY(9)) , l , B !Draw stick
360 X3 X3 + Cl*SGN(Xl - X5) Compute location of puck
370 Y3 = Y3 + Sl*S

46 Fundamental Computer Know-How

380 IF Y3 >= 11 AND Y3 + Sl*S < 11 AND (ABS(X3 - X2) < 3.5 OR
ABS(X3 + Cl*SGN (X5 - Xl) - X2) < 3 . 5) THEN S = 1 Test for save

390 CIRCLE(X,Y) ,4 , 0 Erase puck
400 A$ = INKEY$ Has a key been pressed?
410 IF LEN(A$) <> 0 THEN GOSUB 2000 ! If so, move stick
420 X = FNX (X3): Y = FNY (Y3)
430 CIRCLE (X,Y), 4 , 1 Draw puck
440 WEND
450 CLS Clear screen
460 IF Y3 < 2 THEN GO = GO + 1 ELSE SO = SO + 1 Add to score
470 LOCATE 1 , 1 : PRINT GO ; "GOALS" Display score at top left
480 PRINT SO ; "SAVES"
490 WEND Play again

2000 LINE (FNX(X2- 3 .5), FNY(ll)) -(FNX(X2 3 .5), FNY (9)), 0 ,B !Erase stick
2010 IF A$ = 11 6 11 THEN X2 = X2 + 3 ! Test for arrow key press
2020 IF A$ = "4" THEN X2 = X2 - 3 ! and move stick
2030 IF RIGHT$ (A$, 1) "M" THEN X2 X2 + 1
2040 IF RIGHT$ (A$, l) = "K" THEN X2 = X2 - 1
2050 A$ = ""
2060 RETURN

Goaltender for IBM Personal Computer Code Description

The w indowing transformation is set up.

All variables beginning with the letter A are to be character strings.

All variables beginning with l,J,K,L,M, or N are to be integers (whole
numbers).

Sequence
Number

100

All variables beginning with B through H and 0 through Z are to be 140
" single precision" variables (capable of about 8 digits of precision).

The string variable A$ is set to "null. " 150

The screen is set to medium resolution (320 x 200). 160

I is set to the rightmost 2 digits of the time of day. 170

The random number generator is randomized . 180

Goals (GO) and saves (SO) are set to zero, and the hockey stick is cen- 190
tered in the goal (X2). Note that more than one statement may be en-
tered on a line if the statements are separated by colons.

The sequence of instructions between 200 and 490 will continue as long 200
as 1 = 1, that is, " forever." The WHILE ... WEND construct is similar to the
WHILE ... DO in the examples.

Goal posts are drawn at 30,5 and 100,5 having a radius of 5 pixels in 210
color 2.

The line along wh ich the puck will travel is computed . 230

The variable S is set to indicate that the puck has not been saved. 330

Statements 340 through 440 are executed until a goal has been scored 340
or the puck has rebounded after a save.

The rectangle defining the hockey stick is drawn. 350

The location where the puck will pass through the line of the stick is 380
computed. If it w ill do so immediately, S is set to 1 if the stick will inter-
cept the puck.

The puck is erased. 390

47 Randomness

If a key has been pressed, it is entered into A$, and Subroutine 2000 is 400
called.

The next location of the puck is transformed into an IBM screen location 420
X,Y.

The puck is redrawn at X,Y. 430

The sequence 340 - 440 is continued until satisfied. 440

The screen is cleared. 450

If a goal was scored, GO is increased by 1. If not, SO is increased by 1. 460

Numbers of goals and saves are printed. 490

The sequence 200 - 490 is continued . 490

SUBROUTINE 2000 :

The hockey stick is erased. 2000

If the last key pressed was a sh i ft-~. the stick is moved 3 units to the 2010
right;

if a shift+-, 3 to the left;

if an unshifted ~. 1 to the right;

if an unshifted +---, 1 to the left.

Clear A$.

Return to the main program.

Apple II Version Of Goaltender

2050

2060

In the Apple computer, one of the high-resolution graphics modes al lows pictures
on most of the screen with three lines of text at the bottom. This is where the
goals and saves will be printed .

The graphics part of the screen is 0 to 279 un its in X and 0 to 159 in Y, read ing
from the top left-hand corner :

XlS = 0
X2S 279
YlS = 159
Y2S = 0

To get a random number between 0 and 1, RND(5) is used.
Game paddles, ava ilable for the Apple, are used in th is version . The funct ion

PDL(1) returns a value between 0 and 255, depending on the position of the ro
tary knob on paddle 1. If we use PDL(1)/2 to position the hockey stick, we w il l be
able to put its center anywhere between 0 and 127.5. Since the stick is 7 un its
wide and the screen is defined to be from 0 to 130 in X, the entire range of the
screen can be covered by the stick.

Unlike the IBM personal computer version of BASIC, the Apple version does
not have a CIRCLE command, so we will use the ELLIPSE Subroutine to draw
circles.

Goaltender For Apple II Program Code
Sequence
Number

GO =O: SO =O X2 =65 Set score and hockey stick l ocation 90

48 Fundamental Computer Know-How

PRINT : PRINT : PRINT : PRINT ! Clear text from bottom of screen
HGR : HCOLOR=3 ! Set high resolution and color white
DEP PNX(X) = X/130*279 Define windowing functions
DEP PNY(Y) =Y/100(- 159) + 159
XO 30 : YO = 5 : Ml = 2 : M2 = 2 : Al = 0
PI = 3 . 14159 De fine 1T

A2 = 2*PI
GOSUB 700 Draw goal posts
XO = 100
GOSUB 700
X5 130*RND(5): Y5 = 80 + 20*RND(5) Establish line of shot
X3 = X5 : Y3 = Y5
Xl = 50 + 30*RND(5) :Yl 0
D = 3 : Ml = 1 : M2 = 1 : S - 1
GOSUB 2000 Draw stick
IP X5 = Xl THEN Y3 = Y3 + D*S
IP X5 <> Xl THEN T = ATN((Y5 - Yl)/ABS(Xl - X5)) :
X3 =X3 +D*COS(T)*SGN(Xl-X5): Y3 =Y3 +D*SIN(T)*S ! Locate puck
IP Y3 >= 11 AND Y3 + D*SIN {T)*S < 11 THEN
IP ABS(D*COS(T)*SGN(Xl - X5)) < 3 .5 THENS = 1 Test for save
XO = X3 : YO = Y3
GOSUB 700 ! Draw puck : note that previous puck hasn't been erased
IP NOT (Y3 <2 OR X3 <0 OR X3 >130 OR (Y3>50 AND S=l)) THEN 230
IP Y3 < 2 THEN GO = GO + 1 Add to s core
IP Y3 >= 2 THEN SO = SO + 1
PRINT GO ; "GOALS"
PRINT SO; "SAVES"
PRINT
GOTO 100

Display score at bottom
of screen

Play again

I = Al Ellipse subroutine
HPLOT PNX(XO + Ml*COS(I)), PNY(YO + M2*SIN(I))
IP Al >= A2 THEN 800
I = I + PI/9
IP I > A2 THEN I = A2
HPLOT TO PNX(XO + Ml*COS(I)) ,PNY(YO + M2*SIN(I))
IP I <> A2 THEN 730
RETURN
I = I - PI/9
IP I < A2 THEN I = A2
HPLOT TO PNX(XO + Ml*COS{I)) ,PNY(YO + M2*SIN(I))
IP I <> A2 THEN 800
RETURN

HCOLOR = 0 Erase stick
HPLOT PNX(X2 - 3 .5) , PNY(ll) TO PNX(X2 + 3 .5) , PNY{ll)

TO PNX(X2 + 3.5), PNY (9) TO PNX (X2 - 3 . 5) , PNY(9)
TO PNX(X2 - 3 .5), PNY (ll)

X2 = PDL(l)/2: HCOLOR = 3 Locate and draw stick
HPLOT PNX(X2 - 3 .5), PNY(ll) TO PNX(X2 + 3 .5), PNY(ll)

TO PNX(X2 + 3 .5) ,PNY(9) TO PNX(X2 - 3 . 5) , PNY(9)
TO PNX(X2 - 3 .5) , PNY(ll)

RETURN

95
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

260

270
280
290
300
310
320
330
340
350

700
710
720
730
740
750
760
770
800
810
820
830
840

2000

2010
2020

2030
2040

49 Randomness

Goaltender for Apple II Code Description

Scores are zeroed and the hockey stick location is set.

Text lines are erased.

The windowing transformation is set up.

Variables to draw the goal posts are set and the posts drawn.

The line along which the puck will travel is computed .

Subroutine 2000 reads the position of the rotary knob on game paddle
1 and moves the stick.

The location where the puck will pass through the line of the stick is
computed. If it does so on th is turn, Sis set to 1.

The puck is drawn in its new location.

If a goal has been scored or a save made, the score is changed and dis
played at the bottom of the screen.

The game continues with another shot.

DEC Professional Version of Goaltender

Sequence
Number

90

95

100

130

190

230

250

280

300

350

The Professional has arrow keys, but they return the same values whether the
Shift key is up or down. Consequently, to convert the Goaltender algorithm,
other keys must be used to move the hockey stick, for example, the letter keys a
and d. With the Shift key up, keys a and d will cause the stick to move one unit
to the left or right. With the Shift key down, the stick w ill move three units.

Multiple BASIC statements may appear on the same line, if separated by the
backslash character. PRO/ BASIC supports user function definitions, but not the
SGN function. To simulate SGN, it is therefore necessary to write a function
FNSGN that returns - 1 whenever the function value is less than zero, 0 when
equal to 0, and + 1 when greater than 0.

Viewport and window commands are ava ilable on the Professional, as is the
random number function RND, which returns a value between 0 and 1. The PLOT
ARC command permits a user to draw arcs or circles without resorting to SIN and
COS functions.

Goaltender for DEC Professional Program Code

100 SET VIEWPORT 0,1,0, .625 Define viewport and window
110 SET WINDOW 0 , 130 ,0,100
120 DEF FNSGN(PARM) =INT(PARM/(ABS(PARM) +(PARM O)))!Simulate SGN
150 A$ = ""
160 CLEAR Clear screen
180 RANDOMIZE ! Randomize the random number generator
190 GO =O\ SO=O\ X2 =65 Set score and hockey stick location
210 SET POSI TION (30,10)\ PLOT ARC (30 ,5,360) Draw goal posts
220 SET POSITION (100,10)\ PLOT ARC (100,5,360)
230 X5 130*RND Establish line of shot
240 Y5 80 + (20*RND)
250 X3 X5
260 Y3 Y5

50 Fundamental Computer Know-How

270 Xl = 50 + (30*RND)
280 D = 3
290 T = 0
300 If X5 <> Xl THEN T ATN(Y5/ABS(X5 - Xl))
310 Cl = D*COS(T)
320 Sl = D*SIN(T)
330 s = - 1
340 If Y3 <=2 OR X3 <=0 OR X3 >=130 OR (Y3>=50 AND S<>-1) THEN GOTO 450
350 PLOT (X2-3. 5 , ll),(X2- 3.5,9) ,(X2 +3 .5 ,9) ,(X2+3 .5,ll), (X2-3.5,ll)
360 X3 = X3 + Cl*fNSGN(Xl - X5) Draw stick (line 350) and
370 Y3 = Y3 + Sl*S compute location of puck
375 TMP = ABS(X3 + Cl*fNSGN(Xl - X5) - X2) ! Test for save (line 380)
380 If Y3 >=11 AND Y3+Sl*S<ll AND (ABS(X3-X2)<3 .5 OR TMP<3.5) THEN S=l
385 SET WRITING MODE 8 Set erase mode
390 SET POSITION (X , Y+ 4) \ PLOT ARC (X,Y,360) Erase puck
395 SET WRITING MODE 4 Set draw mode
400 CALL INKEY(A$) Has a key been pressed?
410 If LEN(A$) <> 0 THEN GOSUB 2000 If so, move stick
420 X = X3\ Y = Y3
430 SET POSITION (X,Y + 4)\ PLOT ARC (X.Y,360) Draw puck
440 GOTO 340
450 CLEAR Clear screen
460 If Y3 < 2 THEN GO = GO + 1 ELSE SO = SO + 1 Add to score
470 SET POSITION (l , l)\ PRINT GO ; " Goals" Display score at top left
480 PRINT SO;" Saves"
490 GOTO 150 Play again
2000 SET WRITING MODE 8 Erase stick
2001 PLOT (X2-3 .5,ll) , (X2-3 .5 ,9) , (X2+3.5,9), (X2+3 .5,ll) , (X2-3 .5,ll)
2005 SET WRITING MODE 4
2010 ff A$ "D" THEN X2
2020 ff A$ "A" THEN X2
2030 ff A$ "d" THEN X2
2040 If A$ "a" THEN X2
2050 A$ = ""
2060 RETURN

X2 + 3
X2 3
X2 + 1
X2 - 1

Test for key press
and move stick

Sequence
Goaltender for DEC Professional Code Description Number

Define a viewport consisting of the whole screen. 100

Define the range of the screen as 0 to 130 in X, 0 to 100 in Y. 110

Define the SGN function. 120

Initialize variables and clear the screen. 150

Draw the goal posts. 210

Compute the line of travel of the puck. 230

Set S to indicate that the puck has not been saved. 330

Statements 340 through 440 are executed until a goal has been scored 340
or the puck has rebounded after a save.

The hockey stick is drawn. 350

A test is made to see if the puck is about to hit the stick or pass over 380
the goal line.

The computer is prepared to draw in the erase mode. 385

51 Randomness

The puck is erased. 390

The visible mode is reinstated . 395

If a key has been pressed, it is entered into A$, and subroutine 2000 is 400
called.

The next location of the puck is determined and t he puck is drawn. 420

The sequence 340- 440 is continued until satisfied . 440

The screen is cleared, and either " Another goal scored" or " Another 450
save" is tallied and displayed.

The sequence 150- 490 is continued . 490

SUBROUTINE 2000:
The hockey stick is erased. 2000
If the last key pressed was a shift-0, the stick is moved 3 units t o 2010
the right.
If a shift-A, three un its to the left. 2020
If an unshifted d, one un it to the right. 2030
If an unshifted a, one un it to the left. 2040

Clear A$. 2050

Return to the ma in program. 2060

4

Realism and Animation

-- --- ----=--= -

54 Fundamental Computer Know-How

Properly done graph ics can make a good game great. Real ism is sometimes con
veyed by a static picture, but more often by accurate animation, which requires
that a well-timed sequence of static scenes pass rapidly across the display screen.

If you have seen computerized cannons that shoot along a short, arched trajec
tory instead of a longer, more natural trajectory, or if you 've seen a supposedly
human figure made from a few squares, you will agree that realistic graphics are
an important part of a computer game.

In this chapter, you will be introduced to some of the techniques that give a
computer game polish and a finished appearance. Simple games like dice and
Target Practice illustrate the use of realism, perspective, and animation.

The pictures of a running cat that were first published in 1899 may seem out
of place in a book on modern computer games, but they are fine studies of mo
tion. Exactly the same process is used to animate any figure . Careful analysis of
the object in motion leads to development of a rapidly processed sequence of
"stills."

Realism
Dice and cards, although too static to be well -suited to computer games, make a
good starting point for a discussion of computer graphics technique because they
are widely understood. Many major card and dice games have been written for
computers, and as programming exercises they are interesting examples of how
real ism can improve a very simple game. It isn't even necessary to have a graphics
output device to show spots rather than a number between 1 and 6 on the faces
of the dice.

On a display screen, dice should appear three-dimensional and they should
fall in a random way. It is much more attractive to give the appearance of dice
rolled out on a green baize table top than simply to show one face of each die
w ith all the dice in a line. It should be the programmer's goal to combine an at
tractive display with a reasonably straightforward program.

Three random factors may be applied to the display of dice without much ef
fort-the value of the die, its orientation, and its position on the table. If all dice
are displayed in this same orientation, there are four possibilities for viewing
each number. The illustration shows the four ways a roll of "six" can be por
trayed .

Notice the orientation of the spots on the faces displaying the 3 and the 2.
Because it recreates the way the spots appear on a real die, it must be retained if
realism is to be preserved.

Since it is necessary to be able to read the spots, dice should fall in such a
way that they do not overlap or interfere with each other, but they still should
be displayed randomly. Suppose each die is allotted a position within a vertical
stripe on the tablecloth, as in the accompanying illustration. A random number
may be used to place each die somewhere on the stripe to give the appearance
of a real roll.

In designing a computer game, the programmer must strive to achieve the high
est realism possible within the framework of hardware capability and without
undue repetition . A complex and lengthy animation sequence may be fascinating
to watch once or twice but should not occur time and time again in the course

Short, unrealistic trajectory

Long, more realistic trajectory

Supposedly human figure

Four ways a roll of "six" can be
oortrayed

5 mulatmg realism in a roll of dice

!
D

0
0

D

0
qea/1st1c perspective

ReahsttC sequence of a door opening

Unrealtstic sequence of a door opening

55 Realism and Animation

I
f()11
l(L;J I

it[J·:>. . .
I ...

I J©. J ·
I .. I..- ·. I

16)1 I~
I I I l:J)J
I I I

of a game. Players should not be made to wait for more than a few seconds for
the computer to finish a display sequence.

Perspective
One of the most obvious omissions in graphics is a lack of perspective. A door
should open as in the first set of doors shown here, not as in the second set, un
less it is a deliberate attempt to simulate a sliding door.

Objects should appear bigger the closer they are to a viewer, as in the row
of telephone poles stretching to the horizon. It is also important to control the
apparent distance between the poles. A method for doing so is described in
Chapter 7.

56 Fundamental Computer Know-How

Details
Attention to detail is essential. Most pictures look "wrong" if one pixel is out of
place or inappropriately colored. Specular (mirror-like) reflection from the pupil
of the eye or from shiny objects like bottles should not be ignored. Highlighting
and shading, not to mention the shadows cast by objects in the display, are part
of a real image.

Animation
Early motion-picture cartoons, many of which are still shown on Saturday-morn
ing television, are perfect examples of how not to represent animated figures.
Running is obviously an intermittent motion-the runner accelerates when push
ing off with one foot and slows down as the opposite foot contacts the ground.
The running motion of men is different from that of women-men rotate their
shoulders when they run and tend to lean forward, whereas women keep their
shoulders relatively still , but tend to move their hips forward and back.

No animal or bird moves at a uniform speed or in a strictly uniform pattern
either. When a cat runs, its entire upper body profile flows smoothly through a
sinusoidal motion that is not so apparent in a running dog. Flying birds lose alti
tude when their wings are in the upward stroke. In fact, birds are difficult to ani
mate properly because different species fly in very different ways. Big birds are
easiest; they tend to soar a lot.

Fish may be easiest of all because they don't have many moving parts. The
fish shown here may be divided into three parts for animation : the head, the
body, and the tail. To make the fish move forward, move the tail and body sec
tions forward one increment without moving the head. Next, move the tail for
ward another increment without moving the body or head. The fish will appear
to be two increments shorter. Next, move the head forward two increments and
the body one while keeping the tail in place. (An increment may be one or two
pixels.) Motion should be deliberate and slow for a big fish, fast and lively for a
little fish .

Obviously, this is minimal animation. Improvements are easy to make,
though. For example, use three different tails- the first a little higher on the end
of the body, the third a little lower. Alternately display tails 1,2,3,2, 1,2,3, and so
on. Periodically, emit a stream of bubbles from the fish's mouth. Remember that
the fish is moving forward but the bubbles aren't and that because of changing
water pressure, bubbles get bigger as they rise. Under water, bubbles are not
spherical but are shaped like an eyeglass lens, although many viewers would
probably expect to see spherical bubbles.

A running animal requires more than the three frames per cycle needed to ani
mate the fish because its motion is more complex. An image on the retina of the
human eye persists for about 0.07 seconds. So the 16 frames per second once
used as the projection rate for motion pictures is just fast enough to fool the eye
into the illusion of continuous motion.

A typical computer can produce up to 30 frames per second, depending on
the execution time of the program, so the number of frames needed for one
motion cycle can be established. One running cycle for a human may be defined

Example of easy animation subject

57 Realism and Animation

I

~1. tJIJJr ~

Ongmal Muybridge running cat photo
graph

Outlines of selected Muybridge frames

"

,.

as beginning when his right foot touches the ground and ending two paces later,
when his right foot reaches the same position .

If a cat executes three running cycles per second and the program can pro
duce 18 frames per second, it is necessary to define a running cycle in 6 frames.
The motion of a running cat can be analyzed from slow-motion movies or a se
quence of pictures, such as the beautiful sequence photographed by Eadweard
Muybridge over eighty years ago. These photographs, taken by 24 cameras elec
trically timed to shoot at short intervals, provide 12 images per cycle.

In frames 1 and 2, the cat is doing a desultory leap, followed by bringing its
weight onto the front legs (frames 3- 5), gathering the back legs (6 - 7), transfer
ring weight to the back legs (8), and lunging (9 - 12) into a much better leap,
(frames 13 through 16). Notice that the cat does not gather its legs very well
(frames 18- 21) and consequently the next leap is not going to be very impres
sive.

When Muybridge photographed animals in motion, he expected the pictures
to be of interest to artists, so he used a rectangular wire grid as a background to
provide a means of determining the scale of the picture. As it turns out, the grid
can be used to "digitize" the picture- to convert it into a numerical representa
tion for input into the computer.

The easiest way to do this is with a digitizer, but most personal computer
users don't have access to such a luxury. Another way is to put a sheet containing
a picture on a piece of square-ruled paper w ith carbon paper in between and
trace the picture onto the grid. Using the grid to provide coordinates, choose
important points on the picture and find their X,Y coordinates, which can then
be used with a standard routine such as DRAW A TRANSLATED FIGURE.

58 Fundamental Computer Know-How

···:/~~·::-~:~-=-':.-',-'LH'r:· ...

In the next picture, the cat was first digitized; then wherever a continuous
smooth curve was present, a curve was fit to the points. There are 15 curves on this
cat, plus a straight line at the base of one foot and a line and circular arc describing
the ear. To draw the cat using straight lines, it may be advisable to digitize a few
more points.

You may create the basis for a running sequence by making digitized outlines
of selected frames from the Muybridge photographs. The example shown here
used frames 1, 3, 5, 7, 9, and 11.

When the cat is set in motion on the screen, it is essential to align the pic
tures so that the positions of those feet contacting the ground do not vary from
one frame to the next, as shown in the second sequence of running cat drawings.

Notice that this technique is applicable to very low resolution-the resulting
cat is clearly recognizable.

Target Practice Game
Target Practice is a simple game that makes use of animation as well as the rota
tion, translation, and scaling subroutines described in Chapter 2. Imagine yourself
as the pilot of a World War I biplane in the air over France. In front of you is an
enemy plane, banking from side to side in a vain effort to escape your twin ma
chine guns. When you fire at the right moment, the enemy will bank into the
stream of bullets and be shot down.

Animated sequence with feet aligned
from frame to frame

Running sequence at very low resolution

-so~---~---~

·65 +6 5

C'Os1ha1r guns1ght m Target Practice
ga e

0 40

Pendulum rad1Us R of 40 for swing of
a•aaft

y

-JO 0 40

Pendulum rad1Us R of 70 for swmg of
a rcraft

Head on view of atrcraft

59 Realism and Animation

To make th is game work, your computer should have a button on a joystick
or game paddle, although a key on the keyboard can also be used. When the
button is pressed, it causes execution of a subroutine that sets a " shooting" fl ag
only if no previous shot is still in the air. This is necessary to keep the player from
firing continuously until the enemy stc.ays into the path of the bullets.

Two features make the game appear realistic. First, the enemy airplane, as it
banks from side to side, must slow down as it reaches the extremes of its pendu
lum-like motion. Second, bullets must appear to get smaller and closer together
as they move away.

We can imagine the enemy airplane to be swing ing like a pendulum from a
point above the center of the screen. If FNX and FNY are set up to define a
screen from - 65 to + 65 horizontally and - 50 to + 50 vertically, and a crosshair
gunsight is shown, as illustrated here, then the center of the sight is at 0, 10. The
enemy airplane can be made to swing from - 40 horizontally, through the point
0, 10 to + 40 along a circular arc. A " pendulum" radius R must, therefore, be at
least 40 to allow the aircraft to swing this far to either side.

In order to cause the aircraft to bank less steeply, a rad ius of, say, 70 can be
chosen .

To compute the pendu lum's location in X, a sine funct ion can be used. Let
t ing the angle a begin at 0 and increase by 5 degrees at a t ime, the X-location is
found by the equation :

X = 40 sin (a)

Since R is known, the Y value can be computed from Pythagoras' theorem :

Y2 + X2 = R2

or

Y = SQR(RT2 - Xf2) ;

The angle at which the aircraft is banked is 0, t he angle whose tangent is Y/X.

A simple biplane can be drawn using

DATA 2, - 10,2 .5,10 , 2 . 5
DATA 2,0,3,0,0
DATA 2 , -4,0,4,0
DATA 6,2, - 1.5.2.5,-0.5,1.5 , 1, - 1 5,1,-2.5, - 0.5, - 2, - 1 . 5
DATA 2,-7, - 1.5,7, - 1 . 5
DATA 2 , - 2.5, - 1.5, - 3 . 5, - 5
DATA 2,-3 .75,-4 .5,-3.25, 5 . 5
DATA 2,2.5,-1.5,3.5,-5
DATA 2,3.75,-4.5,3.25. -5. 5
DATA -9999

The following program w ill draw the crossha irs and show the biplane bank
ing from side to side.

Target Practice Program Code

PAGE
MOVE FNX(- 65),FNY(lO)
DRAW FNX(- 15),FNY(lO)

Draw crosshairs
120
130
140

60 Fundamental Computer Know-How

MOVE FNX(l5),FNY(l0)
DRAW FNX(65) , FNY(lO)
MOVE FNX(O) , FNY(- 50)
DRAW FNX(O) , FNY(- 5)
MOVE FNX(O),FNY(25)
DRAW FNX(O) ,FNY(50)
R = 70 I Initialize
G 0
F = 0
L = 0

REPEAT
X = 40*SIN(G)
Y = 70 - SQR(R f 2
RESTORE 660
X9 X
Y9 = Y + 10
S9 = 0 .5

IF X 0 THEN
T = 0

ELSE

! Compute position of target
- Mf2)

Prepare X9, Y9 . S9 , and T
for drawing target

T = ATN(Y/X)*l80/PI

GOSUB 760
G = G + 5*PI/180

UNTIL B = l

Draw target using ROTATE A FIGURE
Add 5 degrees to bank angle

Target Practice Code Description

Clear the screen and draw crosshair sight.

Set R, the banking radius of the enemy aircraft, to 70.

Set G, F, and L to zero. G is an angle that w ill be used to swing the
enemy aircraft from side to side. F is a " guns firing" flag. Guns are fir
ing when F = 1. L is a scaling factor for bullets. (F and L are not used
yet.)

Compute the location of the enemy aircraft.

Prepare to read the definition of the aircraft.

Set translation values X9 and Y9. Since the lowest Y-value will be zero,
add 10 to cause the pendulum arc to pass through the center of the
crosshairs at 0, 10.

Set drawing scale S9 at 0.5.

In computing the angle 0 (the variable T), the value Y/X is undefined
where X = 0. But at X = 0, T should be 0, so test for X = O and if so, set
T = 0. If not, compute T as the angle whose tangent is Y/X radians,
multiplied by 180/7T to convert T to degrees.

Call ROTATE A FIGURE.

Add 5 degrees to G.

Loop again through statements 250 - 390.

150
160
170
180
190
200
210
220
230
240

250
260
270
280
290
300
310

320
330

340
350
360

370
380
390

Sequence
Number

120

210

220

260

280

290

310

320

370

380

390

If your computer is the bit-map type, you w ill notice that instead of drawing
a single airplane moving from side to side, the program is drawing airplanes at
every step along the pendulum. To eliminate this difficulty it will be necessary to

61 Realism and Animation

erase the aircraft before red rawing it in a new posit ion . One way to erase is to
draw the airplane in black pixels- that is, select the color " black," set appropri
ate values of X9, Y9, S9, and T and call ROTATE A FIGURE after line 250.

The way to shoot at the enemy airplane also depends on the characteristics
of your computer. The variable L w ill be used to establ ish the location of fired
bullets, so when L = 0, no bullets are fly ing. Add after line 250 the equ ivalent of

IF button pushed THEN
GOSUB 1000

Subroutine 1000 should be

IF L = 0 THEN
F 1
L 2

RETURN

1010
1020
1030

1040

This code says, in effect, " If the f iring button has been pushed and bullets
are not fly ing, set F, the 'bullets flying' flag and L, the bullet location factor."
Now, the code can be written to display six bullets and to test for a hit. (See
Chapter 7 and the Appendix for a discussion of perspective.)

Target Practice Revised Program Code

REPEAT
B = 0
PAGE
MOVE FNX(- 65) , FNY(lO)
DRAW FNX(- 15),FNY(lO)
MOVE FNX(l5) , FNY(l0)
DRAW FNX(65) , FNY(lO)
MOVE FNX(O) , FNY(- 50)
DRAW FNX(O) , FNY(- 5)
MOVE FNX(O) , FNY(25)
DRAW FNX(O) , FNY(50)
R = 70
G 0
F = 0
L = 0

REPEAT

Turn off "target hit" flag

Draw crosshairs

Initialize

X = 40*SIN(G) ! Compute position of target
Y = 70 - SQR(Rf2 - X)2)
RESTORE 660 Prepare X9 , Y9 , S9. and T
X9 x
Y9 y + 10
S9 0 . 5

IF x = 0 THEN
T = 0

ELSE
T = ATN(Y/X)*l80/PI

GOSUB 760
G = G + 5*PI/180

for drawing target

Draw target using ROTATE A FIGURE
Add 5 degrees to bank angle

Sequence
Number

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

250
260
270
280
290
300
310

320
330

340
350
360

370
380

62 Fundamental Computer Know-How

IF' F' < > 0 THEN
L = L/2
RESTORE 590
T = 0
S9 L
X9 = 0
Y9 = 10 - 60*L

If bullets are flying,
compute their Y-location
and prepare variables
for drawing bullets

GOSUB 760 Draw bullets

390
400
410
420
430
440
450
460

IF' Y = 0 AND L > 0 .015 AND L < 0 . 03 THEN
PRINT "BANG .. . "
B = 1

Test if bullets 470
hit target 480

490
500

IF' L < 1/64 THEN
F' 0

If bullets reached horizon,
reset flags

L = 0

UNTIL B = 1

UNTIL B < > B
END

Continue until target is hit

Start again when target is hit

DATA 2 , 30 . 0 , 26 . 25,7 . 5 Bullets
DATA 2.22 .5.15 , 20 . 625,18 .75
DATA 2 , 18 .75,22 . 5 , 16 . 875 , 26 . 25
DATA 2 ,-30.0 , -26.25 , 7 . 5
DATA 2 ,-22.5 , 15, - 20 .625 , 18 .75
DATA 2, - 18.75,22.5, - 16.875 , 26 . 25
DATA - 9999

DATA 2 ,-10 , 2.5 , 10 , 2 . 5 Target
DATA 2,0,3,0,0
DATA 2 . -4.0 ,4,0
DATA 6 , 2, - l.5 , 2.5, - 0 . 5 , 1 . 5 . 1, - 1 . 5.1. - 2 . 5 ,-0 . 5, - 2 ,-l . 5
DATA 2, - 7. - 1 .5,7,-1 . 5
DATA 2 ,-2.5. - 1 . 5 ,-3 . 5 ,-5
DATA 2 ,-3 .75, - 4 . 5, - 3 . 25 ,-5 . 5
DATA 2,2 . 5. - 1 .5,3.5 ,-5
DATA 2 , 3 .75, - 4 .5,3.25, - 5.5
DATA - 9999

CO = COS(T*0 .0174533)
SO = SIN(T*0 . 0174533)
REPEAT

READ J

IF' J >-999 THEN
READ X8 , Y8
MOVE F'NX((X8*CO -

Rotate. translate, and scale a figure

Y8*SO)*S9 + X9).F'NY((X8*SO + Y8*CO)*S9 + Y9
REPEAT

READ X8.Y8
DRAW F'NX((X8*CO -

Y8*SO)*S9 + X9) , F'NY((X8*SO + Y8*CO)*S9 + Y9)
J = J - 1

UNTIL J = 1

510
520
530
540

550

560

570
580

590
600
610
620
630
640
650

660
670
680
690
700
710
720
730
740
750

760
770
780
790

800
810
820

830

860

870
880

63 Realism and Animation

UNTIL J < -999

RETURN

Target Practice Revised Code Description

Crosshairs are drawn as before.

The enemy aircraft's position is computed and the aircraft is drawn.

The "bullets flying" flag is tested.

Bullet location factor L is halved.

The scale of the drawn bullets and their location on the screen are de
termined by L.

Bullets are drawn. Notice that L, which was set to 2 in Subroutine 1000,
is halved each time Statement 400 is executed, so L takes on the values
1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, and so on .

For the bullets to hit the target, the Y-location of t he aircraft must be
Y = 0 when the bullets reach it, which is when L = 0.015625. Because
numerical precision in computers varies, a better test for bullet location
is when L is at least 0.015 but less than 0.03.

If the bullets hit the enemy aircraft, print " BANG ... " and set "target hit"
flag B.

If L is less than 0.015625 (or 1/64), the bullets missed. Turn off the "bul
lets flying" flag F and reset the bullet location factor L to 0.

If B is not 1, the enemy aircraft has not yet been hit. Continue to proc
ess from line 250.

If the aircraft was hit, begin again at line 100.

Refinements

890
900

910

Sequence
Number

120

260

390

400

430

460

470

480

510

560

570

• Instead of printing "BANG ... " when the enemy aircraft is hit, show it "going
down in flames" by reducing Y by 5 units at a time until Y = 0. This is easy to
do: change line 270 to

Y = 70 - SQR(Rj 2 - Xj 2) - 5*B

Delete line 480 and change line 560 to

UNTI L Y = 0 Continue until plane goes dow n

• Add a trail of smoke as the plane goes down.

• Erase the previous set of bullets before drawing the next set.

• Randomly vary the extents of the pendulum swing of the enemy aircraft.

• Keep score. Display hits and misses at the top of the screen, for example :

3 HITS
2 MISSES

270

560

Part Two

Some Familiar Games

5

Ballistic Trajectory Games

68 Some Familiar Games

Target practice, in one form or another, is the basis for many games. Over the
centuries, people have thrown rocks and spears and fired arrows and bullets at
targets, sometimes to practice for hunting or war and sometimes just for the fun
of it. Many modern games are obviously derived from target practice- darts, for
example, and just about anything played with a ball.

Lots of computer and arcade games also involve batting an object or shoot
ing at things. To achieve a realistic effect, the programmer must take into ac
count the physical laws that apply to objects in motion. A brief discussion of
gravity and vectors is followed by examples using a dropped and bouncing ball.
The chapter ends with a simple cannon shooting game program and some sug
gested refinements.

Gravity

Except for the effect of friction and lift on a body as it flies through the air, all
propelled objects that are not self-powered behave according to the laws that
pertain to ballistic (free fall) trajectories. Expressed simply, an object in a vacuum
is subject to the force of gravity in the "downward" direction. If it is also in mo
tion in another direction, that motion component is not altered because of gravi
tational force.

There is a classical demonstration of this fact in which a dart is fired at a tar
get. The speed of the dart can be varied, but the gun is always horizontal. When
the trigger is pulled, the target begins to fall. The dart will always hit the target,
as shown in the accompanying drawing, because both the dart and the target are
subject to the same downward force.

Vectors

The motion of an object can be shown as a vector, a line whose length repre
sents the velocity (speed) of the object and whose direction corresponds to the
direction of motion, shown by an arrowhead on the line.

The horizontal (Vx) and vertical (Vy) components of velocity can be calculated
from the adjacent diagram.

Given two vector components V1 and V2, the resultant vector V can be found
by forming a parallelogram. V is the diagonal, as seen in the drawing.

Vectors acting in opposite directions yield a vector that is the sum of the two
components. As an example, when a bullet is shot straight up, the acceleration it
is given as it leaves the gun is counteracted by the force of gravity acting straight
down. (This phenomenon is illustrated here.) Thus if V1 = 2 and V2 = - 3, the re
sultant vector is V = - 1.

Vector calculations form the basis of ballistic trajectories and make computer
games of this kind look realistic.

'- 8
-~

\
\

ijA

ije
I
I
I
I
I
I
I
I

\ :
I I

c -- \~ -uc
Force of gravity equal on dart and falling
target

,,~
Vx

Vx= V cos(oc)
Vy= V sin(<><)

Calculating horizontal and vertical com
ponents of velocity

VI

/
/

/

/
/

/

Calculating vector V from vectors V1
and V2

VI

------1 v
V2

Typical result of opposing vectors.
If V2 > V7, the resulting vector
V= V2 - VI

~
0
0
0
0

0

0

0

0

0

0

0

0

0

0

0

0

lnaeasmg velocity of falling object

69 Ballistic Trajectory Games

Dropping a Ball

Vertical motion of an object may be described in terms of its height, the distance
it has travelled, or its velocity. These equations all depend on time, which is con
tinuous, not discrete. The only way it can be dealt with in a program, however, is
in discrete intervals. Selection of a proper time interval produces realistic mo
tion-the object will appear to fall neither too fast nor too slowly.

The equations of motion may be developed from a constant G , the force
due to gravity, and from six variables:

T Elapsed time

Y Height of a falling object at time T

Ho Height at which the object started to fall

Vo Velocity at which the object started to fall

To Time at which the object reaches the ground

T1 A time interval, say 0.1 seconds

On the earth, G is approximately 32 feet per second per second-that is, the
force G increases the velocity of a falling object by about 32 feet per second
every second.

When an object is dropped or thrown upward, it behaves accord ing to an
equation that gives the height of the object at any time after it is released :

Y = Ho + Vo*T - G*Tf 2/2

If the ball is dropped from a height Ho, the initial velocity Vo is zero, so the
equation becomes

Y = Ho - G* Tf 2/2

To find the time To at which the ball reaches the ground, it is necessary to find
the time at which Y becomes zero. So

0 = Ho - G* Tof 2/2

gives

Tof2 2*Ho/G

or

To = SQR (2*Ho/G)

To show the ball falling on the screen, a short time interval T1 is chosen, say 0.1
seconds, and how much farther the ball drops through each equal time period
will give the illusion of the ball's increasing velocity. The motion equation is eval
uated for T = 0, T = T1, T = 2*T1, and so forth, until T > TO or Y < = O, at which
time the ball has reached the ground. The illustration shows how the effect could
be drawn.

Here are the code and description of the algorithm for dropping a ball from
80 feet.

70 Some Familiar Games

Dropping a Ball Program Code

CLEAR THE SCREEN

PAGE

DRAW A LINE ACROSS THE SCREEN AT Y 0

MOVE 0,0
DRAW 130,0

ASSIGN INITIAL VALUES

HO = 80
T = 0

Ho is the initial height of the ball

Tl = 0 . 1
VO = 0
G = 32
x = 1
REPEAT

T
Tl
VO
G
x

is
is
is
is
is

elapsed time
a time interval
the initial velocity
the force of gravity
the object's horizontal position

Y = HO + VO*T - G*T f2/2 ! Y is ball height at time T

DISPLAY BALL AT X, Y

IF' Y > =0 THEN
GOSUB 500

T = T + Tl
UNTIL Y < 0

END

As long as ball is above ground ,
erase last ball and draw this one

INCREASE TIME BY ONE INTERVAL

Increase elapsed time by one interval ,
continue until ball reaches ground

Dropping a Ball Code Description

After clearing the screen, a horizontal line is drawn representing the
ground.

Initial variables are set.

Height Y of the ball at time T is computed .

If the ball has not reached the ground, Subroutine 500 erases the last
position of the ball and redraws it at Y.

Elapsed time is increased by one interval.

The program continues from line 240 until the ball reaches the ground.

Bouncing Ball

Examine the values of T and To at the end of the previous program,

T = 2 . 4
TO = 2 . 236

Sequence
Number

110

120

130

140
150

160

170
180
190
200
210
220
240
250

260

270
290
300

310

320
330

340

Sequence
Number

140

170

250

270

320

330

The ball actually reached the ground 0.164 seconds before the end of the last
time interval. If the ball had bounced, it should next be displayed at the point
X,Y where Y was the ball's position as of 0.164 seconds after it struck the ground.
To do so, start T for the bounce at

~
0
0
0
0

0
0

0

---TOP OF
SECOND BOUNCE

---TOP OF
THIRD BOUNCE

The effect of the coefficient of
rest1tut1on

71 Ballistic Trajectory Games

T = T - TO

so now T = 0.164 and To = 2.236, the time at which the ball first struck the
ground.

The situation is different for the beginning of the second bounce. Ho is now
zero and Vo is a function of the velocity of the ball when it struck the ground
(Vto). Since a ball never rebounds with all its orig inal velocity, we can say that Vo
= Vto * R, where R is the coefficient of restitution ("bounciness"), a number be
tween 0 and 1. If the rebound velocity were 80 percent of Vto, then R would be
80/100, or 0.8. Vto is found by multiplying G by the time taken for the ball to fall
from the top of its last bounce, in this case To. So

Vto = G * TO
and
VO Vto * R
or
VO G * TO * R

There is also a difference in the use of T and To now that the ball is bounc
ing. Since To is the time from the top of the ball's trajectory, the total amount of
time for one bounce is 2 *To. So to find the initial position of the ball after the
second bounce, you must use

T = T - 2 * TO

It is now a minor matter to cause the bouncing bal l to move across the
screen. Ignoring friction, horizontal motion is a constant. To move the ball side
ways, add a line after line 420: X= X + N * T1 . Define N after line 170 such that
N is the horizontal velocity in feet per second, for example, N = 5. See the illus
tration of how this motion could be protrayed on a screen and then study the
code that follows.

Bouncing Ball Program Code

CLEAR THE SCREEN
PAGE

110
120

DRAW A LINE ACROSS THE SCREEN AT Y 0 130
MOVE 0,0 140
DRAW 130. 0 150

ASSIGN INITIAL VALUES 160
HO = 80 170
R = 0 .8 R is the coefficient of restitution 180
T = 0 190
Tl = 0 . 1
VO = 0
G = 32
x = 1
TO = SQR(2 * HO/G)
GOSUB 350
T = T - TO

REPEAT
VO G * TO * R
HO 0
TO VO/G

Restart time at beginning of bounce

200
210
220
230
240
250
260

270
280
290
300

72 Some Familiar Games

GOSUB 350
T - T - 2 *TO

UNTIL VO < 1

END

! FIND HEIGHT Y AT TIME T AND DISPLAY BALL

REPEAT
Y = HO + VO * T - G * TI 2/2

! DISPLAY BALL AT X.Y

IF Y > = 0 THEN
GOSUB 500 ! Erase last ball and draw new ball at X,Y
T = T + Tl

! INCREASE TIME BY ONE INTERVAL
UNTIL Y < 0

RETURN

' 0
0
0
0
0
0

0

0

0

0

0

~
0 0
0 0

0 0
0

0 0
0

0

0 0

0 0

0
0

0

e

310
320
330

340

350

360
370
380

390
410
420
430

440
460

470

Portraying vertical velocity and horizon
motion of bouncing ball

v.

_J

v,

omputmg ballistic trajectory

73 Ballistic Trajectory Games

Bouncing Ball Code Description

Having cleared the screen and drawn the ground line, initial values are
assigned, including R, the coefficient of restitution .

Height at time T is computed in Subroutine 350, and the ball is dis
played, until the ball reaches the ground.

Time is reset to the actual bounce time.

Initial upward velocity after the bounce Vo is computed, initial height
Ho is set to 0, and the time at the bounce To is set.

The next bounce is displayed by calling Subroutine 350.

The program computes another bounce if the velocity of the ball ex
ceeds one foot per second.

Subroutine 350
Height of the ball is computed.

If the ball is above the ground, the previous ball position is erased and
the new ball is displayed.

Time is increased by one interval.

If the ball has not reached the ground, continue processing at line 370.

Otherwise, return to the main program.

Cannon Shooting Game

Sequence
Number

110

250

260

280

310

330

370

410

420

460

470

The rules of motion that apply to the bouncing ball may be applied very easily to
a large number of games in which ballistic trajectories are needed. In general, a
ball thrown at an angle or a bullet shot from a gun is not likely to be moving
straight up or straight out. If a gun is fired at an angle, a component of the ini
tial velocity Vi must be assigned to the constant horizontal motion Vx and the
other component assigned to the initial vertical velocity Vo, as shown in the illus
tration.

Here, a is the angle of the gun, and Vi is the known initial velocity of the
projectile. If a expressed in radians (27T radians = 360 degrees), then

VO = Vi * si n (a)
and
Vx = Vi * cos (a)

Since most people think in terms of degrees, a may be entered in degrees and
converted to radians by

a = a * 27Ti/360
or
A = A * PI I 180
or
A A * 0.0174533

Imagine a simple game in which a gun is shown from the side of the screen
and on the other side of the screen a blockhouse is drawn. The player enters an
angle between O and 45 degrees. The barrel of the gun moves to the given angle
and fires a shot. If the shot lands on the blockhouse, the game is over. If the shot
misses, the player enters another angle and fires again until the blockhouse is hit.

74 Some Familiar Games

Cannon Shooting Game Program Code

REPEAT
PAGE
S9 = 1
v = 1000
Tl = O.l
T = 0
G = 32
Xl 124
X2 130
Yl 0
Y2 6
MOVE 0 ,0
DRAW 130 ,0
RESTORE 970
GOSUB 1040
HOME

REPEAT

Clear screen
Set initial values

Blockhouse location

Draw level ground

Draw blockhouse
using simple DRAW routine
Move to top left corner of screen

PRINT 1 'ENTER ANGLE OF CANNON (OTO 45) :GG' ';
INPUT A Enter angle of cannon

UNTIL A > = 0 AND A < = 45

X9 = 6 . 5
Y9 = 2
RESTORE 910
GOSUB 1190
RESTORE 950
GOSUB 1040
XO 6 . 5
YO 2
Ml 2
M2 2
Al 0
A2 2 * PI
GOSUB 1360
Ml 3
M2 3

Set translation values

Draw cannon barrel
using DRAW ROTATED FIGURE
Draw gun body
using simple DRAW
Draw cannon wheel

using ELLIPSE routine
and draw shield

Sequence
Number

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

260
270
280
290

300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

Al - 15 * 0 . 0174533 450
A2 75 * 0.0174533 460
GOSUB 1360 470
RESTORE 930 Draw muzzle flash 480
GOSUB 1190 using DRAW ROTATED FIGURE 490
X0 =6 . 5+5 . 5*COS(T*0 .0174533)-SIN(T*0 . 0174533) Set 500
H0 =2+5 . 5*SIN(T*0 . 0174533)+COS (T*0 . 0174533) initial 510
VO = V * Tl * SIN(T * 0 .0174533) values for 520
D = V * Tl * COS (T * 0 .0174533) shell travel 530

REPEAT
TO = TO + Tl
Y = HO + VO * TO - G * TO t 2/2
X = XO + D * TO

IF X < 128 AND Y > 0 THEN

Increase time
and locate
the shell

GOSUB 1010 Erase and redraw the shell if on screen

540
550
560
570

580

590
600

75 Ballistic Trajectory Games

UNTIL Y < 0 OR X > = 128 ! until a t ground level or off screen 610

T8 = VO/G + SQR((2 * HO + VO j 2/G)/G)
X = XO + D * T8
T8 = ((X2 + Xl)/2 - XO)/D
H = HO + VO * T8 - G * T8) 2/2

IP X > = Xl AND ((Yl <= HAND
Y2 > = H) OR (X < = X2)) THEN
X9 = (X2 + Xl)/2
Y9 = 0
T = 0
RESTORE 990
GOSUB 1190
MOVE 25,80
PRINT "BANG!GGG"

ELSE

If shell missed

Compute values
to determine if
shell hit
blockhouse

If so.
draw shell burst

IP X < Xl THEN
X9 = X but stayed on screen
Y9 = 0
RESTORE 990
GOSUB 1190

MOVE 25 , 80
PRINT "MISSED ..

I = l

REPEAT

I = I + 1
UNTIL I 500

UNTIL G < > G

draw shell burst

Wait a short time

620
630
640
650

660
670
680
690
700
710
720
730

740

750
760
770
790
800

810
820
830
840

850

860

870
880

890

BARREL 900
DATA 4,2,0 , 5 . 5 , 0 , 5 . 5 , 2 , 1 , 2 ,-9999 910

PLASH 920

DATA 7 , 12.5,3 .75,16.5,15,3.5,18,3,14 . 5 , 2 . 5,15.5 , 1,12 . 5,2.25, - 9999 930

GUN BODY WITHOUT BARREL 940

DATA 6,5 , l , 3,0,0,0,0,0 . 5,3,1 . 5 , 4 . 5 ,2. 5 ,-9999 950
HOUSE 960

DATA 7 , 129 , 0 , 129 , 4 , 130 , 4 , 127,6 ,1 24 , 4 , 125 , 4 . 125,0 ,-9999 970

BANG 980

DATA ll,-l,0,-3,3.5,-l.5.2.5,-2,8,-1,5,0,9.5,0.5,4,1 . 5,6 . 5 , 1 990
DATA 2.3 , 3 , 3,1,0, - 9999 1000

Parts of the software tool kit described in Chapter 2 are useful here. The
DRAW subroutine may be used to draw the blockhouse and the gun carriage. The
DRAW A ROTATED FIGURE subroutine may be used for the gun barrel, the muz
zle flash, and the explosion of the shell. The ELLIPSE subroutine can draw the
cannon wheel and shield .

76 Some Familiar Games

Cannon Shooting Game Code Description

To beg in the program, the screen is cleared and constants are set:

S9 = l
v = 1000
Tl = 0.1
TO = 0
G = 32
Xl 124
X2 130
Yl 0
Y2 6

scaling value for DRAW A ROTATED PIGURE
muzzle velocity
time interval
start of trajectory time
force due to gravity
location of front of blockhouse
location of back of blockhouse
location of blockhouse floor
highest point on blockhouse

X1, X2, Y1, and Y2 will be used later to determine if the blockhouse was
hit.

The surface of the ground and the blockhouse may now be drawn. On
square-ruled paper, draw a blockhouse six units long and six high, as
shown in the accompanying drawing.

Beginning at X = 129, Y = 0 the data points are (sequence number 970):

x y
129 0
129 4
130 4
127 6
124 4
125 4
125 0

Sequence
Number

110

120

200

210

The gun body and muzzle flash are a little more complex. The drawings show the
data points for the gun body and how the muzzle flash should look, using these
muzzle flash data points (sequence number 930) :

Muzzle Flash
x y

12.5 3.75
16 5
15 3.5
18 3
14.5 2.5
15.5 1
12.5 2.25

The barrel and muzzle flash are defined as they would appear before rotation of
the barrel, at 6 = 0. They are processed by the DRAW A ROTATED FIGURE subrou
tine. A shell burst is drawn at the point where the shell hits the ground or the
blockhouse, also using DRAW A ROTATED FIGURE, because although the shell
burst is not rotated, it is translated to the point where the shell hits as shown in
the drawing .

The data points for the sheel burst are (sequence numbers 990 - 1000):

:mBEGIN
HERE

0 ~
124 126 128 130

Data points for drawing a blockhouse

3 .1.5

0,0

6
s
4

CIRCLE
CENTER 6 .5.2

4 5 2 5 RADIUS 2
)

- 3
ARC

CENTER 6.5,1
RADIUS 3

ROM -1 5 TO 7;
2

. 5 I F
~o 123 5 6 7 8 9 10

0.0 3.05.1

Data points for drawing side view of a
gun

7 .5 ,4 12,4

~
ROTATION 8 ·5 •2

6 .5.2

Data points for drawing gun with
muzzle flash

+'\
FIGURE
ORIGIN

o.o

Drawing of shell burst

xat1on of center of end of barrel

77 Ballistic Trajectory Games

Shell Burst
x y

- 1 0
- 3 3.5
- 1.5 2.5
- 2 8
- 1 5

0 9.5
0.5 4
1.5 6.5
1 2.3
3 3

0

The player is asked to 260

ENTER ANGLE OF CANNO N (O to 45)

The §.characters in the program are Control-G, typed by holding the 270
'Ctrl' key while pressing G. This control character causes a bell or buzzer
to ring momentarily on almost all terminals to get the user's attention.

When the player enters a number in the requ ired range, it is saved at T, 280
or fJ the rotation angle to be used by DRAW A ROTATED FIGURE (Sub-
routine 1190).
X9 and Y9 are set to the X,Y values of the center of rotation of the gun 300
barrel. The barrel and gun body, wheel and shield are drawn, followed by
the flash as the gun is fired.
Subroutine 1360 is the ELLIPSE routine. 420

Now the shell must be drawn and erased as it moves along the trajectory
in intervals of T1 seconds. The trajectory begins at the gun mouth and
ends when the shell reaches the ground.

Where is the mouth? The length of the barrel is 5.5 feet from the center
of rotation and its thickness is 2.0 feet. If the barrel were horizontal, the
center of the end of the barrel would be at 6.5 + 5.5, 2.0 + 1.0 since the
center of rotation is at 6.5, 2.0. After rotation, the center of the end of
the barrel is as shown in the illustration .

To f ind the resulting point, the center of rotation must be added (See
Note 2 at the end of the book) :

XO = 6.5 + 5.5 * cos(8) - sin(8)

See Appendix, p. 201 .

HO = 2 . 0 + 5 .5 * sin(8) + cos(8)

where XO is the beginning point on the horizontal path of the shell and
HO is the beginning height. The in itial vertical velocity VO is

VO = V * Tl * sin(8)

and the distance travelled horizontally in one time interval is

D = V * Tl * cos(8)

Having established values for XO, HO, VO, and D, you can compute the
trajectory. As in the bouncing ball problem, elapsed time TO is increased
by one time interval T1 and values for the X,Y position of the shell are
computed :

500

520

530

78 Some Familiar Games

Y = HO + VO * TO - G * TO i 2 / 2 560
X = XO + D * TO 570

As soon as the shell in its newly computed position appears on the 580
screen, the shell shown by the previous computation is erased and re- 610
drawn (Subroutine 1010) at its new position, and the trajectory is contin-
ued until the shell passes out of view to the right or returns to the
ground.

Now it is necessary to determine if the shell hit the blockhouse. (Remem
ber that X 1, X2 and Y1, Y2 were used to define the horizontal and verti
cal extents of the blockhouse.) If X is between X1 and X2 when Y be
comes zero, the shell has hit the blockhouse. However, if the shell
travelled past the house on a flat trajectory, maybe it was below Y2 as it
went by. If so, it also hit the blockhouse. First, let's see if the shell actu
ally landed between X1 and X2.

The time for the shell to reach the top of its trajectory Ttop is equal to
Vo I G. The time for the shell to come back down is longer, since it has
to fall HO feet more. The top of the trajectory H (see Note 3 at the end
of the book) is at :

H = HO - vot2 I (2 * G)

From the bouncing ball problem, the time to fall from a height H is

Tdrop = SQR(2 * H I G)

The total t ime of the trajectory is then

Ttop + Tdrop = VO I G + SQR(2 * H I G)

as seen in the trajectory drawing. Since

H = HO - VOf2 / (2 * G)

the total time of the trajectory TS is

T8 =VO/ G + SQR((2 *HO+ VOf2 / G) /G)

and where the shell landed is

X = XO + D * T8

To determine how high the shell was when it passed over the center of
the blockhouse (the average of X1 and X2, or (X2 + X1) I 2), the t ime
may be calculated by substituting (X1 + X2) I 2 for X in the formula
X = XO + D * T:

(Xl + X2) / 2 = XO + D * Tover

or

((Xl + X2) I 2) - XO)/ D = Tover

The height H of the shell when it is over the blockhouse is

620

630

H = HO + VO * Tover - G * Tover f 2 / 2 650

So, to ind icate a hit, either X must be between X1 and X2 or lower than 660
Y2. If the shell hit the blockhouse, a shell burst is displayed (Subroutine 710

Calculating shell's trajectory time

T drop
I
I
I
I
I

11.ac ng the gun and blockhouse at dif
ferent heights

Plicmg obstacle between gun and
blockhouse

79 Ballistic Trajectory Games

1190) and the word "BANG!" is printed. If the shell missed, the shell 800
burst is shown where Y = 0 if X is on the screen. The word "Missed ... " is 830
printed.

After a short pause, the program starts again. 860

Refinements

In this game, nothing is allowed to vary except the angle of the gun barrel. Con
sequently, having played it once, a user knows the correct angle and can hit the
blockhouse on the first try. Some of the following suggestions are easy to imple
ment and make the game more interesting.

• Randomly move the position of the blockhouse in the X direction so that X1 may
vary between 100 and 124. To do this, get a random number between 0 and 1
(using the RND function) and multiply it by 24. This yields a number between 0
and 24. Subtract it from X1 and X2 and alter the program so that the blockhouse
is drawn by the TRANSLATE A FIGURE subroutine.

• Randomly place the gun and the blockhouse at different heights, as suggested in
the illustration.

• Include an intervening hill of random size and location, as seen in the next illus
tration.

• Include the effect of a randomly strong wind, shown by an arrow whose length
is proportional to the strength of the wind. At each time increment, add to X a
factor proportional to the wind force W. To generate a random wind, first set W
equal to a random number between 0 and 1. Draw the shaft of the arrow S*W
in length. Then get a second random number R2. If R2 < .5, let W = - W and
draw the arrowhead on the left-hand end of the line. If R2 > = .5, draw the ar
rowhead on the right-hand end of the line.

• Allow the elevation of the gun to vary between - 10 and 90 degrees. If the com
bination of wind and barrel angle causes the shell to hit the cannon, do some
thing spectacular-at least draw a big explosion and write "BOOM!!!" instead of
"BANG!"

• Allow the player only three shots per game. If he misses with all three, he loses.
Keep score from one game to the next. Give 5 points for a hit on the first shot, 3
on the second, 1 on the third . Deduct 2 points if all three shots miss.

• Change the target to a tank. Move the tank toward the cannon along the ter
rain. If the player cannot hit the tank by the time the tank reaches the top of
the hill, make the tank aim its gun and fire at the cannon. The tank should never
miss.

6

Racetrack Games

82 Some Familiar Games

Races are an ancient form of contest . Long before the original Olympic Games in
Greece, people were competing in races and even training their domestic animals
to race, inevitably for the purpose of wagering . People have ridden camels and
ostriches in races, so it is certainly no surprise that many dogs and horses are
bred for the express purpose of racing .

Racing is a form of what psychologists call displacement (in this case, a way
to compete without going to war) . The participants derive satisfaction from com
peting. The owners of the animals or vehicles used in racing enjoy developing
superior racers. Spectators become a part of the contest by betting on the out
come. The same excitement can be generated by a realistic computer race game.

The design of an oval track and the movement of racing animals around it
are most easily programmed through the use of polar coordinates. That is only
the beg inning of a complete horse race game, however, so discussions of betting
and the announcer's commentary are included to add color and realism to the
program. The final section of the chapter is devoted to the animation of the
horses themselves, build ing on the introduction to the subject in Chapter 4.

Designing the Track

A typ ica l racetrack looks like two semicircles connected by straight sections, as
shown in the first track diagram.

The next five track diagrams illustrate attempts to create a realistic racetrack
using various methods.

It is tempting to break the track into four sections and move the horses or
vehicles around each section independently. This requires relatively complicated
log ic:

lil = 270
li2 = 90
WHILE Xhorse < Xl DO

INCREASE Xhorse
DRAW HORSE AT Xhorse,Yhorse

WHILE Xhorse > Xl DO
INCREASE lil
DRAW HORSE AT Xl + Rhorse * cos(lil), Yl + Rhorse * sin(lil)

Set Yhorse TO BACKSTRETCH Y, THAT IS -YO
WHILE Xhorse > X2 DO

DECREASE Xhorse
DRAW HORSE AT Xhorse , Yhorse

WHILE Xhorse < X2 DO
INCREASE li2
DRAW HORSE AT X2 + Rhorse * cos(li2), Y2 + Rhorse * sin(li2)

SET Yhorse TO YO
WHILE Xhorse < XO DO

INCREASE Xhorse
DRAW HORSE AT Xhorse.Yhorse

BACKSTRETCH

FAR
TURN

G o.o
Xf.Y O +

STRETCH

START
FINISH

Diagram of a racetrack

Xl.'f~ FIRST
TURN

A .empt No. 1 to generate a racetrack
r£agram, using R and IJ

Artempt No. 2 to generate a racetrack
;iagram, using X = XO + cos (IJ),
, = YO sin (IJ)cos(IJ)

Mtempt No. 3, using R = cos (IJ)

CJ
Attempt No. 4, using R = 1 + cos (IJ)

83 Racetrack Games

whereas, if the track were circular,

IJ = 0
WHILE IJ < 2TT DO

DRAW HORSE AT XO + Rhor s e * cos(IJ) , YO+ Rhorse * sin(IJ)
INCREASE IJ

If a funct ion of R and 6 could be found for a typical track, then writi ng a
program would be much easier. In order to generate a typ ica l track using R and
6 the function must generate maximum values of R when 6 = 0 and 6 = 1T and
minimum values of R when 6 = 7T/2 and 37T/2, as seen in " Attempt No. 1."

This suggests a cosine funct ion, since cos(O) = 1, cos(7T/2) = 0, cos(7T) = 1, and
cos(37T/2) = 0.

Other attempts to improve the funct ion, such as letting 6 = 0 to 27T in sma ll
increments and drawing XO + R * cos(6), yO + R * sin(6) w here R = cos(6) yields
"Attempt No. 2,"
which is not even as useful as letting R be a const ant, since now the orig in XO,YO
of the track is not in the center and the track is still not ova l.

The funct ion R = cos2(6) returns the origin to t he midd le of t he track but the
straightaways are pinched in (" Attempt No. 3"), because cos2(0) = 1, cos2(7T/2) = 0,
cos2(7T) = 1, cos2(37T/2) = 0, and cos2(27T) = 1.

x 65
y 50
c 5
T 0

WHILE T < = 2 * PI DO
R = COS(T)J 2 * C

IF T = 0 THEN
MOVE X + R * COS(T), Y + R * SIN (T)

DRAW X + R * COS (T) , Y + R * SI N(T)
T = T + PI / 72

What about R = 1 + cos2(6)? Now we have

IJ cos2{1J) + 1

0 2
7T/2
1T 2
37T/2 1
27T 2

and the curve is shown in " Attempt No. 4."
Experimentation w ith various values of P in

R = P + cos2 (1J)

84 Some Familiar Games

shows that P = 2 yields a good shape ("Attempt No. 5") .
To generate a racetrack, the inside and outside edges of the track are drawn

by using two values of C, as shown in the successful racetrack diagram.

x 65
y = 50
c = 10

WHILE C < 20 DO
T = 0

WHILE T < = 2 * PI DO
R = (2 + COS(T)f2) * C

IF' T = 0 THEN
MOVE X + R * COS(T), Y + R * SIN(T)

DRAW X + R * COS(T), Y + R * SIN(T)
T T + PI/72

c c + 10

+

Attempt No. 5, experimenting with va1
ous values of P in R = P + cos (8)

Successful racetrack diagram, using Ill
values of C

85 Racetrack Games

Adding Horses
Now that the track is ready, what about the horses? First of all, a race never be
gins on a turn, so the horses will begin and end at 8 = 270 degrees- that is, 37T/2
or -7T/2. Assuming that the horses start out evenly spaced and that the inside of
the track is at C = 10 and the outside is at C = 20 in the equation,

R = (2 + cos2 (8)) * C

then the space between the centers of two consecutive horses is

(20 - 10)/N

where N is the number of horses, say six.
In horse racing, usually the order of fin ish of the first three horses- win,

place, and show- is important for parimutuel wagering . Also, the "odds" or pay
out on a bet will depend on the ratio of the number of people betting on the
selected horse compared to the total betting pool. More about that later. Clearly
a horse should perform to some extent accord ing to his odds.

Let us arbitrarily decide that an average move for one horse should be 7T/72
radians, about 2.5 degrees. Throughout the course of one race, a horse will be
shown in about 144 positions. The horses will move according to random num
bers until close to the end of the race, when the odds on each horse will begin
to have an effect.

Using an array of six variables H(l) through H(6), each horse's angular posi
tion will be updated throughout the race, beginning at -7T/2 and being modified
thus :

H(I) = H(I) + ~/36 * rnd(- 2)

where rnd(- 2) is a random number between 0 and 1. Since the average such ran
dom number is 0.5, the average angular increment will be 7T/36 * 0.5, or 7T/72.

After one of the horses passes a certa in point along the stretch, odds w ill be
appl ied to all horses. So a horse racing at odds of 6 to 1 will move according to
the formula

H(I) = H(I) ~/36 * rnd(- 2) * Odds

where Odds in this case is 1/6. Th is means that the average move will now be
only 1/6 of what it was before the odds were applied.

Odds will be selected for each horse from a table of allowable odds : 1 to 1
(even), 6 to 5, 5 to 4, 3 to 2, 2 to 1, 5 to 2, 3 to 1, 4 to 1, 5 to 1, 6 to 1, 7 to 1,
8 to 1, 9 to 1, 1 O to 1, 15 to 1, 20 to 1, 30 to 1, 50 to 1, and 99 to 1.

Each horse will be displayed so that its nose touches the point

X + R * cos(H(I)), Y + R * sin(H(I))

and so that its spine is perpendicular to the line from its nose to the middle of
the track, the point 0,0, as illustrated.

Horses can be modelled from a simple " above" view, as shown in the en
larged diagram.

86 Some Familiar Games

o.o

R

The horses must continue to run around the track after they cross the finish
line, at least until the third horse has finished. It would be highly unrealistic to
stop or erase the winning horse while waiting to determine the "place" (second)
horse and then the "show" (third) horse.

Given the goal of keeping note of the order of finish of the first three
horses, the following algorithm will get them around the track:

Simple Racetrack Program Code

X = 65 Assuming a screen size 0 to 130 in X. 0 to 100 in Y.
Y = 50 set X,Y to center of screen
DIM H(6) , P(6), Q(6) , W(3), S(l9)
DATA l , 0 .833,0 .8,0.667 , 0 .5,0 .4 , 0 .333,0 . 25 , 0 .2,0.167,0.143,0 . 125
DATA 0 . lll . O. l,0 . 067 , 0 .05,0 .033,0 .02,0 .0l
READ S Read odds table
H = -PI/2 Set horses at start
I = 1

REPEAT
Q(I)=3*I - 2+INT(RND(- 2)*4) Get random odds for each horse

Sequence
Number

120
130
140
150
160
170
180
190

200
210

Placement of a horse relative to the
track

Diagram of a horse seen from above

87 Racetrack Games

P(I) = S(Q(I))
I = I + 1

UNTIL I > 6

c = 10

REPEAT
MOVE X,Y - C * 2
T = -PI/2

Draw the track

220
230
240

250

260
270
280

REPEAT 290
R = (2 + COS(T)12) * C 300
DRAW X + R * COS(T), Y + R * SIN(T) 310
T = T + PI/72 320

UNTIL T > 1 . 5 * PI 330

c = c + 10 340
UNTIL C > 20 350

F = O No horse has reached the handicap point 360
J = O No horse has finished 370
WHILE J < 3 DO Run horses until 3 have finished 380

N=INT(RND(- 2)*6+1) Select first horse to move on this turn 390
M = N 400

REPEAT 410
I = M 420

IF' I > 6 THEN
I = I - 6

If horse six just moved ,
next to move is horse one .

430
440

450

C =I* 1 .6667 + 9.1667 Locate horse 460
R = (2 +COS (H(I))f2) * C 470
GOSUB 1000 Draw horse 490

IF H(I) > 1 . 4 * PI THEN Set F to 1 if this horse 500
F = 1 has passed the handicapping point 502

IF H(I) > = 1 . 5 * PI THEN

CASE J OF

Has this horse finished?

0 :

1 :

2 :

W(l) = I
J = 1

IF W(l) < >

J = 2
W(2) = I

IF W(l) < >

J = 3
W(3) = I

I

I

If so, is it first?
Save horse number as winner

Second?

THEN

Save "place" horse number

Third?

AND W(2) < > I THEN

Save "show" horse number

504

510

520
530
540
550
560

570

580
590
600
610

620

630

640
650
660
670

680
690

88 Some Familiar Games

IF' F' = 0 THEN
H{I) = H(I) + PI/36 * RND(- 2)

ELSE
H(I) =H(I) +PI/36*RND(- 2)*P(I) Handicap all horses if F' <> O

M = M + 1
UNTIL M > N + 5

Do next horse

Simple Racetrack Code Description

Establish X, Y as the middle of the track. Establish an odds table S. Set
the initial angle of each horse H as Tr/2. This angle is the angle of the
line from X,Y to the horse's nose.

Find at random an index to the odds table between table entries 1 and 4
for horse 1, 4 and 7 for horse 2, 7 and 10 for horse 3, etc. Save the
index in the table Q and the odds in the table P.

Draw the inner and outer extents of the track.

Set F = 0 to indicate that no horses have reached the point at which the
odds or handicapping will be applied.

Set J = 0 to indicate that no horses have crossed the finish line.

Run horses until three have finished . Select at random which horse
moves first, moving the others sequentially thereafter until all six have
moved.

For each horse, find the distance from the middle of the track to the
horse's nose.

Draw the horse at X + * cos(H(I)), Y + * sin(H(I)) (Subroutine 1000).

If this horse has passed the handicapping point, set F to 1.

If this horse has passed the finish line, then

If no horses has finished, this horse is the winner : put its number in
W(1) and show that one horse has finished .

If one other horse has finished, this horse is the " place" horse: put its
number in W(2) and show that two horses have finished.

If two other horses have finished, this horse is the "show" horse : put its
number in W(3) and show that three horses have finished.

Increase this horse's angle by rr/36 times a random fraction, times this
horse's odds if F = 1 or times 1 if F = 0. Go to the next horse.

If six horses have already been processed and if less than three horses
have finished, continue to process horses.

Wagering

700
710
712

714
716
718

720
730

740

Sequence
Number

120

210

250

360

370

380

460

490

500

510

520

570

630

710

730

Now horses can be run around a track, but this game is not yet a reasonable sim
ulation of a horse race. For example, at a real track people would be allowed to
place bets, the announcer would "call" the race (describe the position of the
horses as they ran), and at the end of the race a tote board would show the win,

89 Racetrack Games

place, and show horses along with their payout for a $2 bet. Bettors holding pay
ing tickets would cash them in and buy tickets for the next race based on the
expected performance of a new group of horses.

A racing "card" or program usually calls for nine races. Assuming that a com
plete game is nine races, then, the preliminary information needed for the
game is

How many horsepl ayers?

What is the name of each horseplayer?

Before each race, the odds on each horse must be shown to each player so
bets may be placed. Each player is asked

How many bets? (1 . 2 or 3)

Then for each bet,

BET 1 : HOW MUCH? ($2. 5, 10, 20, 50 , 100) $
WHICH HORSE? (1- 6)
WIN , PLACE, or SHOW? (W. P, or S)

BET 2 : and so on.

After all bets are placed, the track may be displayed along with the tote
board, which will be used to show the numbers of the win, place, and show
horses along with their payouts for a $2 bet.

The horses are run randomly around the track until one horse passes the
angle 1.47T. Then, odds are applied to each horse until the order of finish has
been established. As each of the first three horses passes the finish line, its pay
out for a $2 bet is computed and displayed on the board . At a real racetrack,
three betting pools are maintained, one for the winner, one for the place bets
(shared between place tickets on the winner and the second horse), and one for
the show bets (shared among show tickets on the first three horses). To cover
expenses, taxes, and profit, the track takes 17 percent out of each pool, after
which the other 83 percent is distributed to the ticket holders. For the place and
show horses, distribution is proportional to the odds on the horses involved. The
odds at a real track are, in fact, determined solely by the number of tickets on
each horse in the pool :

Odds = (Tickets on horse) / (Tickets i n pool)

In this game, since the pool is too small to be realistic, the odds are estab
lished to reflect typical odds and the payout is to be computed from those odds :

Winner = $ * 0.83 I Odds + $
Pl ace = $ * 0 .83 /Odds / 2 + $
Show = $ * 0.83 I Odds I 3 + $

except that at a real racetrack the minimum payback must be 5 percent, or $2.10
on a $2.00 ticket. Otherwise, payment is rounded to the nearest 10 cents. For
example, the payback on a $2 ticket on the show horse is the $2 bet plus 83 per
cent of $2 ($1 .66), divided by the odds, divided by three. If the odds are 5 to 1,
divide by 1/5 or 0.2. (Of course, the odds could be computed by dividing 1 into 5
instead of 5 into 1, in which case we would multiply by the odds.) The payout at
5 to 1 would be

90 Some Familiar Games

1 . 66 I . 2 / 3 + 2 or $4 .766666 .. .

Rounded to the nearest dime, the payout is $4.80. To get th is result, use the
formula

INT ((l .66/0DDS/3 + 2) * 10 + 0 . 5)/10

which yi elds

(1 . 66/0 . 2/3 + 2) * 10 = 47 . 666 .. .
47 .666 . .. +0 . 5 = 48.166 . ..

INT (48 . 166 ...) = 48
48/10 = 4 .80

Unfortunately, the 0 in 4.80 w ill not be displayed by a PRINT statement. To
get a t railing zero, it is necessary to convert the number to a string. Even then,
the tra iling zero will not appear w ithout a little trickery. The number 4.805 will
convert t o the st ri ng " 4.805." The last character of the string is then deleted,
leaving "4.80." The value of the expression

INT((l . 66/0DDS/3 + 2) * 10 + 0 . 5)/10 + 0.005

will always have three decimal places and may be used w ith the string manipula
tion descri bed above to ensure two decimal places.

Here is a more realisti c horserace :

Horse Race Program Code

x = 65
y = 50
DIM H(6), P(6), Q(6), W(3) ,S (19) . L(10 . 9). P$(200) . B(10) , A(10)
DIM (6 . 2)
DATA l , 0 . 833 , 0 .8 , 0 .667 , 0 . 5 , 0 .4 , 0 .333 , 0 . 25 , 0 . 2 ,0.l67,0.143
DATA 0 . 125
DATA O. lll , O. l , 0 . 067,0 .05 , 0 . 033 . 0 .02 , 0 .0l

Empty the player name list
Read odds

P$ = ""
READ S
A = 0
u = - 1
PAGE

Empty all wagering accounts
Initialize commentator ' s flag

PRINT"" ," COMPUTERPARK RACETRACKJJ"

REPEAT
PRINT "HOW MANY HORSEPLAYERS? (1- 10) GGG" ;

INPUT K Get number of players-at least one
UNTIL K > = 1 AND K < = 10 and not more than 10

I = 1

REPEAT
PRINT "NAME OF PLAYER " ; I ; " ? Q" ;
INPUT A$
GOSUB 6850
I = I + 1

UNTIL I > K

N = 1

REPEAT

Get player names

Sequence
Number

120
130
140
150
160
165
170
180
190
200
210
220
230

240
250

260
270

280

290
300
310
320
330
340

350

360

91 Racetrack Games

H = -PI/2
I = 1

Set start position of horses

REPEAT
Q(I) = 3 * I - 2 + INT(RND(- 2) * 4)
P(l) = S(Q(l))
I = I + 1

UNTIL I > 6

J = 1
B = 0

REPEAT
PAGE
PRINT "~"."COMPUTERPARK RACETRACK"
PRINT I I I I I I I I •

Select odds

IO = N
GOSUB 4270
PRINT " RACE"JJ"

Display race number and odds
on each horse

PRINT "
I = 1

REPEAT
PRINT " " "

GOSUB 9000
PRINT D$
I = I + 1

UNTIL I > 6

GOSUB 6940

HORSE ODDS"

II ; I ; 11

Get a player's name

IF N > 1 THEN If not the first race ,
PRINT "~";A$;" , YOU ARE 11

• show player's account

CASE SGN(A(J)) OF

- 1 :
PRINT "DOWN $" ;ABS(A (J))

0:
PRINT "EVEN"

1 :
PRINT "UP $"

WHILE B(J) < 1 OR B(J) > 3 DO
PRINT "~HOW MANY BETS , " ·

IF N = 1 THEN
PRINT A$;

PRINT"? (1-3) Q" ;
INPUT B(J)

E = 1

Let player elect to
make up to 3 bets

370
380

390
400
410
420
430

440
450

460
470
480
490
500
510
520
530
540

550
560
570
580

1160
1170

1180

1190
1200

1210

1220
1230
1240

1250
1260
1270

1280
1290
1300

1310

1320

1330
1340

1350
1360
1370

1380
1390
1400

1410

92 Some Familiar Games

WHILE E < =B(J) DO
PRINT"~" ;

IO = E
GOSUB 4270
PRINT II BET : "
GOSUB 3000
E = E - + 1

J = J + 1
UNTIL J > K

Accept players' bets

PAGE Display the track
c = 10
REPEAT

MOVE X,Y - C * 2
T = -PI/2

REPEAT
R = (2 + COS(T)f2) * C
DRAW X + R * COS(T) , Y + R * SIN(T)
T = T + PI/72

UNTIL T > 1 . 5 * PI

c = c + 10
UNTIL C > 20

F' = 0
MOVE 62,60
PRINT "$2 PAYS"
RESTORE 1680

Draw tote board

1420
1430
1440
1450
1460
1470
1480
1490

1500
1510

1520
1530
1540
1550
1560

1570
1580
1590
1600
1610

1620
1630

1640
1650
1660
1670

1680 DATA 5 , 0 , 9,3 , 9 , 3,0,0 , 0,0.9 Tote board 1680
DATA 2,0 , 6 , 3,6 1690
DATA 2,0 , 3,3 , 3 1700
DATA 7,41 , 6,5,6 , 5 , 9,41,9,41 , 0.29 , 0 , 29 , 9 1710
DATA 3,17 , 9,17,3 , 41 , 3 1720
DATA - 9999 Translate tote board to 45,50 and draw it 1730
X9 = 45 1740
Y9 = 50 1750
GOSUB 4010 1760
I = 1 1770
RESTORE 1790 1780

1790 DATA 50 . 2,56 . 2 , 62 . 2 , 56 . 2 , 74 . 2 , 56 .2, 62 . 2,53 . 2,74 . 2 , 53 . 2,74 .2 1790
DATA 50.2 1795

REPEAT
READ X8 , Y8
MOVE X8 , Y8
PRINT"$" ;
I = I + 1

UNTIL I > 6

J = 0

WHILE J < 3 DO

Print $ signs on tote board

Race the horses

V = INT(RND(- 2) * 6 + 1)
M = V

REPEAT
I = M

IF' I > 6 THEN
I = I - 6

1800
1810
1820
1830
1840
1850

1860

1870
1880
1890

1900
1910

1920
1930
1940

93 Racetrack Games

C = I * 1 . 6667 + 9 . 1667
R = (2 + COS(H(I))f2) * C
GOSUB 6970

IF H(I) > 1 .4 * PI THEN
F = 1

IF H(I) > = 1 . 5 * PI THEN

CASE J OF

2 :

0 : For the winner ,

1 :

IV(l) = I
J = J + 1
MOVE 44 .5,56.2
PRINT I ; display horse number

G = 1. 66
MOVE 49 . 2,56 . 2
GOSUB 4160

and $2 payout to win,

G = 0 .83 place.
MOVE 61.2,56 . 2
GOSUB 4160
G = 0 . 5533 ! and show .
MOVE 73.2 , 56 . 2
GOSUB 4160

For the "place" horse ,

IF W(l) < > I THEN
W(2) = I
J = J + 1
MOVE 44 .5,53 . 2
PRINT I; Display horse number and $2 place
G = 0 . 83 ! payout
MOVE 61 . 2 , 53 . 2
GOSUB 4160
G = 0 .5533 and show .
MOVE 73 . 2,53 . 2
GOSUB 4160

For the "show" horse.

IF W(l) <> I AND W(2) < > I THEN
W(3) = I
J = J + 1
MOVE 44 . 5 , 50 . 2
PRINT I ; !Display horse number and $2 show
G = 0 . 5533 !payout .
MOVE 73 . 2,50.2
GOSUB 4160

1950
1960
1970

1980
1982
1984

1990

2000

2010
2020
2030
2040
2050

2060
2070
2080
2090
2100
2110
2120
2130
2140
2150

2160

2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280

2290

2300

2310
2320
2330
2340
2350
2360
2370
2380
2390

2400

2410

2420

94 Some Familiar Games

IF F = O THEN See Note 4 at the end of the book 2430
H(I) = H(I) + PI/36 * RND(- 2} 2432

ELSE
H{I) =H(I)+PI/36*RND(- 2}*P{I) Apply odds if F<>O

M = M + 1
GOSUB 5000
UNTIL M > V + 5

I = 1

WHILE I < K DO
J = 1

WHILE J < B(I) DO
M = 1

Do racing commentary

Pay bets for each player

Each bet

WHILE M < = L{I,J + 3) DO Each qualifying horse

IF L(I ,J + 6} = W(M) THEN Compute payback
V=INT{{l . 66/M*L{I , J)/P(W (M))+L{I,J)+0 .05}*10)/10
V = V MAX 1 . 05 * L(I , J)
A(I} = A(I) + V

M M + 1

J J + 1

I I + 1

MOVE 50,45
IO = N
GOSUB 4270
PRINT "RACE OFFICIAL"
v = 1

WHILE V < 1000 DO
v v + 1

Display race number
and "race official"

Pause

u - 1
N N + 1

UNTIL N > 9

Reset commentator's flag
and do next race
until ninth is finished

PAGE
PRINT II " . "~COMPUTERPARK RACETRACK JJ"

PRINT "AT THE END OF TODAY'S RACING PROGRAM."
J = 1
REPEAT

GOSUB 6940
PRINT "~" ; A$; " FINISHED 11

•

CASE SGN(A(J)) OF

- 1:
PRINT "DOWN $" ;ABS{A(J})

Display final account
balances of each player

2434
2436
2438

2440
2450
2460

2470

2480

2490
2500

2510
2520

2530

2540
2550
2560
2570
2580

2590
2600

2610
2620

2630
2640

2650
2660
2670
2680
2690

2700
2710
2720

2730
2740
2750

2760
2770

2780
2790
2800
2810
2820

2830

2840
2850
2860

95 Racetrack Games

0 :
PRINT "EVEN"

1 :
PRINT "UP $";A(J)

J = J + 1
UNTIL J > K

END

Now to review the complete racing and wagering algorithm :

Horse Race Code Description

Set X and Y to the coordinates of the center of the screen.

Define arrays.

Define all allowable odds.

Set the list of player names to "empty."

Read the odds table into the S array.

Set the balance of each player's wagering account A to zero.

Set commentator's flag U to - 1.

Clear the screen and print title.

Ask for the number of players, at least one and not more than ten.

Get player names. (Subroutine 6850 puts player name A$ into string
array P$.)

Set all horses at the starting angle - rr/2.

Randomly select the odds f?r all horses:

Horse Is one of

1 even, 6/5, 5/4, 3/2
2 3/2, 2/1 , 5/2, 3/1
3 3/1, 4/1, 5/1, 6/1
4 6/1, 7/1, 8/1, 9/1
5 9/1, 10/1, 15/1, 20/1
6 20/1, 30/1, 50/1 , 99/1

2870
2880
2890

2900
2910
2920
2930

2940
2950

2960

Sequence
Number

120

140

160

180

190

200

210

220

240

290

370

390

Set number of bets per player, B, to zero. 450

Display the odds on each horse. (Subroutine 4270 gets race number.) 510

Subroutine 9000 gets the odds on a horse from a string containing all 570
possible odds in groups of four characters each :
"EVEN 6/5 5/4 3/2 .. .50/1 99/1" using Q(I) to select the correct group,
which is returned in D$.

Get a player name into A$ (using Subroutine 6940). 1180

If this is not the first race, display the status of the player's wagering 1190
account.

Ask the player how many bets, B, he wants to make on this race (at 1330
least one and not more than three).

Ask the player for his bet. 1420
Subroutine 4270 displays the word First, Second, or Third depending on

96 Some Familiar Games

the value of 10. Subroutine 3000 asks the player how much he is betting
($2, 5, 10, 20, 50, or 100) to win, place, or show, and on which horse.

After each player has placed his bets, the race begins. The track is dis- 1520
played.

The tote board appears in the middle of the track. 1640

Subroutine 4010 is the DRAW A TRANSLATED FIGURE subroutine. The 1760
tote board is developed from the accompanying diagram.

$2 P AY S

1$ $ $

$ $

$

I 1 I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I I I 1

For each move, a horse is chosen at random to move first. 1880

Subsequent horses go in ascending sequence until all have moved, for 1900
example, if 3 goes first, the order is 3,4,5,6, 1,2.

Subroutine 6970 erases the horse in its existing position and redraws it 1970
after its move is computed .

The odds flag F is set to 1 if any horse has passed 1.47T. 1980

If the horse H(I) has passed the finish line, the event must be noted in 1990
the order-of-finish table W and the payout posted on the tote board. J
is the number of horses that have already finished .

If J = 0, no horses have finished and so horse number I is the winner. The 2010
payout to win, place, and show for a $2 ticket is displayed from the for-
mula (Subroutine 4160).

INT(G * 2/P(I) + 2 . 05) * 10/10

where G = 2 * 0 .83, or 1.66 for a win ticket
G = 2 * 0.83/2 , or 0.83 for a place
G = 2 * 0 .83/3 , or . 5533 for a show

If the payout is less than $2.10, then $2.10 is paid. (Using the given odds 2170
table, there is no case where the payback on $2 is less than $2.10. Nev
ertheless, an error may occur if the odds table were to be changed and
the minimum payback test is not included.) If J = 1, this horse is either
already the winner or is the place horse. If it is not the winner, its pay-
out to place and show are displayed.

If J = 2 and this horse is neither the winner nor the place horse, then it 2310
is the show horse and its payout to show is displayed.

The new position of the horse is computed, including the odds if F = 1. 2430

M is increased by one to prepare to process the next horse, and the rac- 2440
ing commentary subroutine is called . When all horses have been proc-
essed, the test for three finishers is made (this is the end of the WHILE
statement at 1870).

Diagram of racetrack toteboard

97 Racetrack Games

If three horses have not yet finished, the race continues. 2470

At the end of the race, for each player I, each bet J is paid or lost de- 2480
pending on whether the horse W(M) finished at least as high as the bet
was placed. A win, place, or show ticket pays if the horse won, a place
or show ticket pays if it placed, and only a show ticket pays if the horse
came in third.

Payout V is at least the wager plus 5%, added to the player's account 2540
A(I) .

In a real race, if there was a close finish or if a jockey claimed a foul, 2650
there would be an announcement including a caution to the bettors to
retain all tickets until the race was ruled "Official." The ordinal number
of the race (First, Second, etc.), printed in Subroutine 3550 from the
value of 10, and the words "Race official" are displayed.

After a pause of about three seconds, the race commentary flag U is 2700
reset and the next race begins.

After nine races, the racing accounts of all players are displayed and the 2800
program ends. (Subroutine 6940 is used to get a player's name into A$.)

Race Commentary

Race commentary would be very dull if the announcer merely listed the order in
which the horses were running . Instead, the announcer moves rapidly through a
rather stylized commentary that invariably begins with "They' re off!" as the
horses leave the starting gate. At regular intervals around the track he will pref
ace his next list with the location of the horses. For a mile race these positions
are

Passing the grandstand
Into the turn
Around the turn
Into the backstretch
Along the backstretch
Into the far turn
Around the far turn
Into the stretch
Down the stretch
Coming to the wire
At the finish

Usually the announcer continues with the name of the leading horse, how
big its lead is, and sometimes its position on the track. For example,
" Wimbush leads by half a length along the rail."

Leads are expressed by parts of a horse:

By a nose
By a neck
By half a length
By three quarters of a length
By a length
By a length and a half

and so on . Positions are usually

98 Some Familiar Games

Along the rail
On the outside
Between horses (meaning there's a horse on either side)

It may be said that a horse

Leads
Is leading
Has the lead

Following horses may be announced by position, "Pride's Joy is third," merely
"Pride's Joy next," or even "then Pride's Joy." Invariably the statement about the
last horse is phrased something like "with Galloping Gizmo last" or "and Gallop
ing Gizmo."

Assuming that one length is an angular difference of 7T/25 between two
horses, the racing order can be determined by sorting a table containing horse
number and position, following which the leader's lead is determined by sub
tracting the second horse's position from the leader's position and examining the
difference.

The commentary subroutine must list the commentary only at the start, fin
ish, and ten specified intervals in between. Before each race begins, a flag U is
set to - 1. When the commentary routine is entered, U is examined. If U = - 1,
the commentator says, "They're off!" and U is set to 0. If U is at least 0 but less
than 20, then U is tested again according to this table:

Horse's Position and U then Leader Is

>-311/8 0 Passing the grandstand
>-1114 2 Into the turn
> O 4 Around the turn
> 37T/8 6 Into the backstretch
>1112 8 Along the backstretch
>31114 10 Into the far turn
> 7T 12 Around the far turn
> 911/8 14 Into the stretch
>51114 16 Down the stretch
> 1111/8 18 Coming to the wire

While U = 0, nothing will happen until the lead horse's angular position
reaches or exceeds - 3TT/8; then U is increased by 1. This triggers the appropriate
leading remark, e.g ., "Passing the grandstand." After the remark has been
printed, U is increased by 1 once more. After leaving the subroutine, commentary
will not resume until the lead horse reaches -TT/4 .

Meanwhile, it is necessary to establish the order in which the horses are run
ning. An array Z having dimension (6,2) is filled with the angular position and
number of each horse: Z(I , 1) = H(I) and Z(l,2) = I for values of I from 1 to 6.

Now a flag is set to zero and successive pairs of Z(I, 1) and Z(l - 1, 1) are com
pared, where I takes on the values 2 through 6. If Z(I, 1) is greater than Z(l-1, 1),
then Z(l,1) is interchanged with Z(l - 1,1) and Z(l,2) with Z(l - 1,2), and the flag is
set to a non-zero value. If the flag is not zero after Z(S, 1) and Z(6, 1) have been
compared, then the process is repeated.

This will arrange the table so that the leading horse's position is in Z(1, 1) and
his number is in Z(1,2), the second horse in Z(2, 1) and Z(2,2), and so forth.

99 Racetrack Games

The leading horse's number is printed, followed at random by "leads by," "is
leading by," or " has the lead by." Then, depend ing on the following table, the
amount by which he leads is printed :

Z(1, 1)-Z(2,1) Lead

< 7T/144
<7Tn2
< 7T/SO
< 7T/33
< 7T/25

. < 37T/50

A nose
A neck
Half a length
% of a length
A length
A len th and a half

If Z(1, 1) - Z(2, 1) is greater than 37T/SO, the nearest whole number of lengths
INT((Z(1 , 1) - Z(2, 1))/(Pl/25) + 0.5) is printed.

For each of the next four horses, a random choice is made between

Followed by number ~
Number ~ is next
Numb~r ~ is second (or third , fourth , fif t h as appropriate)

or Then number ~

There is an 80 percent chance that nothing else w il l be sa id about these four
horses. Twenty percent of the time, if one of these is horse number 1, the com
mentator will either say, "On the inside" or "Along the ra il." If it is horse number
6, he will say, "On the outside," or if it is one of the other horses, "Between
horses."

For the last horse, 80 percent of the t ime he w ill say, " And [or With) number
6 last [or sixth) ." Twenty percent of the time he w ill say, " And [or With) number
6 running last [or sixth) ." If the last horse is number 6, there is a 40 percent
chance the commentator w ill say " On the outside."

Finally, when U = 20 and J = 3, the commentator w il l announce the three
w inners. The following is a typical commentary :

THEY'RE OFF ! ! !

PASSING THE GRANDSTAND ,
NUMBER 4 LEADS BY HALF A LENGTH ,
NUMBER 6 SECOND ,
FOLLOWED BY NUMBER 1 ALONG THE RAIL ,
NUMBER 2 FOURTH,
FOLLOWED BY NUMBER 3 ,
AND NUMBER 5 RUNNING LAST .

INTO THE TURN ,
NUMBER 4 IS LEADING BY A NOSE ,
NUMBER 6 SECOND ,
NUMBER 2 IS THIRD ,
NUMBER 3 FOURTH,
FOLLOWED BY NUMBER 1,
AND NUMBER 5 RUNNING LAST .

AROUND THE TURN,
NUMBER 6 HAS THE LEAD BY A LENGTH AND A HALF,
NUMBER 4 IS NEXT ,
NUMBER 2 THIRD ,
NUMBER 1 IS FOURTH ,

100 Some Familiar Games

NUMBER 3 IS FIFTH ,
AND NUMBER 5 LAST .

INTO THE BACKSTRETCH ,
NUMBER 6 IS LEADING BY 2 LENGTHS ,
NUMBER 4 IS SECOND ,
THEN NUMBER l ,
NUMBER 2 IS FOURTH ,
NUMBER 5 FIFTH ,
WITH NUMBER 3 SIXTH.

ALONG THE BACKSTRETCH ,
NUMBER 6 LEADS BY 3 LENGTHS ,
NUMBER 4 IS SECOND,
FOLLOWED BY NUMBER 1 ALONG THE RAIL ,
THEN NUMBER 2 BETWEEN HORSES ,
NUMBER 5 IS FIFTH ,
AND NUMBER 3 LAST .

INTO THE FAR TU~N.
NUMBER 6 HAS THE LEAD BY 3 LENGTHS ,
NUMBER 2 SECOND ,
NUMBER 1 IS THIRD ,
FOLLOWED BY NUMBER 4 ,
NUMBER 5 FIFTH .
AND NUMBER 3 LAST.

AROUND THE FAR TURN ,
NUMBER 6 LEADS BY A LENGTH AND A HALF ,
NUMBER 2 IS SECOND ,
NUMBER 1 THIRD ALONG THE RAIL ,
NUMBER 4 IS FOURTH BETWEEN HORSES ,
NUMBER 5 IS FIFTH ,
AND NUMBER 3 LAST .

INTO THE STRETCH ,
NUMBER 6 LEADS BY A LENGTH AND A HALF ,
NUMBER 2 SECOND ,
NUMBER 1 THIRD,
FOLLOWED BY NUMBER 4,
THEN NUMBER 5 ,
WITH NUMBER 3 RUNNING LAST .

DOWN THE STRETCH ,
NUMBER 6 LEADS BY 2 LENGTHS ,
NUMBER 2 IS SECOND ,
NUMBER 1 IS NEXT ,
NUMBER 4 IS FOURTH ,
NUMBER 5 IS FIFTH,
AND NUMBER 3 SIXTH .

COMING TO THE WIRE ,
NUMBER 6 IS LEADING BY 2 LENGTHS ,
NUMBER 1 IS NEXT ON THE INSIDE,
NUMBER 2 THIRD ,
NUMBER 5 FOURTH ,
NUMBER 4 IS FIFTH BETWEEN HORSES ,
AND NUMBER 3 LAST .

AND THE WINNER IS NUMBER 6 .
NUMBER 1 IS SECOND
WITH NUMBER 2 THIRD

adrant positioning of horse for start
trace

Drawing layout for horse-drawing
subroutine

101 Racetrack Games

Designing Racehorses

Since the racetrack is seen from above, it makes sense to show the horses in t he
same way. To achieve as much realism as possible, horses should be large enough
to show details. This implies that a scaled-down version of the orig inal design w ill
be required . As horses go around the track it will be necessary to turn (rotate)
them so they are running parallel to the rail.

The important point on the horse is the tip of his nose. As soon as th is point
reaches the finish line, the horse has officially finished the race. So the tip of his
nose should be the local origin (the point X = 0, Y = 0) and the rest of the horse
should be behind this point. Considering the horse as it starts the race, all points
will be in the second and third quadrants of a rectangular coord inate system, as
shown here.

Arbitrarily drawing the simplest possible horse on square-ruled paper yields
the next figure .

+Y

-x

-Y

I I I I I ~ t 1 I I I I I I I I ! I I I I

- - - - - : - - - - - _:_ - - - - - ' - - ~ - - - - - ~ - - - - - - c - - - - - _:_ - - - - - ; - - - - - -~t-
i I I I I I I

I I I I I I I I

!---_: ___ ---! _ ---- _:_ ---__)_ __ ---~ ----_ j_~_ ---L- --- -~- ---- -. --
I I I I I I I

I I I I I I I i,..
I 1 I I I I ~-----1 I

I I 1 I I ------ 1/ -- I I
I I I I I I I I

- - - - _1 _ - - - - - .i - - - - - - ;.J - - - - - - '- - - - - - - - - - - - - 4 - - - - - - ,_ - - - - ! - -

I r I I I

I I I t

I I I I I I

' '
'
'

' '
I 1 I I I I I I I' I I I I I I I

+X

0,0

102 Some Familiar Games

This figure cannot be drawn in a continuous series of lines without retracing.
It is suggested that the head should be drawn starting at the point - 14, - 3.5 and
ending at - 14,3.5. Then a new sequence, the body, should begin at - 9,2 .7.

There is now enough information about what is needed in a horse-drawing
subroutine. The routine must be capable of

(1) Drawing an arbitrary number of continuous line sequences
(2) Scaling : making the horse bigger or smaller
(3) Translation : placing the horse such that its local origin is at a given X,Y

location
(4) Rotation : turning the entire figure about its local origin

After a jockey is added to the horse, the view from above is a reasonable
representation of a galloping horse whose legs are gathered between strides, as
shown by this frame of the famous Muybridge running horse sequence.

When the horse is striding, his legs will show from above, as you can see in
the drawing, representing the horse extended in the gallop, as seen in another
Muybridge frame.
His right foreleg is extended. This is called a right lead. Horses may run on a left
or right lead and, in fact, change leads from time to time.

We might want to see a horse number on each horse. There is room for a
number on the jockey's back; however, when the horses are scaled to fit the
track, most computer terminals lack the resolution to make the number visible.

Horse Program Code

! HEAD

140 DATA 12 .-14 .-3 .5. - 7 ,-2 ,-8, - 3 ,-2 .-1 ,-1 ,-2 , 0 ,-2,0 , 2, - 1 , 2 ,-2,l
DATA - 8,3 ,-7 , 2 ,-14 . 3 . 5

! BODY

Sequence
Number

130

140
150

160

DATA 36. - 9.2 .7. - 10 , 3 .7. - 12 , 4.5 ,-15 , 4 .8 ,-17 ,4. - 18 , 3, - 22,3. - 24 170
DATA 3 . 2 ,-25 . 4 . 4, - 26,5 ,-28 , 4 .8, - 30 , 4 . 9 ,-31 ,4.3, - 32 , 3.8, - 33,3 180
DATA - 33 . 5 . 2 ,-34,0 . 2, - 42 , 1, - 42, - 1, - 34, - 0.2, - 33.5, - 2, - 33, - 3 , -32 190
DATA - 3 . 8 ,-31.-4 .3 ,-30 ,-4 .9 ,-28 ,-4.8, - 26 ,-5, - 25 ,-4.4 ,-24, - 3 . 2
DATA - 22 ,-3, - 18 ,-3 200
DATA - 17 , -4 ,-15, - 4 . 8. - 12. - 4.5 ,-10 ,-3 .7 ,-9 ,-2 7 210

! JOCKEY 220

DATA 31 ,-16 . 1, - 13 , 1 ,-13 , 2, - 16 . 2 ,-20 , 3. - 22 , 3, - 23,2 .8, - 24.2 230
DATA - 24 . 1 , 0 ,-24 .-2 .-23 .-2.8, - 22, - 3. - 20 ,-3 ,-16, - 2, - 13 ,-2 240
DATA - 13 .-1 ,-16 ,-1 ,-16 .4 ,-0.7 ,-16 , 0 ,-16 . 4 , 0 .7. - 16,1 250
DATA - 15 .3 , 0 . 5, - 15.3 ,-0 . 5 ,-16. - 1. - 18, - 1.2. - 19, - 1, - 20, - 0 . 5 260
DATA - 20,0 . 5 ,-19,1 ,-18 , 1 . 2, - 16.1 270
DATA 6, - 17 ,-1, - 17 . 5 ,-0 . 8. - 18 ,-0.5, - 18,0 . 5, - 17.5 , 0 .8, - 17.1 280
DATA 7 ,-13 , 2 ,-12 .5 , 2 . 2, - 12 , 2 ,-11 .9 , l . 5 ,-12,l, - 12.5 , 0.9 ,-13,l 290
DATA 7 ,-13 .-2 .-12 . 5 ,-2 . 2. - 12 ,-2 ,-11 . 9 ,-1 . 5. - 12 ,-1, - 12 . 5, - 0 .9 300
DATA - 13. - 1 ,-9999 310

! LEGS , RIGHT LEAD 320

d!ld 1ockey seen from above with
gathered between strides

lfl9 horse and jockey seen from

ldge photograph of jockey and
~horse

103 Racetrack Games

104 Some Familiar Games

330

420

510

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

10 ,-33 . 2 , 2 .7 ,-35 , 2 .7. - 38 . 1 , 2 . 2 ,-38.13 , 2 . 5 ,-39,3 ,-39.87
2.5 ,-39 . 87 , 1 . 5, - 39 , 1 ,-38 . 1 , 1 . 2, - 34 , 1
10 ,-33 . 2 ,-2 .7, - 35 ,-2 .7 .-38 . 1. - 2 . 2 ,-38 . 13, - 2 . 5 ,-39, - 3
- 39.87, - 2 . 5 ,-39 . 87 ,-1 . 5 ,-39 ,-1 ,-38 . 1 ,-1 . 2 ,-34 ,-1
9 ,-10 .2, - 4, - 5 ,-3,1 . 13 ,-2 .8.2 ,-3 . 5,2 . 87 ,-3 , 2 . 87 ,-2 , 2 .-1 . 5
1 . 13 ,-2 ,-4 ,-2
6 ,-10 .4 , 4 ,-5 , 3 ,-4 . 5 , 2 .75 ,-4 .4 , 2 . 5. - 4 . 5 , 2.25 ,-5 , 2
- 9999

! LEGS , LEFT LEAD

10 , - 33 . 2,2 .7, - 35,2 .7, - 38 . 1 , 2 . 2 ,-38 . 13 , 2 5 ,-39 , 3 ,-39 . 87
2.5, - 39, .87,1 . 5, - 39 , 1. - 38 . 1,1 . 2 ,-34 , 1
10 , -33 . 2 ,-2 .7 ,-35, - 2 .7 ,-38 . 1, - 2 .2. - 38 . 13 ,-2.5, - 39 ,-3
- 39 .87 ,-2.5, - 39 . 87 ,-1.5 ,-39 ,-1 ,-38 . 1, - 1 . 2 ,-34 ,-1
9 ,-10.2 , 4, - 5 , 3 , 1 . 13 , 2 .8 , 2,3 . 5 , 2 .87 , 3 , 2 .87 , 3.2.87,2 , 2.1 . 5
1. 13 . 2 ' - 4' 2
6 ,-10.4, - 4 ,-5 ,-3 ,-4 .5 ,-2 .75 ,-4.4 ,-2 . 5 ,-4 . 5 ,-2 . 25 .-5 ,-2
-9999

! ONE

DATA 3. - 21 . 2 , 0 . 2, - 21 , 0 ,-23 . 0 ,-9999

! TWO

530 DATA 8 ,-21 . 5 , 0 .75 ,-21 , 0 . 25 ,-21 ,-0 . 25 ,-21 . 5 ,-0 .75 ,-22 ,-0 .75
DATA - 22.5 , 0.75, - 23 , 0.75 ,-23 ,-0 .75, - 9999

! THREE

560 DATA 8 ,-21 , 0.75 ,-21 ,-0 . 75 ,-22 .0 ,-22 ,-0 . 25 ,-22 .5 ,-0 .75 ,-23
DATA - 0 . 25, - 23 , 0.25, - 22 . 5,0 .75 ,-9999

! FOUR

590 DATA 4, - 21 , 0 . 25 ,-22,0 .75 ,-22 . 5,0 .75 ,-22 . 5 ,-0.75 , 2 .-21 ,-0 . 25
DATA - 23, - 0 . 25, - 9999

! FIVE

620 DATA 9, - 21 ,-0 .75, - 21 , 0 .75 ,-22 , 0.75 ,-22 ,-0 . 5 ,-22 . 25 ,-0 .75
DATA - 22 .75, - 0 .75, - 23, - 0 . 5 ,-23 , 0 . 5, - 22 .75 , 0 .75 ,-9999

! SIX

650 DATA 12 ,-21 . 25 ,-0 .75 .-21 ,-0 . 5 ,-21 , 0 . 5 ,-21 . 25 , 0 .75 ,-22 .75 , 0 .75
DATA - 23,0 . 5 ,-23 ,-0 . 5, - 22 .75 ,-0 .75 .-22 . 25 ,-0 .75 ,-22 ,-0 . 5 ,-22 ,

0 . 5
DATA - 22 . 25,0 .75, - 9999

H = 1

WHILE H < = 6 DO For s ix horses .
X9 8 + 15 * H + 4 * RND(- 2) position each hors e
Y9 50 + 20 * RND(- 2)
S9 1 Draw full scale

330
340
350
360
370
380
390
400

410

420
430
440
450
460
470
480
490

500

510

520

530
540

550

560
570

580

590
600

610

620
630

640

650

660
670

680

690
710
720
730

105 Racetrack Games

T = 90 * 0.0174533 rotated 90 degrees 740
RESTORE 140 750
GOSUB 1140 760
V = INT(RND(- 2) * 3) + 1 ! Random integer V = 1 , 2 , or 3 770

CASE V OF 780
1 : Right lead if V = 1 790

RESTORE 330 800
GOSUB 1140 810

2 :
RESTORE 420
GOSUB 1140

CASE H OF

1:
RESTORE 510

2:
RESTORE 530

3 :
RESTORE 560

4:
RESTORE 590

5 :
RESTORE 620

6:
RESTORE

GOSUB 1140
H = H + 1

END

650

Horse Code Description

Left lead if V 2

Get horse number

Draw number

Data describing the horse's head and body and the jockey are grouped,
ending with - 9999.

Legs for right and left leads are defined.

Numbers 1 through 6 are drawn on the jockeys' backs.

To test the horse-drawing program, six horses are drawn, with a little
randomization to make them interesting to look at, as shown in the
drawing of all six horses. Translation value X9 is between 23 and 27 for
horse 1, between 38 and 42 for horse 2, etc. Y9 is between 50 and 70
for each horse. The scaling factor is 1, so the horses will be drawn "full

820

830
840
850
860

870

880

890
900
910

920
930
940

950
960
970

980
990

1000

1010
1020
1030

1040
1050
1060

1070

1080
1090
1100

1110

Sequence
Number

140

330

510

690

106 Some Familiar Games

size" and the angle of rotation T is 90 degrees, which means that the
horses will rotate counterclockwise 90 degrees about their noses.

The horse's head and body and the jockey are drawn. (Subroutine 1140 is 750
the ROTATE, SCALE, AND TRANSLATE routine.)

A random value V = 1, 2, or 3 is computed. 770

If V = 1, the horse will display a right lead. 790

If V = 2, the horse will display a left lead. 830

If V = 3, the legs will be gathered.

The numbers 1 through 6 are drawn on the jockeys' backs. 880

All put together, here's how the racetrack scene would look on your screen :
track, tote board, horses, jockeys, and "announcer."

$2 PA YS

Tl-iEY' RE OFFI

Example of variety possible in draw·
horses

The start of another race

ro post" to be recreated with tone
a tor

......._

..........
..........

..........

""' 4 I
""' "'- I I

fi
Problem of m1sperception of which

is leading

107 Racetrack Games

Refinements

• Make the track as realistic as possible. Add red and white marking poles every
1/3 of a mile. Show a starting gate and a finish line. Color the infield green
and the track brown. Randomly vary the colors of the horses so that most are
chestnut but a few are gray or black. Jockey's pants are always white, but the ir
shirts and caps are the colors of the racing stable to which the horse belongs.

• If your computer has a tone generator, play the "call to post" before every race.
The music is provided here for you to use.

• Randomly assign names to horses so that the announcer uses the horses' names
instead of their numbers. If you can't come up with at least 54 racehorse names,
look in the sports section of your newspaper.

• If the race is close, display a "photograph" of the finish, showing a side view of
the horses with the winner's nose touching the finish line. In a photo finish, a
vertical line appears on the photograph at the finish line and the camera is trig
gered as each horse passes this line. Be sure to show each horse's number on the
saddle cloth behind his jockey's leg.

• Allow for the possibility of a thrown jockey or a lame horse roughly once every
hundred races.

• Vary the lengths of different races from 6 furlongs (3/4 mile) to a mile and 1/4.
Start the horses at the chosen length from the finish line. Do not move the finish
line-it is always in front of the grandstand.

• At the start, around the turn, in the backstretch, and in the stretch, show the
horses as they would be seen by spectators in the grandstand. At the finish, show
the horses finishing from the point of view of a "railbird," a spectator who is
standing along the rail at the finish line .

• The horses would be more realistically positioned on the track if they were not
perpendicular to the line between their noses and the center of the track, but
instead were parallel to a line tangent to the inside rail at the point where the
aforementioned line intersects the rai l. Make this correction.

• Because the horses are measured according to their angular position, a horse
that is actually leading in the straightaways may not appear to be, as shown in
the accompanying drawing. Correct for this problem.

• Give inside horses less distance to travel than outside horses. Let horses move to
the rail to "save ground" and move out to pass slower horses. Avoid collisions.

7

Maze and Fantasy Games

110 Some Familiar Games

People have always had a fascination with the unknown. The feeling that "in
side" information allows specialists to control mysterious powers persists to this
day, along with the idea that supernatural beings sometimes appear to mortals
and cause scary things to happen. Besides the excitement of exploring dark re
gions, events real and imagined outside the range of ordinary knowledge form
the basis for many mystery stories, horror movies, and the so-called fantasy or
adventure games. The setting for all such board and computer games is a maze.

In this chapter we will look at how mazes can be defined in computers and
how to generate them. The explorer and computer-controlled fantasy game char
acters must be able to move about the maze, so a traversal algorithm is de
scribed . Then the use of "arrow" keys to control the explorer's movements is ex
plained .

Realistic-looking mazes add greatly to the fun of fantasy games. A section
describing the maze runner's view outlines a method for displaying walls using a
one-point perspective projection technique. The Refinements section suggests
improvements to the described algorithms.

Simple Mazes

An ancient version of the maze, first played in Egypt, is Snakes and Ladders. A 10
x 10 board is used as a playing surface, on which squares are numbered from 1
to 100- 1 to 10 reading from left to right on the bottom row, 11 to 20 from
right to left on the next row, and so forth . Here and there on the board are
snakes and ladders spanning two or more rows. Players move according to the
spots on an ordinary die. When a turn ends at the foot of a ladder, the player
moves upward to its top. If a turn ends at the tail of a snake, the player moves
down to the head of the snake. The game ends when a player lands on square
100.

Snakes and Ladders has many features of a truly boring game- a complete
absence of any player skill component, for example- but in a rudimentary way it
is a maze game. A more common form of maze game is found in the entertain
ment section of many Sunday newspapers. This sort of maze is drawn as seen
from above, with an entrance and an exit. The player uses a pencil to trace paths
around the maze until he solves it. An example of this kind of maze is shown
here.

This puzzle can be spoiled by the player's looking ahead, "around corners,"
as it were, which could not be done if he were in a three-dimensional maze such
as the ones that used to be commissioned by European royalty as part of formal
gardens. On the grounds of Hampton Court Palace, for instance, Henry VIII had a
maze made of yew hedges eight feet high. If the king had included a treasure in
the center of the maze and a few fierce monsters in the passageways, he would
have invented one form of the fantasy adventure game.

IN

A maze game

- --- -------------
Fantasy Games

The setting for a fantasy computer game is, of course, a maze, a group of con
nected rooms or caverns that the player must explore in order to resolve a mys
tery-for example, where is the beautiful damsel? To do so, the player or maze

-pie maze

~o walls ~ W S N

\orth wait JQ] N, E a S

East wall WJ E. S a W

_ South wall ~ S, W a N

Wut wait [l3l W, Na E

~ 8 E [[11 E SW

:_ E 8 S : 15: N a S

.:.. s 8 w [r§J All wa ll s

·een types of square rooms, num-
r.'d I to 16

l=

2 3 4

13 9 15 6

5 : 4

8 10

>-d1mens1onal array m indicating types
•oom m a simple maze, using system
rooms numbered 1 to 16

111 Maze and Fantasy Games

runner has to develop ways to bu ild up an ability to f ight, bribe, or run away
from a variety of terrifying beings while maintaining resources such as food and
water so as not to starve to death. The usual way to ga in strength or experience
is to fight monsters, because they guard treasures or information t hat can be
used to acquire food or weapons.

This type of game is well-suited to the computer because of its complexity
and the game's need for controlled randomness in the location of hazards in t he
maze. Although some adventure games can be played on a board, the ru les are
extremely complex, often requiring a full -time referee. In computerized versions,
the computer acts as referee, but the rules are not described to t he player- they
must be deduced.

Defining a Maze Numerically

The simplest mazes are composed of a collection of square rooms, an example of
which is shown here.

There are sixteen possible types of room, depend ing on how many walls
there are to each room and what side each wall is on. The sixteen possibili t ies are
illustrated here.

To represent the little maze shown above, a two-dimensional array M may be
defined, having four columns and three rows. Then the number of each type of
room could be put in M, as shown. This is not very satisfactory, because then t o
try to go south from M(l,J) it is necessary to perform the t est

If M(I,J) = 1 OR M(I,J) = 2 OR M(I , J) = 5 OR M{I,J) = 6 OR M(I.J) = 9
OR M{I,J) = 13 OR M{I,J) = 14 THEN J = J + 1

A more efficient technique is to assign values to each wal l and then add them up
to get the room type. It doesn't work to choose

North = 1
East = 2
South = 3
West = 4

because a room of type 3 could be composed of north and east walls or a south
wall. Using powers of two w ill give a un ique room type for each different room.

North = 1
East = 2
South = 4
West = 8

The resulting room values are given in the Room Values chart.
To find out if it is possible to go in a given direct ion from the room M(l ,J), a

simple computation is sufficient. For example, it is only possible to go north out
of a room if there is no north wall , that is, if the room type is an even number.

If M{I,J) + INT(M(I,J)/2)*2 THEN J = J - 1

This test looks at M(l,J) to see if it is an even number by comparing M(l,J)
with two times the integer portion of half of M(l,J). Since two times the integer

112 Some Familiar Games

portion of half of any odd number is the even number immediately less than it,
the test fails for any odd number.

On the other hand, if M(l,J) is even, INT(M(l,J)/2)*2) is equal to M(l,J) and the
test does not fail. In other words, for values 2 and 3, half the number is 1 and
1.5. In either case the INT of 1 or 1.5 is 1. Then multiplying by 2 gives the result 2
whether M(l.J) contains 2 or 3. In the first case the test is equal; in the second,
not equal.

What is the test for no west wall? It is easily seen if the rooms are repre
sented as binary numbers :

W SEN

0 0000 0 0 0 0
0001 0 0 0 1

2 0010 0 0 1 0
3 0011 0 0 1 1
4 0100 0 1 0 0
5 0101 0 1 0 1
6 0110 0 1 1 0
7 0111 0 1 1 1
8 1000 1 0 0 0
9 1001 1 0 0 1

10 1010 1 0 1 0
11 1011 1 0 1 1
12 1100 1 1 0 0
13 1101 1 1 0 1
14 1110 1 1 1 0
15 1111 1 1 1 1

In the right-hand four columns, a zero denotes the absence of a wall in the
indicated direction. To test if a move to the west is possible, it is only necessary
to be sure that the room number is less than 8.

IF M(I .J) < 8 THEN I = I - 1

There is more than one way to test for an opening to the south :

Ir M(I .J) < 4 OR (M(I,J) > 7 AND M(I . J) < 12) THEN J = J + 1
or IF INT(M(I.J)/4) - 2*(M(I,J) > 7) = 0 THEN J = J + 1

The first test merely examines all the possibilities : if M(l,J) is 0, 1, 2, or 3 or 8,
9, 10, or 11 , then it is one of the rooms without a south wall. The other test re
lies on the value of the truth of M(l,J) > 7. If M(l,J) is greater than 7, this expres
sion has the value 1; otherwise it is zero. The expression INT(M(l,J)/4) equals zero
if M(l.J) is 0, 1, 2, or 3; 1 if M(l,J) is 4, 5, 6, or 7; 2 if M(l.J) is 8, 9, 10, or 11; and
3 otherwise. So the whole expression equals zero only in the eight cases where
the room has no south wall.

Finally, it is possible to move to the east as follows :

IF INT(M(I ,J)/2) = INT(M(I . J)/4)*2 THEN I = I + 1

Generating a Maze

Small mazes are not hard to make. They may be drawn on square-ruled paper,
encoded with numbers between 0 and 15, written in DATA statements, and read

.--.
1-_0_: lii '4'__,

: 5: ~ ~

i] r_1-~-i ~

::2J ~ ~
values of O to 15, using powers

sed groups of rooms in a maze

113 Maze and Fantasy Games

into an array. This method is prone to room-coding errors, and the resulting
game is not much of a challenge to the programmer either. He already knows
what the maze looks like_

For practical purposes, most games require mazes too big to be encoded by
hand, so a generating algorithm is necessary. Very large mazes may be built, even
in computers with small memories, by making them multileveled. This requires
that one or more rooms on each level of the maze contain a stairway leading
down to the next level and another leading up. Only the level currently being
explored is kept in memory. When the explorer moves to another level, the maze
generator creates the new level in the same array used to hold the previous one.

Although a maze may be of any shape, the most storage-efficient computer
mazes are rectangular or square. A 25 x 25 maze will consist of 625
rooms- clearly the rooms along the outside edges should be bounded by walls to
keep the maze runner from straying out of the defined maze. If an array
M(25,25) is defined such that the room M(1, 1) is in the bottom left-hand corner
and north is upward, then the following rules must be observed:

For X = 1, 2 25. and for Y = 1, 2 , ... 25
All M(X,l) must have a south wall
All M(X , 25) must have a north wall
All M(l ,Y) must have a west wall
All M(25,Y) must have an east wall

The total number of walls inside the maze, the wall density, may be con
trolled by a probability function. Except for outside edges, if the probability of a
wall is 0.5, then the expected distribution of the sixteen possible types of room is
as follows : Out of every sixteen rooms, one will have no walls, four will have
one, six will have two, four will have three, and one will have four walls, on the
average.

This means that roughly one room out of every sixteen will be inaccessible. It
may be useful to decide that no room will be composed of four walls, but this
still does not mean that all rooms will be accessible, because there can be groups
of rooms totally enclosed by walls, as illustrated here by a group of two rooms
and a group of four.

Depending on how the maze is to be used, it may not be essential that all
rooms can be entered. If it is essential, the tedious process of checking that each
room can be reached from any given room, say M(1, 1), can be done with the
maze traversal algorithm explained in the next section.

The important question is whether the game calls for a new unknown maze
every time the program is used or whether once defined, the maze does not
change. In the latter case, mazes may be generated using different starting values
for the random number generator and the wall probabilities until an acceptable
maze is generated.

Here is a program code to generate and display a maze, followed by its de
scription.

Maze Generator Program Code

XO = 10
YO = 10
DIM M(XO.YO)

Number of columns
Number of rows

Sequence
Number

120
130
140

114 Some Familiar Games

p

M
y

0.25
0
1

Probability of a wall
Initialize maze
Y = l, the bottom row

150
160
170

WHILE Y <= YO DO
X=l

F'or all Y,
set X=l. the leftmost column

180
190

WHILE X <= XO DO

IF' Y = YO THEN
M(X.Y) = M{X,Y) + 1

F'or all X,

If Y = the top row,
there must be a north wall

IF' X=XO THEN ! If X= the right-hand column,
M(X,Y) = M{X,Y) + 2 there must be an east wall

IF' Y = 1 THEN
M(X,Y) = M(X , Y) + 4

IF' X = 1 THEN
M{X . Y) = M{X,Y) + 8

If Y = the bottom row,
there must be a south wall

If X = the left-hand column.
there must be a west wall

IF' X>l THEN ! West wall next room=east wall this room
M{X,Y) =M{X,Y)+(INT{M(X-1,Y)/2)-INT(M{X-l,Y)/4)*2)*8

200

210
220
230

240
250
260

270
280
290

300
310
320

330
340
350

IF' Y>l THEN 1 South wall this room=north wall lower room 360
M{X , Y) =M(X . Y)+(M(X.Y-l)-INT(M{X,Y-1)/2)*2)*4 370

380

IF' RND(l) <P AND Y<YO THEN ! Give this room a north 390
M(X.Y) = M(X.Y) + 1 wall if random number < P 400

and room below top row 410

IF' RND(l) <P AND X<XO THEN!Give room an east wall if 420
M{X,Y) =M(X , Y)+2 ! random number < P and 430

room before right-hand column 440

IF' M(X.Y) <> INT{M(X.Y)/2)*2 THEN Draw plan view 450
MOVE X*4+14,Y*4 of room 460
DRAW X*4 +18,Y*4 Draw north wall if present 470

480

IF' INT{M(X,Y)/2) <> INT{M(X,Y)/4)*2 THEN 490
MOVE X*4 + 18 , Y*4 500
DRAW X*4+18.Y*4-4 Draw east wall if present 510

IF' Y = 1 THEN
MOVE X*4 +14,Y*4-4
DRAW X *4+ 18,Y*4 - 4

IF' X = 1 THEN
MOVE X*4+14,Y*4-4
DRAW X*4 + 14,Y*4

Draw south wall if
on bottom row

Draw west wall if
on leftmost column

520

530
540
550
560

570
580
590

115 Maze and Fantasy Games

x x + 1 Increase X
Loop unti l X > number of columns

y y + 1 I ncrease Y
Loop until Y > number of rows

Maze Generator Code Description

XO is set to the number of columns. YO is set to the number of rows.

M is defined to be the necessary size. P is defined to be the probability
that an optional wall will occur.

The maze array M is cleared.

Y is set to indicate the bottom row.

For all values of Y

X is set to indicate the leftmost column.

For all values of X

The exterior walls are set. If Y = YO, there must be a north wall. If
X = XO, there must be an east wall. If Y = 1, there must be a south wall.
If X= 1, there must be a west wall. Note that in many versions of BASIC,
lines 210-320 may be replaced by the single line

M(X, Y) = M(X, Y) + (Y= YO) + 2*(X= XO) + 4 * (Y=l) +S*(X=l)

If X is greater than 1, the west wall of M(X, Y) must be present if and
only if M(X - 1,Y) has an east wall.

600

610
620

630
640

Sequence
Number

120

140

160

170

180

190

200

330

If X is greater than 1, the west wall of M(X,Y) must be present if and 330
only if M(X- 1,Y) has an east wall.

If Y is greater than 1, the south wall of M(X,Y) must be present if and 360
only if M(X,Y - 1) has a north wall.

M(X,Y) may have a north wall if Y is less than YO (it must have a north 390
wall if Y = YO, see 240) and if a random fraction is less than P, and may
have an east wall if X is less than XO (see 210) and if another random
fraction is less than P.

Having generated a room, draw it. If it has a north wall, draw it first. If 450
it has an east wall, draw it.

If Y= 1, draw a south wall. If X= 1, draw a west wall. 530

Note that this is sufficient because if X<> 1 and Y<> 1, the north wall of
M(X,Y - 1) is the south wall of M(X,Y) and the east wall of M(X - 1,Y) is the
west wall of M(X,Y).

Solving or Traversing a Maze
Now that we have generated a maze, we must provide a way to solve it. In the
Sunday newspaper, solving means entering the maze at one point and moving to
an exit. In fantasy games, instead of an exit, the maze may have a goal (such as a
treasure) toward which the explorer is moving. In addition, the computer may
take the role of a nasty monster trying to attack the player. On the other hand,
it may be a creature guarding a secret needed by the explorer. It would then be

116 Some Familiar Games

the creature's role to try to escape to a "safe" room. In any case, the following
maze-solving techniques may be used to enable the participants to traverse a
maze.

One method of traversing a maze is to maintain consistent contact with the
walls on one side. In a maze of this type, as illustrated, the runner, facing south,
keeps his left hand on the walls and follows the dotted-line path to the goal.
Had the runner used his right hand, he would have arrived more quickly at the
goal. In this maze the runner would have solved the maze one way or the other.

In the next maze shown, he couldn't have found the solution with his left
hand on the wall . Obviously, some other technique must be tried.

Another way to solve a maze is to move randomly, marking the direction
taken out of each room " with a piece of chalk." Each t ime a room is reentered,
the old direction out is erased and the new one marked. Since motion is random,
the new direction may be the same as the previous one. Rooms with two walls
can be passed through . Rooms with three walls require that the runner turn
around. Rooms with one wall require an equal probability of going in any of the
three possible directions. A room without walls (type O) requires an equal proba
bility of going in any of the four possible directions.

Eventually, the runner will come across the goal, at which time he has solved
the maze. Subsequently, to get to the goal he follows the arrows he has marked,
because the last arrow drawn in every room is always correct. Of course, if there
is more t han one path to the goal, th is method will not necessarily find the
shortest.

The only way to find the shortest path is to be prepared to try all possible
paths. Clearly, once a path of a given length has been found, any path under in
vestigation may be ignored once it is found to be longer.

Look at this next maze. Is it possible to get from the lower left corner (col
umn 1, row 1) to the goal (column 2, row 4)?

Start at column 1, row 1

Move north to column 1, row 2

Move north to column 1, row 3

Move north to column 1, row 4

Move east t o column 2, row 4

Given this top view of a small maze, the solution is easy. But imagine your
self stand ing in room C1,R1 (column 1, row 1) looking north . Your view would be
something like that shown in the first perspective drawing here.

Suppose there is no lighting in the maze except the candle you are holding.
The candle barely lights more than the room you are standing in . You can only
see enough to go north, as you can imagine from looking at the second perspec
t ive drawing.

So you go north. Now you can see that you have a choice of continuing
north or going east. Wh ich do you choose? You have no information about
which way to go, so you must plan to try both paths. This means that after you
have exhausted one path by reach ing a three-walled dead-end room, you must
come back and try the other. However, if you elected to go east at C1 ,R2, you

11;-~~~~-,
~

v
A I

t I - - - '>- I ..,,, I I I
I A I r -<-..J I I I ___ ,/

I I I

t ~--- - --c -- - J
'--- - ?- - -- -

B

Successful traversal of a maze "kee
one hand on the wall "

A
,...---- ro\ I I

I I_ ___ ...,.,,

B

Unsuccessful traversal of a maze • 1

ing one hand on the wall"

COLUMN

2 3

4 • GOAL

3
ROW

2

TART

Maze in the form of a two-d1men5
array

from a submarine game. Here is
Dldyer's view of the controls of the

rged sub. Notice how the peri
rube is made to appear cylindrical
add1t1on of a few vertical lines.

A convoy has been sighted.

Having positioned the sub behind·
convoy, the commander has fired
pedo from the center fore tube

n the convoy ts taking evasive
the torpedo finds its mark.

isral command seaplane (or "flying
· as 11 ts ca/led in the RAF) drops
er1al torpedo, which is seen through
pe11scope by the submarine com
~

The title frame of the Enchanted Maze
includes the monsters that inhabit it.
Above the sign-in ("Zargon") is the
dreaded and powerful Wanderer, who
can move to intercept unwary maze
explorers.

A new explorer 1s given three days' food
and water, ten strength points, and
money between $50 and $150. He can
see one room ahead as there is no wall.
The spiral staircase leads to a village
where he can spend his money.

·ie v1/lage, the explorer can choose to
!i!f a shop, return to the maze, or
• rhe game.

This explorer has $ 72 to spend in the
armorer's shop. Having chosen to take a
club for $50 rather than haggle with the
armorer, the explorer may buy an in
struction scroll for an additional $70.

This instruction scroll describes the bene
fits of owning a club.

A much more experienced explorer is
carrying keys to get through doors, a
zircon of Hermes that he can leave in
the maze and later return to at will, a
magic carpet that lets him move at once
to the village, a vial of Aquarius to pro
vide him with unlimited water, and two
broadswords. He also has a divining rod
that points to a water hole (no longer
useful since he bought the vial of
Aquarius) and a compass to show him
direction and room numbers. He has just
offered to bribe the spider.

The explorer has found an unguarded
treasure.

, rhe maze, the explorer has en
:ered a snake. His options are to
brrbe, or run.

• explorer is faong a door and must
a key to pass through it. There is a

<J1Jce rhe key might break in the lock.

This is the fate of an overzealous ex
plorer. Maybe he was caught by the
Wanderer or ran out of water. Various
messages are composed to commemo
rate an explorer's demise, based on a
random selection of clauses.

I

Unfinished opening display for Brian
Ast/e's fantasy adventure game, "The
Magic Cave." The final picture included
a path to lead the eye from the tower
to the cave, more randomness in the
appearance of the flowers, and a more
detailed cave.

Attention to detail in the title includes a
black outline around each letter.

Colors beyond the specifications of the
display screen can be generated by alter
nating pixels of different colors. The
grass below the tower is made up of
green and cyan pixels.

Complete "Magic Cave" Opening

As the explorer moves around the m
he encounters doors that can only bf

opened if he is carrying a key. Smee
there is a chance that a key may br&

the explorer may become trapped

From time to time, the explorer will
counter monsters that he may chOOSI
fight. If he wins, he will find that ml

monsters are guarding a treasure cfL

-~er defeating a monster, the explorer
75 a treasure chest that he may wish
open.

\lost chests contain gold, silver, or pre
acus gems that add to the explorer's
10iftty to buy better weapons. Occasion
a/y a chest may contain a weapon or a
'Tlag1c spell that the explorer can use
;gamst monsters. Rarely the chest may
contain a danger, such as poisonous gas
''another monster.

The beginning moments of a Space Race
game with the Earth and Moon at left
and the spacecraft below the Earth on
its way to Mars. The indicators show: 1)
fuel usage, 2) the craft's heading and
the fad that the main thruster is firing,
3) the velocity vector, and 4) the num
ber of orbits completed.

'()enmg frame of this Concentration
requests the number of players.

· players will play Concentration. A
· if prevtous players is displayed so
JI rhe opponents in this game may be
""lt1f1ed.

Players decide on the level of diff1cultr
of the game.

Having chosen the simplest game, SI
has been selected at random to pla.i
first.

1ray through the game, Keith is
of Scott 2 to 1. Scott needs to

·~other "dog."

lWDl'ks are displayed as Keith wins.

Dawn Kleinfield generated this quilt pat
tern from her hobbyist program. It uses
random numbers to select compatible
colors.

lfW as seen from room C 7, R 1 of
aze looking north

/
.;ew from same spot as if lit only by a
::ndle

DEAD DEAD DEAD
END END END

A tree of a simple maze with only one
solution

COLUMN

2 3 4

4 •GOAL

3
---------u----

' ' ::::LIJ:::: ROW

TART•

A maze with more than one solution

117 Maze and Fantasy Games

are confronted with three more choices at C2,R2. If you keep careful notes as you
make choices, you may try all the paths until you reach the goal.

So long as you don't have to make a choice, you don't need any notes.
When you reach a dead end, you know that the path isn't any good, so you go
back to your most recent note, cross it off, and pursue the next most recent.

Beginning at C1,R1 you move to C1 ,R2. Now you have a choice, so you write

AT Cl,R2 GO NORTH
AT Cl,R2 GO EAST

and go east, so you delete that note. At C2,R2 you have a three-way choice, so
you add to your notes

AT Cl,R2 GO NORTH
(AT Cl,R2 GO EAST)

AT C2,R2 GO NORTH
AT C2 , R2 GO EAST
AT C2,R2 GO SOUTH

(Note de l eted)

You go south after deleting that note and end up at C4,R 1, a dead end . So
you go back to C2,R2, where you go east after crossing off that note. This path
leads to the dead end at C4,R4. Go back to C2,R2, thence north to the dead end
at C3,R4, crossing off the north note. Now the notes look like this :

AT Cl, R2 GO NORTH
(AT Cl,R2 GO EAST)
(AT C2,R2 GO NORTH)
(AT C2. R2 GO EAST)
(AT C2,R2 GO SOUTH)

Go back to C1 ,R2, cross off this note and go north, which leads to the goal.
Another way to keep notes which amounts to the same thing, is to draw a

"tree" (a simple tree as shown here) and follow all the branches of the tree until
the goal is found .

How does the tree look if a maze has more than one solution? Look at the
next maze:

Its tree is more complex.
This is not a true tree because the maze runner can return to the starting

point and can get to -.C2,R3 from two different paths. To make a tree out of it, it
is reasonable to say that any path that returns to the start is the same as a dead
end .

Also, instead of showing that two paths lead to the same C2,R3 node, the
true tree is drawn "redundantly" : that is, a given node is shown separately for
each path that reaches it. Study the redundant tree shown here and note how
the C2,R3 node is pictured twice- once as it is approached from the C1 ,R3 node
and then as it is approached from the C4,R2 node ..

In a redundant tree, all paths lead to the goal or to a dead end. Which is the
shortest path to the goal? If a maze runner goes down all paths in the tree,
counting rooms from the start each time, following the left branch first, he first
comes to the goal by going north from C1,R1 to C1 ,R3, then east to C2,R3, then
north to the goal. having passed through seven rooms.

118 Some Familiar Games

s

w

A tree of a maze with more than one
solution

Redundant tree, in which a node (C:
reached from different paths ts sho
separately for each path

119 Maze and Fantasy Games

Now he knows after having followed a path for six rooms without reaching
the goal that it is not going to be any shorter than the original path, so the next
may be tried . If a shorter path is found, natura lly that will be the one used for
subsequent comparisons until the entire tree has been traversed. To keep from
following redundant paths, we can say that if a room has already been entered,
a path that has not reached the goal is being tried again .

The next program will test a maze to see if it can be solved . In order not to
waste computer memory, some thought should be given to the maximum re
qu ired size of the note pad S. If a room is type zero (no walls) , the runner knows
he need not retrace his steps, but he has three other choices. If all rooms were
type zero, the maximum note pad would need space for three t imes the number
of rooms in the maze, or 3*XO*YO.

The outside walls must be taken into account, however. In a maze having
only outside walls, the note pad must hold information for the outside rooms
plus 3*(XO - 2)* (YO - 2) inside room notes. Around the outside edge, there is a
maximum of two choices in every room except the corners, in which there is no
choice. Along each of the north and south edges there are (XO - 2) rooms with
two choices and (YO - 2) along the east and west edges.

Two choices t imes two edges means that the note pad needs room for
2*(2*(XO - 2) + 2*(YO - 2)) notes for the edges plus 3* (XO - 2)* (YO - 2) for the
interior rooms. So S need not contain more than

3*(X0- 2) *(YO - 2) + 2*(2*(XO - 2) + 2*(YO - 2))
or 3*XO*YO - 2* (XO + YO) - 4 notes.

Solve a Maze Program Code

DIM S(3*XO*YO - 2*(XO +YO) - 4) Make space for notes
X9 = 10 Use X9,Y9 to contain coordinates
Y9 = 10 of maze goal
X 1 X, Y are starting coordinates
y 1
I 0 I number of active notes
W M(X,Y)

660
670
680
690
700
710
720

IF W 5 0 THEN If starting room has no walls , leave note 730
I = I + 1 740
S(I)=lOOOO +lOO*X+Y Save direction, X and Y in one variable 750

D = 4

IF W - INT(W/4)*4 2 THEN
D = D + 4

IF W = 4 OR W
D = D - 3

IF W = 8 THEN
D = D - 2

12 THEN

Set starting direction

so that runner has back to
a wall , if possible

REPEAT
J = 0

Begin solution

760

770

780
790
800

810
820
830

840
850
860

870
880

120 Some Familiar Games

WHILE J < 4 DO
K = J - 1

Leave notes to explore all openings

IF J < 2 THEN
K = K + 3*J + 5

IF INT(W/2 f (J + 1)) *2 = INT(W/2 fJ) AND D<>K THEN
I = I + 1
S(I) = 10000*2 fJ + lOO*X + Y

J = J + 1

M(X, Y) = - 1

REPEAT

Mark this room ''visited' '

IF I = 0 THEN
MOVE 0 ,90

If no notes , maze has no solution

"NO SOLUTIONGGG"
END

ELSE Isolate direction and coordinates

D INT(S (I)/10000) from l atest note
X INT(S (I)/100) - 2D*l00
Y S (I) - INT(S(I)/100)*100
I I - 1 Delete note

REPEAT
GOSUB 1180 Move and test for solution

UNTIL W< = 0 OR (W <> INT(W/3)*3 AND W<>5 AND W<> lO)

UNTIL W<>7 AND W<> ll AND W<> l3 AND W<> l4

UNTIL I <>I

GOSUB 1880

W = M(X,Y)

Continue until solved

MOVE AND TEST FOR SOLUTION

Display runner in maze

Get room data

M(X , Y) = - 1 and flag "visited"

IF W<3 OR W=4 OR W=5 OR W=8 OR W=lO THEN ! See Note 5

IF D=2 THEN If room has 0 or 1 wall or is a
x x + 1 increase x if D east

IF D 8 THEN Decrease x if D west
x x 1

IF D 1 THEN Inc rease Y if D north
y y + 1

corridor,

890
900

910
920
930

940
950
960
970

980
990

1000

1010

1020
1030
1040
1050

1060

1070
1080
1090
1100

1110
1120
1130

1140

1150

1160

1180

1190

1200

1210

1220

1230
1240
1250

1260
1270
1280

1290
1300
1310

121 Maze and Fantasy Games

IF' D 4 THEN
y y - 1

Decrease Y if D south

IF W=INT(W/3)*3 AND W> 0 THEN ! If room has 2 adjacent walls.
IF (D=l AND W=9) OR (D=4 AND W=l2) THEN ! adjust D,
x = x + 1

IF (D = 1 AND w
x = x - 1

IF' (D = 2 AND w
y = y + 1

IF' (D = 2 AND w
y = y - 1

IF (D = 1 AND w
J = 8

IF' (D = 2 AND W
J = 4

IF' (D = 1 AND W
J = 2

IF (D = 2 AND W
J = 1

D = J

IF W = 7 THEN
x x - 1
D = 8

IF' W = 13 THEN
x x + 1
D = 2

IF W = 11 THEN
y y - 1

D = 4

IF W = 14 THEN
y y + 1

D = 1

3) OR (D = 4 AND W

6) OR (D 8 AND W

3) OR (D 8 AND W

3) OR (D 4 AND W

3) OR (D 8 AND W

9) OR (D= 4 AND W

6) OR (D 8 AND W

If room has 3 walls ,
adjust D, X, and Y

6) THEN

12) THEN

9) THEN

6) THEN

9) THEN

12) THEN

12) THEN

x. and Y

1320
1330
1340

1350

1360
1370
1380
1390

1400
1410
1420

1430
1440
1450

1460
1470
1480

1490
1500
1510

1520
1530
1540

1550
1560
1570

1580
1590
1600

1610
1620

1630
1640
1650
1660

1670
1680
1690
1700

1710
1720
1730
1740

1750
1760
1770

1780

122 Some Familiar Games

Ir X X9 AND Y = Y9 THEN
GOSUB 1880

MOVE 0 , 90
PRINT "SOLVEDGGG"
END

If solved ,
display maze runner

and end

W = M(X .Y)

RETURN

rlag room and exit subroutine

Solve a Maze Code Description

Make space for notes.

Let M(X9,Y9) be the maze goal.

Start the runner at a given X,Y.

Let I be the number of notes on the note pad.

1790
1800

1810
1820
1830
1840

1850

1860

Sequence
Number

660
670

690
710

It is necessary to resolve a special case at the beginning of the maze. When
the maze runner starts, he must establish a valid direction in which to move. If he
starts in a room without walls, a note about the path behind him is necessary;
otherwise it may not get explored. If the runner starts with a wall behind him,
no note is needed.

If a table of room types is built and the rooms are classified according to the
wall with the smallest direction number, all odd-numbered rooms have a north
wall.

Type 1 2 4 8

0
1 x
2 x
3 x
4 x
5 x
6 x
7 x
8 x
9 x

10 x
11 x
12 x
13 x
14 x
15 x

LET D = 4 D = B D = 1 D = 2

Rooms 2, 6, 10, and 14 have an east wall, rooms 4 and 12 a south wall, and room
8 a west wall. Most rooms have a north wall-for these the maze runner's start
ing direction D must be south. If D = 4, half the possibilities are resolved. Rooms
2, 6, 10, and 14 are such that the room number yields a remainder of 2 when
divided by 4. For those rooms we want D to be 8. Therefore, lines 770-800, or

D = 4 + 4*(W - INT(W/4)*4 = 2)

123 Maze and Fantasy Games

takes care of all rooms except 0, 4, 8, and 12. For rooms 4 and 12, D should be 1.
For room type 8, D should be 2. So lines 770- 860, or

D = 4 + 4*(W - INT(W/4 }*4 = 2) - 23*((W = 4) OR (W = 12)) - 22*(W = 8)

deals explicitly with every room type except 0. In the above expression, if 770
W = 0, then D becomes 4. The path behind the maze runner in this case
is the north path . So if the current room W is type 0, leave a note about
exploring the north path. Then establish D so that D = 4 if W = 0, or so
that in every other case the runner starts out with his back to a wall.
Now begin the solution process.

We have a maze runner standing in a room W facing a direct ion D, and 870
we have taken care of any case where there can be an unexplored path
behind him. Now it is necessary to look for openings to his left and right
and in front of him. How can we tell not to bother w ith the side behind
him (if he is facing north, then there is no need to look south, etc.)? We
could say the following :

If W is an even number. there is no wall to the north .
So if Dis not 4 (south) , make a note .

If W/2 is an even number . there is no wall to the east .
So if Dis not 8 (west }, make a note .

If W/4 is an even number. there is no wall to the south .
So if Dis not 1 (north) , make a note .

If W/8 is an even number. there is no wall to the west .
So if Dis not 2 (east), make a note .

The code for the above could be written as four separate tests. Or if a function
of some variable J exists, where J = 0, 1, 2, and then 3, to test for W and also D,
the code will be shorter. We know that

If W is an even number , then INT{W/2)*2 = INT(W)
If W/2 is an even number , then INT(W/4)*2 = INT(W/2)
If W/4 is an even number. then INT(W/8)*2 = INT(W/4)
If W/8 is an even number , then INT(W/16)*2 = INT {W/8)

The variables in the four equations above are the divisors 2, 4, 8, and 16 and on
the right-hand side, 1 (implied) 2, 4, and 8. So we want
INT(W/f1{J)) *2 = INT(W/f2(J)) for our test, where

J fl(J) f2(J)

0 2 1
4 2

2 8 4
3 16 8

Both functions double each t ime J increases by 1, which suggests powers of 2. In
fact, f2(J) = 2 j J and f1(J) = 2 j (J + 1). (Remember that any number raised to the
zero power equals 1.) What about the D test? When J = 0, we want to compare
D with 4, and so on, according to the following table :

K

0 4
8

2 1
3 2

124 Some Familiar Games

where K is the number to compare with D. By inspecting the table we can see
that when J = 2 or 3, K = J - 1, and when J = 0 or 1, K = J*4 + 4, which can be
written

K = (J - l)*(J > 1) + (J*4 + 4)*(J < 2)

Another way to look at this is to let K = J - 1, which is right for two cases, and
apply a correction factor for the other two :

J J- 1 Error

0 - 1 5
1 0 8
2 1 0
3 2 0

If J < 2, the error as a function of J is 3* J + 5. So

K = J - 1+(3*J + 5)*(J < 2)

Therefore, beginning with J = 0, and continuing as long as J < 4, we 890
compute K for comparison with D. Then we can say that if there is an
opening in this direction and it is not behind the maze runner, make a
note. Notice that the direction saved with the note is f2(J),that is, 2 j J, 960
as above, times 10000 to put the direction 1, 2, 4, or 8 in the fifth digit
to the left of the decimal point in the note. J is increased by 1 and the 1000
sequence 890- 990 is repeated until J = 4. Now, the room in the maze is
set to - 1 to show that it has been visited . At this point, the runner is

standing in the maze ready to consult his notes. If there are none 1020
(I = 0), all paths have been tried and there is no solution . If there is at
least one note, the runner has to separate D, X, and Y from the 1060
five-digit note and cross off the note. Then he has to move into the 1120
next room (Subroutine 1180), check to see if he has solved the maze,
and if not, to make more notes if a decision is required in this new
room. He may move through rooms with exactly two walls without mak-
ing notes. When he gets to a dead end or encounters a room he has
previously entered, then he must consult his notes again. This process is
repeated until the solution is found or he has no more notes, in which
case there is no solution .

When Subroutine 1180 is called, the maze runner must move into an- 1180
other room based on D, the direction he currently faces. How he moves
depends of course on the type of room W as well as on D.

First, the position of the runner in the maze is displayed (Subroutine 1190
1880).

Then W is set to the room type M{X,Y), which is then set to - 1 to show 1200
it has been entered. Now it is necessary to build another table to see
how to move. It is clear that if Wis a dead end (W = 7, 11, 13, or 14),
there is only one way out of the room. If W has at most one wall, D will
be adjusted as a consequence of making notes and then retrieving one.
If W = 5 or 10 the room is a corridor- D will not change. Only the two-
walled rooms W = 3, 6, 9, and 12 require modification of D.

125 Maze and Fantasy Games

lfW and D Change Y to D to
X to

3 2 Y - 1 4
3 1 X - 1 8
6 4 X - 1 8
6 2 y + 1 1
9 1 x + 1 2
9 8 Y - 1 4

12 4 x + 1 2
12 8 y + 1 1

So if W has at most one wall or is a corridor, increase X by 1 if D = 2, 1220
decrease X by 1 if D = 8, increase Y by 1 if D = 1, and decrease Y by 1 if
D = 4.

If W = 3, 6, 9, or 12, adjust X, Y, and D according to the above table. 1360

If Wis a dead end, turn around. 1630

Test for a solution-if X = X9 and Y = Y9, the runner is at the goal. Dis-
play the word SOLVED and end the program. Otherwise, set W to the
type of the new room M(X,Y) and return to the main program.

How to Move the Maze Runner

1790
1850

It is much easier to move around a maze when the player is in control than for
the computer to determine if a maze has a solution. A simple technique that
does not require a joystick or similar controller may be developed from the as
sumption that four keys on the keyboard correspond to compass directions. It
makes sense to select keys that are arranged in those compass directions relative
to each other. One such set is the keys W, D, X, and A arranged around the S.
They can be designated to stand for north, east, south, and west, respectively, as
shown here.

Of course, the N, E, W, and S keys could be used, but they are not conven
iently arranged. Obviously, if your keyboard has keys with arrows on them you
will want to use them instead. Another possibility in the case of a keyboard with
a numeric keypad is to use the numbers 8, 6, 2, and 4 for north, east, south, and
west, respectively, as illustrated here.

NORTH NORTH NORTH

G CJW~ [!]

l000l ~rn urn~ s .,..._ - s
T T lBDBl

0 LJ[]]LJ 0
SOUTH SOUTH SOUTH

126 Some Familiar Games

If possible, it is preferable not to requ ire a " Return" after using each arrow
key. It is essential to ignore any other key pressed. Also, the program must verify
that the user is not trying to move through a wall. The following program moves
the player through a 10 x 10 maze like the one shown here.

Moving the Maze Runner Program Code

X9 = 10
Y9 = 10
x = 1

Set goal

Set start
y = 1
GOSUB 940 Display maze runner

REPEAT
W = M(X , Y)
GOSUB 890

Get room and
wait for valid key press

IF' A$="W " THEN Set J = 1 if key = north
J = 1

IF' A$ = "D" THEN Set J
J = 2

2 if key east

IF' A$ ="X" THEN Set J=4 if key south
J =4

IF' A$="A" THEN Set J =8 if key west
J = 8

Sequence
Number

500
510
520
530
540

550
560
570

580
590
600

610
620
630

640
650
660

670
680
690

IF' INT(W/(J*2))*2

IF' A$ "W" THEN
y = y + 1

INT(W/J) THEN 1 If there is no wall in 700

IF' A$ = "X" THEN
y = y - 1

IF' A$ "D" THEN
x = x + 1

IF' A$="A" THEN
X=X- 1

GOSUB 940

ELSE
PRINT "GGG"

UNTIL A$ <>A$

the indicated direction.710
move to next room 720

730

Display maze runner

Ring bell if moving into
a wall

Continue

740
750
760

770
780
790

800
810
820

830

840
850
860

870

10

9 I_
8

7 _J -6

5

4

L_C
-

3

2
---<

Y= I

X= I 2 3 4 5 6 7 8 9

A 10 x 10 maze

XI.YI ,/

O. YO

1-~~- X3,Y3 1------- X2. Y2 //

///

XI. YI

Uling "construction" technique to gen
erate perspective

127 Maze and Fantasy Games

Moving the Maze Runner Code Description

The goal and starting position are set, and the maze runner is displayed
(Subroutine 940).

The type of the current room is put in W, and the program waits for an
arrow key to be pressed (Subroutine 890) . The value of J is set to 1 if
the player wants to move north, 2 if east, 4 if south, and 8 if west,
based on A$, which contains the value of the key.

If there is no wall in the J direction, X or Y is increased or decreased by
1 as appropriate, and the maze runner is displayed in the new room. If
a wall exists in the direction of J, a warning bell is rung and the maze
runner does not move. Steps 550 - 870 are repeated.

To continue only until the maze runner reaches the goal, line 870 should
read UNTIL X = X9 AND Y = Y9.

The Maze Runner's View of the Maze

Sequence
Number

500

550

700

850

870

We have touched only briefly on how the maze looks from the inside, concentrat
ing instead on the plan view. To develop an interior view, it is necessary to con
sider the mechanics of perspective.

As everybody knows, objects appear to reduce in size as a function of dis
tance. In fact, if it were possible to see infinitely far, an object at that distance
would disappear. The point on the horizon at which the object disappears is
called the "vanishing point." Between the viewer and the vanishing point, objects
appear to get smaller and smaller the farther away they are. The horizontal line
through the vanishing point is called the "horizon." No matter how far away, a
point above eye level is above the horizon and a point below eye level is below
the horizon.

To construct square rooms in a perspective view, it is necessary to determine
how much foreshortening or shrinkage appears to occur as rooms get farther
away. Renaissance painters knew of a technique to do this called "construction."
Given one room, the next one may be constructed by drawing a line from the
lower left corner of the first room through a point in the center of the far edge.
The point of intersection of that line with the left-hand edge of the room, ex
tended to the vanishing point, defines the upper right-hand corner of the next
room. Use the illustration to understand the following application of this con
cept.

First, it is necessary to know the values of YO, X1, Y1, and Y2 in this illustra
tion. X2 can be computed, because it is the intersection of the line from the van
ishing point through X1,Y1, with the horizontal line through Y2 (see Note 6 at
the end of the book):

X2
Y2 - YO
----*Xl
Yl - YO

Now to define the far edge of the second room, a line is constructed
through - X1 ,Y1 and O,Y2 and its intersection with the line through O,YO and
X1 ,Y1 is determined. (See Note 7 at the end of the book.)

128 Some Familiar Games

O.YO

-X6.Y6 A
-X2.Y6 B

-X3,Y7 C
-XB,YB -X4.YB

-XS.YI

/

-XI.YI

F
E X2.Y6

D X3,Y7
X4.YB

X7,Y7
XS.YB

'

X6,Y6

XS.YI

XI.YI

Extending diagonal and horizontal lines
to define corners of neighboring roorrs

Floor plan of two rooms ahead plus
row of rooms to each side

Floor plan perspective of parts of n ";
rooms, with possible walls md1Cated.
numbers 1 through 21

129 Maze and Fantasy Games

Y3 = 2*((Y2 - Yl) +(YO - Yl)) + Yl

and X3 = Y3 - Yl *Xl - Xl
Y2 - Yl

The same process may be repeated using - X2, Y2, and Y3 to construct the
floor of the next room, and so on .

The next program will construct a series of rooms, assuming that the dimen
sions of the viewing screen are - 65 to 65 in X and 0 to 100 in Y.

Constructing a Series of Rooms Program Code

Yl 10 Initialize
Y2 40
YO 60
Xl 50
MO VE -Xl , Yl
DRAW O,YO
DRAW Xl, Yl
MOVE O,YO
DRAW 0, Yl
MOVE - 65,YO
DRAW 65 , YO

Draw 3 lines to vanishing point

Draw horizon

REPEAT
X2 = (Y2 - YO)/(Yl - YO)*Xl
MOVE - X2,Y2
DRAW X2 , Y2

Compute X2
Draw horizontal through X2

Y3 = 2/(1/(Y2 - Yl) + l/(YO - Yl)) + Yl ! Compute X3 , Y3
X3 = (Y3 - Yl)/(Y2 - Yl)*Xl - Xl
MOVE -Xl , Yl
DRAW X3 , Y3
DRAW -X3,Y3
Xl X2
Yl = Y2
X2 = X3
Y2 = Y3

UNTIL Y2 > YO - 1

Draw diagonal

and horizontal through X3
Move up by

resetting Xl,Yl and X2,Y2

until close to horizon

Constructing a Series of Rooms Code Description

Set values for X1 , YO, Y1, and Y2.

Draw three lines to the van ishing point and draw the horizon.

Generate a series of rooms.

Compute X2 and draw the horizontal line through Y2 from - X2 to X2 .

Compute Y3 and X3 and draw the diagonal line used to make th is com
putation . Draw the horizontal line from - X3 to X3 through Y3.

Reset variables to compute the next room.

Continue computing rooms until close to the horizon.

Sequence
Number

140
150
160
170
180
190
200
210
220
230
240

250
260
270
280
290
300
310
320
330
340
350
360
370
380

Sequence
Number

140

180

250

260

290
330

340

380

Having developed the capability to lay out the floors of a series of rooms di
rectly in front of the viewer, what about the rooms on either side? If diagonal

130 Some Familiar Games

and horizontal lines are extended, their intersections define corners of neighbor
ing rooms, as seen in the next perspective drawing.

In this drawing, the line through - X1,Y1 and X2,Y2 has been extended and
so has the horizontal line through Y3 to determine X4 at their intersection. Then,
other points such as XS and X6 may be computed from the intersections of their
respective horizontals with the line through O,YO and X4,Y3 .

Y3 - Yl
X4 = *(X2 + Xl) - Xl

Y2 - Yl

so X5 Yl - YO*
Y3 - YO X4

and X6 = Y2- YO*X4
Y3- YO

The following program shows three rooms side by side, this time without
drawing the construction diagonals and the vertical line through the vanishing
point.

Constructing Three Rooms Side by Side Program Code

Yl 10
Y2 40
YO 60
Xl 50
MOVE - Xl. Yl
DRAW O,YO
DRAW Xl,Yl
MOVE - 65 , YO
DRAW 65,YO

Initialize

Draw sides of center rooms

Draw horizon

140
150
160
170
180
190
200
210
220

REPEAT 230
X2 = (Y2- YO)/(Yl - YO)*Xl Compute and draw back of room 240
MOVE - X2,Y2 250
DRAW X2 , Y2 260
Y3 2/(l/(Y2 - Yl) + l/(YO - Yl)) + Yl Compute and draw 270
X3 (Y3 - Yl)/(Y2 - Yl)*Xl - Xl side rooms 280
X4 (Y3 - Yl)/(Y2 - Yl)*(X2 + Xl) - Xl 290
X5 (Yl - YO)/(Y3 - YO)*X4 300
X6 (Y2 - YO)/(Y3 - YO)*X4 310
MOVE X3 , Y3 320
DRAW - X3.Y3 330
MOVE X5 , Yl 340
DRAW X6,Y2 350
DRAW - X6,Y2 360
DRAW - X5 , Yl 370
Xl X2 Update 380
Yl Y2 390
X2 X3
Y2 Y3

UNTIL Y2 > YO - 1 until close to horizon

400
410
420

131 Maze and Fantasy Games

Constructing Three Rooms Side by Side Code Description
Sequence
Number

After setting initial values for the variables and drawing the side edges 140
of the center rooms, X2 is computed and the far edge of the center 230
room is drawn. All computations are done for the next center room and 270
the side rooms. The second center room and the f irst side rooms are 320
drawn. Variables are reset to move to the next set of rooms, and the 380
program continues to draw rooms until close to the vanishing point. 420

With respect to constructing walls, let us say that in the maze there is only
enough light to see two rooms ahead and one room on either side of the room
in which the maze runner is standing. The accompanying floor plan is, therefore,
of interest; what is shown are the edges of nine rooms, with walls around the
outside edges of the farthest visible rooms and vertical lines at the other corners.
Edges between walls and ceilings can be constructed in the same manner as the
floor plan by extending lines from the vanishing point to an arbitrary point
above the horizon.

In this construction, the ceiling is drawn to a point that is three-fourths as
high above the horizon as the floor is below it. Since the number of visible rooms
has been defined, the X,Y values of each corner as seen by the maze runner are
fixed. You may compute them in advance and use them as constants rather than
actually performing the construction as in the previous program.

The next problem is to hide parts of the drawing based on the existence of
any combination of the twenty-one walls that may exist in the section that the
maze runner can see.

In the next drawing, floor edges are numbered to simplify discussion :

Xl 50 Yl 10
X2 20 Y2 40
X3 12.5 Y3 47 . 5
X4 9.0909 Y4 50 .9091
X5 150 Y5 97 . 5
X6 60 Y6 75
X7 37 . 5 Y7 = 69 .375
XS 27.2727 YB = 67.4318

The maze runner is standing in the room bounded by walls 3, 4, and 5. To
determine what he can see to his left, it is necessary to imagine what is visible
first if the closest edge has a wall, then the next closest, and so on . If his line of
sight passes through edges 3, 2, and 8, adding a wall to 3 will prevent him from
seeing edges 1, 2, or 8. Only part of edges 9 and 16 will be visible. The same
parts of 9 and 16 will be visible if 3 has no wall but there is a wall on 2.

Th is suggests that what is important in the determination of visibility is the
corner of a room. If either of the two walls that meet at a corner is present, the
same part of the view is rendered invisible. This means that instead of consider
ing twenty-one edges as criteria for invisibility, we could consider instead the six
corners A, B, C, D, E, and F. For this example, however, we will consider the walls.

The most complicated case is typified by edge 16. If there is a wall on edge
9, on ly the part of wall 16 between uprights B and C is visible. If there is no wall
on 9 but a wall on 17, wall 16 is visible from B to the wall's left edge. If 9 and 17
have no walls but there is a wall on 10, then wall 16 can be seen on either side
of wall 10 but is obscured between uprights A and B. This suggests that a reason-

132 Some Familiar Games

able way to process walls is in vertical slices- to the left of A, then between A
and B, then between B and C, and so forth.

The following is an algorithm for the computer to follow in drawing the sec
tion to the left of A : If there is a wall on 3, draw it; everything else is invisible. If
there is no wall on 3, then wall 1 is visible if there is a wall on 1. Then if wall 2
exists, it will obscure everything else. If not, wall 8 is visible. If wall 9 exists, the
section to the left of A is drawn, omitting the vertical line on A. If 9 does not
exist, then 15 is visible, and so is the section of 16 to the left of A.

Now the section betwe.en A and B is drawn. If 10 exists, everything else is
invisible. If not, the section of 9 between A and B is visible. If 9 is a wall, then it
is drawn including the upright B. If neither 10 nor 9 are walls, then 16 is visible
between A and B.

Between B and C, if 17 is present, it is drawn; if not, the section of 16 is visi
ble. Between C and D, if 18 is present, it is drawn. The other sections are dealt
with in a similar manner.

Exploring a n1aze in this view rather than from above, the maze runner is
unable to determine whether he is moving north, south, east, or west. Conse
quently, it is necessary to define the arrow keys differently. Instead of using them
as compass directions, they should mean the following :

Press W to move forward
D to turn right
X to turn around
A to turn left

Furthermore, it is very disorienting to turn and simultaneously move to an
other room. While W should allow the maze runner to move to another room, A,
D, or X should only change the runner's viewing direction, leaving him in the
same room as before. Depending on the direction the maze runner is facing, one
of four views is seen . In each case, there are 21 possible walls, but they are in dif
ferent rooms relative to the maze runner. In order to process them regardless of
direction, a wall table may be defined, as shown here, in which the walls and
rooms pertaining to each direction are shown.

The following program will examine the 21 pertinent walls, putting a one in
V(N) if there is a wall on edge N, and a zero if not. Notice that in some cases,
fewer than nine rooms are visible to the viewer. For example, if he is standing in
M(1,1) facing north, there are no rooms to his left. The programmer must be
careful not to refer to rooms M(X - 1,Y) because they are not defined.

LOOKING NORTH LOOKING EAST LOOKJl~G SOUTH LOOKING WEST
16 18 20

15 17 19 21
I 8 15

2 9 16
3 JO 17

r? 5 l 1.3 I
6 4 2

21 14 7
20 3 ~

19 12 5
I =2 J =O I =O J =2

9 JI 13
8 JO 12 14 -+4 JI 18

5 12 19
4 12 JO 98 13 JI

8 I 14+-
17 10

I=I J=I I=I J=I

2 4 6
I 3 t 5 7 6 13 20

7 14 21
121 19 17 15

20 18 16
6 9 '2 3

15 8 I
I=O J=2 1=2 J=O

J=O J=I J=2 I=O I=I 1=2 J =2 J=J J =O 1=2 I=I I=O Wall table for maze runner

133 Maze and Fantasy Games

Load Wall Table Program Code

DIM V(21) Wall table
DEF' F'NN(W) W-INT(W/2}*2 ! Define wall functions
DEF' F'NE(W) INT(W/2)-INT(W/4)*2
DEF' F'NS(W) INT(W/4)-INT(W/8)*2
DEF' F'NW(W) INT(W/8)
X9 = 10 Initialize goal
Y9 = 10
x = l and starting position
y = l
GOSUB 1770 Display maze runner
D=2f INT(RND(- 1}*4) Select a random direction D=l,2,4, or 8

REPEAT
V=l
I = 0

IF' D = l THEN

REPEAT

Get walls based on direction

F'acing north ,
J = 0

IF' X l THEN
J = l

REPEAT get west , north , and east walls
W = M(X - l + J. y
V(I*7 + J*2 + l)
V(I*7 + J*2 + 2)
V(I*7 + J*2 + 3)
J J + l

+ I)
F'NW(W)
F'NN(W)
F'NE(W)

UNTIL J > 2 OR X + J >= XO

I = I + l
UNTIL I > 2 OR Y + I > YO

IF' D = 2 THEN

REPEAT

F'acing east,

J = 0

IF' Y = YO THEN
J = l

REPEAT
w = M(X + l. y +

get
l - J)

V(I*7 + J*2 + l)
V(I*7 + J*2 + 2)
V(I*7 + J*2 + 3)
J J + l

UNTIL J > 2 OR Y - J < 0

I = I + l
UNTIL I > 2 OR X + I > XO

north , east,

F'NN(W)
F'NE(W)
F'NS(W)

IF' D = 4 THEN

REPEAT

F'acing south,

and south walls

Sequence
Number

500
510
520
530
540
550
560
570
580
590
600

610
620
630

640

650
660

670
680
690

700
710
720
730
740
750
760

770
780

790

800

810
820

830
840
850

860
870
880
890
900
910
920

930
940

950

960

970

134 Some Familiar Games

J = 0

IF X = XO THEN
J = 1

980

990
1000
1010

REPEAT get east. south. and west walls 1020
W = M (X + 1 - J. Y - I) 1030
V(I*7 + J*2 + 1) FNE(W) 1040
V(I*7 + J*2 + 2) FNS(W) 1050
V(I*7 + J*2 + 3) FNW(W) 1060
J = J + 1 1070

UNTIL J > 2 OR X - J < 0 1080

I = I + 1
UNTIL I > 2 OR Y = I

IF D = 8 THEN

REPEAT
J = 0

IF Y = 1 THEN
J = 1

REPEAT
W = M(X - I , Y - 1
V(I*7 + J*2 + 1)
V(I*7 + J*2 + 2)
V(I*7 + J*2 + 3)
J = J + 1

UNTIL J > 2 OR
I = I + 1

UNTIL I > 2 OR X

W = M(X , Y)
GOSUB 1720

IF A$ "W" THEN
J = D

IF A$ "D" THEN
J = 2*D

IF D = 8 THEN
J = J - 15

IF A$ = "X" THEN
J = INT(D/4)

IF D < 4 THEN
J = J + 4*0

IF A$ "A" THEN

y

Facing west,

get south,
+ J)

FNS(W)
FNW(W)
FNN(W)

+ J > YO

I

west, and north walls

Wait for a valid key press

Establish new direction

1090
1100

1110

1120

1130
1140

1150
1160
1170

ll80
ll90
1200
1210
1220
1230
1240
1250
1260

1270

1280
1290

1300
1310
1320

1330
1340
1345

1350
1360
1370

1380

1390
1400

1410
1420
1430

1440

1450

135 Maze and Fantasy Games

J = INT(D/2)

IF' D = 1 THEN
J = J + 8

D = J

1460

1470
1480
1490

1500

1510

I F' INT(W/D*2))*2 INT(W/D) THEN 1520

I F' D 1 THEN If there is no wall in the way , 1530
Y = Y + 1 move in new direction 1540

IF' D = 4 THEN
y = y - 1

IF' D = 2 THEN
x = x + 1

IF' D = 8 THEN
x = x - 1

GOSUB 1770

ELSE

PRINT "GGG";

UNTI L X X9 AND Y Y9

END

Display runner

Ring bell if a wall is in the way

Continue to goal

1550

1560
1570
1580

1590
1600
1610

1620
1630
1640

1650

1660

1670
1680

1690

1700

In this program, the wall table is used to move around the maze. Since per
spective views of the maze are not developed, it is assumed that the arrow keys
still mean "Move north," " Move east," and so on .

Load Wall Table Code Description

In order to reduce the amount of code, four functions are defined.
When FNN{W) is invoked, its value is 1 if there is a wall on the north
edge of room W and a zero if not. Similarly, FNE for an east wall , FNS
for south, and FNW for a west.

After establishing the starting room M{X,Y) and the goal M{X9,Y9}, Sub
routine 1770 is called to display the position of the runner in the maze.
A random direction D is generated, and the wall table V is set to all 1 's.

The index I, as seen in the four figures above, is set to zero. Then, de
pending on the direction D, the walls are brought to the wall table.

If the direction is north, the index J is set to zero unless X = 1, in which
case J is set to 1. For each room, three edges are examined and the ap
propriate values are stored in V. After J exceeds 2 or the right-hand
edge of the maze has been reached, I is increased until I exceeds 2 or
the top of the maze has been reached .

A similar process is required for each of the other three directions, al
though only one of them is executed depending on the value of D.

Sequence
Number

510

550
590
600

630
640

650
700
760
770
780

800

136 Some Familiar Games

The program waits for a key press (Subroutine 1720) after giving a beep 1290
signal that it is ready. The new direction is established based on the pre-
vious direction and the last key pressed. The following table shows the
new direction required based on the existing value of D and A$, the var-
iable in which the key value is placed :

w D x A

1 1 2 4 8
2 2 4 8 1
4 4 8 1 2
8 8 1 2 4

The values of the room indices X and Y are modified based on the direc- 1520
tion . If there is a wall in front of the maze runner, he cannot move for- 1660
ward- a sustained beep is sounded and the room is redisplayed . This 1690
process continues until the goal is attained.

------------- --- ---
Perspective Maze

Now the view that a maze runner would see can be displayed. The arrow keys
take on the meaning

W Move forward if possible
D Turn right without changing rooms
X Turn around without changing rooms
A Turn left without changing rooms

[J q)
LOOKING EAST FROM

X=2, Y=6

LOOKING NORTH FROM
X=2, Y=7

LOOKING EAST FROM
X=I, Y=6

LOOKING SOUTH FROM
X= I, Y= 3

Looking east from X = 2, Y = 6

Looking east from X = 1, Y = 6

Looking north from X = 2, Y = 1

Looking south from X = 1, Y = 3

137 Maze and Fantasy Games

Perspective Maze Program Code

DIM V(21)
DEF FNN(W) W - INT(W/2)*2
DEF FNE(W) INT(W/2) - INT(W/4}*2
DEF FNS(W) INT(W/4) - INT(W/8)*2
DEF FNW(W) INT(W/8)
DATA l, l.10, 10
DATA 50,20,12 .5 ,9 .090909 , 150 ,60,37 .5,27 . 272727
DATA 10.40,47.5.50 .90909,97.5,75 , 69 .375 , 67 .431818
READ X,Y,X9 , Y9 , Xl.X2,X3,X4 , X5,X6,X7,X8.Yl,Y2.Y3 , Y4 , Y5 , Y6 , Y7 , Y8
D = 2 f INT(RND(-1)*4) Establish starting direction

REPEAT
v = 1
I = 0

REPEAT
J = 0

IF X = 1 AND D 1 THEN
J = 1

IF X = XO
J = 1

IF Y = 1
J = 1

IF Y = YO
J = 1

REPEAT
K = X
L = y

AND D

AND D

AND D

IF D = 1 THEN
K K+J - 1
L = L + I

IF D = 4 THEN

4 THEN

8 THEN

2 THEN

K K - (J - 1)
L = L - I

IF D = 2 THEN
K K + I
L = L - (J - 1)

IF D = 8 THEN
K K - I
L = L + J - 1

W = M(K,L)
N = I*7 + J*2

IF D = 1 THEN
V(N + 1) = FNW(W}

Sequence
Number

370
380
390
400
410
420
430
440
450
460

470
480
490

500
510

520
530
540

550
560
570

580
590
600

610
620
630

640
650
660

670
680
690
700

710
720
730
740

750
760
770
780

790
800
810
820
830
840

850
860

138 Some Familiar Games

V(N + 2) = FNN(W)
V (N + 3) = FNE (W)

IF D = 2 THEN
V (N + 1) FNN (W)
V(N + 2) FNE(W)
V(N + 3) NS(W)

IF D = 4 THEN
V(N + 1) FNE(W)
V(N + 2) FNS(W)
V(N + 3) FNW(W)

IF D = 8 THEN
V(N + 1) FNS(W)
V(N + 2) FNW(W)
V(N + 3) FNN(W)

J - J + 1
N = 0
IF (X + J > XO AND D 1) OR (Y + J > YO AND
D 8) THEN

N = 1

UNTIL J >2 OR N OR (Y <J AND D=2) OR (X <J AND D=4)

I = I + 1
N = 0
IF (X+I => XO AND D=2) OR (Y+I=>YO AND D=l) THEN

N = 1

UNTIL I >2 OR N OR (X =I AND D=8) OR (Y=I AND D=4)

PAGE Clear screen

IF V(3) THEN Draw from left to corner "A"
GOSUB 2760

ELSE

IF V(l) THEN
GOSUB 2630

IF V(2) THEN
GOSUB 2690

ELSE

IF V(8) THEN

GOSUB 2820

IF V(9) THEN
GOSUB 2890

ELSE

870
880
890

900
910
920
930
940

950
960
970
980
990

1000
1010
1020
1030
1040

1050
1060
1062

1064
1066
1070

1080
1082
1084
1086
1088
llOO

lllO

l120
l130

1140

1150
1160
1170

l180
1190

1200

1210

1220
1230

1240
1250

1260

139 Maze and Fantasy Games

IF' V(l5) THEN 1270
GOSUB 2950 1280

1290

IF' V(l6) THEN 1300
GOSUB 3020 1310

1320

1330

1340

1350

IF' V(4) THEN Draw "A" to "B" 1360
GOSUB 3110 1370

ELSE 1380

IF' V(lO) THEN 1390
GOSUB 3240 1400

ELSE 1410

IF' V(9) THEN 1420
GO SUB 3180 1430

ELSE 1440

IF' V(l6) THEN 1450
GOSUB 3310 1460

1470

1480

1490

IF' V (11) THEN Draw 11 8 11 to "C" 1500
GOSUB 3400 1510

ELSE 1520

IF' V(l7) THEN 1530
GOSUB 3530 1540

ELSE 1550

IF' V(l6) THEN 1560
GOSUB 3470 1570

1580

1590

IF' V(l8) THEN Draw "C" to "D" 1600
GOSUB 3600 1610

1620

IF' V(l9) THEN Draw "D" to "E" 1630
GOSUB 3700 1640

ELSE 1650

IF' V(20) THEN 1660
GOSUB 3770 1670

1680

1690

1700

IF' V(l2) THEN Draw "E" to "F'" 1710
GO SUB 3860 1720

140 Some Familiar Games

ELSE

IF V(l3) THEN
GOSUB 3930

ELSE

IF V(20) THEN

GOSUB 3990

IF V(5) THEN
GOSUB 4070

Draw "F" to corner

ELSE

IF V(7) THEN
GOSUB 4200

IF V(6) THEN
GOSUB 4130

ELSE

IF V{l4) THEN
GOSUB 4320

IF V(l3) THEN
GOSUB 4260

ELSE

IF V(21) THEN
GOSUB 4450

IF V(20) THEN
GOSUB 4390

W = M(X , Y)
GOSUB 2530
J = 0

IF A$ = "W" THEN
J = J + D

IF A$ = "D" THEN
J = J + 2*D

IF D = 8 THEN
J = J - 15

Wait for an arrow key

Compute new direction

1730

1740
1750

1760

1770

1780
1790

1800

1810

1820

1830
1840

1850

1860
1870
1880

1890
1900

1910

1920
1930
1940

1950
1960

1970

1980
1990
2000

2010
2020
2030

2040

2050

2060

2070
2080
2090

2100
2110
2120

2130
2140

2150
2160
2170

2180

141 Maze and Fantasy Games

IF A$ = "X" THEN
J = J + INT(D/4)

IF D < 4 THEN
J = J + 4*D

IF A$ = "A" THEN
J = J + INT(D/2)
IF D = 1 THEN

J = J + 8

D = J

IF A$ = "W" THEN

IF INT(W/(D*2))*2 INT(W/D) THEN

IF D = 1 THEN
y = y + 1

IF D = 4 THEN
y = y - 1

IF D = 2 THEN
x = x + 1

IF D = 8 THEN
x = x - 1

ELSE
PRINT "GGG" ;

If wall , ring bell

If no wall, move

UNTIL X X9 AND Y Y9

END

Continue to goal

Perspective Maze Code Description

After defining the maze as usual, but not drawing a top view, the wall
table is defined.

The direction functions are defined, and the starting position of the run
ner, the position of the goal and values of room corners computed in
the perspective floor layout are read into their symbolic names.

A random starting direction is chosen and the solution begins.

Note that loading the wall table, lines 500 through 1100, has been con
solidated somewhat from the previous program (lines 640 - 1270).

The screen is cleared and the visible section between the left-hand edge
and corner A is displayed.

Then corner A to corner B.

Then corner B to corner C.

Then corner C to corner D.

2190
2200

2210
2220
2230

2240

2250
2260
2270
2280
2290

2300

2310

2320

2330

2340
2350
2360

2370
2380
2390

2400
2410
2420

2430
2440
2450

2460
2470
2480

2490

2500

2510

Sequence
Number

370

380
420
450

460

500

1100

1360

1500
1600

142 Some Familiar Games

Then corner D to corner E. 1630

Then corner E to corner F. 1710

Then corner F to the right-hand edge. 1830

The computer waits for an arrow key (Subroutine 2530), then computes 2080
a new direction. If the "Move Ahead" key was pressed, the room indices
X and Y are updated, unless moving ahead causes the runner to crash
into a wall.

The program continues until the goal is reached. 2500

Shown below are typical perspective views found in the 10 x 10 maze.

D
LOOKING SOUTH FROM

X=I , Y=6

LOOKING SOUTH IN
X=I, Y=I

LOOKING NORTH
FROM X=I, Y=I

LOOKING EAST FROM X=2, Y=2.
NOTE THAT AL THOUGH THERE IS
A WALL HERE IT IS NOT VISIBLE

TO THE MAZE RUNNER

Looking south from X = 1, Y = 6

Looking north from X = 1, Y = 1

Looking south in X = 1, Y = 1

Looking east from X = 2, Y = 2 No·,
that although there is a wall here. ·
not visible to the maze

Maze shown as caves instead of r

143 Maze and Fantasy Games

Refinements

• Color or shade walls to represent the fact that the only light in the maze is being
carried by the maze runner .

• Extend the perspective view to show all visible walls, no matter how far away.

• Display the maze as a labyrinthine cave, as suggested in the accompanying draw
ing. Randomly show objects in some of the caves occasionally, such as bones, bro
ken weapons, discarded implements, spider webs, bats hanging from the roof of
the cave, and so on.

• Make a multilevel maze with ladders, ropes, or staircases leading from one level
to another. Make sure that a ladder going down from one level goes up in the
same place from the level below. Use the S key to take a ladder to a different
level.

• In a multilevel maze, put a concealed hole in the floor of a different room on
each level, so that when a runner enters that room he falls to an unknown place
on an unspecified level. The destination room should be the same every time, but
it will be the maze runner's task to establish where he is. When he falls, let him
know that he has fallen.

• Give the maze runner a supply of food and water and provide water holes in
fixed locations in the maze so he can replenish his supply. Randomly provide edi
ble delicacies such as lizards, grasshoppers, and such, to replenish his food supply.
If he runs out of food or water, he "dies" in the maze and has to begin again .

• Give him a certain amount of strength that he can use to fight creatures like bel
ligerent lizards. As he fights them, his strength diminishes but his experience im
proves. Let him exchange experience for renewed strength, either by returning to
the start of the maze or by entering special rooms.

• After he successfully fights monsters, provide for the possibility that the monster
may have been guarding a treasure. Let the maze runner use the treasure to buy
weapons that make it easier to fight monsters. Make the monsters harder to
fight and the treasures more worthwhile the deeper the runner goes in the
maze.

8

Outer Space Games

146 Some Familiar Games

Outer space has replaced Cowboys and Indians as the source for larger-than-life
heroes whose superhuman feats conquer the frontier by exploration and combat
w ith hostile natives. It has become unacceptable in recent years to buy toy guns
for ch ildren but laser blasters are fine, presumably because malevolent aliens are
acceptable as cannon fodder whereas malevolent humans are not. Certainly, sev
eral billion Space Invaders have been slaughtered since the invention of the ar
cade game and so far nobody seems to feel very gu ilty about it.

To ach ieve realist ic outer space games, the programmer must have an under
standing of Newton's Law of Universal Gravitation and his Laws of Motion. A
brief discussion of these laws is followed by their application in a simple Space
Race game. Obviously, vectors, as presented in the Ballistic Trajectory chapter,
reappear here. The chapter ends w ith improvements to the game such as colli
sions and controlled flight.

Newton's Laws

It is often said that there is no gravity in space. In fact, the reason for the feeling
of weightlessness is that a body under no other acceleration forces is said to be
in a state of "free fall" - falling under the influence of the Law of Universal
Gravitation. This law, which states that all bodies attract each other according to
their masses and to their distance apart, was recognized by Isaac Newton. It is
popularly supposed that he came to an understanding of the Law of Universal
Gravitation by watching an apple fall from a tree. Actually, he was studying the
motion of the moon around the earth when he hit upon the law:

rn rn '
F' = G --2-

r

wh ich means that the force F of attraction of two bodies is proportional to their
masses m and m' divided by the square of the distance r between them. The con
stant of proportionality in this case is G, the gravitational constant. Thus, a space
craft floating between two planets, one of which has a moon, is subject to gravi
tational pull along three directions, as illustrated here by a line from the ship to
planet A, a line to its moon, and another to planet B. If all other bodies are ex
tremely far away or extremely small , their influence w ill be so slight that it can
be ignored.

Newton also defined his Laws of Motion, among which is the famous state
ment that a body in motion tends to remain in motion. That is, in the absence of
any force, something moving in a given direction at a given speed will continue
to do so. It is because of this law and the Law of Universal Gravitation that we
can put satell ites in orbit around the earth . As a satellite travels in a straight line,
the gravitational attraction of the earth pulls it "down." If the linear speed of
the satellite is just right for the altitude, the distance it gains from the earth will
match the distance it falls due to gravity, and a circular orbit will be achieved,
which is demonstrated in the first of three drawings dealing with orbits.

In fact, it is possible to put a satellite in a geosynchronous orbit, in which the
satell ite remains above a fixed point on the earth if the craft completes one orbit
in 24 hours travelling from east to west. Since the earth revolves about its axis
once every 24 hours, the satellite's rate of travel is sufficient to keep it in place.

PLANE•
B

SPACECRAFT

Gravitational pull exerted on as
by three bodies due to Jaw of uni~~
gravitation

/ ... u.'-y . . "

:

Circular orbit achieved by correct
for altitude A combined with dist~
fallen owing to force of gravity 8

. - -~--

Attitude generally but erroneousty
sumed to be held by orb1tmg

... b= . .

·.

e actually held by orbiting space-

147 Outer Space Games

Notice, though, that because we are accustomed to thinking in terms of a flat
earth, most people assume that an orbiting spacecraft would maintain a given
aspect with respect to the earth's surface, as shown in the second orbit drawing.
However, in accordance with Newton's law, there is no force acting to push the
nose down, so it moves as in the third orbit drawing and would appear to a se
quence of observers on the earth to have performed one backward somersault
per orbit, even if the orbit is geosynchronous. Orbital purists can "correct" for
this occurrence by applying a rotational velocity to the spacecraft sufficient to
cause one forward somersault per orbit.

Space Race Game

It is possible to apply the gravitation and motion formulas to a spacecraft game,
but considerable modification of the numerical values involved is necessary;
otherwise, the game would proceed much too slowly. We will also want to dis
play objects on the screen that would be invisible if they were drawn in propor
tion to their true distance apart.

Consider a simple game called Space Race. On the screen will be displayed
two planets, one of which has a moon orbiting it. Let us call the planet with the
moon, earth, and the other planet Mars. (Mars actually has two moons.) A space
craft is in space near earth. The object of the game is to pass alternately through
the orbits of Mars and earth as often as possible. Each time an orbit is crossed, a
point is scored. To score the next point, the ship must cross the orbit of the other
planet.

The captain of the spacecraft has a certain amount of fuel that he can use to
control the ship, but his object is clearly to use gravity as much as possible in
order to conserve fuel. After he runs out of fuel, he may have achieved an orbit
stable enough to gain several more points, so the game must continue until the
spacecraft either crashes into one of the planets or the moon or until it is so far
away that it is deemed lost in space.

Applying Gravity
Newton's law says that two bodies are attracted to one another, but when one
body is vastly bigger than the other, as in the case of earth and a spacecraft, it is
reasonable to assume that the larger body does not move at all. So computations
of motion with respect to gravity need only be done for the ship.

There are three forces acting on the craft : the gravitational pulls of the two
planets and the moon. The forces are pulling along the lines between the center
of gravity of the ship and of each of the three bodies. Depending on their rela
tive directions, the forces may tend to reinforce or to cancel each other.

Since this game is being developed only in two dimensions, the resultant
force or net force acting on the ship may be thought of as having an X and a Y
component. If the X and Y component of each of the three forces is computed,
the resultant force's components are

X(resultant) = X(earth) + X(Mars) + X(moon)
and Y(resultant) = Y(earth) + Y(Mars) + Y(moon)

148 Some Familiar Games

To find the components of each force it will be necessary to know the angle
of each force vector. We know two points on the line of the vector, namely the
center of the spacecraft XO.YO and the center of the body Xn,Y n· So the angle of
the vector is 8, shown in the illustration. (Also see Note 8 at the end of the
book.)

Xn - XO
() = {ACS{))

r
IF' Yn < YO THEN

() = 360 - ()

where r = SQR({Xn - X0)2 + (Yn - Y0) 2
)

Clearly, r can only be zero when the spacecraft is at the center of gravity of
one of the bodies, which means that it has crashed, so this case should not occur.
However, to avoid any unforeseen error, it is safe to say that if r = 0, then
8 = 0. To compute the angle of the force vector, then, the code is:

() = SQR({Xn - X0) 2 + {Yn - Y0) 2)

IF' () < > 0 THEN
9 = ACS ({ Xn - XO) / 9)
IF' Yn < YO THEN

() = 360 - ()

The following algorithm will allow a spacecraft to fall freely under the influ
ence of three bodies until it is lost in space. The viewing surface ranges from - 65
to 65 in X and from 0 to 100 in Y. Angles are expressed in degrees.

Free Fall Program Code

DIM D0{2) ,Dl{2) , D2{2) .D3{2) ,D{2) , V(2)
DATA 1 ,-0 . 1 ,0 , . 00000 1 ,1 , 1000000 , 10000000 , 5000000
DATA - 50,40, - 50 , 50,50 ,80
DATA 1,4 , 2 .5
READ V, A, G, MO ,Ml ,M2 , M3 , DO , D2,D3 , Rl , R2 ,R3 Initialize
D = D2
R = R2
GOSUB 620 Draw earth
D = D3
R = R3
GOSUB 620

REPEAT
GOSUB 720
Dl(l) = D2(1) + 15*COS{A) !
Dl(2) = D2{2) + 15*SIN(A)
D = Dl

Draw Mars

Erase moon
Compute new position of moon

Sequence
Number

170
180
190
200
210
220
230
240
250
260
270

280
290
300
310
320

R = Rl 330
GOSUB 620 Redraw moon 340
GOSUB 680 Erase and redraw spacecraft 350
F'l =G*(MO*Ml)/SQR({Dl{l) - DO{l)) f 2+(Dl{2) - D0 (2)) f 2) f2 !Compute 360
F'2=G*{ MO *M2)/SQR((D2(1) - DO(l))f2+(D2{2)-D0(2))f2)j2 ! forces 370
F'3 =G*(MO*M3)/SQR{(D3(1) - DO(l)) f 2+{D3{2) - D0 {2))f2) f 2 ! & angles 380
Al =SQR((Dl(l) - DO(l)) f 2+(Dl(2) - D0{2))j2) ! of force vectors 390

e

Determining the angle of the force
vector

149 Outer Space Games

IF Al < > 0 THEN 400
Al = ACS((Dl(l) - DO(l))/Al) 410
Al=360-(Dl(2)<D0(2))+Al* ((Dl(2)=>D0(2))-(Dl(2)<D0(2))) 420

430

A2 = SQR((D2(1) - DO(l))f2 + (D2(2) - D0(2))f2) 440

IF A2 < > 0 THEN 450
A2 = ACS((D2(1) - DO(l))/A2) 460
A2=360-(D2(2)<D0(2))+A2*((D2(2)=>D0(2))-(D2(2) <D0(2))) 470

480

A3 = SQR((D3(1) - DO(l))f + (D3(2) - D0(2)) f 2) 490

IF A3 < > 0 THEN 500
A3 = ACS((D3(1) - DO (l))/A3) 510
A3 =360-(D3(2) <D0(2))+A3*((D3(2) =>D0(2)) -(D3(2) <D0(2))) 520

530

V(l)=V(l)+Fl*COS(Al) +F2*COS(A2)+F3*COS(A3) Compute change in 540
V(2) =V(2)+Fl*SIN(Al)+F2*SIN(A2)+F3*SIN(A3) X & Y components 550
DO (1) = DO (1) + V (1) of spacecraft velocity 560
D0(2) = D0(2) + V(2)
A = A + 1

570
Increase moon-earth angle by 1 degree 580

UNTIL ABS(DO(l)) > 200 OR D0(2) < - 100 OR D0(2) > 200 590

END Continue until lost in space

Free Fall Code Description

Define DO as a pair of values comprising the X,Y location of the ship, D1
the location of the moon, D2 the location of the earth, and D3 the loca
tion of Mars. Define D as a pair of numbers to be used when drawing
one of the bodies, and V as the components of velocity of the space
craft.

Read initial values for the velocity components of the spacecraft V so
that Vx = 1 and Vy = - .1, the initial angle of the moon relative to the
earth A = 0, the gravitational constant G = 0.000001, the masses of
the ship MO = 1, the moon M1 = 1000000, the earth M2 = 10000000,
and Mars M3 = 5000000, the initial locations of the ship DO = - 50,40,
the earth D2 = - 50,50 and Mars D3 = 50,80, and the rad ii of the
moon R 1 = 1, the earth R2 = 4 and Mars R3 = 2.5.

Let D = D2 and R = R2 to use Subroutine 620 to draw the earth.

Let D = D3 and R = R3 to use Subroutine 620 to draw Mars.

Begin to process the moving bodies.

Erase the moon (Subroutine 720) .

Compute a new location of the moon relative to the earth and the
angle between the earth and the moon, A.

Draw the moon in its new position .

Erase the spacecraft, then redraw it in its new position (Subroutine 680) .

600

Sequence
Number

170

210

220

250

280

290

300

340

350

150 Some Familiar Games

Compute F1 the gravitational force between the ship and the moon . 360
F2 the gravitational force between the ship and the earth. 370
F3 the gravitational force between the ship and Mars. 380
A 1 the angle at which F1 is applied. 390
A2 the angle at which F2 is applied. 440
A3 the angle at which F3 is applied. 490

Assume that the resultant force is equal to the change in velocity (note
from the formula F = ma, force equals mass times acceleration, that this
is the case if m = 1. The mass of the spacecraft was chosen to be 1 in
line 220), and compute the change to the X and Y components of the
spacecraft's velocity. 540

Assume that an increment of velocity is equal to an increment of dis- 560
tance and increase the X and Y components of the location of the
spacecraft accordingly.

Add 1 degree to the angle between the moon and the earth. 580

If the spacecraft is not lost in space, continue. 590

Detecting Collisions

It is very easy to detect a collision between the spacecraft and one of the
bodies since the ship is displayed as a dot. As soon as the dot is within one radius
of the center of the body, it has crashed into that body. So in addition to the
"lost in space" test, a "crashed" test is

,,..
/0

0 0 0 I 0
/

0.....-J
'r

I

/

US ING THE CONSTANTS FROM THE FREE FALL THE COMBINEO GRAVITATIONAL PULL OF THE
PROGRAM. THE STARTING POSITIONS OF THE EARTH. EARTH. MOON AHO MARS DRAWS THE SPACESHIP
MOON AHO SPACESHIP ARE SHOWN ABOVE. THE SHIP PAST THE MOON.
HAS AH INITIAL VELOCITY THAT WILL CAUSE IT TO
MOVE TO THE R IGHT AHO SLIGHTLY DOWNWARD.

THE EAR TH AHO MOON ARE HOW
PULLING THE SHIP IH THE SAME
DIRECT/OH. SO THE ORSI T
SWINGS BACK TOWARD THE
EARTH AND THE SHIP GAINS
SPEED RAPIDLY.

Initial free-fall trajectory based . '
constraints in the spacecraft pm::·

\0
- -;.. =~

/ \ ~

I/ 0 ii
JI

\ II

THE SHIP ORB ITS THE CM....,
ONCE AHO IS THEH ATTl!W!l
SY THE MOON AGAIN

AFTER A SECOND ORBIT OF THE EARTH. THE SHIP PASSES
BETWEEN THE EARTH AHO THE MOON. THIS TIME
FURTHER AWAY FROM THE MOON.

THE SPACESHIP IS SLOWED BY THE MOON. WHICH PASSES
BY THE SHIP WHILE THE SHIP IS OUTSIDE THE MOoN· s
ORBIT. THE SPACESHIP CRASHES INTO THE EARTH.

M~
ENGINE

Spacecraft's three rocket engines

151 Outer Space Games

IF Rl < SQR((Dl(l) - DO(l)) T2 + (01(2) - D0(2)) j2) OR
R2 < SQR((D2(1) - DO(l))j2 + (D2(2) - D0(2)) j 2) OR
R3 < SQR((D3(1) - DO(l)) j 2 + (D3(2) - D0(2)) j2) THEN CRASHED

This test will be incorporated into the next program, which w ill include the capa
bility to control the spacecraft.

Since the ship is shown only as a dot on the screen, it is not possible to tell
which way the ship is pointing without additional data. One possibility is to allow
the player to zoom in on the spacecraft when he wants to fire control rockets,
but th is then takes away his view of the planets and may cause a crash . A better
idea is to provide some instruments at the bottom of the screen. The commander
will need to see the attitude of the spacecraft (the direction it is pointing), its
velocity vector (that is, the direction the sh ip is travelling), the amount of fuel
remaining, and the number of orbits completed .

Realistically, as fuel is used up, the mass of the spacecraft should be de
creased accordingly. To do so, it is necessary to decide what percentage of the
total initial mass of the spacecraft was taken up by a full load of fuel and to re
duce the spacecraft's mass proportionally as the fue l is consumed. Actually, this
refinement would not be likely to have an appreciable effect on the performance
of the game.

Controlling the Spacecraft
Using the same screen units as before, - 65 to 65 in X and 0 to 100 in Y, four
squares of fifteen units on a side are drawn in the lower left-hand corner of the
screen. In the middle two squares, circles of radius 5 are drawn. The squares are
labelled "Fuel," "Attitude," "Velocity," and " Orbits." After each move of the
spacecraft, these four indicators must be redrawn .

To maintain information about the spacecraft, several additional variables
must be computed . Initially, the spacecraft must be controllable. Let us suppose it
has three rocket engines : two steering rockets in the nose and a main thruster in
the rear, as you see in the drawing of the spacecraft.

When a steering rocket is fired, it imparts a rotation to the spacecraft that
will continue after the rocket is shut off. Therefore, two variables are necessary,
the angle of attitude of the spacecraft and the angular rotation per second (or
whatever time one move of the ship takes).

Whenever the right thruster is firing, the angular rotation BO will be in
creased by 1 degree per second and decreased accordingly whenever the left
thruster is firing . BO will be added to the angle of attitude B during each time
increment.

Each second, a steering rocket uses up one fuel unit and the main thruster
uses three units. Fuel rema ining, F, begins at 1000 and of course rockets are inop
erable after F = 0. The variables LO and RO will be used to show that the left
and right thrusters are firing - they will be 1 when firing and 0 otherwise. The
variable T will show when the main thruster is f iring . If T = 3 when f iring and
zero otherwise, the fuel rema ining can be computed every second by the for
mula :

F = F - T - LO - RO

152 Some Familiar Games

Since the game does not end when fuel is used up, it may be preferable to
avoid reducing F below zero by the formula

F = (F - T - LO - RO) MAX 0

F can be displayed directly by printing its value in the left-hand box or show
ing it on a meter similar to an automobile fuel gauge.

The attitude of the spacecraft is shown by rotating a figure of the spacecraft
through the angle B and drawing it in the "Attitude" box. As the drawing indi
cates, the f igure can be qu ite simple.

Using the ROTATE A FIGURE subroutine, the numerical representation of the
sh ip is

DATA 4 , 3 , 0 ,-2 , 2 ,-2 ,-2 , 3 ,0
DATA 4 ,-2 ,0 .3 ,-3 , 0 .5 ,-3, - 0 .5 ,-2, - 0.3
DATA 4,2 .5 , 0 .2.2 .6,0 .4 , 2 .4 , 0 .4,2 .5,0.2
DATA 4 , 2 .5 ,-0 . 2 , 2.6 ,-0 .4,2 .4 ,-0 . 4 , 2 .5. - 0 . 2
DATA - 9999

The program should include a flame emitting from any of the engines that
are f iring during the displayed t ime interval , because this is the only d irect indica
t ion that a rocket is on or off. The capta in could see that a rocket was firing by
watching the " Fuel " indicator, but he would not know which steering rocket was
on .

The " Velocity" indicator shows the direction in which the ship is travelling
and how fast. A line is drawn from the center of the indicator, the point
- 22.5,7.5, to the point Vx - 22.5,Vy + 7.5. If the length of this line is greater
than 5, it w ill pass through the circle determining the size of the indicator, so to
keep th is from happen ing the line should be drawn only to the edge of the circle
if it is greater than 5 units long :

MOVE - 22 .5 ,7 .5
I = SQR (V(l) 2 + V(2) 2)
IF I < 5 THEN

DRAW V(l) - 22 .5 .V(2) + 7 .5
ELSE

DRAW 5*V(l)/I - 22 .5 , 5*V(2)/I + 7 . 5

The number of orbits C is to be increased by one whenever the spacecraft
crosses t he orbit of one planet, having previously crossed the other planet's orbit,
beg inn ing w ith Mars. If a flag CO is set to zero to indicate that the next orbit to
be crossed is that of Mars and to 1 if the earth's, then the test is

IF CO = 0 AND DO (!) >= 50 THEN
co = 1
c = c + 1

ELSE
IF CO 1 AND DO (!) <= - 50 THEN

co = 0
c = c + 1

ATTITUDE

@
Attitude indicator on screen

153 Outer Space Games

To make a worthwhile game, the computer should have one or more ways to
effect an interrupt; that is, the game progresses on its own until interrupted for
a command to control the spacecraft. Three distinct interrupts are necessary, one
for each of the three rockets. On many home computers it is possible to use
a'game paddle' for this function . A game paddle is a device with a rotary knob
and a button. When the button is pushed, an interrupt occurs and the position of
the rotary knob can be measured. If it is near the counterclockwise extreme it
can control the left-turn ing rocket; near the other extreme, the right-turn ing
rocket; and near the middle, the main thruster. It might be a good idea to paint
indicator lines on the knob. Pushing the button toggles the rocket; that is, if the
rocket were off, it would begin to f ire, and if fir ing, it would shut off.

Here is the program for a controlled spacecraft.

Controlled Spacecraft Program Code

DIM D0(2),Dl(2),D2(2),D3(2),D(2),V(2)
DATA 1,-0.1,0, .000001,1,1000000,10000000 , 5000000
DATA -50,40,-50,50,50,80
DATA l,4,2.5,0,0,0,0,0,0,0,1000
READ V,A , G,MO,Ml,M2,M3,DO,D2,D3.Rl , R2.R3,BO , B,LO , RO ,T, C, CO,F
GOSUB 980 Draw instruments
D = D2
R = R2
GOSUB 860
D = D3
R = R3
GOSUB 860

REPEAT

Draw earth

Draw Mars

GOSUB 970 Erase moon
Dl(l) = D2(1) + 15*COS(A)
Dl(2) = D2(2) + 15*SIN(A)
D = Dl
R = Rl
GOSUB 860 Draw moon
GOSUB 930 Erase and draw spacecraft

Compute

Sequence
Number

170
180
190
200
210
220
230
240
250
260
270
280

Fl=G*(MO*Ml)/SQR((Dl(l) - DO(l)) f2+(Dl(2) - D0(2))f2)J2
F2=G*(MO*M2)/SQR((D2(1) - DO(l))j2+(D2(2) - D0(2))j2)i2
F3=G*(MO*M3)/SQR((D3{1) - DO(l)} f2+(D3(2) - D0(2))f2) 2 !
Al= SQR((Dl(l) - DO{l))f2 + (Dl(2) - D0(2))f2)

! forces
& angles

290
300
310
320
330
340
350
360
370
380
390
400

ff Al <> 0 THEN 410
Al= ACS((Dl(l) - DO(l))/Al) 420
Al=360- (Dl(2)<D0(2)) +Al*((Dl(2) =>D0(2))- (Dl(2) <D0(2))) 430

A2 = SQR((D2(1) - DO(l)}i2 + (D2{2) - D0(2))j2)

ff A2 <> 0 THEN
A2 = ACS((D2(1) - DO(l))/A2)
A2=360- (D2(2) <D0(2))+A2*((D2(2) =>D0(2)) - (D2(2) <D0(2)))

440

450

460
470
480
490

154 Some Familiar Games

A3 = SQR((D3(1) - DO(l)) f 2 + (D3(2) - D0(2)) f2)

IF' A3 < > 0 THEN
A3 = ACS((D3(1) - DO(l))/A3)
A3 =360- (D3(2) <D0(2))+A3*((D3(2) =>D0(2)) - (D3(2) <D0(2)))

500

510
520
530
540

BO = BO + RO - LO ! Adjust rotation if steering rockets are on 550
B = B + BO Change spacecraft attitude angle 560
V(l) =V(l) +F'l*COS(Al) +F'2*COS(A2)+F'3*COS(A3) +SGN(T)*COS(B)/4 570
V(2) =V(2) +F'l*SIN(Al)+F'2*SIN(A2)+F'3*SIN(A3)+SGN(T)*SIN(B)/4 580
DO(l) = DO(l) + V(l) Update spacecraft location 590

D0(2) = D0(2) + V(2)
F'=F'- T- LO - RO Reduce fuel if thrusters firing

600

610
A = A + 1 Change moon's angle 620

IF' CO = 0 AND DO(l) > =50 THEN Increase orbit count if 630
CO = 1 appropriate 640
c = c + 1 650

ELSE 660

IF' CO = 1 AND DO (1) < =-50 THEN 670
co = 0 680
c = c + 1 690

700

710

GOSUB 1240
K = 0

Redraw instrument panel
Set "not crashed 11

720
730

IF' Rl > SQR((Dl(l) - DO(l)) f 2 + (Dl(2) - D0(2)) 12) THEN 740
K = 1 Set 11 crashed 11 if hit moon 750

760

IF' R2 > SQR((D2(1) - DO(l)) 12 + (D2(2) - D0(2)) f2) THEN 770
K = 1 Set "crashed 11 if hit earth 780

790

IF' R3 > SQR((D3(1) - DO(l)) 12 + (D3(2) - D0(2)) 12) THEN 800
K 1 Set "crashed" if hit Mars 810

UNTIL KOR ABS(DO(l)) > 200 OR D0(2) < - 100 OR D0(2) > 200

END Until crashed or lost

Controlled Spacecraft Code Description

Not shown is a routine that is activated by an interrupt. The selected
rocket is toggled but is only turned on if the remaining fuel F is greater
than zero.

820
830

840

Sequence
Number

155 Outer Space Games

The angular rotation of the spacecraft, BO, left steering rocket LO, right 21 O
steering rocket RO, main thruster T, number of orbits C, and previous
orbit CO are all set to zero. Fuel remaining Fis set to 1000. Free fall vari-
ables are set as before.

The instrument panel (Subroutine 980) and the planets are drawn (Sub- 220
routine 860).

The moon (Subroutine 860) and spacecraft (Subroutine 930) are drawn. 350

Forces and angles are computed. 370

Angular rotation BO is adjusted if steering rockets are on . 550

Attitude of the spacecraft B is adjusted. 560

Vx and Vy are computed to include free fall and thrust vectors, assuming 570
that if the main thruster T is firing, velocity is increased by 0.25.

The spacecraft's location is updated. 590

Fuel is reduced if thrusters are firing. 610

The moon's angular position is updated. 620

Number of orbits C is increased if appropriate. 630

The instrument panel is redrawn (Subroutine 1240). 720

If the spacecraft has not crashed and is not lost in space, the game 730

Refinements
• Add random visible meteorites that destroy the spacecraft on collision.

• Require that the mission end when a spacecraft lands on one of the bodies.
Landing should be considered successful only if the velocity on impact is small,
say less than 1.

• Add instruments to the panel, for example, a display of BO.

• Expand the game to allow for two players. Include the possibility of a crash
involving the two spacecraft. Allow a spacecraft to fire at the other at a cost of
ten fuel units. If a hit occurs, randomly alter the velocity and attitude of the
stricken ship.

• Improve the game's effects :
Randomly display stars in the background.
Add a roaring sound or a beep when rockets are firing .
Color the earth blue and white, the moon yellow, and Mars red; put canals

on Mars and craters on the moon.
Make the instrument panel more like a real spacecraft panel.

9

Instructional Games

' 111 /

158 Some Familiar Games

More than one home computer purchase has been justified by the argument that
it will help the kids with their homework. Whether or not that turns out to be
true, a great deal of effort has been spent on developing instructional software.

As a tutor, the computer has infinite patience. It can be tailored to the needs
of the individual student and can introduce new material based on the student's
learning rate.

Instructional software, especially for children, can be enlivened by presenting
the material in a game. Our discussion of this aspect of Games Computers Play
will begin with an introduction to artificial intelligence and then develop Concen
tration as an example of a learning game. Suggested memory drills and refine
ments complete the chapter.

Artificial Intelligence

When a computer is made to exhibit what in humans would be called intelligent
behavior, it is said to be using "artificial intelligence" (Al) . Games that include
the computer as one of the participants rely on the computer's artificial intelli
gence to make it play like a human being .

There has been a lot of philosophical discussion about intelligence and Al in
the past fifty years. It is arguable that the attributes of artificial intelligence are
not inherent in the computer and its program; the result resembles intelligent
behavior because the programmer made it so. The same argument may be ap
pl ied to trained animals. However, some psychologists teach that people are
trained animals, too-trained by teachers, parents, friends, and enemies. In other
words, people learn by experience. For our purposes, all we need is a computer
program that learns by experience and we may say we have artificial intelligence.
(Chapter 11 tells of a computer that was programmed to learn how to win at
checkers by applying its experience in a series of games.)

Concentration Game

One of the simplest uses of Al is to make the computer an interesting, but not
overwhelming opponent in a game-playing situation . Consider the well-known
game of Concentration. The original version is played with a deck of fifty-two
playing cards. The cards are spread out on a table, face down, so that the back
of each is fully visible. A player turns over a card and tries to match it by turning
over another. If he finds a pair, he keeps them and tries again until he fails,
whereupon he turns the two cards that were not a pair face down again. At the
end of the game, the player who has uncovered the most pairs wins.

Concentration can be turned into a learning game with the aid of the com
puter. Objects to be matched can be animated figures, abstract objects, words,
numbers, colors, or anything the computer can display.

Suppose there is a light pen or a touch-sensitive screen on the machine so
that even children too young to use a keyboard can respond to the computer. A
Concentration game in which a picture of an object is matched with the word for
the object, as shown here, can be designed as a way to help teach reading.

In the one-player game, the computer must compete against the player in a
nonfrustrating way. Obviously, the computer can be programmed to "peek" be-

DOD~
DD DD[
DDDDEJ[
DOB [
D DOD[
DD DD DC
The game of Concentration as the
fourth pair-match 1s attempted

4bstract symbols tha t could make game
J Concentration different

159 Instructional Games

hind the cards and never make a mistake, winning on its first turn. However, the
program may be made to remember only those cards that have been turned and
simply guess at a new card when no known pair exists. This version still gives the
computer a considerable edge over most humans. What might be best would be
a computer with a "fallible" memory that lets the player win about sixty percent
of the games. Maybe this should be called "artificial stupidity" !

In Concentration, difficulty is due partly to the size of the board and partly
to the appearance of the objects to be matched; it is harder to remember the
location of abstract symbols than familiar objects such as animals. Thus, the sim
plest game might be played on a 4 x 4 board using objects familiar to small chil
dren. The next level of difficulty could be a 6 x 6 board in which the same ob
jects have to be matched with words.

DD
D D

On the assumption that this game should be interesting to adults as well as
children, the hardest level might be an 8 x 10 board that uses abstract symbols
from a set such as the group of abstract symbols illustrated here.

At this level of difficulty, the one-player version should be played against a
computer that never forgets cards that have been turned . This suggests that as
the level of difficulty increases, the computer might become less and less forget
ful, letting players at the lowest skill level win sixty percent of the time but de
creasing the percentage as the skill level increases.

Suppose that after a player who identifies himself to the computer as Jim has
played twelve games and won seven, his w inning percentage is 7/(7 + 5) or 0.583,
that is, 58.3 percent. If Jim
is to win sixty percent of the time, the computer may
be given a 60 - 58.3 or 1.7 percent chance to "forget" a matched card. To do so,
the program compares a random fraction with 0.017 and chooses at random a
card other than the correct one if the random fraction is less than 0.017.

In general, the computer has the following probability of forgetting :

human wins
06 - -----
. games played

160 Some Familiar Games

Clearly, when the human has won more than sixty percent of the games, the
formula yields a negative number. The random fract ion will always be greater
than a negative number, so the computer w ill play with total recall until the
human has once again won less than sixty percent of the games.

To w iden the game's appeal, the number of players may be increased. When
two or more humans are competing, the computer might or might not be a
player.

In a version of Concentration using identifiable objects such as a kite or a
ball, animation enl ivens the game considerably. However, the duration of anima
t ion should be short-two or three seconds-and possibly occur only on the first
appearance of the object. If sound accompanies the animation, it may be used in
the game in which a word is matched w ith an object when either the word or
the object is discovered. It is possible that using sound in this way may not pro
duce the effect of teaching reading, since a dedicated nonreader might use only
the sounds to remember the two cards. Hence, one version of the word-object
game might include sound and the next level of difficulty might omit it.

Here is the program for setting up the board for Concentration :

Concentration Board Set-Up Program Code

Bl = 0
82 = 0
GOSUB 690
I = 1

Initialize board array
and known cards array
Draw board

REPEAT
B3(I) I
I = I + 1

UNTIL I > 30

I = 1

Put 30 numbers in selection array

REPEAT Select 18 objects
J = INT(RND(-2)*(31 - I)) + 1
K = B3(J)
B3(J) 83(31 - I)
M = 0

WHILE M = 0 DO Randomly set M to +l or -1
M = RND(-2) - 0 . 5

M SGN(M)
J = 1

REPEAT Start at a random place
L = INT(RND(- 2)*36) + 1 on the board

WHILE Bl(L) <> 0 DO
L = L + 1

and find the next empty square

IF' L > 36 THEN
L = L - 36

Bl(L) K*M
M - M
J = J + 1

Save the object number and
do again-same number, opposite sign

Sequence
Number

190
200
210

220

230
240
250
260

270

280
290
300
310
320

330
340
350

360
370

380
390

400
410

420
430
440

450

460
470
480

161 Instructional Games

UNTIL J > 2

I = I + 1
UNTIL I > 8 for 18 pairs

Concentration Board Set-Up Code Description

Two arrays 81 and 82 have been defined to contain thirty-six numbers
each in preparation for a 6 x 6 game. 81 will contain the actual board
and 82 the cards previously turned over. The computer will use 82 to
determine its plays. 83 is an array of thirty numbers, because thirty dif-
ferent objects are available, even though only eighteen pairs can be se-
lected for any one game.

Arrays 81 and 82 are set initially to zero and the game layout is drawn
on the screen (Subroutine 690).

83 is set to contain the numbers 1 through 30.

Eighteen different numbers representing eighteen objects will be se
lected random from 83 and placed on the board . A random number
between 1 and the length of 83 (initially 30) is selected and used to ex
tract a number K from 83 . The last number in 83 is moved in place of
the extracted number and it is assumed that 83 now contains one less
number.

A random fraction is chosen. If the fraction is less than 0.5, M becomes
- 1. If the fraction is greater than 0.5, M becomes + 1. Note that if the
fraction is equal to 0.5, another random fraction is chosen .

The number chosen from 83 is to be entered into two places on the
playing board. In one place it will be a positive number and in another
a negative number in order to distinguish between the picture and the
word describing the object. A random position on the board, L, is cho
sen. If that position is already filled, the next position is tried until an
empty card is found . Then the sign of M is reversed and the process re
peated. This is done eighteen times, that is, until each card contains an
object and for every number representing a picture there is a corre
sponding number of the opposite sign representing the word for that
picture.

490

500
510

Sequence
Number

190

220

270
290
310

320

370

390
470

500

The computer determines whose turn it is and continues that turn until the
player fails to find a match. For each match the player's score is increased. The
computer must recognize the end of the game and terminate play. The easiest
way to do so is to quit when the sum of the player's scores equals the number of
pairs.

Whenever an object or word is disclosed, the 82 array is updated so the com
puter as a player can "remember" the object. After a match is made, the pair is
removed from 81 and 82.

During the computer's turn, it must search 82 for known pairs and take
them. (In this version, the computer is playing with total recall.) Then it selects a
card that has not been turned and sees if it matches a card already known . If so,
the computer takes the pair. Otherwise, it must select another unknown card . If
it happens to match the previous card, the computer selects another unknown
card and processes it as above, until a pair fails to match.

The program for playing Concentration is as follows.

162 Some Familiar Games

Playing Concentration Program Code

Set player's H = 0
c = 0 and computer ' s score to zero

REPEAT

REPEAT
GOSUB 1780
J = K

Accept a touch location into K
Save first touch in J

GOSUB 1780 Accept .second touch into K

IF' ABS(Bl(K)) ABS(Bl(J)) THEN If cards match,
H = H + 1
B2(K) 0
B2(J) 0
Bl(K) 0
Bl(J) 0
GOSUB 1690

add 1 to player's score
and delete cards from arrays

Erase cards from screen

UNTIL ABS(Bl(K))<>ABS(Bl(J)) OR H+C=l8 Until no match or
empty board

B2(K) = Bl(K)
B2(J) = Bl(J)
GOSUB 1890

Put unmatched pair
into known cards array
Erase pictures

IF' H + C < 18 THEN If more cards remain ,
I = 1

REPEAT the computer finds a known card,

IF' B2(I) <> 0 THEN
J = I + 1

REPEAT and looks for a match

I

IF' ABS (B2 (I))
K = I
GOSUB 2010
K = J
GOSUB 2010
c = c + 1
Bl(!) 0
Bl(J) 0
B2(I) 0
B2(J) 0

J J + 1
UNTIL J > 36

I + 1
UNTIL I > 35

IF' H + C < 18 THEN
F' = 1

ABS(B2(J)) THEN If there is
a match,

display both cards

add 1 to computer's score,
take the pair ,

and look for another match

until all known cards have been examined

If there are cards remaining,

Sequence
Number

720
730

740

750
760
770
780

790
800
810
820
830
840
850
860

870
875
880
890
900

910
920

930

940
950

960

970
980
990

1000
1010
1020
1030
1040
1050
1060
1070

1080
1090

llOO

lllO
ll20

ll30
ll40

REPEAT 1150
L = INT(RND(- 2)*36 + 1) randomly find a 1160

IF' Bl(L) =O OR B2(L) <>O THEN previously undisclosed card 1170

163 Instructional Games

REPEAT
L = L + 1

IF L > 36 THEN
L = L - 36

UNTIL Bl(L) <> 0 AND B2(L)

K = L

GOSUB 2010
I = 0

and display it

0

REPEAT If there is a match among
I = I + 1 known cards ,

UNTIL ABS(B2(I)) = ABS(Bl(L)) OR I= 36

IF ABS(B2(I)) = ABS(Bl(L)) THEN
K = I
GOSUB 2010 display the card,
C = C + 1 and take it.
Bl(I) 0
Bl(L) 0
B2(I) 0
B2(L) 0

ELSE Otherwise, select another
B2(L) Bl(L) unknown card.
J = INT(RND(-2)*36 + 1)

IF Bl(J) = 0 OR B2(J) <> 0 THEN

REPEAT
J = J + 1

IF J > 36 THEN
J = J - 36

UNTIL Bl(J) <> 0 AND B2(J)

B2(J) = Bl(J)
K = J
GOSUB 2010

IF ABS (Bl (J))
c = c + 1
Bl (J) 0
Bl(L) 0
B2(J) 0
B2(L) 0

ABS(Bl(L)) THEN
take them

0

ELSE If not. flag "no match"
F = 0

If cards match.

UNTIL F 0 OR H + C = 18 Computer's turn ends

when all cards taken or no match

UNTIL H + C 18 Game ends when all cards taken

1180
1190

1200
1210
1220

1230

1240

1250
1260
1270

1280
1290
1300

1310
1320
1330
1340
1350
1360
1370
1380

1390
1400
1410

1420

1430
1440

1450
1460
1470

1480

1490

1500
1510
1520

1530
1540
1550
1560
1570
1580

1590
1600
1610

1620

1630

1640

1650

1660

164 Some Familiar Games

Playing Concentration Code Description

The human's score H and the computer's score C are set to zero.

Subroutine 1780 accepts a touch on the screen (or a light pen hit) and
converts its location into a card location number K if the touch is in a
valid place. The contents of the card are displayed. Two touches are ac
cepted and the card numbers are placed in J and K.

If the cards match, the player's score is increased and the cards are re
moved from the board 81 and from the computer's memory 82.

Subroutine 1690 erases the two cards from the screen.

Lines 750 through 870 are repeated until the human fails to make a
match.

The unmatched pair is placed in the computer's memory of the game
and Subroutine 1890 erases the pictures or words, but not the cards.

If more cards remain, the computer searches its game memory 82 to see
if it knows of any matches.

If it finds a match it takes the pair, adds 1 to its score, and removes the
pair from the 81 and 82 arrays. If there are still more cards after all
known pairs have been removed, the computer must select a previously
unknown card.

A random integer between 1 and 36 is generated and the computer
looks for a card that has not been taken and not been previously dis
closed.

When such a card is found, it is displayed by Subroutine 2010 and 82 is
examined to see if the computer knows the whereabouts of the match
ing card.

If so, the computer takes the pair.

If not, 82 is updated with the disclosed card and another new card is
turned.

If it matches the first card, the pair is taken and another card is dis
closed .

If they do not match, the computer's turn has ended.

The game continues until all cards have been taken.

Memory Drills

Sequence
Number

720

750

790

850

870

880

910

970

1130
1160

1230

1310

1390

1530

1630

1660

Games like Concentration can enliven study drills of many kinds, although using a
computer for this purpose is not necessarily better than ordinary 3 x 5 cards with
questions on one side and answers on the other. Additional use should be made
of the computer as a patient tutor that remembers incorrect responses and re
peats those questions. Given a computerized Concentration game, it is easy to
expand the data base to include pictures and matching words for many kinds of
drill.

Foreign language practice may readily include nouns (parts of the body, for
instance) and action verbs (like "to run" or "to jump"). Conjugation ("he jumps,"
"you jump," and so on) may be more difficult. One way to approach conjugation
drill would be to display identified figure groups representing "I," "he," "we,"
and so on, above the playing squares. Then, to animate "we jump," for example,

165 Instructional Games

the "we" group would be shown in an animated jumping sequence in the picture
square, to be matched with the words "we jump" in the appropriate language.

Most sciences may be subjects for instructional games. Beginning chemistry
students may benefit from a chemistry apparatus drill-test tube, ring clamp, pi
pette, and so on. In geology, fossils may be represented if screen resolution is
high enough. Arithmetic is another obvious possibility, in which the player must
match "2 + 2" with "4" or "'16/2" with " 8." Shop classes are also candidates
auto parts, tools, machines, and so on.

Hobbies such as bird, tree, and flower identification may also be drill subjects
(in identifying trees it is likely that the leaf should be displayed) . Spelling drills
are possible if the object is displayed and compared with several possible spellings
of the word : A picture of a dog would be shown, followed by

1. Dug
2. Dogg
3. Doge
4. Dog

The player must then enter the number of the correctly spelled word.

Refinements

• Include an opening dialogue asking for the number of players and their names.
Look up each player's previous won-lost record against other players, including
the computer, and display the record before the game begins. To do this, it will
be necessary to maintain a disk or tape file of names and to update it every time
a game is played.

• Display a running score for each player. Update it every time a pair is taken .

• When a player (e.g., Jim) wins, display "Jim wins!" and some skyrockets.

• Implement the artificial stupidity algorithm for games involving a beg inner and
the computer. Calculate

p = games won
total games

and cause the computer to "forget" by changing lines 970, 1310, and 1530 to

IF ABS (82 (I))
IF' ABS(B2 (I))
IF' ABS (Bl(J))

ABS(B2 (J)) AND P < RND(- 2)
ABS (Bl(L)) AND P < RND(- 2)
ABS(Bl (L)) AND P < RND (-2)

970
1310
1530

• Choose thirty objects that can be animated and cause them to be displayed
through a short animated sequence. For example, here's a four-frame animation
for a clown . To animate, display the pictures in the sequence 1,2,3,4,3,4,3,4,3,4.

Here's a three-frame sequence of a flag . To animate, display the pictures in
the sequence 1,2,3,2, 1,2,3,2, 1,2,3.

And then a three-frame sequence of a clock. For animation, use the sequence
1,2,3,2,1,2,3,2,1,2,3.

166 Some Familiar Games

• ii --

--

2 3 4

Animation sequence of a clown

Animation sequence of a flag

Animation sequence of a clock

167 Some Familiar Games

Other possibilities include

Ob"ect Animation

Ball Three bounces
Kite Oscillating tail
Dog Wagging tail
Cat From sitting to lying position

Frog Jumping
Bike Child pedalling
Fish Swimming and ejecting bubbles

Tree Falling leaf
Snake Moving

Flower Growing and blooming
Door Opening

Box Opening
Book Opening

Rabbit Hopping
Truck Dumping
Crane Raising bucket

Bird Fl in

• Add sound to each animated sequence.

Part Three

Finishing Touches

10

Computer-Aided Design

c
fEpypbl1. µi ,
s t
I)

b ·~ cpauUbcre.
t> pi ii
c '1i
f od.epypba.
s µw

172 Finishing Touches

As we have already discussed, the finishing details are what make a computer
game look right. Good pictures and varied text give a polished, professional ap
pearance but can be tedious to produce. However, techniques currently in use in
the industrial world can come to the rescue.

Wide acceptance of computer graphics in industry has come through the de
velopment of computer-aided design (CAD). Automobiles and aircraft have been
designed with the aid of computers for several years, not only because of cost
reductions but also because of the other benefits that come from computer
modelling - automatic drafting, fabrication, and simulation. A design flaw found
by a computer can prevent a costly recall of an entire automobile model line or
avoid a hazardous situation in an aircraft.

Computers can be used to design all kinds of other products such as dress
patterns, house plans, electrical circu its, landscapes, and so on, all with potential
benefits beyond the original intent. Given a computer model of a house, the
machine can easily produce an accurate list of the components needed to build it.
With the proper program and data base, a landscape plan can be simulated into
the future to see how the property will look after the trees and bushes have
grown. Even the colors of the flowers in April, May, and June can be evaluated
w ithout the expense and time needed to look at the real garden.

The basic elements of a CAD system are useful in generating the graphics for
computer games. A CAD program was used to develop the opening frame for
The Magic Cave shown in the color illustrations. A tree, ivy leaf, or flower was
modelled one time. After the design was accepted, the program generated a sub
routine that would replicate the tree, leaf, or flower in the location and scale
specified in the subroutine calling sequence. In this way it was possible to pay
attention to detail in the original design and then to get a lot of use out of the
images by specifying only translation and scaling values.

Digitizing

Since everyth ing is expressed numerically inside a computer, the programmer can
not simply tell it to display a leaf or tree on the screen. The object must be de
fined precisely by mapping its outline-choosing significant points and assigning
X,Y values to them. Usually, this is done with a digitizer, a machine that re
cogn izes the posit ion of a pointer or joystick and passes the coordinate values to
the computer. An inexpensive semiautomatic digitizer is easy to build .

As shown in the illustration of a digitizer, sliding the two plastic rulers to a
point on a drawing and reading the X and Y values where they cross will give a
point value that can be entered into the computer and subsequently converted
from inches into actual units (miles, feet, and so on) based on the scale of the
drawing being dig itized.

An easy- to-build sem1automat1c a·

I

I

-!CK , LERO Y,
LEARFACE or

OJ(» 8J Ill j OJ
ton ts

I\ , ~

I j l
I \

j \
I ' 2 3 4 5 6

•ng a letter on a 6 x 8 grid

t'\

0123 456

. defined by the structure 2, 3, 5, 2,
0. 90

173 Computer-Aided Design

Text Definition
Only a few types of geometric element are needed to represent a model. At a
minimum, most models can be represented by points, lines, circular arcs, and cir
cles. To make a readable engineering drawing, some text is also necessary.

A point can be represented by an X,Y pair of numbers. A line requires the
X,Y values of the endpoints of the line. A circle is defined by its radius and the
X,Y location of its center, and a circular arc also requires a starting and ending
angle.

Customized text is much more complicated. In addition to the letters, num
bers, and punctuation, such things as the height and width of each character, the
angle of the text line, the slant of each character, and the character font are
important. "Font" is the design of the set of characters, several of which are
shown here, ranging from very simple to rather ornate. (See Font Tables at the
end of the book.)

The easiest to implement is the Stick font, because all the characters are com
posed only of lines. The Leroy font requires circular arcs, Clearface uses elliptical
arcs, and Gothic also requires that polygons and pairs of arcs be filled with ink.
So it would seem that five different data structures are required for the four
fonts : lines, circular arcs, elliptical arcs, filled polygons, and filled elliptical arcs.
Since a circular arc is the same as an elliptical arc in which the major and minor
radii are of the same length, only four types need to be defined.

Each character must be defined in a way that is independent of its ultimate
size, because in one case the user may want characters 0.1 inches high for a nor
mal page of text while in another he may be making a poster and want letters
two inches high. It is reasonable to decide arbitrarily that each character will be
defined on a grid and that a typical character will be six units wide and eight
units high, as the letter shown defined on the grid here.

To define the letter in terms of the straight lines representing it, lines are
drawn from 0,0 to 3,8 to 6,0. Then a line is drawn from 1,2.333 to 5,2.333. In
many cases, connecting lines can be drawn, so the data structure to define a se
quence of connected lines may consist of the data type code for a line, say the
number 1, followed by the number of X,Y pairs defining the endpoints of the
lines, as follows:

10 DATA "A"
20 DATA 1 , 3 ,0,0 , 3 ,8 , 6 , 0
30 DATA 1 ,2, 1 ,2. 333 ,5,2.333
40 DATA - 1

Line 10 is used to define the fact that the following codes represent the capi
tal letter A. On line 20, the first number specifies a line sequence. The second
number specifies that three pairs of points comprise the sequence. The remaining
six numbers are the actual pairs X1,Y1 = 0,0, X2,Y2 = 3,8, and X3,Y3 = 6,0. The
next number must be a data type code again, and it is. The first number on line
30 specifies another line sequence, this time with only two points,
X1,Y1 = 1,2.333 and X2,Y2 = 5,2.333. So the next number is again a data type,
this time the number - 1, which is the "end of character" code.

Data type 2 will represent an elliptical or circular arc. Definition of such an
element requires the location of the arc's center, XO,YO, the radius on a line par-

174 Finishing Touches

allel to the x-axis Rx, the y-radius Ry, and the in itial and final angles a1 and a2.
So data type 2 always consists of seven values- the structure

2,3,5,2, 3 ,0,90

defines the arc shown here on a grid.
Data type 3 will be used to describe a filled , or solid, figure . Following the

type code is the number of pairs of points defining the figure and then the pairs
themselves. If the figure is a closed polygon, the last pair will be the same as the
f irst. Thus, the structure

3,5,2.3.2.6.4,6,4,3,2,3

represents the closed polygon shown on a grid .
Data type 4 defines a pair of elliptical arcs, the space between which is filled .

This structure always consists of nine numbers: the type, XO,YO, the mutual center
of the arcs, Rx1 and Ry1 of the inside arc, a 1 and a2 and Rx2 and Ry2 of the out
side arc. For example

4,3,1.5,1,2 . 5,0 , 90,2 , 2.5

defines the elliptical arc shown on a grid.
To simplify processing, Rx1 s Rx2, Ry1 s Ry2, and a1 <a 2. To draw a counter

clockwise arc from 270 degrees to 90 degrees, a 1 = - 90, not 270, and a2 = 90.

Text Sequence

To generate a text sequence, the user will want to be able to specify the actual
text, the font, the height, and the width of each character in the sequence, plus
some other variables. For instance, as shown by the accompanying sequences, it
may be useful to italicize (slant) the characters, or to display the sequence at an
angle, or even to rotate each character about its center, or any combination of
the above.

Since some characters are typically wider than others, it is a good idea to
express in the data base the location of the center of each character. This not
only allows rotation about the center of the defined character space but also
specifies the relative width of the overall character. A W is much wider than an I,
for example, while an A is somewhere in between, as demonstrated by the com
parison here of these letters on the grids.

So it is necessary to add the center point of each character to the data base;
thus the definition of the Stick A becomes:

10 DATA "A" ,3,4
20 DATA 1,3,0,0,3,8,6,0
30 DATA 1,2,1,2.333,5,2 .333
40 DATA - 1

8

7

6

5

4

3

2

0

8

7

6

5

4

3

2

0 I 2 3 4 5 6

Elliptical arc defined by the strua~·
3, 15, 1, 2.5, 0, 90, 2, 25

ABC
ltaltcized sequence of characters

Angled sequence of characters

<(COU
Individually rotated sequence of
characters

A
B c

Character string rotated 270, inc
characters rotated 900

nson of relative widths of charac-
·the same height

175 Computer-Aided Design

s s s
7 7 7

6 6 6

5 5 5

4 4 4

3 3 3

2 2 2

0
0 I 2 3 4 5 6

Font Table Storage and Retrieval

A complete font table will consist of all the upper- and lower-case letters, ten
digits, and punctuation characters. A unique data code will indicate the end of
the table, in case a character is not found in the font. In this case, the character
will be replaced by a "space." The end-of-table code used in the following exam
ples is any number less than - 1.

Note that the sample programs deal with a font as though it were expressed
in the program in DATA statements. Since the four fonts together require that
about 64,000 characters be represented in DATA statements, it is not acceptable
to retain fonts in this way in most personal computers. Instead, the fonts should
be written on an external storage medium such as disk and accessed from there.

Given a text string in 8$, how can the stroke table for each character be
found in the font table? It is necessary to isolate one character at a time (into C$
in the example) and progress through the table until the position of the charac
ter in the font table is found . If the stroke table is kept on disk, each character
can be related to its disk address by a list in memory and thereby be accessed di
rectly.

Several parameters must be known to process a found character:

X,Y the location of the lower left-hand corner of the position on the screen of
the first character in the input string 8$

H the height of the character in inches

W the width of the character in inches

S the angle of slant of a character

A the angle of the text sequence

8 the angle of rotation of each character about its center

Here is a program for looking up a character in a font table.

Look Up Character in Font Table Program Code

RESTORE

REPEAT
READ A$

IF A$ < > C$ THEN
READ N,N

REPEAT
READ T

Begin at the top of the font table

Read a character

If not the sought character,
skip over the values describing it

4000

4010
4020

4030
4040

4050
4060

176 Finishing Touches

CASE T OF'

1:

2:

READ C
J = 1

REPEAT
READ N,N
J = J + 1

UNTIL J > C

READ N, N, N, N, N,N

3:

4 :

READ C
J = 1

REPEAT
READ N, N
J = J + 1

UNTIL J > C

READ N,N,N.N,N,N,N , N

UNTIL T < 0

IF' T < - 1 THEN
C$ = 1111

RESTORE

UNTIL A$ C$
RETURN

until entire table has been examined

If character not found,
replace it with a space

and try again

Look Up Character in Font Table Code Description

Begin at the top of the font table.

Read a character from the font table.

If it is not the character sought, read the X,Y values of the center of the
character to skip over them.

Then read the character type.

4070

4080
4090
4100

4110
4120
4130
4140

4150

4160
4170
4180

4190
4200
4210

4220
4230
4240
4250

4260

4270
4280
4290

4300

4310

4320
4330
4340
4350

4360

4370
4380

Sequence
Number

4000

4020

4030

4060

If type = 1, read the number of point pairs into C and skip over C pairs of 4080
points.

If type = 2, skip over six variables. 4160

If type=-;,. read the number of point pairs into C and skip over C pairs of 4190
points.

If type = 4, skip over eight variables. 4270

Continue to process lines 4050 through 4310 until type is a negative 4310
number.

177 Computer-Aided Design

If type is less than - 1, the end of the table has been reached w ithout 4320
finding a match. Set the sought character to a 'space' and search the
table again. If type is - 1, a complete character description has been
skipped and the program is ready to read the next character from t he
font table. Processing continues at 4020.

When a character has been found in the font table, leave the subrou- 4370
tine.

Horizontal Letters
To keep things simple, let us beg in by considering Leroy lettering on a horizontal
line. Since you have to express character height and w idth in inches, you must
decide what one unit on the character grid represents. The typica l grid is eight
units high and six units w ide, so an arbitrary decision can be made that each grid
unit is one-eighth of an inch.

To scale the characters to the specified size, it will be necessary to multiply
X-grid units by W and Y-grid units by H and then divide by 8. After a character
has been drawn, the X,Y values of the lower left-hand corner of the first charac
ter must be increased by the width of one character, plus something for space
between characters. Since a character is six grid units wide, adding two more
should be appropriate.

The following program can be used for horizontal lettering in fonts com
posed only of lines and arcs (types 1 and 2.)

Horizontal Leroy Program Code

READ XO , YO

REPEAT

Read the character's center

READ T Read type

CASE T OF'

1: Type = line : Read number of endpoints
READ C
J = 1

REPEAT
READ Xl. Yl Read an endpoint

IF' J 1 THEN If first endpoint,
MOVE X + Xl*W/8 , Y + Yl*H/8 move to it

DRAW X + Xl*W/8 ,Y + Yl*H/8
J = J + 1

UNTIL J > C

Draw to endpoint

for all endpoints

5000

5010
5020

5030

5040
5050
5060

5070
5080

5090
5100
5110

5120
5130
5140

5150

2: Type = arc: Read center, X & Y radii, 5160
READ Xl.Yl,Rl,R2,Al , A2 and initial & final angle 5170
MOVE X+(Xl +Rl*COS(Al))*W/8 ,Y+(Yl+R2*SIN(Al))*H/8 ! Move 5180
J = Al ! to beginning of arc 5190

178 Finishing Touches

REPEAT Draw along arc 5200
DRAW X + (Xl + Rl*COS(J))*W/8,Y + (Yl + R2*SIN (J))*H/8 5210
J = J + l in one-degree increments 5220

UNTIL J > A 2 5230

UNTIL T < 0

X = X + (2*XO + 2)*W/8
RETURN

Horizontal Leroy Code Description

Read the character center into XO,YO

Read data type into T.

to end of character

Move to next characte r

If the type is 1, a line, read the number of endpoints C.

Read a pa ir of grid coordinates X1 ,Y1.

If this is the first pair, move to it after scaling; otherwise, draw to it.

Repeat the process from 5080 for each pair of coordinates.

If the type is 2, an arc, read the arc's center X1,Y1, the x and y radii R1
and R2, and the initial and final angle A 1 and A2.

Move to the beginning of the arc.

Draw in one-degree increments to the end of the arc.

Repeat the process from 5020 until there are no more entities defining
this character.

Locate the lower left-hand corner of the next character by adding 2 grid
units to twice the x-center of the character and scaling the result.

Slanted Letters (Italics)

5240

5250

5260

5270
5280

Sequence
Number

5000

5020

5040

5080

5090

5140

5160

5180

5200

5260

5270

The addition of slanted or italic character capability expands the ways in which a
single font can be displayed without requiring additions to the font data base
and with only a minor extension of the code.

An italic character leans to the right. If the slant angle is 10 degrees, as
shown in the accompanying diagram, a line defined as vertical must remain an
chored at Y = 0 but must lean 10 degrees to the right. So the x-value of a point
must vary as a function of its y-value according to the formula

X X + 6x
or X = X + 6y*tan (cr)

X = X + 6x , or X = X + 6y*tan(a)

where u is the slant angle. So each x-grid point becomes increased by
y-grid*tan(u)*height/8, as shown on lines 5100, 5120, 5175, and 5205 of the fol
lowing code for adding .

Italics Added Program Code

READ XO. YO

REPEAT

5000

5010

6. y

Determining italic slant of a /ett;"

179 Computer-Aided Design

READ T

CASE T OF

1:
READ C

5020

5030

5040
5050

J = 1 5060

REPEAT 5070
READ Xl, Yl 5080

IF J l THEN Italic transformation for line included 5090
MOVE X + Xl*W/8 + Yl* H/8*TAN(S),Y + Yl*H/8 5100

DRAW X + Xl*W/8 + Yl*H/8*TAN(S).Y + Yl*H/8
J = J + 1

UNTI L J > C

5110

5120
5130
5140

5150

2: Ita li c transformation for arc inc l uded 5160
READ Xl , Yl.Rl , R2, Al, A2 5170
X2 = (Xl + Rl*COS(Al))*W/8 + (Yl+ R2*SIN(Al))*H/8*TANIS) 5175
MOVE X + X2, Y + (Yl + R2*SIN(Al))*H/8 5180
J = Al 5190

REPEAT 5200
X2 = (Xl + Rl*COS(J))*W/8 + (Yl+ R2*SIN(J))*H/8*TAN(S) 5205
DRAW X + X2.Y + (Yl + R2*SIN(J))*H/8 5210
J = J + l 5220

UNTI L J > A2 5230

UNTIL T < 0

X = X + (2*XO + 2)*W/8
RETURN

Character Rotation

5240

5250

5260

5270
5280

Now rotation of characters about their centers can be added. The usual definition
of rotation calls for counterclockwise movement, but the natural idea of rotation
about a center, at least for right-handed people, is clockwise . Consequently, the
expressed angle of rotation must be used with the opposite sign.

As shown in lines 5090 - 5120 of the following code, the center of the charac
ter is subtracted from the x,y value of the end of a line or a step around an arc,
because rotation is done about the origin. Then the rotation formula is applied
and the point is translated back to a point relative to the character's center. Since
cos(-8) = cos(8) and sin(-8) = -sin(8), lines 5110 and 5120 can also be written

X3 = X2*COS(B) + Y2*SIN(B) + XO*W/8
Y3 + Y2* COS(B) - X2 *SIN(B) + YO*H/8

Notice that a great many redundant calculations are occurring . The values
XO* W/8 and YO*H/8 could be computed after line 5000 and thus be done only
once per character rather than twice per stroke on straight lines and twice per
degree on arcs. The values for SIN(-8), COS(-8), TAN(S), H/8, and W/8 remain con
stant for the entire character sequence and should be computed outside the sub-

180 Finishing Touches

routine. The computations shown here in the code are not simpl if ied in order to
show al l the details of each t ransformation.

Character Rotation Added Program Code

READ XO . YO

REPEAT
READ T

CASE T OF'

1 :
READ C
J = 1

REPEAT Italics and rotation for line added
READ Xl.Yl
X2 Xl*W/8 + Yl*H/8*TAN(S) - XO*W/8
Y2 Yl*H/8 - YO*H/8
X3 X2*COS(-B} - Y2*SIN(-B) + XO*W/8
Y3 X2*SIN(-B) + Y2*COS(-B) + YO*H/8

IF' J 1 THEN
MOVE X + X3,Y + Y3

DRAW X + X3,Y + Y3
J = J + 1

UNTIL J > C

5000

5010
5020

5030

5040
5050
5060

5070
5080
5090
5100
5110
5120

5130
5140
5150

5160
5170
5180

5190

2: Italics and rotation for arc added 5200
READ Xl , Yl,Rl , R2,Al,A2 5210
X2=(Xl+Rl*COS(Al))*W/8+(Yl+R2*SIN(Al))*H/8*TAN(S}-XO*W/8 5220
Y2 (Yl + R2*SIN(Al}}*H/8 - YO*H/8 5230
X3 = X2*COS(-B) - Y2*SIN(-B) + XO*W/8 5240
Y3 = X2*SIN(-B) + Y2*COS(-B) + YO*H/8 5250
MOVE X + X3,Y + Y3 5260
J = Al 5270

REPEAT 5280
X2 =(Xl+Rl*COS(J))*W/8+(Yl+R2*SIN(J))*H/8*TAN(S)-XO*W/8 5290
Y2 (Yl + R2*SIN(J))*H/8 - YO*H/8 5300
X3 = X2*COS(-B) - Y2*SIN(-B) + XO*W/8 5310
Y3 = X2*SIN(-B) + Y2*COS(-B) + YO*H/8 5320
DRAW X + X3,Y + Y3 5330
J = J + 1 5340

UNTIL J > A2 5350

UNTIL T < 0

X = X + (2*XO + 2)*W/8
RETURN

5360

5370

5380

5390
5400
5410

.termming sequence angle of a
!lilcter

181 Computer-Aided Design

Sequence Angle

Having performed scaling, slanting, and character rotation, we may add the char
acter sequence angle a , as in lines 5130 and 5140 of the following code. In the
previous transformations it was necessary only to modify the X part of the posi
tion of the lower left-hand corner of the character (line 5390)n the previous list
ing), because the character sequence was horizontal and therefore the Y-value
did not change. Now, as shown in the accompanying drawing, the location of the
next character will change in X and Y as follows (see lines 5450 and 5460) :

x = (2*XO + 2)*W/8*COS(a)
y = (2*XO + 2)*H/8*SIN(a)

It is worth noting that any transformation sequence, no matter how complex,
can be expressed in a pair of equations. Consider lines 5090 - 5140. The
right-hand sides of the expressions in lines 5090 and 5100 can be substituted into
lines 5110 and 5120 wherever X2 and Y2 appear, thus el iminating li nes 5090 and
5100.

Then the same process can be applied for X3 and Y3 in lines 5130 and 5140,
eliminating lines 5110 and 5120. The BASIC language, in general, does not allow
for statements longer than one line, although some personal computer versions
will permit multiple-line BASIC statements.

Sequence Angle Added Program Code

READ XO. YO

REPEAT
READ T

CASE T OF

1 :
READ C
J = 1

5000

5010
5020

5030

5040
5050
5060

REPEAT Italics , character angle, and sequence angle 5070
READ Xl,Yl for line 5080
X2 Xl*W/8 + Yl*H/8*TAN(S) - XO*W/8 5090
Y2 Yl*H/8 - YO*H/8 5100
X3 X2*COS(-B) - Y2*SIN (-B) + XO*W/8 5110
Y3 X2*SIN(-B) + Y2*COS (-B) + YO*H/8 5120
X2 X3*COS(A) - Y3*SIN (A) 5130
Y2 X3*SIN(A) + Y3*COS(A) 5140

IF J = 1 THEN
MOVE X + X2 , Y + Y2

DRAW X + X2 , Y + Y2
J = J + 1

UNTIL J > C

5150
5160
5170

5180
5190
5200

5210

2 : ! Italics. character angle. and sequence angle 5220
READX1, Yl , Rl.R2 , Al,A2 ! forarc 5230
X2=(Xl +Rl*COS(Al)) *W/8+(Y l +R2*SIN(Al))*H/8*TAN(S)-XO*W/8 5240

182 Finishing Touches

Y2 {Yl + R2*SIN{Al))*H/8 - YO*H/8
X3 X2*COS{-B) - Y2*SIN(-B) + XO*W/8
Y3 X2*SIN(-B) + Y2*COS(-B) + YO* H/8
X2 X3*COS{A) - Y3*SIN(A)
Y2 = X3*SIN(A) + Y3*COS(A(
MOVE X + X2.Y + Y2
J = Al

REPEAT
X2={Xl+Rl*COS(J))*W/8+(Yl+R2*SIN(J))*H/8*TAN(S)-XO*W/8
Y2 = { Yl + R2*SIN (J)) *H/8 - YO*H/8
X3 X2*COS{-B) - Y2*SIN(-B) + XO*W/8
Y3 X2*SIN(-B) + Y2*COS(-B) + YO*H/8
X2 X3*COS(A) - Y3*SIN(A)
Y2 X3*COS(A) - Y3*SIN(A)
DRAW X + X2,Y + Y2
J = J + 1

UNTIL J > A2

UNTIL T < 0

X = X + (2*XO + 2)*W/8*COS(A)
Y = Y + (2*XO + 2)*W/8*SIN(A)
RETURN

Filled (Shaded) Polygons

5250
5260
5270
5280
5290
5300
5310

5320
5330
5340
5350
5360
5370
5380
5390
5400
5410

5420

5430

5440

5450
5460
5470

Now, filled polygons and arcs may be added to complete the character-gen
erating routine. To draw a filled polygon, read all the defin ing points into an ar
ray, draw the polygon, then compute a new set of points inside the previous set,
and redraw until the polygon is full. Consider the polygon shown here.

The point wh ich is the " average" of the nodes of the polygon is X9,Y9,
where X9 = (X1+X2 + X3 + X4)/4 and Y9 = (Y1+Y2 + Y3 + Y4)/4, or in general, as
shown in the formulas here.

n

lx;
X9 =-; -

1
-

n

n

lv;
yg = !....:..2_

n

Th is point is always inside a convex polygon . After drawing the original poly
gon, each node X,Y may be brought closer to X9,Y9 by moving it part way along
t he line between X,Y and X9,Y9.

To draw solid arcs it is necessary to draw successive arcs, beginning w ith the
arc of minimum rad ius and increasing the radius slightly until the larger arc has
been drawn. In the following program, repeated code sequences have been made
into subroutines.

X4 .Y4 Xl

X9.Y9

XI.YI

Simple polygon to be filled

183 Computer-Aided Design

Complete Character Generator Program Code

READ XO . YO 5000

5010
5020

REPEAT
READ T

CASE T OF'

1 :

5030

5040
5050
5060

READ C
J = 1

REPEAT
READ Xl,Yl
X2 = Xl*W/8 + Yl*H/8*TAN(S) - XO*W/8
Y2 = Yl*H/8 - YO*H/8
GOSUB 6190

IF' J = 1 THEN
MOVE X + X2 , Y + Y2

DRAW X + X2,Y + Y2
J = J + 1

UNTIL J > C

5070
5080
5090
5100
5110

5120
5130
5140

5150
5160
5170

5180

2 : 5190

3 :

READ Xl.Yl,Rl,R2,Al , A2 5200
X2 =(Xl+Rl*COS(Al))*W/8+(Yl+R2*SIN(Al))*H/8*TAN(S)-XO*W/8 5210
Y2 = (Yl + R2*SIN (Al)) *H/8 - YO*H/8 5220
GOSUB 6190 5230
MOVE X + X2,Y + Y2 5240
J = Al 5250

REPEAT 5260
X2=(Xl+Rl*COS(J))*W/8+(Yl+R2*SIN(J))*H/8*TAN(S)-XO*W/8 5270
Y2 = (Yl + R2*SIN(J))*H/8 - YO*H/8 5280
GOSUB 6190 5290
DRAW X + X2 . Y + Y2 5300
J = J + 1 5310

UNTIL J > A2 5320

DELETE F'
READ N
DIM F'(2,N)
I = 1
X9 = 0
Y9 = 0

REPEAT
READ F'(l,I),F'(2.I)
X9 = X9 + F'(l,I)/N
9 = Y9 + F'(2,N)/N
I = I + 1

UNTIL I > N

Type = filled polygon

Number of nodes

Read a pair of points
and accumulate their
average

X2 = F'(l,l)*W/8 + F'(2 , l)*H/8*TAN(S) - XO*W/8 Transform

5330

5340
5350
5360
5370
5380
5390
5400

5410
5420
5430
5440
5450
5460

5470

184 Finishing Touches

Y2 = F{2 , l)*H/8-YO*H/8
GOSUB 6190
MOVE X + X2 , Y + Y2 and move to it

REPEAT

first point

L=(F(l , l)-X9) i 2+(F{2,l)-Y9) f2 Compute distance
I = 2

REPEAT
L = L MAX (F{l,I) - X9);i 2 + {F (2.I) - Y9)f
X2 = F{l,I)*W/8 + F(2 , I)*H/8*TAN(S) - XO*W/8
Y2 = F(2,I)*H/8 - YO*H/8
GOSUB 6190
DRAW X + X2 , Y + Y2 ! Draw a polygon
I = I + 1

UNTIL I > N

L = 1 - 0 . 1/SQR(L) Compute a step inward
I = 1

REPEAT
F{l , I) = (F(l , I) - X9)*L + X9
F{2 . I) = {F(2 , I) - Y9)*L + Y9
I = I + 1

Adjust polygon

UNTIL I > N
UNTIL L < 0 . 1 until polygon filled

5480
5490
5500

5510
5520
5530

5540
5550
5560
5570
5580
5590
5600
5610

5620
5630

5640
5650
5660
5670
5680
5690

5700

4 : Type = filled arc 5710
READ X9 , Y9 , Xl , Yl,Al , A2 , V2 , W2 Read arc data 5720

IF ABS(V2 - Xl) > = ABS(W2 - Yl) THEN Compute ratio 5730
J = (W2 - Yl)/(V2 - Xl + (V2 = Xl)) If Xchange~ 5740
K = (V2-Xl) /5 MIN 0 . 1 Y change 5750

REPEAT
GOSUB 6010
Xl = Xl + K
Yl = Yl + J*K
UNTIL Xl + K > V2

Draw arc

ELSE Compute ratio if
J =(V2-Xl)/(W2-Yl +{ W2 =Yl)) ! Ychange > Xchange
K + (W2 - Yl)/5 MIN 0 . 1

REPEAT
GOSUB 6010 Draw arc
Xl = Xl + J*K
Yl = Yl + K

UNTIL Yl + K > W2

IF (Xl <> V2) OR (Yl <> W2) THEN
Xl = V2 Draw final arc
Yl = W2
GOSUB 6010

UNTIL T < 0 until end of character

5760
5770
5780
5790
5800

5810
5820
5830

5840
5850
5860
5870
5880
5890

5900
5910
5920
5930
5940

5950

5960

5970

185 Computer-Aided Design

X = X + (2*XO + 2)*W/8*COS(A)
Y = Y + (2*XO + 2)*W/8*SIN(A)
RETURN

Draw elliptical arc
X2=(X9+Xl*COS(Al))*W/8+(Y9+Yl*SIN(Al))*H/8*TAN(S)-XO*W/8
Y2 = (Y9 + Yl*SIN(Al))*H/8-YO*H/8
GOSUB 6190
MOVE X + X2,Y + Y2
I = Al

REPEAT
X2=(X9+Xl*COS(I))*W/8+(Y9+Yl*SIN(I)) *H/8*TAN(S)-XO*W/8
Y2 = (Y9 ~ Yl*SIN(I))*H/8 + YO*H/8
GOSUB 6190
DRAW X + X2 , Y + Y2
I = I + 5

UNTIL I > = A2

X2 =(X9+Xl*COS(A2))*W/8+(Y9+Yl*SIN(A2))*H/8*TAN(S)-XO*W/8
Y2 = (Y9 + Yl*SIN(A2)) *H/8 - YO*H/8
GOSUB 6190
DRAW X + X2,Y + Y2
RETURN

Perform rotation
X3 = X2*COS(-B) - Y2*SIN(-B) + XO*W/8
Y3 X2*SIN(-B) + Y2*COS(-B) + YO*H/8
X2 = X3*COS(A) - Y3*SIN (A)
Y2 = X3*SIN(A) + Y3*COS(A)
RETURN

Complete Character Generator Code Description

Straight lines and simple arcs are dealt with as before.

If the element is a filled polygon, the number of nodes N in the polygon
is read, and an array F of N pairs is established.

The average of these points will be computed as X9,Y9.

Pairs of points are read and the average point is accumulated .

The first point is transformed and a move is made to that point.

The value L is to be the distance moved along the line from each point
to the average point X9,Y9. As the polygon is drawn, L is made to be
the square of the longest distance from a point to X9,Y9.

L becomes a fraction of the distance from X9,Y9 to the most distant
node.

All nodes are moved closer to X9,Y9.

Processing continues from 5510 until the polygon is filled.

If the element is a filled arc, the arc's center X9,Y9, initial radii X1,Y1,
starting and ending angles A 1 and A2, and final radii V2,W2 are read.

If the difference ilx between the initial and final x-radii is greater than
ily, the ratio ily/ilx is computed . Note the precaution to compute ily/1 if
ilx = 0. Then K, the increment of radius change is computed.

5980
5990
6000

6010
6020
6030
6040
6050
6060

6070
6080
6090
6100
6110
6120
6130

6140
6150
6160
6170
6180

6190
6200
6210
6220
6230
6240

Sequence
Number

5000

5340

5390

5410

5470

5520

5620

5640

5690

5710

5730

186 Finishing Touches

Subroutine 6010 draws the elliptical arc. 5770

The x-radius is increased by K and the y-radius by K* 6.y/6.x 5780

Arcs are drawn until the next x-radius will be greater than the final x- 5800
radius.

A similar procedure is done for 6.y>flx. 5810

If the final arc has not been drawn, it is drawn. 5900

The X and Y location of the next character is updated and the routine 5980
ends. Subroutine 6010 draws an elliptical arc: 6010

The initial point is transformed and moved to. 6020

Points along the arc are computed, transformed, and drawn to in 5- 6070
degree increments until the next increment will equal or exceed the
ending angle A2.

The point at the final angle is drawn to. 6140

Subroutine 6190 rotates X2,Y2 about the character's center, giving 6190
X3,Y3, which is rotated onto the angle of the character sequence, giving
X2,Y2.

Nontext Fonts

Font tables need not be restricted to text. Many kinds of symbols are amenable
to the same manipulations useful in the selection and placement of letters and
numbers. Electrical symbols, for example, may be associated with letter codes, so
that the input character R can cause a resistor symbol to be drawn. A complete
set of electrical symbols is the basis for a program to draw schematic diagrams.

Similarly, mapping symbols can be used for mapping or charting. The length
of a road section may be adjusted- independent of the distance between the
lines-by changing the input value of the "width" modifier. To make posters or
visual aids, symbols like circles and squares are useful, and flow diagrams need
special characters. A font that includes trees, flowers, animals, clouds, and many
other repeated objects can be used for pictures, titles, and so forth.

Hard Copies

If you develop an original game, you may want to send a copy of some of the
displays to friends, keep a permanent record of the screen images, or even use
selected scenes to advertise it for sale. While standard text can be copied on a
printer, a graphics output device is necessary to capture a hard, or permanent
copy of a picture on the screen.

The least expensive graphics output device is an ordinary camera . It must be
capable of focusing on the screen from 18 to 24 inches away and must have ad
justable shutter speeds. Photographs taken at speeds faster than 1/30 of a second
will show a black stripe on part of the screen due to the way in which the image
is generated and refreshed . In 1/10 of a second the computer's screen is refreshed
three times, so a shutter speed of 1/10 or 1/4 will eliminate the black stripe. It
will be necessary to mount the camera on a stable base or tripod in order to
avoid a blurred picture.

Unless the picture is taken in a dark room, it is very likely that reflections
from the surface of the screen will detract from the quality of the picture. Be-

Using a hood to eliminate refledlOl'll
and interference when photograph1r.;
computer screen

187 Computer-Aided Design

cause the brightness of the picture may reflect from mirrors or picture glass, a
hood that fits on the computer is a very useful accessory to make, as illustrated
here.

Picture Maker

A font table is only part of a picture maker. In order to be most useful, the table
should be controlled by an interactive program so the user can see the picture as
it develops and be able to correct mistakes. This implies a data base that defines
the elements of the picture.

In addition to the complex elements in font tables, it is useful to allow direct
entry of simple entities such as points, lines, arcs, rectangles, and circles.

It would be nice to have a joystick for positioning a cursor (on-screen
pointer) and a large set of programmable function keys for insertion, deletion,
copying, and other functions needed in an interactive picture generator. How
ever, such a program can be written for a computer with only a keyboard and a
graphics screen. A storage medium such as tape or disk is also necessary in order
to save the data that define a picture. The entire screen can be made available
for the picture except for one line of text.

Arcs, circles, and rectangles may be hollow or filled with a specified color.
Begin by setting the entire screen to a given color. After entities are placed on
the screen, the program must be able to move, copy, or delete them and to
change fonts as necessary. After deletion of an entity the picture will be incom
plete-either an automatic REPAINT may occur or a REPAINT command may be
invoked by the user. To work in areas where exact placement is required, a
ZOOM command can enlarge a selected quarter of the screen so that each pixel
is now seen as a 2 x 2 square. Another ZOOM will enlarge a newly selected screen
quarter to 4 x 4, and so forth.

When the picture is complete, a SAVE command should allow the user to
name the picture and save the data base associated with the name. Thereafter, a
RESTORE command should ask for the name and reload the picture from the disk.

Insertions

Two-character codes may be assigned for entry from the keyboard. If possible, the
computer should accept two keystrokes without a Return and check to be sure
they represent a valid code. If the numbers 0 to 7 are assigned (assuming an
eight-color display) to the colors black, blue, green, cyan, red, magenta, yellow,
and white, the code Bn, where "n" is one of the numbers 0 through 7, can be
used to mean "set the entire screen (B = background) to the color n." Correspond
ingly, Cn can mean "use the color n on subsequent entities until another Cn com
mand." The prefix I can be used for Insert, so that

Code Means

IP Insert point
IL Insert line
IA Insert arc
IC Insert circle
IR Insert rectangle
IT Insert text

188 Finishing Touches

FA, FC, and FR can mean insert a filled arc, circle, or rectangle . The D prefix
can be used for Delete, M for Move, and C for Copy. Thus, DC means DELETE A
CIRCLE, although which circle to delete has not been specified in the command .

The ZOOM command Zn, where n = 1- 9, means " ZOOM SCREEN SECTION n,"
where n equals one of the specified sections of the screen, as shown in the ac
companying figures.

The command ZO restores the screen to normal size.
Insertion implies adding to the data base as well as to the picture. There are

nine separate entity types :

T pe Code

Background 0
Point 1
Line 2
Arc 3
Circle 4
Rectangle 5
Filled Arc 6
Fil led Circle 7
Filled Rectangle 8
Text 9

Data needed to describe each type are

T e

Background
Point
Line

Arc

Circle
Rectangle

Filled Arc
Filled Circle
Fi lled Rectangle

Text

Data

Code = O,color
Code = 1,color,X,Y of point
Code = 2,color,X1 ,Y1,X2,Y2

(endpoints)
Code = 3,color,XO,YO (center),

R (radius), cr 1, cr2 (starting and
ending angle)

Code = 4,color,XO,YO,R
Code = 5,color,X1 ,Y1,X2,Y2

(opposite corners)
Code = 6,color,XO,YO,R,cr1 ,cr2
Code = 7,color,XO,YO,R
Code = 8,color,X1,Y1,X2,Y2

(opposite corners)
Code = 9,color,X,Y,f,H ,W,

u,cr,J3,Nc,N1

The text defin ition is the most complex. It requ ires that either the actual text
be placed in a string (alphanumeric array) or that each text character be con
verted into a numeric code and stored following Ne as part of the numeric data
base (in which case N1 is not needed). Text data base entries are as follows :

2

3 4

5

6

7
I

8

Screen sections designated 1n ZOC
command

189 Computer-Aided Design

Variable Meaning

X,Y Screen location of lower left corner of first character
f Font number
H Text height
W Text width
u Slant angle
a Character sequence angle
f3 Character rotation angle
Ne Number of characters in this sequence
N1 Location of first character in string arra

To insert a point, the program must recognize the IP command, then issue a
message like " Move cursor to point." The operator then uses the arrow keys to
move the cursor, pressing Return to signal that the point is to be placed at the
cursor. Point code 1, color code, and the X,Y location of the cursor are placed at
the end of the data base list and the pixel at X,Y is colored as specified .

A line is inserted similarly by accepting the command IL, moving the cursor to
one end of the line, pressing Return, moving the cursor to the other end, and
pressing Return again .

A circle is inserted by first entering the center XO,YO and then moving the
cursor to a point on the circumference X1 ,Y1 . The radius R is computed from

R = SQR((Xl-XO) f2 + (Yl - YO) f2)

A rectangle may be drawn from any opposite pair of points X1 ,Y1 and
X2,Y2 :

MOVE Xl,Yl
DRAW X2, Yl
DRAW X2 , Y2
DRAW Xl, Y2
DRAW Xl , Yl

The easiest way to enter an arc is to specify with the cursor first the center,
then a point on the circumference at the starting angle, then the point at the
ending angle. Three points on the circumference- start, intermediate, and end
will also define an arc.

When text is to be inserted, the user must enter not only the actual text but
also several parameters. Assuming that the commands F1 to F9 cause selection of
a font, then f should be set to the appropriate font number automatically. The
slant angle, sequence angle, and rotation angle must be entered by the user, and
consequently the program must issue prompting messages for these inputs. The
number of characters and their starting position in the string array can be com
puted automatically.

Deletions

In order to effect a delete, move, or copy, the program must find the entity to
be processed. The type (such as DC for DELETE CIRCLE) reduces the number of
entities involved. The programmer has at least two ways to establish which is to
be deleted. Each entity can be made to blink by alternately displaying it in black
and white, say three times, after which the user responds with Y for Yes or N for

190 Finishing Touches

No, until all entities have been flashed or a Y has been pressed. A better method
is to determine the distance from a controllable cursor to each selected entity
(points, for example) and the closest deleted after all points have been checked.

Determining the distance from the cursor to a line is not so easy. If the short
est perpendicular distance from the cursor Xc,Yc to each line is used, a situation
such as shown here would result in the deletion of the line between X1 ,Y1 and
X2,Y2 because the distance P1 to the extended line is shorter than P2, although
the cursor is closer to the line segment X3,Y3 to X4,Y4. This problem may be
eliminated by determining the X,Y value of the points Q1 and Q2. If the coordi
nates Xq,Yq of the point Q1 are such that

Xl s Xq s X2
and Yl s Yq s Y2

then the perpendicular distance is the shortest distance to the line segment. If
not, then

dl = SQR((Xl - Xe)j2 + (Yl - Ye)f2)
and d2 = SQR((X2 - Xe)j2 + (Y2 - Ye)j2)

should be computed and the lesser of distances d1 and d2 used instead of P1 .

p

Xq

and

In the next drawing, the length of P (see Note 9 at the end of the book) is

((Xe - Xl)*(Ye + Yl) + (X2 - Xe)*(Y2 +Ye) - (X2 - Xl)*(Y2 + Yl))
SQR((X2 - Xl) f2 + (Y2 - Yl)j2)

The coordinates of the point Xq, Yq can be found from

Xl Y2 - Yl
X2 - Xl

X2 - Xl
+ x)2 - Yl + Ye - Yl

Y2 - Yl
X2 - Xl

X2 - Xl
+----

Y2 - Yl

Xl - X2
Yq = y2 _ Yl (Xq - Xe) + Ye

Text is the most difficult case of all . To determine which of several text
strings is to be deleted, moved, or cop ied, th ink of a t ext sequence as a rectangle
of the form shown here : so that the four corners are known. If the sequence is
not horizontal , the coordinates of the corners are transformed by the rotation
equations about X,Y. Is the cursor inside this rectangle? If so, the text sequence is
the one to be pro!=essed .

If the cursor is inside the rectangle ABCD, posit ioned at the point Q, as
shown in the illustration, then the sum of the areas of the four triangles AQD,
AQB, BQC, and DQC is the same as the area of the rectangle. If not, as shown in
the next illustration, the sum of the areas of the four triangles is greater than
the area of the rectangle. To f ind the area of an arbitrary triangle, the trapezoi
dal method described above may be used. The area of a rectang le is, of course,
the base times the height.

To delete a found entity, establ ish its location in the data base and remove it
by flagging or by overlaying with valid entities.

X4,Y~

QI,/'"'

Xl,YI
X3,Y3

Incorrect determination of the distance
from the cursor to a line, since point 0
is not on the line segment XI, YI to
X2, Y2

XI.YI\

Fl
I
I
I
I
I
I
I

A

Xc,Y(7

B c

Determining the length of P, the sho/1
est distance from a cursor to /me seg·
ment

X,Y •6Y X+[t.X,Y•uY

YI ~ \ 1 \ I I
X,Y

6
X X+[ll\,l

I 6X2

Conception of text sequence showmg
the four corner coordinates

In locating a text sequence with a c
at point Q, the cursor is inside the rec
tangle bounding the text only 1f the
of the areas of the four triangles eaUdll
the area of the rectangle

the cursor is outside the bounding rec
·angle, the sum of the areas of the four
angles AQB, BQC, CQD, and AQD will
greater than the area of the rectan-

. ABCD

191 Computer-Aided Design

Moves

A MOVE is merely a translation from one point expressed by a cursor location to
another. That is, if a MOVE is invoked and the entity is established relative to a
point X,Y, then after the entity is determined, two values must be given by the
user, a "Move from" X1,Y1 and a "Move to" X2,Y2. To accomplish the move, the
entity should be erased by redrawing it in black, then a new location X' ,Y' is
computed from

X' X + X2 - Xl
Y' = Y + Y2 - Yl

X',Y ' then replaces X,Y in the data base and the entity is redrawn at X',Y'.

Copies

A COPY is identical to a MOVE except that the original entity is not erased.
This means that a copy of the original data base entry must be generated with
location X',Y ' in place of X,Y.

Codes

A possible set of codes and their functions is

Code Name of Command

Bn SET BACKGROUND

Cn SELECT COLOR

Ce COPY ENTITY

De DELETE ENTITY

FA INSERT FILLED ARC

Function

The "Set Background" code colors the entire screen
according to the number "n," where n = 0, 1,2, ... ,7 to
represent the colors black, blue, green, cyan, red,
magenta, yellow, and white

Following INSERT commands will use this color for
the inserted entity

" Copy Entity" selects an entity of type "e" already
on the screen and makes another copy of it in a cur
sor-specified location and into the data base, where
" e" = A(arc), C(circle), L(line), P(point), R(rectang le),
or T(text)

" Delete Entity" selects an entity of type "e" and
deletes it from the screen and from the data base

The "FA" code inserts onto the screen and into the
data base an arc of a circle that is filled with the
color last specified

192 Finishing Touches

Code Name of Command

FC INSERT FILLED CIRCLE

Ff SELECT FONT

FR INSERT FILLED RECTANGLE

le INSERT ENTITY

Me MOVE ENTITY

RE REPAINT

RI RESTORE IMAGE

SI SAVE IMAGE

Zq ZOOM

Function

The "FC" code inserts onto the screen and into the
data base a circle filled with the color last specified

Following INSERT TEXT commands will use the font
numbered "f"

The "FR" code inserts onto the screen and into the
data base a rectangle filled with the color last speci
fied

"Insert Entity" inserts onto the screen and into the
data base an entity of type "e," colored with the
color last specified

An entity of type "e" already on the screen is
moved to a new X,Y location. The data base values
X,Y of the entity are updated.

The screen is erased and redrawn from the informa
tion stored in the data base.

The data base for a previously saved image is found
on a disk according to its name and drawn on the
screen.

The data base along with a picture name is written
on the disk.

A specified quarter "q" of the screen is doubled in
size. ZO, UNZOOM, restores the original image.

1 1

Ideas for Hobbyist Graphics and
Game Programs

194 Finishing Touches

The best ideas for programs you can write will be those derived from your own
experiences- hobbies, job, school subjects, and so forth . Obviously there is no
need to be an astronaut in order to write an outer space game, but knowledge
of physical laws makes that game realistic.

A fertile imagination also helps. Fantasy adventure games are not drawn
from real life but from a combination of imagination and experience with maze
games. Use of your own special skills should help you to produce a superior
game. If you really like the finished product, you may want to try to sell it.

To make money by selling home-grown computer programs is tough, but
some people have realized big profits doing so. An original, imaginative, useful
program or an innovative game must be marketed aggressively in order for it to
sell well. One way to try selling a program is to offer it to an established manu
facturer (however, it's a good idea first to protect it by copyrighting). Another
way is to offer copies of the program for sale at local computer stores, but unless
an entire chain carries your product, sales will come in ones and twos. Books are
available that pursue the subject of marketing in depth.

Hobbyist Programs

Hobbies are good subjects for the personal computer programmer. Whether you
write to sell or for fun, the important thing is to know the subject and to make
the program interesting and easy to use. Just about any pastime or skill may be
converted into material for a computer program.

Consider bird-watching, for example: Given enough patience and computer
storage, information on local birds could be collected from the available litera
ture in a form amenable to "decision tree" processing . When an unknown bird is
glimpsed, the mystified birder could go to his computer, which would ask a series
of questions that could be answered Yes, No, or Unsure (keys Y, N, and ?). An
example of such a decision is shown here.

Graphical displays are useful for identification : The program could give the
instruction " Select from the following the beak resembling your bird's beak" and
then show the bird-watcher the choice of beaks pictured here.

Other features of the program should show characteristics of any possible
bird, such as how it flies, how it walks or hops, its coloring, and its song if the
computer has a .good tone generator. The user should also be able to ask to see
a particular bird by entering its name.

After a complete set of local birds is stored, migratory birds and "acciden
tals" could be added. (Accidentals are birds not common to the area but occa
sionally seen, for instance, after having been blown off course during storms.)

Hobbyist gardeners or landscape architects might write a program in which a
site plan can be drawn, locating trees and bushes. The user would then be able
to look at various views (from the street, from the living room window, and so
on) and see how the site will look from year to year as the plants grow according
to their known characteristics.

A vegetable garden planner would keep information from year to year on
plant location and yield, warning the gardener of potential problems like "Too
many kale crops in this bed" or "Tomatoes will shade carrots."

Decision tree for sample questions m a
bird watching program

I.< 3.

2. --< 4. ETC.

Display for choosing bird beak sighted
by bird watcher

195 Ideas for Hobbyist Graphics and Game Programs

A house plan expediter would be useful to architects and builders. The com
puter would help design the house (and produce drawings if a plotter is at
tached), while at the same time computing the materials needed to build the
house.

An interesting program that most people could use from time to time wou ld
be a trip planner. Such a program would require a lot of data, although the data
base could be built up gradually, beginning with major roads within a few miles
of the user's house. The program would have to be provided with speed limits on
each road section, traffic lights (and their settings, ideally, although a good guess
as to duration of green and red should do), patterns of traffic- trucks, peak
times, and even where school buses and crossing guards may interrupt progress.

Given these data, the fastest route from one point to another could be com
puted by using a technique similar to the maze solution algorithm discussed in
Chapter 7. Personal route preferences might also be considered, giving extra
weight to chosen routes.

There is potential for a game called The Mad Commuter that might use a
map of Manhattan- Long Island, Los Angeles, or any other famous traffic disaster
area. Players would select routes, choose to take risks like speeding or passing on
the right, and try to reach a given goal before the other players. Of course, they
should be subject to policemen and traffic tickets if they decide to violate rules.

The accuracy of some of the above ideas in birding, gardening, and driving
depends on the time of year, including potential weather conditions, time of day,
day of the week, and so on, so a set of subroutines with that information would
be an important tool. For example, the constellations in your location could be
displayed only if the time of year and time of day (or night, in this case) are
available to the program.

Needlework and weaving are wide-open hobby areas as far as
computer-aided design is concerned . In weaving, patterns are generated by pass
ing individual threads through eyes in the centers of metal wires, called
"heddles," held in a frame. Thus a simple over-and-under weave is created by al
ternately threading heddles in two frames, which are interchanged by foot trea
dles as a shuttle carries a thread back and forth . More complicated looms have
four frames and six or eight foot pedals to raise combinations of heddles, thereby
producing very complex patterns. Programs have been written to allow testing of
weaving patterns; they show the colors that result when the vertical (warp)
threads that pass through the heddles interact with the horizontal (woof) threads
from the shuttle. The color patterns depend on such things as the treadle se
quence and which threads overlay the others.

A straightforward computer-aided design application is a furniture planner
and arranger for interior decorators. The most useful program would allow the
user to input a house plan and model each piece of furniture in three dimen
sions. The program should then be capable of displaying wire-frame models of
each room seen from any aspect. Refinements include a perspective display of
solid objects, in correct colors, to give a realistic idea of room layout.

196 Finishing Touches

One of the most impressive hobbyist applications is a music editor. The user
enters musical notation on a staff and causes the computer to read the musical
codes and generate the correct sounds. Good music programs currently require
auxiliary devices to play the music well , but there are many computerized music
machines available today. Before long, integrated digital stereo, television, and
computer systems will be available that will permit programs that synthesize all
kinds of sounds- music, voice, and special effects.

Physical phenomena are particularly amenable to computerization because
for the most part they are very well defined. Optics- lens and prism systems-is
relatively easy to simulate on a computer and can be useful to photographers
and amateur astronomers. Personal computers are in frequent use to control such
things as temperature and air conditioning in the home. A nice application for a
gardener is the monitoring of climatic conditions to control greenhouse and cold
frame environment and to compare the environments with crop yield. A small
additional step is the monitoring of soil condition and temperature to report
ideal planting t imes. Many such applications require the use of a histogram or
bar graph program.

Games

No book can cover all the possibilities for computer games. The following samples
may suggest directions you would like to take in creating your own programs.

Simple entertainment games or cartoons can be interesting exercises in pro
gramming, although their appeal doesn't last very long. A very straightforward
example of this type was used to sell early Apple computers. The program used
random numbers to color small rectangles on the screen in a continually changing
random pattern somewhat similar to a kaleidoscope.

I once wrote an animation demonstration called "Fencing Fools," in which an
ornate castle with two towers and a balcony was displayed, as pictured here.

A fencer or swordsman stood on the balcony. Another appeared in the
right-hand tower and jumped to the balcony. A damsel walked out of the door
in the left-hand tower as the fencers approached each other. They then randomly
lunged and parried until one of them was run through, whereupon the winner
dragged the body to the side of the balcony and whistled (using the Control-G
mentioned in Chapter 5). A monster rose from the moat and the winner threw
the body of the loser to the monster as the damsel cried copious tears.

Watchers on the parapet held up score cards containing randomly selected
numbers between 6.0 and 9.9 as if they were judging a diving contest. The dam
sel then turned and went back into the tower as the winner walked to the start
ing position at the left-hand side of the balcony, whereupon a new challenger
appeared in the right-hand tower and the sequence was repeated .

Shooting gallery games are easy to do and fun to play. Using left and right
arrow keys (discussed in Chapter 7), the player could move a gun along the bot
tom of the screen to aim at objects that progress across the screen. The number
of bullets allotted to the player should be displayed and a rare, small target
should allow the player to accrue extra bullets should he hit it.

.;ene from a "Fencing Fools" animation

Two samples of a random curve to be
used to complicate a trajectory

197 Ideas for Hobbyist Graphics and Game Programs

A very easy Get Those Aliens game could be done on any home computer
with a reasonable graphics capability. Think of the screen as a view from the
front of a spacecraft. A fixed crosshair sight would be imposed on the screen to
enable the pilot to control the spacecraft and shoot at alien ships. If the alien
were stationary, he would seem to move to the left as the pilot moved his space
craft to the right (See Chapter 8).

If, in addition, the alien were moving, the game would be made more diffi
cult. Using two random numbers Y1 and Y2 and two known values X1 and X2,
where X1 and X2 are opposite edges of the screen and Y1 and Y2 are random
values between the bottom and top of the screen, an alien could be made to
move along a random straight line across the screen by means of a loop that pro
gresses from X1 to X2 in small increments.

Motion of the craft would complicate the trajectory, giving the alien a good
chance to escape the boundaries of the screen before he could be shot down.
The number of hits, misses, and escapes should be displayed.

The alien's trajectory could be complicated by establishing a random curve,
such as shown here, for the alien to follow. Th is type of curve requires four pairs
of random numbers XO,YO; X1,Y1 ; X2,Y2 ; and X3,Y3.

The X and Y numbers would be any values that are within the screen bound
aries, but the X values must be sorted into ascending sequence. The equation
would then be evaluated from XO to X3 or from X3 to XO, the choice being made
randomly, letting X begin at one end (XO or X3) and progress to the other in
small increments to find Y from the equation :

Y = A*YO + B*Yl + C*Y2 + D*Y3

where A = (X - Xl)*(X - X2)*(X - X3)
(XO - Xl)*(XO - X2)*(XO - X3)

B
(X - XO)*(X - X2)*(X - X3)

(Xl - XO)*(Xl - X2)*(Xl - X3)

198 Finishing Touches

c (X - XO)*(X - Xl)*(X - X3)
(X2 - XO)*(X2 - Xl)*(X2 - X3)

D = (X - XO)*(X - Xl)*(X - X2)
(X3 - XO)*(X3 - Xl)*(X3 - X2)

Some sample trajectories are illustrated here.

An excellent game available to users of a large computer-aided instructional
network is Robot War. Two players program their robots according to a set of
simple instructions that allows them to plan moves. The robots begin the game in
random locations within a 100 x 100 space on the screen. Each robot begins with
five points. If one moves into a wall bounding the space or bumps into the other
robot while moving, it loses a point. The object of the game is to program each
robot to locate the other and shoot at it. A hit costs one point. When one robot
loses all five of its points, the other is the winner. Instructions for a robot pro
gram include

Read my X-location
Read my Y-location
Read opponent's X-location
Read opponent's Y-location
Shoot at a given angle
Start moving 1 .2. or 3 units in +X or +Y
Stop moving
Clear accumulator
Add to accumulator
Subtract from accumulator
Multiply accumulator
Store accumulator
Set constant value
Branch on zero. negative. or positive accumul ator
Unconditional branch

Robots alternate turns, processing one instruction at a time. A START MOV
ING instruction lets the robot continue moving while processing other instruc
tions. Of course, by the time a robot has figured out the position of the other
robot (which is difficult since there is no DIVIDE instruction), its opponent has
probably moved.

This is a passive game in the sense that players do not control the game as it
is being played. Its appeal is based on the ability of the player to predict a good
strategy. There is also a frustration component, because it is always possible to
design a robot that will defeat an opponent whose strategy is known from expe
rience.

An interesting game that uses a form of maze exploration is Time Explorer,
in wh ich the player is the capta in of a time-travelling capsule. The task before
the player is to go back in t ime in search of fuel resources that were once on the
surface of the earth but have since been buried by geologic phenomena. It is
necessary that these resources be sought out because the earth has run out of
low-cost energy.

The capsule must be guided through deserts, swamps, rivers, forests, moun
tains, and caves. Each environment conta ins various grades of fuel, as well as pre
historic creatures that attack the capsule and can damage sensors, such as the

40,60 85 ,60

70.40

Samples of trajectories

r·
85,60

199 Ideas for Hobbyist Graphics and Game Programs

forward or side viewing screens, the air conditioning, fuel gauge, lights, or loca
tion indicators. Tyrannosaurs, Mosasaurs, Brontosaurs, Pterodactyls, and Hominids
may be repelled but not killed, as a precaution against making a radical change
to the future. To repel them uses energy, as does travelling around the terrain .

It is essential that more energy be found than is used on a trip. Travelling
accrues mapping points, which upon return to the present are increased by points
for the q.uantity and quality of fuel collected .

The pictures of the submarine, airplane, and convoy (see the color plates) are
representative of a large number of "war games" (simulations of situations in
military strategy and tactics that have been used by generals as training aids for
at least 100 years). The computer has added considerable sophistication and com
plexity to real military simulations since 1950-in fact, World War II gave impetus
to computer development, followed by an equally big boost in 1957 when the
Russians orbited Sputnik.

The basic idea behind a typical submarine game is the presence of a more or
less passive convoy. Despite the possibility of adverse weather conditions, the
commander of the sub must find the convoy and sink as many ships as he can
before they cross the Atlantic. Complications include the arrival of RAF Coastal
Command seaplanes and Royal Navy destroyers that can sink the sub (British
forces are used because the scenario is designed for 1940, when the U.S. was
sending supplies but was not yet a participant.)

The commander has at his disposal 40 torpedoes and 100 rounds of ammuni
tion for his deck gun. Clearly the submarine cannot use the deck gun while sub
merged but is more vulnerable to attack while surfaced. The seaplanes can attack
a surfaced submarine, but destroyers using depth charges can locate and destroy
a submerged sub by means of sonar and depth charges. Sonar beeps warn the
commander of approaching destroyers. The submarine can reach friendly ports in
Europe, Africa, and South America to repair damage, refuel, and take on ammu
nition.

Most games usually played on a board do not lend themselves to play be
tween the computer and only one other player, because a computer can be pro
grammed to win such games with ease. In 1957, an article appeared in the com
puter literature about a computer program that was programmed to play
checkers according to the rules and to learn from experience.

The first game between the computer and a human was won, of course, by
the human, because the computer had no strategy for winning . But each move
was recorded by the computer by saving the position of the pieces on the board.
When the computer lost the game, those moves were saved as losing moves and
in subsequent games the computer would not repeat them unless forced.

After fourteen games, the human could no longer beat the computer. The
same outcome can be expected in countless other games such as Tic-Tac-Toe, 3-D
Tic-Tac-Toe, Othello™, Chinese Checkers, and so forth .

Chess is a notable exception, largely because it is too complex for computers
to develop and evaluate a complete decision tree in the three minutes allowed
between moves in tournament play. A reasonable start to a chess program is a
chess problem solver. In the chess column of the Sunday newspaper there is usu-

200 Finishing Touches

ally a problem of the "white to move and mate in two" type. Such a problem
can be solved by a computer by trying all possible combinations of two moves.

In the near future it is probable that manufacturers will develop a game
computer with two screens back to back and two sets of controls. Games using a
dual-screen machine will be much more interesting than one-screen games be
cause it will be possible for the two players to be presented with different infor
mation. The Submarine Versus Convoy game, in which one player controls a sub
marine and the other controls aircraft and destroyers, would give the sub
commander his view of the situation through a periscope while the surface com
mander would have a view from the bridge of his destroyer.

Most competitive games can be improved greatly by a two-screen computer
or by connecting two computers so they can communicate with each other.
Games requ iring coordination would be much faster because the players no
longer would need to take turns but could move simultaneously. A typical two
screen game would be an aerial dogfight, where each player sees a view on his
screen as if he were looking out of his airplane cockpit. It might be the role of
one player to locate and bomb targets on the ground while the other tries to
intercept the bomber and shoot it down.

Given two computers connected over some distance by telephone lines, the
concept of board games becomes more attractive. In this case, the computer can
referee the game while displaying for each player his perspective view of the
board. Currently, time-sharing systems with multiple terminals are available for
commercial and school use. Such networks are open to the home via telephone
lines but are too expensive for most personal computer users. As costs come
down, individuals will be able to enjoy playing games against several, even un
known, opponents.

Further possibilities for computer games will depend to some extent on the
directions taken by the designers of home computers. It is likely that improve
ments will be made in screen resolution and available colors, thus allowing for
more attractive and detailed display. Improved sound and voice output is also on
the way, along with larger memory. Additional storage would permit more so
phistication in programs, including enhancements in artificial intelligence
capability.

The addition of peripherals that can sense human states will open another
whole realm of possibilities. The inputs into a polygraph, or lie detector, could be
used by a computerized fortune teller or "psychiatrist." Vo ice input and complex
sound output will add realism to most military simulations.

Still, the best computer peripheral is the human imagination. You can influ
ence the direction of new computer games by applying your interests and skills
to brand-new ideas for computer-based entertainment and by studying existing
video and arcade games to evaluate their appeal. The field is very new; as com
puter capability and the base of hobbyist programmers continues to grow, better
and better computer programs are the inevitable result.

Appendix

202 Appendix

The Display Screen

A computer display screen is described in terms of its "'resolution" -the number
of discrete points (called picture elements or "pixels") that can be displayed.
These points are arranged in a rectangular array that can be thought of in terms
of rows and columns in the way a letter on a typewritten page appears on a cer
tain line in a fixed position on the line. To describe how to find the letter on the
page, it could be said that it is the seventh letter from the left on the eleventh
line from the top- a pair of numbers could be used to describe its unique posi
tion .

Pixels on a screen are also described this way. The "address" or location of a
pixel is given in terms of an X,Y pair, where X defines the pixel's horizontal loca
tion and Y its vertical. Manipulation of the drawings on a screen, therefore, is
done by thinking of the screen as a manifestation of one of the coordinate sys
tems used in analytic geometry. The best known of these is the rectangular, or
Cartesian coordinate system, named after the French mathematician Rene Des
cartes.

Cartesian Coordinates

In Cartesian coordinates, a point X,Y is located according to a pair of ruled axes,
as shown in the illustration.

It is clear that a line can be described uniquely by two points X1,Y1 and
X2,Y2 . In geometry, a line is thought of as extending infinitely, but in computing
it is more useful to think of the points X1,Y1 and X2,Y2 as the ends of a line seg
ment.

There are several ways to express the equation of a line, including the two
point form :

y - Yl X - Xl
Y2 - Yl X2 - Xl

X - Xl
or y = X2 - Xl (Y2 - Yl) + Yl

Given a value X, its corresponding Y-value can be found by solving the right-hand
side of the equation . Given a vertical line, X2 is equal to X1, so X2 - X1 = 0.
Since the expression above requires division by X2 - X1, this equation is not use
ful for vertical lines. In this case it is only possible to find X in terms of Y:

y - Yl
X = y

2
_ Yl (X2 - Xl) + Xl

which will not work for horizontal lines.

Circles

A circle drawn in Cartesian coordinates, like the one we see here, has the equa
tion X2 + Y2 = R2 if its center is at the point 0,0, the "origin."

To find the X-value of a point on the circle given a Y-value,

x2 = R2 _ y2

or x = (R2
- Y2)

•Y

- I :3
3:2

- x •X

-2 •• -3
lt-2

-Y

Cartesian coordinates on a pair of 111

axes

Drawing a Circle

203 Appendix

It is clear that for a given Y there are two values of X, namely, Y (R2 - Y2)

and -Y(R2 - Y2) . Furthermore, if Y is greater than R, the expression R2 - Y2 is less
than zero. Square roots of negative numbers are undefined, so obviously the X
values of a circle exist only for Y-values in the range - R < = Y < = R.

If the circle's center is not at the origin but instead is at the point XO,YO, the
equation becomes

(X - X0) 2 + (Y - Y0) 2 = R2

or x = XO ::!: v (R2 - (y - YO) 2)

It is not natural to think of drawing a circle from top to bottom by evaluat
ing the above equation . Using a compass, a circle is drawn by setting the point at
the center, opening the compass to the radius R and sweeping it 360 degrees.
This suggests the polar coordinate system, shown in the drawing, which is de
scribed in terms of R and 8, a radius and an angle, rather than X and Y.

8

Polar coordinate method of determining
points on a circle

Describing a point on a circle m terms of
Cartesian coordinates

A point on a circle at center XO,YO can be described uniquely by a given R
and 8 and can be transformed to Cartesian coordinates, as illustrated here.

The equations are derived from the right-triangle relationships shown in the
drawing of a right triangle, from which it is clear that 6.Y = R sin(B) and ilX = R
cos(IJ), so the point where the line R touches the circumference of the circle is XO + 6.X,
YO + tJ. Y or, as illustrated below,

Xl XO + Rcos(8)
Yl = YO + Rsin(8)

Relationships of sine, cosine, and tan
gents in a right triangle

XO, YO

XI and Y1 can be found from XO, YO, R
and 8 X1 = XO+ R* cos(8) YI = YO+ R*
sin (8)

204 Appendix

Consider the equation of the line R having the endpoints XO,YO and X1,Y1 ,
illustrated below.

AX Xl - XO
and AY Yl YO

Polar Coordinates

It is easy to convert Cartesian coordinates to polar by finding 8:

t:.Y
tangent(8) = t:.X

Yl - YO
Xl - XO

so (} is the angle whose tangent is (Y1 - YO)/(X1 - XO), written

Yl - YO
8 = arc tan Xl _ XO

or 8 = tan 1 Yl - YO
Xl - XO

As before, the arctangent function is not defined where X1 = XO, that is, at
90 degrees or 270 degrees, where as 8 approaches the angle, X1 approaches XO,
so that X1 - XO is zero at these points, illustrated below.

The arcsine and arccosine functions are defined for all values of 8, because R
is always greater than zero.

Xl - XO
8 arccos

R

8
. Yl - YO

arcsin
R

Most personal computers include the ACS (arccosine), ASN (arcsine), and ATN
(arctangent) funct ions, but they are only defined for a " principal angle." If you
draw a line on a piece of paper and you ask, "Relative to the horizontal, at what
angle is th is line?" there are two answers, as demonstrated here: one angle be
tween 0 degrees and 180 degrees; the other between 180 degrees and 360 de
grees. For practical use it is necessary to get an angle 8 between 0 degrees and
360 degrees depending on which end of the line is at the point XO,YO.

A typ ical ACS function will return an angle between 0 degrees and 180 de
grees, an ASN between - 90 degrees and 90 degrees, and an ATN between - 45

The relationship between polar and Car
tesian representation is seen here.
6X = XI - XO, A Y = YI - YO in Carte
sian coordinates, X1 = XO + AX, YI =
YO + A Y in polar coordinates
XI = XO + R* cos (bu), YI = YO t R'
SIN (8) so tlX = R* COS (bu) and ~Y=
R* sin (8)

a:
..... I ,..- JG\

XO.YO \._XI

As 0 approaches 90° or 270°, XI ap
proaches XO. At 90 and 270, XI ana •
are the same point, so AX = 0. Smee
tangent (0) = A YIO and are therefate
underfined since division by zero ts nc·
possible

-r:XI ..- '
/ \

XO,Y~i 8 I \1 ..._
:0

I

Two answers to the question, "At w •
angle is this line relative to the honzon
tal?"

O.YO

.YI

Mienever Y1 < YO, that is, Y1 is
oe/ow" YO, then 0 (} 180 the arccosine

rootme will return an incorrect value in
~1s case.

205 Appendix

degrees and 45 degrees, usually in radians, not degrees. (It is easy to convert
from radians to degrees- there are 27T rad ians in 360 degrees, so to convert,
degrees = radians*180/7T where 1T = 3.14159)

Something must be done about the principal angle phenomenon. If t he ACS
function returns an angle between 0 degrees and 180 degrees, the principa l
angle is correct unless Y1 < YO.

When Y1 < YO, for example as illustrated below, t he angle returned by t he
ACS function will be a , between 0 degrees and 180 degrees such that
(J = (360 - a).

To get (J between 0 and 360 degrees, the algorithm is

IF Yl >= YO THEN(} = ACS ((Xl - XO)/R)
ELSE(} = 2PI - ACS ((Xl - XO)/R)

wh ich yields the value (J in radians. To be perfectly safe, it may be advisable t o
avoid the division error if R = 0 by using the algori t hm

IF R = 0 THEN (} = R
ELSE IF Yl >= YO THEN 0 = ACS ((Xl - XO)/R)

ELSE(} = 2PI - ACS ((Xl - XO)/R)

To convert (J to degrees,

IF R = 0 THEN (} = R
ELSE IF Yl> = YO THEN 0 = ACS ((Xl - XO)/R) * 180/PI

ELSE(} = (2PI - ACS ((Xl - XO)/R)) * 180/PI

Three-Dimensional Transformations
In computer simulations it is necessary to deal w ith three-dimensional objects and
to project them onto a two-dimensional screen in a real istic way. A point may be
represented in a three-dimensional Cartesian coord inate system by three numbers
X, Y, and Z, representing the point's posit ion in space relative to the three axes.
An example is given here, where P = 2,3,4.

In spherical coordinates, th is point can be represented by a radius R and two
angles (J and cp , as shown.

s 0,0,0

A point represented in the three
dimensional Cartesian coordinate system

Three-dimensional spherical coordinate
system

206 Appendix

The same point can be represented in cylindrical coordinates by the polar val
ues in the X-Y plane Rand ()and the Z-value.

Perspective

Eight points are needed to define a cube in three-dimensional space. A cube hav
ing a side of length two units, situated two units behind the X-Y plane consists
of the following points :

x y z
0 0 2
2 0 2
2 2 2
0 2 2
0 0 4
2 0 4
2 2 4
0 2 4

Imagine a cube made out of wire. A piece of string can be attached to each
point, or node, and stretched so that the strings are parallel to each other. If
they are passed through holes in a piece of cardboard, the holes would represent
a projection of the 3-D cube onto the 2-D board. Then if the appropriate holes
are connected with pencil lines, an identifiable 2-D representation of a cube
would appear. This is a parallel projection, which unlike a real-world view does
not take into account that objects appear smaller as they get farther away from
the viewer.

To make a perspective view of the cube, the strings must come together at a
point called the "viewing point" or "eye point." It is necessary to find where
each of the projection lines passes through the viewing plane, in this case the dis
play screen of the computer.

Refer to the pair of drawings illustrating the comparison of parallel projec
tion with perspective projection.

And then study the pair of diagrams illustrating the process of determining
the values of X and Y, projected points on a screen.

Looking toward the origin along the X-axis, the height at which the ray from
the point P(x,y,z) to the eye point passes through the viewing plane is seen as Ey +
Y, where Ey is the Y-value of the eye point and Y is unknown . However, the tri
angles EPA and ECB are similar, so the ratio

Ez Ez + Zp
Y - Yp - Ey

can be solved for Y, giving

Yp - Ey
* Ez

Ez + Zp
y

So the Y-coordinate of the projected point is Y + Ey. To find the X-coord i
nate, we can look down the Y-axis toward the origin and see where

2,2,2

+
Representing a cube in a three
dimensional coordinate system

Parallel projection

Perspective projection

~termining the Y-value of a projected
• nt m a three-dimensional figure

Jl>termining the X-value of a projected
:ximt m a three-dimensional figure

207 Appendix

y

E.,.

z
'

E-z~~~-"'~-z;---:

x

z

z;---:

Xp - Ez
X = * Ez Ez + Zp

so the X-coordinate of the projected point on the screen is X + Ex
In both the above diagrams, the values Ex, Ey, and Ez are the respective X, Y, and
Z values of the eye point and Xp, Yp, and Zp are the X, Y, and Z values of the
point P(x,y,z) . Performing this transformation on every point in a three-dimen
sional figure will yield a perspective view of the figure on the screen.

E

w

A B

A trapezoid

Notes and Derivations

210 Notes and Derivations

1. From Chapter 2, Software Tools, Arcs Section

If logical variables are used, ellipses and circles may be drawn using a shorter sub
routine :

ELLIPSE REVISED PROGRAM CODE

I = Al
MOVE XO+ Ml*COS(I),YO + M2*SIN(I)

REPEAT
I = I + (Al < A2) - (Al > A2)

IF (I > A2 AND Al < A2) OR (I < A2 AND Al > A2) THEN
I = A2

DRAW XO+ Ml*COS(I),YO + M2*SIN(I)
UNTIL I = A2

ELLIPSE REVISED CODE DESCRIPTION

Set I equal to Al .

Move to the beginning of the elliptical arc.

Add 1 to I if A 1 is less than A2 and subtract 1 from I if A 1 is greater than A2.

If I has exceeded A2 from either direction, set I equal to A2.

Draw an arc increment.

If I is not equal to A2, continue at line 370.

Sequence
Number

350
360

370
380

390
400
410

420
430

Sequence
Number

350

360

380

390

420

430

2. From Chapter 5, Ballistic Trajectory Games, Cannon Shooting
Game Section

After rotation through the angle er, the original point X',Y ' becomes X,Y accord
ing to the rotation formulas :

X = X' * cos(a) - Y' * sin(a)
Y = X' * sin(a) + Y' * cos(a)

The coordinates of the center of the cannon mouth are 12,3 or 5.5, 1 after
subtracting the center of rotation.

so X = 5 .5 * cos(a) - 1 * sin(a)
Y = 5 .5 * sin(a) + 1 * cos(a)

To find the resulting point, the center of rotation must be added, giving

XO 6 .5 + 5.5 * cos(a) sin(a)
HO = 2 .0 + 5.5 * sin(a) + cos(a)

211 Notes and Derivations

3. From Chapter 5, Ballistic Trajectory Games, Cannon Shooting
Game Section

The top of the trajectory H is at

H = HO + VO * Ttop - G * Ttop 2 / 2

since Ttop = VO I G,

H = HO + VO * VO / G - G * VO j 2 / Gj 2 / 2
or H = HO + vo 2 / G - (VO 2 / G) / 2
which is H = HO - VO j2 / (2 * G)

4. From Chapter 6, Racetrack Games, Horserace Program Code
Section
Lines 2430 through 2438 may be replaced by a single line if logical variables are
used. In the statement H(I) = H(I) + (7T/36*RND(- 2)*(P(l)*F + (F = 0))), the horse's
angular position H(I) is increased by 7T/36 times a random number between 0 and
1, times (P(l)*F + (F = 0)). If F = 1, the expression (F = O) is false, giving it a value
of 0, so the value is (P(I)* 1 + O), or P(I), the odds on the horse. If F = 0, the
horses have not reached the point where the odds apply. The value of
(P(l)*F + (F = O)) for F = 0 is (P(l)*O + 1), or 1, so the angular increment is
7T/36*RND(- 2) times either P(I) or 1.

5. From Chapter 7, Maze And Fantasy Games, Solve A Maze
Program Code Section

Here is a very good example of the saving of memory space possible when logical
variables are used. There are several places in the maze programs where similar
results are possible. In this case, lines 1220 through 1780 can be replaced by:

IF W < 3 OR W = 4 OR W = 5 OR W = 8 OR W = 10 THEN
X = X + (D = 2) - (D = 8)
Y = Y + (D = 1) - (D = 4)

IF W = INT(W/3)*3 AND W > 0 THEN
X=X+((W=9)-(W=3))*(D=l)+((W=l2) - (W=6))*(D=4)
Y=Y+((W=6) -(W=3))*(D=2)+((W=l2)-(W=9))*(D=8)
J =(8*(W=3)+2*(W=9))*(D=l) +(4*(W=3) +(W=6))*(D=2)
D=J +(8*(W=6)+2*(W=l2))*(D=4)+(4*(W=9)+(W=l2))*(D=8)

IF W = 7 OR W = 11 OR W = 13 OR W = 14 THEN
X = X- (W = 7) + (W = 13)
Y = Y - (W = 11) + (W = 14)
D = 8*(W = 7) + 4*(W = 11) + 2*(W 13) + (W 14)

1220
1230
1240
1250

1260
1270
1280
1290
1300
1310

1320
1330
1340
1350
1360

212 Notes and Derivations

6. From Chapter 7, Maze And Fantasy Games, The Maze Runner's
View Of The Maze Section

To find X2, we have to know the equation of the line through O,YO and X1 ,Y1 .
Given two points x1 ,y1 and x2,y2 the equation of the line through them is

y - yl

y2 - yl
X - xl
x2 - xl

So the equation of the line through O,YO and X1,Y1 is

Y - YO
Yl - YO

x - 0

Xl - 0

Substituting Y2 for Y will give X2:

Y2 - YO
Yl - YO

X2
Xl

or
Y2 - YO

X2 = * Xl Yl - YO

7. From Chapter 7, Maze And Fantasy Games, The Maze Runner's
View Of The Maze Section

It is first necessary to obtain the equations of the two lines:

and

X + Xl
Xl

X - Xl
- Xl

y - Yl
Y2 - Yl

Y - Yl
YO - Yl

Isolating X from each equation,

y - Yl
x = Y2 - Yl * Xl - Xl

and
y - Yl

* (- Xl) x =
YO - Yl

+ Xl

Now, since the left sides of these equations are equal to each other, so are
the right sides. They may be combined into one equation with Y as the un
known . The point at which they are equal is of course the point at which the
two lines intersect, so Y is in fact Y3. After multiplying and separating terms,

Xl*Yl - Xl*Y3 Xl*Yl Xl*Y3
Y2 - Yl

--- - Xl = + + Xl
Y2 - Yl YO - Yl YO - Yl

Isolating Y3,

Xl Xl
Y3 * + ---

Y2 - Yl YO - Yl

and dividing,

Xl *Yl
--- + 2*Xl +

YO - Yl
Xl*Yl

Y2 - Yl

y3 = 2*Xl + Xl*Yl* {l/YO - Yl) + l/(Y2 - Yl))
Xl * (l/(Y2 - Yl) + l/(YO - Yl))

213 Notes and Derivations

2
or Y3 (l/(Y2 - Yl) + l/(YO - Yl)) + Yl

2*((Y2 - Yl) +(YO - Yl)) + Yl or Y3

and X3 = Y3 - Yl * Xl - Xl
Y2 - Yl

8. From Chapter 8, Outer Space Games, Applying Gravity
Section

The tangent of the angle B is (Yn - YO)/(Xn - XO). Most BASIC interpreters
have an arctangent function ATN, but unfortunately these functions typically re
turn a principal value, that is, a number between - 45 degrees and + 45 degrees,
or sometimes between >-90 degrees and <+ 90 degrees. An angle between 0 ·
degrees and 360 degrees, or between 0 and 27r radians, is needed, defined for all
values of XO, YO, Xn, and Yn . The arccosine function is so defined, but most ACS
routines return a value between 0 degrees and 180 degrees: that is, whenever
Yn >= YO the principal angle is correct, but for Yn < YO the angle is actually 360
degrees minus the ACS value.

To get the proper angle of the vector, then, the equation is

Xn - XO Xn - XO
8 =(ACS())*({Yn - YO) >= 0) + (360 - ACS())*{{Yn - YO) < 0)

r r

where r = SQR((Xn - XO) j 2 + (Yn - YO) j 2)

9. From Chapter 10, Computer-Aided Design, Deletions, Section

To find the length of P it is useful to remember that the area of a triangle is
one half the base times the height. The base is the line FD and the height the
line EQ whose length P is to be determined. The area of the triangle DEF can be
calculated by adding the areas of the trapezoids ABEF and BCDE and subtracting
the area of the trapezoid ACDF. Each trapezoid in this problem consists of a rec
tangle with a triangle on top : for example, the trapezoid ABEF, shown here.
The line AB is Xe - X1 in length, AF = Y1 and WE = Ye - Y1 , so its area is

(Ye - Yl)*{Xe - Xl)/2 + {Xe - Xl)*Yl

or (Xe - Xl)*(Ye + Yl)/2

The area of BCDE is (X2 - Xc)*(Y2 + Yc)/2 and of ACDF, (X2 - X1)* (Y2 + Y1)/2 so
the area of DEF is

(Xe - Xl)*(Ye + Yl)/2 + (X2 - Xe)*(Y2 + Ye)/2 - (X2 - Xl)*{Y2 + Yl)/2

or ((Xe - Xl)*(Ye + Yl) + (X2 - Xe)*{Y2 + Ye) - (X2 - Xl)*(Y2 + Yl))/2

The length of the base of the triangle DEF is SQR((X2 - X 1) j 2 + (Y2 - Y1) j 2),
so

((Xe - Xl)*(Ye + Yl) + (X2 - Xe)*(Y2 + Ye) - (X2 - Xl)*(Y2 + Yl))
p = --'~~~--'----'--~~----'-~-'-~~__;_----'-~~--'~---'-~~~.:........:'--~~-'-'-

SQ R ((X2 - Xl)l 2 + (Y2 - Yl) 2)

214 Notes and Derivations

The coordinates Xq,Yq of the point Q may be found by solving simultane
ously the equations of the lines FD and EQ. For the line FD,

Xq - Xl
X2 - Xl

Yq - Yl
Y2 - Yl

or
Xq - Xl

Yq = X2 _ Xl * (Y2 - Yl) + Yl

Since EQ is perpendicular to FD, the slope of EQ is - 1/M if M is the slope of
FD. Rewriting the equation of FD into the form

Xq - Xl
Yq = X

2
_ Xl (Y2 - Yl) + Y1

X Y2 - Yl _ Xl Y2 - Yl
q X2 - Xl X2 - Xl

The slope M of FD is (Y2 - Y1)/(X2 - X1), so the slope of EQ is
(X1 - X2)/(Y2 - Y1) and the equation of EQ is

Xl - X2
Yq - Yl = y

2
_ Yl (Xq - Xe)

Xl - X2
or Yq = Y2 - Yl (Xq - Xe) + Yl

so Xq may be found from the equation

Xl - X2 Xq - Xl
y2 _ Yl (Xq - Xe) + Ye = X2 _ Xl (Y2 - Yl) + Yl

to be

Xq

Xl Y2 - Yl X2 - Xl
X2 - Xl + Xe Y2 - Yl

+ Ye - Yl

Y2 - Yl X2 - Xl
X2 - Xl

+
Y2 - Yl

and Yq may be found from the equation of EQ by substituting the now-known
value of Xq.

Font Tables
Stick

REM
DATA II 11 ,3, 4
DATA - 1 , "A" , 3,4
DATA 1,3,0,0,3,8 , 6 , 0
DATA 1,2,1,2.333,5,2 . 333
DATA -l, 11 8 11 3,4
DATA l , ll , 0,4,4,4,6,3,6,1,4 , 0,0 ,0,0,8 , 4 ,8,6 ,7, 6 , 5,4,4
DATA - 1."C",3,4
DATA 1,8,6 , 6 , 4 , 8 , 2 , 8 , 0 , 6 , 0,2 ,2, 0 , 4 , 0 , 6 , 2
DATA - 1,"D",3,4
DATA l , 7 , 0 , 0 , 4,0,6 , 2,6 , 6 , 4,8 , 0,8,0,0
DATA - 1 . "E" ,3,4
DATA 1 , 4 , 6 ,0,0, 0 , 0 ,8,6 , 8
DAT A 1. 2 , 0 . 4 . 4. 4
DATA - 1,"F'",3 , 4
DATA 1,3 ,0,0,0,8 , 6,8
DATA 1,2,0,4,4,4
DATA - 1,"G" , 3 ,4
DATA 1,10,6,6,4,8,2,8,0,6,0 , 2 , 2 , 0 , 4 , 0 , 6 , 2 , 6 , 4 , 4 ,4
DATA -1, "H" , 3 , 4
DATA 1,2,0,0.0 , 8
DATA 1,2 , 0,4 , 6 , 4
DATA 1,2 , 6,0,6 , 8
DATA - 1 , "I".l.5,4
DATA 1,2,0,0,3,0
DATA 1 , 2,1 .5 , 0 . 1 . 5 , 8
DATA 1 ,2, 0,8 , 3 , 8
DATA - 1, "J" ,3 ,4
DATA 1 ,2, 0 ,8,6,8
DATA 1,6,4,8 , 4,2.3.0 , 1 ,0,0. 2 ,0, 4
DATA - 1 ," K" , 3.4
DATA 1 ,2, 0 , 0,0 , 8
DAT A 1. 2 , 0 , 3 . 6 , 8
DATA 1,2,1.167,4,6 , 0
DATA - 1,"L" ,3.4
DATA 1 , 3 , 0 , 8 ,0, 0 , 6 , 0
DATA - l , "M" ,3. 5 , 4
DATA 1,5,0,0,0,8,3 . 5,0 , 7 , 8 , 7,0
DATA - 1 , "N" ,3, 4
DATA 1,4,0 ,0 ,0, 8,6.0 ,6, 8
DATA - 1 , "0",3 , 4
DATA 1,9 , 2 ,0, 4 , 0,6 , 2,6,6 , 4 , 8 , 2 ,8,0,6,0,2 , 2,0
DATA - 1,"P",3 , 4
DATA 1 , 7,0 , 0 , 0 ,8, 4,8 ,6,7, 6 ,5,4, 4 , 0,4
DATA - 1 , "Q" ,3, 4
DATA 1 , 9,2,0 , 4 , 0 , 6 , 2 , 6 , 6,4 .8.2,8. 0,6 , 0,2,2 , 0
DATA 1,2 , 3,2 ,6,0
DATA - 1 ." R" , 3 , 4
DATA 1 , 7,0 , 0 ,0,8, 4 , 8 , 6 ,7,6,5,4,4 , 0 , 4
DATA 1.2 , 3,4,6,0
DATA - 1 , "S" , 3 , 4
DATA 1 , 10 , 0 , 2 ,2, 0 , 4,0 , 6 , 2 , 4 , 4 ,2, 4 , 0 , 6 ,2, 8,4,8 , 6 , 6

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010

216 Font Tables

DATA - 1 , "T" , 3 , 4 1020
DATA 1,2 , 0 ,8,6 , 8 1030
DATA 1 , 2 , 3 , 0 , 3 , 8 1040
DATA - 1 , 11 U11 , 3 , 4 1050
DATA 1 , 6 , 0 , 8 , 0,2 , 2 , 0,4,0 , 6 , 2,6 ,8 1060
DATA - 1 , "V" , 3,4 1070
DATA 1 , 3 , 0 , 8 , 3 , 0 , 6 , 8 1080
DATA - 1 , "W" , 4 ,4 1090
DATA 1 , 5 , 0 ,8 , 2 , 0 , 4 , 8 , 6 , 0 ,8 ,8 1100
DATA - 1 , "X" , 3 , 4 lllO
DATA 1,2,0,0 ,6,8 1120
DATA 1 , 2 , 0 , 8 , 6 , 0 ll30
DATA - 1 , "Y" , 3 , 4 ll40
DATA 1 , 3 , 0 ,8 , 3 , 3 , 6 , 8 ll50
DATA 1 , 2 , 3,3,3 , 0 ll60
DATA - 1 , "Z" , 3 , 4 ll70
DATA 1,4,0 ,8 , 6 , 8 , 0 , 0 , 6 , 0 ll80
DATA - l , 11 0" , 3 ,4 ll90
DATA l , 9 , 2 , 0 ,4 , 0 , 6 , 2,6,6 , 4 , 8 , 2 , 8 , 0 , 6 , 0 , 2 , 2 , 0 1200
DATA - l . "l" , 0 . 25 , 4 1210
DATA 1 , 3 , 0 . 5 , 0 , 0 . 5 , 8 , 0 ,7 1220
DATA - 1 , "2" , 3 , 4 1230
DATA 1 ,7 , 0 , 6 , 2 ,8 , 4 , 8 , 6 , 6 , 0,2 , 0 ,0 , 6 , 0 1240
DATA - 1 , "3" ,3,4 1250
DATA 1 ,8 ,0 ,8 , 6,8,3 , 5 , 6,4,6 , 2 , 4,0 , 2 , 0 . 0 , 2 1260
DATA - 1 , "4" , 3 , 4 1270
DATA 1,6 ,4 ,0,4 ,8 , 3 , 8 ,0,3,0,2 , 6 , 2 1280
DATA - 1 , "5" , 3 , 4 1290
DATA 1 , 9 , 6 , 8 , 0 ,8,0 ,5,4 ,5,6,4.6,2 , 4 , 0 . 2.0,0 , 2 1300
DATA - l, 11 6 11 , 3 , 4 1310
DATA 1,12 , 6 ,6 ,4 ,8 , 2 ,8 , 0 , 6 , 0 , 2 , 2 . 0 ,4 , 0 , 6 . 2 , 6 , 3,4 , 5 , 2 , 5 , 0 , 3 1320
DATA - 1."7",3 , 4 1330
DATA 1 , 5 , 0 , 8 , 6 ,8 , 6 , 7 , 0 . 2 , 0 , 0 1340
DATA - 1 , "8" ,3 , 4 1350
DATA 1 , 12 , 2 , 4 , 4 , 4 , 6 ,6,4,8 , 2 ,8 , 0.6 , 2 ,4,0,2,2 , 0 , 4,0 ,6,2 , 4 , 4 1360
DATA - 1 , "9" '3 ,4 1370
DATA 1 , 12 , 0,2.2 ,0,4 , 0 , 6 , 2 ,6.6 , 4 , 8 , 2 . 8 , 0 , 6 , 0 , 5 , 2,3,4,3 , 6 , 5 1380
DATA - 1 , II! II , 3 , 4 1390
DATA 1,2,1.5 , 8 , 1.5 , 2 5 1400
DATA 1 , 2 , 1 . 5 , 1,1.5 , 0 1410
DATA - 1, 111111 , 3 , 4 1420
DATA 1 ,4,2,6 , 1 .5,8,2.5,8.2.6 1430
DATA 1 , 4 , 4 , 6 , 3 . 5 ,8 , 4 . 5 ,8 , 4 , 6 1440
DATA - 1 , "#" , 3 , 4 1450
DATA 1,2 , 0 , 2 . 5 , 5 . 2 .5 1460
DATA 1 , 2 , 4 , 1 , 5 , 7 1470
DATA 1 , 2 , 6,5 . 5 , 1 , 5 . 5 1480
DATA 1 , 2,2 .7 , 1 , l 1490
DATA - 1 , "$ 11 , 3,4 1500
DATA 1.2 , 2.0,2 ,8 1510
DATA 1 , 2 , 4 ,8,4.0 1520
DATA 1 . 10 , 1 , 2 , 2 , 1 , 4 , 1 , 5 . 2 . 5 , 4 ,4 , 2 ,4 , l , 5 . 5 , 2 ,7.4,7 , 5 , 6 1530
DATA - 1. "%" . 3 ,4 1540
DATA 1.2 , 1 , 0 , 5 ,8 1550
DATA 1 , 5,1,7 , 2,7,2 , 6,1,6 . 1,7 1560
DATA 1,5.4 , 1 ,5,1 . 5 , 2 .4.2 , 4 , l 1570
DATA - 1 . "&" , 3 .4 1580

217 Font Tables

DATA l , 9,6,0 , 0,6,2 ,8 , 3 , 6 , 0 , 3 , 0 , l , l ,0 , 3 , 0 , 6 , 3
DATA - 1 , '"" .3,4
DATA 1,4 , 3,6 , 2 .5,8,3 . 5 ,8 ,3,6
DATA - 1 , "(" , 3 ,4
DATA 1,6,4 , 8,3,7 , 2 , 5 , 2 ,3.3 , 1 ,4.0
DATA - 1 , ")",3,4
DATA 1,6,2 , 8 , 3 , 7 , 4 , 5,4 , 3 , 3 , 1 , 2 . 0
DATA - 1,"*" , 3,4
DATA 1,2 , 1 , 2 , 5 , 6
DATA 1 , 2 , 3,7 , 3 , l
DATA 1 , 2,1 , 6,5,2
DATA - 1 , ":",3 , 4
DATA 1 , 5 , 3,1 .5,3 .5,2 , 3 , 2 .5 , 2 .5 , 2 , 3 , 1.5
DATA 1 , 5 , 3,4 . 5 , 3.5,5,3 , 5.5,2.5 , 5 , 3 ,4.5
DATA - 1 , "=" , 3,4
DATA 1 , 2,1,3,5,3
DATA 1, 2. 1, 5 , 5. 5
DATA - 1 , "-",3,4
DATA 1 , 2 , 1,4 , 5 , 4
DATA - 1 , " @, " , 3,4
DATA 1,10,4 , 0 ,4,3,2,3,2,0 , 4 ,0,6,2,6 , 4 , 4 ,6,2 , 6 , 0 , 4
DATA - 1 . " +",3 , 4
DAT A 1 , 2 , 5 , 4, 1 , 4
DATA 1 , 2 , 3 , 6 , 3 , 2
DATA - 1 , "]" , 3,4
DATA 1 , 4 , 2 , 8,4,8,4,0 , 2 , 0
DATA - 1 , ";" , 3 , 4
DATA 1 , 5,3 , 4 .5,3 .5,5,3 , 5 . 5 , 2 . 5 , 5 , 3 , 4 . 5
DATA 1 , 5 , 2 .5,1 , 3.5,2,3 , 2 . 5 , 2 . 5 , 2 ,3,1 . 5
DATA - 1 , ",".3 , 4
DATA 1,5 , 2 . 5, - 0 . 5 , 3.5,0 .5 , 3 , 1 , 2 .5.0 . 5 ,3,0
DATA - 1 , " . ",3.4
DATA 1,5 , 3 , 0 , 3 .5,0 .5 , 3 , 1.2 . 5 , 0 .5 , 3.0
DATA - 1 , "?" , 3 , 4
DATA 1 , 2 , 3 , 0 , 3 , l
DATA 1,7 , 3 , 2 .5,3 , 4 , 4 , 4 , 6 ,6 , 4 , 8 , 2 , 8 , 0 , 6
DATA - 1, "{" , 3.4
DATA 1,9 , 4 , 8,3,7 .5,2.6,2,4 .5,1 , 4 , 2 , 3 . 5 , 2,2 , 3 , 0 . 5 ,4 , 0
DATA - 1 , "}" , 3 , 4
DATA 1,9,2,8,3,7.5,4 , 6 , 4 , 4 .5 , 5 , 4,4 , 3.5 , 4 , 2 , 3 , 0 . 5 , 2,0
DATA - 1 . "[".3 ,4
DATA 1 ,4,4,8,2,8,2,0 , 4,0
DATA - 1 , " 1

" , 3 ,4
DATA 1 , 4 , 2,8 , 4 , 6,2 .5,8 , 2 ,8
DATA - 1 , "l" , 3 , 4
DATA 1 , 2 , 3,0.3.8
DATA - 1 . "-" , 3,4
DATA 1.2.0 , 0,6 , 0
DATA - 1. 11 "' 11 , 3 , 4
DATA 1 , 3 , 1 .5,5 , 3 , 8 , 4 .5.5
DATA 1 , 2 , 3 , 0,3 ,8
DATA - 1 , " <" ,>3 , 4
DATA 1 , 3 , 5 , 7 , 1 ,4 , 5 , 2
DATA - 1, 11 > 11 ' 3'4
DATA 1 , 3 , 1,7 , 5 , 4,1,2
DATA - 1."/" .3,4
DATA 1,2,1,0 , 5 ,8

1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150

218 Font Tables

DATA -1. "a",3,4
DATA 1,3,0 , 0,3,8,6,0
DATA 1,2,1 , 2.333,5.2 .333
DATA - 1 ," b" , 3 , 4
DATA l,ll,0 , 4,4,4 , 6,3.6 , l,4.0,0,0,0,8,4,8,6,7,6,5,4,4
DATA - 1,"c",3,4
DATA 1,8,6,6,4,8,2,8,0,6,0,2,2,0,4,0,6,2
DATA - 1,"d",3,4
DATA l,7,0,0,4,0,6,2,6,6,4,8,0,8,0,0
DATA -1,"e" , 3 , 4
DATA 1,4 , 6,0,0 ,0, 0 ,8,6,8
DATA 1,2,0,4,4,4
DATA -1," f".3,4
DATA 1,3 , 0 , 0 , 0 , 8,6 , 8
DATA 1,2,0,4,4,4
DATA -1, "g",3,4
DATA 1,10 , 6 , 6,4,8,2,8 , 0,6 , 0.2,2.0,4,0,6,2,6,4,4,4
DATA -1, "h",3,4
DATA 1,2,0,0 , 0 ,8
DATA 1,2 , 0 , 4,6,4
DATA 1,2,6,0,6,8
DATA - 1,"i" ,l. 5,4
DATA 1,2,0 , 0,3 , 0
DATA 1,2 ,1. 5 ,0,1. 5,8
DATA 1,2,0,8,3,8
DATA - 1 . "j" , 3 , 4
DATA 1,2 , 0 , 8,6 , 8
DATA 1,6 , 4 ,8,4 , 2,3,0,1 , 0 , 0,2 , 0 , 4
DATA - 1 , "k",3,4
DATA 1,2,0 , 0,0 ,8
DATA 1,2 , 0 , 3,6 , 8
DATA 1,2,1.167,4.6,0
DATA -1, "l" , 3 , 4
DATA 1 ,3, 0 , 8 ,0,0, 6,0
DATA - l , "m",3 . 5 , 4
DATA 1,5 , 0,0 ,0, 8 , 3 .5,0,7,8,7 , 0
DATA -1. "n",3,4
DATA 1,4,0,0,0,8,6.0.6,8
DATA - 1,"o" , 3,4
DATA 1,9,2,0,4,0,6,2,6,6,4,8,2,8,0,6,0,2,2,0
DATA -1."p", 3,4
DATA 1 , 7 , 0 , 0 , 0,8,4 ,8,6,7,6,5,4 ,4,0,4
DATA -1, "q" , 3 , 4
DATA 1,9,2,0,4,0,6,2,6,6,4,8,2,8,0,6,0,2,2.0
DATA 1 , 2 , 3,2,6 , 0
DATA -1,"r", 3 , 4
DATA l,9,2,0,4,0.6,2,6,6,4.8,2.8,0,6,0,2,2,0
DATA 1,2,3,4,6,0
DATA -1."s", 3 ,4
DATA 1,10,0,2,2,0,4,0,6,2,4,4,2,4,0,6,2.8,4,8,6.6
DATA -1. "t" ,3, 4
DATA 1,2,0,8,6,8
DATA 1,2,3,0,3,8
DATA - 1,"u" ,3.4
DATA 1,6,0,8,0,2,2,0,4,0,6,2,6,8
DATA -1, "v" , 3 ,4
DATA 1 , 3,0,8 , 3 , 0 , 6,8
DATA -1,"w", 4 , 4

2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730

219 Font Tables

DATA 1,5,0,8 , 2 , 0 , 4 ,8,6 , 0 , 8 , 8 2740
DATA - 1 , 11 x 11 ,3,4 2750
DATA 1 , 2 , 0 , 0 , 6 , 8 2760
DATA 1 , 2 , 0 , 8,6 , 0 2770
DATA - 1 , 11 y 11 ,3,4 2780
DATA 1.3 ,0, 8 , 3 , 3 , 6 , 8 2790
DATA 1 , 2 , 3 , 3 , 3 ,0 2800
DATA - 1, 11 z 11 , 3,4 2810
DATA 1 , 4 , 0 ,8 , 6 , 8 , 0 , 0 ,6 ,0 2820
DATA - 999 2830

Leroy

REM 500
DATA II II , 3,4 510
DATA - l , 11 A''.3 . 4 520
DATA 1 , 3,0 , 0 , 3 , 8 ,6,0 530
DATA 1,2,1,2.333,5,2.333 540
DATA - 1 , 11 8 11 , 3,4 550
DATA 1,4,4 ,0,0,0 ,0, 8 , 4,8 560
DATA 1,2 ,0, 4 , 4,4 570
DATA 2 , 4 , 2 , 2 , 2 ,-90,90 580
DATA 2 , 4 , 6 , 2 , 2 ,-90 , 90 590
DATA - l, 11 C11 ,3,4 600
DATA 2,4,4,4,4,56 , 304 610
DATA - 1 , 11 D11 , 3,4 620
DATA 1,4 , 4,8 , 0,8 ,0,0 , 4 , 0 630
DATA 2 , 4 , 4,2 ,4, - 90 , 90 640
DATA - 1 , 11 E11 ,3,4 650
DATA 1,4 , 6,0,0 , 0 ,0, 8 ,6,8 660
DATA 1 ,2,0, 4,4 , 4 670
DATA - 1 , 11 F' 11 , 3,4 680
DATA 1 , 3 , 0,0 , 0,8 , 6 ,8 690
DATA 1.2.0,4,4 , 4 700
DATA - 1 , 11 G11 . 3 , 4 710
DATA 2 , 4,4 , 4 , 4 , 56 , 304 720
DATA 1,3,4 ,4 , 6,4 , 6,0 730
DATA - l , 11 H11 ,3 , 4 740
DATA 1 , 2 ,0,0 , 0,8 750
DATA 1 , 2 , 0 ,4 , 6 , 4 760
DATA 1,2 ,6,0,6 ,8 770
DATA -l, 11 I 11 , l . 5 , 4 780
DATA 1,2,0,0,3,0 790
DATA 1 ,2,1. 5 , 0 ,1.5, 8 800
DATA 1 , 2 , 0 ,8 , 3 ,8 810
DATA - l , 11 J 11 , 3 , 4 820
DATA 2 , 2 , 2 ,2, 2 ,180 , 360 830
DATA 1 ,2, 4 , 2 , 4 , 8 840
DATA 1 , 2,0 , 8,6,8 850
DATA - l , 11 K11 ,3 ,4 860
DATA 1 , 2 , 0 , 0 , 0 , 8 870
DATA 1 , 2 , 0 , 3 , 6 , 8 880
DATA 1, 2 . 1. 167' 4' 6' 0 890
DATA - 1 , 11 L11 , 3 ,4 900
DATA 1,3,0,8,0,0.6,0 910
DATA - l, 11 M11 , 3.5,4 920
DATA 1 , 5 , 0 ,0,0 ,8 ,3. 5 ,0, 7 ,8 , 7 ,0 930

220 Font Tables

DATA - 1, "N" .3 , 4 940
DATA 1 , 4,0,0,0 , 8 , 6 , 0 , 6 , 8 950
DATA - 1 , "0" , 3 ,4 960
DATA 2,3 , 4 , 3,4 , 0 , 360 970
DATA - 1 , "P" , 3 ,4 980
DATA 1,2 , 0 , 4 , 4 , 4 990
DATA 2,4,6 , 2 , 2 ,-90 , 90 1000
DATA 1 , 3 , 4 , 8 , 0 , 8,0 , 0 1010
DATA - 1 , "Q" , 3 , 4 1020
DATA 2,3 , 4,3,4 , 0 , 360 1030
DATA 2 ,4 . 1,1 . 1 , 0 , 90 1040
DATA 2.6,1,1,1 , 180 , 270 1050
DATA - 1 , "R" , 3 .4 1060
DATA 1 , 2 , 0,4 , 4,4 1070
DATA 2 , 4 , 6 , 2 , 2 ,-90 , 90 1080
DATA 1 ,3,4,8 , 0,8 , 0 , 0 1090
DATA 1 , 2,4 , 4 , 6 , 0 llOO
DATA - 1 , "S" , 3,4 lllO
DATA 2.3 . 6 , 3 , 2 , 18 , 270 ll20
DATA 2 , 3 , 2 , 3,2, - 162,90 ll30
DATA - 1, "T" ,3,4 ll40
DATA 1,2 . 0 , 8 , 6 , 8 ll50
DATA 1 . 2 . 3 , 0 , 3,8 ll60
DATA - 1 , "U" , 3 , 4 ll70
DATA 1 , 2 , 0 ,8,0 , 3 ll80
DATA 2 , 3 , 3,3,3 , 180 , 360 ll90
DATA 1 , 2 , 6,3 , 6 , 8 1200
DATA - 1 , "V" , 3 ,4 1210
DATA 1,3,0,8 , 3 , 0,6,8 1220
DATA - 1 , "W" .4 ,4 1230
DATA 1 , 5 , 0 , 8,2,0.4,8 , 6 , 0 , 8 , 8 1240
DATA - 1 , "X" , 3 , 4 1250
DATA 1,2,0 , 0 , 6 , 8 1260
DATA 1,2,0,8 , 6,0 1270
DATA - 1 . "Y" , 3 , 4 1280
DATA 1,3 , 0,8.3 , 3 , 6 , 8 1290
DATA 1 , 2 , 3 , 3 , 3 , 0 1300
DATA - 1."Z" , 3 , 4 1310
DATA 1 , 4 , 0 , 8 , 6 , 8 , 0,0 , 6 , 0 1320
DATA - 1 . "0" , 3 , 4 1330
DATA 2 , 3 , 4 , 3 , 4,0 , 360 1340
DATA - 1 , "l" , l . 5 , 4 1350
DATA 1 , 2 , 1 . 5 , 0 , 1.5 , 8 1360
DATA - 1, "2" , 3 , 4 1370
DATA 2 , 3 , 6 , 3 , 2 .-90 , 180 1380
DATA 2 , 3 , 0 , 3 , 4,90,180 1390
DATA 1 , 2 , 0 , 0.6 , 0 1400
DATA - 1 . "3" , 3 ,4 1410
DATA 1 , 3 , 0 , 8 , 6 , 8 , 3 , 5 1420
DATA 2,3 , 2.5 , 3,2 . 5 ,-180 , 90 1430
DATA - 1 , "4" ,3,4 1440
DATA 1 , 6 , 4,0 , 4 , 8 , 3 , 8 . 0 , 3 , 0 , 2 , 6 , 2 1450
DATA - 1 , "5" ,3,4 1460
DATA 1,4 , 6 , 8,0,8 , 0 , 5 , 3 , 5 1470
DATA 2 , "3" , 2 . 5 ,3,2 . 5. - 180 . 90 1480
DATA - l , 116 11 ,3,4 1490
DATA 2 , 3.2 . 5 , 3 , 2 . 5 , 0,360 1500

221 Font Tables

DATA 2 , 3 , 2 . 5 , 3 , 5 . 5 , 60 . 180 1510
DATA - 1 , "7" , 3 , 4 1520
DATA 1 , 3,0,8 , 6 ,8 , 6 , 7 1530
DATA 2 ,6,0,4 , 7 , 90 , 180 1540
DATA - 1 . "8" , 3 .4 1550
DATA 2 , 3 , 2 , 3 , 2 , 0 , 360 1560
DATA 2 . 3 , 6 , 3 , 2 , 0 ,360 1570
DATA - 1 . "9" , 3 ,4 1580
DATA 2 , 3 , 5 . 5 , 3 , 5 .5 , 240 , 360 1590
DATA 2 , 3 . 5 . 5 ,3.2 . 5 . 0 , 360 1600
DATA - 1, " ! " . l . 5. 4 1610
DATA 1 , 2 . 1 . 5 ,8 , 1 .5,2 . 5 1620
DATA 1 , 2,1 .5,1,1.5 , 0 1630
DATA - 1 , 111111 , 3 , 4 1640
DATA 1 ,4 , 2,6 . 1.5 , 8 , 2 .5,8 , 2 , 6 1650
DATA 1 , 4 , 4,6,3.5,8,4 . 5 ,8 ,4,6 1660
DATA - 1 , "#" ,3 , 4 1670
DATA 1 , 2 , 0 , 2 . 5 , 5 , 2 . 5 1680
DATA 1 , 2 , 4 , 1 , 5,7 1690
DATA 1 , 2 , 6 , 5 .5,1 , 5 . 5 1700
DATA 1 , 2 , 2 , 7 , l,l 1710
DATA - 1 , "$" , 3,4 1720
DATA 2 , 3 , 2 . 5 , 2,1 . 5 ,-180 ,90 1730
DATA 2 , 3 , 5 . 5 , 2 , 1 . 5 , 0 , 270 1740
DATA 1 , 2 . 2 , 0 , 2,8 1750
DATA 1 , 2 , 4 ,8,4 , 0 1760
DATA - 1 , "%" ' 3' 4 1770
DATA 1 , 2 , 1 . 0,5 ,8 1780
DATA 2 , 2,6 , 1 , 1,0 , 360 1790
DATA 2 , 4 . 2 , 1,1 , 0 , 360 1800
DATA - 1 , "&" . 3 , 4 1810
DATA 2 , 2 .6,2 . 2 , 0 , 360 1820
DATA 2 , 2,2,2,2.90 , 270 1830
DATA 2,2,0,4 , 4 , 0 , 90 1840
DATA 2 , 2 , 4 . 4 ,4 , 270 , 360 1850
DATA - 1 , 111 II , 3 , 4 1860
DATA 1 , 4 , 3 , 6 , 2 . 5 , 8 , 3 . 5 , 8 , 3 , 6 1870
DATA - 1 . " (" ,3 , 4 1880
DATA 2 . 4 . 4,1 , 4 , 90 , 270 1890
DATA 2 . 4 . 4 . 1 . 5 , 4 , 90 , 270 1900
DATA - 1 , ")" , 3 , 4 1910
DATA 2 . 2 , 4 , 1 , 4 ,-90 , 90 1920
DATA 2 , 2 ,4 , 1 . 5 , 4 ,-90 , 90 1930
DATA - 1 . "*" ,3,4 1940
DATA 1,2 , 1 , 2 , 5 , 6 1950
DATA 1 , 2 , 3 ,7 , 3 , l 1960
DATA 1 , 2 , 1 . 6 , 5 , 2 1970
DATA - 1 , " : " , 3,4 1980
DATA 2 . 3 . 2 , 0 . 5 , 0 .5,0 , 360 1990
DATA 2 , 3,5,0 . 5 , 0 .5,0 , 360 2000
DATA - 1 , "=".3 , 4 2010
DATA 1 , 2 , 1 .3.5 , 3 2020
DATA 1 , 2 , 1,5 , 5 , 5 2030
DATA - 1 , "-" ,3,4 2040
DATA 1 , 2 . 1.4 , 5 . 4 2050
DATA - 1 , "@" . 3 .4 2060
DATA 1.2 , 1 , 2 , 5 , 2 2070
DATA 1 , 2 ,5,4 , l , 4 2080

222 Font Tables

DATA 1 , 2,3,6,3 , 2 2090
DATA -1. 11 + 11 . 3 . 4 2100
DATA 1 , 2,5,4,l , 4 2110
DATA 1,2 , 3 , 6,3 , 2 2120
DATA -1, 11

[
11 , 3 , 4 2130

DATA 2 , 3,7,1,1 , 0 , 360 2140
DATA - 1. II; II' 3' 4 2150
DATA 2 , 3,5,0 .5,0 . 5 , 0,360 2160
DATA 2 , 3 , 2 , 0 . 5 , 1 . 5 , 270 , 360 2170
DATA 2,3,2 , 0 . 5 , 0 . 5 , 0 , 270 2180
DATA 1,2,3,1.5,3 , 0 . 5 2190
DATA - l , 11

,
11 , 2 , 4 2200

DATA 2 , 2,0 .5,0 .5,1 . 5 . 270,360 2210
DATA 2 , 2 , 0 . 5 , 0 .5,0 . 5 , 0 , 270 2220
DATA 1 , 2 , 2 , 0 , 2, - 1 2230
DATA - 1, II . II ,2,4 2240
DATA 2 , 2 , 0 . 5 , 0 .5,0 .5 , 0,360 2250
DATA - 1 , II?" , 3 , 4 2260
DATA 1.2 , 3 , 0,3 , 1 2270
DATA 1,2 , 3,2 . 5 , 3,4 2280
DATA 2 , 3 , 6,3.2, - 90 . 180 2290
DATA -l, 11 a 11 ,2,4 2300
DATA 2,2 .5,2 . 5 , 2 . 5 , 2 . 5 , 60 , 300 2310
DATA 1.2 , 4,0,4 , 5 2320
DATA - l, 11 b 11 ,2,4 2330
DATA 2,1 . 5 , 2 . 5 , 2.5 , 2 . 5 ,-120,120 2340
DATA 1,2 , 0.0 , 0,8 2350
DATA -l, 11 c 11 .2,4 2360
DATA 2.2.5,2 .5,2 . 5,2 . 5,60 , 300 2370
DATA - l , 11 d 11 ,2 , 4 2380
DATA 2,2 .5,2 . 5 , 2 .5 , 2.5,60,300 2390
DATA 1 , 2,4,0 , 4 , 8 2400
DATA - l, 11 e 11 ,2,4 2410
DATA 2 , 2 , 2 .5,2 ,2 .5 , 0,300 2420
DATA 1 , 2 , 0,2.5,4 . 2 . 5 2430
DATA -l, 11 f 11 .2,4 2440
DATA 2 , 2 , 5 , 2.2.0 , 180 2450
DATA 1 ,2.0,5,0,0 2460
DATA 1 , 2 , 0,3,2 , 3 2470
DATA -l, 11 g 11 ,2,4 2480
DATA 2.2 .5,2 . 5 , 2 .5,2 . 5,60.300 2490
DATA 1 , 2 , 4 . 5,4 ,-1 2500
DATA 2,2 ,-1 , 2 , 2,180,360 2510
DATA - l, 11 h 11 , 2,4 2520
DATA 1,2,0 , 8 , 0 , 0 2530
DATA 2 , 2 , 3,2,2,0 , 180 2540
DATA 1,2,4,0,4 , 3 2550
DATA -l, 11 i 11 ,l,4 2560
DATA 1 , 2 , 1 , 0 , 1 , 5 2570
DATA 1 , 2 , 1,6 . 5 , 1,6.5 2580
DATA - l. 11 j 11 ,2 . 4 2590
DATA 2 , 2 , 0,2,2,180 , 360 2600
DATA 1 , 2 , 4,0 , 4 , 5 2610
DATA 1,2,4 , 6 . 5 , 4,6 . 5 2620
DATA -1, 11 k 11 . 2.4 2630
DATA 1,2 , 0,8,0 , 0 2640
DATA 1,2,0,2,4,5 2650
DATA 1 , 2 , 2 , 3 .5,4,0 2660

223 Font Tables

DATA - l, 11 1 11 , l , 4 2670
DATA 1 , 2 , 1 , 0 , l , 8 2680
DATA - l , 11 m11 , 3 , 4 2690
DATA 1 , 2 . 0,0,0 , 5 2700
DATA 2 , 1.5 , 3 . 5,1 . 5,1 .5,0,180 2710
DATA 1 , 2,6 , 0 , 6 , 3 . 5 2720
DATA 2 , 4 . 5 , 3.5 , 1 .5 , 1 . 5 , 0 , 180 2730
DATA 1 . 2 , 3 , 3 . 5 , 3 , 0 2740
DATA - l. 11 n 11 , 2 , 4 2750
DATA 1 , 2,4 , 0 , 4 , 3 2760
DATA 2 , 2 , 3 , 2 , 2 , 0 , 180 2770
DATA 1 , 2 , 0 , 5 , 0 , 0 2780
DATA - l, 11 0 11 , 2 , 4 2790
DATA 2.2.2 . 5 , 2 , 2 . 5 , 0 , 360 2800
DATA - l , 11 p 11 , 2 ,4 2810
DATA 2 , 1 . 5 , 2 . 5 , 2 . 5 , 2 . 5 ,-120,120 2820
DATA 1,2,0 , 5 , 0 ,-3 2830
DATA - l, 11 q 11 , 2 , 4 2840
DATA 2,2 . 5 , 2 . 5,2 . 5 , 2 . 5 , 60 , 300 2850
DATA 1,2 , 4 , 5 , 4 ,-3 2860
DATA - l , 11 r 11 , 2 , 4 2870
DATA 1,2 , 0 , 0 , 0 , 5 2880
DATA 2 , 2,3 , 2 , 2 , 0 , 180 2890
DATA - l , 11 s 11 ,2 , 4 2900
DATA 2 , 2 , 3 .75,2 , 1 . 25 , 0 , 270 2910
DATA 2 , 2,1 . 25,2,1 .25, - 180 , 90 2920
DATA - l , 11 t 11 , 2 , 4 2930
DATA 1.2 . 0 , 7 , 0 , 2 2940
DATA 2,2,2,2,2,180,360 2950
DATA 1.2 , 0 , 5 , 4,5 2960
DATA -l, 11 u 11 , 2 , 4 2970
DATA 1.2 , 0 , 5 . 0 , 2 2980
DATA 2,2 , 2 , 2 , 2 , 180 , 360 2990
DATA 1.2 , 4,0 , 4 , 5 3000
DATA - l, 11 v 11 , 2,4 3010
DATA 1 , 3,0 , 5 , 2,0 , 4 , 5 3020
DATA - l, 11 w11 , 3 , 4 3030
DATA 1 , 5 , 0 , 5 , 1.5 , 0,3,3,4 5,0 , 6 , 5 3040
DATA - l, 11 x 11 , 2 , 4 3050
DATA 1 , 2,0 , 5 ,4,0 3060
DATA 1,2 , 0 , 0 ,4 , 5 3070
DATA - l , 11 y 11 , 2 , 4 3080
DATA 1 , 2,0 , 5 , 0,2 3090
DATA 2,2,2 , 2 , 2 , 180 , 360 3100
DATA 1 , 2 , 4 , 5.4, - 1 3110
DATA 2,2 ,-1 , 2 , 2 , 180 , 360 3120
DATA - 1 , 11 z 11

, 2 , 4 3130
DATA 1,4,0,5 , 4 , 5 , 0 , 0 , 4 , 0 3140
DATA - 999 3150

C/earface

REM 500
DATA II

II , 3 ,4 510
DATA - l , 11 A11 , 3 , 4 520
DATA 1.2 , 0 , 0 , 1 , 0 530
DATA 1 , 3,0 . 5 , 0 , 3 , 8 , 5 , 0 540
DATA 1,2 , 4 . 5,0 , 6,0 550

224 Font Tables

DATA 1 , 2 . 5 . 5 , 0,3.5 ,8 560
DATA 1.2,2.5,8,4,8 570
DATA 1 , 2,1.5,3 ,4 . 2 ,3 580
DATA - 1,"B" , 3 , 4 590
DATA 1,2,0 ,0,4,0 600
DATA 1 , 2 , 0 . 5 ,0,0 . 5 , 8 610
DATA 1,2,0,8,3 . 5 , 8 620
DATA 1 . 2 .1. 8 , 1 , 0 630
DATA 1,2,1,4,4,4 640
DATA 2,3.5,6,2,2,-90,90 650
DATA 2.3.5,6.1.5,2,-90,90 660
DATA 2,4,2,2,2,-90,90 670
DATA 2,4,2,1.5,2,-90,90 680
DATA - 1 , "C" , 3 ,4 690
DATA 1,2,0,3,0,5 700
DATA 1,2,0 .5,3,0 .5 , 5 710
DATA 1,2 , 5,7,5,8 720
DATA 2,3 , 5 , 3,3,47,180 730
DATA 2,3,5,2.5,3,90,180 740
DATA 2,3 , 3 , 2 . 5 , 3 , 180 ,270 750
DATA 2,3,3,3,3,180,310 760
DATA -1. "D" , 3 , 4 770
DATA 1.2.0,0,3,0 780
DATA 1,2 , 0 , 8 , 3 , 8 790
DATA 1 ,2, 0 .5 , 0,0 .5,8 800
DATA 1.2,1,8,1 , 0 810
DATA 2,3,4,3,4,-90,90 820
DATA 2,3,4,2.5,4,-90,90 830
DATA - 1,"E" , 3,4 840
DATA 1 , 3,0 ,0,6 , 0,6 , 1 . 5 850
DATA 1,3.6,6.5,6,8,0,8 860
DATA 1 ,2,0. 5 ,8 , 0 . 5 , 0 870
DATA 1 ,2,1, 0,1 , 8 880
DATA 1,2,1,4,3.5,4 890
DATA 1,2,3.5,3.5,3.5,4.5 900
DATA 2,5.5,6.5,0.5,1.5.0,90 910
DATA 2,5.5,1.5,0.5,1.5,270,360 920
DATA -1. "F'",3 , 4 930
DATA 1,3,6,6.5,6,8,0,8 940
DATA 1 , 2,0 .5,8,0.5,0 950
DATA 1.2,1,0,1,8 960
DATA 1 , 2 , 1 , 4 , 3 .5,4 970
DATA 1 , 2 , 3 . 5 , 3 . 5 , 3 . 5 , 4 . 5 980
DATA 2,5.5,6.5,0.5,1.5,0,90 990
DATA 1,2,0,0,1.5,0 1000
DATA -1, "G",3 . 4 1010
DATA 1,2,0,3,0,5 1020
DATA 1,2,0.5,3,0.5,5 1030
DATA 1,2,5,7,5,8 1040
DATA 2,3,5,3,3,47,180 1050
DATA 2 , 3 , 5 ,2. 5,3 , 90 , 180 1060
DATA 2,3,3,2.5,3,180,270 1070
DATA 2,3 , 3,3 , 3 , 180 , 330 1080
DATA 1 , 5 , 5 , 4,6 , 4,6,0 , 5 5,0 , 5 .5,4 1090
DATA - 1,"H" .3 , 4 1100
DATA 1 , 2,0 ,0 , 1.5 , 0 1110
DATA 1 ,2, 0 .5,0 , 0.5 ,8 1120
DATA 1,2,0,8,1.5,8 1130

225 Font Tables

DATA 1,2 , 1,8,1,0 1140
DATA 1 , 2 , 1,4 , 5 ,4 1150
DATA 1,2,4.5 , 0 , 6 , 0 1160
DATA 1,2 , 5 . 5 , 0 , 5 .5,8 1170
DATA 1 , 2 , 6 , 8 , 4 . 5 , 8 1180
DATA 1,2 , 5,8,5 , 0 1190
DATA - l , "I" ,0.75 , 4 1200
DATA 1 , 2 , 0 , 0 , 1.5 , 0 1210
DATA 1 , 2 , 0 . 5 , 0 , 0 . 5,8 1220
DATA 1 , 2 , 0 , 8,1.5,8 1230
DATA 1 , 2,1,8 , 1,0 1240
DATA - l , "J" , 2 . 25 , 4 1250
DATA 1,2,3 , 8 , 4 .5.8 1260
DATA 1 , 2,4,8,4 , 2 1270
DATA 1 , 2 , 3 .5,8 , 3 . 5 , 0 .8 1280
DATA 2 , 2 , 2,2,2 , 180 , 360 1290
DATA 2,0 . 5 , 2 , 0 . 5 , 0 . 5 , 0 , 360 1300
DATA - 1, "K" , 3 , 4 1310
DATA 1,2,0,0 , 1.5,0 1320
DATA 1 , 2,0 . 5,0 , 0 . 5 , 8 1330
DATA 1 , 2 , 0,8 , 1.5,8 1340
DATA 1 , 2,1,8 , 1 , 0 1350
DATA 1 , 2,1,3 , 5 . 5 , 8 1360
DATA 1,2,6,8 , 5,8 1370
DATA 1 , 2,3,5 , 5 . 5 , 0 1380
DATA 1 , 2,6 , 0,4 . 5 , 0 1390
DATA 1 , 2,5,0 , 2 .7,4 .7 1400
DATA - 1, "L" , 3 , 4 1410
DATA 1,2,0,0,1.5,0 1420
DATA 1 , 2,0 .5 , 0 , 0 .5 , 8 1430
DATA 1 , 2 , 0 , 8,1.5,8 1440
DATA 1 , 2 , 1,8 , l,O 1450
DATA 1,3 , 0 ,0,6,0,6 , 1 . 5 1460
DATA 2 , 5 . 5 , 1 . 5 , 0 . 5 , 1 . 5 , 270 , 360 1470
DATA - l , "M" , 4.25,4 1480
DATA 1,2,0,0 , l,O 1490
DATA 1 , 6 , 0 .5 , 0 , 0 .5 ,8,3 . 5 , 0 , 4 , 0,7 . 5 , 8 , 7 . 5 , 0 1500
DATA 1,2 ,7,0,8 .5 , 0 1510
DATA 1,2,8,0 , 8 , 8 1520
DATA 1,2,8 . 5 ,8 ,7 . 5 , 8 1530
DATA 1 , 3 , 0,8 , 1 , 8 ,4 , 0 1540
DATA - 1 , "N" , 3 , 4 1550
DATA 1 , 2 ,0 ,0 , 1,0 1560
DATA 1 , 4 , 0 . 5 , 0 , 0 . 5 , 8 , 5 . 0 , 6 , 0 1570
DATA 1 , 2,5.5 , 0 , 5 . 5.8 1580
DATA 1 , 2 , 6 ,8,5 , 8 1590
DATA 1,3 , 0 , 8 , 1 , 8 , 5 . 5 , 0 1600
DATA - 1 , "0" , 3 , 4 1610
DATA 1 , 2 , 0 , 5 , 0 , 3 1620
DATA 2,3 , 3,3 , 3,180,360 1630
DATA 1 , 2 , 6 , 3 , 6 , 5 1640
DATA 2 , 3 , 5 , 3 , 3 , 0 . 180 1650
DATA 1 , 2 , 0 . 5 , 5 , 0 . 5 , 3 1660
DATA 2 , 3 , 3 , 2 . 5 , 3 , 180 , 360 1670
DATA 1 , 2,5 . 5,3 , 5 . 5 , 5 1680
DATA 2 . 3 . 5 , 2 . 5 , 3 , 0 , 180 1690
DATA 1 , 2 , 0 . 5,5 , 0 . 5 , 3 1700
DATA - 1 . "P" , 3 , 4 1710

226 Font Tables

DATA 1 , 2 , 0 , 0 , 1 .5,0 1720
DATA 1 ,2,0.5 , 0 , 0 . 5 , 8 1730
DATA 1 , 2 , 0 , 8 , 4 . 8 1740
DATA 1 , 2,1 ,8,l,O 1750
DATA 1 , 2 , 1 , 4 , 4 , 4 1760
DATA 2 , 4 ,6,2 , 2 .-90 , 90 1770
DATA 2 ,4,6,1.5 , 2,-90 , 90 1780
DATA -1."Q",3,4 1790
DATA 1 ,2, 0 , 5 , 0 , 3 1800
DATA 2,3,3 , 3 , 3 , 180,360 1810
DATA 1 , 2,6 , 3 , 6,5 1820
DATA 2 , 3,5,3,3 , 0 , 180 1830
DATA 1 , 2 , 0 . 5 ,5,0 .5,3 1840
DATA 2 , 3 , 3,2 .5,3,180 , 360 1850
DATA 1,2 . 5 . 5 , 3 , 5 . 5 , 5 1860
DATA 2 , 3 , 5 , 2 .5,3 , 0 , 180 1870
DATA 1,2 , 0 .5,5 , 0 .5,3 1880
DATA 2,3 , 1,1 , 1 , 0 , 270 1890
DATA 2,3,1,0 .5,1,0,270 1900
DATA 2,5 , 1,1 . 5 , 2 , 180,270 1910
DATA 2,5 , 1 , 1,2 , 180 , 270 1920
DATA -1, "R" , 3 , 4 1930
DATA 1 , 2 . 0.0 , l.5,0 1940
DATA 1,2 , 0 .5,0 . 0 . 5 , 8 1950
DATA 1 , 2 , 0,8 , 4,8 1960
DATA 1,2 , 1,8,l,O 1970
DATA 1,2 , 1 , 4 , 4,4 1980
DATA 2 , 4 , 6,2,2 ,-90 , 90 1990
DATA 2 , 4,6 , 1 .5 , 2, - 90 , 90 2000
DATA 2 , 4 , 2 , 1 , 2 , 0,90 2010
DATA 2 ,4 , 2,0.5 , 2,0,90 2020
DATA 2,6 , 2 , 1 , 2 , 180 , 270 2030
DATA 2,6 , 2 , 1 .5 , 2 , 180 , 270 2040
DATA - 1,"S" , 3 , 4 2050
DATA 1,3,0 . 33 , 1,0,l,0,2 2060
DATA 1,3,5 . 67 , 7,6 , 7 , 6,6 2070
DATA 2 , 3,6 , 3,2,0 , 270 2080
DATA 2 , 3,6,2 . 5 , 2 , 90,270 2090
DATA 2,3,2,3,2, - 180 , 90 2100
DATA 2 , 3 , 2 , 2 . 5 , 2 ,-90,90 2110
DATA -1,"T",3,4 2120
DATA 1 , 4,0 , 6.5 , 0 , 8 , 6 , 8 , 6 , 6 .5 2130
DATA 1 , 2,3 . 5 , 0 , 2 .5,0 2140
DATA 1,2,2 .75,0,2 .75 , 8 2150
DATA 1 , 2 , 3 . 25 , 8 , 3.25,0 2160
DATA 2,1 , 6 . 5 , 1,1 . 5 , 90 , 180 2170
DATA 2,5 , 6 . 5 , 1 , 1 . 5,0 , 90 2180
DATA -1,"U",3 , 4 2190
DATA 1 , 2 , 0,8,1.5,8 2200
DATA 1 , 2 , 0.5,8 , 0.5 , 3 2210
DATA 1 , 2 , 1 , 3 , 1 ,8 2220
DATA 1,2 , 5 , 8 , 6,8 2230
DATA 1 , 2,5.5 , 8 , 5 .5,3 2240
DATA 2 , 3,3 , 2.5 . 3.180 , 360 2250
DATA 2 , 3,3 , 2 , 3,180 , 270 2260
DATA -1."V",3,4 2270
DATA 1,2 , 0 , 8 , 1.5,8 2280
DATA 1 , 3 , 0 . 5 ,8 , 3 , 0 , 5 .5,8 2290

227 Font Tables

DATA 1 , 2,6,8 , 5,8 2300
DATA 1,2,1 ,8 , 3.3 , 1 2310
DATA -1,"W",4,4 2320
DATA 1 , 2,0 ,8,1.5,8 2330
DATA 1,4 , 0 .5 ,8 , 2 .5,0,4 .5,8 , 6.3,1 2340
DATA 1,2.2 .8 , 1 , 1 ,8 2350
DATA 1,2,4,8,5,8 2360
DATA 1 , 3,4 .3,7,6,0,8,8 2370
DATA 1,2,8 .5.8,7,8 2380
DATA -1, "X" , 3,4 2390
DATA 1 , 2,0 , 0,1,0 2400
DATA 1,2 , 0.5,0 , 5 . 5 ,8 2410
DATA 1,2 , 6,8,5,8 2420
DATA 1,2,1.5,8,0 , 8 2430
DATA 1 , 2 , 0.5 ,8,5 , 0 2440
DATA 1 , 2,4 .5,0 , 6,0 2450
DATA 1,2 , 5 . 5 , 0,1 , 8 2460
DATA - 1. "Y" ,3,4 2470
DATA 1 , 2,0,8,1.5 ,8 2480
DATA 1 , 3,0 .5,8,2.75,4,2 .75 , 0 2490
DATA 1,2,2.5,0,3 . 5 , 0 2500
DATA 1 ,3,3.25,0 , 3 . 25 , 4 , 1 , 8 2510
DATA 1,2,5,8,6,8 2520
DATA 1,2 , 5 .5,8,3 . 25.4 2530
DATA - 1,"Z",3 , 4 2540
DATA 1,4 , 0,6.5,0,8 , 6 , 8 , 0.5 , 0 2550
DATA 1 , 4,6,1 . 5,6 , 0 , 0 , 0,5 . 5 ,8 2560
DATA 2,0 . 5 , 6 . 5,0.5 , 1 . 5 , 90,180 2570
DATA 2,5 .5,1.5 , 0.5,1 . 5,270 , 360 2580
DATA -1 , "0",3 , 4 2590
DATA 1,2,0,5,0,3 2600
DATA 2 , 2.5,3,2 . 5 , 3 , 180,360 2610
DATA 1,2,5 , 3,5 , 5 2620
DATA 2 .2.5.5.2.5,3 , 0 , 180 2630
DATA 1 , 2 , 0 .5,5 , 0 . 5 , 3 2640
DATA 2,2 . 5,3 , 2 , 3 , 180 , 360 2650
DATA 1,2 , 4 .5,3 , 4 . 5 , 5 2660
DATA 2,2.5,5,2 , 3,0 , 180 2670
DATA -1."l",l.5,4 2680
DATA 1,4,0,6,1,8 , 1.5,8 , 1 .5,0 2690
DATA 1 , 2 , 0 , 0 , 2 .5,0 2700
DATA 1 , 2,1,0 , 1,8 2710
DATA - 1 , "2" , 3.4 2720
DATA 1 , 3 , 0,0 , 6,0,6 , 1 . 5 2730
DATA 2,5 .5,1.5,0 . 5 , 1 . 5 , 270 , 360 2740
DATA 2 ,3,0 , 3,4 , 90,180 2750
DATA 2,3,0,2 . 5,4,90 , 180 2760
DATA 2,0 .5,6,0 . 5 , 0 . 5 , 0 , 360 2770
DATA 2,3,6,3,2, - 90 , 180 2780
DATA 2,3 , 6 , 2.5,2, - 90 , 90 2790
DATA -1,"3",3,4 2800
DATA 2,0.5,6 , 0 .5,0 . 5 , 0,360 2810
DATA 2 ,3 ,6,3,2 ,-90 , 180 2820
DATA 2 , 3 , 6 , 2 . 5 , 2 .-90 , 90 2830
DATA 2 , 0.5,2,0 . 5 ,0.5 , 0 , 360 2840
DATA 2 , 3 , 2 ,3,2, - 180 , 90 2850
DATA 2,3,2 , 2 .5,2 ,-90,90 2860
DATA - 1,"4".3 ,4 2870

228 Font Tables

DATA 1 . 2 , 2 . 5 , 0.5 , 0 2880
DATA 1 , 4 , 4 , 0 , 4 , 8 , 0 , 2 . 5,6 , 2 . 5 2890
DATA 1 , 2.3 . 5 , 0 , 3.5 , 7 . 4 2900
DATA - l . 11 5 11 ,3,4 2910
DATA 1.5,5 , 6 . 5.5 ,8,0,8,0 , 4 , 3 ,4 2920
DATA 1 . 2 , 0 . 5 , 4 , 0.5 , 8 2930
DATA 2 , 0 . 5 . 2,0 . 5 .0 . 5 .0,360 2940
DATA 2 , 3 , 2 . 3 , 2 ,-180 , 90 2950
DATA 2 , 3 , 2 , 2 . 5 , 2 .-90 . 90 2960
DATA 2 .4 . 5.6 . 5 , 0 . 5,1 . 5,0 , 90 2970
DATA - 1 , 11 6 11 , 3 , 4 2980
DATA 1 , 2,0,2 , 0 , 6 2990
DATA 1 , 2 , 0 . 5 , 6 , 0 . 5 , 3 3000
DATA 2 , 3 , 2 , 3 . 2 , 0 . 360 3010
DATA 2 .3 . 2.2 . 5,2,0,360 3020
DATA 2 , 5 . 5 , 6 , 0 . 5 , 0.5 ,0 , 360 3030
DATA 2,3 , 6 . 3 , 2,0 . 180 3040
DATA 2,3 , 6 , 2 . 5 , 2,90 , 180 3050
DATA - l , 11 7 11 .3 , 4 3060
DATA 1.2 . 0.0 , 1.5 , 0 3070
DATA 1 , 5,1 , 0 ,6 ,7 . 5 . 6 , 8 , 0 , 8 , 0 , 6 . 5 3080
DATA 1 , 2,6.8,0 . 5 , 0 3090
DATA 2,1 , 6 . 5 , 1,1 . 5 , 90.180 3100
DATA - 1 , 11 8 11 ,3 , 4 3110
DATA 2 . 3 , 6 . 2 . 5 , 2 , 0,360 3120
DATA 2 , 3 , 6 . 2 , 2 , 0 , 360 3130
DATA 2,3 , 2.3 , 2 , 0 , 360 3140
DATA 2 , 3 , 2 , 2 . 5 , 2 , 0 , 360 3150
DATA - 1 , 11 9 11 ,3.4 3160
DATA 2 . 0 . 5 , 2 , 0.5 , 0 . 5 , 0,360 3170
DATA 2 , 3 , 2 , 3 , 2 , 180 , 360 3180
DATA 1 , 2 , 6 , 2 , 6,6 3190
DATA 2 , 3 , 2.2 . 5,2 , 270 , 360 3200
DATA 1,2,5 . 5.2 , 5 . 5 , 6 3210
DATA 2 . 3,6 , 3 , 2 , 0 , 360 3220
DATA 2 , 3 , 6 , 2 . 5 , 2 , 0 . 360 3230
DATA - 1, II (II , 3 , 4 3240
DATA 2 , 4,4 , 1 . 4 , 90 , 270 3250
DATA 2 , 4 , 4,1 . 5 , 4,90 , 270 3260
DATA - 1 , II) II , 3 , 4 3270
DATA 2 , 2 , 4 , 1 , 4 ,-90 , 90 3280
DATA 2 , 2 . 4 , 1 . 5 , 4 ,-90 , 90 3290
DATA - 1 , II : II , 3,4 3300
DATA 2 . 3 . 2 , 0 . 5 , 0 . 5 , 0 , 360 3310
DATA 2 , 3 , 5 . 0 .5 , 0 . 5 , 0 , 360 3320
DATA - 1. 11 = 11 , 3 , 4 3330
DATA 1 . 5,1 , 5 . 5 , 5.5 . 5.5 , 5 , 1 . 5 , 1 ,5 . 5 3340
DATA 1 , 5,1 , 2 .5 , 5 , 2 . 5 , 5,3 . 1 , 3 . 1 . 2.5 3350
DATA - 1 , 11

-
11 '3 ' 4 3360

DATA 1.5 . 1 . 3 .75.5 , 3 . 75 . 5 , 4 .25 . 1 ,4.25 . 1 . 3 .75 3370
DATA - l , 11 + 11 , 3 ,4 3380
DATA 1 , 5 , 1 , 3 .75 , 5 , 3 .75.5 , 4 .25 , 1,4 . 25,1 , 3 .75 3390
DATA 1 , 5 , 2 .75,2 . 2 .75 , 6 , 3 . 25 . 6 .3 . 25 , 2.2 .75 , 2 3400
DATA - 1 , II ; II , 3 , 4 3410
DATA 2,3 , 5 . 0 . 5 , 0 . 5 , 0,360 3420
DATA 2 , 3 , 2.0 . 5 , 1 . 5 , 270 , 360 3430
DATA 2 , 3 , 2,0 .5,0.5,0 , 270 3440
DATA 1 , 2 , 3 , 1.5 . 3 , 0 . 5 3450

229 Font Tables

DATA - 1 . " . " . 2 . 4 3460
DATA 2.2.0.5 , 0 . 5,1 . 5.270 . 360 3470
DATA 2 , 2 , 0 . 5 , 0 . 5 , 0.5 . 0 , 270 3480
DATA 1 . 2 . 2 , 0 , 2 ,-1 3490
DATA - 1 . " . ". 2 , 4 3500
DATA 2 . 2.0 . 5 , 0 . 5 , 0 . 5,0,360 3510
DATA - 1 , "/" , 3 , 4 3520
DATA 1,5 , 1 , 0,1 . 5 , 0,5 , 8 , 4 . 5 , 8 , l , O 3530
DATA - l . "a" , 2 .75 , 4 3540
DATA 1,5,5 , 0 , 5 , 5 . 5,5 . 5 , 5 . 5 , 5 . 5 , 0 , 5 . 0 3550
DATA 2 , 3 , 3 , 3 , 3,47 , 313 3560
DATA 2,3,3 , 2 .5.3,90,270 3570
DATA - 1 . "b" , 3 , 4 3580
DATA 1 , 5,0,8 , 1 , 8 , l , 0 , 0 . 5 , 0 , 0 . 5.8 3590
DATA 2 , 3 . 3 , 3,3 ,-133 , 133 3600
DATA 2 , 3 , 3 , 2 . 5 , 3 ,-90 , 90 3610
DATA - l , "c" . 2 . 5 , 4 3620
DATA 2,3,3 , 3,3 , 45,315 3630
DATA 2 , 3,3 , 2 . 5 , 3 , 90 , 270 3640
DATA - l . "d" , 2 .75 ,4 3650
DATA 1,5 . 4 . 5,8 , 5 . 5 . 8 , 5 . 5 , 0 , 5 . 0 , 5 . 8 3660
DATA 2 , 3 , 3 , 3 , 3 .47 , 313 3670
DATA 2 . 3 . 3 , 2.5 , 3 , 90 , 270 3680
DATA - l , "e" . 2 . 5 , 4 3690
DATA 1.2 , 0 .5,3,5 , 3 3700
DATA 2.2 . 5 , 3 , 2 . 5 , 3,0 , 315 3710
DATA 2 , 2 . 5 , 3 , 2 , 3,0,270 3720
DATA - 1, "f" ' 1 . 75 ' 4 3730
DATA 1,4,0 . 5 ,7 , 0 . 5 , 0,1 , 0 . l , 7 3740
DATA 1 , 2 . 3 , 7 , 3 . 5,7 3750
DATA 1 , 2 , 0 , 4 , 2 ,4 3760
DATA 2,2 , 7,1 . 5 , 1,0 , 180 3770
DATA 2 , 2 , 7,1 , 1 , 0 , 180 3780
DATA - l . "g" , 2.75 , 4 3790
DATA l , 2 . 0 . 5 .-1 . 1, - 1 3800
DATA 1 , 4 , 5 .-1.5 , 5 . 5 , 5 . 5.5 5 , 5 . 5. - 1 3810
DATA 2 , 3 , 3,3 , 3 , 47 , 313 3820
DATA 2 , 3,3,2 . 5.3 , 90 , 270 3830
DATA 2 , 3 ,-1 , 2 .5 . 2 , 180 , 360 3840
DATA 2 , 3 .-1 . 2 . 2 . 180,360 3850
DATA - l , "h",2 .75 , 4 3860
DATA l . 5 , 0,8 , l , 8 , l,0 , 0 . 5 , 0 , 0 . 5 , 8 3870
DATA 1,4 , 5 . 3 , 5 , 0 , 5 .5 . 0 , 5 . 5 , 3 3880
DATA 2 , 3 , 3 , 2 .5.3 , 0,180 3890
DATA 2 . 3.3 , 2 , 3 , 0 , 180 3900
DATA - l . "i" , 0 .75,4 3910
DATA l,5,0 . 5,7 , 1 ,7 . 1 ,7. 5 , 0 . 5 , 7 . 5 , 0.5 ,7 3920
DATA 1 , 3 , 0 , 6 , 1,6 , 1 , 0 3930
DATA 1 , 3 , 0 . 5 , 6 , 0 . 5 , 0 , 1 . 5,0 3940
DATA - l . "j",1 .75 , 4 3950
DATA 1 , 5 , 3 . 5 .7 , 3 , 7,3 ,7 . 5 , 3.5 , 7 . 5 . 3 . 5 .7 3960
DATA 1 , 3,2 . 5 , 6 , 3 . 5,6 , 3 . 5 ,-1 3970
DATA 1,2 , 3 , 6 , 3 ,-1 3980
DATA 1 . 2 . 0 ,-1 , 0 . 5 ,-1 3990
DATA 2.1 .75 ,-1 . 1 . 25 , 2 , 180.360 4000
DATA 2 . 1 .75 .-1 . 1 .75 , 2 , 180 , 360 4010
DATA - l , "k" , 2 .75,4 4020
DATA l , 5 , 0 , 8 , l , 8 , l , 0 , 0 . 5 , 0 , 0 . 5 , 8 4030

230 Font Tables

DATA 1 , 2 , 1,3 , 5 . 5 , 6
DATA 1 , 4 ,2.7,4 , 5 . 5 , 0 , 5 , 0 , 2 .3 , 3 .7
DATA - l , "l" , 0 .75 , 4
DATA 1 , 3 , 0 , 8 , 1 , 8,l,O
DATA 1 , 3 , 1 . 5 , 0 ,0.5 , 0 , 0 .5 , 8
DATA - l , "m" , 3 . 5 , 4
DATA l , 5 , 0 , 6 , l , 6 , l , 0 , 0.5 , 0 , 0 . 5 , 6
DATA 1 , 4 , 3 . 5 ,5,3 . 5 , 0 , 4 , 0 , 4 , 5
DATA 1 , 4 , 6 . 5 , 5 , 6 . 5 , 0 , 7 , 0 ,7,5
DATA 2 , 2 . 25 , 5 , 1 . 25 , 1 , 0 , 180
DATA 2,2 . 5 , 5 , 1.5 , 1 , 0 , 180
DATA 2 , 5 . 25 , 5 , 1 . 25 , 1 , 0 , 180
DATA 2 , 5 . 5 , 5 , 1 .5 , 1 ,0,180
DATA - l , "n" , 2 . 75 , 4
DATA l , 5 , 0 , 6 , l , 6 , l , 0 , 0 . 5 , 0 , 0 .5 , 6
DATA 1 , 4 , 5 , 5 , 5 , 0 , 5 .5 , 0,5 . 5 , 5
DATA 2 , 3,5 , 2 , 1 , 0 , 180
DATA 2 , 3 . 25 , 5 , 2 . 25 , 1 , 0 , 180
DATA - l , "o" , 2 .75 , 4
DATA 2 , 2 . 75 , 3,2 .75 , 3 , 0,360
DATA 2,2 .75,3,2 . 25 , 3 , 0 ,360
DATA - l , "p" , 2 .75 , 4
DATA 1 , 5 , 0 , 6,1 , 6 , 1 ,-3 , 0 . 5 ,-3 , 0 . 5 , 6
DATA 2 , 2 . 5 , 3 , 3,3 ,-120,120
DATA 2,2 . 5 , 3 , 2 . 5 , 3 ,-90 , 90
DATA - l."q",2 .75,4
DATA 1 , 5 , 5 , 5 . 5 , 5 . 5 , 5 . 5 , 5 . 5 ,-3 , 5 ,-3 , 5,5 . 5
DATA 2 , 3 , 3 , 3 , 3 , 47 , 313
DATA 2 , 3 , 3 , 2 . 5 , 3 , 90,270
DATA - l,"r" , 2 .75 , 4
DATA 1 , 2 , 5 , 4 , 5 . 5 , 4
DATA l , 5 , 0 , 6 , 1 , 6 , 1 , 0,0 .5,0 , 0 . 5 , 6
DATA 2 , 3 , 4 , 2 , 2 , 0 , 180
DATA 2 , 3 . 25 ,4 , 2 . 25 , 2,0 , 180
DATA - l , "s " , 2 .75,4
DATA 2 , 2 .75 , 4 . 5 , 2 .75 , 1.5 , 0 , 270
DATA 2,2 .75 , 1 .5,2 .75 , 1 . 5 ,-180 , 90
DATA 2 , 2 .75 , 4 . 5 , 2 . 25 , 1 .5,0 , 270
DATA 2 , 2 .75 , 1 . 5 , 2 .25.1 . 5, - 180 , 90
DATA 1 , 2 , 5 , 4 . 5 , 5 .5,4 . 5
DATA 1 , 2 , 0 , 1 . 5 , 0 .5 , 1 . 5
DATA - l , "t" , 2 . 25 , 4
DATA 1 , 4 , 0 . 5 , 2 , 0 .5 ,8 , 1 ,8 , 1 , 2
DATA 1 , 2 , 4 , 2 , 4 . 5,2
DATA 1 , 2 , 0 , 6 , 3 , 6
DATA 2 , 2 . 5 , 2 , 1 . 5 , 2 , 180,360
DATA 2,2 . 5 , 2 , 2,2 , 180 , 360
DATA - l . "u" , 2 .75 , 4
DATA 1 , 2 , 0 . 5 , 2 , 0 . 5 , 6
DATA 1 , 3 , 0,6 , 1,6,1,2
DATA 1 , 4 , 5 , 2 , 5 , 6 , 5 .5 , 6 , 5 . 5 , 2
DATA 2 ,3 , 2 , 2 . 5 , 2 , 180 , 360
DATA 2 , 3 , 2 , 2 , 2 , 180,360
DATA - l , "v",2 .75 , 4
DATA 1 , 3 , 0 , 6 , 1,6 , 2 .75 , 0
DATA 1 , 4 , 5 . 5 ,6 , 2 .75 , 0 , 2 . 25 , 0 , 0 . 5 , 6
DATA - 1,"w",3,4
DATA 1 , 2 , 0 . 5 , 2 , 0 .5,6

4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610

231 Font Tables

DATA 1,3,0,6 , 1,6 , 1 , 2
DATA 1 , 4,3.5 , 2,3 . 5,6 , 4 , 6 , 4 , 2
DATA 1,4,6 . 5 , 2 , 6 .5 , 6 , 7 ,6,7 , 2
DATA 2,2 . 25,2,1.25 , 2,180,360
DATA 2,2 . 25,2 , 1 .75 , 2,180,360
DATA 2 , 5 . 25 , 2 , 1 . 25 , 2,180,360
DATA 2,5 . 25 , 2,1 .75 . 2,180 , 360
DATA - l . "x" , 2 .75,4
DATA 1,3,0 , 6,1,6 , 5 , 0
DATA 1,3,5 . 5 , 0,4 .5 , 0 , 0 . 5 , 6
DATA 1 , 2,0,0 , 1 , 0
DATA 1,2,0 . 5,0 , 5,6
DATA 1 , 2,4.5 , 6 , 5 . 5,6
DATA - l."y",2.75,4
DATA 1 , 2 , 0.5 , 2 , 0 .5,6
DATA 1,3,0 , 6,1 , 6,1,2
DATA 1,4,5,2 , 5,6 , 5 . 5,6 , 5 . 5, - 1
DATA 1 , 2,5 ,-1 , 5 , 1 . 5
DATA 1,2 , 0 .5,-1,1, - 1
DATA 2 , 3,2 , 2 . 5,2 , 180.330
DATA 2 , 3,2 , 2 , 2 , 180 , 360
DATA 2 , 3, - 1,2 . 5 , 2,180,360
DATA 2 , 3 ,-1 , 2,2,180 , 360
DATA - l."z" , 2.75,4
DATA 1 , 3,0 , 6,5 . 5 , 6.0 . 5,0
DATA 1,3,5 , 6 ,0,0,5 . 5,0
DATA - 999

Gothic

4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4720
4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
4830
4840
4850
4860
4870
4880

REM 500
DATA"",3,4 510
DATA - 1 , "A" , 3 ,4 520
DATA 1 , 2,1 , 1,2,6 530
DATA 1,2,2 , 0 , 3,1 . 5 540
DATA 4 , 5 . 5 , 1 . 5,0 . 5 , 0 . 25,180,360 , 0 .5 , 0.5 550
DATA 4,l .5 ,0 , 1 . 5 , 1.2,180 , 360 , 1.5,1 . 5 560
DATA 4,1,0 , 1 , 0 .7,0,180 , 1,l.5 570
DATA 2 , 1 . 5 , 7 , 1 . 25 , 1.0 , 180 580
DATA 3,5,1 .4,3 , 1 .5,3 . 5,3 . 5,3 . 5,3 . 5 , 3 , 1 .4 , 3 590
DATA 3 , 8 , 5 , 0,5 .5,1,2 .75 , 7.2 . 2 , 7 . 5,1 . 25 , 7 . 5 , l . 5 , 7 , 4 . 5,0 . 5,5,0 600
DATA 2,1 , 7,0.75 , 1 , 180 , 315 610
DATA 4,1 . 5 , 7,1 . 25,0 . 5,0,180 , 1 . 25 , l 620
DATA -1 , "B" , 3 , 4 630
DATA 2,0,8,5,1 .6 , 270,330 640
DATA 4,4 . 25,6 , 0 .75 , 1 . 25 ,-90 , 90 , 1 .75 , 1 . 25 650
DATA 4,1 , 3,1 , 1 , 90,180,1 , 2 660
DATA 2 , 2 , 0,2 , 2 . 3,90 , 180 670
DATA 3 , 6 , 1 , 2 , 1 .5,2.2 , 2 , 2 . 3 , 2,6 . 5 , 1,6 . 4 , 1,2 680
DATA 2,2 , 0,2 , 1 . 5 , 180 , 330 690
DATA 4 , 1.75 , 0 , 1.75 , 1 , 0 , 180 , l .75 , l .8 700
DATA 2 , 6 , 0,2 . 5,1 , 90 , 180 710
DATA 1 , 2,2 .75,1,2 .75,6 .75 720
DATA 1 , 2,2,4.5,4 . 25 , 4.75 730
DATA 3 , 6 , 5 , 0 . 95 , 6 , 1 , 6 , 3,5 . 5,3 .7 , 5 , 3.5,1 740
DATA 4 , 3 . 5,3 , 1 . 5 , 1.6,0 , 90 , 2 . 5 , 1 . 65 750
DATA - 1 . "C" , 3 , 4 760
DATA 1,2,5 , 1,5,6 . 5 770

232 Font Tables

DATA 1,2,1 . 5 , 1 . 25 , 4 . 2 . 5
DATA 1 , 2 , 1 ,6.5.8
DATA 2 . 3 ,4,3 , 4,270 , 360
DATA 3 . 5 .3.2,4,2.5,4 , 7.5 , 3 ,7 , 3 , 2
DATA 4 , 3 , 4,2 , 4 , 90 , 270 , 3 , 4
DATA 4 , 5 .5,8 , 0 . 5 , 1 , 180,360 , 0 . 5 , 1 . 5
DATA 4 , 5 . 6 .7 .3 , 0 .5 . 0 .75 . 180 , 270 , 1 .5 ,0.75
DATA 3 , 5 , 4,7 . 5 , 4 .7 ,5.2 , 7 , 5,8 , 4 ,7 . 5
DATA - 1."D" ,3.4
DATA 2 , 0 , 6 .75 , 2 .75 ,0.3 , 270 , 360
DATA 4 , 4 , 5 .75 , 1 , 1 , 0 , 90 , 2 , 2
DATA 3 , 5 , 5 , 1 . 6 , 1,6 , 5 .75 , 5 . 5 .75 , 5 , 1
DATA 3 , 5 , 1,6.75 , 4 , 6 .75 , 4 ,7 .75 , 1,7 .75 , 1 , 6 .75
DATA 4 . 1 .8.1,0 . 25 , 180 , 270 , 1 , 1 . 25
DATA 4 , 1 , 3 , 1 , 1 ,90 , 180 , 1 , 2
DATA 2 , 2 , 0,2 , 2 . 3 , 90,180
DATA 3 , 6 , 1 , 2 , 1 .5,2 . 2,2 , 2 .3,2 , 6 . 5 , 1 , 6 .4 , 1.2
DATA 2,2 , 0 , 2.1 . 5,180,330
DATA 4 , l .75 . 0 , 1 .75 . 1 .0 , 180 , 1.75 , l . 8
DATA 2 , 6 , 0 , 2 .5 , 1 , 90 . 180
DATA 1 , 2 , 2 .75 , 1 , 2 .75 , 6 .75
DATA - 1 , "E",3 , 4
DATA 1 , 2 , 5 , 1 , 5 , 6 . 5
DATA 1 , 2 , 1 . 5 , 1 . 25 , 4 , 2 . 5
DATA 1 , 2,1 , 6 , 5 ,8
DATA 2 , 3 , 4 , 3 , 4 , 270 , 360
DATA 3 , 5 , 3 , 2 ,4,2.5 ,4 ,7.5 , 3 ,7 , 3 , 2
DATA 4 , 3,4 , 2,4,90 . 270,3,4
DATA 4,5 . 5 . 8 , 0 .5 , 1 . 180 , 360 , 0 . 5 , 1 . 5
DATA 4 , 5.6,7 . 3 , 0 . 5 , 0 .75 , 180 , 270 , 1 . 5 . 0 .75
DATA 3 , 5 , 4 ,7 . 5 , 4 ,7 , 5 . 2 ,7 , 5 ,8 , 4 ,7 . 5
DATA 4 , 5 .5,4 .5,0 . 5 , 0 . 25 , 0 , 180 , 0 . 5 , 1
DATA 3 , 6 , 5 . 5 , 4 . 5 .8,4 .4,6,4 . 5 , 5 . 5,4 .8,5 .3,4 . 5 , 5 .5,4
DATA - 1 . "F'" , 3 ,4
DATA 2 , 2,0 , 2 , 1 . 5 , 180 , 330
DATA 4 , 1,0 , 1 , 1 , 90 , 180 , l . 2
DATA 4 , 1 , 0 , 2 , 1,0,90,2 , 2
DATA 2 , 4 . 5 , 0 , 1 .5,1 , 90,180
DATA 1 , 2 , 3 . 5 , 0 .75 , 3 . 5 .7
DATA 3 , 5,3 .5,4 ,4 ,4,4.5 . 5 , 3 .5,5,3.5 , 4
DATA 2 , 0 ,8 , 4 , 1 . 5 . 270 , 360
DATA 3 , 5,1 , 2 . 2 , 2 . 5 , 2 , 6 .7,1 ,6.5 . 1,2
DATA 3 , 5.0 , 4 , 1 , 4 , 1 , 5 ,0 .5,5 .0 . 4
DATA 4 , 4 .75 ,8 , 0 .75 , 1 . 180 , 360 . 0 .75 , 1 .5
DATA 4 , 4 . 5 , 8 , 1 . 5 , 1 , 180 , 270,1 . 5 , 1 . 5
DATA 3 , 5 , 3 , 7 , 3 .7 , 7 . 3 ,4 , 8 , 4 . 5 .7.3 .7
DATA - 1 . "G" .3 ,4
DATA 1 , 2 , 5 , 1,5 , 6 . 5
DATA 1 , 2 , 1 . 5 , 1 . 25 , 4 . 2 . 5
DATA 1 , 2 , 1 , 6 , 5 ,8
DATA 2,3,4 , 3,4 . 270 , 311
DATA 3 , 5 , 3 , 2 , 4 . 2 . 5 . 4 ,7 . 5 , 3,7 . 3 . 2
DATA 4.3,4,2,4 , 90,270,3.4
DATA 4 , 5 . 5 ,8,0 . 5 . 1 , 180 , 360 , 0 .5.1 . 5
DATA 4 , 5 . 6 .7.3 . 0 .5,0 .75.180 , 270 , 1 . 5 , 0 .75
DATA 3,5,4 , 7 . 5 , 4,7 , 5 . 2 , 7 , 5 ,8 ,4 ,7 . 5
DATA 2 , 5 ,8 , 1,3 . 5.270 , 360
DATA 4 . 5 . 2 .75 , 0 . 5 , 1 .75, - 90.90.1 . 1 .75

780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350

233 Font Tables

DATA - 1. "L" , 2 . 5 , 4
DATA 2 , 2 , 0 , 2 , 1 . 5 , 180 , 330
DATA 2 , 1 ,0 , 1 , 2 , 90,180
DATA 4 , 1 .5 , 0,1 . 5 , 1 , 0 , 180 , l . 5 , l . 5
DATA 1,3 , 4 , 1 . 5 , 3.0 , 3 , 7
DATA 2 , 0 ,8,4,1 . 5 , 270 , 360
DATA 3 , 5 , 1,2,2 , 2 . 5 , 2 , 6 .7 . 1.6 . 5 , l , 2
DATA 4 . 1,3 , 1 , 1 , 90 , 180 , 1,2
DATA 4 , 4.5 , 8,0 . 5 , 0.5 , 180,360 , 0.5,1
DATA 3 , 6 , 4 , 8 , 3 . 8 , 7 . 5 , 3 . 6 ,7 .3.4,7 . 1 ,4 . 5 ,7 . 4 , 8
DATA - 1 . "H" , 3,4
DATA 2.2.0 , 2 , 1 . 5.180 . 330
DATA 2 , 1 , 0 , 1 . 2 , 90 , 180
DATA 4 , l . 5 , 0 , l.5 , 1 , 0 , 180,1 . 5 , l . 5
DATA 1 , 3 ,4,1 . 5 , 3 , 0 , 3 , 7
DATA 2 , 0 , 8 , 4.1 . 5 , 270 , 360
DATA 3 , 5 , 1,2,2,2.5 , 2 , 6 .7 , 1 . 6 . 5 , l,2
DATA 4,1 , 3,1 , 1 , 90 , 180,1 , 2
DATA 4 ,4 . 5 , 8 , 0 . 5 , 0 . 5,180 , 360 , 0 . 5 , l
DATA 3 , 6 , 4,8 , 3 .8,7 . 5.3 . 6,7 . 3 , 4 ,7 . 1 ,4 . 5 ,7 , 4 , 8
DATA 4 , 4 , 2 , 1 , 2,270 , 360 , 2 .2
DATA 3 , 5 , 5 , 2 , 6.2 , 6,5 , 5,5,5 , 2
DATA 3 , 5 , 6 , 5 , 5,6 , 4 , 5 .5 , 5 , 4 . 5 , 6 , 5
DATA 1.2 , 2 , 4 . 5 , 5 , 6
DATA - 1 , "K" , 3 , 4
DATA 2,2 , 0,2 , 1 . 5 , 180 ,330
DATA 2 , 1 , 0,1 , 2 , 90 , 180
DATA 4 , l . 5 , 0,1.5 , 1,0 , 180 , l.5 , l .5
DATA 1 , 3 , 4,1 . 5 , 3,0 , 3,7
DATA 2 , 0 ,8,4 , 1.5 , 270 , 360
DATA 3 , 5 , 1 , 2.2,2 . 5 , 2 , 6 .7 . 1,6 . 5 , 1,2
DATA 4 , l , 3 , l . l , 90.180 , l , 2
DATA 4 , 4 . 5 ,8,0 . 5 , 0 . 5 , 180 , 360 , 0 . 5 , l
DATA 3 , 6,4,8.3.8,7 . 5 , 3 . 6,7 . 3 , 4 , 7 . 1 , 4 . 5 , 7 , 4 . 8
DATA 1 , 2.5,0 , 6,l . 5
DATA 1 , 2 , 2 , 4 .5,5,6
DATA 3 , 5 , 4 . 5 , l , 5 . 5 , 1,5.5 , 0 .75.5 , 0.4 . 5 , l
DATA 4 ,4 , 1 , 0 . 5 , 2 . 5,0 , 90 , 1 . 5 , 2 . 5
DATA 4 .4 .4 . 5 , 1 , 1,-90 , 90 , 2 , l
DATA 4 , 5 .4 . 5,1 , 0 . 5 , 0 , 90 , 1 . 1 . 5
DATA 3 ,4 , 5 . 6.5,5 . 25 ,4 , 5 . 5 , 5 .6
DATA - l , "I" , 2 . 5 . 4
DATA 4,l . 5 , 0 , l . 5 , l,0 , 180 , 1 .5,1 . 5
DATA 2 , 5 . 5,0 , 2 . 5 , 1 . 5 , 90,180
DATA 3,6 , 5,1 .45,5 , 6 . 3 . 4 , 5 . 5 , 4 , 1 . 2 , 4 . 5 , 1 .33 , 5 , 1 .45
DATA 1 , 2 ,3,7 , 3 , 0
DATA 4 , 3 , 2 . 5 , 1 , 1.90 , 180 , 1 , 2
DATA 2 , 1 . 5,7,1 . 5 , 1 , 180,330
DATA 4,l .5,7,l .5 , 0 . 5 . 0 , 180 , 1 . 5 , 1
DATA 4 , 4,7 , 1,0 . 5 , 180 , 360 , l , l
DATA 3,5 , 2.7 . 5 , 3 . 5 , 6 . 2 , 4 , 6 . 5 , 2 5 ,7.75 , 2 , 7.5
DATA - l , "J" , 2 . 5 .4
DATA 2,2 . 5 , 0 , 2 . 5 , 1 . 5 , 180 , 360
DATA 4 . 2 . 5 ,0 , 1 . 5 , 1 . 5 , 270 , 360 , 2 . 5 , l . 5
DATA 3 , 5.5 , 0 . 5 , 6 . 3 , 4 , 5.5 ,4 , 0 , 5 , 0
DATA 1 , 2 , 3,7,3 , 0
DATA 4 , 3 , 2 . 5 , 1 , 1,90.180.1 , 2
DATA 2 , 1 . 5,7 , 1 . 5 , 1 , 180,330

1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930

234 Font Tables

DATA 4 , l . 5 ,7 , 1 . 5,0 . 5 . 0.180,l . 5,l
DATA 4 , 4,7 , 1,0 . 5,180,360 , l , l
DATA 3 , 5 , 2 ,7 . 5 , 3 .5 , 6 . 2.4 , 6 . 5 , 2 . 5 , 7.75,2 , 7 . 5
DATA 4 , l , O,l,l,0,180 , 1,1 . 5
DATA - 1 , "N",3 , 4
DATA 2 . 2 , 0,2 . 1 . 5,180,330
DATA 2.1,0,1,2,90,180
DATA 4 ,l. 5 , 0 , 1 . 5 , 1 , 0 , 180 , 1 .5,1.5
DATA 1 , 2,3,0 , 3,6
DATA 1,2 . 2 , 4 . 5,4 , 7 . 5
DATA 4,0 . 5,8 , 0 . 5 , 0 .5 , 180 , 270,0.5 , 1 . 5
DATA 4,1 . 5,7,0 . 05 , 0 .05,0 , 90 , 0 . 5 , 0 . 5
DATA 4,0 . 5 , 6 , 0 . 5 , 0 .5 . 0 , 90,1,0 . 5
DATA 3,5 , 1,2,2,2 . 5 , 2 ,7, 1,7 , 1,2
DATA 3 , 5 , 0 .5,6 . 5 , 1.5,6.5 , 1 . 5 ,7. 5 , 0 . 5 ,7 .5 . 0.5,6.5
DATA 3,6 ,4 , 7 . 5 , 5 , 6 . 5 , 5 , 6 , 4,6,3 . 4,6.5,4.7 . 5
DATA 3 , 5 , 4 , 6 , 5,6 , 5 , 1.5,4 , 1 . 5 , 4 , 6
DATA 3 , 5,5 , 0,5 .6,1,4 . 5 .2, 3 .75,1 . 25 , 5 , 0
DATA 1,2 , 5 , 0,6,1 . 5
DATA - l . "M",4 . 5,4
DATA 2,2 , 0 , 2,1.5 ,180,330
DATA 2 , 1 , 0,1 , 2,90 , 180
DATA 4 , l .5,0,l . 5 , 1 , 0 , 180 , 1 . 5 , l . 5
DATA 1 , 2,3,0 , 3,6
DATA 1 ,2,2, 4.5 , 4,7 . 5
DATA 4 , 0 . 5 , 8,0 . 5 , 0 . 5,180 , 270 , 0.5 , 1 .5
DATA 4 , 1 .5, 7,0 . 05 , 0 . 05 , 0 . 90 , 0 . 5,0 . 5
DATA 4 , 0 .5,6,0.5 , 0.5,0,90 , 1,0 . 5
DATA 3,5 , 1 , 2,2.2 .5.2,7,1 , 7,1 , 2
DATA 3,5,0 . 5 , 6.5 , 1.5 , 6 . 5,1 . 5.7 . 5 , 0 . 5.7 . 5.0 . 5.6 . 5
DATA 3 , 6,4,7.5 , 5,6 . 5 , 5,6,4,6 , 3.4 , 6 . 5 , 4,7.5
DATA 3 , 5 , 4,6 , 5 , 6 , 5 , 1 . 5 , 4,1 .5.4,6
DATA 3 , 5 , 5 , 0 , 5 .6,1,4 .5,2,3 .75 , 1 . 25,5,0
DATA 1 , 3,5 , 0,6,1.5,6 , 6
DATA 1,2,6,1.5.6,6
DATA 3 , 6,7 , 7 . 5,8 , 6 . 5 , 8 ,6,7 , 6 , 6 . 4,6 .5 , 7,7 5
DATA 3 , 5,7 , 6 , 8 ,6,8,1 . 5,7 , 1 . 5 , 7,6
DATA 3 , 5,8 , 0 , 8 . 6 , 1 , 7 . 5.2 , 6 .75 ,1.25 , 8 , 0
DATA 1 ,2, 8,0 , 9 , 1 . 5
DATA 1,2 , 5,4.5,7,7 . 5
DATA 3,5 , 3 , 3 , 6 , 3 , 6 , 4 , 3 , 4 , 3 , 3
DATA - 1 , "0" ,3, 4
DATA 4,3 , 4 , 1 .75 , 4,90 , 360 , 3 , 4
DATA 4,4,4,0.75 , 3.0,90,2 , 3
DATA 1 , 2 , 1,5 .5,4,7
DATA 3 , 5 , 2 . 5,1 . 5,3 . 5 , 2,3 . 5,6.75 , 2 . 5,6 . 25,2 . 5 , 1 . 5
DATA 1 , 2 , 1 .5,1,3.5 , 2
DATA - 1 , "Q" , 3 , 4
DATA 4,3 ,4 , 1.75 , 4 , 90 , 360,3,4
DATA 4,4 , 4 , 0 .75 . 3 , 0 , 90 , 2,3
DATA 1,2 ,1, 5 . 5,4.7
DATA 3,5,2 . 5 , 1 . 5,3 . 5 , 2 , 3 . 5 , 6 .75 , 2 . 5.6 . 25 , 2 . 5 , 1 . 5
DATA 4,4 . 5 ,-1,0.5 , 2 , 0 , 90,1 . 5 , 2
DATA - 1,"R" , 3 , 4
DATA 2,2,0,2,1 . 5 , 180 , 330
DATA 2,1 , 0 , 1,2,90.180
DATA 4 , l . 5 , 0 , 1.5 , 1 , 0 , 180 , l . 5 , l . 5
DATA 1,2,3 , 0 , 3,6.5

1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510

235 Font Tables

DATA 1 , 2 , 2 , 5 , 4 , 8
DATA 4 , 0.5 , 8 , 0.5,0 . 5 , 180 , 270,0 .5,1 . 5
DATA 4 , 1 .5,7,0 .05 , 0 .05,0,90 , 0 . 5 , 0 . 5
DATA 4 , 0 .5,6 , 0 .5.0 . 5 , 0 , 90,1 . 0.5
DATA 3 , 5 , 1 , 2 , 2,2 .5,2 , 7 , 1,7 , 1 , 2
DATA 3,5,0 . 5 , 6 .5,1 . 5 , 6 . 5 , 1 . 5 ,7 . 5 , 0 . 5 , 7 .5 , 0 .5 , 6 . 5
DATA 3 , 5 , 5 , 0 , 5 .6.1 , 4.5 , 2 , 3 .75,1 . 25 , 5 , 0
DATA 1 , 2 , 5 , 0 , 6 , 1 . 5
DATA 4 , 3 , 6,2,2,270 , 360 , 3 , 2
DATA 4 , 3.5,6,1 .5 , 1,0,90 , 2 . 5 , 1
DATA 4 , 3 , 1 . 5 , 1,2 .5,0 ,90,2 , 2 . 5
DATA 4 , 4 , 6 , 1 , 2 , 0 , 90 , 2 . 2
DATA 3 , 5 , 4,8,3 . 4,7,5 , 6 .8,4 . 5 , 7 . 8 , 4 ,8
DATA - 1,"P",3,4
DATA 2 , 2 , 0 , 2 , 1.5,180 , 330
DATA 4 , l . 5 , 0,l.5,1,0 , 180,1 . 5 , 1 . 5
DATA 1,2 , 3 , 0 , 3 , 6 . 5
DATA 1 , 2 , 2 , 5 . 5 , 4 . 5 , 8
DATA 4 , 0 .5 ,8 , 0.5 , 0 . 5 , 180,270 , 0 .5.1 . 5
DATA 4 , 1.5 ,7.0.05 , 0 . 05 , 0,90 , 0 . 5 , 0 . 5
DATA 4 , 0.5 , 6 , 0 .5.0 . 5 , 0 , 90 , l , 0 . 5
DATA 3 , 5 , 1, - 2 , 2 ,-2 , 2 .7,1 ,7,1 ,-2
DATA 3 , 5 , 0 .5,6 . 5 , 1 . 5 , 6 .5,1 . 5 , 7 . 5 , 0 5 , 7 . 5 , 0 .5.6.5
DATA 2 , 6,0 , 3,1 . 5,90,180
DATA 3 , 5 ,4 . 5 , 1 . 3 , 5 . 5 , 1 . 5 , 5 . 5 , 7 , 4 . 5 , 6 .5 , 4 . 5 , 1 . 3
DATA 3 , 5 , 4 . 5 , 6 .5 , 5 . 5 , 7 , 4 .5 , 8 , 3 .5,7 ,4.5,6
DATA - 1 , "S" , 3 ,4
DATA 2 , 2 , 0 , 2 , 1 .5 , 180 . 330
DATA 4 , l .5 , 0 , 1 .5,1,0 , 180 , 1 . 5 , l . 5
DATA 1 , 2 . 3 , 0 ,3 , 8
DATA 2,6 , 5 , 1,1 , 180,270
DATA 2 , 3 , 5 , 2 , 1,270 , 360
DATA 2,3 , 3 , 2 , 1 , 90,180
DATA 2 , 0 , 3,1,1 , 0 , 90
DATA 2,0 , 8 , 3 , 1 . 5,270,360
DATA 2 , 6 , 0,3 , 1 . 5,90 , 180
DATA 4 , 0 , 4 . 5 , 0 . 5 , 0.5 , 270,360,1 . 5 , 0 . 5
DATA 3 , 5 , 0 .5 , 4 , 0 . 5 , 6 . 5 , 1 .5,6 .7,1 . 5 , 3 . 8 , 0 . 5 ,4
DATA 3,6,5 .5 , 1 . 5 , 5 .5,4 . 1 , 5 , 4 . 6 , 4 .5 , 4 .3 , 4 . 5 , 1 . 3 , 5 .5 , 1 . 5
DATA 4 , 0 , 3 , 1 , 1 , 0,60 , 1 , 1 . 5
DATA 4 , 0 , 3 , 1 , 1 , 45 , 90 , 2 , l
DATA 4 , 3 , 3 , 2 , 1 , 140 , 180 , 2 , 1 . 5
DATA 3,3 , 0 . 5 , 4 .5,1 , 3 . 1 , 1 . 5 , 4 .5
DATA 4 , 3 , 5 , 2 , 1 , 330 , 360 , 2 , 2
DATA 4,6 , 5 , 1 , 1,180 , 220 , 1 , 1 . 5
DATA 4 , 4 , 8,1 , 1 , 180,360 , 1 , 1 . 5
DATA - 1 , "T" , 3 , 4
DATA 4,2 , 3 . 5 , 1 , 3 , 90 , 180.2.3
DATA 4 , 3 , 3.5 , 2,3 . 5,180,270 , 3,3 . 5
DATA 2 , 3 , 3 .5,3,3.5,270 , 360
DATA 4 , 2 , 6 , 2 , 1 , 90 , 180 , 2 , 2
DATA 4 , 4 , 8 , 2 , 1,270,360 . 2,2
DATA 1,2 , 2,0 .5,2,7
DATA 1 , 3,2 , 5.4,6 , 4,0 . 25
DATA 3 , 5 , 2 , 1 .5,3,2,3,5 .5,2 , 5,2 , 1 . 5
DATA 4 , 2 , 6 , 1 , 1,0,90,1 , 2
DATA 4 , 4 , 8 , 1 , 1 , 180 , 270 , 1 , 2

2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080

236 Font Tables

DATA - 1."U".3.4
DATA 2.2 , 0 , 2 , 1 . 5,180,330
DATA 2,1 , 0 , 1 , 2,90,180
DATA 4 , l . 5 , 0 , l . 5,1,0,180,1 .5,l . 5
DATA 1,2 , 3 , 0 , 3 , 6
DATA 4 , 0 . 5,8 , 0 . 5,0.5 , 180,270 , 0 . 5,1 . 5
DATA 4 . 1 . 5 ,7,0 .05 , 0 . 05,0 , 90 , 0 . 5 . 0 . 5
DATA 4 , 0 . 5 , 6 , 0 . 5 . 0 . 5 , 0,90 , 1 , 0 . 5
DATA 3 , 5 , 1 , 2 . 2 , 2 . 5 , 2 , 7 , 1,7 , 1,2
DATA 3 , 5 , 0 . 5 , 6 . 5 , 1 . 5 , 6 . 5,1 . 5 ,7 . 5,0 . 5 , 7 . 5 , 0 . 5.6 . 5
DATA 2 , 5 , 0 , 2 . 1.90.180
DATA 3 , 6 , 4 , 0 . 9 , 4.5 , 1.5 , 1 , 5 , 7 ,4 ,7 , 4 , 1
DATA 4 , 6 .7 , 1 , 1 , 90 , 180 , 2 . 1
DATA 1 , 2 , 5,0 , 6 , 1 . 5
DATA 3 , 5 , 4 , 0 . 9 , 5 , 0,5 . 5 , 0 .75 , 5 , 1 . 25 , 4 . 0 . 9
DATA - 1 . "V" , 3 , 4
DATA 2 , 2 , 0 , 2,1 .5 , 180,330
DATA 2 ,1. 0,1 , 2 , 90 , 180
DATA 4 , l . 5 , 0 , l .5 , l , 0 . 180 , 1 . 5 , 1 . 5
DATA 1 . 2 . 2,4 .5.4.7.5
DATA 4 , 0 . 5 , 8 . 0 . 5,0.5,180.270 ,0 . 5 , 1 . 5
DATA 4 , l . 5 , 7 . 0 .05 , 0 . 05 .0 . 90 , 0 . 5 ,0 . 5
DATA 4 , 0 . 5 , 6 , 0 . 5,0 . 5 , 0 , 90 . 1 , 0 . 5
DATA 3 , 5 , 1 , 2 , 2,2 . 5 , 2 , 7 , 1 , 7 , 1 , 2
DATA 3 , 5 , 0 . 5 , 6 . 5 . 1.5 , 6.5 , 1.5 ,7 . 5 , 0 . 5 , 7 . 5 . 0 . 5,6.5
DATA 2 , 6,0 , 3 , 1 .5,90.180
DATA 3 , 6 , 5 . 5 . 1 . 5 , 5 , 1 . 5 , 4 . 5,1 . 3 , 4 . 5,6 . 5 , 5 . 5 , 6 . 5 , 5 . 5,1 . 5
DATA 3 , 5 , 5 . 5 , 6 . 5,4 .3,8,3.7 , 7 .4 . 5 , 5.8,5 .5,6.5
DATA - l . "W",4 . 5 , 4
DATA 2.2.0 , 2 , 1 . 5,180 , 330
DATA 2,1 , 0 , 1 , 2,90,180
DATA 4 , 1 . 5 , 0,1.5 , 1 , 0 , 180 , l . 5 , l.5
DATA 1 , 2 , 3 , 0 , 3 , 6
DATA 1 , 2 , 2 , 4 . 5 , 4 ,7 . 5
DATA 4,0 . 5 , 8 , 0 . 5,0 . 5 , 180 , 270 , 0 . 5,1 . 5
DATA 4.1 . 5 ,7 .0 . 05.0 . 05 , 0 , 90 ,0 . 5 , 0.5
DATA 4 , 0 . 5 , 6 , 0 . 5 , 0 . 5 , 0,90 , l , 0 . 5
DATA 3 , 5 , 1 , 2.2,2 . 5 . 2 ,7 , 1.7 , 1 , 2
DATA 3 , 5 , 0 . 5 , 6 . 5 , 1 . 5 , 6 . 5 ,1.5,7.5 , 0 . 5 , 7 . 5 , 0 . 5,6 . 5
DATA 2 , 6 , 0,3 , 1 . 5 , 120 , 180
DATA 3 , 5 , 5 . 5 , 1 . 5 , 4 . 5,1 . 3 , 4 .5 , 6 .5 , 5 . 5 , 6 . 5 , 5.5,1 . 5
DATA 3,5 , 5 .5,6 . 5 , 4 . 3,8,3 .7 , 7 , 4.5 , 5.8 , 5 . 5,6 . 5
DATA 3 , 6 , 4 . 5,1 .3 , 5 . 5 , 0 , 5 .7,0 . 6,6,0 . 9 , 5.5,1 . 5 , 4 . 5 , 1 . 3
DATA 2 , 8 .5 , 0 , 3 , 1 . 5,90 , 180
DATA 3 , 5 , 8 . 5 , 1.5 , 7 . 5 , 1 . 3 , 7 . 5,6 . 5.8 . 5,6 . 5 , 8.5 , 1 . 5
DATA 3 , 5 , 8 . 5 , 6 . 5 , 7 . 3,8 , 6 .7 ,7 , 7 . 5 , 5 .8.8 . 5 ,6 . 5
DATA 3 , 5 , 7 . 5 , 1 . 3 , 8 . 5 , 0 , 9 , 1,8 . 5 , 1 . 5 ,7 .5 , 1 .3
DATA 1 , 2 , 5 , 4 . 5,7 , 7.5
DATA - 1 . "Y" , 3 , 4
DATA 2,2 , 0 , 2,1.5 , 180 , 330
DATA 2 , 1,0 , 1,2.90 , 180
DATA 4 , l . 5 , 0 , l .5,l , 0 , 180 , 1 . 5,1 . 5
DATA 1 , 2.3 ,0,3,6
DATA 1 , 2 , 2 , 4 . 5,4 , 7 . 5
DATA 4 . 0.5,8,0 . 5 , 0 . 5 , 180 , 270 , 0 .5 , 1 . 5
DATA 4 , 1 .5,7 . 0 . 05 , 0.05,0,90,0 . 5 , 0 . 5
DATA 4 , 0 . 5 , 6,0 . 5 , 0 . 5 , 0 , 90 , l , 0 . 5
DATA 3 , 5 , 1,2.2 , 2 . 5,2,7 , 1,7,l , 2

3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660

237 Font Tables

DATA 3 , 5 , 0 .5 , 6.5 , 1 . 5 ,6.5 , 1 . 5,7 . 5 , 0 . 5,7 . 5 , 0 . 5 , 6 .5
DATA 2 , 6 , 0 , 3,1 . 5,120 , 180
DATA 3,5,5 . 5,1 . 5,4 . 5 , 1 .3,4 . 5 , 6 . 5 , 5 . 5 , 6 . 5 , 5 . 5 , 1 . 5
DATA 3 , 5 , 5 . 5,6 . 5 , 4.3 , 8 , 3 .7 , 7,4 . 5,5 .8 , 5 . 5 , 6 . 5
DATA 4,3 . 5 , 1 . 5,1 , 3 , 270.360,2,3
DATA - 1 , "X" , 3 , 4
DATA 2 , 2 , 0 , 2 , 1 .5 , 180 , 330
DATA 4,l.5 , 0 , l . 5,1,0 , 180 , 1 . 5,l .5
DATA 1 . 2.5,0,6 , 1.5
DATA 3 , 5 , 5 , 0 , 5 . 5 , 0 .75 . 2 , 6 . 5,1 , 6 . 5 , 5.0
DATA 1 , 2 , 2,1 . 3 , 5,7
DATA 3 , 4,5 , 7,5 , 6 , 4 . 5 , 6 , 5 .7
DATA 4 , 5 , 8 , 1,1,270 , 360 , 1 , 2
DATA 4,0 , 6 . 5.0 . 5,1,0 . 90,2 , 0 . 5
DATA 3 , 5 , 1 , 3 . 5 , 4.5 , 3.5.5,4 . 5 , 1 . 5 , 4 .5 , 1 , 3.5
DATA - l , "Z" , 2 . 5 , 4
DATA 2 , 2,0 , 2 , 1 . 5 , 180 , 330
DATA 4 , l . 5 , 0,1 . 5,1,0 , 180 , 1 . 5 , 1 .5
DATA 2 , 5 , 0 , 2 , 1 . 5,90.180
DATA 4 , 1 , 8 , 1 , 1 , 180,270 , 1 , 2
DATA 3 , 5,1 , 6 , 3 , 6 , 3 ,7,1.7,1 , 6
DATA 4 , 3 , 5,1 , 1 , 0 , 90 , 2 , 2
DATA 4 , 3 , 5 , 1,1 , 270 , 360 , 2 , 1
DATA 4 , 3,1 . 5 . 1,2 . 5 , 0 , 90 , 2 , 2 . 5
DATA 3 , 4 , 4,1 . 5 , 4.5 , 1 . 5 , 4,1 .3 , 4 , 1 .5
DATA 1,2 , 2,1 .3,2 , 6
DATA 1 , 2 , 1,4 ,3.4
DATA - 1 . "-" , 3 , 4
DATA 1 , 2,0 . 5 , 2 . 5 . 1 , 3.5
DATA 1 , 2 , 5 , 4 . 5 , 5 . 5 , 5 . 5
DATA 3,5 , 1 , 3 . 5,4.5 , 3.5,5 , 4 . 5 , 1 . 5 , 4 . 5 , 1 , 3 . 5
DATA - 1 , " , " , 3 , 4
DATA 4 , 2.5 , 0 , 0 .05,0 . 05 , 0,360 , 0 .5.0.5
DATA 4 , 2 , 0 , 0 . 5,1 . 5 , 270 , 360 , 1 , 1 . 5
DATA - 1 , " . ",3 , 4
DATA 4.2.5 , 0 , 0 . 05,0 .05,0,360,0 . 5 , 0.5
DATA - 9999

Electrical Symbols

REM
DATA" " , 3 , 4
DATA - 1 , " . " , 3 , 4 ! DOT
DATA 4 , 0 , 0 , 0 .05 , 0 .05 , 0 , 360 , 0 .22 , 0 . 22
DATA - 1 , "*" , 3,4 ! 'AND' GATE
DATA 1 , 4 , 6 . 4 ,-4 , 0 , -4 , 0 , 4 , 6 . 4 , 4
DATA 2 , 6 .4,0,4 , 4 ,-90 , 90
DATA - 1 , " +" , 3 , 4 ! 'OR ' GATE
DATA 2 , 0 , 0 , 2 , 4 ,-90 , 90
DATA 1 , 2 , 0 , 4 , 3 , 4
DATA 1 , 2 , 0, - 4 , 3 ,-4
DATA 2 , 3, - 4 , 8 , 8 , 30,90
DATA 2 , 3 , 4,8,8.270 , 330
DATA - 1 , " <" ,>3 , 4 ! ARROWHEAD
DATA 3 , 3 , 1 , 0 . 5 , 0 . 0 , l, - 0.5
D"A"TA - 1 , A,3 ,4 I ANTENNA
DATA 1.2,0 ,0 , 0 , 9

3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660

238 Font Tables

DATA 1,3 ,-2.5 ,9,0 , 6 , 2 . 5 , 9 670
DATA - 1 , "B" , 3 , 4 ! SQUARE BOX 680
DATA 1 , 5 ,-5 , 0 ,-5 , 10 , 5.10 , 5,0 .-5 . 0 690
DATA - 1 , b , 3 , 4 ! RECTANGULAR BOX 700
DATA 1 , 5 ,-5,0 , -5 , 25 , 5 , 25 , 5 , 0, - 5 , 0 710
DATA - 1 , "C" , 3 , 4 ! SIGNED CAPACITOR 720
DATA 1 , 2 , 0 , 0 , 0 , -1 .6 730
DATA l , 6 ,-l .6 ,-l .6 , l . 6 ,- l .6 , l .6 ,-l .65 ,-l . 6 .-l .65 ,-1 .6 .-1 .7 . l.6 .-l .7 740
DATA 1 , 2.0 .-3 . 2 , 0 ,-4 . 8 750
DATA 2,0 ,-6.4 , 3 . 2 , 3 . 2 , 60 , 120 760
DATA 1,2 , 2 , 0,2 ,-0 .8 770
DATA 1 , 2 , 1 .6 ,-0 .4 , 2 .4 ,-0 .4 780
DATA - 1 , "c" , 3 . 4 ! UNSIGNED CAPACITOR 790
DATA l , 2 , 0 , 0 , 0. - 1 .6 800
DATA 1 , 2 ,-1.6. - 1 . 6 , 1 . 6 ,-1 .6 810
DATA 1,2 , 0 ,-3 . 2 , 0 ,-4 . 8 820
DATA 2,0, - 6.4 , 3 . 2,3 . 2 , 60 , 120 830
DATA - 1 , "D" , 3 , 4 ! DIODE 840
DATA 1 , 2 , 0 , 1 . 2 , 0, - 1 . 2 850
DATA 3,4 , 0 , 0 , 2 .4 , 1.2 , 2 .4 ,-1 . 2 , 0 ,0 860
DATA - 1 , "d" , 3 , 4 ! ZENER DIODE 870
DATA l , 4 ,-0.5 , l .7 , 0 , l . 2,0 ,-1 . 2 , 0 . 5 ,-1 .7 880
DATA 3 , 4 , 0 , 0 , 2 .4 , 1 . 2.2.4 ,-l.2,0 , 0 890
DATA - 1 , "F" , 3 , 4 ! FUZE 900
DATA 1 , 2 , 0 . 0 , l , O 910
DATA 2 , 2 . 5 , 0.1 . 5 , 1 . 5 , 0 , 180 920
DATA 2.5 . 5 , 0,1.5,1 . 5 ,180 , 360 930
DATA 1 , 2 , 7 , 0 ,8,0 940
DATA - 1 . "f" , 3,4 ! FLIP-FLOP 950
DATA 1 , 5 ,-5 , 0 ,-5,20,5 , 20 , 5 , 0 ,-5,0 960
DATA 1 , 2, - 5 , 3 . 2 ,-6.6 , 3 . 2 970
DATA 1,2 ,-5,16 . 8 ,-6 . 6 , 16 . 8 980
DATA 1 , 2 , 0 , 0 , 0 ,-1 .6 990
DATA 1 , 2 , 0 , 20 , 0,21 . 6 1000
DATA 1 , 2,5 , 10,6 . 6 , 10 1010
DATA 2 ,-3 , 3 . 2,0.8,1 , 0 , 360 1020
DATA 1 , 2 ,-3 ,3, - 2 , 2 1030
DATA 1 , 2 ,-2 . 2,4.5, - 3 .8,4 . 5 1040
DATA 2 ,-3 , 16 . 8 , 0 . 8 , 1 , 0 ,360 1050
DATA 1 , 2, - 3 , 16 .6 ,-2 , 15 .6 1060
DATA 2.0 , 18 . 9,0 . 8 , 0 .5,0 , 270 1070
DATA 2 , 0 , 17 . 9 , 0 .8 , 0 . 5 ,-180 , 90 1080
DATA 1,3 ,-0 .8,0 . 8 ,-0 . 8 . 2 .8 , 0 .3.2 .8 1090
DATA 1 , 2 , 0 . 8 , 0 . 8 , 0 . 2 , l .8 1100
DATA 1 , 2 ,-0 . 8 , 1.8 , 0 . 3 , 1 . 8 1110
DATA 2 , 0 . 3 , 2 . 3 , 0 . 5 , 0 . 5, - 90 , 90 1120
DATA 2 , 1 .8 , 10 , 0 .8 , 1 , 45 , 315 1130
DATA 1 , 2 , 3,9 , 3 , 11 1140
DATA 1,3 , 4 . 6 , 11,3,10 , 4 . 6 , 9 1150
DATA - 1 . "G" . 3 . 4 ! GROUND 1160
DATA 2,3 , 3 . 2 , 0 . 8 , 1 , 0 , 360 1170
DATA l , 6 ,- l .6 ,-l.2,l . 6 ,-l . 2 , l . 6 ,-l.25 ,-l . 6 ,-1 . 25 ,-1 . 6 ,-1 . 3 , l . 6 ,

- 1.3 1180
DATA 1,6, - 0 .85, - 2 . 2 , 0 . 85, - 2 . 2,0 . 85, - 2 . 25 ,-0 . 85 ,-2 . 25 .-0 .85 ,-2 . 3 1190
DATA 0 .85, - 2 . 3 1200
DATA l,6 ,-0 . 1 ,-3 . 2 , 0.1 ,-3 . 2,0 . l ,-3 . 25 ,-0 . l ,-3 . 25 ,-0.l, - 3 .3 , 0 . l ,

- 3 . 3 1210
DATA - 1 , "g" , 3 , 4 ! CHASSIS GROUND 1220

239 Font Tables

DATA l,6,0,0,0,-l . 2 ,-l.6,-l . 2 , 0 .-3.3 ,1. 6 ,-1 .2,0,-l.2
DATA - 1,"H" , 3,4 ! EARTH GROUND
DATA 1 , 3,0,0,0 ,-1 . 2, - 0.5 ,-2.2
DATA l , 4 ,-2.1 ,-2 . 2 ,-1 . 6, - 1 . 2,l . 6 ,-l .2, l .l,-2.2
DATA -1,"i " ,3,4 INTEGRATED CIRCUIT (SMALL)
DATA 1 , 4.5.5 , 0 , 0 , 3.2 , 0 ,-3 . 2 , 5 . 5 ,0
DATA - 1,"I",3,4 ! INTEGRATED CIRCUIT (LARGE)
DATA l,4 , ll . 0,0.6 .4,0 ,-6 . 4 , 11 , 0
DATA - 1 , "K", 3 , 4 RELAY SOLENOID
DATA 1 , 2,0,0 , 2 . 4,0
DATA 1,5,2 . 4 , 0 . 8 , 2.4 , -4 , 4 .8 ,-4 , 4 .8 , 0 . 8 ,2. 4 ,0.8
DATA 1 , 2,4 . 8 ,-3,7, - 3
DATA 2,4 . 8, - 0.5,0.5 , 0 . 5, - 90 , 90
DATA 1 , 2,4 .8 ,-1,2.4 ,-2
DATA 2,2.4, - 2 . 5 . 0 . 5 , 0 . 5,90,270
DATA - 1 , "k",3 , 4 ! RELAY SWITCH
DATA 2,0 , 0,0 . 2,0.2 , 0,360
DATA 1,2,0.2,0,5,0
DATA 1,3 , 7 ,-3,3 . 6 ,-3,3 .6, - 1 . 5
DATA 3,3 , 3.3, - 2,3.6,-1 . 5,3 .9, - 2
DATA 1,3,7 , 1 . 5,3 .6,1 . 5,3 .6,0
DATA 3 , 3,3 . 3 , 0.5 , 3.6 , 0,3 . 9 , 0 . 5
DATA - 1,"L" , 3 , 4 ! LAMP
DATA 2,0 , 0 . 5 , 2,2 , 0.360
DATA 1,2 ,-4 , 0 ,-1 . 3 , 0
DATA 2,-1.3 , 1 . 6,1 . 6,1 .6,270,360
DATA 2 , 0 , 1.6 , 0 . 3 , 0 . 3 , 0 , 180
DATA 2,1.3,1 . 6,1.6 . 1.6 , 180,270
DATA 1,2,1 . 3 , 0,4,0

1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510

DATA - 1 , "m",3 , 4 ! MU 1520
DATA 2,0,5 , 1,5,270,360 1530
DATA 2,2 . 5 , 5,1 . 5 , 5 , 180 , 360 1540
DATA 2,6,5,2,8,180,270 1550
DATA - 1 , "N" .3,4 ! NPN TRANSISTOR (RIGHT EMITTER) 1560
DATA 4,0 , 0 , 3 .9,3.9.0 , 360,4 , 4 1570
DATA 1 , 3 ,-4 . 8,1 .6, - 3 . 2,1 . 6, - 1 .6, -2 1580
DATA 1,6, - 2 . 9, - 2 , 2 . 9 ,-2 , 2 . 9 ,-1 . 9 ,-2 . 9 ,-1 .9,-2 . 9 ,-1.95 , 2 . 9. - 1 . 95 1590
DATA 1,3,4 .8,1 .6,3 . 2,1 .6,1 .6, -2 1600
DATA 1 , 2 , 0, - 2 , 0, - 6 1610
DATA 3,4,2, - 0 . 4,2 . 65,0 .4,2 . 5, -0. 62 , 2. -0 4 1620
DATA - 1 , "n",3 , 4 ! NPN TRANSISTOR (LEFT EMITTER) 1630
DATA 4,0,0,3 .9,3.9,0 , 360,4 , 4 1640
DATA 1 , 3 ,-4.8,1 .6, - 3 . 2,1.6 ,-1 . 6, -2 1650
DATA 1,6, - 2.9, - 2 , 2.9, - 2,2 . 9 ,-1 . 9 .-2 . 9 ,-1 .9,-2. 9 ,-1 . 95,2 . 9 ,-1 . 95 1660
DATA 1,3 , 4 .8 , 1 .6,3 . 2 , 1 . 6,1 . 6 ,-2 1670
DATA 1 , 2,0, - 2 , 0 ,-6 1680
DATA 3,4, - 2.63,0 . 4 ,-2.53 ,-0 . 46, -2. 08, - 0 . 3. -2 63 , 0 . 4 1690
DATA - 1 , "0" , 3,4 ! OPEN DOT (CENTERED) 1700
DATA 2,0 , 0,0 . 22,0.22 , 0 , 360 1710
DATA - 1 , "o",3,4 ! OPEN DOT (OFFSET) 1720
DATA 2,0.22 , 0,0 . 22,0.22 , 0 , 360 1730
DATA - 1 , "P",3 , 4 ! PNP TRANSISTOR (LEFT COLLECTOR) 1740
DATA 4,0 , 0,3 . 9 , 3 . 9 , 0 , 360 , 4 , 4 1750
DATA 1 , 3 ,-4.8 . 1 .6, - 3.2.1 . 6, - 1 . 6 ,-2 1760
DATA 1,6, - 2 . 9, - 2 , 2.9, - 2,2 .9, -1. 9, - 2 . 9. -1. 9, - 2.9. - 1 . 95 , 2 . 9. - 1.95 1770
DATA 1,3,4 .8 , 1.6,3 .2, 1 . 6 , 1.6 ,-2 1780
DATA 1 , 2 , 0, - 2,0 ,-6 1790

240 Font Tables

DATA 3 ,4 ,-2.34 , 0 .4 ,-2.2 .-0.7. - 2 .9 , 0 . 15 ,-2 . 34 , 0.4 1800
DATA - 1 . "p",3 , 4 ! PNP TRANSISTOR (RIGHT COLLECTOR) 1810
DATA 4 , 0 , 0 , 3.9,3 . 9 , 0 , 360 , 4 ,4 1820
DATA 1,3 ,-4 . 8 , 1 .6. - 3 . 2 , 1 .6 ,-1 . 6, - 2 1830
DATA l , 6, - 2.9 ,-2,2 . 9. - 2.2 . 9, - 1 . 9 ,-2 .9, - 1 .9, - 2 .9. - 1 . 95,2 .9, - l . 95 1840
DATA 1,3 ,4.8.1 . 6.3 . 2,1 . 6 , 1 . 6 ,-2 1850
DATA 1 , 2 , 0, - 2 , 0 ,-6 1860
DATA 3,4 , 2 . 3 ,-0 .4 , 2 . 95 , 0 . 28 , 2.4,0.5,2 . 3, - 0 .4 1870
DATA - 1 . "R" , 3 , 4 ! RESISTOR 1880
DATA l , 10,0 , 0 , l.O.l . 5 , l , 2 . 5 ,-1.3.5 , 1 ,4.5 ,- l , 5.5 . l ,6.5 ,-l , 7 , 0 ,8,0 1890
DATA - 1 , "T" , 3,4 ! TRANSFORMER COIL (LEFT HALF') 1900
DATA 2,0,1 . 25 , 1 . 25 , 1 . 25 ,-90 , 90 1910
DATA 2 , 0 , 3 .75 , 1 . 25 , 1 . 25, - 90 , 90 1920
DATA 2 , 0 , 6 . 25 , 1 . 25 , 1 . 25, - 90 , 90 1930
DATA 2,0 , 8 .75 , 1 . 25 , 1 . 25 .-90,90 1940
DATA - 1 , "t" , 3 , 4 ! TRANSFORMER COIL (RIGHT HALF') 1950
DATA 2,0 , 8 .75 , 1.25 , 1 . 25 , 90 , 270 1960
DATA 2 , 0 , 6.25 , 1 . 25 , 1 . 25 , 90 , 270 1970
DATA 2 , 0 . 3 .75 , 1.25,1 . 25 , 90,270 1980
DATA 2 , 0 , 1 . 25 , 1.25 , 1 . 25 , 90 , 270 1990
DATA - 1 , "z",3 , 4 ! OMEGA 2000
DATA 1,3 , 0,0 , 2 , 0 , 2 , l . 2 2010
DATA 1 , 3 , 6,0 , 4,0 , 4 , 1 . 2 2020
DATA 2 , 3 , 4 , 3,3 ,-70 , 250 2030
DATA - 9999 2040

Bibliography

242 Bibliography

Helms, Harry l. The BASIC Book. Peterborough, N.H.: Byte Books, © Mcgraw-Hill, 1983.

Kindle, J. H. Plane and Solid Analytical Geometry. Schaum's Outline Series in Mathematics.
New York : Mcgraw-Hill, 1950.

Knuth, D. E. Seminumerical Algorithms. Reading, Mass.: Addison-Wesley Publishing Co.,
1969.

Muybridge, E. Animals in Motion. New York: Dover Publications, 1957.

Muybridge, E. The Human Figure in Motion. New York : Dover Publications, 1955.

Newman, W. M. and R. F. Sproull, Principles of Interactive Computer Graphics. 2d ed. New
York : Mcgraw-Hill, 1979.

Scheid, F. Theory and Problems of Numerical Analysis. Schaum's Outline Series. New York :
Mcgraw-Hill, 1968.

Sears, F. W. and M. W. Zemansky, College Physics. Cambridge, Mass.: Addison-Wesley, 1952.

Tektronix, Inc. Introduction to Graphics Programming in BASIC. Manual 070-2059-01 . Beaver
ton, Oregon : 1981 .

Tektronix, Inc. Introduction to Programming in BASIC. Manual 070-2058-01 . Beaverton, Ore
gon, 1981.

.,

..

