
EXPLORING
ADVENTURES

on the ELECTRON

Exploring Adventures
on the Electron

Exploring Adventures

on the

Electron

Peter Gerrard

Duckworth

First published in April 1984 by
Gerald Duckworth & Co. Ltd .

The Old Piano Factory
43 Gloucester Crescent, London NW1

© 1984 by Peter Gerrard

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system,

or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the

publisher.

ISBN 0 7156 1820 2

British Library Cataloguing in Publication Data

Gerrard, Peter
Exploring adventures on the Electron .

(Duckworth home computing)
1. Computer Games 2. Electron (Computer)
Programming
I. Title
794.8'028'504 GV1469.2

ISBN 0-7156-1820-2

Typeset by The Electronic Village, Richmond
from text stored on a Commodore 64

Printed in Great Britain by
Redwood Burn Ltd. , Trowbridge

and bound by Pegasus Bookbinding, Melksham

Contents

Introduction vii

1. An Introduction to Adventure Games 1

2. How to Solve Adventures 13

3. Programming Adventures in Basic 47

4. Writing Your Own Adventures 81

5. Creating Your Own Adventures 115

6. Underground Adventure 135

7. Castlemaze Adventure 209

8. Tunnel Adventure 219

9. Further Information 231

Index 237

v

Introduction

This book is for anyone interested in the world of adventure games
on computer.

Whether you like to play them, write them, or write about them, this
book has been written with you in mind .

More specifically, it is aimed at the person who loves to get absorbed
in a game for hours on end, has always wanted to write one of his
own, but has taken one look at a listing of someone else's game and
thought 'There is no way that I could write something like that!'

This book shows you how to write a fully fledged adventure game,
with unique sections on room mapping, data structure, input routines,
verb handling, and everything you'll need to know to write an adventure
of your own.

The main game in the book, Underground Adventure, is gone through
line by line, with each piece of code explained so that you know
precisely what is going on .

By the end of this book, you will be in a position to produce your own
game for your computer.

Thanks to Steve Darnold, for getting me started in all this (although
you didn't know it at the time!).

Thanks also to Jim Butterfield, who gave me my first game of
Adventure. And what a game to start with!

Finally, a couple of dedications. Thanks to my wife for doing all the
illustrations. Living with her has certainly been an adventure!

vii

And last of all, to the lad with whom I played the longest ever game
of Adventure I've played in my life, which probably did more than
anything to get me hooked on these games. This single game lasted
for about twelve hours, after which time we were still bribing trolls,
feeding bears and exploring the bedrock room as we walked to the
pub for a pint. Denis Timm, have you managed to get out of the Pirate's
maze yet?!

viii

1

An Introduction to Adventure
Games

General Introduction

Adventure Games have been played on computers for many years,
and are one of the most popular of all types of computer games, if
not th~ most popular.

It is sometimes difficult to describe exactly what an adventure game
consists of. You're in a magical world of the writer's imagination, doing
battle with unknown and often unseen problems, that sometimes
appear to defy all logical solutions. You can be placed underground,
underwater, in outer space, in colossal caves, or just about anywhere
within the known universe, but the ultimate objectives of all the games
are usually the same: to survive, and collect all the treasure that is
rumoured to exist in these weird and wonderful games.

My own connections with adventure game playing and writing started
with the very first game of all - Adventure - playing an abridged version
on the Commodore PET 3032 computer, with a 3040 disk drive. One
night after a party two of us sat down in front of the computer and,
armed with a bottle of whisky in the real world and nothing more than
a torch, a bottle of water, a key and some food in the adventure world,
began playing a game that was to go on for more than twelve hours!

We simply did not notice that it was now light outside. We were deep
underground, trying to cross a bridge with a bear that was too heavy
for the bridge, and we didn't care about such commonplace things
as sleep!

That early start has led to a lifetime of interest in that game and
adventure games as a whole, and my interest in the games is shared
by countless other people around the world, who have made this one
of the most popular of computer games.

It is hard to explain this popularity to a non-addict. Peculiar looks and
pitying stares are the usual response when it is revealed that you spend
hours at the keyboard, glued to happenings in an imaginary world.

On the other hand, joining one of the many Adventure user groups
will place you amongst many like-minded people who fully understand
the frustration at trying to solve a particular problem. 'What do you
do with the platinum pyramid?!', no longer evokes a 'What on earth
are you on about now' attitude, instead you're more likely to get a
hundred and one hints and tips on solving the problem of the platinum
pyramid.

Adventure enthusiasts even have their own Agony Aunt now in Tony
Bridges, who writes a regular weekly column for the microcomputer
magazine Popular Computing Weekly. Every week he'll take a look
at an aspect of adventure playing, or a particular problem in one of
the more popular games, and you're welcome to contact him over
any problems that you might be experiencing in your own adventure
game.

The number of players of these games is legion, and this book has
been written to help you write your own adventure programs, and to
explain a little bit about the origins of the games, with more than a
passing glance at some of the games (and the people) who helped
to make this genre of game playing the success it's become today.

We're also giving you three complete adventure game listings at the
back of the book, with a full explanation of the Underground Adventure
game and how it was written, and brief explanations for the other two.

If the thought of typing in pages and pages of code is a daunting one,
you'll be pleased to know that the publishers are also offering these
programs on cassette, and that cassette will cost you £7 .95, available
direct from the publishers.

The listings and sections on programming are all aimed at your
computer, using a cassette deck as the storage medium.

It is hoped that, by the end of this book, you'll be more than capable
of writing your own games, and perhaps joining the author's Fool's

2

Gold and Tombs of Xeiops as top-selling adventure programs!

So without further ado, let's take a look at the history of adventure
games, and we'll start with the very first one of all, called, simply,
Adventure: the game from which all others have taken their generic
name.

How It All Began

Although most adventure programs these days seem to be written
in Basic, which is the style of writing that we'll be showing you in this
book, or machine code, the very first one was written in Fortran, not
a language known for its string handling capabilities. Which language
you choose is very much up to you, bearing in mind the restrictions
of the computer in front of you.

Basic is usually chosen because it's easier than anything else, most
Basics have a good set of commands for manipulating strings, and
there is no great requirement for speed in this type of game. The
essence of these games should always be that you have to think, not
act in the frantic fashion of a good arcade game, and because of that
we don't have to program everything to happen at lightning speed.

Some adventure games are written in machine code - Zork is a classic
example - but the writing of a game like that is beyond the scope of
this introductory tome. It is a vast program, usually supplied on three
different disks, such is its size.

In Zork, speed is required because of the many and varied ways it can
accept the inputting of information from you, the player. Most
adventures are restricted to the TAKE STAFF style of commands: one
verb and one object, but Zork goes beyond that to the level where
you can say something like BURN ALL THE BOOKS EXCEPT THE
BLACK ONE, and other complicated instructions.

The first Adventure game used the simple GO NORTH style of
instructions: for that game, and for just about everything that's
appeared since, credit has to go to Willie Crowther and Don Woods,
who wrote the program on a DEC (Digital Equipment Corporation)
PDP-10, in , as we've seen, Fortran.

That program required about 300K of computer memory to play it:
a great deal more than you get on your computer!

3

Abridged versions have appeared since then for most of the popular
home computers, and it was the work of Jim Butterfield that led to
the version now available for all the Commodore range of computers.

Since then, a version has appeared for the IBM Personal Computer,
but for some reason it is being marketed commercially. Odd, since
it is available free of charge from most user groups!

If you want a copy of that game for your computer, I would suggest
getting in touch with one of your local user groups: several names
and addresses are given at the back of this book.

If you have never played this, the first ever Adventure program, I would
strongly suggest that you do so. Not only is it one of the best adventure
games ever written, it is also the origin of every other adventure game.
Without it, people like Scott Adams and Greg Hassell would probably
have never written their own series of (very good) adventure games.

We'll look at some of theirs later, but for now let's stick to the original.

It is sometimes called the Colossal Cave Adventure, for the opening
scenario goes like this:=

'Somewhere nearby is colossal cave, where others have found fortunes
in treasure, though it is rumoured that some who enter are never seen
again. Magic is said to work in the cave. I will be your eyes and hands.
Direct me with commands of 1 or 2 words. I should warn you that
I only look at the first five letters of each word, so you'll have to enter
"northeast" as "ne" to distinguish it from north. This program was
developed by Willie Crowther and Don Woods. This version is abridged
for PET disk by Jim Butterfield.'

We'll go into more detail on Adventure (with a capital A to distinguish
it from the games as a whole) in chapter 2.

All of this was developed on a mainframe computer with 300K of
memory. So how did they get to appear on the microcomputers that
we know today ?

The Transition to Microcomputers

The first person to think about putting an adventure onto a small
microcomputer was Scott Adams, an American who is commonly
ackowledged to be the father of adventure games on small computers.

4

His story makes interesting reading, and you can find it in the December

1ggo edition of the American magazine BYTE, in which there was a
special feature on adventure games, and Scott Adams related the story
of how it all began.

For the benefit of those who haven't got access to the magazine, here's
a brief synopsis:

Scott Adams' first game was written on a Radio Shack TRS-80 level
II computer, and came about after he'd already written a few other,
non-adventure, games for it.

At the time he was working as a systems programmer for Stromberg
Carlson, and he'd been introduced to the original Adventure by a friend.
After apparently playing the game for ten days he managed to solve
the whole thing, having been totally addicted from that opening
scenario given earlier.

However, he realised that not everyone could afford a DEC PDP-10!
So, the quest was on to produce a reasonable adventure on a much
smaller computer: in his case the TRS-80.

The idea came to him of producing an adventure interpreter. This would
allow him to write many different adventures, but at the same time
cram an awful lot of information into a very small area of memory.

The programs at the back of this book work along similar lines, in that
routines exist within them to move from room to room, store the room
descriptions, handle the input of data, and so on, and these routines
are common to every listing given. This makes it possible to create
adventures with a minimum amount of work from the writer, but at
the same time they can be different enough to keep people occupied
trying to solve them for many, many hours.

Possibly the most difficult part of writing an adventure, once the actual
program structure has been grasped and understood, is getting the
original idea in the first place, and working it through as a strong idea
that doesn't rely on the impossible happening before the adventure
can be solved.

The idea for Scott Adams' first adventure, generally reckoned to be
his best, was not particularly brilliant, in that one was doing the usual
treasure seeking and problem solving. Nevertheless, it did fit into 16K
as opposed to 300K!

5

Afte.r six months of testing his adventure, and of course the interpreter
that was driving it all, this first program (called Adventureland) was
released through The Software Exchange of Milford, New Hampshire,
and Creative Computing Software.

Thus, as he says in his own article, the Scott Adams series of
adventures was born .

Apparently it almost died there and then, since his wife was taking
great exception to him spending six months locked in a room writing
programs! However, all was solved when she decided to write an
adventure, and came up with the idea for Pirate Adventure, the second
best adventure program he's ever marketed.

In this one the idea is different, in that you have to do slightly more
than merely collect treasures and solve problems. You have to build
a pirate's ship, and not many people start off with the knowledge to
do that!.

And so the transition to microcomputers was complete. It was possible
to write an adventure with only a minimal amount of memory, and
the market suddenly begain to explode.

The Market Blossoms

Scott Adams has written a large number of adventures now, well into
double figures, and we'll be taking a look at some of the better ones
later.

But while Scott was doing all his work, there was another, younger,
adventure devotee called Greg Hassett, who is now I believe 16 years
old, but already the author of at least 8 adventure programs.

Some of his programs, natural enough because of his age, are not
worthy competitors to the earlier Adams work, but nevertheless there
are some gems to be found from this young schoolboy.

In particular, Enchanted Island Plus is well worth seeking out. Written
entirely in machine code (as opposed to his earlier Basic Enchanted
Island), solving this one will keep you occupied for a long time to come.

Some of his plots are also refreshingly different. Journeys to the centre
of the earth and visiting Atlantis may be fairly run of the mill, but
situations where you have to save an almost totally polluted earth from

6

xtinction are much better. World's Edge is possibly the best one that e .
Hassett has written.

Companies producing adventures in these early days tended to be
mainly American, and it took a long while before the rest of the globe
started producing comparable games, although Britain is now catching
up fast.

In those days, Radio Shack themselves started bringing out a couple
of adventures, The Programmers Guild took a few pages out of
Tolkein's Lord of the Rings and had you fighting ores and spiders,
while Mad Hatter Adventures, who started off just handling the Hassett
programs, also produced a couple of their own, although these were
generally considered to be rather poor when compared to the
wonderful program that started off the whole craze.

Since then, of course, many companies have started marketing
adventure programs, and now many exist for just about every make
of home microcomputer.

Why They Are So Successful

It is true that adventure games generally have captured the computer
market to a vast extent. They are one of the most popular types of
all computer games, and are now enjoying something of a renaissance,
with many new games currently becoming available for all types of
computers.

Whilst relatively few will have the long-standing success of the original
game, most will probably be worthy of playing, and many will no doubt
tie their buyers to the computer for many weeks to come. Tony Bridges
is going to be very busy in the months ahead.

But why is there this phenomenal success, and why do so many people
spend so long typing in commands on a computer keyboard just to
see what appears next upon the screen ?

It is easy to analyse the success of, say, arcade games. The sound
effects, the stunning graphics, are obviously pleasing to the human
ear and eye, and our society seems to be depressingly heading into
a more violent era. Thus the chance to annihilate a few more aliens
for a mere 20 pence is not one to be missed.

But adventure games have none of this. There is usually no graphical

7

display, although we'll see later that games are available that use
graphics to one extent or another. Generally, there is no sound being
generated by the computer either, although again there qre exceptions.

Finally, there is no 'shoot-em-up and zap-em-down' approach to
adventures. They are games for the thinker, rather than the person
of action .

And perhaps this is part of the secret of their great success. To solve
a good adventure like the original Crowther and Woods game requires
a lot of logical throught, to say nothing of a lot of time. The first peopl~
to start playing the game were computer programmers themselves,
and one survey in the States showed that, when an implementation
of Adventure appeared on the work's computer, they would lose an
estimated two weeks work due to staff playing the game in their free,
and not so free, time.

Obviously people tried to put a stop to this, and started restricting
access to the game, but it was generally reckoned that whatever a
company tried to do, nothing would stop its employees from playing
the game. Better to let them have their way for a couple of weeks,
and see them emerge contented at having attained the goal of master
adventurer.

The same is true for most people who start playing the game. Once
you 've started, it is virtually impossible to rest until you 've completely
solved the puzzle.

How can I get past the troll without losing treasure? How do I open
the clam? How do I open the treasure chest in the pirate's maze? All
these questions have to be solved before attaining the magical status
of master adventurer. Sometimes you're setting yourself an impossible
task, but that won't prevent people from taking hours trying to solve
it, until they give up in disgust.

It becomes a question of pride: 'I am not going to be beaten by a stupid
computer!' is the usual response .

Also, pride comes in when you hear of someone else talking about
a room, or a particular problem, that you haven't encountered. The
desire to find that room, or solve that problem, drives many people
back to the keyboard again .

And, strangely enough, you will very rarely get a direct answer when
you ask someone how to solve a certain problem. You'll usually get

8

ryptic hint, but nothing more. So, you 're back to your own logic
:gcain, and few people will admit to not being able to solve something.

Fnally adventure games usually have a sense of fun. Take the classic
~dven~ure. T~e versi?n b~ Jim Butterfield produces some lovely
responses at times. Like this:

FEED BIRD

THE BIRD IS NOT HUNGRY, HE IS MERELY PINING FOR THE
FJORDS!

Shades of John Cleese and ex-parrots. If you try typing in the inevitable
rude statements, requesting the snake to do the anatomically
impossible, again a variety of replies can be generated.

So a combination of problem solving, pride and fun have all contributed
to making adventure games required playing for most people.

But what will happen to them in the future, as computers become
more and more sophisticated?

A Glimpse into the Future

There will always be a limit to the amount of technology that can be
squeezed into a home computer, just because of the sheer size of the
thing.

However, there appears to be no limit to the amount of programming
talent that can be squeezed into them, and it is this growth of talent
that will dictate the course of adventures over the next few years.

We can already see the results of one extremely intelligent set of people
in the adventure game Zork, which is in many people's minds a great
step forward from the original game.

Again this was developed on a PDP-10, and has now appeared as a
three part adventure for a number of home computers. Like a lot of
adventures nowadays it is supplied on disk, and thus not everyone
will get the chance to play it.

Still, there's always the local user club, and most user clubs have people
who are perfectly capable of copying the protected disks on which
Zork is supplied! Saying a disk is protected is like waving a red flag

9

at a bull: sooner rather than later a dedicated programmer is going
to crack any form of protection you care to name. As someone once
observed: 'You have to have a disk drive to make the protected disk,
and you've got precisely the same disk drive as they have. Therefore,
you've got the equipment to unprotect the disk.'

I'm not advocating software piracy, by the way, but when you see
things like the original Adventure, a public domain program, being sold
for anything up to £30, it just invites copying!

So when we get to the stage where all home computers come supplied
with built-in disk drives, you can guarantee that there'll be some very
sophisticated adventures coming out.

Just as the Crowther and Woods game requires a disk drive, so will
many future adventures. Why a disk drive ?

Well, there is a limit to how much memory a computer has, and a
disk drive will always have more. Therefore it makes sense to store
the core of a program in the computer, and call up the relevant
descriptions from the drive.

It will also pave the way for many more graphical adventures. If a
computer has got sophisticated graphical capabilities, like many of the
current home computers, it makes sense to use them.

However, to utilise all the graphical features on many computers even
now can take up to 8K of memory per screen. That's a lot of memory
to take up in the computer at one time, and adventures with four rooms
in them tend to be solved fairly quickly.

However, hitch up a half a megabyte disk drive and you've got the
capacity to handle over sixty rooms. Much more difficult to solve, and
as disk drives speed up in terms of access time we can't be too far
away from a true animated adventure.

Whether people want animated adventures or not is another question.
They say that a picture paints a thousand words, but fifty words can
paint a much more graphical image on the mind than an 8K screen
display.

That is why Lord of the Rings, and other books of that genre, will never
make a successful transition to the cinema screen or the home
computer. The mind is always capable of imagining far more from a
few simple words than can ever be depicted on a screen.

10

Perhaps that's why the mar~ successful games ~re a~ways purely
t xtual in their display. Leave 1t up to the player to imagine 1t all, and
i:t the computer take care of everything else.

Adventure games that use half-hearted graphics, like the much praised
Temple Of Apshai series, from Epyx, tend to be a great disappointment,
certainly to this writer anyway.

Dungeons and Dragons games in real life are all very well, but the
implementation on the home computer hasn't yet arrived.

So in this book we'll stick to textual games with no graphics, on the
basis that a) not everyone will have a disk drive, and bl not everyone
wants graphics anyway.

The adventure that we'll cover in most detail in this book, the
Underground Adventure, takes up most of the memory of your
computer anyway: it has to, to give it the correct degree of problem
solving and room exploration required of a good adventure.

If this book is re-written in ten years time, maybe we'll be talking about
graphical games, but until then ... !

11

12

2

How to Solve Adventures

Adventure Scenarios

Whatever the adventure game that you're playing, you will obviously
want to solve all the puzzles presented to you, usually in the minimum
amount of time, but if you're a newcomer to the game you'll probably
think that the adventure is too difficult and you'll just give up, probably
never to play an adventure again.

This chapter is aimed at solving adventures, and as well as some general
notes we'll be taking a detailed look at the original Adventure (whilst
trying not to give too much away), and also the adventure that forms
a large part of this book, the Underground Adventure.

The type of scenario you're presented with at the start of the game
will obviously vary from game to game, but as a general rule you'll
usually be given a description of what's going on, how you happen
to be there in the first place, and what the object of your mission is.

Pirate Adventures

For instance, in Scott Adams' Pirate Adventure you start off in an
apartment listening to the roar of the traffic, and only after getting
the non-slip sneakers and entering the secret corridor behind the
bookcase will you be able to start the adventure properly by saying
the magic word and being whisked off to a pirate's island, where you
have to build a pirate ship and make your escape.

~n the island you'll encounter a wonderfully dotty series of characters,
including a drunken pirate and a mongoose, that all add to the charm
of this game.

13

Some of the problems presented to you in various games can at first
appear insurmountable. There's one game called Castle Adventure,
the object of which is to explore a castle, and make your way safely
back with all the treasures.

However, getting into the castle appears to be impossible at first, since
it is surrounded by a moat, the drawbridge isn't down, and the moat
is full of piranha fish! How do you swim through a shoal of piranhas?

Sleepy Piranha

The answer is that you don't. You have to roam around outside the
castle first of all, finding what you can, and on your travels you
eventually discover a set of sleeping pills. Provided that you don't take
these yourself you can drop them in the moat, whereupon the piranha
obligingly swallow them and go to sleep, thus allowing you to swim
across in safety. Of course, you might get your matches wet and soggy
in the process, but you had thought of that hadn't you?

Another popular conundrum is the gap in the rocks that is too narrow
to squeeze through with whatever you happen to be carrying at the
time. The original Adventure has a feature like this, and we've taken
that idea and adapted it in the Underground Adventure listing here.

The problem is usually that you can slip through the gap, but nothing
that you're carrying can go through with you. As most of these
adventures take place underground you require a lit torch to be with
you at all times, and if the torch goes out you can't see anything, which
means that you just have to blunder around until you fall into a pit
and die.

If your torch can't get through the gap, how can you see anything
when you're on the other side? The answer usually lies elsewhere in
the game, and there will be something that will fit through with you,
that begins to glow when you've got through to the other side, thus
letting you see whatever happens to be there.

As a final example, Philosopher's Quest for the BBC micro has a
delightful problem when it tells you that you no longer have any
existence! In other words, you can no longer do anything: if you don't
exist, how can you do anything? The answer is one of those horribly
obvious ones when you think about it, and that in itself is the answer:
if you think, you must exist, as Descartes once said.

14

Thus by thinking the computer ac~nowledges your existence, and you
can carry on with the game again.

So most adventures follow a fairly standard pattern, although there
have been a number of extremely silly adventures that have appeared
in recent times, and two of them have both been based on popular
television programmes.

There is one adventure based (loosely) on Monty Python's Flying
Circus, which has you travelling around on buses, mugging old ladies,
and doing all kinds of things in the worst possible taste. Rather like
Python itself, really.

Hitch Hiking Around

A second game has now unfortunately been taken off the market,
because it was infringing someone's copyright laws. It used to be called
Hitch Hiker's Guide to the Galaxy, better known as a radio, television
and book series, which found its way into an adventure game by Bob
Chappell. All the favourite characters where there, and the plot for
this particular game was about as sensible as the series.

However, it did have to be withdrawn, although it has since re
appeared under another name, as a thinly disguised version of its former
self.

More usually though, you're exploring caves, or weird haunted castles
and houses, and are presented with a reasonably logical set of problems
to solve.

Often, these problems will have to be tackled in a specific order, as
the solving of one inevitably leads you onto another one that will again
have to be solved before you can progress further.

Underground Adventure features this, in that you have to solve some
16 problems before you can complete the entire game, and those
problems have to be solved in a set order. In fact, it is usually impossible
to progress further if you don't solve them in the right order.

For instance, you can't get past the giant deadly fly until you've found
the giant deadly fly-spray, which is itself hidden away behind something
else. And so on: solve one problem and you can progress to another.

Some adventures do present almost life-like situations, and your

15

behaviour has to be judged truly in the light of what you would do
if you were actually in that same situation in real life.

Building Ladders

If there's a gap above your head that you can't get to, how would
you reach it in real life? Most people would probably go and borrow
a ladder, but as adventure games don't usually feature conveniently
handy neighbours you're going to have to build one for yourself.

What do you need in order to build a ladder? Nails, wood and some
kind of saw are the usual ingredients, so off you go to try and find
them all.

Another popular feature is that of having some kind of animal about
the place. Bears, snakes and revolting insects are the usual order of
the day, and most of them will have two purposes. Bears might eat
you alive at first, but tend to calm down when they're fed and perform
a number of useful functions.

So the number of possible scenarios is legion, and we can expect just
about anything to turn up at one point or another. However, whatever
the scenario happens to be you're going to have to solve everything
that's thrown at you sooner or later, so Jet's go about solving an
adventure.

Solving Adventures

There are a number of golden rules to be observed when setting out
upon a new adventure, and the principal one amongst them must be:

NEVER IGNORE ANYTHING!!

Everything you see will have been put there for a purpose, because
writing adventure games on a home computer does restrict the amount
of data that can be packed in, and therefore you can't really afford
to put in things that will not have a purpose.

Most objects that you enounter will probably only have one role in
the game, although this is by no means a hard and fast rule.

In the classic Adventure, you will repeatedly need to keep the axe with
you, as little dwarves have a habit of racing out from behind rocks

16

d ngaging you in mortal combat from time to time, and they can
an e h . h h only be seen off by t rowing t e axe at t em.

The torch also has to be carried with you most of the time, and in
the classic Adventure you have to get a new set of batteries for it after
a while, but more of that later.

Although we've said that everything has a purpose, that purpose may
only be to annoy and delay you in solving the puzzle.

Life in a Dead End

This is particularly true of some roads and corridors. In Underground
Adventure, for instance, there are a number of dead ends. Some of
these are purely dead ends and go no further, but others are there
to test you, and can be got past.

A giant boulder gets in your way at one point, but can be got round
by finding some dynamite, which exists elsewhere in the puzzle, and
blowing it up.

Just make sure that you're not carrying the dynamite yourself when
you decide to light it, as the only thing you'll blow up then will be
yourself.

Vast chasms are another popular feature, and Underground Adventure
has two of them, which need to be solved in different ways. The
Crowther and Woods game also employs a chasm, and if you're
carrying the black rod with you when you encounter it you should be
all right, provided you can work out the correct verbal syntax.

So, ignore nothing, and investigate everything.

The second rule is also a necessity :

ALWAYS DRAW A MAP!!

The following two pages show the complete map for Tunnel
Adventure, featured later in this book, and show the kind of rules that
should be obeyed when drawing a map of your own.

17

V)

~
j

\j

~ * ~~ * ~ ~ ~ ~ i ~

~ * ~ * ~ * ~ l i~ ~\/) ct., le?

~ "' ~ ., e
I I ~~ ~ 0-• * ~

~ p
z 4 j

18 19

Drawing a map

Drawing a map will usually speed up your adventure solving process
considerably, as it will save a lot of roaming about simply covering
the same ground all the t ime. It will not take long to draw, and thus
the overall advantage is considerable.

Always label the room, and the exits that you can take from that room,
allowing for any hazards that might be in it before you can progress.

As you do go on exploring more and more of the adventure world
presented to you, it will probably become apparent that you've started
off drawing your map in the wrong place on the paper, as usually tends
to be the case when people draw maps of anything. The edge of the
paper shows a considerable distortion of scale!

No matter, you can always go to another sheet of paper.

A lot of adventures will employ a kind of one-way system of movement,
whereby going east from room A to room B will not necessarily mean
that by going west from room B you'll end up back in room A again,
so these too should be noted.

The fundamental feature that has probably been in more adventure
games than any other is the maze. Underground Adventure is no
exception, and this six room maze can involve a lot of wandering about
before you get out.

How can only six rooms represent a maze? By giving each one the
same description, and allowing you only to move in the desired
direction, if you go off the path the writer has decided will get you
through the maze, you can end up back at the start again . As all the
descriptions for the rooms are the same, you 've no way of knowing
whether you 're in the first room or the last one.

Make a careful note of the directions you've gone through as you
wonder through any mazes. You' ll get out in the end, and if you haven't
remembered the route it would be a little annoying to encounter the
maze again in a later game.

Drawing maps can be fun, and it's useful to note down the initial
positions of any objects that you find during play. Some adventures
do have a random distribution of objects, but more of them do not,

20

as the solving of many puzzles depends on finding the correct object
in the correct room, and if it isn't there then the game becomes
unsolvable.

Finally, if you ' re playing a game with a LOAD and SAVE feature that
allows you to store your current position onto tape for later recall, it's
worth saving a game if you're about to do something particularly
cavalier, like attacking a dragon or something. The odds are that your
attack will end in death, and although some games will re-incarnate
you, you ' ll end up a long way away from where you were when you
died.

It's quicker to re-load a tape than it is to re-create your position by
going through the whole game again.

So to sum up, ignore nothing, always draw a map, and save your
position if possible.

We' ll now put all this into practice, with a look at the original Crowther
and Woods Adventure.

The Original Adventure

We've given you the opening lines from this Adventure, and the screen
goes on to display something like this:

'I know of places, actions and things. Most of my vocabulary describes
places and is used to move you there. To move, try words like building,
enter, east, west, north, south, up or down. I know about a few special
objects like a black rod hidden in the cave . These objects can be
manipulated using some of the action words I know. Usually you will
need to give both the object and action words, but sometimes I can
infer the object from the verb alone.

'So'l'le objects also imply verbs. In particular, "Inventory" implies "Take
Inventory", which causes me to give you a list of what you're carrying.

'The objects have side effects. For instance, the rod scares the bird.
Usually people having trouble moving just need to try a few more
words. Usually people trying unsuccesfully to manipulate an object
are trying something beyond their (or my!) capabilities and should try
a completely different tack.

'To speed the game you can sometimes move long distances with a

21

single word . For example, " Building" usually gets you to the building
from anywhere above ground, except when lost in the forest. Also,
note that cave passages turn a lot, and that leaving a room to the north
does not guarantee entering the next from the south. Good luck! '

And finally, you get one last piece of help before being thrown into
the game proper:

'Maximum points are earned by leaving treasure in the building. It also
helps to get back out in one piece.

'If you think you have found all the treasure, keep moving around until
something happens.'

And So We Begin

And with that, the game will begin, and you find yourself in a building
known as the well house (since it contains a well!), which houses a
number of useful objects like a torch, a bottle, some food and a key.

From the building it is but a short walk to the forest, which is very
easy to get lost in, and then the real route into the heart of the game
takes you south down a narrow ravine until:

'You are in a 20 foot depression floored with bare dirt. Set into the
dirt is a strong steel grate mounted in concrete. A dry stream bed leads
into the depression .'

Opening the gate with the key provided in the building lets you into
an underground set of passages, starting off with:

'You are in a small chamber beneath a 3 by 3 steel grate to the surface.
A low crawl over cobbles leads inward to the west. '

Of Black Rods, Birds and Cages

Nearby you can find a black rod, a bird cage and the little bird itself,
and your first problem solving comes in actually getting hold of the
bird, since it isn't too fond of the rod. You'll also have to light the torch
by now as well, as it gets dark this far underground . The torch is, in
fact, an electric lamp, and it will sooner or later start running down
the batteries you started with. However, you are given the helpful
message:

22

'Your batteries are starting to run low. Better wrap it up soon, unless
you can find new ones. I seem to recall that there's a vending machine
somewhere in the maze.'

Finding the vending machine in the maze is no easy task, and even
when you get there you must be armed with a set of coins which are
to be found somewhere within the game, otherwise you won't be able
to insert the coins to get the fresh batteries contained in the machine!

But back to the bird, the rod and the cage. Wandering on a little soon
brings you to the first major room description of the game, which is
when you start to realise why this game is a disk based one: some
of these room descriptions can get quite long!

'You are at one end of a vast hall stretching forward out of sight to
the west. There are openings to either side. Nearby a wide stone
staircase leads downward. The hall is filled with wisps of white mist
swaying to and fro almost as if alive. A cold wind blows up the
staircase. There is a passage to the top of a dome behind you.'

Round about here you will also encounter a snake, which bars your
way and refuses to let you pass.

Snaky Problems

Feeding animals is the usual way to calm them down, but attempting
to feed the snake is not a particularly good idea, especially if you're
carrying the bird at the time, since the snake eats the bird and then
just sits there looking at you, still refusing to let you pass.

You can solve that one for yourself!

Round about here, you have a choice of routes, and one of them leads
off across the floor of the hall as far as the aforementioned vast chasm,
Which is where the rod comes in useful. Going on from there will take
You towards the maze with the vending machine in it via a back
~nt~ance, but it will also take you near another maze as weil, which
is significantly more difficult to get out of.

It also contains something a lot more interesting, but we' ll come to
that one later.

Going off in another direction leads you to the mysterious Y2 room,
and nearby lies the equally mysterious bedrock room, which allows

23

you to explore around at random.

From Y2 you can go to another one of the game's fine room
descriptions, which is one of the more puzzling points on the route
for beginners to the game:

'You're at a low window overlooking a huge pit, which extends up
out of sight. A floor is indistinctly visible over 50 feet below. Traces
of white mist cover the floor of the pit, becoming thicker to the left.
Marks in the dust around the window would seem to indicate that
someone has been here recently. Directly across the pit from you and
25 feet away there is a similar window looking into a lighted room.
A shadowy figure can be seen there peering back at you.'

Who, or what, is the shadowy figure? !

Dwarves and Pirates

From here we have a variety of routes, but by now a couple of things
will probably have happened. One is that you will almost certainly have
encountered a dwarf:

'A little dwarf just walked around a corner, saw you, threw a little axe
at you which missed, cursed, and ran away.'

Charming!

And the other is a bearded pirate, who lurks about the caves, and who
will occassionally appear and steal all your treasure:

'Out from the shadows behind you pounces a bearded pirate! "Har
Har", he chortles, "I'll just take all this booty and hide it away with
me chest in deep in the maze! " He snatches your treasure and vanishes
into the gloom.'

Since some of the treasures have a useful function to fulfil, as well
as just being valuable and scoring points when you get them back out
to the building, this can be mighty inconvenient!

One of these dual purpose treasures is a trident, which lurks away near
the bedrock room. As well as being jewelled, it will also enable you
to solve one of the game's more puzzling features.

24

Mysterious Bivalves

Near Y2 there lives a giant clam, although we later find out that it is
in fact an oyster. The program cheerfully tells us that it was never very
good at identifying bivalves after this little bit of mistaken identity. Being
an oyster, it will probably contain a pearl, and so you attempt to open
the clam without success.

You can carry it about with you if you want to, although it is a little
heavy, but you won 't be able to open it until you find the jewelled
trident, which is hidden away in a secret set of rooms, which are
themselves reached via the two pit room, or twopit room, as one
acquaintance used to call it.

In the two pit room is a plant, and like all plants it likes being watered .
Water it enough and it will grow and grow until it reaches the height
of a hole way above your head. You can then climb the plant and get
into this new set of tunnels and corridors, until you realise that your
progress is halted once again as you run into an old rusty door that
needs oiling.

Oh well, there is some oil in here somewhere, so having found that
you can then get past the door and find the jewelled trident. You 'll
have to get away from there then, which is none too easy, but can
be accomplished.

A Breath-Taking Description

One of the longest of all room descriptions is to be found round about
the low room, near bedrock, and is worth repeating here in full just
to show you the sort of advantages disk-based systems can give you
over programs stored purely in memory, in terms of the use of text
to illustrate graphically what a room looks like :

'You are on the edge of a breath-taking view. Far below you is an active
volcano, from which great gouts of molten lava come surging out,
cascading back into the depths. The glowing rock fills the farthest
reaches of the cavern with a blood-red glare, giving everything an eerie,
macabre appearance. The air is filled with flickering sparks of ash and
a heavy smell of brimstone. The walls are hot to the touch, and the
~hundering of the volcano drowns out all other sounds. Embedded
1n the jagged roof far overhead are myriad twisted formations

25

composed of pure white alabaster, which scatter the murky light into
sinister apparitions upon the walls . To one side is a deep gorge, filled
with a bizarre chaos of tortured rock which seems to have been crafted
by the devil himself. An immense river of fire crashes out from the
depths of the volcano, burns its way through the gorge, and plummets
into a bottomless pit far off to your left. To the right, an immense geyser
of blistering steam erupts continuously from a barren island in the
centre of a sulphurous lake which bubbles ominously. The far right
wall is aflame with an incandescence of its own, which lends an
additional infernal splendour to the already hellish scene. A dark,
foreboding passage exits to the south.'

Wow! Try getting all that into a single picture on the screen . The mind
can imagine far more readily what a place looks like from a description
like that than it can from a poor graphical illustration on the screen.

Round about here you can also find an extremely narrow crack that
you can 't get down with anything that you happen to be carrying,
and also a troll, who is not too fussed about eating, but who does
have a streak of avarice in him.

Trying to attack him produces the response :

'Trolls are brothers of the rocks and have skin like that of a rhinoceros.
He fends off your blows effortlessly.

Even if you try throwing an axe at him, all you'll get is :

'The troll catches the axe, examines it, and tosses it back to you saying,
" Good workmanship, but not very valuable".'

A tricky customer the troll, and you ' ll have your work cut out to get
around him without losing too many points.

On the other side of the troll is another set of passages, including the
breathtaking view described earlier, and also including a bear, who
can be bribed with some food, and who can then be used to scare
away the troll when you want to get back across the bridge again .

However, the bear is heavy, and the bridge is old, and the inevitable
happens ... you plunge to your doom on the rocks below.

And so the game continues, through many different rooms and with
many different problems to solve, and space dictates that we can't
mention them all here. Even with what we've already told you, there's

26

rnore than enough in this game to keep you occupied for a long time

yet!

But one final feature does deserve mention, and that is the end of the
garne itself, after you've found all of the treasures and taken them back
to the building.

The End Game

As you wander about the caves, convinced that there's nothing more
to find , a sepulchral voice booms out and tells you that the caves are
closing, and you 'd better leave by the main exit.

But where is the main exit?

So off you scurry to try and find a way out, but always its too late,
and the caves close! As they do so, mysterious forces snatch your
keys out of your posession, and a few other items as well for good
measure, and you find yourself:

' .. . at the northeast end of an immense room, even larger than the
giant room. It appears to be a repository for the " Adventure" program.
Massive torches far overhead bathe the room with smoky yellow light.
Scattered about you can see a pile of bottles (all of them empty), a
nursery of young beanstalks murmuring quietly, a bed of oysters, a
bundle of black rods with rusty stars on their ends, and a collection
of brass lanterns. Off to one side a great many dwarves are sleeping
on the floor snoring loudly. A sign nearby reads DO NOT DISTURB
THE DWARVES! An immense mirror is hanging against one wall, and
stretches to the other end of the room, where various other sundry
objects can be glimpsed dimly in the distance.'

And if you get out of that room? You enter this one :

'You are at the southwest end of the repository . To one side is a pit
full of fierce green snakes. On the other side is a row of small wicker
cages, each of which contains a little sulking bird . In one corner is
a bundle of black rods with rusty marks on their ends. A large number
of velvet pillows are scattered about on the floor. A vast mirror stretches
off to the northeast.

T
, At your feet is a large steel grate, next to which is a sign which reads

REASURE VAULT. KEYS IN MAIN OFFICE.'

27

And what happens then? Well , you ' ll just have to play it all and find
out for yourself!

We've given a lot of exposure to Adventure here, because it was the
first serious adventure game, and holds many a fond memory for
everyone who's ever played it, whether on a PDP-10, or a Commodore
PET.

It also contains most of the ideas which have influenced other
adventurers over the years, and as such is more than worthy of its
place here.

Try your local user group if you ' re thinking of getting hold of a copy.
It'll be worth it, but you won't get much sleep after you've got it.

But since Adventure, there have been many others to solve, so we' ll
take a look at some of those now.

Other Adventures

The other main contender in the adventure game stakes is obviously
Scott Adams, who's done so much to popularise these games on
microcomputers.

We've taken a brief look at some of his games earlier on in this book,
but to go into a little more detail on some of them, we'll start with
the very first one he wrote, Adventureland .

This is a very natural romp, in that most of the features you encounter
are perfectly natural, such as bogs, lakes, and a tree (which must
become a tree stump before you can get very far into the game), as
well as the nasty chiggers. Nasty what? Look it up in the dictionary!

It's all very lighthearted, and a nice sense of humour runs throughout
the game. A good starting point for anyone who's fairly new to the
adventure world, as solving it is not too complicated. Nevertheless
it should keep you entertained for quite a while.

As will the second Adams adventure, Pirate Adventure, with a story
line developed by his wife. This one probably more than Adventureland,
set the standard that Adams was to adhere to throughout his game
writing series.

There are four main locations for this adventure, including a London

28

Apartment, an Island, a Treasure Island, and Never-Never Land. It was
ne of the first games of this genre to give you a mission other than

~ure collection of treasures, in that you have to work out how to build

a boat!

Along with some of the characters who inhabit this world, such as
the parrot that keeps shouting ' Pieces Of Eight' , and who does give
you some helpful hints along the way, this is a nicely humourous game.

Mystery Fun House came next, and differs from the usual run of the
mill games by taking place in a carnival fun house. All sorts of problems
to solve, and many, many corridors to explore, and this was the first
Adams adventure to pit you against a time limit, as well as all the other
problems.

Mission Impossible has appeared on more computers than possibly
any other Adams adventure, and is one of the most difficult ones that
he's done. It's also a mission adventure, rather than a treasure
collecting one, in that you 're on a race against t ime (as in Mystery
Fun House) to try to stop a nuclear reactor from being destroyed by
unknown enemies.

Spaced Out

Strange Odyssey is set in another world altogether, as it starts with
you all alone on a strange planetoid, with only a shattered spaceship
and your own skills as an adventurer to protect you.

Many outer space games have appeared over the years, and in a brief
aside we' ll take a look at a couple of non-Adams ones, starting with
A Stellar Trek.

This is another version of the final frontier, where you boldly go where
no computer has gone before, you are in command of the starship
Enterprise, and have the simple task of defending the galaxy against
the threat of the invading Klingon empire and their friends the
Romulans.

!his is more of a role-playing game than the true textual adventure,
in t~at you must begin by selecting your crew and adopting various
tactics that will stick with you throughout the game.

N?ne the less, our basic rules of ignoring nothing and drawing maps
still apply, although as we'll see in another game there are instances

29

where examining everything in sight can lead you into great trouble!

This is basically a graphical game, and some may not find it to their
liking if they're aficionados of the real thing. Still, an enjoyable and
frustrating game, that should keep you out of trouble for a while.

Two other games that can dubiously be described as fitting into the
adventure world, although really they are more at home with the
Dungeons and Dragons fanatics, are Starfleet Orion and Invasion
Orion. These are war in space games, with a lot of tactical planning
and craft maneouvering going on, and so don't really belong as true
adventures. But, like A Stellar Trek, they should keep you amused
for a while.

Back to Normal

A new venture for Adams was away from space and into the world
of vampires and other assorted nasties.

In The Count you are out to rid the world of Count Dracula once and
for all, and, in the best traditions of ancient horror movies, you must
race against time to catch the count in his human form before driving
the stake home and removing him from the planet.

Voodoo Castle is set along similar lines, with you involved in an attempt
to save the cursed Count Christo, which sets you off exploring the
hallways and dungeons of Voodoo Castle. An entertaining game, with
voodoo dolls, a juju man, and more.

The final two we'll mention from Adams are again set in two totally
different worlds, with Pyramid of Doom taking you to an unexplored
pyramid somewhere in the depths of Egypt. This is one of the more
difficult Adams adventures, and many would say the hardest one he's
ever put together.

When you begin writing your own adventures, you ' ll find that one of
the most dfficult things to judge is precisely how difficult you're going
to make the game.

Since you control the rooms, the objects in them, and the problems
that have to be solved, the game can effectively be made as easy or
as difficult as you like. As you're going through it, you may well find
yourself thinking that this is a very easy game, and no-one would ever
have any problems solving it.

30

Well remember that other people haven't got access to your maps,
your' route diagrams, your list of objects and their original locations,

and so on.

The easiest solution to this is to get an adventure playing friend to
come around, once you're satisfied that the adventure is complete and
bug-free (it won 't be, of course -your friend will type in something you
never thought of, and the computer will be equally as stumped), and
have him sit down and play the game, while you hover nervously in
the background.

From his reports, you can then modify the game, making it more or
less difficult, depending on how it's all gone.

The Wild and Woolly West

In an adventure theme that hasn't seen too much experimentation,
although Lost Dutchman's Gold comes near the same area, the last
of the Adams games, Ghost Town, sets you in an American ghost
town that has you expecting John Wayne and Audie Murphy to put
in cameo roles.

Good fun, as you encounter saloons, jails, boot hill, piano playing
ghosts, and a whole collection of ludicrous characters, this is a suitable
Adams game to bow out with. A very enjoyable game.

There are plenty of other games out there that are worthy of
exploration , but for our last one in this section we'll take a look at the
game that's been described as being as much of an improvement on
Adventure as Adventure was on Wumpus.

What's Wumpus? One of the most boring computer games of all time,
where you have to walk around a few (typically 24) rooms trying not
to bump into the Wumpus, an amiable beast who likes to spend most
?f his time asleep. A few arrows can be fired now and again, but overall
it does not rate very high on the entertainment stakes.

To say a game can improve on the original Adventure by that much is
a bold claim, but Zork has captivated everyone who has ever played it.

Now in three parts, sold on three separate disks, each part is a unique
~dventure in its own right, and pits you against wonderful problems
in .w.eird worlds, but with a number of great improvements over that
original game.

31

Zork: the Greatest Adventure?

zork was the brainchild of four people: Marc Blank, Tim Anderson,
Bruce Daniels, and P. David Lebling, and (like our original Adventure),
was written on a PDP-10.

However, as Zork grew and grew it began to run out of memory space
even on that computer (at the time a giant megabyte, but that doesn't
look too much now), and they decided to completely re-write the game
for a microcomputer.

A strange decision? Well, not really, because most microcomputers
even then had disk drives, and now of course these disk drives are
growing in capacity.

However, to re-write Zork in order to make it all fit was no easy task.
It might be possible to fit all the data and text required for the game
onto a single disk, but what about the program to manipulate it all?
Even the original Adventure control program -takes up about 13K
without running it, and as you probably know, as soon as the program
is run, various variables are declared that take up even more memory
space.

So Zork had to undergo a few drastic changes.

The first of these was to write a Zork-language, which could be
swopped from machine to machine merely by changing that language
to suit the machine, and then write all of the program in the Zork
language.

In other words, just as all micros require a different Basic interpreter,
so the Zork interpreter swops around from machine to machine.
However, the rest of Zork can remain the same, and so the actual work
load on the authors was considerably reduced. Only the interpreter
had to keep on being re-written, and now exists for just about every
popular make of computer.

The complete story behind all this can be read in a very interesting
article in the July 1980 issue of Creative Computing, called 'How to
fit a large program into a small computer', which was co-written by
one of the authors of Zork, Marc Blank.

Having crammed Zork into a small machine, it was now available to
many people, and some of its features are truly amazing.

32

The ability to say more than just DROP BOMB for instance, which
can now be said in a variety of ways. For example, TELL THE ROBOT
TO pUTTHE BOMB ON THE SHELF, and other variations, do much
to add to the power, and ease of use, of this game.

such control over the vocabulary is beyond the scope of this book,
although we will be taking an extensive look at string handling in
chapter 3.

suffice it to say that if you can get hold of a copy of Zork, do so! We've
given you a few addresses at the back of the book.

But is Zork the ultimate adventure? With graphical and role-playing
games coming more to the fore, let's take a look at some of those,
and see if we can guess what will happen over the next few years.

Graphical and Role-Playing Adventures

We've already talked about graphical adventures of the future in an
earlier section, and will end our discussion here with the same sort
of conclusion as was reached then: not many people want to see
fabulous displays on the screen, when fabulous descriptions can
conjure up far more in the mind of the player and his alter ego as they
wander about the universe created for them.

Instead, the future would tend to lie in the direction of role-playing
games, best personified by the original Dungeons and Dragons games,
and their variants such as Tunnels and Trolls, Traveller, and the
countless other board games that have sprung up since the first game
appeared.

In these games there is one great difference over the classic
Adventure/Zork scenario: you adopt a character role, rather than just
taking on the one that the computer conjures up for you, and your
success or failure in the game depends to a very large extent on th
type of character adopted.

In Adventure, you know that if you get the bear you can always get
back past the troll again, and escape over the rickety bridge to
(comparative) safety, but if the same situation were to occur in one
of these games that might not always be the case. Your character might
be unfriendly towards the bear, and the bear would bite your hand
off, or some other dire fate might befall you.

33

Again, in Adventure, a fight with a dwarf will always have one of two
options. You will either win and emerge unscathed, or lose and die.

A fight in a D and D game could have a number of different outcomes,
as well as the two simple ones outlined above. You might win the fight,
but suffer a gaping wound that leaves you temporarily below your best:
an easy victim for the next antman who comes along.

So that is the chief difference: the games are more varied, and indeed
one could argue a strong case for there being an infinite number of
variations contained within the same game.

However, these advantages are not gained without some other
advantages being lost.

In Adventure and Zork you have a vast vocabulary at your disposal
(Zork can handle over 600 different words, with about 100 verbs to
be used), but in D and D games you ' re usually restricted to a much
smaller number. This is typically of the order of 20 commands, or even
less: the much rated Temple of Apshai has a very small vocabulary
indeed .

Still, you do have the option of choosing a character who is much
more to your liking than a simple 'You are', appearing on the screen
every time. It is far more satisfying to watch 'Pete The Great' stalking
about the screen (or whatever you would choose, of course) , and for
some reason it seems to make the game a lot more realistic if you know
that it is more specifically YOUR success or failure in the game that's
at stake.

From Boards to Computers

One of the less attractive attributes of Dungeons and Dragons is that
it takes a referee to make sense of it all, and bribing the referee, all
part and illegal parcel of playing the game, has been known to sway
many an outcome. The real life ' I' ll buy you a pint when we've finished'
is far more likely to influence the referee than a simple 'How about
20 gold pieces then?' whilst in the middle of a game.

Also, the referee's job is not an easy one, as most actions have to
be decided by a concentrated study of maps, charts and rules, and
thus a simple fight between two protagonists could take as long as
half an hour, or even more, to resolve.

34

computer simulations of these games the computer becomes the
In feree and the screen the board on which all the action takes place,
red as' these games are always played in real time that action can
an rnetirnes be decided very rapidly. Our half-hour fight could be over
~o ten seconds, and it's back to the keyboard in a hurry to see what
~arnage you and your trusty sword have suffered in the duel.

Character Traits

Your character in these games is determined by six factors: three
mental (ego, intelligence and intuition) , and three physical (dexterity,
strength, and constitution) .

In the old days these were decided by rolling three dice and adding
up the spot scores, and thus any one attribute could range from a low
score of three to a high score of eighteen. On the computer, you can
usually choose from a total score and divide that score up amongst
the six attributes, and since our scores can range from 3 to 18 for each
one (or 16 different possibilities), we can create a massive 16 to the
power 6 different characters, or over 16 million!

Since we are creating each character as we go along, we can also
bring in characters from other games, which helps to explain the
popularity of this type of game. If you 've survived an exhaustive game
of Dungeons and Dragons as Denis The Unsteady it helps to have the
same character with you next time you set out to play The Curse of
Ra, or whatever.

These six differing character straits interact subtly throughout any one
game, and the final outcome of that game always depends on the role
you have adopted. A highly intuitive character will find secret trap doors
with ease, whereas one with low intuition would only find them by
falling into them. Similarly, a high ego would keep going when the
going got tough, but a low ego would probably cry and ask for his
mum!

And so it goes on, with each attribute perhaps altering slightly as the
game progresses and you discover magic potions, bargain in the
Apothecary Shoppe, and in any one of a hundred different situations.

Perhaps this is the true way forward for adventure games in the future,
and increasingly role playing will play a dominant part in this type of
game.

35

The Ideal Way

The ideal would be to have a combination of the traditional textual
adventure with a character playing role as well, as graphics are largely
redundant in these games. Thus one would keep the advantages of
a large vocabulary, a large number of locations, and a large number
of hazards and problems to solve, whilst at the same time having a
multitude of variations on the same game by being able to pick your
character from one of the 16 million mentioned earlier.

But that must wait for another time, and for now we'll turn our attention
to the game Underground Adventure, which will be featured heavily
throughout this book, and we'll begin by explaining what it's all about.

Underground Adventure

This is a classi·c text-only one character game, because for writing your
first adventure I don't feel that we .should be too·optimistic. You may
well, after reading this book and understanding everything tf<lat's going
on, want to go on and develop extremely complicated games, and
if you do then the purpose of this book will have been achieved.

But for now, we'll describe a simple, straightforward adventure that
is (I hope!) a lot of fun to play and solve.

Underground Adventure starts you off outside a series of caves, with
dire warnings about the punishments that await anyone who enters.
But, being a brave young lad with a heart for adventure you merrily
march off into the caves, take three steps inside and CLANG! A
massive gate falls shut against the entrance to the cave, and from then
on it's a question of roaming around trying to find the key that will
enable you to get out again.

There are a total of 16 problems to solve in this adventure, and I've
tried to give you a feeling for the real thing by including a number of
scenes that will be familiar to anyone who's ever played an adventure
before. In later chapters we'll explore the actual writing of those scenes,
and show that it is all possible in Basic, but for now we'll content
ourselves with simple descriptions.

You start off immediately with a choice of three routes, heading either
east, west or south. North is closed off to you because of the fallen
gate.

36

To the east lies a massive underground tree, which completely blocks
our path, so you know that one of the things you'll have to do is io find a way of getting past that tree .. What do most people do when

they want to remove a tree? They either drag it away or they chop
it down, so you know you're looking for eithe~ sor:ie haulage equipment
(unlikely in an underground cave), or something like a sword or an axe.

To the west, your path is blocked by an extremely large boulder, that
fills up the whole path and prevents you from going any further. To
get past this, yo~ m_ight first of all try pw~hing and pulling at it, or even
attempting to pick 1t up, but the stone 1s too heavy for you to move
that easily. So, again you must ask yourself the question 'what would
anyone do when they wanted to remove a large boulder'. Well, again
one could haul it away, but that seems a little unlikely. There could
be a large animal around somewhere that might move it for you, or
perhaps you'll need to blow the thing up with some dynamite. Of the
latter two options, one is the correct one, so we keep an eye out for
either a large animal or a keg of dynamite. Beware of large animals
though: most of them are not very friendly on the first encounter.

To the south, all we can find is a vast chasm, but en route to it we've
already picked up an iron staff, amongst other things. Examining the
staff reveals that 'it has some useful properties', so we know that the
staff is capable of solving something. Since we can't go west, east
or north without finding yet more objects it's reasonable to assume
that we'll have to go south somehow. Attempting to jump the chasm
is not very rewarding, and in fact leads only to your death, so perhaps
if we wave the staff .. .

Ah, perfect, and a bridge now spans the chasm. Good, we can now
head south into the heart of the caves and see what we can find. If
we're unlucky, a living gargoyle will appear, and throw a knife or two
at you, and he must be engaged in combat before moving on,
otherwise he follows you everywhere, continually throwing knives, and
one of them may find its mark. How to kill a living gargoyle? Well,
there must be something dangerous around somewhere, and sure
enough we find an axe eventually. A sure throw with the axe finishes
off the gargoyle (temporarily), and we remember that an axe was one
of the things we were looking for, as a possible means of chopping
the tree down.

Ba~k across the bridge, chop the tree down, and we find some rope,
Which must come in useful somewhere for climbing up or down
~omething, and a golden bear, who appears none too friendly.

bviously the bear must be calmed down somehow, but how ?

37

That one, and a few other problems, we' ll leave up to you, but you
will have begun to get the idea of solving this adventure. Everything
is there for a reason, and solutions to problems are usually quite logical.
Later on we'll take a very thorough look at this game, and analyse
every verb in the game and how it works, along with the rest of the
listing, and we'll also see how each part of the listing comes together
to make a whole game.

For now, here are a few facts and figures about Underground
Adventure that will help you in the next section, when we come to
basic programming on your computer, and how we'll use a knowledge
of Basic to go about writing adventures.

First of all, a partly finished map drawn by someone who started off
playing this game but then ground to a halt. Since the game is equipped
with a LOAD and SAVE procedure, to allow the stopping of games
and subsequent re-starting without going through everything again,
it is possible to stop this game at any convenient point (i.e. when you
think you're about to be killed), and use the map again later.

38

Underground Map

39

8
A

 p
ar

tly
 c

om
pl

et
ed

 m
ap

 o
f

U
nd

er
gr

ou
nd

 A
dv

en
tu

re
.

13
1
*

ca
.v

e

-
,

Un
r/

e~
ro
un

d
19

l.f

>

5
0

~
-

T.
Ju

'IC
.I

I t
.a

ir

I
I~
:

E
l
 r

r~

T
ra

..
cl

fl

I t
.u

rn
 I

 I
 co

ni
d.

7

*
6

12.3

H2
A-

*
b

ri
ck

d

6i
ck

..
gc

ra

ck

tu
nn

d
c
ft

l/
fU

r+
 *

 1
0

?

9
!5

4

?
3

2
0

* H

::z
..r

?
~
:
u

.

~"
'
~

A
e

v
f"

f
~?

:'
ck

&

ee
.

tw
15

/:y

~
v
i
e

to
m

b

w
a

ll

En

II

12

13

S
. ,

.,;,
,.,_

~

1-
0C

.k

c/
w

..S
l'I

l-0

<
>

1"
7

,9
H'7

H's

.

tr
>

,;u
A

.
~

b
d

,f
y

t:
ra

.c
.k

w

c
rl

<
d

3
3

~
5

?
~7

H3

9
~4
-0
 ~

bn
.liw

s
~

fo
d

'o
f

E
jw

cU

o.
d

d.r
t:s

f.>

tc
rr

1d
..

e

n
d

4
2

?

"3
b

~

,ra
ro

f
al

>
-o

p

4-
3

14
+

•
H

;-
un

c.
I
I
~

~

N
 t

;
.

5
0
1
-
1
4
~

db
.0

sc

a
ry

~
L

51

I
?

_
/'

t-
o

/,
lu

>
.

-i
o

so
lv

e

!fo
ot

,
*

-U
.S

o/
ul

.
~;
ie
d:
s

~

-~
~

'-
-
-
-
-
-

~

List of Verbs

We'll use this later, when we see how every verb is handled by the
program, and in that section we' ll need to know how each verb slots
into the whole program. It will also help you if you decide to take on
the mammoth task of typing this whole thing in! Even if you chicken
out and buy the cassette, at least you ' ll be able to examine the listing
and see how it all works:

Complete List of Verbs in Underground Adventure

VERB LINE NO. VERB LINE NO.

GO 300 GET 350
LOOK 200 INVENT 450
SCORE 500 DROP 550
HELP 600 QUIT 1890
CROSS 700 TAKE 350
OPEN 800 CLOSE 850
EAT 900 FEED 950
DRINK 1000 OFFER 1050
WAVE 1100 CUT 1150
CHOP 1200 CLIMB 1250
LIGHT 1300 ATTACK 1350
KILL 1400 HIT 1450
MAKE 1500 REFLECT 1550
OIL 1600 STAB 1650
SPRAY 1700 THROW 1750
RUB 1800 READ 1850
EXAMINE 1900 JUMP 1950
BREAK 1960 PUSH 1970
SAVE 3000 LOAD 3200

Armed with this, the solving of Underground Adventure will obviously
be a lot easier, but it is essential if we're to make sense of the listing!

Complete List of Objects

Equally essential is a list of all the objects in the game, although just
to make it a little more difficult we won't tell you where they all start
off. However, by the time you've finished this book you ' ll be able to
work it all out for yourself, if you want to cheat!

42

OBJECT

A VAST CHASM
A VAST TREE
A THICK COIL OF ROPE
soME DYNAMITE!
A GOLDEN BEAR
A BIG BLACK PANTHER
A TALL LADDER
A HAZY SHIMMERING

CURTAIN
A BLOCKED TRACK
AN EMPTY BOTTLE
THE GHOSTLY DENIZEN

OF THE CAVES!
AN ENORMOUS FLY!
A LUMP OF SOLID MORTAR
A SOLID GATE
A SHINING STONE
SOME WHISKY
AN EVIL KNIFE
A WALL
AN OLD TORCH
A GLOWING LIGHT
PROGRAM
A BOTTLE OF OIL
SOME NICELY SAWN TIMBER

OBJECT

AN IRON STAFF
A STOUT AXE
AN ENCHANTED BRIDGE
A PILE OF RUBBLE
A BUN
A LONG WOODEN PLANK
SOME NAILS
A POLISHED MIRROR
A POOL OF OIL
A SOLID WALL OF HAZY

MIST
A HUGE BULBOUS SPIDER
A RICKETY OLD DOOR
A FLY SPRAY!
A NARROW CRACK
A TRUSTY SWORD
A LIVING GARGOYLE!
A KEY
SOME MATCHES
A BLAZING TORCH
AN OLD PARCHMENT
A PILE OF BROKEN GLASS
A BOTTLE OF WHISKY

Note that not all of them are objects, and some of them are actually
places. We' ll see why later.

Finally, a little bit of dialogue with the program, which is the result
of first starting the game.

A Dialogue with Underground Adventure

The following is one way that a game night start off, with the computer
talking in upper case, and your entries in lower case :

43

YOU ARE ON AN OLD TRACK HEADING TOWARDS THE CAVES.

YOU CAN SEE:

AN OLD TORCH

YOU CAN GO : SOUTH

WHAT NOW? * (the prompt symbol)

get torch

OK.

WHAT NOW? *

s (or south, or go south)

YOU ARE GETTING EVER NEARER THE CAVES.

YOU CAN GO : NORTH SOUTH

WHAT NOW? *

s

YOU ARE AT THE ENTRANCE OF THE CAVES,WITH PATHS
LEADING EVERYWHERE.

YOU CAN SEE :

A SOLID GATE
SOME MATCHES

YOU CAN GO : NORTH SOUTH EAST WEST

WHAT NOW? *

get matches

OK.

44

WHAT NOW? *

get gate

I CAN'T DO THAT!

WHAT NOW? *

light torch

OK.

inventory

YOU ARE CARRYING :

SOME MATCHES
A BLAZING TORCH

WHAT NOW? *

e

OH DEAR, THE GATE TO THE CAVES APPEARS TO HAVE
SLAMMED SH.UT!

THAT'S TORN IT! YOU'LL HAVE TO FIND THE KEY NOW BEFORE
YOU CAN GET OUT.

BUT DON'T WORRY. IT'S IN HERE SOMEWHERE!

WHAT NOW? *

And so it goes on, with your adventure now well and truly under way.

In chapter 3 we'll take a look at some of the knowledge of Basic
required to produce this sort of program.

45

46

3

Programming Adventures in
Basic

Why Bother?

This ranks alongside asking Chris Bonnington why he climbs
mountains, or Patrick Moore why he looks at the stars. It's something
that they enjoy doing, for some reason that probably they couldn't
even explain if asked to sit down and actually state a concrete set of
reasons.

So it is with programmers. People enjoy programming, just as much
as some enjoy climbing mountains or some enjoy peering through
telescopes. As with any other pursuit, t.here are a variety of ways of
programming, and there are a variety of things to write programs about.

This book will teach you all about programming for one subject, that
of adventure games. It will also only teach you one style of
programming: of necessity, that will be the style adopted by the author.

However, it is to be hoped that originality will shine through on your
Part, and you'll go on to produce programs that are wildly different
from the ones shown here.

Satisfaction

Th~ major reason why people write any sort of program must be for
their own satisfaction, rather than anything else, although one is
sometimes tempted to think that the mercenary attitude shines through
on occasions!

47

To complete a program that is over 30K long, as some of these
adventures undoubtedly will be, is quite an achievement, and even
if no one comes along and says 'That was great! ', at least you ' ll still
be satisfied with it yourself.

All the better then when someone else does play the game, and
congratulates you for writing it. It makes all the hours spent poring
over the keyboard desperately trying to solve a programming problern
worthwhile.

In return, it's nice to think of the person ultimately playing the adventure
taking far longer to solve the program that it took you to write it!

Money

We mentioned mercenary attitudes earlier, and that is obviously one
reason why you should bother writing anything, let alone adventure
games.

From one point of view there's always the possibility of seeing thern
go on sale and being marketed by a reputable company, and that is
very satisfying .

Another point of view would be that it saves having to buy a lot of
adventure games written by other people, but that must be a secondary
reason . If you've written the program it won't take you too long to
solve it, no matter how many random elements you've put in there.

Level of Skill

One does not have to be the greatest programmer in the world in order
to write satisfactory adventure games. You don't need a knowledge
of machine code, and the amount of Basic coding that you have to
be thoroughly proficient in is not too great: we'll be covering most
of what you'll require in the rest of this chapter.

Essentially we're concerned with string handling, and the number of
commands in Basic that allow you to manipulate strings is a fairly
limited sub-set of the language as a whole.

Once one is au fait with those, the rest of Basic required is mainly
standard stuff, with one or two 'tricks of the trade' which we'll be
showing you later.

48

HoW to Start

The worst thing in the world is to sit down in front of an empty
computer, and think 'My God! I've got to write 30K of code!'.

It's akin to the old writer's syndrome of staring at a blank sheet of
paper and not having a clue what to write or where to start. Obviously
you map things out first, and we'll be looking at that in more detail
in chapter 4, as we begin to pull all the separate pieces of knowledge
we've learnt together into a coherent whole.

Writing an adventure game is not as daunting a task as you might at
first think. Certainly, to look at a listing for an adventure program
(perhaps you might care to glance at the listing for Tunnel Adventure,
as that is presented in full at the back of the book) is to invite a feeling
of nausea as you are confronted by a million and one IF . . . THEN,
GOTOs and GOSUBs sending program execution careering about all
over the place.

However, the listing, when examined carefully and closely, as we shall
be doing, does eventually begin to make sense, and you realise that
every part of the program is playing its proper role in keeping the whole
thing running, whether it's an INPUT routine that stops you entering
the wrong type of information, or dropping out of the program;
whether it's a routine to handle movement of the character from one
room to another; or whatever it is doing, it's all there for a purpose,
and later on we'll find out exactly what all those purposes are!

Cooking

What? No, you haven't stumbled into the wrong book, but a useful
analogy with programming adventures is to think of the problems
posed to a chef, when he/she is presented with a set of ingredients,
and told to come up with the finished meal.

We'll present you with a set of program subroutines that handle various
tasks, and in this first program we'll also give you the recipe and make
them into the finished program.

We may not turn you into the Robert Carrier of the adventure
Prag.ramming world, but at least we' ll get you doing more than just
rnaking beans on toast!

49

A Brief Outline

Just to let you know what's coming up, the next section in this chapter
will be devoted to learning the commands that are essential to the
producing of good adventure games, with obvious emphasis on the
string handling ones.

As well as covering the range of commands mentioned earlier (IF ...
THEN, GOSUB and GOTO), we'll also take a brief look at all the other
necessary statements taken in conjunction with their use in adventure
games.

This is not meant to replace the Basic programming guide in your
handbook, but at least will enable you to get going.

This will be followed by a short set of listings, all taken from
Underground Adventure, along with a thorough explanation of how
they all work, so that you can use them either as they stand, or suitably
amended, in your own games.

Our final guide to writing adventures will concentrate on more example
listings, together with a set of helpful sections on a good procedure
to adopt when sitting down and writing them yourself.

We've even given you a number of scenarios for possible games, which
you may like to adapt into your own first adventures!

Underground Adventure is gone through in great detail, with a couple
of pages for each verb in our vocabulary, and an explanation of how
the code for that verb works, and by following that you should be able
to make out what Castle and Tunnel Adventures are doing. You should
also learn how to incorporate new words (as you will obviously need
to) in your own programs.

Finally, a round up of information on adventures generally, together
with a useful set of addresses to contact for further help and
information.

Adventure Programming in Basic

In this section we'll look at the commands available to us in Basic for
string handling and data handling, and then start tying them up into
useful routines.

50

Input

. is simply a way of typing in information, from a program, that
This rogram will understand and then use somewhere else within that
the p
program.

U
·ng Acorn's version of Basic there are a number of ways in which

SI f . . h we can input in ormat1on into t e computer.

One of them, and certainly the most straightforward, is the INPUT
command, which you would use something like this:

10 INPUT A$
20 PRINT A$

This would just print a question mark oh the screen and wait for you
to type something in. If your reply was FR ED, BI LL the computer would
forget the second word (the one after the comma) and print out the
word FRED .

However, if you'd typed "FRED,BILL" the computer would have
responded by printing out FRED,BILL.

INPUT can also have a statement in it, as in the following example:

10 INPUT "HELLO THERE, WHAT ' S YOUR NAME " .A$

This would print up on the screen the words 'HELLO THERE, WHATS
YOUR NAME' followed by the question mark prompt.

INPUT, however, has a major failing, and that is that it is all too easy
just to press the RETURN key and thus input nothing. So, in the
adventure games presented here we've used another of the Acorn
commands, GET$.

This is used in the form:

10 A$=GET$

Here, when you press a key, the computer will store the result of that
key press in the variable A$.

As we shall see later, using GET$ in this way allows us to keep a much
rnore careful track of what the player is typing in, and by using a simple

51

* FX call we can disable the movement of the arrow and the copy keys,
and check for only numeric and alphabetic keys. * FX4, 1 disables the
arrow and copy keys, and treats them simply as ordinary keys. Thus
by checking for the ASCII values of whatever keys are pressed, w~
can selectively accept or reject various keys.

Everything that the player types in will be stored as a variable, so
without further ado, let's take a look at variables.

Variables

A variable is simply a term used to describe a number, or some text,
that can be stored in the computer.

There are three different types of variables: real, string and integer.

Real variables are just numbers, either integer or fractional , and any
of the following is a legal syntax for a variable NAME:

A, BB, CcC, DOC2LE, GARgoyLE, etc.

That is, the name must be at least one letter long, and must start with
a letter, and anything after that can either be a letter or a number.
What you can't use are punctuation marks, or names that have BASIC
keywords in them, such as TO, OR, and so on. On the plus side, the
computer will distinguish between upper and lower case letters, so
that UPPER and upper are regarded as two different variables.

String variables can be numbers, letters, or a mixture of both, and
the restrictions on string variable names are the same as for real
variables, with one addition.

String variable names must end with a dollar '$' sign . Thus all of the
following are legal string variable names:

A$, A1$, ll.$, fred$, etc.

Integer variables are again numbers, but this time without the decimal
part attached.

Thus an example of a real variable might be A= 12.5, but the integer
counterpart would be Ao/o = 12. All integer variable names must end
with the '%' sign.

52

other couple of rules to remember about integer variables: the 26
An ·ables from A% to Zo/o are held as resident integer variables, that
~a~~ey are not cleared when a program is RUN, NEWed, or broken
~s to with the break key, and finally, other integer variable names such
~s Fred% are lost when one of the above three actions is performed.

The following would all be acceptable variables of their own individual

tYPes:

A==26.45, A% = 54, A$ = "1'M A STRING VARIABLE", b9$="1 AM
1 21", etc.

There are a number of variable names, known as reserved variables,
that cannot be used on your computer. A couple of these we've already
seen, such as TO and OR, but there are others, including the longer
reserved words such as PLOT and DRAW. The general rule is that
no variable name can start with a BASIC keyword.

Thus, you couldn 't use names like:

TIMES$, TOTAL, ORANGE, etc.

as they all begin with one or other of those reserved variable names.
Also, logically enough, you can't use any of the reserved Basic words
for variables either.

Back to Input

Input allows you to type some information into the computer from
a program, and that information is stored as a variable. To go into
more detail than earlier, for example:

10 CLS : PRINT "HELLO , WHAT' S YOUR NAME "
20 INPUT A$
30 PRINT " HELLO ":A$

would allow you to enter your name, and then say hello to you.

If you tried typing in 1.45 as your name, you 'd be referred to as 1.45!
That's because we specified that we wanted a string to be input (A$).
Try the following :

l O CLS : PRINT " HELLO. HOW OLD ARE YOU "
20 INPUT A
3o PRINT "THAT MEANS YOU ' RE " :A*365:" DAYS OLD'"

53

If you'd typed in your age as FRED, the computer would have
responded with THAT MEANS YOU'RE 0 DAYS OLD, since it would
treat the word FRED as a variable with a value of 0.

If you press Return, and nothing else, the program will continue, but
it will treat the string as a null one, i.e. one that contains nothing.

Input can also contain some text as well, as in the next example:

10 CLS : INPUT "HELLO. WHAT ' S YOUR NAME":A$
2(1 PRINT "HI THERE, ":A$

Not only does it make the program shorter, it also makes it neater.

However, there are ways of getting out of an input statement like this
one, so we'll be taking a look later on at some more elaborate ways
of presenting input statements that stop the player of your adventure
from crashing out of the program.

Data and the Inputting of it

We've already seen that we can get information, or data, into a
program by using the input statement, and of course a lot of
information could be typed in just by using a lot of input statements.

However, this could get exceedingly tedious if you were using the same
information over and over again, hence the need for data statements.

Here the data is typed in as part of a program, read off from within
the program, and then acted upon.

Not only does it save you typing in vast amounts of data each time
you run the program, but it also allows you to change just one data
item, and see how that affects the rest of the program.

In this short example we'll read ten numbers, add them up and then
take an average of the whole lot.

10 CLS
20 READ A
25 IF A=O THEN 40
30 B=B+A
.... C'
•J..J GOTO 20
40 C=B/10

54

PRINT "THE TOTAL IS ":B
4S PRINT "AND THE AVERAGE NUMBER READ WAS ":C
50
bO ED~~A 1.2,4.B.16. 3 2,64.128,256.512,0
70

The IF ... TH EN branching statement in line 25 will be explained more
fully later, but here it allows us to stop adding up numbers when we've
read ten of them, and reached a number of 0: the last data statement.

Data statements can be anywhere in a program, and if you're reading
real numbers, that's.what the data stat~men~s must conta.in. If yo.u're
reading strings, again they must contain strings. Otherwise all kinds
of very strange things will begin to happen.

What you must remember is that data is read as it is encountered,
so wherever it happens to be in the program, make sure that it
corresponds to what you want to read.

Also, make sure that you don't try to read more data than you've
actually typed in, otherwise the computer will merrily try to read data
that isn't there, and again an undesirable chaos will ensue.

Since we make extensive use of data statements in these adventure
listings, always ensure that the right data is being read by the right
variable, and that the right amount of data is being read.

One common fault when typing in listings of this length, which contain
a lot of data statements, is using a full stop instead of a comma i.e.
typing 0.5 instead of 0,5. One data item instead of two!

Again, it is very easy to miss a number out altogether, so do take care.

If you try to read the same data again, another error will take place,
unless you use the .. .

RESTORE command

This allows you to re-read data, and takes the following syntax:

SS RESTORE
56 GOTO 20

One concept to explain here. GOTO, which transfers program
execution from one part of a program to another, will again be gone

55

into in more detail later.

There is another option with the RESTORE command, and that is that
you can specify a line to restore the data to. For instance, RESTORE
2000, will set the data pointer to line 2000. If no line number is specified,
the data pointer goes right back to the start of all the data.

To finish with data for a while, here's a short example that mixes strings
and numeric data:

10 CLS
20 READ A$,B,C,D
25 IF A$=0 THEN END
30 PRINT "[CDJ ";A$;" IS "; B;" YEARS, "; C;" MONTHS

AND ";D;" DAYS OLD!"
40 GOT020
50 DATA PETE,26,1,21
60 DATA BERYL,25,5,18
70 DATA O,O,O,O

When run, this will print a couple of things up on the screen, until
it reaches the data statement in line 70. This puts a value of 0 into
A$, and according to the check in line 25, the program will then stop.

GET$, IF, THEN and ELSE

We'll confine ourselves to using the keyboard, where we find that GET$
allows us to input one character at a time, without the need to keep
pressing the RETURN key.

The following program will illustrate this point:

10 CLS : PRINT "PRESS ANY KEY"
20 A$=GET:f:
30 PRINT "YOU PRESSED ";A$;"'"
40 GOTO 20

A number of new ideas here.

Line 20 simply sits and waits until something has been pressed on the
keyboard. When it has, we fall through to line 30 and print out whatever
key it was that was pressed.

Line 40 just sends us back to line 20 again, and waits for another keY
to be pressed.

56

nly way to stop this program is by pressing either the ESCAPE
fhe or the BREAK key, otherwise it will loop around for ever!
keY o

an be selective in which key we press by moving on only if the
we ~ct one is depressed. For instance, suppose we want to halt a
cor

9
r ram until the space bar is pressed. This part of our program might

pro . 1·k
look something 1 e:

100 A$=GET$
105 IF A$() " " THEN 100

11 0 carrv on

Here if A$ is not equal to (the < and > keys together) a space, i.e.
the space bar has not been pressed, then go back to line 100 and wait
until it has.

This can be extended further, for example if we want someone to make
a Yes or No decision, and only want them to press the Y or N keys.
There are a number of ways of doing this (although we don't
recommend typing in those parts of the program that are in lower
case!):

100 A$=GET$
110 IFA$="Y"THEN goto another bit of the proqram.
120 IFA$="N"THEN go somewhere else.
130 GOTO 190

So if 'Y' is pressed we go to one part of the program, if 'N' is pressed
we go to another, but if neither is pressed then we wait until one of
them is.

Or how about this:

100 A$=GET$
110 IF A$="Y" THEN 200 ELSE IF A$="N" THEN 300.
120 GOTO 100

Here, we sit and wait till a key is pressed. If 'Y' is pressed then we
branch to 200, if 'N' is pressed then we branch to 300, but otherwise
We go back to 100. It takes up less program space, and is just another
Way of doing the same thing.

This kind of selective key pressing is one of the principal uses of the
IF ··· THEN ... ELSE statement.

57

ELSE, as you might gather, is an extension to the scene, as we savv
in the"last example. Here, IF something is true THEN we do something
ELSE we do something different. Like this:

10 IF A = 10 THEN 200 ELSE 300

So, if A was equal to 10 we'd go to line 200. If it wasn 't , the ELSE
would be acted on, and the program would branch to line 300.

The other main role for these commands is in decision making
according to the value of string or numerical variables.

Strings or numbers can be compared using the greater than '>' and
less than ' <' operators, which have the following connotations:

A > B : A greater than B
A > = B : A greater than or equal to B
A B : A equal to B
A < = B : A less than or equal to B
A < B : A less than B
A < > B : A not equal to B

Thus our program might contain a line something like:

100 IF A <= B THEN 200

Thus, if A is less than or equal to B then we go to line 200. If A is
greater than B we simply slip through to the next line of the program.

Strings are compared alphabetically. Thus" AAAA" is reckoned to be
less than "ABAA", and so on, and these can also be used in IF ...
THEN statements as above.

One could also use REPEAT ... UNTIL in a similar way, and we' ll take
a look at this in a moment.

Subroutines and Procedures

Some sections of a program have to be performed time and time again,
and it would become very tedious, as well as wasting a lot of memory,
if you had to keep typing out the following lines every time you wanted
the program to execute them:

10 A=B+C
20 D=E+F
30 H:A+D

58

pRINT H
40 REM GET ON WITH PROGRAM AGAIN.
50
f course, if our program segments were only th is long there wouldn't

O too much trouble, but as we learn more and more commands the
be mplexity of our programs will grow, and the need to perform
~~petitive calculations will grow with it.

Thus we have subroutines: lines which are used a lot within a main
program, and which generally just perform one specific function .

We'll see how to 'call up' subroutines in the next couple of pages,
but the point to be made here is that they too, like the rest of the
program, should be REMmed.

However, you ' ll note that there are no REM commands in any of the
adventures listed in this book.

This is due to the prodigious amount of memory that they take up.
If any REMs had been used, the programs probably wouldn 't have
fitted in!

This should serve to illustrate why it isn't really very good practice to
start a subroutine or a procedure with a REM statement. If you decide
later on that, because of the amount of memory being taken up, the
REM statement is no longer required, when the program is executed
it will still attempt to go to the line that was previously REMmed.
Finding it not there, it will understandably get a bit miffed, so try to
avoid that.

However, given that memory is not at a premium, the use of REM
statements can go a long way towards achieving a program listing
which is easy to follow when you come back to it after five months
of doing something else!

Before continuing with subroutines and procedures, since the majority
of such things in these adventure listings rely heavily on the use and
m~nipulation of strings, let's take a side-step for a moment and start
With:

String Commands: LEN

LfEN, as you might reasonably guess, is associated with the LENgth
0 a string .

59

For instance, if we assign a string A$ to be equal to "A LONG
STRING", the command:

PRINT LEN(A$)

would return a value of 13, this being the number of characters
(including spaces), contained within the string A$.

We can also assign another variable to be equal to the length of a string,
thus:

10 A$="ANOTHER STRING"
20 B=LEN<A$l
30 PRINTB

Running this would give us the result 14, this being the value of the
variable B, or in other words the number of characters in the string A$.

Finally, you can take the length of strings other than variables, as in:

PRINT LEN ("ADVENTURER")

LEN comes into its own when taken in conjunction with the next set
of string commands.

MID$

This is the most flexible of all the string handling commands, and is
taken first because it's probably the one that you'll use most often.

Strings can be manipulated in many ways. As we've seen, they can
be added up (more correctly termed 'concatenated'), they can be
compared with each other, but MID$ opens up a whole new field.

The command takes the following syntax:

MID$(A$,l,J)

Let us take a typical example.

We'll assign the string A$ to be equal to the name of my home county,
Lancashire. So, if we say A$ = "LANCASHIRE", A$ becomes a string
of length 10 characters.

60

rhe command MID.$(A$,l,J) takes the string A$, sta~s at the Ith
character in that string, and takes J characters out of 1t.

ro give a programming example:

10 A:S="LANCASHIRE"

20 PRINT Ml0$(A$.4,4>

When run, this would print out the new string CASH: A$ is unaffected.

As with LEN, this can also be assigned to another variable. For
instance:

10 A$="LANCASHIRE"
20 B$=MI0$(A$,7,4>
30 PRINT B$

would result in the string HIRE being printed out, this being the value
now stored in 8$.

There is one other way in which MID$ can be used, and this is to take
all the c;:haracters in a string, starting from a specified point. That is,
MID$(A$,I), would start at the Ith character, and take all the remaining
ones.

Thus, with our string A$= "LANCASHIRE", the command:

PRINT MID$(A$,6)

would print out the word SHIRE.

Associated with MID$ are two other string handling commands that
are used extensively in our adventures.

LEFT$

Not as flexible as MID$, but none the less a command with its uses
When handling strings, is LEFT$.

:tis a fairly .safe bet to assume that this has something to do with the
eft-hand side of a string, and indeed it does.

Sticking with counties, we'll assign the string A$ to equal "DEVON".

61

When we issue the following command:

PRINT LEFT$(A$,4)

the result is printed to the screen as DEVO. Thus, with LEFT$ we
always start at the first character in the string, and take as many
characters as indicated in the argument.

So, in the following program:

10 A$= "DEVON"
20 B$=LEFT$(A$, 3)
30 PRINT 8$

we would get the rather strange word DEV being printed out.

As you can see, not as powerful as MID$, but not without its uses.

RIGHT$

Well, you'd never guess would you?

RIGHT$ is concerned with the right-hand side of a string , and works
in pretty much the same way as LEFT$.

Thus, if we assign the string A$ = "KENT", the command:

PRINT RIGHT$(A$,3)

would print out the word ENT, a suitably ADVENTUREous word.

As before, other variables can be assigned using this same command.

For example, the following program will define the variable 8$:

10 A$=" CORNWALL "
20 B$=RIGHT$ <AS,7)
30 PRINT BS

and print it out as ORNWALL.

Of course, all these commands can be combined in many ways, to
make manipulation of strings very easy.

62

Take the following short program:

10
A:f="PETER GERRARD"
BS=LEFT$(A$,6)

;~ C$=MID$(A$,4.5>

40
O$=RIGHT$(A$,7)

50 PRINT B$;CS;D$

When run, this would print out:

PETER ER GE GERRARD

To further illustrate, how about this program to reverse the direction
of a word :

10 A$="NEI KLOT"
20 BS=MIDS<AS.7,1)
30 C$=MI0$(A$,6,1)
40 0$=Ml0$ (AS,5,1>
50 E$=MIDS<AS,4,1)
60 FS=MIDS<AS, 3 ,1)
70 GS=MIDS<AS,2,1)
80 H$=MIDS(AS,1,11
90 J$=BS+C$+0$+ES+FS+GS+H$
100 PRINT!$

When run, you'll see a rather well known word being printed out.

There are much more elegant ways of doing this kind of thing, as we'll
see when we encounter FOR .. . NEXT and REPEAT ... UNTIL loops
shortly.

STR$ and VAL

Two functions which are essentially the inverse of each other, and
both of which are concerned with string and numeric manipulation.

Take a number A , equal to (say) 12.123.

The command :

PRINT STR$(A)

~hill Print out the string 12.123, although the number A has remained
e same.

63

This command is more useful when assigning variables, as the
following program shows:

10 A=24.23 2425
20 A$=STR:$(Al
3 0 PRINT A$
40 PRINT LEN<A$l
5 0 PRINT Ml0$(A$,1, 2)
6 0 PRINT MI0$(A:$,4l

When run, this program will print out the following:

24.232425
9
24
232425

So you can see that by finding the position of the decimal point, we
can split a number up into its two components.

How do we do this?

Well, one way would be to use the inverse function, VAL.

VAL takes a string, and converts it into a number. Thus, if the string
A$ was equal to "10", the command:

PRINT VAL(A$)

would print out the number 10.

If A$= "12.123", VAL(A$) would also equal 12.123, but of course this
time it would be in numerical format.

VAL comes to a halt when it comes across something that is not a
number.

Thus, if A$ = "88*88*", VAL(A$) would return just 88.

We can also print out straightforward variables. That is, in the following
program, we are defining the variable A to be equal to the VALue of
various strings:

10 A=VAL(23 .23 l
20 PRINTA

64

30 A='VAL<A>

40 pRINTA

50 A='VALC - 100 .9>

60 pRINTA

When run, the results on the screen would be:

23.23
0
-100.9

so, to split a number up into its component parts, we must find the
decimal point by turning the number into a string, taking each number
at a time until we find the decimal point, and so on.

CHR$ and ASC

Anot~er two ana~ogou~ functions, again concerned with string
handling, but ASC 1n particular assumes great importance when talking
about communicating from one microcomputer to another.

ASC is short for ASCII , the American Standard Code for the
Interchange of Information, although when used on most home
computers it is usua!IY ~nything but! Still, Acorn have stuck fairly rigidly
to the standard, with iust one or two little delights of their own.

To generate them on the screen the following syntax is used:

PRINT ASC("A")

which would return a value of 65, or:

PRINT ASC(A$)

~hich would return the ASCII value of the first character contained
in the string A$.

~~R$ is the .opposite of this, i~ that it returns the character whose
Cll code 1s the number, variable or expression following CHR$.

T~s feature is used in all our adventure listings in the INPUT procedure
~her~ we are checking for the ASCII values of keys being pressed'.
d

1
us if we find that CHR$ 127 has been pressed, we know that the

e ete key is being used and so we amend things accordingly. Again,

65

if CHR$ 13 has been pressed, someone has pressed the RETURN key,
and again the program has been written to respond in the correct
manner.

Both of these commands can again be used to define other variables.
For example:

A = ASC("A")

will put the value of 65 into the variable A, and

A$= CHR$(13)

will put the character string 13 (in fact, a carriage return) into the string
A$.

FOR ... NEXT

Where would we be without FOR ... NEXT loops?

Although we've been instructing the computer to do the same thing
a number of times over by use of a simple incrementing variable, the
'loop' approach is far better, and far easier to operate.

For instance:

10 CLS
20 FOR I 1 TO 1 00
3 0 PRINT I
40 NEXT

This will simply print out the numbers from 1to100 in rapid succession,
but illustrates the point.

Line 20 is the start of our loop, and tells the computer that we want
to do something 100 times. In fact, we want to print out the numbers
from 1 to 100, and as the value of I increases, it is printed out in line
30. Line 40 then tells the computer NEXT, i.e. there's more to come,
and the program branches back to line 20.

It keeps on doing this until I has reached the value of 100, at which
point it stops and our short program ceases execution.

Actually, I reaches the value of 101 . Why? Well, when it has the value

66

f 100 it prints it out as in line 30, sees the NEXT statement in line
0 and increases the value of I to 101 . However, on branching back
~~computer finds that the limit of the loop is when I is equal to 100,
so it stops!

The correct syntax in line 40 should have been :

40 NEXT I

as we can have more than one loop active at a time . Like this:

tO CLS
20 FDR I = 1 TO 20
30 FDR J = 1 TO 3
40 PRINT J, I
50 NEXT J
60 NEXT I

The first time around, I is set to 1, and J counts through from 1 to
3. Thus the display goes something like:

1
2
3

l
1
1

Then J has finished , so we go on to line 60, where I is incremented
again, so it's back through the loop once more, for :

1
2
3

2
2
2

and so on, until we finally reach :

1 20
2 20
3 20

at Which point everything stops.

Lines 50 and 60 could have been abbreviated to the rather more
straightforward :

50 NE XT J I •

67

Just make sure that you keep everything in the right order, and don't
have more than 26 loops in action at the same time, otherwise the
computer will blow its stack. It is also very easy to generate a 'No FOR·
error message if you inadvertently jump out of a FOR .. . NEXT loop,
so don't do it!

Loops can be made to count in steps as well , for instance:

20 FORI = 1T01 00STEP2
30 PRINTI
40 NEX T I

when run, will print out the numbers 2,4,6, 100. We can also go
backwards:

20 FORI=lOOTOlSTEP-2
30 PRINTI
40 NEXTI

when run, will print out the numbers 100,98,96 2.

For an interesting application, using only commands we've seen so
far, can you work out what this program is doing (type it in and see,
if you can't!)?

10 AS= "ABCDEF G"
20 B$=GET$
30 FORI = l TO LEN IASJ
4-0 IFBS=MIDSI AS, I , 1) THEN PRINTBS::GOT02 0
5 0 NEXT I : GOT0 2(l

REPEAT ... UNTIL

Operating in a similar fashion to FOR ... NEXT loops, but much more
powerful, are the REPEAT ... UNTIL sequence of commands.

These operate in the following way:

10 REPEAT
20 X= X+l
30 PRINT X
40 UNTIL X= 7

Thus we carry on around the loop UNTIL X is equal to 7.

68

careful use of REPEAT .. . UNTIL loops it is possible to speed up
BYograrn execution considerably. Their power comes from being able
pr end a loop when a certain condition becomes true. With FOR ...
~EXT loops things must carry on until the bitter end, since you mustn't
jurnP out of them.

Both have their uses, as we'll see in the listings to come.

GOTO somewhere

We've already encountered this one. Basically it sends command of
a program to somewhere else within the program, or back to the same
line.

The syntax used is GOTO xxx, where xxx is an existing line number.

If it isn 't , you ' ll get a 'No such line' error being generated. The same
applies to GOSUBs as well, so take care.

As a short example:

10 CLS
20 PRINT "HELLO I"
30 GOTO 20

When run, this just prints up hundreds of HELLO!s, until you hit the
ESCAPE or BREAK key.

Changing line 30 to read GOTO 10 produces a slightly flickering display.

GOSU B and RETU RNing

Subroutines have been met before, as small , or maybe even large,
segments of programs that have to be repeated many times.

Performing the same function over and over again is a repetitive task,
and having to type the code in each time you wanted it actioned would
take a lot of time, and a lot of memory.

Thus subroutines were born, and the command used to send program
control to them is GOSUB xxx, where xxx is the line number at the
start of the subroutine.

69

Once actioned, the command to send control back to the main prograni
again is RETURN.

Great care must be taken in matching up GOSUBs with RETURNs
otherwise a 'No GOSUB' or a 'Too many GOSUBs' error will take place'.

As with FOR ... NEXT loops you can have up to 26 subroutines in
action atthe same time, but no more. REPEAT ... UNTIL, incidentally,
limits you to 20 at a time.

Thus you can jump about from one subroutine to another, and quite '
often it is necessary to do this, but it isn't really very good programming
practice, and an error will almost certainly occur sooner or later. It will
also make for very untidy programs that are almost impossible to follow.

A few examples:

10 CLS
20 A=5:B=10
3 0 GO SUB 100
40 GOSUB 200
50 GO SUB 100
60 PRINT A,B
70 END: REM IMPORTANT, OTHERWISE PROGRAM FALLS THR
OUGH'
100 A=A*A
110 A=A+5
120 RETURN
200 B=B-1
210 RETURN

When run, the first subroutine is encountered twice, the second once
only, and the resultant printout is:

9059

Of course, one can get a lot more complicated than this, although
as we've said it isn't really advised.

PROCedures

A PROCedure is a variation on a subroutine, but a much more powerful
ally to the programmer - or so they say! GOSUBs allow you to find
out where program control is going in terms of line numbers, whereas
PROCedures allow you to find out in terms of words. You pays your

70

neY and takes your choice, but you'll find that the majority of the
~~tines in these adventures use GOSUBs inst~ad of PROCs.

Nevertheless, let's run through the syntax quickly. A procedure is
defined by the statement:

10 DEF PRDCinput

2o INPUT A$
3o ENDPROC

although it is likely that most procedures will get a little bit more
complicated than this! To call up a procedure, you simply say
pROCinput, and the program trundles off to that part of the program.

Provided that you've matched up names correctly, procedures are
useful, in that you don't have to remember where all the subroutines
live in terms of line numbers. However, as the object of this book is
to teach you how to write adventure games, and not to spend hours
looking through a listing for a two line procedure to move the player
through a maze, we've stuck to GOSUBs and line numbers.

What's GOing ON

Quite often within a program, the subroutine or line number you want
to go to will depend on the value of a particular variable.

This could be achieved in the following way:

10 IF A 0 THEN 100
20 IF A 1 THEN 200
30 IF A 2 THEN 300
40 IF A 3 THEN 400
50 IF A 4 THEN 500
60 etc.

Although this works, it could hardly be described as an elegant way
of programming.

In its place we can use the ON ... GOTO command, and the similar
ON ... GOSUB. As both work in the same way we'll take the former
as an example, although with the latter you do have to take care over
niatching up RETURNs with GOSUBs.

lO ON A GOTO 100,200.300,400.500

71

Here, if A has the value 1, the program continues execution at line
100 onwards, a value of 2 and it goes to line 200, and so on up to
a value of 4, when it goes to line 500.

A can be varied, in order to match our earlier IF ... THEN example
as follows:

10 ON A+1 GOTO 100.200,300,400,500

Thus we now have an exact match of the original program, but in four
fewer lines! Now, if A equals 0 program execution continues at line
100, and so on.

Just one example of this command in use could be something like
this, which is an interesting use of string handling:

10 KS="ABCDE"
20 PRINT"ACTIVITY ' A '
30 PRINT"ACTIVITY 'B '
40 PRINT"ACTIVITY ·c ·
50 PRINT" ACT IV ITV 'D '
60 PRINT"ACTIVITY ' E'
70 AS=GET$
BO FDRI=l TD LENCKSl

PRESS A
PRESS B
PRESS C
PRESS D
PRESS E

9 0 IFAS=MIDSCKS,I.1> THEN 1000
100 NEXT I
110 GOT07(l
1000 ON CASCCAS>-64> GOTO 1100.1200,1300.1400,1500
1100 rest of program.

RaNDom INTegers

Like most of the home computers currently available, Acorn have seen
fit to give us a random number generator.

Alas, like most of them it isn't particularly random, and so a few
operations have to be done before we can begin setting up 'genuinely'
random numbers.

RND takes a number of forms, as follows:

RND

72

on its own gives a random number in the range
-2147483648 to +2147483647

RND(1) generates a random number between O and
0.999999

RND(Ol repeats the last number generated by
RND(1)

RND(A) generates a number between, and possibly
including, 1 and A.

To start things off differently every time, we'll need to use another
variation on a theme, using a command of the form:

RND(-A)

which gives the value -A and resets the random number generator
to be based on A. So you could generate a random number ordinarily,
use the RND(-A) option to start things off somewhere else, and then
get something approaching a true random number generator.

The INT command comes in useful here, as elsewhere. It chops off
the numbers after the decimal point, basically, so INT(2.24) becomes
2, as does INT (2.89).

INT of a negative number returns the next lower number. Thus, INT
(-2.24) becomes -3!

Ordinarily this command would have to be used in conjunction with
the RND command, as most computers generate a fractional random
number. But Acorn (with the exception of RND(O) and RND(1)) have
seen fit to do away with this need, and hence we generate whole
random numbers every time.

This is used in our adventures for producing random events, e.g. the
appearance of a gargoyle, or the success or failure of throwing a knife.

A New DIMension

~e've already seen how numbers and strings can be stored as variables
1 e A, A$, and so on. However, this gets a mite restrictive after a while,
~nd we need to resort to other things. After all, there are only so many
etters in the alphabet!

Let's t say that we're generating ten random numbers, and we want
0 store them all as variables.

73

We could have a very lengthy program to do this:

10 A=RND (10l
20 B= ••••• etc.

but this is extremely space consuming, and there are better wavs.

This is where arrays, otherwise called subscripted variables, come in.

The syntax for referring to these is A(O), A(1), etc., up to a limit
previously assigned by you, the user. Our 10 numbers, for instance
could be assigned numbers something like this: '

10 FORI=OT09
20 AC I l =RND C 10>
30 NEXT I

Where now we have the ten different numbers stored in A(O), A(l)
etc. up to A(9).

These numbers can then be selected at will . For example, PRINT (A(4))
will print the fifth number, or element, in our array A: remember that
the first element is referenced as number 0.

To prove it, we could print them all out by adding to our program:

40 FORI=OT09
50 PRINTA <I l
60 NEXT I

The numbers in an array can be assigned to other variables (e.g.
A= A(3)), or even calculated dynamically by using another variable
(e.g.PRINT A(B*2)).

However many elements you might wish to have in your array, be it
1, 10 or 1000, you must specify this before attempting to store any
value in any element in that array.

The syntax for this is DIM A(199), or whatever, which sets aside a
certain amount of room in the computer's memory for storing all the
numbers that you might be wanting to save. Whether you use thef'Tl
all or not, that memory is reserved, so use arrays selectively.

A useful idea, if running low on memory space, is to use something
like DIM A(2) , if we're only going to need to store a maximum of three

74

bers in the array A. This can make a lot of difference when running
nurYle to the limit of memory, so that we don't waste space with an
cios d tt' t I · ., · d G 'Oh I might en up pu mg en e ements 1n 1t att1tu e. et your arrays

right!

Arrays are not limite? to o~e dime~sion eit~er. You can dimension
something as A(7,7) if you hke, for instance in a chess game, where
you have a board 8 squares by 8.

The elements in that array are referred to as A(1,5), A(6,3), and so
on. It is helpful to think of these values as being stored in rows and
columns, where the first number refers to the row and the second to
the column. Thus A(5,7) is the seventh column of the fifth row.
Thinking of it all as boxes of numbers, or strings, stored in rows and
columns will always help when you want to reference a particular one
within a program.

We'll be using arrays extensively in all our adventures, so it's useful
to learn how they operate!

Getting Started

Now that we've learnt most of what we'll need to know about strings,
data and dimensioning arrays, it's about time we started looking at
the results of using these in an actual program.

Our example, as always, will be the Underground Adventure listing,
so now we'll start explaining some of the variables that are used in
this game, so that we can get an understanding of how the various
parts of the program operate.

Li~es 2 and 15 define one set of variables, which relate to the gate
being open (GF) and door being open (OF), the presence of the bear
(TB), and various other flags that change as the game progresses.
~ROCVAR is the routine that sets up all the variables that are used
in the game, such as room descriptions, room direction data and so
on. The variable CP that follows is the Character Position, and relates
~o the r?om number that you happen to be in at the time. Finally, GA
etermines whether our hostile gargoyle turns into a mischievous one!

Line 15 · · th Just defines a number of messages that are used later on in
e Program.

75

2GF=1:DF=O:TB=O:PD=O:BR=O:SC=O:NP=O:ZZ=O:Gs~o
C$=CHR$C8):PROCVAR:CP=1:GA=O 1

15PD$="It's now dark.":IM$="Can't go that way,"
:GF$="The gate is shut. ":0$="Going down ... ":DF$:::••
The door is shut."

Moving Around

Line 200 sets us off to the routine that checks for character movement:

200 PRDCMOVE:IFTB THENOB'l.C9)=TB

On returning from that procedure, we check for the presence of the
bear (IFTB meaning 'if the variable TB has a value other than zero')
and update the position of the bear if necessary.

But before we look at that, we' ll jump down to line 1998 and define
a few more variables:

1998 DEFPROCVAR
1999 NV=38:NN=53:P=100:L0=53:DIMP$C100>,P%CP,3>,0

B$CLD>,DB'l.CLD>,VB$CNV>,NO$CNN>

This controls all our data reading which takes place in lines 2000 to
2267. These are reproduced in chapter 6, but the variables are set as
follows:

NV = the number of verbs we' re going to use.

NN = the number of nouns we're going to use.

P = the number of rooms contained in the adventure .

LO = the number of nouns again, but is used to control the LOcation
of every object in the game, there being as many objects as there are
nouns.

DIM P$(P) = dimension the variable P$ to be equal to the number
of rooms in the game. P$(1) then contains the description for the Ith
room.

DIM Po/o (P,3) = dimension the variable Po/o to be equal to the number
of rooms, with four sub-elements to each level of Po/o. These are used
to determine the direction one can take from within a room, and

76

. d' ate NORTH, SOUTH , EAST and WEST respectively. Thus
~~~l,2) refers to the direction EAST from room I. 

IM QB$(L0) = dimension the variable OB$ to be equal to the number 
~f nouns. OB$(1) then contains the description of the Ith object. 

DIM QB o/o (LO) = dimension the variable OB% to be equal to the 
umber of nouns. OB% then contains the position of each object in 

~he game, by referring to its room number. Thus OB%(1) refers to the 
Ith object, and if set equal to J puts the Ith object in the Jth room. 

DIM VB$(NV) = dimension the variable VB$ to be equal to the number 
of verbs. VB$ then contains the actual verb itself. Thus VB$(1) is the 
Ith verb. For instance, VB$( 1) is the verb GO. 

DIM N0$(NN) = dimension the variable NO$ to be equal to the number 
of nouns. N0$(1) then contains the shorthand description for the Ith 
noun. Thus if OB$(1) contained the string" A RICKETY OLD DOOR", 
N0$(1) would contain just "DOO", for door. 

Now let's look at the actual room moving routine contained in lines 
5000 to 5024. 

Room Movement Routine 

This routine is used to handle all room movement in the game, so we'll 
take a close look at it. 

SOOO DEFPROCMOVE:CLS:PRINT:PRINT 
S001 IFOB%C46>< >-1ANDCCP>4ANDCP< 100>THENPRINTPD$: 

PD=1:ENDPROC 
S002 PRINT"You're ";P$CCP>:PD=O 
S003 IFCP=42ANDTB=1ANDP/.C42,1)=0THENPRINT"The bea 

r scares the panther.":P/.C42,1)=43:0B'l.C11>=0:P$C42 
>="in a comfortable lair." 
S004 PRINT:VB$="You see: ":FORI=1TOLO:IFOB/.CI>=C 

P THENPR I NTVB$; 08$ C I > : VB$=" " 
Soos NEXT:IFCP=3ANDGF=OTHENPRINT:PRINTGF$ 
?012PRINT:PRINT"You can go: ":PRINT:FDRI=OT03:IF 

Pr. C CP, I> < >OTHENPR I NTD$ <I> ; " "; 
S013 NEXT! 
Sots PRINT:IFNP=1THENPROCGARG 
~016 IFCCP>20ANDCP<BB>ANDCRNDC10> >9>THENNP=1 
Ota IFCP< >690RP/.C69,3)=70THENENDPROC 

77 



5022 IFOB'Y. ( 15) < >-1 THENPRINT"You can't pass Yet " 
:ENDPROC • 
5024 PRINT"The mist washes away! ":P'Y.C69,3>=70:oa· 

<15>=0:ZZ=ZZ-1:P$C69)="walking past an icy spot,"~ 
DB'Y.C20>=0:ENDPROC • 

Explanation of Routine 

We'll take this line by line. 

Line 5000 simply starts the procedure and clears the screen. 

Line 5001. chec.ks to see if you 're holding a blazing torch (OB % (46)). 
If the variable 1s set to -1 it means that you 're carrying it. If it's not 
equal to -1, the line carries on to see if you're in a room lying between 
room numbers 5 and 99. If you are, it then prints up the variable PD$ 
as defined in line 15 and returns to the WHAT NOW prompt, h9ving 
set the darkness variable PD equal to 1. Any attempt to move now 
without lighting the torch will make you fall into a pit and plummet 
to your doom. 

Line 5002 prints up "You're" followed by the description of the room. 
You are always in room CP. The darkness variable PD is set to 0, since 
if we've moved, we can't be in darkness. 

Line 5003 checks the 'bear following' variable TB. If the bear is following 
you, and you're in room 42 (which holds a fierce panther to begin with) , 
and there is no path south from room 42, then the bear frightens the 
panther and we have to change a few variables. 

Line 5004 is the start of the 'You see' routine, which goes on to check 
if the location of any object, OB %, is equal to the current room number 
CP. If it is, then it tells you that you can see it, but if nothing's there 
it just prints up nothing. 

Line 5008 checks to see if you 're in room 3, and if the flag for the state 
of the gate (open or closed) is set or not ( 1 or 0), and if it is set prints 
up the variable GF$, as defined in line 15. 

Lines 5012 to 5013 go through the four possible directions from each 
room, and check to see whether you can go in any of them, by seeing 
if the relevant part of the variable P% is set to O, in which case you 
can't, or something else, in which case you can . It then prints up the 
right part of the variable D$, which was set to equal the words North, 

78 

south, East and West earlier on in the program . 

. e 5015 checks to see if there's a gargoyle chucking a knife at you, 
;~d if there is transfers program execution to PROCGARG at line 5999, 
which we'll come to later. 

une 5016 goes through a random number generation, and if that 
number is greater than 9 (on a scale of 1to10), and if you're in a room 
number greater than 20 but less than 88 sets the gargoyle present flag 
NP and goes off to PROCGARG. 

Line 5018 checks to see if you're in room 69 and if you've got past 
the obstacle there. If you ' re not there, or you are there but you've 
solved the problem, program execution returns from this procedure. 

Lines 5022 onwards are assuming you are in room 69, which is initially 
guarded by a hazy mist, through which you cannot pass until various 
conditions are met. These are checked in lines 5022 to 5024, and I'll 
let you work out for yourself what they are! 

Basically you have to be carrying a certain object before you can get 
past, and if you are then obviously the hazard doesn't exist any more, 
and we have to change the relevant parts of the variable P% (69) to 
allow us to move safely through here in future, and the room 
description P$(69), all of which is done in line 5024. 

So you can see the checks that have to be made before we can allow 
our explorer to move through certain areas. 

It would be an easy matter to alter this routine to suit your own 
adventure requirements, just by changing the conditions that have to 
be.met, and checking for the right room numbers and the right flags 
being set. 

As we've said, you ' ll find all the data in chapter 6. 

}ou will see from the above that the listing for Underground Adventure 
15 very tightly packed indeed. This is simply to make it fit into the 
~~mory of the computer, as we have a far greater number of rooms, 
~ Jects and verbs than in either Castlemaze or Tunnel Adventure. 
a ence t.he room descriptions are quite short and the routines at times 

5
PPear incredibly condensed. This is necessary, so don't try to put 

L~~Tces everywhere if none are in the listing. You can always use 
07 afterwards to get a good look at it! 

79 



Checking Inputs 

This routine is used to check, when playing the game, if the player 
is trying to do something with an object that isn't in sight, or isn't in 
his possession. 

5400 OB= 1 : I FOB% <NO> < >-1 ANDOBX <NO> < >CP THENPR I NT" l 
t isn't here.":OB=O 

5402 RETURN 

Explanation 

Line 5400 - Set object flag to 1. If the object isn't in the player's 
possession, and it isn't in the room, then print a simple message and 
set the flag to 1 . 

Line 5402 - return from subroutine. 

Now we've seen how a couple of routines work. Let's sit down and 
write an adventure! 

80 

4 

Writing Your Own Adventures 

Let's Get Started 

We've seen one of the major routines in the game now, that of handling 
the movement of the character within the adventure, once we've 
established from other routines whether or not the character can in 
fact go in that direction. 

That is achieved using the verb GO, which we'll come to along with 
all the other verbs in chapter 6. 

All the data that is necessary for this game, together with a thorough 
explanation of how it all works, what it all means and how it's all stored 
in the program, will also be found in chapter 6. 

Meanwhile, there's an awful lot of additional coding which doesn't 
come into either of those sections, and the purpose of this chapter 
is to present you with the rest of it, including standard routines for 
the inputting of data, checking on the validity of a move, checking 
whe~her the words you've typed in make sense, and one or two ot~er 
routines which are especially for this game (we couldn't just give you 
all of the listing bar a couple of lines!), but which could nonetheless 
be adapted for use in your own games. 

You'll know the sort of occasions when it is necessary to include these 
shpecial routines, what they're doing (and equally important, how 
t ey're doing what they're doing), and so you will be able to use 
variations on them in your own games. 

So, between this chapter and chapter 6 you'll get the complete listing 

81 



for Underground Adventure, and perhaps by presenting it in small 
chunks like this you'll feel more inclined to type it all in! 

If not, you could always buy the cassette containing the three 
adventures in this book, configured to run on your computer, and study 
the listing that way. 

Summary So Far 

You know what a number of the essential variables in this game are 
now doing, and can readily adapt them for use in your own games. 

The variable CP for instance, which is used to keep track of the room 
number, and is updated as you move from room to room. 

The variable NP, to detect whether or not a living gargoyle has emerged 
from the rocks and is about to engage you in mortal combat. 

The variable PD to check for darkness, and the carrying of the blazing 
torch. 

These, and the others, are the backbone of the game, and without 
them this adventure could not function. Without similar variables in 
your own games it would be equally impossible to play and/ or write 
them . 

Variables like these are there to make life easier for you . Use them 
in your own games, and the actual writing of a complete adventure 
will soon become relatively easy. 

However, there's a lot to learn yet, like the drawing of maps, the placing 
of objects, the positioning of any hazards en route, and everything 
that goes up to make the total game. 

In the next section we' ll start again from scratch, and assume that 
you 've sat down with a blank sheet of paper, and want to start writing 
an adventure game. 

So let's get going! 

The First Steps 

Possibly the most difficult step of all is outlining the story that you 're 

82 

. g to have as the backbone of the adventure. 
go in . 

ttect it will have to be a miniature novel, involving (relatively) realistic 
In e cepts, although an ingredient of most adventure worlds is that little 
conch of magic that sets them aside from the real world. 
tOU 

The plot, just as in a good novel, must flow smoothly from one stage 
the next, with no totally unexpected, inexplicable events. One 

t~venture I know suddenly has a sword that you 've been happily 
~arrving along turn into a snake in your hands, which then bites you 
and kills you off. 

This is totally inexcusable, and shouldn't find a home in any real 
adventure. The impossible happens quite often in these games, but 
at least there should be a warning that it's going to happen, and it 
should not be sufficient to kill off the character. 

so if we're going to have magic, let's keep it on a fairly reasonable 
level, and stick to iron staffs being waved and causing a bridge to 
appear over the chasm. 

Events that kill off the hero, like crossing a rickety bridge with a heavy 
bear in tow, should generally be as expected as possible, and only 
be the fault of the adventurer. In real life, would you expect a rickety 
bridge to support the weight of a heavy, lumbering bear? 

In Underground Adventure, dynamite has to be employed in one 
instance before you can progress. It is reasonable to assume that 
lighting the dynamite whilst you're still holding it will not do you any 
good, and so it should be placed on the ground first of all. 

On the other hand, some of the elements in this game, and others, 
are randomised to give the game some semblance of reality. Not that 
you'd often bump into a living gargoyle carved out of the rock, who 
then engages you in a duel to the death every time you meet him, 
but should such an event take place it is reasonable to assume that 
the outcome of the fight will not always be the same. 

ihhus You will sometimes get killed (though not very often , otherwise 
~ game would get very tedious) , and sometimes your throws will 

~iss .the gargoyle, but again you should conquer him (her?!) most of 
e time and live to carry on the game. 

~o ~nvthing that happens in the game must have a remote base in 
ahty, and the inexplicable shouldn't really happen without at least 

83 



being safe to the player. 

Getting the Idea 

As we've said, this is possibl~ the most diff!cult pa~ of all. ~any 
adventures have now been written, and coming up with an original 
scenario each time is getting gradually harder and harder. Some 
possible ideas are presented in chapter 5, where we've gone through 
a number of adventure scenarios, and described them in some 
considerable detail. 

However, there is of course no constraint on you to use them at all 
so your own ideas will have to come from somewhere. ' 

One tried and trusted idea is by dipping into a few books such as Lord 
of the Rings, in which there are a multitude of possible plots which 
could be turned into very reasonable games. However, as in all 
implementations of this sort one has to be very careful about the laws 
of copyright, as we've seen with the Hitch Hiker's Guide to the Galaxy 
game, so you'll probably have to change a lot of names to protect 
the innocent, i.e. you! 

The traditional thud and blunder adventure, steeped in Gothic names 
and ancient runes, has been done by many authors, although obviously 
the scope here is vast for doing variations on a theme. 

One possible answer might be to read a few science fiction novels 
(bearing in mind the author's copyright), such as the works of Michael 
Moorcock, and obtain a few ideas from there. 

To the beginner though it must seem that just about every possible 
idea has been tried before, including exploring ancient tombs and 
crypts, jungle adventures that pit you against various natives and native 
problems, cowboy adventures, outer space adventures, underwater 
adventures, and the like, and that it would be impossible to come up 
with a new and original plot-line for your story. 

But bear in mind that there have been many more novels written than 
there have been computer adventures, and people still keep managing 
to come up with original themes for those, so the ideas are always 
there: it's just a question of thinking them up. 

Visitors from outer space, detective adventures, psychological 
adventures, biblical adventures, are all relatively new areas, and perhapS 

bining one of these new ideas with the character choosing role 
~f;1ussed earlier could pave the way for a whole new set of computer 

games. 

e work is up to you though, and your plot, whatever it consists of, 
T~st ring true throughout, and keep the player of the game constantly 
IT1 tertained, forever pitting him against new ch.allenges, new tasks, 
:~d keeping the interest by finding out just that little bit extra with 

each game. 

The Hazards 

Now there's a television program! But no, nothing to do with car driving 
American lunatics in an otherwise sleepy mid-western village, one of 
the most important parts of any adventure game will be the constant 
search for new problems to set the player, new tasks that have to be 
accomplished before you can proceed further, and making those 
hazards solvable, but (preferably) as difficult as possible. 

The number of problems set will always vary from game to game, and 
should to some extent depend on the number of rooms in the game. 
Perhaps on a 1 to 6 ratio, with a new task to be solved every half dozen 
rooms or so ? 

Some games favour a constant source of worry, and indeed 
Underground Adventure does the same, with the living gargoyle 
coming up every now and again, along with a random chance that, 
as well as fighting with you, he might just nip in and steal a few useful 
items that you happen to be carrying and hide them in the maze. 

As a helping hand, here's a list of the hazards presented in Underground 
Adventure, and the rooms in which they are first found: 

A vast chasm that is too wide to jump: room 15 
A massive tree that blocks your path: room 21 
A deep drop that is to steep to climb down: room 35 
A blocked wall that prevents you from going further: room 4 
A golden bear that will not let you pass: room 27 
: fierce black panther that stands in your way: room 42 

nother deep chasm amongst the rocks: room 10 
A steep incline that is to steep to climb up: room 45 
: shimmering curtain of light that dazzles you: room 93 
An old mining track that is blocked up: room 79 

hazy wall of mist that is too thick to pass through: room 69 

85 



The denizen of the caves, who will not let you through : room 50 
A giant spider, out to eat you : room 84 
A giant fly, out to kill you: room 74 
An old door that blocks your path: room 60 
A narrow crack, which you can't squeeze through : room 53 

There are 100 rooms in Underground Adventure, so we fit nicely into 
our 1 in 6 ratio, with the above 16 problems to solve. We' ll tell You 
some solutions along the way, but not all of them! 

Constant Problems 

As well as all of the above, there are a number of constant problems 
that keep recurring, like the gargoyles, and any reasonable adventure 
has the same kind of mixture. A good solid set of problems which give 
the player plenty to chew over, along with a reasonable set of constant 
events that can also give cause for worry. 

However, whatever the kind of problem, be it in a set place or occuring 
at random, one golden rule of programming this type of game remains 
the same: if the player solves the problem, make sure the program 
checks for this and adjusts its variables accordingly. 

There is nothing worse for a player than, having spent hours achieving 
one goal, to throw away the relevant object which has enabled him 
to do this (or perhaps have it taken away by the program once it has 
fulfilled its duty), and then to see a bug in the program causing the 
problem to re-appear! 

In other words, don't make your adventures impossible, which is 
always a problem when you're manipulating a lot of objects. Just 
placing one of them in the wrong room could cause the program to 
become unsolvable: a cardinal sin. 

One of the more common constant problems is that of a torch. If you're 
deep underground it's fairly safe to assume that you won't be able 
to see very much, and so a torch becomes vital. 

To light the torch you will also need some matches, and these must 
also be hidden in the game somewhere. 

Finding the torch and lighting it is usually no problem, but keeping 
it lit m'ten is. A sudden gust of wind perhaps (which could easily ~ 
done in the earlier movement routine by checking for, say, room 

86 

whatever, and whenever the player walks through there the torch 
o:ts blown out), or a swim through some water would do the trick. 
~you go through water, yo~ would also getthe matches wet, so how 
do you light the torch again? 

A torch carries with it another problem. There is usually a limit on how 
much you can ca.rry at a time, and certain objects will always have 
to be with you, like torches, axes, and so on, and so the problem 
becomes what do you carry at the same time. 

Dropping things often breaks them (e.g. bottles), so you'll have to 
make your adventure as devious as possible, to ensure the maximum 
amount of thinking for the person who will ultimately play it. 

All of these problems will have to take place in some kind of land or 
other, so let's draw a map. 

Drawing the Map 

We'll assume you have worked out some rough kind of plot line, and 
you want to draw the map up to see what it all looks like. 

Underground Adventure all takes place underground, with a number 
of different areas, and believe it or not my original map looked like this: 

87 



u~~ f\~~-

:J row.-, I .:t.Yu-._ ~(.~ ,;.,J:. £.~. ' 

f)-ro...~ ~ "1''"· ~ r:. p k-i ~ ~ M- "~ 
"'-~, r"* ~~ ., ~ . 

" 
"" l 
~~ 
~c;, 
'-...!~ 

""" "' '- I I 

'-It 
14 
\~ 

•\.\\ ~· 
~. ),.~ .:.A ... ~ '*"' • , . 

---.k ... - <. ... -· •"'""" Iii;; : "" ""'""'-\ ~ "~ '-~ It••~~ ·-
..... 'olo6. ,..-_ ' o~ ,0.. ~ ~ -.\..',,.. IL """- l........, • 

"a...... (, . .......-.) ~... 1:1...;:. 1.. .. .:.. ... ..-.. 

{l,"::/o' ... \- .... (..cll!) -1- ¥.,, ......... -- .., ,. ... """"' 

88 

Refining the Map 

Well, that was certai~ly nothing to write home about! However, it 
orked, because having drawn up all the room numbers I then had 

w much better idea of fitting the adventure together as a whole, and 
~ould commence setting up the problems for the player. 

The first thing I did was to label 16 rooms (ringed, in the diagram), 
and decide that this was where the problems would occur. Then , I 
had to write down what each problem would consist of, and those 
are the notes at the left of the sheet. 

The brief scrawl at the top was an indication of the general outline 
of the whole thing. There was to be no finding of treasures, it would 
all be a question of survival , with the all important mission being to 
find the key to enable you to open the door that had slammed shut, 
and get out again. 

The notes at the bottom where there as guidelines for one or two of 
the problems, and from that map the whole game was written . 

Well, that's not quite true! 

A number of changes were made to the original plan, including the 
location of one or two of the objects in the adventure area, and before 
I set fingers to keyboard there were a number of other notes to be 
made first . 

We'll see what they were in the next section . 

But for now, you'll have drawn your map, however rough it may be, 
You've got some idea of the general plot for the whole story, and you 
know (again roughly) where all the hazards are going to present 
themselves. 

~ou've got a fairly good idea of everything that will happen to our 
~dntrepid explorer, and in chapter 6 you'll see one way of turning these 
I e . as into the necessary data statements that form the fabric of the 
entire game. 

~~t we're concerned with the programming side of it, rather than the 
rn ek~r slog of getting all the data statements typed in , so let's start 

a ing the transition to the computer. 

89 



Moving from Paper to Computer 

One of the first steps is to draw a much more sensible looking map 
as we've shown over the page for one of the other adventures in thi~ 
book, the Castle Adventure. 

This should be big enough to enable you to list everything you want 
to in each room, including any objects that are to be found in thern 
and any hazards that may be expecienced in that room. ' 

Having done that, you ' ll obviously want to know what all of those 
objects are! So the next step is to look at the list of hazards as you 
originally drew them up, and decide what the solution would be to 
each hazard, bearing in mind that you can only move on to the next 
part of the adventure after you've solved the problem. In other words, 
don't put the solution further into the game than the problem! 

A list of solutions will give you a healthy list of objects, and these will 
then form the basis of the list that we'll type into our program later. 

With the program set up as it is, although obviously you could modify 
it if you want to, the routine that checks your data entry only looks 
at the first three letters of each word. Thus if you had a TRACK and 
a TRAM in your adventure the program listing would interpret them 
to be the same object, and you would get some very strange displays 
being shown up on the screen! 

So, if you're going to follow the methods outlined in this book, it helps 
to give all the objects individual names. As we'll see later, there are 
enough problems coping with EMPTY BOTILE, BOTILE OF OIL and 
BOTILE OF WHISKY in Underground Adventure as it is, so we don't 
want to encourage more of them! 

This list of objects will have to be extended beyond a simple list of 
those generated by the problems and their solutions. We haven't 
mentioned lamps, or anything like that, so you'll have to have words 
for LAMP. 

What happens if you drop a bottle? If you 're going to have it break, 
you'll also need to have an object something like A PILE OF BROKEN 
GLASS. 

These, and other problems will all have to be thought of before we 

90 

rt typing anything in, but inevitably we' ll have to add objects to 
star list as we go along developing the program, but in Basic that is 
ou great difficulty. 
no 

Underground Adv~nture originally ~tarted out life wi_t~ about 48 objects, 
but ended up havrng 53, due to crrcumstances ansrng during testing 
f the program that I just hadn't envisaged beforehand. It's nice to 

~ack everything first before you start though. 

A New and Better Map 

This is the final map for Castle Adventure, as re-drawn from an initial 
scrawl on a tiny sheet of paper. 

Something like this is a lot easier to program from! 

91 



~ ~l ,___---'J ...._~ .______. .___....:..i 1--------J 

l 

~ ~~~:....:::Jl ~l 
~- ~ * ~~ 

~ - ~ * ·rt * j ~ 1lb 
~ '---'---'~~ ~~ ~ ~ 

92 93 



And on to Verbs 

As well as our list of nouns, the other great list in any adventure garnes 
and the list that to a large extent dictates how good a game it is, i~ 
the list of verbs. 

Some adventures have many more verbs than others, and as we've 
seen Zork can handle around a hundred of them, but Underground 
Adventure confines itself to a mere 38, although this could easily have 
been extended by another dozen or so. 

To have a response to a verb can, as we'll see in chapter 6, take up 
an awful lot of code, but others can be very short. The reason for 
having short verb responses is simple. 

If everything the player types in gets the response THAT DOESN'T 
MAKE SENSE TO ME, he could get the impression, perhaps wrongly, 
that he was playing a very poor ad':'enture and that there were better 
games on the market. If the responses vary, at least the interest will 
be kept, and the player will be constantly thinking of different ways 
of using a verb, not knowing that a couple of lines of code are 
producing (at random) one of three responses to the use of that verb. 

So, a lot of verbs is a good idea, and your original starting list should 
always be the first ten verbs listed earlier for Underground Adventure. 
These are all standard verbs, like GET, LOOK, HELP, GO, and so on, 
that should occur in every adventure, and the routines for handling 
these same verbs from game to game do not vary very much. Obviously 
they will change a little as the needs of the different games change, 
but it's a healthy and encouraging start when you see your initial list 
of forty (or whatever) verbs almost immediately whittled down to thirty. 

The rest of the verbs are very much up to you, but again they will 
to a large extent be dicated by the problems that have to be solved. 

There is no point in having a can of fly spray to kill the giant fly if the 
verb SPRAY is not included in the vocabulary. KILL is too woolly a 
word, and could produce the wrong response if the spray was not 
being held. 

Additional verbs should also be there, just to encourage diversificatio~ 
of response from the computer, and keep the player's interest. A goo 
idea is to give bizarre ideas on the part of the player equally bizarre 

94 

onses from the computer. 
resP 

It all adds to the humour of playing this type of game. 

Amazing 

everv adventure has a maze of one sort or another, and having got 
our verbs and nouns, it makes sense to put a maze somewhere. 

As the diagram below shows, hard mazes are very easy to construct, 
simply by giving every one of (say) six rooms the same description, 

50 the player always thinks he's in the same room, and if he makes 
a move in any one of the three directions you don't want him to move 
in, why, send him back to the start! Like this : 

ConsCtud1on o/ a. strriple f>IC!Je ustn:; Q_ 

one - w°:'J :;;sfun. . 

7 ak~ a. w~ Cu.rru~ rcsuli.s ,;,_ th.e 

pl a.:Jer re&runy f:o roo/T7 01 . 

f 

T/,e ~ Wr:J th.roi:J/, /he m~e is to 

yo JJ-J.J-5-+£--.£. 

95 



Some General Rules 

Although we've been looking at specifics for the last few pages, for 
the next half dozen pages or so we'll turn our attention t? some general 
rules when writing these games, and concentrate on five of the most 
important parts of every adventure game: 

1 ) Movement of characters 

2) Responses to inputs 

3) Screen displays 

4) Picking things up & dropping them down 

5) Problem solving 

Movement 

As your character moves around his wonderful adventure world, there 
are obviously certain rooms he will and will not be able to go into 
straight away. 

Some rooms will be purely east-west or north-south corridors, in which 
case it would be rather silly to tell your character that he could move 
north/south and east/west respectively. 

You may or may not display which directions he can move in at all. 
Certainly the original Adventure didn't, and you were left to your own 
devices to find every possible direction out of a room, hence the n~ed 
to draw a map. That game was additionally complicated by having 
up and down as well as the four cardinal compass points, and also 
having north-east, south-west and so on. 

In Underground we've stuck purely to the four cardinal directions, with 
up and down movements being handled in specific problem areas. 

If you don't want to display the possible directions it will certai~IY 
prompt the player into drawing a map, a~d !t might w~ll annoy hi~ 
considerably to be told over and over again YOU CAN T GO T~A 
WAY', although interest could be sustained by the addition of the httle 
word YET, thus making him think Ahal perhaps I can go along there 

later. 

96 

personally, I'm in favou~ of displaying th~ available choice of directions, 
it speeds up the playing process, but 1f necessary you can just resort 

: hints like 'A VAGUE TRACK HEADS OFF TO THE SOUTH', and 

the like. 

It's up to you, but whatever style you pick, make sure that you stick 
to it throughout the game. 

screen Responses 

This is obviously the factor that is most important in keeping the interest 
and attention of the player throughout the game, and if you want to 
resort to sound, colour and graphics that's up to you. 

However, the simple text-only game without any sound has been used 
throughout this book, so that's what we'll concentrate on here. 

In designing and writing your adventure there is an important factor 
to bear in mind whenever you're planning the responses to the 
statements typed in by the player in response to the WHAT NOW 
prompts, and that is that people playing adventures will never, ever 
type in what you want them to. 

You may have a situation where a player comes to a halt in front of 
a gate that he can't climb over because the top of it is riddled with 
barbed wire (an escape from Colditz type adventure?), until he gets 
hold of a set of wire cutters. You have programmed all your responses 
to GET GATE, GET WIRE, and so on, and are waiting for the player 
to get the cutters and type CUT WIRE. 

What if he types CUT GATE? What happens then? Or what about 
something typed in in sheer desperation, as people do, like EAT GATE? 
Does the gate get swallowed up in a display of apparent relish? 

Anticipating people's lines of enquiry is one of the most difficult things 
to allow for, and will take up an awful lot of program code that will 
Probably never be used. 

s;ill, even if it is used only once at least you'll have the satisfaction 
~ ,knowing that someone out there will consider that the game that 
es Playing is an extremely robust, well thought-out adventure. 

~vvays try to anticipate the impossible. You'll never manage all of it, 
course, and will have to rely on some stock I DON'T UNDERSTAND 

97 



type responses, but a few of those mixed up and one picked out at 
random will keep the interest from flagging . 

And never forget the use of the word YET. It will keep a player trying 
long after the more straightforward 'YOU CAN'T OPEN THE GATE· 
will. 

So the golden rule here must be to keep it interesting, and try to 
anticipate everything that the player might type in. You won't get thern 
all, but at least you can conjure up some different responses. 

Also, a large list of verbs is a great help here: even if the responses 
are only short and sweet, at least the player will be seeing something 
different on the screen. 

Screen Displays 

To a small extent we've covered this one already, but it's worth going 
over some of the ground again. 

The use of graphics has been deplored often enough before now to 
render any comment here redundant, although you might think the 
odd display of a sword or amulet every now and again might liven 
things up a little. But nothing can beat the written word . 

Sound is a different question, and the arguments concerning this are 
almost as legion as those concerning the use of graphics. 

My own view is that if you're going to use sound, it must be done 
extremely well, as the computer is capable of a very complex series 
of sound outputs. If you're only going to give a little beep every now 
and again, it's hardly worth the effort of putting it in there in the first 
place, and you'll soon have people racing for the volume control and 
a blessed silence. 

If done well, it can greatly enhance a game, as people who have played 
the Temple of Apshai on a Commodore 64 will know• the use of sound 
is very good here, and the whole atmosphere of moody, omnipresent 
danger is well presented. 

On the other hand, all their programming efforts are wasted if 
somebody turns the volume down. Be prepared to have sound in your 
programs if you wish, but don't be disappointed if everyone 
immediately adopts to play out the game in silence. 

98 

jhe words that are displayed in the screen are obviously dictated by 
he responses you've allowed for, but an overall attractive layout is 

t be desired, usually using lower case, since most people seem to 
to efer that for some reason. Perhaps it's more restful on the eyes as 
~~u do battle against a giant troll! 

Silly little things can so easily spoil a game in this area - if your room 
descriptions overlap the edge of the screen so that words are split up, 
or an inventory list causes some of the objects to be displaced against 
each other, or even if your output is riddled with spelling errors. 

It doesn't take too long to check all of these things, and the results 
are well worth the trouble. A neat adventure is more likely to be played 
than a badly spelt, badly laid out one. 

The golden rule here? Keep it simple, but keep it tidy. 

Picking Things Up and Putting Them Down 

Two of the most important words in the adventurer's catalogue are 
GET and DROP, and in chapter 6 we take a more detailed look at these 
two words as they apply to the game Underground Adventure. 
However, a few general words of advice before we get to that chapter. 

Obviously, in any game there will be a number of things that you can 
pick up, and a number that you can 't , with the former probably far 
outweighing the latter. Nevertheless, all possible occurences must be 
taken into account, and just because you know that the BARRED 
GATE is too heavy to carry, that won 't stop virtually every player who 
comes along from attempting to pick it up and walk off with it. 

Another annoying thing to find in any adventure program is a 
description that might read something like 'YOUR PROGRESS IS 
HALTED BY A SOLID WALL OF ROCK', and when you type in GET 
WALL, the only response is 'I CAN'T SEE ANY WALL HERE', or ' I 
DON'T KNOW WHAT A WALL IS '. 

look out for that one, for although it can be covered by a blanket 
response of NO! , that is not very good practice and will certainly not 
Produce an excellent adventure game. Far better to have a response 
~ctually geared to the request like 'THE WALL CANNOT BE 

ARRIED', or something like that. 

Some things in a game are only meant to be carried after certain actions 

99 



have taken place, in which case you'll need a number of variables to 
flag the progress of the adventurer, and you'll also have to use the 
word YET to keep the level of interest there. 'YOU CAN'T CARRY 
IT YET', will have someone attempting to carry whatever IT is until 
the cows come home, even if they never can carry it. 

When dropping things, a subtle level of difficulty comes into the game. 
In Underground, after you've made friends with the bear and he's 
happily trundling around the caves after you, dropping anything Will 
cause him to think that you're throwing things at him, and he'll 
disappear in a sulk to a random part of the caves, never to be GOT 
again. 

Dropping bottles is usually a good one, since you can have them break 
on your adventurer, thus rendering them useless for the rest of the 
game. The original Adventure had as one of its treasures a Ming Vase, 
but dropping it caused it to smash into delicate little pieces, unless 
(of course!) you'd taken the precaution of placing a pillow underneath 
it. 

GET and DROP are fun, and don't confuse GET with TAKE. The two 
words are not the same! For instance, people talk about T AKEing 
medicine, not GETting it! 

Problem Solving 

The key to any adventure is how good and how complicated the 
problems may be in a game, but don't make it too complicated to get 
started, or your adventurer might give up in disgust and never play 
an adventure game again. 

Encourage people by at least letting them get started, and then pile 
the problems on, preferably making the first few lean towards the easy 
side, and have them get harder as the game gradually progresses. 

The Scott Adams games are particularly good here, as it is always 
possible to get somewhere at a first sitting, even if that somewhere 
isn't very far, and you can gradually improve your progress just about 
every time you play the game. 

Problems usually have to be solved in a set order too, in that solving 
one leads you to another, which gives you a clue to an earlier hazard 
you were puzzling over, which in turn sets you off somewhere else, 
and so on. 

100 

he number of problems in a game is obviously up to the writer of 
~e game, but too many will soon discourage people. A problem every 
t om will become totally boring after only a short playing session, but 
~~e intervention of a few rooms between hazards will soon perk up 
the player, even if he does walk into another one almost immediately. 

some problems will have to rely on a number of events taking place. 
In Underground Adventure, one of the hazards you're faced with is 
a verv steep incline that you can't climb up by yourself, and the rope 
that you've previously used to shimmy down a steep drop isn't of any 
use to you here. 

A little thought, or a read of the old parchment if you find it, leads 
you to conclude that you must build yourself a ladder, for which you 
need some wood (you recall a plank somewhere), some nails, and 
something to hit it all into shape with. Aha! The axe. But the wood 
has to be cut into shape first, before you can make a ladder. Only when 
you've got a collection of neatly cut timber can you make the ladder, 
and proceed to the next set of problems. 

So, keep up the interest, and let people get a little further each time. 
And above all, don't make it an unsolvable adventure! 

Program Listings From Underground 
Adventure 

In this section of chapter 4 we're going to give you all the lines of code 
that you've not already seen, and which won't be found in the sections 
on verbs and data on chapter 6. So, if you're going to type the whole 
thing in, this is the place to look at for that missing piece of code that's 
been puzzling you. 

Of course, in common with the rest of the book we're not going to 
present the code without any sort of explanation. 

~ach line will, where appropriate, be fully explained, along with an 
idea of how that line could be incorporated into a program of your own. 

~orne of the sections of the program that we'll be covering here include 
~ e rules about what happens when the bear is following you, the fights 
etween the gargoyle and yourself, the checks to see whether you're 

~arrying a bottle of oil, a bottle of whisky or just a plain old empty 
~ttle, and most important of all the lines that deal with the inputting 

0 data, and the analysing if that data as it is typed in. 

101 



We'll take each section as it comes in the game, rather than diving 
about all over the place, so that you ' ll be able to see a coherent whole 
being slowly built up, with all the missing parts slotting logically into 
place, bearing in mind of course that you've already seen the movement 
listing, and that the data comes later on. 

So, without further ado, let's get into the game. 

If, by the way, you think that we've sometimes left rather large gaps 
on the pages, this is very true, but it's there for you to use to put your 
own notes in when adapting these routines for your own purposes 
so the book builds up to become more YOUR book of exploring 
adventures rather than just a text book. 

Don't worry: we'd have charged you the same even if we had filled 
up every page! 

The Bear and the Verbs 

This part of the program deals with the presence of the bear, and the 
handling of the verb number as it comes back from the routine in lines 
391 to 412, which we'll come to in a minute. 

There's also a simple check on what you've typed in just to see if it 
makes any sense. This eliminates the ridiculous before going off to 
the appropriate routines that deal w ith each verb. 

200PRDCMOVE:IFTB THENOB%<9>=CP 
208IFTB THENPRINT:PRINT"Beware the bear!" 
209IFTB ANDCP=45ANDOB%<13)=-1THENPRINT"The ladde 

r snaps!":OB%(13>=0:P%<45,1>=0 
210PROCINPUT:IFVB=34THEN1950 
225IFVB>9ANDNO$=""THENPRINTV1$" what?":GOT0210 
2400NVB GOT0270,300,200,500,540,560,650,1890,690 

,300,780,880,900,950,1000,1050,1100,1200,1200,1250 
,1300,1400,1400,1400,1500,1550,1600,1650,1700,1750 
,1800,1850,1900,0,1960,1970,3000,3200 

102 

f><planation 

L·ne 200: we've already seen this, as it starts off the PROCMOVE 
~ocedure, but briefly the rest of the line checks the bear flag (TB) 

~nd if this is set puts the bear (08%(9)) into the current room (CP). 

Line 208: check for bear again, and if present print up a simple message. 

Line 209: check the bear is there, and if he is and you're climbing up 
the ladder in room 45, then the ladder snaps in two! Understandable, 
under the weight of a hefty bear. The ladder disappears (08%(13) = 0) 
and the south exit from room 45 is closed (P%(45, 1) = 0). 

Line 210: goes to the input procedure, and on returning also checks 
to see if the verb number generated by that routine is equal to 34 (the 
verb JUMP) . This special check is necessary as JUMP is the only verb 
not checked for in the next line that doesn't require a direct object 
to go with it (e.g. GET AXE, DROP TORCH). If the verb number is 
34, then off to line 1950 for the jump routine. 

Line 225: if the verb number is greater than 9, but you've only typed 
in one word, print out a simple message and start again. In other words, 
you 've just typed in a verb it understands, but you haven't given that 
verb an object to work with. 

Line 240 : take the verb number and go to the appropriate line in the 
program by using the ON GOTO statement we explained earlier. Yes, 
it does look cluttered, but Acorn requires it that way. It's also quite 
useful, since each new line number takes up four bytes in memory, 
and space is at a premium! 

103 



Data Validation Routine 

This checks to see what you've typed in from the subroutine in lines 
30000 to 30020, which we'll get to later, and splits your input up into 
a verb and a noun, where applicable. 

391DEFPROCINPUT:PRINT:PRINT"What now? ";:PROCIN 
FO:PRINT:NO$="":VB$="":VB=O:NO=O:H=O:CM=LEN<CM$l:F 
ORI=1TOCM:IFMID$<CM$,l,1)=" "THEN H=I-1 

395NEXT 
396IFH=OTHENH=LEN<CM$l 
397IFH=1THENV1$=CM$:GOTO 399 
398V1$=LEFT$<CM$,Hl 
399VB$=LEFT$(V1$,3l:FORJ=1TONV:IFVB$<J>=V8$THENV 

B=J 
400NEXTJ:IFVB>OTHEN406 
404VB=l:N1$=V1$:GOTO 410 
406IFLEN<V1$l+1>LEN(CM$lTHENNO=O:ENDPROC 
408N1$=RIGHT$<CM$,LEN<GM$l-1-LENfV1$)) 
410NO$=LEFT$<N1$,3):FORI=1TONN:IFN0$(l)=NO$THENN 

O=I 
411NEXTI:IFN0=52THENN0=19 
412GOSUB5300:ENDPROC 

Explanation 

Line 391 : print up the WHAT NOW? * prompt, and go to the procedure 
at 30000 to get the input of data. Then declare a few variables (length 
of noun, length of verb, verb number and noun number) to equal zero. 
Finally, perform a loop LC times, where LC is the length of the in~ut 
string CM$. Carry on until you find a space in CM$, by searching 
through one character at a time. 

104 

. e 395· finish off loop. Lin . 

. e 396: if H = 0, i.e. no spaces have been found, then put H equal 
;~nthe length of the input string CM$. 

Line 397: now, if H = 0, set VI$ equal to the input string, and branch on. 

Line 398: set VI$ equal to the verb. 

Line 399: take the first three letters of it, since that's all we analyse. 
perform a loop NV (number of verbs) times, to see if we recognise 
the verb, and if we do set the verb number equal to I: the Ith verb. 

Line 400: carry on the NV loop, because we don't recognise the verb 
yet. Then, a check to see if we do recognise the verb. 

Line 404: there's no verb, therefore only one word was typed in. 
Assume the verb is an implied GO, as in GO NORTH. Set the noun 
string equal to the verb string (i.e. that which was typed in as CM$). 
GOTO line 410. 

Line 406: if the length of the string plus 1 is equal to or greater than 
the length of the input string, i.e. we've only typed in one word, then 
there is no noun, and we return from the procedure with a single verb. 

Line 408: find the noun N 1 $ from the original input string CM$, by 
taking the RIGHT$ of CM$, starting at the character after the space. 

Line 410: set No$ equal to the noun. Check to see if we recognise 
it by going through the loop NN (number of nouns) times and checking 
to see if it's equal to a known noun. 

Line 411: continue loop because we don't recognise the noun, and 
~hen finished, if the noun number equals 52 (bottle of whisky) change 
it to 19 (the empty bottle) to avoid confusion over all these bottles. 

line 412: go to the subroutine at 5300 which sorts out the confusion 
over bottles, torches etc., and return from procedure. 

105 



Death or Glory! 

This is the death routine, and is called up from a number of spots in 
the program in case of an untimely demise. 

612 PRINT"You"re dead'" 
614PRINT"Play again?" 
616 PA$=GET$ 
617 IFPA$="Y"THEN RUN ELSEPRINT"Bye.":END 

Explanation 

Line 612: print the 'you're dead! ' message. 

Line 614: ask for another game. 

Line 616: wait for a key to be pressed. 

Line 618: if they've typed 'Y' then run the program again, otherwise 
print out a goodbye, and END the program . . 

The Start and the End 

These lines appear at the very start of the program, as the door slams 
shut behind you, and at the very end, if you ever manage to get out 
alive. In reverse order we have: 

2510 PRINT:PRINT"Well done! You're out!":END 

Explanation 

Line 2510: you're out, called up from another line in the program, i~ 
the OPEN routine in lines 788 and 799, so print a message 0 

congratulations and end the program! 

106 

:zoo CLS:PRINT:PRINT:PRINT"Ooops. The gate ' s shu 
5

11 .pX<3,0>=0:GF=O:GOTD210 
t! . 

Explanation 

Line 5200: print message ~o say gate's closed behind you, called from 
line 277 in the GO routine, close off the north exit from room 4 
(P%(3,0)), set the gate flag GF equal to zero (i.e. the gate has now 
closed), and return from the subroutine. 

Checking for Bottles and Torches 

This routine is called up many times in the program, and is used to 
check to see whether you mean a lit or an unlit torch, a bottle of whisky, 
a bottle of oil, or an empty bottle. 

This is necessary because the data checking routine covered earlier 
will give the last noun that it recognises, and the response in all the 
verbs will obviously depend on whether you've got the relevant torch 
or bottle. So, we must adjust the noun number NO accordingly. 

5300 IFN0=45AND08%(46)=-1THENN0=46:RETURN 
5301 IFN0=46AND08%(46><>-1THENN0=45:RETURN 
5302 IFN0=19ANDOBF.<51>=-1THENN0=51:RETURN 
5304 IFN0=19ANDOBF.<52)=-1THENN0=52:RETURN 
5306 IFN0=18ANDOBF.<51)=-1THENN0=51:RETURN 
5308 IFN0=39ANDOB%(52)=-1THENN0=52:RETURN 
5310 RETURN 

Explanation 

Line 5300: if the object number is for the old torch (08%(45)), and 
You're carrying the blazing torch (08%(46) = -1) then change the noun 
~Urnber accordingly. Return from this subroutine to whatever part of 

e Program called it up. 

line 5301: if the object number is for the lit torch (08%(46)), and you 're 

107 



not carrying the lit torch then change the noun number according! 
~eturn from this subroutine to whatever part of the program ca11:ci 
It Up. 

Line 5302: if the object number is for the empty bottle (0B%(19)) 
and you're carrying the bottle of oil (0B%(51) =-1) then change th~ 
noun number accordingly. Return from this subroutine to whateve 
part of the program called it up. r 

Line 5304: if the object number is for the empty bottle (0B%(19)) 
and you're carrying the bottle of whisky (OB% (52) = -1) then chang~ 
the noun number accordingly. Return from this subroutine to whatever 
part of the program called it up. 

Line 5306: if the object number is for the pool of oil (0B%(18)), and 
you're carrying the bottle of oil (0B%(51) = -1) then change the noun 
number accordingly. Return from this subroutine to whatever part of 
the program called it up. 

Line 5308: if the object number is for the pool of whisky (OB%(39)), 
and you're carrying the bottle of whisky (OB% (52) = -1) then change 
the noun number accordingly. Return from this subroutine to whatever 
part of the program called it up. 

Line 5310: none of these options, so return from the subroutine. 

The Hostile Gargoyle 

This is the routine that handles the hostile gargoyle and checks to see 
whether he or you have been successful in your knife and axe throwing 
attempts. 

5999DEFPROCGARG:IFGA=1THEN6010 
6000PRINT"There•s a gargoyle nearby!": IFRNDC100» 

85THEN6002ELSEENDPROC 
6002PRINT"He throws a knife!": IFRND C 100) >99THEN61 

2 
6006 PRINT"Missed!":ENDPROC 
6010 IFRNDC10l >1THENPRINT"You've got him! ":OB:t.< 40 

l=O:GA=O:NP=O:GOT06012 
6011 PRINT"Missed him!":OB:t.C40l=CP 
6012 OB:t.C4l=CP:ZZ=ZZ-1:ENDPROC 

f"planation 

Line 5999: start of procedure, and check for a mischievous gargoyle! 

L'ne 6000: print out a hostile message, and if the random number 
~nerator gives a number greater than 85 on a scale of 1 to 100 then 

~e throws a knife at you, otherwise just end the procedure. 

Line 6002: print out message, and if the random number generated 
is greater than 99, in a range of 1 to 100, then you're dead, so go to 
the routine at line 612 onwards. 

Line 6006: print out simple message that he missed, and end the 
procedure. 

Line 6010: if the random number generated is greater than 1, on a scale 
of 1to10, then you've killed him, so jump to line 6012, set the relevant 
flags and remove the gargoyle (0B%(40) =0). 

Line 6011: yah boo! you missed, so the gargoyle stays there. 

Line 6012: your axe (0B%(4)) is placed in the room CP, the number 
of objects that you're carrying (ZZ) is therefore reduced by 1. End the 
procedure. 

108 109 



The Mischievous Gargoyle 

The gargoyle has turned into a mischievous one, and here we chec~ 
to see what he can take. 

6020 PR I NT" OH NO ! A MI SCH I EV I DUS GARGOYLE ! " : GS:::o 
6022 FORI=11TOLO 
6024 IFOB%<I>=-1THENOB%<I>=RND<14>+31:GS=GS+1:PRI 

NT"Har Har!" 
6026 NEXTI 
6028 IFGS=O THENPRINT"Oooh,lucky!" 
6030 ENDPROC 

Explanation 

Line 6020: print simple message. 

Line 6022: start of subroutine to check what you're carrying. Note that 
the gargoyle can't take any of the first ten objects, so you can always 
recover them when they get taken. It just makes life awkward for you. 

Line 6024: if you're carrying the object then place it somewhere 
between rooms 32 and 45, and print a jovial message. 

Line 6026: continue the loop to check what you're carrying. 

Line 6028: if the counter GS hasn't been set, then nothing has been 
stolen, so print a simple message on the screen. 

Line 6030:· return from the mischievous procedure. 

110 

Of Panthers and Crevices 

rwo separate routines here, one for dealing with the panther in the 
esence of the bear, and one for the problem encountered in room pr . 

S3: the narrow crevice. 

5oo3 !FCP=42ANDTB=1ANDP%<42,1>=0THENPRINT"The bea 
r scares the panther.":P%<42,1>=43:0B%<11>=0:P$<42 
>s"in a comfortable lair." 

Explanation 

You've seen this one already, but basically we print an appropriate 
message, clear south path from room 42, remove the panther 
(08%(11)), and change the room message. 

6300 OC=O:FORI=1TOLO:IFOB%<I>=-1THENOC=OC+1 
6302 NEXT 
6304 IFOC>10ROB%<37><>-1THENPRINT"You can't get t 

hrough. ":GOTO 210 
6308 CP=100:PRINT"The stone glows eerily.":GOT021 

0 

Explanation 

~ine 6300: set object counter OC to zero, and go through a loop LO 
times to check for the presence of every object. If you find one, increase 
the variable OC. 

line 6302: next time around! 

Line 6304: if you're carrying more than one thing, or you aren't carrying 
a Particular object, then print a suitable message and go to line 210 

~ine 6308: puts you in room 100, prints message, and goes back to 
ine 210 again. 

111 



May I Introduce You? 

Owing to the prodigious dem_ands on memory, we h~ven't ev_en given 
Underground Adventure a title page. Not even a simple printing of 
the name of the game as we did for the other two listings. 

However, you'll most probably want to give your games some sort 
of title, so it's always worth trying to leave a little space somewhere 
in the program! But we haven't, so let's move smartly on and look 
atthe input routine. 

Input Procedure 

This all-important routine governs what can and what can't be typed 
in, and is also a way of stopping anyone using the arrow and copy 
keys to foul up the inputs. 

It will allow you to delete characters only up to the input prompt, and 
won't allow you to press RETURN on a null prompt. If the ESCAPE 
key was disabled, it would prevent crashing out of the program as well. 

30000DEFPROCINFO:CM$="" 
30004PRINT"*";C$; 
30006Z$=GET$ 
30008Z=ASC(Z$):1FZ>95ANDZ<>127THEN30006 
30010ZL=LENCCM$>:IFZL>28THEN30016 
30012IFZ=127THEN30018 
30014IFZ>31THENCM$=CM$+Z$:PRINTZ$;:GOT030004 
30016IFZ=13ANDZL>OTHENPRINT" ":ENDPROC 
30018IFZ=127ANDZL>OTHENCM$=LEFT$CCM$,ZL-1>:PRINT" 
II; C$; C$; 
30020GOTO 30004 

112 

f"planation 

Line 3()()00: start procedure and set input CM$ to zero string. 

L·ne 3()004: print up prompt by showing a '*', and use the string C$ 
(~efined earlier to equal CHR$(8)) to backspace over it. 

Line 3()006: get a character, and do nothing until something is pressed. 

Line 3()()08: check the ASC value of the key being pressed, and if it's 
greater than 95 and it doesn't equal 127 (the delete key) go back for 
another character. This stops any unwanted characters being accepted 
by the computer. 

Line 30010: take the length of the input string, and if it's greater than 
28 then GOTO 30016, because we've had enough! 

Line 30012: if the ASC value equals 127, i.e. the delete key has been 
pressed, then GOTO line 30018. 

Line 30014: if the ASC value is greater than 31, then it's a legitimate 
entry. Add it to our input string, and echo it back to the screen. Then 
go back for another character. 

Line 30016: if we've pressed a carriage return, and the string length 
is greater than 0, then print a space to remove unwanted asterisks 
and return from the procedure. 

Line 30018: if we've pressed the delete key and the string is greater 
than 0, then the input string becomes the left side of the string, by 
taking the ZL-1 first characters. Echo the character to the screen by 
Printing a space to remove unwanted asterisks, followed by 2 
CHR$(8)s. 

Line 30020: go back to 30004 and start off again with the next character. 

Ahpowerful routine that could easily be adapted to trap even more 
c aracters if necessary. 

~ere it forms the backbone of all our input handling, and is called by 
e Program every time some data has to be entered. So type it in 

correctly! 

113 



114 

5 

Creating Your Own Adventures 

Introduction 

We've already mentioned that one of the hardest parts of creating an 
individual adventure game is making it just that: individual. 

More and more brave new worlds are being explored every day, and 
a glance at any computer magazine, particularly the advertisements 
inside it, will reveal that there are many, many adventures on the market 
for all kinds of machines, and the themes used seem to range from 
the sublime to the ridiculous, from Colossal Caves to Pi-Men. 

Five New Adventures 

To the newcomer, eyeing this vast range of adventure games, it must 
seem that there is nothing new under the sun, and that any attempt 
to create a new, wonderfully different, adventure world is doomed 
to failure. 

Nothing could be further from the truth, and in this section we're going 
to outline five full adventures for you, some old, some new, but all 
With one thing in common: they haven't been written yet. 

Acknowledgment 

So, if any· of you take up the challenge, I hope one day to see 
~dventures based on these themes on the market. No royalty would 
e charged, no copyright laws infringed, but an acknowledgment 

Would be nice! 

115 



The five areas that we'll look at are all individual in their way, and non 
of them cross over into any of the others: they are five unique scenario e 
that could easily be built up into complete and enjoyable games. s 

We won't be giving you any maps, so that you can construct the entire 
game for yourself, but an overview of the game, along with a selection 
of possible problems, and the corresponding objects to go with them 
will be given. 

To round off this section, we'll give a complete overview of the art 
of designing a new adventure. 

But for now, let's head off in search of fame and glory, and arrive in .. . 

116 

The Streets of London 

117 



Introduction 

This would be a relatively easy map to construct, since London is a 
well documented town. Of course, you could always choose your own 
town as the base for a game if you wanted to, but an adventure based 
on London is probably destined for more success than one based on 
Wigan : sorry, Wigan! 

So what is the theme of the adventure? 

Theme 

There could be a number of different themes here, as Britain 's capital 
city is rich in ideas. As one possible starting point, you may remember 
the Golden Hare game that was constructed a while ago. 

This was certainly a real life adventure game, in that the reading of 
a book gave one a certain number of clues as to the whereabouts of 
a Golden Hare, buried underground somewhere in Britain. This caught 
the imagination of the public so much that many people were sent 
scurrying around the countryside, following the clues and trying to 
find the Hare. 

In the end it was, I believe, a dog that found the Hare, by digging 
nearby its owner as he took it for a walk, but that, I suppose, is life! 

This idea could be adapted, and our hero could be sitting in a London 
~partment, reading the evening newspaper, and find to his amazement 
that the paper contains a series of clues to the whereabouts of some 
great treasure hidden somewhere in the city. 

Following the clues leads you all over the city, and hazards there would 
be a-plenty. 

Hazards 

The underground could go on strike, and you 'd find yourself havin~ 
to take a bus. None come for hours, thus losing valuable time, ~n 
then four of them turn up at once, only one going in the right direction. 
Which one do you catch? 

118 

could try taking a taxi, but the taxi takes you on a scenic tour 
"f~ondon that takes hours before you get to your proper destination. 
0 h n the fare is too high, you haven't got enough money, and you 
~a~e to haggle with a noisy taxi driver in the middle of the streets of 

London . 

There are many other possible problems that one could construct, all 
based very much on real life in this re-construction of a real town into 
an adventure game. 

You would have to be careful that the details about the locations of 
objects were true to life. You couldn't, for instance, have someone 
taking the Victoria line and ending up at the Barbican, since the Victoria 
line goes nowhere near there. 

on the other hand, just about every diary ever printed contains a map 
of the London underground, so you could.soon chart up a reasonable 
map for your game. 

Other Adventures 

Or indeed, the underground could also be used as the basis for your 
whole adventure, with a series of Reginald Perrin type disasters 
occuring to prevent you from getting from A to B in the given time 
limit. The sort of disasters that kept Perrin from getting to work on 
time every day: a wombat escapes from London Zoo and chews its 
way through the underground line, and so on. 

A tour of London could give the would be adventure writer more ideas 
than just about anything else. 

How about going down to Kew Gardens, and taking a walk through 
the Tropical House? That ought to be good for a few ideas for a jungle 
adventure, with man-eating plants and other hazards to avoid. 

Or ~gain , the Chamber of Horrors in Madame Tussauds ought to 
coniure up a demonic idea or two. 

B~t to end up with one solid adventure, we'll take that original idea 
0 some treasure being buried under the streets of London, and all 
You know is that it's in London somewhere. 

119 



Scenario 

Reading the evening paper one Monday night in your apartment, Yo 
discover a strange article that seems to point to the location of a burie~ 
treasure buried deep underground somewhere in the city of London. 

The only clue that the article gives to this location is that the treasure 
originally came from 'Underneath the Arches', and was moved ftorn 
there many years ago. 

You decide to set off in search of adventure, and head towards the 
arches. 

Thus we could start off, and the first problem could be to get ftorn 
the apartment in Muswell Hill to the Arches, which (in our adventurer's 
mind) would presumably be the arches behind Charing Cross Station. 

After solving that problem (GET BUS, BUY TICKET, and so on), 
arriving at the arches would reveal a pub called the Ship and Shovel. 

Is this the next clue? Does our intrepid hero have to go off and acquire 
a shovel and find a ship? Or does he merely go into the pub? 

ENTER PUB 

OK. 

THE BARTENDER IS AUSTRALIAN, AND SAYS THAT 'DOWN 
UNDER IS THE ONLY PLACE TO BE' 

WHAT NOW * 

Down under? Another clue, and so we go off in search of a shovel, 
and somewhere to dig underground. 

This could be the start of a very intriguing adventure, set as it is in 
real life situations (one of the bartenders really is Australian!) that would 
give the player a sense of familiarity, but pitching those situations into 
a different role from the norm. 

The game could encompass many famous London landmarks, each 
holding a clue on the trail, and each presenting its own particul~r 
problems. Big Ben would presumably feature somewhere, and, as in 

120 

e famous scene in the re-make of the Thirty Nine Steps, a hazardous 
~rnb out onto the clock face could be another hazard to overcome. 

conclusion 

An adventure like this is a departure from the usual themes, and as 
sUCh would score on the originality stakes. The problems to solve could 
be (relatively) realistic ones, and the player would have that sense of 
having been here before, but in real life. 

our next adventure takes us into more familiar adventure territory, as 
we head off into outer space! 

121 



Lost in Space 

122 

Introduction 

There have been a number of adventures set in outer space, and the 
lassie Star Trek series of games that have been written for every 
~ornputer under. the ~un , were probably the inspiration for a number 
of early games 1n this genre. 

However, most of the Star Trek ones tend to be tactical battles, rather 
than true adventure games, and one has to go beyond the usual 'You 
are in command of the US Enterprise, and your mission is to destroy 
the Klingons' type of game, and put the player into a true adventure 
setting. 

Theme 

One possible idea would be to have your hero cast up on a dim and 
distant planet, deep in space, with a damaged spacecraft that needs 
rebuilding before he can take off again and get back home. 

Here we could use some of the more traditional ideas of adventure 
games, but put into a modern setting. For example, the majority of 
thud and blunder adventures require that you carry a torch around 
with you. This could be replaced in this game by an oxygen tank, with 
a limited amount of gas, so that the mission would have to be 
completed in a set time. 

There would be a number of different settings in this sort of adventure. 
One part would take place on board the damaged ship, in a search 
for plans, more oxygen, and equipment to repair the damage, and if 
the hero was silly enough to be wearing the oxygen tank on board 
he would lose valuable time when it came to going out onto the planet's 
surface. 

Having thoroughly explored the ship, and cut past tangled metal, 
~Pened locked doors, and any other hazards you could dream up, the 
time would come to go outside, with oxygen, and the living gargoyles 
~nd little dwarfs that inhabit older adventure worlds could be replaced 
Y hostile aliens and strange life forms. 

123 



Alien Hazards 

To any reader of science fiction there should be no problem in cornin 
up with a million and one problems for an adventurer to solve ash 9 

explores the surface of a hitherto undiscovered planet. Undiscoverede 
because then he won't be able to anticipate any of the problerns that 
might arise . 

Here too, as in the Streets of London, a reasonable amount of realisrn 
must come into the game, but your imagination can have a much freer 
rein deep in outer space. 

Perhaps one could use the discovery of planet-like bodies around the 
star Vega, in the constellation of Lyra. A mission could be sent to 
explore, but a technical hitch causes the ship to crash and leaves you 
as the sole survivor. Being a good few light years away from earth 
it's impossible to signal for help, and in any case the radio probably 
wouldn't work, so you'd be on your own in a do-or-die mission oriented 
adventure. 

This could even be written as a two-stage adventure, in that you get 
the spaceship working again, but instead of steering your course for 
home you head off into the wilds of outer space, since the steering 
device hasn't been fixed properly, and then the exploration would take 
place aboard the ship in an effort to correct the mistake before it was 
too late, and you ended up in Andromeda or something. I knew I should 
have turned left at the Pleiadesl 

Conclusion 

Outer space is rich in many things, and it is certainly a rich source of 
inspiration for the would-be adventure writer. A nice touch could be 
added by having various cameo roles from E.T., Darth Vader, Patrick 
Moore, and other stars of screen and space. 

But now we' ll turn our attention down home again, and travel back 
in time to the wild west! 

124 

Go West 

125 



Introduction 

To anyone who's ever seen the wonderful Marx Brothers movie of 
the same name, well , you 've already got an adventure game written 
for you! Trains that come off the tracks, keeping the engine gain 
by burning all the carriages, all the essential ingredients of problemsg 
disasters and humour are there. ' 

But for the idea that we'll consider in detail, we're into the more familiar· 
territory of Butch Cassidy and the Sundance Kid, and an attempt to 
rob the town safe . 

Theme 

You're a desperado on the edge of town, town being a sleepy little 
mid-west collection of hotels, saloons and good-time gals. The stars 
twinkle in the skys above, but are not joined by the twinkling of money, 
which you haven't had for a long time. 

You know that this town is used by the railroad to store freight on 
long journeys, and that last night the mail train came through. That 
train was loaded with money, and all the money is now stored in the 
town safe, under the watchful eyes of the sheriff, who's currently 
watching a whisky in the saloon down town. 

The safe, as you know, is too heavy to carry, and no one's going to 
sell dynamite to someone who looks like you! 

Since safe-picking is not your acknowledged art, you 're going to have 
to steal some dynamite to blow it up. This means you'll also need a 
source of light somewhere, and when the sheriff hears what's going 
on, you'll also need a pistol and some bullets to shoot it out with him 
when he finds you. 

You ' ll need a horse to get away, but you can't buy one. Perhaps the 
local blacksmith could be bribed into giving you a horse, but only a 
good one. You don't want an old nag.that collapses under the weight 
as soon as you attempt to ride off. 

You'll need something to put the money in as well, and you' ll need 
a small light to work by. A powerful torch would make people co.n;0 

and investigate, and the game would be up, you'd be slung in 1811• 

126 

d somehow you 'd have to get out again. an 

suilding up the Game 

jhe above scenario could be built into a long and enjoyable game, 
with many mo~e haz~rds than the ones we've detailed above. The 
pitfalls are obviously immense, and the number of different scenes 
could be played with a fine humour. 

perhaps some real characters from days of old could be included, like 
ooc Holliday, Buffalo Bill and the rest. 

It's a simple enough matter to build up a town plan, and some of the 
characters involved are already there for you, in terms of the sheriff, 
the bungling deputy who obligingly drops a key on the floor: just out 
of reach of course, nothing is too easy in adventure games. 

From this one basic idea, there are many other themes that could be 
developed, and which readily lend themselves into adaptation as 
adventure games. 

Variations on a Theme 

We haven't so far mentioned Indians, the civil war the railroad 
pioneers, the gold rush, or any of the other great the~es that made 
America what it is today. 

The Gold Rush would be ideal as an adventure, panning for gold, with 
many natural hazards en route that would have to be overcome. 

You could explore underground mines, although that has been done 
before in Lost Dutchman's Gold and Fool's Gold. Nevertheless the 
area is still barely touched, and a good adventure could still mak~ use 
of some of the ideas presented in these games. 

But for all that, the idea of robbing the town safe is probably the best 
unta d · ' .. PPe , idea, that could lead to a very good adventure indeed. Good 
Writing! 

127 



Murder Mystery 

128 

Introduction 

one of the great untouched ideas in adventure game writing is the 
solving of a mystery, not necessarily a murder, although that is what 
we'll look at here, but any mystery. 

It's hard to explain why this should be so. 

certainly detective novels sell in vast quantities year after year, and 
there would definitely be no shortage of plots for the adventure writer 
who would like to concentrate on creating a series of mystery 
adventures, perhaps with a connecting link like Agatha Christie's 
Hercule Poirot, or Conan Doyle's Sherlock Holmes (not forgetting 
Doctor Watson!), so that the games are linked together as a whole, 
although each one enjoys a separate identity as a full adventure game. 

The sort of game that could be created would depend to some extent 
on the character adopted as the adventurer. 'Of all the adventure games 
in all the world, you had to walk into mine' players would enjoy a 
different-game from 'it's all part of life's rich pageant' bungling French 
detectives, so the game itself would have to take on a character akin 
to that of the adventurer solving it. 

The Story 

As the great detective, a new case is brought to your attention. In 
the old manor belonging to the squire of the local village, a few village 
notables were sitting down to a pleasant evening meal when one of 
them pitched over, dead! 

Obviously, the body is examined and found to contain an overdose 
of some poison, which narrows the number of suspects down to the 
People who were sitting down to the meal, plus all the servants who 
normally attend the house. In total, a dozen people are suspected, 
and you have to find out who the real villain was. 

Developing the Story 

In essence, this is a variation on the old Cluedo theme, the popular 
~ard game from Waddington 's, in that there are a number of suspects 
Within a confined area, and you have to eliminate everyone bar one 

129 



person: the murderer. 

Exploration of the manor in search of clues could provide the basi 
adventure scenario, whilst the questioning of the suspects could b~ 
kept on a very simple level, in order to accomodate our two-word 
adventure type of game. 

In a more advanced game of the Zork variety one could well indulge 
in elaborate question and answer routines, but here we'd have to 
restrict ourselves to much simpler ideas, perhaps using TAKE 
STATEMENT when you're in the same room as one of the suspects 
or something like that. EXAMINE SMITH, or EXAMINE SQUIRE' 
might reveal some vital clue about their person. ' 

Building the story up in this way could then provide the basis for an 
enjoyable romp, with the detective having to do an awful lot of work 
to uncover the truth. 

Conclusion 

Detective games of this nature, that is, combining an adventure with 
a little bit of amateur sleuthing, have been very much neglected, and 
could lead to some good games if developed properly. 

Not only would the exploration of the manor, or whatever environment 
you pitch our adventurer into, provide some entertaining diversions, 
by way of locked doors, guard dogs, hidden tunnels, and other hazards, 
but the level of brainwork required could combine to produce a good 
few hours entertainment. 

But now, a much more traditional theme, as we enter the Valley of 
Death! 

130 

The Valley of Death 

131 



Introduction 

The Valley of Death! You can tell from the title alone just what sort 
of world we're about to enter, and it is very much the traditional horne 
of the adventure writer, with mythical beasts and dragons, hobgoblins 
ores and trolls, necromancers and black riders, and a myriad of othe; 
illustrious villains from the halls of the mountain king, or more 
specifically the pages of books such as Lord of the Rings! 

This type of game is now enjoying a renaissance in the cinema, with 
a number of terrible films pitting the super-hero in life and death 
struggles against ancient myths and modern animation. 

Nevertheless, as a serious adventure game, these can be great fun 
to play, and equally fun to write, as you dream up the weird and 
wonderful world into which you're about to send your hero. 

Origins 

The very first Adventure set the tone for this type of game, with hidden 
corridors, vast chasms, erupting volcanoes, and descriptions like this 
as you go into the heart of the colossal cave: 

'You are at the edge of a large underground reservoir. An opaque cloud 
of white mist fills the room and rises rapidly upwards. The lake is fed 
by a stream which tumbles out of a hole in the wall about 10 feet 
overhead and splashes noisily into the water somewhere within the 
mist. The only passage goes back toward the south.' 

Or how about this, for a true Gothic description, with just a dash of 
humour: 

'You are in a north/south canyon about 25 feet across. The floor is 
covered by white mist seeping in from the north. The walls exte~d 
upward for well over 100 feet. Suspended from some unseen point 
far above you, an enormous two-sided mirror is hanging parallel to 
and midway between the canyon walls. (The mirror is obviously 
provided for use by the dwarves, who, as you know, are extreme!~ 
vain.) A small window can be seen in either wall some 50 feet up. 

Tremendous stuff! You know straightaway the kind of world you're 
walking in, where characters from a Jules Verne novel like JourneY 

132 

to the Centre of the Earth might be expected to appear at any moment. 

r11e Story 

.All good, traditional stuff, but the area is so vast that many adventures 
are still to be written that put the adventurer into a world filled with 
strange creatures, and countless hazards to overcome. 

The story of the valley is a simple one. Stranded (you can work out 

110w!) at the top of the valley, you have to make your way down to 
the mouth, walking alongside the river as it gushes down to the sea, 
sinking into quicksand, building canoes that do little more than pitch 
you headlong into the rapids, with hostile natives stalking you from 
the shadows every step of the way. 

Strange, terrible creatures inhabit the valley, and you have to kill them 
all with a mixture of dexterity, wit and courage before you can safely 
leave and make your escape back to civilisation. 

Ropes must be built across the river, native arrows must be avoided, 
and many other problems must be solved along the way. 

The range of story lines in this sort of field is vast, and one could conjure 
up a thousand and one tales of sword and sorcery, dungeon and 
dragon, that would leave the adventure player just waiting for your 
next game. 

Conclusion 

Here we've explored just five different areas out of the many thousands 
that could be used to form the basis of a good, solid, adventure game. 
~any areas are still to be touched, and it is worth taking your time 
in developing an adventure sr:enario, as the plot and story line are major 
Points in the success or failure of writing an adventure game. 

S? too are the problems that must be solved, and the ease or difficulty 
Wtth which the player can progress to other levels in the game, but 
none the less it is the story line that will initially attract a player, and 
start him playing your game rather than any other. 

We mentioned earlier the Bible as a source of inspiration, and there 
are an infinite number of stories in there that could be turned into long 
adventure games. I'm not suggesting you wander across the desert 

133 



for forty years, but you might have fun trying to cross the Red Sea 

In the end, it is your own mind that is going to conjure up a good or 
a bad adventure, and the story must hold true throughout the entir 
game, or people will just tire of it and not consider any more of You~ 
games, not matter how good. 

It is a lot easier to bore people than it is to entertain them! 

So, at the risk of boring you with a lot of writing, let's take a look at 
the construction of Underground Adventure, and the entire selection 
of verbs that are used in the game. 

134 

6 

Underground Adventure 

In this chapter we are going to present you with the rest of 
Underground Adventure, to complement the list ings that you 've 
already seen in chapters 3 and 4. 

All that's left to do now is to look at the data, which we' ll list in full, 
followed by three pages of explanations for the verb data, the objects 
data, and the rooms data, and the entire list of verbs that are used 
in the game. 

As you've probably never written an adventure before, we're going 
to go through each verb in turn, giving on one page the listing for that 
verb, and every part of the program that handles it, and on the opposite 
page an explanation for the listing, line by line. 

Some verbs take up more room than others, and in particular the GET 
and OFFER routines are quite long. Others do not take up so much 
space in this adventure, and so there will be a fair amount of blank 
space left on a number of pages. This is there for your own notes, 
because in many instances the verb will require a lot more code in your 
own games than we've used here. 

Thus the space can be used to amplify on the original listing, without 
having to have lots of separate sheets of paper lying around 
everywhere. 

The Scenario 

You are outside a set of caves that look invit ingly out at you . They 
seem worthy of exploration, and so off you go into the caves and the 

135 



darkness within. Finding an old torch and some matches, you light 
the torch, and the blazing light fills the caves. As you step further insid 
the gates are rocked by the reverberating sound of a solid gate bein~ 
slammed shut behind you, and your avenue of escape is blocked. 

Somewhere in the caves lies the key to the gate, which you must find 
before you can escape. You got yourself into the caves, now only You 
can get yourself out. 

We took a fairly detailed look at this adventure earlier on, so the 
description of the perils involved in finding the key can be read there 
but it's worth pondering a while on the story line as we've got it set 
out here. 

The Story Line 

This game is set in traditional adventure territory, deep underground, 
fighting off mythical creatures and exploring some unusual terrain. 

The tunnels and corridors much loved by Crowther and Woods have 
been incorporated here, together with a few swamps, a little touch 
of magic, and a hazy, misty land that is difficult to pass through. Some 
of the hazards will be familiar to players of other adventures, while 
some will be new, as will be the manner in which these puzzles have 
to be solved. 

This mixture of old and new has been adopted a) to put the player 
at ease with familiar territory and acquaint the writer with a good stock 
of useful verbs and subroutines that can be used in other stories, and 
b) to have enough new material to keep the player interested and give 
the writer some ideas of how new verbs can be accomodated into his 
own adventures. 

The Writing 

This is not to say that this is the only way to write adventure games, 
of course it isn't. But it does produce a fairly fast response from the 
computer, and it does allow a large range of verbs and nouns to be 
accommodated quite easily. 

One of its weaknesses is the length of the room descriptions: the5

1
e 

tend to be rather short, and because of this it is sometimes difficu. t 
to produce a different and meaningful description for each room. This 

136 

oblem could be surmounted by the addition of a few extra lines of 
P~e in the routine from line 5000 onwards, e.g. 
c . 

501 1 IF CP=24 THEN 8000 

~PRINT "IN A LONG DARK TUNNEL THAT HAS BEEN CARVED 
ouT OF THE ROCKS." 
00()2 PRINT "THE ROCKS HAVE WEATHERED OVER THE YEARS 
INTO A THOUSAND AND ONE" 
00()4 PRINT "FANTASTIC FORMATIONS. THE LIGHT FROM YOUR 
TORCH FLICKERS EERILY" 
8006 PRINT" AMONGST THE SHADOWS, CAUSING THE LIGHT 
TO DANCE ABOUT FROM THE ROCKS 
and so on, before returning back to the main program again . 

Other than that, it works, so let's look at the verbs. 

The Complete List of Verbs 

These verbs are to be covered one at a time, with two pages reserved 
for each verb, one for the listing and one for the explanation of that 
listing. 

137 



GO 
This verb covers all movement in the game, in the four cardinal 
directions. 

270IFNO$< >" "ANDNO=OTHENPRINT" I don't know that .., 
ord.":GOTD 210 

272IFND>28DRND<21THENPRINT"Que?":GOTD210 
274IFND>24THENND=N0-4 
27bNO=ND-21:IFND ANDCP=3ANDGF=1THEN5200 
278IFNO ANDPD THENPRINT"You're in a pit! ":GOTO 6 

12 

10 
288IFP'Y.<CP,ND>=OTHENPRINT"Can't do that. ":GOTO 2 

289IFCP=53ANDN0=1THENb300 
290CP=P'Y.<CP,NO>:GDTD200 

138 

f)Cplanation 

L'ne 270 - if the noun string is not equal to zero, but the noun number 
• 

1 
then the word is not recognised, a message is printed, and back 

15, . 
for another input. 

une 272 - if the noun number NO is greater than 28, or less than 21, 
then it is not one of the eight movement nouns (NORTH, SOUTH, 
EAST, WEST, N, S, E, Wl, and so the computer doesn't understand! 

une 274- just adjust NO, if it's greater than 24, to lie between 21 and 25. 

Line 276 - adjust NO to lie between 1 and 4, and if we're moving in 
room 3 and the gate is open (GF = 1 ), then it's the start of the game, 

50 GOT05200 to set the start up by shutting the gate. 

Line 278 - if we're moving but it's pitch dark (PD is set), then print 
message and GOTO death routine. 

Line 288 - if P(room number, direction) is equal to zero, then we can't 
go that way, so print out message and- back for more input. 

Line 289 - if we're in room 53, and we're trying to go south, then GOTO 
6300 

Line 290 - update the room number CP from the variable P, then GOTO 
200 

139 



GET 

This verb handles the picking up of all objects in the game. 

300IFNO=OTHEN1900ELSEGOSUB5300:GOSUB5400:IFOB=or 
HEN210 

304 I FOB'Y. (NO> =-1 THENPR I NT" Tr-y i nventor-y ! ": 601021 
0 

308 IF <NO= 1 BOR N0=39 > ANDOBY. < 19 > < >-1THENPR I NT" No 
container-.":GOTO 210 

312 IFN0=39ANDOB'Y.!19>=-1THENOB'Y.!19>=0:ZZ=ZZ-1:111CJ 
=52:GOT0389 

314 IFN0=1BANDOB'Y.!19)=-1THENOB'Y.!19>=0:ZZ=ZZ-1:NQ 
=51:GOT0389 

315 IFN0=10RN0=30RN0=60RNO=BORN0=90RN0=110RN0=17 
ORN0=200RN0=290RN0=300RN0=310RN0=320RN0=350RN0=36Q 
RN0=400RN0=410RN0=430RN0=490RN0=50THENPRINT"You ca 
n•t.":GOT0210 

324 IFN0=12ANDCP=10THENP'Y. ( 10, 3> =O: P$ ( 10) ="faced 
by a vast chasm." 

326 IFN0=15ANDSC=OTHENPRINT"Not yet!":GOT0210 
389IFZZ>3THENPRINT"Hands full!":GOT0210 
390 ZZ=ZZ+1: PRINT"OK. II: OBY. (NQ) =-1: GOT0210 

140 

EJ<planation 

L·ne 300 - if the noun number is zero, then we don't know what the 
~un is, so GOTO 1900 to print out message, then gosub to the two 

noutines to check bottles and torches, and to check whether or not 
r n object is being carried or is in the room. If it isn't being carried, 
~hen go back to line 210 again. 

Line 304 - if the object number is set to minus 1, we're already carrying 

it! 

Line 308 - if you 're trying to get object 18, the pool of oil, or object 
39, the whisky, but you're not carrying the empty bottle, object number 
19, then you can't have itl 

Line 312 - on the other hand, if you want the whisky and you are 
carrying the bottle, then you can have it. The pool of whisky 
disappears, change the noun number to refer to the bottle of whisky, 
object 52, set the empty bottle to disappear, and decrement the number 
of objects being carried counter ll before GOTO 380 

Line 314 - ditto for the pool of oil 

Line 315 - list of objects (see data tables later) that you can't carry: 
mainly big things that would be too heavy, so if you're trying to get 
one of them, print out a suitable message and go back for another 
input. 

Line 324 - if you pick the plank up from room 10, then you can't get 
past the chasm again, so adjust everything accordingly. 

Line 326 - if you're trying to get the shimmering curtain, but you haven't 
worked out how to get past it (in which case the shimmering curtain 
counter isn't set), then you can't have it! 

Line 389 - check to see how much is already being carried, and if the 
Player's carrying more than four objects (we increase the counter 
AFTER this line!) then he can't have it. 

line 390 - everything's OK, increase the number of objects being carried 
counter, put the object in the player's possession, and GOTO line 210 

141 



INVENTORY 

This verb is used to give a list of everything that you're carrying 
you can take stock of a given situation and decide what to leave behin~~ 

500 GS=O:ZZ=O:PRINT"You have :":FORI=1TDLD:If'"Qa• 
<I>=-1THENPRINTOB$<I>:GS=GS+1:ZZ=ZZ+1 Y. 

504NEXT:IFGS=OTHENPRINT"Nothing." 
505 GOTO 210 

142 

1anation 
~p 

. 5()()- print out a simple message, and set the variable GS to zero, 
line 

150 
the number of objects being carried to zero. Then start a loop 

and a twill be gone through LO (number of objects) times, and check 
up th: if the object is being carried i.e. if 0(1) is equal to minus one. 
10.s~ then print up on the screen the object's description from the 
If it. 

15
b'le 0$ and increment the two counters GS and ll. varia , 

. 504 - NEXT step through the loop. If GS equals zero then you 
un~t be carrying anything, so just print out the word NOTHING. can 

une 505 - go back and get another input. 

143 



DROP 

This verb is used to drop anything that you might be carryin g, 

Since some objects when dropped can cause us problems (bottles h 
a tendency to break!), we have to check for everything. ave 

560IFNO=OTHEN1900ELSEGOSUB5300:IFDB'l.(N0> <>-tru 
PRINT"LODK ! ": GOT0210 .,E~ 

566 IF <ND=190RN0=510RN0=52>THENPRINT"Smasn•oo 
/.(N0)=0:0B'l.<50>=CP:GOT0586 . :Q9 

572 IFN0=16THENPRINT"It vanishes! ":DB'l.<16>=o:zz 
ZZ-1:GDTD210 ~ 

574 IFN0=46THENOB'l.<ND>=O:DB'l.(45>=CP:GDTD586 
575 IFND<>120RCP<>10THEN580 
578 PRINT"Good idea'": OB/.< 12> =CP: P'l. < 10, 3> =14: Pt< 

10)="on the plank.":GOT0586 
580 PRINT"Okay. ": ZZ=ZZ-1: DB/. <ND> =CP: IFTB=1 THEN5S 

4 ELSE210 
584 PRINT"You scared the bear!": TB=O: DB/. (9) =RND< 

41>:GOT0210 
586 PRINT"Okay.":ZZ=ZZ-1:GOT0210 

144 

~la nation 

. 560- noun not recognised, so GOTO 1900, GOSUB 5300 to check 
unebottle and torch situation, and if you're not carrying the object 
::!n you can't drop it, so print a message and GOTO 210. 

. e 566 - if you drop the bottle (or the bottle of whisky or the bottle 
u;oill then it breaks, the empty bottle disappears, a pile of broken 
0

1855 ~ppears in the room CP, the object counter is decreased, and 
g h . it's back for anot er input. 

Line 572 - if you attempt to drop object number 16, the mirror, it 
vanishes, so print out a suitable message, remove mirror, and 
decrement object counter, then GOTO 210 for more input. 

Line 574 - dropping the blazing torch causes the blazing torch to 
disappear, the old torch to appear in the room, and a jump to line 586. 

Line 575 - if you're not trying to drop object 12, the plank, in room 
10, the chasm, then off to line 580. 

Line 578 - print out a message of congratulations at doing something 
right, put the plank in the room, enable you to go west from room 
10, change the description for room 10, and GOTO 586. 

Line 580 - everything's all right, we can drop somehingl Print OK, 
decrement the object counter, put the object in the room, and check 
to see if we've got the bear with us. If we have then GOTO 584, but 
otherwise it's back to 210 for more inputs. 

line 584 - the bear thinks you're throwing something at it, so runs 
away! Set the bear flag to zero, put the bear (object 9), in a room 
somewhere between rooms 1 and 41. 

Line 586 - decrement the object counter, and back to 210 again. 

145 



QUIT 

This is the verb used to end a game, and has to ask you a co 
1 questions before you can actually leave the game. up e of 

It's used to give you the chance of saving your progress onto t 
should you choose to do so. aPe, 

1890PRINT"Save to tape?" 
1892PR$=GET$ 
1893IFPR$="Y"THEN3000ELSE614 

146 

~pis nation 

. 1890 -print out a message and give the player the chance of saving 
1.1negarne onto tape, so that he can start again at the next session 
~hout having to go through the whole rigmarole of playing the game 

again! 

Line 1892 - wait for a key to be pressed on the keyboard. 

Line 1893 - if th~y've pressed 'Y' ~hen ~o to the routine at line 3000 
onwards, otherwise GOTO 614, which gives you the chance of running 
through the game again before definitely finishing. 

147 



CROSS 

This verb is used whenever the player wants to get across sorn th' 
and can't be bothered to type in a direction. e 1ng 

In this game the verb doesn't really have any use, but in ot 
adventures it could be a very useful way of getting frorn one pl her 
to another, which just by a logical NORTH or whatever the Plaace 
couldn 't do. Yer 

In that case, you'd have to check the room number CP, and provided 
that there's something in place that they can cross, whisk thern acrOSs 
to the other side by changing CP to the appropriate value. 

690 PRINT"Try a direction!":GOTO 210 

148 

EJCP18nation 

urie 690 -just print up a simple message, and go back to line 210 again. 

149 



OPEN 

There are a number of things that can be OPENed in this garn 
at least that the player can try to open, like gates and doors, soe, ~r 
verb deals with all of that. this 

If you had treasure chests or something in your games, the rele 
lines to handle opening of the chest could be used here. Vant 

780IFNO=OTHEN1900ELSEIFCP<>60ANDCP< >3THENPRINT" 
othing to open.":GOTO 210 N 

782 IFNO< >32ANDNO< >3:STHENPRINT"Not necessary. ":G 
OTO 210 

784 IFCP=60THEN790 
786IFGF=1THEN794 
788 IFOB'Y.(42><>-1THENPRINT"You have no key. ":GOT 

0 210 
789PRINT"The gate opens!":GOT02:S10 
790IFDF=1THEN794 
792PRINT"Not so fast!":GOT0210 
794PRINT"It"s open!":GOT0210 

150 

~planation 

·ne 700- if you don't recognise the noun, ask them what they're trying 
lJ do and GOT0210. Otherwise, if they're not in rooms 60 or 3 then 
~ere:s nothing to open, so tell them so, and GOT0210 

une 782 - if they're not trying to open the door or the gate then tell 
them that it isn't necessary, and GOTO 210. 

Line 784 - if they're in room 60 then it's off to 790. 

Line 786 - if the gate flag is set then the gate is already open, so GOTO 
794. 

Line 788 - if they're not carrying object 42, the key, then they can't 
open it anyway, so tell them again, and GOT0210 

Line 789 - they can open the gate, so print a suitable message. This 
signifies the end of the game, so GOT02510 to print out a 
congratulatory message. 

Line 790 - if the door flag is set then it's already open, so GOTO 794. 

Line 792 - you don't open doors in this game merely by using the word 
OPEN, so print a message and go back to line 210 as usual. 

Lin~ 794 - standard response if something's open, and back to 210 
again. 

151 



CLOSE 

This is used whenever the player attempts to close something in h 
game. In Underground Adventure the only things that he can cit e 
are the gate or the door, so we check for that accordingly. OSe 

880 IFNO=OTHEN1900 
881 IFN0<>32ANDN0<>35THENPRINT"Huh?":GOTO 210 
882 IFCP=3ANDGF=OTHENPRINT" It's closed al ready•" 

ELSEPRINT"You can•t.":GOT0210 . 
884 IFDF=OTHENPRINT"It's closed!":GOT0210 
886 PRINT"Okay. ": P% (60, 1 > =O: DF=O: PS C60> ="faced w 

ith a closed door.":GOT0210 

152 

18nation 
fl'P 880 - if you don't recognise the noun, GOTO 1900 to print out 
une 
roessage. 

·ne 881 - if they're not trying to close the old door or the gate, then 
~II them that you don't understand the request, and GOTO 210 

L·ne 882 - if they're in room 3 and the gate flag is set to zero, then 
it~S already closed, so tell them so. Otherwise just print up a short 
rnessage telling them that they can't (that's the trouble with magic 
gates) and GOTO 210. 

une 884 - if the door flag is set to zero then the door is already closed, 

50 tell them so and GOTO 210 

Line 886- print OK, close off the south exit from room 60, set DF equal 
to zero, change the message for room 60, and GOTO 210 

153 



EAT 

Most adventure games seem to feature food of one sort or an 
and although this food is very rarely intended for the consurnpt~ther, 
the player, it is inevitable that sooner or later someone is goi'~n Of 
attempt to eat it themselves. 9 to 

Hence this routine, which copes with greedy adventure players! 

900 IFNO=OTHEN1900 
902 60SUB5400:IFOB=OORN0<>10THENPRINT"Remember 

our diet!":GOT0210 Y 
910 PRINT"Delicious!":OB%C10>=0:ZZ=ZZ-1:60TO 2lO 

154 

EJ'planation 

une gOO - if you don't recognise the noun then GOTO the routine at 

1
900 to print out a suitable message. 

une ~2 - GOS~B 54?0 to check if the. object's anywhere in sight. 
If it isn t, or they re trying to eat something other than object 10, the 
bun, then GOTO 210 after printing a suitably silly message. 

Line 910 - fair enough, the delicious bun is eaten, with an appropriate 
message, the ~un then disappears (inside the player's stomach), the 
object counter 1s decremented, and we go off to 21 O for another input. 

155 



FEED 

Since there is some food about, someone has obviously got to f 
it to something, and you'd be surprised at the things some adventE!ed 
players try to force on the unsuspecting occupants of the adventure 
world . Ure 

In Underground Adventure, the only thing that's interested in ear 
is the bear, and the only thing it wants to eat is the bun, apart fr~ng 
you, perhaps. rn 

9SO IFNO=OTHEN1900 
952 GOSUB5400: I FOB=OORNO< >9THENPR I NT" Nothing dot 

ng!":GOT0210 
954 IFOB'Y. < 10) =-1 THEN1072ELSEPRINT" It's not hungr 

y.":GOT0210 

156 

EJCP1anation 

Line 950 - if you don't recognise the noun, then go off to 1900 to print 

t the usual message. 
ou 

une 952 - GOSUB ~to see if the object's anywhere around. If it 
isll't, or you're no~ trying to feed the bear, then print a suitable message 
and go back to hne 210 again. 

une 954 - i~ you're trying to give the bear the bun then go off to the 
routine at hne 1072 (part of the OFFER routine), to save duplicating 
code, since the same thing is handled there as would be handled here. 
Otherwise, whatever you're trying to feed is suddenly not hungry, so 
print a message and go back to line 210 again. 

157 



DRINK 

An occupation favoured by many adventure players, but when it co 
to actually playing~ game of adventure people will try to drink 

8 
rnes 

very odd things indeed. 0rne 

Like eating in adventures, the drink is usually reserved for sorneo 
else's use rather than that of the player, and consumption by the playne 
will, in the end, result in an adventure that can't be finished . er 

Still, they don't know this when they start, and so the appropriat 
routine has to be inserted to handle this. e 

1000 IFNO=OTHEN1900 
1010 GOSUB5400: IFOB=OORNO< >52THENPRINT"Thirsty?": 

GOT0210 
1020 PRINT"Glug Glug Glug ••• HIC! !":OBX<52l=O:oe 

'Y.<19>=-1:GOT0210 

158 

EJ<P18nation 

une 1()00 - if you don't understand the noun, then it's off to the 
slJbroutine at line 1900 

une 10
1

10 - GOSUB ~to. check if_ the obje~t's anywhere around. 
If it isn t, or the player s trying ~o drink anything other than whisky 
(people do, people do!), then print a short message and dive back to 
line 210 as per usual. 

Line 1020 - if you will drink whisky! Print out the message, remove 
the bottle of whisky, replace it with an empty bottle, and GOTO 210. 

159 



OFFER 

This is one of the commonest ways of transferring possessions f 
the player to someone else, and in this adventure there are two th~~lll 
that change hands, and get you through a couple of awkward spo~s 

1050IFNO=OTHEN1900ELSEGOSUB5300:GOSUB5400:IFoe-
HEN210 -Oj 

1054 IFN0=52ANDCP=50THENPRINT"The grateful spir · 
takes it.":OBXC52)=0:0BXC19)=-1:PXC50,3)=55:Psc;~ 

>="walking past old spirits.":OBXC29l=O:GOT02to 
1060 IFN0=10ANDCP=27THEN1072ELSEPRINT"No dice'"•G 

OT0210 . ' 
1072 PRINT"The bear befriends you.":PX!27,0>=28:P 

$!27l="in bear country.":OBXC10l=O:ZZ=ZZ-1:TB=l:GQ 
T0210 

160 

EJCP1anation 

une 1050 - if you don 't recognise the noun, then GOTO 1900 as usual. 
Otherwise, go t~ our usual procedures to check that we're not 
confusing the ~arro_us bottles and torches, and to check whether the 
object in question 1s anywhere to be seen. 

Line 1054 - if the(re in ro?m 50 and are trying to offer the bottle of 
whisky to the ancient denizen of the caves (referred to as a 'ghostie' 
in the data statements) then aha! the denizen of the caves gratefully 
accepts their kind present, so print out a suitable message. Remove 
the bottle of whisky, and replace with an empty one. Allow them to 
go west from room 50 to roo.m 55. Change the room description for 
room 50. Remove the ghost1e and go back to line 210 again . 

Line 1060 - if they're not in room 27 and they're not trying to offer 
the bun, then no one's interested, so print a message and go back 
to 210 

Line 1072 - the bear eats the bun! Print out message. Allow them to 
go north from room 27, change the description of room 27, make the 
bun disappear (Paul Daniels would be proud of you) , decrement the 
object counter ZZ and set the bear flag equal to 1. This means that 
you will now be followed by the bear until ... wait and see! Finally, 
back to 210 for the next input. 

161 



WAVE 

One of the key features of most adventures is waving something, Wh' 
can quite often cause a magical feat, and usually this happens relativ'~h 
early on in a game. ey 

This early success seems to go to some players' heads, and they the 
merrily wave anything they can get their hands on, so we have to chec~ 
for all of that. 

1100IFNO=OTHEN1900ELSEGOSUB5300:GOSUB5400:1FOB=or 
HEN210 

1104 IFCP<>1SORN0<>2THENPRINT"Nothing happens.":B 
OT0210 

1106IFBR=1THENPRINT"Again?":GOT0210 
110BPRINT"Lucky you!":BR=1:0BX<6>=CP:PX!15,1>=17: 

PX<15,2>=16:P$(15)="cr-ossing the chasm.":GOT0210 

162 

fJCplanation 

. e 1100- if you don't recognise the noun, then GOTO 1900, otherwise 
~n our usual trip to lines 5300 and 5400 respectively. If the object in 
~:esiion is nowhere to be seen, then shoot off to 210 as usual. 

L'ne 1104- if they're not waving object number 2, the staff, and they're 
n~t in room 15, the chasm, then print out message and GOTO 210 

Line 1106- if the bridge flag is set, then tell them that they've already 
stood here and waved a staff, before going to 210 again. 

Line 1108 - print the magic message, put the bridge in the room, allow 
them to go south from room 15 to room 17, and set the bridge flag . 
Allow them to go east from room 15 as well, change the description 
of room 15, and finally GOTO 210 as usual. 

163 



CUT and CHOP 

In this adventure the two words are synonymous, in that both ach· 
the same object in the same way. ieve 

However, some games may care to give them a different mean· 
so we've left them both in here. ing, 

Usually used to cut something up or chop it down, like a tree 0 
tangled mass of vines, or something of that ilk. ' r a 

1200IFNO=OTHEN1900ELSEGOSUB5300:GOSUB5400:IFOB=or 
HEN210 

1204 IFN0<>3ANDN0<>12THENPRINT"Ahem!":GOT0210 
1205 IFOB'Y. <4> < >-1 THENPRINT"You need an axe.": GOTO 

210 
1206 IFN0=3THENPRINT"TIMBERRRR ! ": P'Y. (21, 2) =22: PS <2 

l>="in tree country. ":OB$(3)="an ex-tree. ":GOT0210 

1212 PRINT"Well done!":OB'Y.<12>=0:0B'Y.(53)=-l:GOT02 
10 

164 

f,cplanation 

une 1200 - usual jaunt to line 1900 if the noun isn't recognised. 
OthBrWise, it's off to the subroutines at 5300 and 5400 to check for 
bottles and torches, and to see if the player is carrying the object or 
if it's in the room. 

une 1204 - if they're not trying to chop the tree, or the plank, then 
tell them that it can't be done, and GOTO 210 

une 1205 - if the player is not carrying object number 4, the axe, then 
they've nothing to chop anything with, so tell them so and GOTO 210 
again. 

Line 1206 - if it's the tree they're after, then print message, let them 
go east from room 21 to room 22, change the description for room 
21, change the description of object 3, and GOTO 210 

Line 1212 - print a message about the plank, remove the plank, put 
the neatly sawn timber in their possession (a fine piece of axemanship!), 
and GOTO 210 

As it stands, this will let players repeatedly chop down the ex-tree, 
should they choose to do so, but a simple test could be carried out 
to disable this. 

165 



CLIMB 

In most adventures there is a degree of climbing somewhere alon 
the way, but the ability to climb something usually depends on thg 
player having already collected or made something else. e 

Such is the case with Underground, where we need to a) find a rope 
and b) build a ladder before we can climb the two obstacles presented 
to us. 

1250IFNO=OTHEN1900ELSEGOSUB5300:GOSUB5400:IFDB=or 
HEN210 

1254 IFN0=3THENPRINT"In these shoes?":GOT0210 
1255 IFND<>5ANDN0<>13THENPRINT"What? ! ":GOT0210 
1256 IFN0=5THEN1260 
1257 IFCP< >45ANDCP<>47THENPRINT"No good here.":GQ 

T0210 
1258 IFOB%<13>=-1THENCP=92-CP:OB%(13l=CP:GOT0200 
1259 PRINT"Try picking it up!":GOT0210 
1260 IFCP<>35ANDCP<>36THENPRINT"No good here.":GO 

T0210 
1262 IFOB%<5>=-1THENCP=71-CP:OB%<5>=CP:GOT0200 
1263 GOT01259 

166 

fxplanation 

Line 1250 - our usual run through lines 1900, 5300 and 5400. If the 
object isn't in the room or the player's possession (08 = 0) , then GOTO 
210. 

Line 1254 - if the player is attempting to climb object 3, the tree, an 
excuse is given as to why he can't, and back to 210 

Line 1255 - if the player isn't trying to climb object 5 (the rope) or object 
12 (the ladder), then print out message and GOTO 210. 

Line 1256 - if the player is trying to climb object 5, the rope, then off 
to 1260 

Line 1257 - if the player isn't himself in rooms 45 or 47 then there's 
no point in climbing the ladder, so print a message and GOTO 210 

Line 1258- if the ladder's in the player's possession , and if the player's 
in room 45 or 47, then put him in room 47 or 45, put the ladder in 
room 47 or 45, then GOTO 200 for a LOOK. 

Line 1259 - if the ladder or the rope's not being carried, then print a 
helpful suggestion and GOTO 210 

Line 1260 - if the player himself isn't in rooms 35 or 36 then there's 
no point in climbing the rope, so print a message out and GOTO 210 

Line 1262 - if the rope is in the player's possession, if the player's in 
room 35 or 36, then put him and the rope in room 36 or 35, print a 
message and GOTO line 200 

Line 1263 - otherwise, GOTO 1259 to print out suitable message. 

167 



LIGHT 

Torches are quite a common feature of adventures, and obviousl 
they'll have to be lit at some time or other during the course of th~ 
game. 

Occasionally other objects will have to be lit as well , as in the case 
of Underground where the dynamite has to be used, and checks must 
be made to see what the player is trying to light, and if he's got the 
necessary equipment to light something with : usually matches. 

1300 IFNO=OTHEN1900 
1301 IFOBX<44> <>-1THENPRINT"What with ?":GOTD210 
1302GOSUB5300:GOSUB5400:IFOB=OOR<N0<>45ANDND<>46A 

NON0< >7lTHENPRINT"You can•t.":GOT0210 
1303 IFN0=7THEN1310 
1304 IFOBX<46>=-1THENPRINT"lt"s lit."ELSEPRINT"Ok 

ay.":OBX<46>=-1:0BXC45l=O:PD=O:GDTD210 
1310 IFOBX<7>=-1THENPRINT"That was silly.":GDTD61 

2 
1312 IFCP<>4THENPRINT"Wrong place~":ZZ=ZZ-1:08X(7 

>=O:GDTD210 
1314 PRINT"You"re through.":ZZ=ZZ-1:0BX(7)=0:PX(4 

,3>=5:P$<4>="walking through rubble.":GDTD210 

168 

EJ'Planation 

une 1300 - unrecognised noun, so GOTO 1900 

une 1301 - check to see if the player is holding object 44, i.e. the 
matches, and if he isn't then he can 't light anything, so print message 
and GOTO 210 

une 1302 - the usual check using the subroutines at 5300 and 5400 
and if the object isn't being held or isn't in the room, or the playe~ 
is trying to light something other than the torch or the dynamite, then 
print out a message and GOTO 210. 

Line 1303 - if the object they're trying to light is the dynamite then 
GOTO 1310 

Line 1304 - if they're carrying the blazing torch, object 46, then there's 
no point lighting the torch, so say so and GOTO 210. Otherwise, light 
the torch and put it in the player's possession, remove the old torch, 
reset the Pitch Dark counter and GOTO 210. 

Line 1310 - if the player is holding the dynamite while trying to light 
it, this is understandably fatal, so GOTO 612 for the death routine. 

Line 131~ - if the player isn't in room 4, then the dynamite blows up 
but no:hing else happens, so make the dynamite disappear, decrement 
the ob1ect counter, print a message and GOTO 210. 

Line 1314 - remove the dynamite, decrement the object counter, enable 
the player to go west from room 4 to room 5, change the description 
of room 4, print a reasonable message and GOTO 210 

169 



ATTACK, KILL and HIT 

Adventure players seem to be a bloodthirsty lot when they 
keyboard in front of them, and quite often like to attack thing9et a s. 

Usually it doesn't do any good, although here we've let them off w· 
a mild warning. However, the routine could easily be adapted to incl ~h 
things like killing the player if he attempts to attack a dragon u e 
something of that ilk. ' or 

Again, owing to the demands on the machine's memory, and sine 
ATTACK, KILL or HIT don't actually achieve anything in this garnee 
all three verbs are sent off to a common subroutine. ' 

This not only saves space, but also manages to convey the impression 
that the adventure can handle a lot more verbs than it is really 
programmed for. They may all produce the same response, but it is 
far better to have something like this than a standard 'I don't know 
that word' routine built in. So, if all three verbs do the same thing, 
how does the program handle it? 

1400IFNO=OTHEN1900ELSEGOSUB5300:GOSUB5400:1FOB=OT 
HEN210ELSEPRINT"I think not.":GDTD210 

170 

fJCplanation 

A single line of code to handle all three verbs! 

Using the l~~el of Basic that Acorn have kindly supplied us with, this 
iS not too ~1ff1cult, an? although the line may be rather long, it manages 
to cope with everything that the player might type in using the verbs 
ATTACK, KILL or HIT. 

In your own ~ames these routines would probably be understandably 
1onge~, but ~ince we ar~n't too bothered about killing things (at least, 
not with. a simple word like one of the above three!), the single routine 
will suffice. 

Line 1:400 -first of all, check for a recognised noun. Then check that 
the thin~ to be a~acked, killed or hit is in the room or in the player's 
po~ess1on by going to the subroutine at 5400 (via a visit to 5300 to 
a~o1.d confusion over ~ottles and torches). If it isn't then GOTO 210. 
If 1t 1s, then gently remind the player that this is not a very good idea 
and go back to 210 and try something else. ' 

171 



MAKE 

Most adventures require you to do a lot more than just trundle arou 
solve a few problems and find a few treasures. In order to cornplnd, 
the adventure, you'll usually have to make something along the ;te 
in order to get from one location to another. ay 

In Pirate Adventure, for instance, you have to build a boat, and in on 
of the other games listed in this book you have to make your ow~ 
dynamite, since it isn't provided for you . 

In this one, you have to make a ladder, and the materials to do 
50 

are fairly obvious: an axe to chop the wood with , some nails to hold 
it all together, and of course the wood itself. 

1500 IFNO=OTHEN1900 
1502 IFN0<>13THENPRINT"Sorry?!":GOT0210 
1504 IFOB/.C53><>-10ROB/.C14> <>-10ROB/.C4> <>-1THENPR 

INT"Not yet.":GOT0210 
1506 PRINT"Done. ":OB/.< 13> =-1: OB/.< 14> =O: OB/. (53) =O: 

ZZ=ZZ-1:GOT0210 

172 

f.1<P1anation 

Line 1500 - if it's ~n unrecognise? noun then print up a simple statement 
to that effect (via the subroutine at 1900) and go to line 210 

Line 1502: if t~e pl~yer isn't trying to make a ladder, admit that you've 
lost faith 1n his ability as an adventurer and GOTO line 210 again. 

Line 1504 - check to see if the player is holding the nicely sawn timber, 
the nails and the axe, and if he isn't inform him that he needs to collect 
something else before he can make a ladder, and then GOTO 210 again. 

Line 1506- brilliant! you make a ladder, so print out the right message, 
put the ladder in the player's possession, remove the nails and the 
timber, and decrement the object counter by one, since we've swopped 
some nails and some timber for a ladder (two objects for one). Finally, 
back to 210 again for the next input. 

173 



REFLECT 

This is a verb that I haven't seen in any other adventure, and is uSE!d 
to solve a problem peculiar to this one. 

It is illustrated here as an example of how easy it is to add new 
commands to the player's vocabulary, but like all commands there rriust 
be some clue as to the actual word involved. Most players wouldn't 
try to REFLECT an axe, for example, but give them a mirror and it 
is a word that they might well try to use. 

Having used it once, they will then try to reflect everything under and 
probably including the sun, so have a few suitable responses ready. 

1550 IFNO=OTHEN1900 
1552 IFND<>470RCP<>93THENPRINT"Nothing doing.":GQ 

T0210 
1553 IFDB'l.(16>< >-lTHENPRINT " No can do.":GOT0210 
1554 IFSC=lTHENPRINT"Again ?!":GOT0210 
1556 PRINT"The curtain falls!":P'l.C93,0>=95:0BX<15 

>=CP:SC=1:P$C93>="in curtain land.":GOT0210 

174 

EJ<Pla nation 

. e 1550 - an unrecognised noun, so print an appropriate message 
L~n 19()0 and GOTO 210 to try again . 
yl8 

. e 1552 - if the object that the player is trying to reflect isn't the 
L:~HT, and they're not in room 93 where the ?urtain lives, then print 
L 'I don't understand' message and try again . an 

une 1553 - if the player isn't holding th~ mirror (object 16), then there 
isn't anything that can be done, so print a message and GOTO 210. 

Line 1554 - if the SC counter has been set, then print a message to 
the effect that the player is repeating himself, and go back and try 
again. 

Line 1556 - print the all important message, allow the player to go north 
from room 93 to room 95, put the shimmering curtain in room 93 
(CP=93 of course, since we're in that room), change the room 
description for room 93, set the SC counter, and GOTO 210 

175 



OIL 

Oil frequently occ1Jrs in adventure games, and is usually used to rerno 
something that is being sticky and refusing to budge. Ve 

Obviously, players will attempt to oil everything, so suitable responses 
must be made. If a player makes a mistake and oils the wrong thing 
then some kind of message must be printed up, and the oil must slowi' 
trickle away, never to be found again, thus rendering the adventur~ 
unsolvable through the fault of the player. 

1600 IFNO=OTHEN1900 
1602 IFOBX<S1><>-1THENPRINT"What with?":GOTD210 
1604 IFCP< )790RNO< >17THENPRINT"What a waste ! ": GOT 

01608 
1606 PRINT"The track slides away.":PX<79,2>=80:PX 

<79,3)=81:0BXC17>=0:P$(79)="walking by old tracks. 
" 

1608 DBXC51)=0:DBXC19)=-1:GOT0210 

176 

fJCplanation 

L.ine 1600 - usual check for an unrecognised noun. 

une 1602 - if the player isn't carrying the bottle of oil, then he can't 
oil anything, so print the message up and GOTO 210 

une 1604- if we're not in room 79 and we're not trying to oil the track 
then there isn't anything worth oiling, so we inform the player and 
then go to line 1608, which removes the bottle of oil, and returns an 
ernPtv bottle to the player. This makes the game unsolvable but if 
people will do these things . . . ' 

Line 1606 - print the message of success, then allow the player to go 
east from room 79 to room 80, and west from room 79 to room 81 
remove the track, and finally change the description of room 79. ' 

Line 1608 - remove the bottle of oil, put the empty bottle back in the 
player's possession, and go back to our old friend line 210. 

177 



STAB 

Not a verb that is commonly encountered, and again the use he 
should serve to show how easy it really is to add tailor-made commandre 

. s 
to any adventure scenario. 

It is not a word that a lot of peopl~ would at fir~t thi~k of, although 
the presence of a sword should trigger off the idea 1n the minds of 
a few players. 

Still, those familiar with Lord of the Rings , who will have read the 
passage about Shelob, should know that every good Hobbit always 
stabs a nasty spider with his sword, and that is indeed the use of the 
verb in Underground Adventure. 

1650IFNO=OTHEN1900ELSEGOSUB5300:GOSUB5400:IFOB=OT 
HEN210 

1654IFOBX<3B><>-1THENPRINT"No sword.":GOT0210 
1656IFN0<>30THENPRINT"No can do.":GOT0210 
1658PRINT"Success. You got it!":PXC84,2>=86:P/.!84 

,3>=85:0B$C30>="a dead spider.":P$C84>="in ex-spid 
er country.":GOT0210 

178 

f"planation 

une 1650 - usual check for an unrecognised noun, followed by the 
dive to lines 5300 and 5400 to check for bottles and torches, and to 
see if the object in question is either in the room or in the player's 
possession. If the player hasn't got the object then GOTO 210. 

Line 1654 -. if you're ~ot holding the sword, object 38, then you can't 
stab anything, so print the message up and go back to line 210 

Line 1656 - if the player isn't trying to stab the spider, then print a 
suitable message and GOTO 210 

Line 1658 - print the message. Allow the player to go east from room 
84 to room 86, and .west to room 85. Change the description of object 
number 30, the spider. Then change the room description of room 
84, and go back to line 210. 

Again we didn't put in any checks to make sure that the player was 
in the correct room (IF CP < > etc.), but the checking in line 1656 
takes care of that. 

179 



SPRAY 

This could well be the first adventure to feature this word! I certain! 
can't think of any others with it, although there are no doubt sorn y 
floating around somewhere. e 

Being an unusual word, one has to give the player sorne 
encouragement to use it, and the finding of the can of fly spray after 
eliminating the spider should give most people the right kind of idea. 

A check is made to see if it is the fly that you're trying to spray, but 
as usual we've been kind to the player and not exhausted the fly spray 
if he sprays the wrong thing. 

1700IFNO=OTHEN1900ELSEGOSUB5300:GOSUB5400:IFOB=OT 
HEN210 

1703IFOBX<34><>-1THENPRINT"You•ve no spray.":GOTQ 
210 

1705IFN0<>31THENPRINT"Cough-Cough!":GOT0210 
1707PRINT"You•ve killed it!":08$(31>="a dead fly. 

":PX<74,3>=75:PS<74>="in the spiders graveyard.":G 
OT0210 

180 

f><planation 

une 1700-you should be used to this by now, as we go to lines 1900, 
5300 and 5400 as usual. 

Line 1703 - if the player isn't holding the fly spray then he can't spray 
anything, so we print up the message and GOTO 210 as usual. 

Line 1705 - if the object to be sprayed is not the fly, object 31, then 
the player only succeeds in making himself cough, and we go back 
to 210 

Line 1707 - print the message, allow the player to go west from room 
74 to room 75, change the room description of room 74, change the 
object description of object 31, and then GOTO 210 

181 



THROW 

This is often given the same meaning as drop, but just as in real l'f 
here we differentiate between a simple dropping of something ~ e. 
a determined throw into the middle distance. ' nd 

If we attempt to throw anything other than the lump of mortar or th 
axe, then it is treated as if the player just wished to drop the obje ~ 
in question, but those particular objects have two very important rol~s 
to play, as we shall see: 

1750IFNO=OTHENPRINT"Throw what?":GOT0210 
1752IFN0<>33ANDN0<>4THEN560ELSEIFN0=4ANDOB%<4>=-i 

ANDNP=1THENGA=1:PROCGARG 
1754IFN0=4THEN560 
1756IFOB%C33><>-1THENPRINT"You've not got it.":Go 

T0210 
175BIFCP<>60THENPRINT"Okay!":OB%<33l=14:ZZ=ZZ-1:G 

OT0210 
1760PRINT"You've smashed the door!":P%!60,0l=61:P 

%(60,3l=65:0B%<33l=O:ZZ=ZZ-1:DF=l:PS<60l="walking 
by the door.":GOT0210 

182 

fl<planation 

une 1750 - as usual, we don't recognise the noun, so print a message 
and GOTO 210. 

une 1752- if the player isn't throwing the mortar or the axe then transfer 
program exec~tion_to the drop routine starting at line 560. However, 
if the player 1s trying to throw the axe, the axe is actually in his 
possession, and the native present counter (NP) is set, then assume 
the axe is being thrown at the gargoyle. Set the gargoyle counter GA 
and go to the PROCGARG procedure. 

Line 1754 - if the relevant counters aren't set, but the player still wants 
to throw the axe, then trot off to line 560 and continue from there. 

Line 1756 - check that the mortar is in the player's possession. 

Line 1758 - if the lump of mortar is thrown anywhere other than in 
room 60, the room with the old door, then put it in room 14 (awkward 
to get to), nothing else happens, we decrement the object counter, 
and GOTO 210.-

Line 1760 - it's been thrown in the right place, so print the appropriate 
message, allow the player to go north from room 60 to room 61, and 
west to room 65, change the description of room 60, and remove the 
lump of mortar from the game. Then we decrement the object counter 
and set the door flag, before going off to line 210 again. 

183 



RUB 
There are a number of things that one might be inclined to rub durin 
an adventure, but the usual one is a lamp or torch, perhaps mindf~ 
of Aladdin and his lamp. 

Indeed, rubbing the lamp in the original Adventure produces an 
interesting response, when you're told for the first time that the larnp 
is, in fact, an electrical one, so nothing much happens. 

In Underground Adventure, nothing happens either, but people are 
wont to type in anything they can think of, so the listing goes 
something like: 

1BOOIFNO=OTHEN1900ELSEGOSUB5300:GOSUB5400 
1802 IFOB=OTHEN210ELSEPRINT"Hmmm, strange idea!": 

GOTO 210 

fJCplanation 

une 1800 - usual check for the presence of an unknown noun, followed 
bY our check for .tor~hes and bott!es, and th~ check for the object about 
to be rubbed being in the player s possession, or at least being in the 
room. 

Line 1802 - if the object isn't around, then GOTO 210, otherwise print 
the standard response to all RUBbing suggestions. 

1M 185 



READ 

Quite often one will find objects scattered about inside an advent 
that look as if they might have something written on them, so ~e 
obvious command is to read object, to see what it says. e 

The replies are usually meant as helpful hints for the playing of th 
game, and set you thinking in a direction you might otherwise not hav: 
thought of. 

Sometimes, however, they are anything but, and give you something 
like the weather forecast for five years ago, although even that usually 
makes you think of something. Occasionally they're not even written 
in English, as is the case with Spelunker Today, the magazine to be 
found in the original Adventure, which is written in Dwarvish! 

1850IFNO=OTHEN1900ELSEGOSUB5400 
1854 IFOB=OTHEN210ELSEIFN0<>48THENPRINT"This isn' 

t the SUN!":GOT0210 
1856 PRINT"Tr-y finding nails, planks and axes to 

make a ladder-.":GOTO 210 

186 

f.JCplanation 

Line 1850 - usual. check for an unrecognised word, followed by the 
check for so'!1eth!ng being a bottle or a torch, and then the check to 
see if the ob1ect 1s around anywhere. 

Line 18?4- if th_ey're not trying to read object 48, the old parchment, 
then print a suitable message, and go back to line 210 

Line 1856 - print the message contained on the old parchment and 
then GOTO 210. ' 

187 



EXAMINE 

This is one of the most useful words in the adventurer's vocabulary 
as any object should be able to be e~amined, and the examinatio~ 
of it will reveal valuable clues about 1t. 

Even if the result of EXAMINE TORCH reveals nothing more than IT'S 
JUST AN OLD TORCH, it at least tells you that the torch has no 
magical powers (although someone might be fooling ... ! ) 

More often, you'll be told something about the object, about its value, 
its usefulness, or its actual design. 

In Underground Adventure, you're just told whether it's magical or not. 

1900 IFNO=OTHENPRINT"What•s that mean ?":GOTO 210 
1901 IFN0=10RN0=60RN0=43THENPRINT"Nothing here.": 

GOTO 210 
1903GOSUB5300:GOSUB5400:IFOB=OTHEN210 
1905 IFN0=20RN0=260RN0=330RN0=370RN0=38THENPRINT" 

This is useful!":GOT0210 
1906 PRINT" It's just ";OB$<NO> :GOTO 210 

188 

fi<planation 

une 1900 - usual check for an unrecognised noun, and then print a 
rriessage before going back to 210 again . 

une 1901 - if they want to examine the wall, the chasm, or the bridge, 
then tell them there's nothing interesting here, and GOTO 210 

une 1903 - off to 5300 to check for torches and bottles, and then 5400 
to see if the object to be examined is anywhere around. If it isn't, then 
back to 210 as usual. 

Line 1905 - if the player is examining the staff, the mirror, the brick, 
the stone or the sword, then he's told that it has useful powers, before 
GOTO 210 

Line 1906 - otherwise just print that it's nothing more than : and the 
object description from 0$(N0). Then off to 210 again. 

189 



JUMP and BREAK 

These are grouped together here because they don't take up m 
code, and they don't perform a great function in this particular ga~~~ 

Nevertheless, JUMP could be a useful command in some gam 
bl. I · es ena in~ a p ayer to iump across gaps that he couldn't simply Walk 

across, 1f any player chose to take the risk . 

Break is again not used here, but sometimes it could be used as ate 
of the player's ingenuity. Something could only be broken if, say thst 
bear was following the player, in which case the bear would hav~ the 
strength to break the object for the player. e 

1950 IFCP=150RCP=45THENPRINT"Silly person!":PRINT 
:PRINTD$:GOT0612 

1952 PRINT"Wheee!":GOTO 210 
1960PRINT"Try another word.":GOT0210 

190 

f"planation 

une 1950 - if the player tries to jump in room 15, 10 or 45 (i.e. across 
a chasm or down a steep incline) then print a sarcastic message, print 
the variable L$, and go into the death routine. 

une 1952 - otherwise, print out a silly message and GOTO 210 again . 

une 1960 - tell the player that he can't break anything, and go back 
to line 210 again. 

191 



PUSH 

A verb that is used in a number of games, and one that could ha 
been used in this one. As it is, an attempt to push the one thing thve 
moves results only in the player being told to try doing this in anoth at 
way. er 

1970GOT01960 

192 

fxplanation 

sarne response as to the request to BREAK something. You've just 
got to try using another word until you find the correct one. 

Nevertheless, it still contains that all important feeling that the 
adventure game can understand a lot more words than it really does. 
Far better to have something like this, than a boring 'I don't understand' 
message every time. 

193 



SAVE 

A useful, and one could say vital part of any adventure game, is th 
ability to stop a game in mid-flight and save one's progress onto tap e 
including all the room descriptions that change, the object description e, 
the positions of all the objects that have moved, the flags that indica:
the successful or otherwise completion of a problem, and of cours: 
the room number. 

In Underground Adventure, this is achieved by typing in SAVE PROG 
in response to the WHAT NOW * prompt. It does just save the data' 
not the whole program! ' 

3000PRINT"Inser-t tape.":M=OPENOUT "data":PRINTIM 
CP,TB,GF,PD,ZZ,SC,DF,BR,NP,GS,GA,P$(10l,P$C60l,P$l 
50l,P$C27l,P$(15l,P$C21l,P$(4),P$(93l,P$(79l,P$(84 
l,P$(74l,P$C69l,P$C42l,OB$(30l,OB$(3l,OB$(31l 
3002 PRINTIM,P%C45,1l,P%<10,3l,P%<3,0l,P%<60,1>,P 

%(50,3l,P%<27,0l,P%(15,1l,P%(15,2l,P%(21,2l,P%<4,3 
l,P%(93,0l,P%<79,2l,P%(84,2l,P%(84,3l,P%(74,3),PX< 
60,0l,P%!69,3l,P%<42,1l 

3003 FORI=1TOLO:PRINT#M,OB%<Il:NEXT 
3004 CLOSE#M:GOT0210 

194 

f;icplanation 

une 3000 - print a message to insert tape, and open a file for printing 
data onto tape. Since Acorn have built the ROM routines in, there 
is no need to tell the player to press key when ready. Those ROM 
routines will make the tape sit and wait until RETURN is pressed again . 

The rest of line 3000 saves the various flags onto tape, followed by 
all the room descriptions that change during the course of the game, 
and the object descriptions. When devising your own save to tape 
routine, do make sure that you don't leave any of the variables out. 
Just missing a single one could easily lead to disaster! 

Line 3002 - save the room direction data. 

Line 3003 - save the position of every object in the game. 

Line 3004 - close the file, and then go back to our usual prompt of 
WHAT NOW at line 210. 

195 



LOAD 

Vital of course, since we have got a save routine, and this just reads 
all the data back and starts the game off again at the point where it 
had finished . 

To use this, just type in LOAD PROG in response to the first WHAT 
NOW * prompt. 

3200 PRINT"Inser-t tape and pr-ess PLAY.":PRINT"Pre 
ss space when r-eady." 

3201ZX$=13ET$ 
3203 M= "data":INPUTttM,CP,TB,BF,PD,ZZ,SC,DF,BR,NP 

,BS,BA,P$(10>,P$(60>,PS<50>,PS<27>,PS<15>,PS(21),P 
$(4),P$(93),P$(79),P$(84),P$(74),P$(69),P$C42>,oet 
(30>,08$(3),08$(31) 
3204 INPUTttM,PX<45,1>,PX<10,3>,PX<3,0>,PX<60,1>,P 

X<50,3>,PX<27,0>,PX<15,1>,PX<15,2),PX<21,2),PX<4,3 
>,PX<93,0>,PXC79,2>,PX<B4,2>,PX<B4,3),PX<74,3>,PX< 
60,0>,PX<69,3>,PX(42,1> 

3205FORI=1TOLO:INPUTttM,OBX<I>:NEXT 
3206CLOSE#M:BOT0210 

196 

Explanation 

une 3200 - tell the player to put a tape in the cassette unit and press 
space when ready. 

Line 3202 - wait for the space bar to be pressed. 

Line 3203 onwards - load in data in order saved, and carry on ,till line 

3205 has been reached. 

Line 3206 - close the file, and then GOTO our usual routine at line 210. 

197 



The Rest of the Verbs 

Just four more to go now, and they all perform fairly minor functions. 

LOOK 
This doesn't even have a line of its own, but just goes to line 200. This 
sends it off to the subroutine at line 5000. 

SCORE 
One line only, and this is: 

540PRINTRND < 100)" points.••: GOT0210 

Just a simple message, and no points to be scored at all in this game. 
All you have to do is survive and get out, and so the program merely 
gives you a random score! 

In adventures in which you are keeping a score, there are a number 
of ways of handling things. You'll need a score counter, say LS for 
latest score, and whenever the player requests his score, perhaps go 
through a loop checking to see if each treasure is stored in the correct 
place. 

If it is, then add a value (say 10) to the score counter. You could also 
add a value to the score counter for every hazard successfully 
negotiated. 

198 

HELP 
Another simple one, this could be used to great effect in some games, 
giving vital clues while taking points away, but in Underground 
Adventure you get no help at all, like this: 

650 PRINT"No chance!":GOT0210 

Only a simple message that tells you absolutely nothing! 

199 



TAKE 

In this game, TAKE functions in exactly the same way as GET, so 
program execution is just transferred to line 300 and everything is dealt 
with in the usual way. 

TAKE could be useful in some ways, as we've already mentioned, in 
that one talks of TAKEing medicine, rather than GETting it, and there 
are other ways in which the two words are different. 

However, in Underground Adventure they behave in the same way. 

That's the end of the verbs! 

Let's get on and look at some data now. 

200 

Linking Everything Together 

We've had to split up the various separate parts of Underground 
Adventure in order to be able to explain properly how each section 
works. 

consequently, the listing is split up into a vast number of different 
sections scattered around the length and breadth of this book. 
However, every single line is in here somewhere; the only section that 
we haven't yet seen is the data, which follows immediately after this 
page. 

It includes the data for the 100 rooms contained in the game, although 
some of these rooms are little more than tunnels and corridors. 
Whether you have this many in your games is up to you, since some 
people prefer the 'less rooms, more objects' principle of adventure 
writing . 

This is all very well, and the trade-off in memory space saved is usually 
the equivalent of something like four or five rooms per object on the 
kind of system that we've been employing throughout the book. By 
all means have more objects than we've used here, but do realise that 
this will mean a corresponding rise in the number of verbs used. 

No bad thing, but it all takes up memory space, and whether you want 
a lot of rooms, or a lot of objects, is up to you. 

Personally, I prefer the more rooms approach. It gives you lots of space 
to explore about in, and means that the problems presented can be 
spaced out at reasonable intervals, rather than coming one after the 
other, with little chance for the adventure player to get a good feel 
for the game, and for the area he is exploring. 

It also seems more realistic, in that a stroll underground in a set of 
caves is hardly likely to throw up hundreds of objects in each room, 
but will provide a lot of cross-linking tunnels and corridors for you to 
Walk along. 

But we've elected to go for a hundred rooms in total, and as we've 
seen we'll be giving you all the descriptions in a moment. 

lo sum up the job of typing in this entire listing: it is scattered about 
all over the place, but it is all here somewhere, with the data here, 

201 



the verbs earlier on in this chapter, most of the routines in the last 
section of chapter 4, and the moving room routine in the last section 
of chapter 3. 

Of course, you can always buy the cassette of the game and save 
yourself a lot of time and trouble! 

The Data 

This is the complete collection of data for the entire adventure, and 
runs through the room data first, including description and direction 
the initial locations and descriptions of the objects, the shortened form~ 
of the object names, and of course the all important verbs. 

A description of how each piece of data is used follows the listing. 

2000P$(1)="on an old tr-ack.":PS<2>="near- the cave 
s.":P$(3)="at the entr-ance.":P$(4)="facing a solid 
wall.":P$(5)="in an old tomb.":P$(6)="in the crev 

ice r-oom. ":P$(7)="in a r-ocky jumble." 
2005 DATA o,2,o,o,1,3,0,0,2,15,20,4,0,0,3,0,6,13, 

4, 9, o, 5, O, 7, O, 9, 6, B, O, 10, 7, O, 7, 12, 5, 10, B, 11, 9, O, 10 
,o,12,o,9,o,13,11,5,o,o,12,o,o,10,o,3,o,o,o,o,10,o 
' 15' 15' 33' 18' 19' 16' 34' 0' 1 7' 0. 32' 1 7' 0' 0' 0' 21. 3' 0' 0. 
0,20,23,0,0,21 

2014 P$(8)="near- a great chasm.":P$(9)="in the ro 
em's centr-e. ":P$C10)="in fr-ant of a chasm." 

2020 P$C11>="on the south r-im.":P$C12J="lost inc 
hasm land.":P$C13J=P$(7J:P$C14J="on the west side. 
":P$C15J=P$C10J:P$(16>="in an east chamber-.":P$C17 
>="in a wide tunnel. ":P$(18J="in the 'Y' r-oom." 
2036 P$(19)="in a twisty cor-r-idor-.":P$C20>="on an 
E-W tr-ack.":P$C21J="stopped by a lar-ge tr-ee.":P$C 

22> =P$ ( 19): P$ <231 =P$ C7>: PS <241 ="in r-ocky 1 and." ;,p$ 
C25)="for-ced to tur-n. ":P$C26>="on a lar-ge path. 
2040 DATA25,22,24,0,26,0,0,23,0,23,26,0,27,24,00

2 

5,o,26,o,o,o,27,30,29,0,o,20,o,31,o,o,20,o,30,0~8 • 
19,42,33,41,17,0,34,32,18,0,35,33,0,0,0,34,0,0,~' 
0,0,38,39,0,37,0,0,36,0,0,40,37,0,0,0,39 . 

2051 PS<27>="in the bear- r-oom.":P$C28J="at a t-JLI 
nction. ":P$(29J="at a dead end. ":P$(30)="in a hidl 

?J-"O ng place. ":P$(31J="in an old, old cave. ":P$C3~ - 1 
n a side-tr-ack.":P$<33J="at a path divide.":P$<34 

=P$(1) 

202 

zo64 P$C35)=P$C10>:P$(36J="at the dr-op's foot.":P 
f(37>=P$(36) :P$C38J="in a mazey path. ":P$(39J="in 
a iong,low cor-r-idor-.":P$C40J=P$(29J:P$C41J=P$C40): 
pf(42>="\n the PANTHER r-oom!":P$C43J=P$(28) 
zo75 DATA 0,0,32,0,32,0,0,0,42,0,44,46,0,45,0,43, 

44 ,o,o,o,o,o,43,o,o,52,49,4B,o,51,47,50,o,53,54,47 
,o,o,4B,0,48,66,0,0,47,77,0,0,49,100,0,0,0,0,BB,49 
,56,57,50,58,0,55,0,0,55,0,0,0,0,0,55,59,60,0,58,0 
,o,59,o,o 
2002 P$C44>="near- a gr-eat incline.":P$(45J="faced 
bY a steep slope.":P$C46J=P$C41J:P$(47J=P$(44>:P$ 

c4B>="in an eer-ie canyon.":P$(49)="in a magical ca 
nyon.":P$(50)="halted!":P$C51J=P$C32) 
2098 P$(52>=P$(1J:P$C54J="near- the magical caver-n 

s.":P$C55J=P$C39J:P$(56J=P$C29):P$C57J=P$(56J:P$(5 
SJ=P$C26>:P$C59>=P$C19> 
2112P$(53)="stopped by a tight squeeze.":P$C60>=" 

faced with a shut door-. ":FORI=61T065:PS<I>="in a m 
aze!":NEXT:P$(66J="in a damp passage.":P$(67>=P$(3 
9J:P$C6B>=P$(1) 
2114 DATA61,61,61,62,61,61,61,63,61,64,61,61,61,6 

1,65,61,61,61,60,61,51,67,0,68,66,0,0,69,0,69,66,0 
,68,0,67,0,0,71,69,0,70,72,0,74,71,0,0,73,74,0,72, 
0,0,73,71,0,0,0,74,76,0,0,75,0 
2128 P$C69)="stopped by a wall of hazy mist.":P$( 

70>="in a cool,clear- cor-ridor-.":P$C71>=P$C39J:PS<7 
2J=P$(19>:PS<73J="near- the FLY r-oom!":P$C74J="IN t 
he fly r-oom! ":P$C75)="on a low E-W path." 
2144P$ <76) =P$ <411: P$ (77> ="heading N-S. ": P$ (781 =P$ 

<71J:P$(79J="stopped by an old tr-ack.":P$CBO>="sur
rounded by cobwebs. ":P$(81J=P$(32> :P$(82J="in the 
salvage r-oom." 
2146 DATA 52,78,0,0,77,79,0,0,78,0,0,0,0,B3,0,79, 

O,B2,79,0,B1,0,0,0,BO,B4,0,0,B3,0,0,0,0,0,B4,0,0,B 
7,0,84,86,0,0,0,B9,90,92,54,0,BB,91,0,BB,94,0,0,0, 
92,93,89,91,0,97,BB,0,97,0,91 
2160 P$C83J="near- the SPIDER r-oom!":P$(84J="in sp 

ider- countr-y! ":P$(85J="in the spider-s' gr-aveyar-d." 
:P$(86)="near- the SPIDER r-oom!":P$CB7>=P$(41J:P$(8 
B>="in magic countr-y!":P$(89)=P$(32J:P$C90)="in a 
magical cor-r-idor-." 

2178 P$C91>=P$C39J:P$(92J="near- the magic's sour-c 
e.":P$C93>="halted by the shimmer-ing cur-tain.":P$( 
94)=P$(41J:P$(95>=P$Cl>:P$(96J=P$Cl> 
2183 DATA 90,0,~,o.o,93,96,0,99,0,98,95,93,0,0,92 

.o,o,o,96,0,96,o,o,53,o,o,o,15,20,21,34,24,o,40,o, 
27,7,42,46,0,14,93,o7,79,4B,9B,69 
2189P$(97)=P$(7J:P$(98>=P$(4J:P$(99>="on a nor-the 

rn off-shoot. ":P$C100>="in an old war-ehouse." 
2200 FORI=1TOP:FORJ=OT03:READP/.CI,J>:NEXTJ,I 
2212 DATAa chasm,a staff,a tr-ee,an axe,some r-ope, 

a bridge,dynamite',some rubble,a bear,a bun,a pant 

203 



her,a plank,a ladder,some nails,the curtain,a mirr 
or,a blocked track,an oil pool,an empty bottle,a m 
isty wall 

2222 FORI=1T020:READOB/.CI>:NEXT:FORI=1T020:READQa 
$CI): NEXT 

2224 DATA 50,84,74,60,76,87,3,53,63,31,73,0,0,10o 
,0,3,1,0,0,39,0,0,0,0,0 
2226 DATAa ghostie,a spider,a fly,an old door,som 

e mortar,a fly spray,a gate,a narrow crack,a stone 
,a sword,some whisky,a gargoyle,a knife,a key,a wa 
11,some matches,an old torch,a lit torch,a glowing 
light,a parchment,program,broken glass 
2237 DATAa bottle of oil,a bottle of whisky,some 

sawn timber 
2238 FORI=29TOLO:READOB/.CI>:NEXT:FORI=29TOLD:READ 

OB$Cl):NEXT 
2250 DATACHA,STA,TRE,AXE,ROP,BRI,DYN,RUB,BEA,BUN, 

PAN,PLA,LAD,NAI,CUR,MIR,TRA,OIL,BOT,MIS,NOR,SOU,EA 
S,WES,N,S,E,W,GHO,SPI,FLY,DOD,MOR,SPR,GAT,CRA,STO, 
SWO,WHI,GAR,KNI,KEY,WAL,MAT,TOR,TOR,LIG,PAR,PRO,GL 
A,BOT,BOT,TIM 

2256 DATA GO,GET,LOO,INV,SCO,DRO,HEL,QUI,CRO,TAK, 
OPE,CLD,EAT,FEE,DRI,OFF,WAV,CUT,CHD,CLI,LIG,ATT,KI 
L,HIT,MAK,REF,DIL,STA,SPR,THR,RUB,REA,EXA,JUM,BRE, 
PUS,SAV,LOA 

2262FORI=1TDNN:READNO$CI>:NEXT:FORI=1TONV:READVB$ 
CI>:NEXT:DIMD$C3):FORI=OT03:READD$CI>:NEXT:ENDPRDC 
2267 DATA North,South,East,West 

204 

Using the Data 

Here we'll explain how all the data is used, and how it all works. In 
other words, what are all those words and numbers that you've just 
typed in! 

We' ll start off with the room data. 

Data for the Rooms 

There are one hundred rooms in all, and each one is given a description. 
Some of these descriptions are used for a number of different rooms, 
in particular in the maze where we want to confuse the player totally . 

The room descriptions are stored in the variable P$(1), where P$(1) 
contains the description of the Ith room, which is used in the routine 
from line 5000 onwards when actually printing the description onto 
the screen. 

Using strings in this way naturally limits the length of description that 
we can give to a room. Although Acorn allows us to have strings 
defined to a reasonable length, it does take up a lot of memory space. 
The trade-off between room descriptions and number of verbs, objects 
and problems is up to you! 

Associated with each room are four numbers, stored in the variable 
P(l,J), where P(l,J) refers to the Jth direction from room I. 

For instance, the four values for room 1 are 0,2,0,0. This means the 
player cannot go north, east or west, but can go south . Moving south 
will take him to room 2, which has the data 1,3,0,0. This signifies that 
the player can move north to room 1, south to room 3, but cannot 
move east and west. 

In room three, we have our first choice of routes, since the data for 
room three is 2, 15,20,4 : the player can go north to room 2, south 
to 15, east to 20, and west to 4. 

Judicious use of room numbering can greatly enhance an adventure, 
although this is by no means the only system in use today. However, 
it is possibly one of the easiest to master, and is certainly easy to 
Program. 

205 



Data For Nouns 

Just like the rooms, each noun, or object, has two variables associated 
with it, and these are 0$(1), used to refer to the description of the Ith 
object, and 0(1), which holds the current room number of the Ith object. 
If this number is a zero it isn 't currently in the game, and if it is equal 
to minus 1, it is in the possession of the player. 

In line 2222 we read in this data for the first 20 objects, position first 
and then the lengthy description. ' 

There then follows a gap of eight object descriptions and positions, 
as these are used to hold the words NORTH, SOUTH, EAST, WEST, 
N, S, E, W respectively. This is so that the program can actually 
understand the command GO NORTH, etc. 

In line 2238 the next set of descriptions and locations are read in for 
the objects from 29 up to the upper limit set by the variable LO, as 
defined in line 1999. 

The shortened forms for the nouns, i.e. the words that we use when 
analysing any data that has been typed in, are stored in line 2250, and 
are read in as N0$(1) in line 2262. 

Data for the Verbs 

This is only of use when analysing what has been typed in, and 
obtaining a verb number, which is then used in line 240 of the program 
in order to send program execution off to the correct part of the 
program. 

The data, in three-letter format for speed of verb identification, is stored 
in line 2256, and is read into the variable VB$(1) in line 2262. 

This data is used throughout the program to keep the adventurer on 
the move, and the large number of verbs provided ensures that a 
reasonable degree of interest should be maintained throughout the 
duration of the game. 

The final lot of data, in line 2267, is only used once, in the routine 
starting up at line 5000, to print out the directions which our intrepid 

206 

explorer can take. 

It is read in in line 2262, in the order that the numbers in the variable 
p(l ,J) are read . That is, NORTH first, then SOUTH, EAST and WEST. 

And that's it! A whole adventure! 

Conclusion on Underground Adventure 

It is not the world's greatest adventure, simply because we have 
explained it all in great detail, so that you now know precisely how 
it all works, and could probably solve it in a matter of one or two 
sittings. 

Nevertheless, it is not to be decried because of that, if it achieves its 
aim: that of presenting clearly and logically a complete adventure game 
listing, that anyone could take and adapt to produce his own 
compelling adventure games. 

Machine Code Adventuring 

This approach, in Basic, is obviously limited, and it would be possible 
to write much faster games in machine code. However, to write an 
adventure in machine code would be the work of many, many months, 
possibly even years, and most of us want to see results in far less time 
than that! 

Using the approach outlined here, it should be possible to produce 
adventure games at a reasonable rate, although a programmer's utility 
is virtually essential for writing a program this long. 

Finding all the occurrences of the variable P(54, anything), and others, 
are problems you want answers to all the time, and most Basics aren't 
equipped with such useful functions as these! 

Role-Playing Adventures 

We also haven't really considered adventure role-playing games, 
although it is a subject I may tackle at a later date. Still, we have given 
a few brief outlines here, and even the simple approach followed 
throughout this book could be used as the model for a role-playing 
game. 

207 



The number of rooms would have to be a little less, but within reason 
and with some competent programming, the same level of difficulty' 
the same kind of vocabulary, and the same number of objects, could 
all be retained to provide a fascinating game. 

The one real limitation of this approach is that of the acceptance of 
an input from the user. We have restricted ourselves to the purely VERB 
OBJECT school, although this hasn't stopped a large number of 
adventures from being very successful programs in the past, for 
example those of Crowther and Woods, Adams, et al. 

Verbal Adventures 

To go in for a greater level of response is possibly beyond Basic, as 
it would take a long time to sort through the response and break it 
down into its proper component parts. Just because the program can 
accept something like VERB OBJECT ACTION, i.e. like 'Take the Box 
and Close the Lid', doesn't mean that the player will always want to 
use all of those options, and the program, unless cleverly and quickly 
written, could find itself getting into a terrible muddle. 

But the purpose of this book, and the game Underground Adventure, 
was to get you exploring adventures and writing them, and on a good 
level we have, I hope, succeeded. 

Have fun adventuring, and we'll leave you with two final listings, Tunnel 
Adventure and Castle Adventure. 

208 

7 

Castlemaze Adventure 

Introduction 

This is a full-blown adventure listing, written using the same routines 
as Underground Adventure, so you should be able to follow what's 
going on. 

It isn't as sophisticated in looks as the first game, but it is a challenging 
adventure that should keep you occupied for many a long day. Of 
course, if you cheat by looking at the listing you'll solve it very quickly, 
but you wouldn't do that, would you ... I 

We've already given you the map for this, so you should know what's 
going on, but watch out for the evil sorceror and the Black Knight. 
Oh yes, and the deadly maze is VERY deadlyl 

Have fun! 

209 



5 GOSUB1460:DF=O:KN=O:CF=O:SP=O 
10 GB$="A gold bar falls out!" 
15 D1$="Gulp-Gulp-Gulp. You are shrin king ! " 
20 Dl$="You haven't got it." 
25 CM$=CHR$<44> 
30 X=RND<-5>:X=O:ZZ=1:PIT=12 
35 VF=O:PF=O:WF=O:SH=O:KN=O:SP=O 
40 QT$=CHR$<34) 
45 VT$="Behind the sign is a vault in the wall. 

The vault is locked." 
50 CLS:PRINT:PRINT:PRINT" ****Castlemaze A 

dventure****" 
55 DB$="You must supply a direct object." 
60 DEFFNR(Q)=INT<RND<1>*Q+1 
65 CP=49:51$="1 don't see it here.":S2$="Don ' t 

be ridiculous.":PROCSETUP 
70 PROCMOVE 
75 IFCP=52 AND KN=O THEN750 
80 IFOB!2,0>=-1 AND PIT=CP THEN790 
85 IFCP=29ANDSP=OTHEN800 
90 T=T+1:PROCINPUT:IFVB$=" 3 .1"THENP<30,2)=31:GO 

T070 
95 *FX15,0 

100 IFVB=-1AND<N0 >21ANDN0<30>THENVB=1 
105 IFVB$="CRO"THENIF<CP=520RCP=53)THENCP=105-CP 

:GOT070 
110 IFVB< >30AND<VB >100RVB=200RVB=6)ANDNO$=""THEN 

PRINTDB$:GOT090 
115 IFVB=30THEN695 
120 IFVB=-1ANDNO<>OAND<N0<220RN0 >29>THENPRINT"Yo 

u must supply a verb.":GOT090 
125 IFVB< 1ANDNO=OTHENPRINT"I don't know how to d 

o that.":GOT090 
130 IFNO=OANDVB>10THENPRINT"What's a ";N1$;" ?" : 

GOT090 
135 ON VB GOTO 140 , 180,70,215,230,250,470,295,42 

5,840,310,315,330,180,375,380,405,375,430,430,330, 
250,270,510,515,560,580,250,650,695 

140 IF <N0<22 OR N0 >29> AND NO$( )"" THEN PRINT"! 
'm afraid I can't do that.":GOTO 90 

145 IF NO$="" THEN PRINT "Go where ?":GOTO 90 
150 IF N0 >25 THEN NO=N0-4 
155 NO=NO -22:1F P<CP,NO>=O THEN PRINT"You can't 

go that way yet.":GOTO 90 
160 IF CP=1 AND N0=1 AND DF=O THEN PRINT"The cas 

tle door is locked I'm afraid.":GOTO 90 
165 IF CP=17 AND N0=1 AND CF=O THENPRINT"The era 

ck is much too small for you!":GOTO 90 
170 IF CP=18 AND NO=O AND 08<9,0>=-1 THEN PRINT" 

The painting is too large for the crack.":GOTO 90 
175 CP=P!CP,NO>:GOTO 70 
180 IFOBCN0,0>=-1 THEN PRINT"You ' ve already got 

210 

it ! ":GOTO 90 
185 IF NO=O THEN PRINT"What ' s a ";N1$;" ?":GOTO 

90 
190 IF OBCNO,O> <>CP THEN PRINTS1$:GOT090 
195 IFN0=17 OR N0=21 OR N0=20 OR N0=16 THEN PRIN 

TS2$:GOTO 90 
200 IF ZZ>4 THEN PRINT"You ' re carrying too much 

already.":GOTO 90 
20~ IF N0=19 AND PF=O THEN PRINTVT$:PF=1:0BC16,0 

>=CP:OB<19,0)=-1:ZZ=ZZ+1:GOTO 90 
210 PRINT"Okay.":ZZ=ZZ+1:0B<N0,0>=-1:GOTO 90 
215 IFZZ=O THEN PRINT"You ' re not carrying anythi 

ng at present.":GOTO 90 
220 PRINT"You are carrying the following :=":FOR 

I=1TOLO:IFOB<I,0>=-1THENPRINT08$(1) 
225 NEXTI:PRINT:GOT090 
230 GOSUB235:GOT090 
235 J=O:FORI=1TOLO:IFOB<I,0>=1THENJ=J+OB<I,1> 
240 NEXT :PRINT"You've scored ";J;" points out o 

f 100":IFJ<100 THEN RETURN 
245 CLS:PRINT:PRINT:PRINT"Well done!":END 
250 IFNO< >O AND OB<N0,0> <>-1THEN560 
255 IFNO=O THENPRINT"I've never heard of a ";N1$ 

;"!":GOTO 90 
260 IFN0=18 AND OBC13,0> <>CP THEN 08$(18)="A Sha 

ttered Vase":OBC18,1)=0 

0 

0 

265 OB<NO,O>=CP:PRINT"Okay then.":ZZ=ZZ-1:GOTO 9 

270 
90 
275 

90 
280 
285 
290 

need 
29~ 

300 
305 
310 
315 
320 
325 

IF N0=8 OR N0=14 THEN PRINT"Try 'SWING'":GOT 

IF N0=1 OR N0=4 THEN PRINT"Try 'SHOOT'": GOTO 

IF N0=10 THEN PRINT"Try ' SHARPEN'":GOTO 90 
IF N0=31 THEN PRINT"Try 'JUMP'":GOTO 90 
IF N0=13 THEN PRINT"Just 'DROP ' it where you 
it.":GOTO 90 
IFCP<49 AND CP >44 THEN CP=CP-25:GOTO 70 
IFCP<24 AND CP>19 THEN CP=CP+25:GOTO 70 
PRINT"That is not possible.":GOTO 90 
PRINT"All right then :":PRINTN1$:GOTO 90 
IFOBCN0,0><>-1 THEN PRINTDl$:GOTO 90 
IFN0<>7 THEN PRINTS2$:GOTO 90 
PRINTD1$:ZZ=ZZ-1:0B<7,0>=0:CF=1:GOTO 90 

330 IF N0<>31 AND N0<> 16 AND N0<>30 THEN PRINT"H 
ow do you expect to open that ? ! ":GOTO 90 

335 IF N0=16 AND 08(16 , 0> <>CP THEN PRINT"What va 
Ult?":GOTO 90 

340 IF N0=16 AND 08(2.0> <>- 1 THEN PRINT"You have 
n ' t got a key.":GOTO 90 . 

345 IFN0=16 THEN PRINT"The vault is open. " :VF=1: 
lFOB<15 , 0)=0 THEN PRINTGB$:OB<15,0>=CP 

350 IF N0=16 THEN 90 

211 



355 IF N0=31 THEN 730 
360 IF CP<>l THEN PRINT"What door?":GOTO 90 
365 IF 08<2,0> <>-1 THEN PRINT"You don't appear t 

o have the key.":GOTO 90 
370 PRINT"The door is open.":DF=l:GOTO 90 
375 PRINT"How?":GOTO 90 
380 IF 08(N0,0> < >-1 THEN PRINT"You don't have it 

.":GOTO 90 
385 IFN0<>3 THEN PRINT"How am I supposed to read 

that then ?":GOTO 90 
390 PRINT"It says 'A SECRET PASSAGE LIES NEARBY" 
395 PRINT"WHICH OPENS IF YOU ENTER PI'." 
400 GOTO 90 
405 IF 08<N0,0>< >-1 AND 08(NO,O> <>CP THEN PRINT" 

I can't see it here.":GOTO 90 
410 IF 08(1,0> <>-1 THEN PRINT"You haven't got a 

bow!":GOTO 90 
415 IF 08<4,0>< >-1 THEN PRINT"You haven't got an 

y arrows!":GOTO 90 
420 ZZ=ZZ-1:08<4,0l=CP:GOTO 90 
425 PRINT"You need a tool.":GOTO 90 
430 IF N0=16 OR N0=30 OR N0=31 THEN 445 
435 IF08<N0,0>< >-1 THEN 425 
440 PRINT"! don't know how to close such a thing 

.":GOTO 90 
445 IF N0=16 AND 08<16,0l <>CP THEN PRINT"What va 

ult ?":GOTO 90 
450 IF N0=16 THEN PRINT"The vault is closed and 

locked":VF=O:GOTO 90 
455 IF N0=31 THEN 715 
460 IF CP<>l THEN PRINT"What door?":GOTO 90 
465 PRINT"The door is closed and loc ked.":DF=O:G 

OTO 90 
470 IFCP<8 THEN PRINT"8e persistent.":GOTO 90 
475 IFCP<20 THEN PRINT"Examine things.":GOTO 90 
480 IFCP<24 THEN PRINT"What goes up, must come d 

own ! " : GOTO 90 
485 IFCP<34 THEN PRINT"Value things.":GOTO 90 
490 IF CP<41 THEN PRINT"Do as Hansel and Gretel 

did.":GOTO 90 
495 IFCP<45 THEN PRINT"Think.":GOTO 90 
500 IF CP<51 THEN PRINT"This Adventure has a vio 

lent beginning.":GOTO 90 
505 PRINT"Cross the 8ridge.":GOTO 90 
510 PRINT" It's value is ";08<NO, 1l;" points. ":GD 

TO 90 
515 IF08<N0,0> <>-1 THEN PRINT "You don't seem to 

have it.":GOTO 90 
520 IF N0<>14 THEN 535 
525 FORPP=1T019:IF 08<PP,Ol=-1 THEN 08<PP,O>=CP 
530 NEXTPP:ZZ=O:CP=23:GOTO 70 
535 IF N0<>8 THEN PRINT"Wow, this sure is fun!": 

212 

GOTO 90 
540 IF 08(20,0><>CP THEN PRINT"Whooossshhhh! !":G 

oTO 90 
545 IF SH=O THEN PRINT"The sword bounces off the 

sorcerer and hits you!":GOTO 785 
550 PRINT"The sharp sword slices the sorcerer.": 

SH=SH+1:IFSH<4 THEN 75 
555 08(20,0)=0:08(14,0>=CP:PRINT"The Sorcerer di 

5 appears.":GOTO 75 
560 IF 08<N0,0><>-1 THEN PRINT"You don't have it 

.":GOTO 90 
565 IF N0<>8 THEN PRINTS2$: GOTO 90 
570 IF 08(10,0><>-1 THEN 425 
575 PRINT."The sword is now RAZOR sharp!":SH=l:GO 

TO 90 
580 IF <CP=l AND N0=30> OR <CP=44 AND N0=31> THE 

N 620 
585 IF 08<N0,0><>-1 AND 08<NO,O><>CP THEN PRINTS 

!$:GOTO 90 
590 IF N0=17 AND 08<2,0>=0 THEN 08<2,0l=CP:PRINT 

"There's something in his pocket!":GOTO 90 
595 IF N0=21 AND 08<6,0l=O THEN 08<6,0>=CP:PRINT 

"There's something in its stomach!":GOTO 90 
600 IF N0=8 AND SH=O THEN PRINT"It's blunt.":GOT 

0 90 
605 IF N0=8 THEN PRINT"It's very sharp.":GOTO 90 
610 IF N0=7 THEN PRINT"On the bottom it says 'Dr 

ink me'.":GOTO 90 
615 IF N0=18 THEN PRINT"It's very fragile.":GOTO 

90 
620 IF N0=31 THEN PRINT"lt's big enough to jump 

out of.":GOTO 90 
625 IF NO=l OR N0=30 THEN PRINT"lt's made of woo 

d.":GOTO 90 
630 IF N0=20 THEN PRINT"He's preparing to cast a 

spel 1 on you! ":GOTO 90 
635 IF N0=13 THEN PRINT"It's soft.":GOTO 90 
640 IF N0=10 THEN PRINT"It's grey and gritty.":G 

OTO 90 
645 PRINT"lt's nothing special.":GOTO 90 
650 IF N0=4 AND OB<4,0>=22 THEN PRINT"Look for i 

tin the Forest.":GOTO 90 
655 IF N0=2 AND OB<2,0)=0 THEN PRINT"Try examini 

ng things.":GOTO 90 
660 IF OB<N0,0>=-1 THENPRINT"You're holding it, 

stupid!":GOTO 90 
665 IF OB<NO,O>=CP THEN PRINT"lt's right in fron 

t of you, stupid!":GOTO 90 
670 IF N0<>20 THEN PRINT"Just get on with it and 

look for it! ":GOTO 90 
675 PRINT"You're in the Sorcerer's Torture Chamb 

erand he was a white hot POKER in his hands! 

213 



He's coming towards you ! !" 
680 FOR J=O TO 3: PROCINPUT 
685 IF VB=25 AND N0=14 AND OB<14,0>=-1THEN StS 
690 PRINT"The Sorcerer attacks you with the poke 

r!":NEXT:GOTO 785 
695 IF <CP>19 AND CP<24> OR CP=24 THEN PRINT"Dow 

n":PRINT"Down":PRINT"Down":PRINT"Down":PRINT"Down. 
••• ":GOTO 785 

700 IF CP<>44 THEN PRINT"Wheee! ! ":GOTO 90 
705 IF WF=O THEN CP=43 : GOTO 700 
710 PRINT"You land safely in the branches of the 
tree - lucky old you.":CP=21:GOTO 90 
715 IF CP<>44 THEN PRINT"I see no windows.":GOTO 

90 
720 IF WF=O THEN PRINT"It's already closed.":GOT 

0 90 
725 PRINT"It's stuck.":GOTO 90 
730 IF CP<>44 THEN 715 
735 IF WF=1 THEN PRINT"It's already open.":GOTO 

90 
740 PRINT"It's not easy, but you manage to get t 

hewindow open <phew!>. You see a big leafy tr 
ee about two metres below the wini::low." 

745 WF=1: GOTO 90 
750 PRINT"There's a Black Knight riding across t 

hebridge towards you!":PROCINPUT 
755 IF VB<>17 OR N0<>17 THEN 780 
760 IF OB< 1, O> < >-1 THEN PRINT"You have no bow <D 

H NO!>.":GOTO 90 
765 IF OB<4,0><>-1 THEN PRINT"You have no arrow 

<OOOPS!).":GOTO 90 
770 PRINT"The arrow finds a chink in the Knight' 

s armour and he plunges to his death." 
775 KN=1:ZZ=ZZ-1:0B<4,0)=52:0B(17,0)=52:GOTO 90 
780 PRINT"The Knight skewers you with his lance. 

785 FORI=1T02500:NEXT:PRINT"You're dead!":FORI=1 
T02500:NEXT:GOTO 840 

790 PRINT"A Pirate sneaks up on you and steals t 
hekey. 'HAR HAR HAR' he chortles, as he scurries 
off. 'I'LL HIDE THIS IN ME MAZE!'" 

795 OB<2,0>=34:ZZ=ZZ-1:GOTO 90 
800 PRINT"A Giant Spider drops from the ceiling! 

805 PRINT"It is moving towards you.":PROCINPUT 
810 IF VB<>17 OR N0<>21 THEN 835 
815 IF OB<l,0><>-1 THEN PRINT"Whose lost his bow 
then?":GOTO 835 
820 IF OB<4,0><>-1 THEN PRINT"Why did you leave 

that arrow behind ?":GOTO 835 
825 PRINT"The arrow rips into the Spider!":SP=1: 

ZZ=ZZ-1 

214 

830 OB<21,0>=29:0B<4,0>=0:0B<5,0>=29:GOTO 90 
835 PRINT"The Spider pounces on you and sinks it 

5 fangs into your neck (oh dear>.":GOTO 785 
840 CLS:PRINT:PRINT:PRINT"Byeeeee .. ! !":END 
845 DEFPROCINPUT 
850 PRINT:PRINT"What now? ";:PROCINFO 
855 PRINT:N1$="":V1$="":NO=O:VB=O:NO$="":VB$="": 

H=O 
860 CM=LEN<CMS>:FORI=1TOCM:IFMID$(CM$,I,1>=" "TH 

EN H=I-1 
865 NEXT 
870 IFH=OTHENH=LEN<CMS> 
875 IFH=1 THEN V1$=CM$:GOTO 885 
880 V1$=LEFT$(CM$,H) 
885 VB$=LEFT$<V1$,3):FORJ=1TONV:IFVB$(J)=VB$THEN 

VB=J 
890 NEXT J 
895 IFVB >OTHEN905 
900 VB=-1:N1$=V1$:GOTO 915 
905 IFLEN<V1$)+1 >LEN<CM$lTHENNO=O:ENDPROC 
910 N1$=RIGHTS<CMS,LEN<CM$l-1-LEN<V1$)) 
915 NO$=LEFT$(N1$,3):FORI=1TONN:IFNO$<I>=NO$THEN 

NO=I 
920 NEXTI 
925 ENDPROC 
930 DEFPROCMOVE 
935SS$="You can see :=" 
940 CLS:PRINT:PRINT:PRINT"You ' re ";P$(CP>:PRINT 
945 FORK=1TOLO 
950 IFOB<K,O>=CP THEN PRINTSS$:PRINTOB$<K>:SS$=C 

HR$< 11> 
955 NEXTK 
960 IF CP=1 AND DF=O THENPRINT"The door is locke 

d. II 

965 IFCP=18 AND VF=O AND 08(16,0>=18 THENPRINT"T 
he vault is locked." 

970 IFCP=17 AND CF=O THENPRINT"A narrow crack le 
ads southwards." 

975 IFCP=1 AND DF=1 THENPRINT"The door is open." 
980 IFCP=35 AND VF=1 AND OB<16,0)=35 THENPRINT"T 

he vault is open." . 
985 IFCP=17 AND CF=1 THENPRINT"A wide crack lead 

s to the south." 
990 IFCF=O THEN P<17,1>=0 
995 IFCP=44 AND WF=1 THENPRINT"The window is ope 

n. A tree lies two meters below you." 
1000 K=O:PRINT:PRINT"You can go ";:FORL=OT03:IFP< 

CP,L>=O THEN 1015 
1005 IFK=1 THENPRINT", "; 
1010 PRINTDS<L>;:K=1 
1015 NEXTL:IFK=O THENPRINT"Nowhere!" 
1020 IFK=1 THENPRINT 

215 



1025 PRINT:P<17,1>=18 
1030 ENDPROC 
1035 DEFP5R30CLSOET3U5~NN-31·NV=30:DIMP<NP,3>,P•<NP>,vs 
1040 NP= : = · - " 

$(NV>,NO$<NN>,OB<L0,1>,0B$(L0) 
1045 DIMD$(3) . The p 
1050 P$(1l="outside a medieval castle. ave 

m~~;5h~:<~~=~;~~~~~~~~~~;>+CHR$(10)+"It r-eads 'LEA 

VE ALL TREASURE HERE'" 2 
1060 DATAO,B,4,0,~3 • 7 • 3t' 6 ' 0 '~~~' cr-ossr-oads, with 
1065 p$(2l="standing a a gr- " 
r-oads leading off ever-ywher-e. east r-oad 
1070 P$(3)="walking along the gr-eat 

Your- feet ache." t west r-oad 
1075 P$(4)="walking along the gr-ea 

Isn't it long?!" 7 o o 
1000 DATA o,o,2,1,o,o,2,4,0,o,2,5,2, ' ' 
1085 P$(5l=P$(4):P$( 6 l=P$< 4 > th r-oad 
1090 P$(7)="walking along the gr-eat sou 

Your- feet ache." · chamber- with 
1095 P$(8l="standing in a splendid 
walls thir-ty feet high." 0 
1100 DATA 1,11,0,lO,O,O,ll,O,Oi:' 8 ~tting r-oomthat 
1105 P$(9l="in a comfor-ta~le o si 
looks somewhat neglected. that looksver-
1110 P$(10l="in the master- bedr-oom, 

y gr-and." . th' g outof sigh 
1115 P$="in a vast cor-r-idor- str-e c in 

$ U th II t to the ":P$(11>=P + sou • 
1120 DATA 8,12,14,9 II 

1125 P$(12>=P$+11nor-th and south. 
.. th .. 

1130 P$ < 13> =P$+ nor- · . th a 11. P$ < 14) =P$+ 11 stone f 
1135 P$=11in a bedr-oom wi ~ 

1 "•P$(l5>=P$+ 11 wooden floor-. oor-. • " 
1l40 P$(16>=P$+"dir-t floe~~ tr-y that looksdis 
1145 PS<17>=11in a dusty o pan ' 

t;~~~l~A~:s~i,~~~ 1~7~;~iz~0,16,17,0,0,0,11,0,0,0,1 
2,0,33,0,13 

1155 DATA0,18,13,24 . ar-t galler-y, with pai 
1160 P$(18>="in a pr-1vate " 

ntings hanging all ar-ound you. 
1165 DATA 17,26,0,19 r-oom full of musty oldcob 
1170 P$(19l="in a stor-e 

webs." top of a big,bushy tr-ee." 
1175 P$(20)="at the 
1180 p$(21l=PS<20> 
1185 P$(22>=P$(20) 
1190 P$(23>=P$(20) o O O O 0 O, 
1195 DATA o,o,10,o,o,o,o,o,o,o,o,o,o, ' ' ' ' ' 

0 

216 

1200 P$(24)="standing in the old kitchen." 
1205 DATA 25,0,17,0,0,24,12,0,18,28,29,0 
1210 P$(25)="now in the old dining r-oom, once fil 

led with old diner-s but now old and neglected." 
1215 PS<26>= 11 in a cr-eepy,eer-ie,shadowy alcove." 
1220 P$<27)="in an auster-e office. It ain't hal 

f posh, mum!" 
1225 PS<2B>="in the dr-awing r-oom." 
1230 P$(29>="in the old par-lour-.":P$C30>="standin 

gin what used to be the study." 
1235 PSC31>="in a damp,stone passage." 
1240 P$(32l="in the old,old dungeon. Br-r-r-!" 
1245 P$C33>="in an ancient confer-ence r-oom." 
1250 DATA o,o,20,o,26,0,0,27,0,0,30,26,0,0,0,29,0 

,0,32,30,41,0,0,31,16,0,35,0 
1255 P$(34l="in a tower- which over-looks a hugekin 

gdom down a monster-ous mountain. Thegr-ass is gree 
ner than gr-een itself." 

1260 DATA 40,0,o,o 
1265 P$(35>="in a maze of twisty little pass- age 

s, all alike (remember these?>" 
1270 FORI=36T040:PS<I>=P$(35>:NEXTI 
1275 DATA 36,36,36,33,37,35,35,35,36,36,38,36 
1280 DATA 36,36,36,39,40,36,36,36,36,34,36,36,42, 

32,0,0 
1285 P$(41>="on a long flight of stairs lea 

ding further- and further- down." 
1290 P$(42>="in a mile-long passageway that iscol 

d, wet and miser-able. Stagnant water laps about yo 
ur- feet - ur-gh!" 

1295 P$(43)="on a long flight of stairs hea 
ding up and up." 

1300 P$(44>="at the end of the castle. Out ofthe 
window you can see a forest in the distance." 
1305 DATA 43,41,0,0,44,42,0,0,0,43,0,0 
1310 P$(45>="in a dense, dark, creepy forest wit 

h nothing but the trees for company." 
1315 FORI=46T048:P$(l)=P$(45):NEXTI 
1320 DATA 45,49,46,48,45,47,46,49,50,51,46,48,45, 

47,49,48 
1325 P$(49)= 11 walking along an old path made byhor 

ses many year-sago." 
1330 P$(51)="in the middle of a clear-ing. To the 
south you can see an old bridge." 
1335 P$(52)= 11 on the nor-th side of the br-idge." 
1340 P$(53)="on the south side of the br-idge." 
1345 DATA 45,50,46,48,49,47,46,48,47,52,0,0,51,0, 

o,o,0,2,o,o 
1350 DATA BOW,KEY,BOO,ARR,BRO,SAP,LIQ,SWO,PAI,WHE 

,SIL,PEN,PIL,SCE 
1355 DATA BAR,VAU,KNI,VAS,SIG,SOR,SPI,NOR,SOU,EAS 

,WES,N,S,E,W,DOO,WIN 

217 



1360 DATA GO,GET,LOO,INV,SCO,DRO,HEL,CLI,DIG,QUI, 
SAY,DRI,OPE,TAK,KIL,REA,SHO,ATT 

1365 DATA CLO,LOC,UNL,GIV,USE,VAL,SWI,SHA,EXA,THR 
,FIN,JUM 

1370FORI=1TONP:FORJ=OT03:READP<I,J>:NEXTJ:NEXTI 
1375 FORI=1TONN:READNOS<I>:NEXTI:FORI=1TONV:READV 

BS< I> : NEXTI 
1380 DATA A Long Bow,-1,0,A Bronze Key,O,O,A Leat 

her-bound book,30,0 
1385 DATA A Silver Arrow,22,10,A Broken Arrow,0,1 

O,A Gigantic Sapphire,0,10 
1390 DATA A Vial of Amber Liquid,24,0,A Golden Sw 

ord <ooh!>,34,10 
1395 DATA A large Rembrandt Painting,18,20 
1400 DATA A Whetstone,19,0,A Set of Silverware,25 

,10,A Platinum Pen,27,10 
1405 DATA A Velvet Pillow,44,0,The Sorceror•s See 

ptre,0,10,A Gold Bar,0,10 
1410 DATA A Vault in the Wall,O,O,A Dead Knight ( 

boo>,O,O,A Ming Vase,9,10 
1415 DATA A sign saying DIABOLICAL MAZE,35,0,A Wi 

eked Sorceror,32,0 
1420 DATA A Dead Spider,O,O 
1425 FORI=1T021:READOBS<I>,OB<I,O>,OB<I,1>:NEXTI 
1430 DATA North,South,East,West 
1435 FORI=OT03:READD$(I>:NEXTI 
1440 P$(50)="at the end of a path, with forestsur 

rounding you in all directions. Whatis a soul to 
do ?" 

1445 P$(47>=P$(47)+CHR$(13)+CHR$(10)+"To the sout 
h there is a dim light." 

1450 ENDPROC 

5 

1455 END 
1460 MODE6 
1465 *FX4,1 
1470 RETURN 
1475 DEFPROCINFO 
1480 CM$="" 
1485 PRINT"*";CHR$!8>; 
1490 Z$=GET$ 
1495 IFZ$=""THEN1490 
1500 Z=ASC(Z$>:IFZ>95ANDZ<>127THEN1490 
1505 ZL=LEN<CM$):IFZL>27THEN1515 
1510 IFZ>31ANDZ<96THENCM$=CM$+Z$:PRINTZS;:GOT0148 

1515 IFZ=13ANDZL>OTHENPRINT." ": GOT01530 
1520 IFZ=127ANDZL>OTHENCM$=LEFT$(CM$,ZL-1>:PRINT" 
";ZS;ZS; 
1525 GOTO 1485 
1530 ENDPROC 

218 

8 

Tunnel Adventure 

Another full-blown adventure, and again written in the same style as 
Castlemaze Adventure and Underground Adventure. This should serve 
to illustrate how easy it is to produce a large number of different games 
from the same basic rules. 

This again is challenging, although it doesn't have the glossy edges 
of Underground. However it should keep you very busy trying to solve 
the many problems presented along the way. 

Watch out for the vicious cat, and the evil hooded cobra, and the 
affectionate turtle encrusted with diamonds isn't all he seems either, 
in the ancient city of Kez! 

219 



0 PROC5TART 
2 DIMD$!3) 
3 BI•01T0•01MF•01M2•010F•01J•01ZZ•01MI•O 
4 W1$="The panther sees the snake and flees.": 

54$="You're not holding it." 
6 W2$="You are out of matches.":DR$="1t's very 

draughty here." 
8 GB$="A bird swoops down out of the sky and 

lands in front of you." 
10 11$="You need a direct object." 
12 W5$="The turtle eats the carrot and rubs you 

rleg affectionately." 
14 WA$="No Way! The boss says I have to pay for 

anything you break!" 
16 WB$="1t doesn't burn.":5P$="You have to disc 

over a secret passage." 
18KN$="There's something in his pocket.":IM$="T 

hat is not possible." 
20 WD$="It's pitch dark.":CR$=CHR$(13)+CHR$!10> 

:PRINT"" 
21JA$="The javelin glides through the air as if 

pulled by magic." 
22 51$="1 don't see i,t here. ":S2$="Don't be rid 

iculous.":CP=39 
24 53$="1 don't know that word." 
25 PROCVARIABLE5 
26 G05UB414 
28 IFTG>O THEN OBY.!29,0>=CP:IFCP=36 THEN TG=O 
30 IFTG THEN PRINT"The turtle is following you. 

32 IFTG>O AND CP=ll THEN G05UB148:PRINT"CAVE-IN 
!":PY.!13,3l=O:PY.<9,l>=O:CP=13 

34 PROCINPUT 
36 IFMF=l AND M2=0 THEN M2=1 
38 IFVB>9 AND VB<>20 AND NO$="" THENPRINTIU:GD 

T034 
40 IFNO$<)"" AND VB=1 AND NO=O THENPRINT"That d 

oesn't make sense to me.":GOT034 
42 IFOBY.!35,0>=-1 AND N0=32 THEN N0=35 
44 IFVB>10 AND NO=O THENPRINT"I don't know what 

a ":PRINTN1$" is!":GOT034 
46 ON VB GOTO 52,72,26,98,106,110,128,376,136,7 

2,154,172,174,194,202,216,226,234,236,238,246,248, 
246,262,272,274,296,304,226,356,364,168 

52 IFNO$<>"" AND NO=O THENPRINT53$:GOT034 
54 IFN0>28 OR N0<21 THENPRINT"I don't understan 

d.":GOT034 
56 IFN0>24 THEN NO=N0-4 
58 NO=N0-21 
60 IFNO>O AND PD >O THENPRINT"You have fallen in 

to a pit.":GOT0612 
62 IFNO>O AND OBY.!30,0>=CP THEN142 

220 

64 IFGF=O AND CP=18 AND N0=1 THENPRINT"The gate 
is locked!.":GOT034 

66 IFPY.<CP,NO>=O AND CP<>1 THENPRINTIM$:GOT034 
68 IFPY.<CP,NO>=O THENPRINT"You can't go that wa 

y .":GOT034 
70CP=PY.<CP,NO>:GOT026 
72 IFNO$="" THENPRINTI1$:GOT034 
74 IFOBY.<N0,0>=-1 THENPRINT"You've already got 

it.":GOT034 
76 IFNO=O THENPRINT53$:GOT034 
78 IFCP=18 AND N0=31 THEN88 
80 IFN0<>37 OR CP<>29 THEN86 
82 IFOBY.!17,0><>-1 THENPRINT"You need a contain 

er.":GOT034 
84 OBY.<17,0>=0:GOT096 
86 IFOBY.<ND,O><>CP THENPRINT51$:GOT034 
88 IF<N0>18 AND ND<32> OR N0>49 THENPRINT"It's 

too heavy.":GOT034 

4 

90 IFN0=12 THENG05UB 140 
92 IFZZ>3 THENPRINT"Your hands are full.":GOT03 

94 ZZ=ZZ+1 
96 PRINT"OK":OBY.<N0,0>=-1 :GOT034 
98 PRINT"You are carrying:":ZZ=O 

100 FORI=1TOLO:IFOBY.<I,0)=-1 THENPRINT 08$(l>:ZZ 
=ZZ+l 

102 NEXTI:IFZZ=OTHENPRINT"Nothing" 
104 GOT034 
106 PRINT"Points are scored by leaving valuables 
at the mouth of the tunnel." 
108 G05UB378:GOT034 
110 IFNO=O AND NO$< >"" THENPRINT"What's a :=":PR 

INTN1$"?":GOT034 
112 IFNO=O THENPRINT"Huh?":GOT034 
114 IFOBY.!N0,0>< >-1 THENPRINT"You have no ";N1$: 

GOTO 34 
116 IFN0=35 THEN OBY.!35,0>=0:N0=32 
118 IFN0=15 THENPRINT"You can't. It's stuck toy 

our hand.":GOT034 
120 OBY.<NO,O>=CP:ZZ=ZZ-1 
122 IFN0=17 THEN DBY.!17,0>=0:0BY.<38.0>=CP:PRINT" 

Crash!": GOT034 . 
124 IFOBY.!12,0>=0BY.<30,0> THENPRINTW1$:0BY.!30.0) 

=O:GOT034 . 
126PRINT"OK":GOT034 
128 IFCP=31 THENPRINT"Read the medallion.":GOT03 

4 
130 IFCP=7 THENPRINT"Try prime numbers.":GOT034 
132 IFJ=90 AND DBY.<41,0>=0 THENPRINT"5ome music 

would be nice.":GOT034 . 
134 PRINT"Try examining things.":GOT034 
136 IFCP=430RCP=44THENCP=87-CP:GOT026 

221 



138 PRINTIMS:GOT034 
140 PRINT"The snake bites you.":BI=BI+8:RETURN 
142PRINT"The panther pounces on you.":GOT0612 
144 IFOB'l.<32,0>THENRETURN 
146 OB'l.(32,0>=0B'l.(35,0>:0B'l.(35,0>=0:RETURN 
148FORI=1TOOB'l.(31,1>:NEXT:GOSUB144:0B'l.(31,1>=100 

:RETURN 
150 FORI=1T054:IFOB'l.<I,0>=13THENOB'l.<I,0>=10 
152 NEXT:RETURN 
154 IFN0=31ANDCP=18THEN162 
156 IFN0=31THENPRINT"I see no gate here.":GOT034 
158 IFOB'l.<N0,0><>-1THENPRINTS4$:GOT034 
160 PRINT"That•s not necessary.":GOT034 
162 IFGF=1THENPRINT"lt"s already open.":GOT034 
164 IFOB'l.(4,0>=-1THENGF=l:PRINT"The gate swings 

open.":GOT034 
166 PRINT"You need a key to open the locked gate 

.":GOT034 
168 IFN0<>460ROB'l.(46,0><>-1THEN110 
170 OB'l.(46,0>=17:ZZ=ZZ-1:PRINTJA$:GOT034 
172 PRINT"Try "Push".":GOT034 
174 IFOB'l.<N0,0><>-1THENPRINTS4$:GOT034 
176 IFN0<>2ANDN0<>16ANDN0<>18ANDN0<>5THENPRINT"T 

here's no writing.":GOT034 
178 PRINT"It says:":PRINT:IFN0<>2THEN186 
180 PRINT"At half time, Manchester United were" 
182 PRINT"leading Duckworth Rovers by an easy" 
184 PRINT"three goal margin. Ray Davies,leading 
scorer for Duckworth this season, was •• " 
185 PRINT:PRINT"The rest of the paper is tattere 

d and torn, and can no longer be read.":GOTO 34 
186 IFN0=18THENPRINT"Felines ":PRINT"Have":PRINT 

"enemies":GOT034 
188 IFN0=16THENPRINT"Fermented juice is alexipha 

rmic":GOT0~4 

190PRINT"Take the first six letters":PRINT"Throw 
away the left half" 

192PRINT"Double the middle":PRINT"Turn it round" 
:GOT034 

194 IFOB'l.<N0,0>< >-1THENPRINTS4$:GOT034 
196 IFN0<>13THENPRINTS2$:GOT034 
198 IFOB'l.(13,0><>-1THEN210 
200 ZZ=ZZ-1:PRINT"Yuk!It tastes terrible":OB'l.<13 

,O>=O:GOT034 
202IFOB'l.<N0,0><>-1ANDOB'l.<NO,O><>CP THENPRINTS1$: 

GOT034 
204 IFN0<>12ANDN0<>29ANDN0<>30ANDN0<>41THEN218 
206 IFN0=30THEN142 
208 IFN0=12THENGOSUB140:GOT034 
210 IFOB'l.(13,0><>-1THENPRINT"You have no food":G 

OT034 
212 IFOB'l. (29, 0) < >CP THENPRINT"What turtle?": GOTO 

222 

34 
214 ZZ=ZZ-1:PRINTW5$:0B'l.C13,0)=0:TG=1:GOT03 4 
216 IFOB'l.CN0,0><>-1ANDOB'l.<NO,O> <>CP THENPRINTS1$ 

:GOT034 
218 IFN0<>12ANDN0< >41ANDN0<>29ANDN0<>30THENPRINT 

"It isn't alive.":GOT034 
220 IFN0=12THENGOSUB140:GOT034 
222 IFN0=30THEN142 
224 PRINT"It"s immortal.":GOT034 
226 IFN0<>22ANDN0< >11THEN230 
228 IFCP=21ANDP'l.C21,1>=0THENP'l.C21,1>=9:PRINT"You 

•ve broken through!":GOT034 

4 

230 IFOB'l.<12,0>=CP THENGOSUB140:GOT034 
232 PRINT"Nothing happens.":GOT034 
234 PRINT"You don't have enough charisma.":GOT03 

236 PRINT"Try "open'":GOT034 
238 IFN0<>51THENPRINT"No effect.":GOT034 
240 IFCP<>22THENPRINT"What mirror?":GOT034 
242 IFMI THEN P'l.<22,1>=4-P'l.C22,1):PRINT"It rolls 

easily.":GOT034 
244 PRINT"It"s stuck.":GOT034 
246 PRINT"Try "Use"":GOT034 
248 IFN0<>39ANDN0<>37THENPRINT"Express that anot 

her way.":GOT034 
250 IFOB'l.<N0,0>< >-1THENPRINTS4$:GOT034 
252 IFN0=39THEN258 
254 IFCP< >22THENPRINT"There"s no use for oil her 

e.":GOT034 
256 t11=1:PRINT"The rollers are now oiled.":GOT03 

4 
258 IFOB'l.C15,0>+1THENPRINT"Your nails are nice a 

nd clean now.":GOT034 
260 OB'l.(15,0)=CP:ZZ=ZZ-l:PRINT"The statuette sli 

ps from your grasp.":GOT034 
262 IFN0<>36THENPRINTS2$:GOT034 
264 IFOB'l.C36,0><>-1THENPRINT"You have no wine.": 

GOT034 
266 PRINT"Glug-glug-glug":OB'l.C36,0>=0:DB'l.C17,0>= 

-1 
268 IFBI>OTHENPRINT"Aahh ... it cures the snakebit 

e. ": BI=O 
270 GOT034 
272 PRINTWAS:GOT034 
274 IFN0<320RN0>35THENPRINTIMS:GOT034 
276 IFDB'l.(33,0><>-1THENPRJNT"You don't have a ma 

tch.":GDT034 
278 IFN0=33THENPRINT"The matches burn brightly." 

:ZZ=ZZ-1:0B'l.C33,0>=0:GOT034 
280 IFN0()34THEN290 
282 IFOB'l.C34,0>=-1THENGOSUB148:PRINT"You are blo 

wn to bits!":GOT0612 

223 



284 IFOBY.(34,0>< >CP THENPRINTS1$:GOT034 
286 IFCP=13THENPY.(13,2)=24:P$(13)=P$(9):CP=11:GO 

SUB150 
287 PRINT:PRINT"Booommmm! ! ! !" 
288 OBY.<34,0>=0:GOSUB148:GOT034 
290 IFOBY.<35,0> THENPRINT"It's already lit.":GOT 

034 
292 IF OBY.(32,0>=-1 THEN OBY.<32,0>=0:0BY.<35,0>=-

1:PD=O:GOT026 
294 PRINT"You haven't got a torch with you.":GOT 

034 
296 IF N0<>48 THENPRINT"What ?":GOT034 
298 IF OBY.!48,0><>-1 THENPRINTS4$:GOT034 
300 IF CP>35 THENPRINTGB$:0BY.<41,0>=CP:GOT034 
302 GOSUB 148 : CLS:PRINT:PRINT:PRINT"Cave-in! ! ! 

!":GOT0612 
304 IF ND<>1 THEN314 
306 IF CP=21 THENPRINT"The South wall is badly e 

roded. ": GOT034 
308 IF CP=17 AND PY.<17,3)=0 THEN PY.(17,3)=34: PR 

INTSP$:GOT034 
310IFCP=34 AND PY.<34,3)=0 THEN PY.(34,3>=35:PY.!35 

,2>=34:PRINTSP$:GOT034 
312 PRINT"You find nothing special. ":GOT034 
314 IFN0=31 AND CP=18 THEN320 
316 IFN0=37 AND CP=29 THENPRINT"It's just oil.": 

GOT034 
318 IFOBY.<ND,O><>CP AND OBY.<N0,0><>-1 THENPRINTS 

1$:GOT034 
320 IFN0=2 OR N0=16 OR N0=18 THEN174 
322 IFN0=13 THENPRINT"It ' s not fit for human con 

sumption." 
324 IFN0=40 THENPRINT"It's Topaz.":GOT034 
326 IFN0=9THENPRINT"It's malachite.":GOT034 
328 IFN0=41THENPRINT"It's made of gold.":GOT034 
330 IFNO=lOTHENPRINT"It's lapis lazuli.":GOT034 
332 IFN0=42THENPRINT"It's pyrite.":GOT034 
334 IFN0=12THENGOSUB140:GOT034 
336 IFN0=30THEN142 
338 IFN0=1THENPRINT"It's embroidered with gold t 

hread.":GOT034 
340 IFN0=15THENPRINT"It glistens.":GOT034 
342 IFN0=46ANDOBY.<46,0>=17THENPRINT"It's pointin 

g towards the West.":GOT034 
344 IFN0=50THENPRINT"It contains sacred oil. ":GO 

T034 
346 IFN0=51THENPRINT"It's on rollers.":GOT034 
348 IFN0=52THEN366 
350 IFN0=20ANDOBY.<33,0)=0THENPRINTKN$:0BY.<33,0)= 

43:GOT034 
352 IFN0=20 AND OBY.<4,0>=0 THENPRINTKN$:0BY.<4,0) 

=43:GOT034 

224 

354 PRINT" It• s just:=": PRINT: PRINTOB$ <ND>".": GOT 
034 

356 IFN0<>34THENPRINT"I don't know how to do tha 
t.":GOT034 

358 IFOBY.<3,0>=-1ANDOBY.<6,0>=-1ANDOBY.<14,0>=-1TH 
EN362 

360 PRINT"You aren't holding all the ingredients 
.":GOT034 

362 OBY.<3,0>=0:0BY.<6,0>=0:0BY.<14,0>=0:0BY.<34,0>= 
-1:ZZ=ZZ-2:PRINT"Done.":GOT034 

364 PRINT"Try 'make' ":GOT034 
366 PRINT"Which compartment number?";:PROCINFO:N 

O=VAL<CM$>:IF NO=O OR NO >99 THEN34 
368 IFN0=13ANDOBY.<49,0>=0THENOBY.<49,0>=7:GOT0374 
370 IFN0=71ANDOBY.<8,0>=0THENOBY.<8,0>=7:GOT0374 
372 PRINT"That compartment is empty.":GOT034 
374 PRINT"Something fell out. ":GOT034 
376 GOSUB378:GOT0388 
378 J=O:FOR I = 1 TO LO:IFOBY.<I,0>=36 THEN J=J+O 

BY. (I, 1) 
382NEXTI 
383 PRINT 
384PRINT"You have scored ";J;" points out of 100 

.":IFJ<lOOTHENRETURN 
386 CLS:PRINT:PRINT:PRINT"Well done!!" 
388 END 
390 DEF PROCINPUT 
391PRINT:PRINT"What now? ";:PROCINFO:PRINT:IF B 

I>O THEN BI=BI+1 
392 N0$=" 11 :VB$= 1111 :VB=O:NO=O:H=O 
394 CM=LEN<CM$):FOR1=1TOCM:IFMIDS<CMS,I,1>=" "TH 

EN H=I-1 
395 NEXT 
396 IFH=OTHENH=LEN<CMS> 
397 IFH=1 THEN V1$=CM$:GOTO 399 
398V1$=LEFT$(CM$,H) 
399VB$=LEFT$(V1$,3):FORJ=1TONV:IFVB$(J)=VB$THENV 

B=J 
400 NEXTJ 
402 IFVB>OTHEN406 
404VB=+1:N1$=V1$:GOTO 410 
406 IFLEN<V1$)+1>LEN<CM$)THENNO=O:ENDPROC 
408 N1$=RIGHT$(CM$,LEN<CM$>-1-LEN<V1$)) 
410 NO$=LEFT$(N1$,3):FORI=1TONN:IFNO$<I>=NO$THEN 

NO=I 
411 NEXTl:IFN0=35 THEN N0=32 
412 ENDPROC 
414 CLS:PRINT:PRINT::IFCP=16 THENT=T+1:IFT>2 THE 

NPRINTDR$:1FT>3 AND RND<1><T*.1 THENGOSUB144:T=O 
416IFOBY.<35,0)+1>0 AND CP<35 THENPRINTWD$:PD=1:R 

ETURN 
418 PRINT"You're "P$<CP>:PD=O 

225 



419 PRINT 
420 VB$="You can see:" 
422 FOR I= LO TD 1 STEP-1:IF DB'l.CI,O> ~cp THENP 

RINTVB$:PRINTOB$(Il:VB$=CHRS<11) 
424NEXTI 
426 FL=O 
427 PRINT 
428 PRINT"You can go: ":FDRI=OT03:IFP'l.CCP,I> <> 

OTHENPRINTD$(Il;" ";:FL=1 
430NEXTI 
432 PRINT:PRINT 
434 IFBI>12 THENPRINT" 
436 IFBI>23 THENPRINT" 
438 IFBI>34 THENPRINT" 

>The bite's thr-obbing < " 
>You're getting dizzy<" 
>It's hard to breathe<": 

IFBI>42THEN612 
440 IFCP<>18 THENRETURN 
442 IFGF=1THENPRINT"The gate is open.":RETURN 
444 PRINT"The gate in the gr-ill is locked.":RETU 

RN 
445 DEFPROCVARIABLES 
446 NN=54:NV=32:P=51:L0=54:DIMP$<P>,P'l.CP,3l,OB$C 

LO>,OB'l.CL0,1>,VB$CNV>,NO$CNN> . . . 
448 PSC1>="in a stor-er-oom."+CR$+"The walls ar-e m 

ade of concr-ete." 

t 

450 DATA18,0,5,0,25,33,S,12,0,7,31,0 
452P$(2)="in a dusty passageway." 
454 PS<3>="in the quar-ter-s of Pr-incess Anka." 
456 P$C4>="in the King's har-em <lucky old you) 

457DATA22,o,o,o,o,o,21,1,6,15,6,19 
458 P$ (5) =P$ C 1> 
460P$(6)="in a twisty little tunnel <again)" 
462 P$(7)="in the jewelry niche." 
463DATA3,0,o,o 
464 P$C8>="in an artist's studio." 
465DATA0,0,0,2 
466 P$(9)="crawling over a jumble of broken rock 

467 
468 
469 
470 
and 
471 
472 
473 
474 

DATA21,10,0,0 
P$ < 10 > =PS C 6 > : 
DATA9,6,6,6 
P$(11)="in an old,old tunnel, feeling alllos 
neglected." 
DATA0,20,13,0 
P$C12>="in an ancient library." 
DATA0,0,2,0 
P$(13>=P$(11)+CR$+"A thick brick wall blocks 

the way." 
475 DATA0,0,0,11 
476 P$(14)=P$(6): 
477 DATA19,19,20,19 
478 P$<15>=P$<6>: 

226 

479 DATA6,6,6,10 
480 P$C16>=P$<6>: 
481 DATA14,6,6,6 
482 P$(17)="in a wine closet." 
483 DATA0,0,30,0 
484 P$(18>=P$C11>+CR$+"A metal grill blocks the 

way." 
485 DATA35,1,0,0 
486 P$(19)=P$(6) 
487 DATA6,16,6,6 
488 P$(20>=P$(6>: 
489 DATA11,16,16,16 
490 P$(21>=P$(1): 
491 DATA0,0,0,5 
492 P$(22)="King Kaleb's bedroom." 
493 DATA0,0,0,31 
494 P$(23>="in the slaves' quarters. The sla 

ves' halves are somewhere else." 
495 DATA26,27,0,0,28,0,25,13 
496 P$(24>="at the West end of the Temple."+CR$+ 

"An ugly hole is in the West wall." 
498 PS<25)="at the East end of the Temple." 
499 DATA29,2,0,24 
500 P$(26)=" in the warr-iors' quarters." 
501 DATA0,23,0,33 
502 P$(27)~" in a stable that, well, smells a 1 

ittle bit." 
503 DATA23,0,0,0 
504 P$(28)="in the high priest's vestry." 
505 DATA0,24,0,0 
506 P$<29>="in the shrine of Isis." 
507 DATA0,25,0,0 
508 P$(30)="in what was once used as the kit 

chen in older days." 
509 DATA0,0,33,17 
510 P$(31>="in an antechamber." 
511 DATA33,32,22,3 
512 P$(32)="in the throne room." 
513 DATA31,0,0,0 
514 P$(33l=PS<2> 
515 DATA2,31,26,30 
516 P$(34>="in a secret compartment <oooh>." 
517 DATA0,0,17,0 
518 P$<35>=P$<11)+CR$+"You see daylight to the N 

orth." 
519 DATA36,18,0,0 
520 P$(36)="at the mouth of the tunnel." 
521 DATA37,35,0,0,51,36,0,0 
522 P$(37)="at the road's end."+CR$+"A mountain 

is to the south." 
524 P$(38)="in a dense, gloomy, dark forest." 
525 DATA38,39,38,38 

227 



526 P$C39)="on a familiar old path made by hor 
ses many, many years ago." 

527 DATA38,40,38,38,39,41,38,38 
528 P$C40>="at the end of a path with forest sur 

rounding you in all directions." 
530 P$C41>=P$C38)+CR$+"To the south there seems 

to be light." 
531 DATA40,42,38,38 
532P$C42>="in the middle of a clearing, witha fa 

miliar bridge to the south." 
534 DATA41,43,0,0,42,0,0,0: 
535 P$C43>="on the north side of the bridge." 
536 P$C44>="on the south side of the bridge." 
537 DATA0,45,0,0 
538 P$C45>="at a great crossroads." 
539 DATA44,48,47,46 
540 P$C46)="on the great west road." 
541 DATA0,0,45,46 
542 P$C47)="on the great east road." 
543 DATA0,0,47,45 
544 FORI=48T051:P$Cl>="walking on the great sout 

h road.":NEXT 
546 DATA45,49,0,0,45,50,0,0,45,51,0,0,45,37,0,0 
548 FORI=1TOP:FORJ=OT03:READP'l.CI,J>:NEXTJ,I 
550 DATA28,10,37,0,1,0,0,10,28,0,5,0,4,10,0,10,1 

3,o,10,10,o,o,36,o,30,o,21,o 
552 DATA8,10,12,o,o,o,34,10,32,0,43,0 
554 DATAAn Ephod,A Scrap of Newspaper,A Keg of C 

harcoal 
556 DATAA Silver Key,A Parchment Scroll,A Keg of 

Saltpetre 
558 DATAA Platinum Chastity Belt,A Ruby Earring 
560 DATAA Green Pebble,A Blue Stone,,A Vicious C 

obra,A Shrivelled Carrot 
562 DATAA keg of Sulphur,A Jade Statuette,An Old 

Medical Book,An Empty Bottle 
564 DATAA Gold Medallion,A Golden Throne,A Dead 

Knight <remember me ?>,27,10 
566 FORI=1T020:READOB'l.CI,O>:READOB'l.CI,1>:NEXT 
568 FORI=1T020:READOB$Cl>:NEXT 
570 DATA31,o,o,20,35,0,0,0,0,0,0,0,17,0,0,0,0,0, 

3,0,11,10,0,10,13,0,30,0,8,0 
572 DATA23,0,26,0,27,0,32,0,0,0,29,0,22,0,7,0,22 

,o,3,o 
574 DATAA Giant Turtle 
576 FORI=29T054:READOB'l.CI,O>:READOB'l.CI,1>:NEXT 
578 DATAA Hungry Panther,A Gate,An Old Torch 
580 DATASome Matches,Three Kegs of Gunpowder,A S 

hining Torch,A Bottle of Wine 
582 DATAA Bottle of Oil,Some Broken Glass,A Jar 

of Nail-Polish Remover 
584 DATASome Gravel,A Bird,A Gold Nugget 

228 

586 DATAA Wooden Spoon,A Block of Marble,A set o 
f manacles,A Rusty Javelin 

588 DATAStraw and Dung,A Brass Clarion,A Satin R 
ibbon,A Marble Font 

590 DATAA Huge Mirror,100 Small Compartments 
592 DATAA King-size Bed,A Triclinium 
594 FORI=29T054:READOB$Cl>:NEXTI 
596 DATAEPH,NEW,CHA,KEY,SCR,SAL,BEL,EAR,PEB,STO, 

WAL,COB,CAR,SUL,STA,BOO,BOT 
598 DATAMED,THR,KNI,NOR,SOU,EAS,WES,N,S,E,W,TUR, 

PAN,GAT,TOR,MAT,GUN,TOR,WIN 
600 DATAOIL,GLA,REM,GRA,BIR,NUG,SPO,BLO,MAN,JAV, 

STR,CLA,RIB,FON,MIR,COM,BED 
602 DATATRI,GO,GET,LOO,INV,SCO,DRO,HEL,QUl,CRO,T 

AK,OPE,MOV,REA,EAT,FEE,KIL,HIT 
604 DATA CHA,UNL,PUS,REM,USE,OIL,DRI,BRE,LIG,PLA 

,EXA,KIC,MAK,MIX,THR 
606 FORl=1TONN:READNO$Cl>:NEXT:FORl=1TONV:READVB 

$Cl>:NEXT 
608 DATA North,South,East,West 
610 FORI=OT03:READD$Cl>:NEXT 
611 ENDPROC 
612 FORI=1T02000:NEXT:PRINT:PRINT"You're dead! ! " 

:GOTO 376 
613 DEF PROCINFO 
614 CM$="" 
615 PRINT "*";CHR$C8>; 
616 Z$=GET$ 
617 Z=ASCCZ$l:IFZ>95ANDZ<>127THEN616 
618 ZL=LENCCM$>:IFZL>28THEN622 
619 IFZ=127THEN624 
620 IFZ)31THENCM$=CM$+Z$:PRINTZ$;:GOTO 615 
622 IFZ=13ANDZL>OTHENPRINT" ":ENDPROC 
624 IFZ=127ANDZL>OTHENCM$=LEFT$CCM$,ZL-1>:PRINT" 

";CHR$C8>;CHRSC8>; 
626 GOTO 615 
699 DEFPROCSTART 
700 CLS 
705 PRINT:PRINT:PRINT" 

ure***" 
710 *FX4,1 
799 ENDPROC 

****Tunnel Advent 

229 



9 

Further Information 

Introduction 

We've presented you with information on various adventures from both 
the U.K. and the U.S.A. over the pages of this book, but most of the 
games mentioned so far have been fairly old, in that they go back as 
far as some of the earliest microcomputers like the Apple and the 
Commodore PET. 

In this last section we'd like to round off by going through a few 
currently available adventures for various microcomputers that are 
relatively recent, at least at the time of writing. 

Some are classics, some are obviously destined to be so, and some 
will probably fade over the years into a delightful obscurity and never 
be heard of again. 

The rest of this chapter will give you some useful information on where 
to find out more about adventures generally, as well as listing a number 
of popular newstand magazines that do sometimes carry features about 
this sort of game. 

Finally, a few useful names and addresses, and especially for those 
of you who own Commodore kit and want to acquire a copy of the 
legendary Adventure by Crowther and Woods that has featured 
prominently in this book, the name and address of the person to 
contact at the Independent Commodore Products Users' Group. 

For owners of other machines, it's worth asking around to see if a 
copy exists for your particular machine, but if you haven't got disk 

231 



drives, forget it! This game relies almost entirely on a disk-based mode 
of operation, and would require an awful lot of memory before it would 
function on a micro that was sans disks. 

That's all for now, except to say thanks to a few people. Obviously 
Crowther and Woods, but also Jim Butterfield, for producing the 
orginal PET version, and to Steve Darnold, for inadvertently getting 
me started on this whole adventure writing lark in the first place, and 
who provided the original code for Castlemaze Adventure and Tunnel 
Adventure. 

Current Adventure Games 

All the names and addresses of the companies involved can be found 
in most of the current popular magazines, as most of them seem to 
advertise quite extensively. 

If not, a copy of Personal Computer News, the (at the moment!) 50 
pence weekly, has a tri-weekly round up of software available, and 
covers most of the adventure games around. 

So, to get the ball rolling, how about The Hobbit, which must rank 
as one of the classic modern games of adventure, which is available 
from Melbourne House for the 48K Spectrum. 

A complete solving of this would take a very long time indeed, and 
I've yet to hear of anyone who has actually solved the entire thing. 
A nice style of entering your commands here as well. 

Pl Mania seems to be the other game currently 'in vogue' as it were, 
although I think I'd like it a lot better if it wasn't for the inept advertising 
by the company who handle it, namely Automata UK. Are they really 
trying to produce the worst advertising in the microcomputer industry?! 

Still, at least the game is good, and has the virtue of working on the 
Spectrum, Dragon and BBC. 

Sphinx, for the BBC model B, from John Wiley and Sons is also quite 
a good, classical adventure, involving all the usual thud and blunder 
techniques beloved by writers of this particular type of adventure. 

John Wiley also do a few more for the model B as well, so they're 
worth checking out if you're tuned into Auntie Beeb. 

232 

Microdeal have inevitably produced a series of adventures for the 
Dragon, including Escape, Flipper, and Mansion Adventure, or at least 
they call them adventure games. Personally the only one I thought 
was of lasting interest was the Mansion Adventure, but then we all 
have our different tastes. 

For the Commodore 64, well, Romik have produced a couple of games, 
and modesty prevents me from telling you how wonderful they are, 
but I would like to thank Kevin Bergin for some last minute 
programming on those! 

And the Vic 20 ? Well, there are always the cartridge versions of the 
Scott Adams games, and Kayde Electronics have produced the Swamp 
( ... In the Swamp, no one can hear you scream ... , runs the advertising. 
Yawn ... ), although it, not suprisingly, requires a minimum of 16K 
expansion. 

Those are just some, but any periodical should give you details of many 
more. 

233 



More Information 

Strangely enough, the general magazines don't appear to have picked 
up too strongly on this resurgence of interest in adventures, although 
Personal Computer News regularly carries a number of reviews for all 
kinds of machines, and most of the others mention them every now 
and again. 

However, there are three classic issues of old magazines which the 
serious adventure freak must have. 

The December 1980 issue of Byte magazine, the one Daley Thompson 
does weight training with, is mainly devoted to adventuring, and 
features a whole host of excellent articles by many of the top authors 
around at the time, including Scott Adams, P. Lebling, Bob Liddell, 
and many more. A great issue, if you can dig it out. 

The other two are different issues of the same magazine, but finding 
them is not going to be easy. 

The magazine in question is Creative Computing, and the first major 
article appeared in August 1979, when the data structure behind the 
Scott Adams series of adventures was explained in full. This has 
inspired a number of people to begin writing their own adventures, 
including David Malmberg, who went on to write the very good Castle 
Adventure (the one with the sleepy piranha in it that I mentioned 
earlier!). 

July 1980 was another good issue, including the article that explained 
the working of the program Zork, in the excellent 'How to fit a large 
program into a small computer'. 

All required reading for the serious adventure fan, but keep your eyes 
on the newstands for other, newer issues of magazines. 

"" 

234 

Who to Contact 

User Groups are the people to contact, and the following covers most 
of the popular makes of home computers. 

BBC: Laserbug 
Paul Barbour 
10 Dawley Ride 
Coln brook 
Slough 
Berkshire 

or Beebug 
Sheridan Williams/David Graham 
P.O. Box 50 
St. Albans 
Hertfordshire 

Dragon: Brixham Dragon Owners Club 
Ian Chipperfield 
22 Brookdale Court 
Brixham 
Devon 

Commodore: ICPUG 

Spectrum: 

Mick Ryan 
Riverhead 
154 Chesterfield Drive 
Sevenoaks 
Kent 

Sinclair User Group 
Irving Brand 
Polytechnic of North London 
Holloway Road 
London N7 

Writing to the appropriate address for your machine should produce 
the desired response. 

235 



EXPLORING 
ADVENTURES 

ON THE 
ELECTRON 
The three adventures in this 

book are available on a 
cassette at £7.95, from 

all good computer stores 
and bookshops, or in case 

of difficulty, direct 
from the publisher. 

Send your cheque/ 
postal order to: 

Gerald Duckworth & Co Ltd 
The Old Piano Factory 
43 Gloucester Crescent 

LondonNWl 

and they will be sent to you 
post-free 

Index 

This index usually only shows the first appearance of a subject in the 
book, but if a second (and subsequent) entry is important, it is also 
noted down. 

Adams, Scott : 4, 5, 6, 28, 29, 30 
Adventure : 1, 4, 21 
Ase command : 65 
Attack verb : 170 
Bears : 102 
Bottles : 107 
Break verb : 190 
Butterfield, Jim : 4, 9 
Castlemaze adventure : 209 
Chop verb : 164 
Chr$ command : 65 
Climb verb : 166 
Close verb : 152 
Contents : v 
Creating adventures : 115 
Cross verb : 148 
Crowther, Willie : 3, 8, 10, 21 
Cut verb : 164 
Data command : 54 
Data validation : 104 
Death! : 106 
Dialogue : 44, 45 
Dim command : 73 
Drink verb : 158 
Drop verb : 144 
Dungeons and Dragons : 35 
Eat verb : 154 
Else command : 56 
Examine verb : 188 
Feed verb : 156 
For command : 66 
Gargoyle : 108, 110 
Get command : 56 
Get verb : 140 
Go verb : 138 
Gosub command : 69 
Goto command : 69 
Hassett, Greg : 6 
Hazards : 85, 86 

Help verb: 199 
Hit verb : 170 
If command : 56 
Input command: 51 , 53 
Input subroutines: 112, 113 
Int command : 72 
Introduction : vii 
Inventories : 142 
Jump verb : 190 
Kill verb: 170 
Left$ command : 61 
Len command : 59 
Light verb: 168 
Load verb : 196 
Logical Operators : 58 
London adventures: 117 
Look verb : 198 
Lord of the Rings: 7, 10 
Make verb : 172 
Map drawing : 17, 20, 87, 89 
Mazes : 95 
Mid$ command : 60 
Movement : 76, 78 
Murder adventures : 128 
Next command : 66 
Noun data : 206 
Objects : 42 
Obstacles : 85 
Offer verb : 160 
Oil verb: 176 
On command : 71 
Open verb : 150 
Panthers : 111 
Personal Computer News : 234 
Philosopher's Guest : 14 
Pi rate Adventure : 13, 28 
Popular Computing Weekly : 2 
Problem solving: 85, 100 
Procedures : 70 



Push verb : 192 
Quit verb : 146 
Read verb: 186 
Reflect verb: 174 
Repeat-Until command : 68 
Restore command : 55 
Return command : 69 
Right$ command : 62 
Rnd command : 72 
Rub verb: 184 
Save verb : 194 
Score verb : 198 
Screen Responses : 97 
Solving adventures : 16 
Space adventures : 122 
Spray verb : 180 
Stab verb : 178 
Storyl ines : 82, 83, 84 
Str$ command : 63 
Subroutines : 58 
Take verb : 200 

Temple of Apshai : 11 
Then command : 56 
Th row verb : 182 
Torches : 107 
Traditional adventures: 131 
Tunnel adventure : 221 
Underground Adventure : 36, 135 
Underground variables : 75 
Underground verbs : 102, 137 
Underground data : 202 
User Groups : 235 
Val command : 63 
Variables : 52 
Verb data : 206 
Verbs : 42, 94 
Vocabulary : 34 
Wave verb : 162 
Western adventures : 125 
Woods, Don : 3, 8, 10, 21 
Zork : 3, 9, 31, 32 

DUCKWORTH 
HOME COMPUTING 

A POCKET HANDBOOK FOR THE ELECTRON 
by Peter Gerrard and Danny Doyle 

The topics covered here include: ASCII tables, Assembler/Dis
assembler, Basic keywords, Basic error messages, Centronics 
standards, Conversion tables, FX calls, Flow charting, Hex/ 
Dec/Binary conversions, Hyperbolic functions, Input/Output, 
Memory maps, Memory architecture, Machine Code interfacing, 
Machine Code instruction set, Musical note values, System 
calls. In short, everything you need to know about your machine. 

Peter Gerrard, former editor of Commodore Computing 
International, is the author of two top-selling adventure games 
for the Commodore 64 and a regular contributor to Personal 
Computer News, Which Micro? and Software Review and 
Commodore Horizons. 

Danny Doyle is Systems Performance Consultant for Sperry 
Ltd., and a regular contributor to Commodore Computing 
International. £2.95 

ELECTRON PROGRAMS l 
Edited by Nick Hampshire 

This book provides you with a range of useful and exciting 
programs for the Electron. Games, utilities, graphics and 
functional programs are covered. The games include an exciting 
version of Star Trek, a full length adventure game, Space 
Invaders, Battleships, Space Blaster, Brick Basher, and many 
others. Among the functional programs is a personal information 
retrieval package which enables you to create and manipulate 
up to 365 records. This is a basic book for every user of the 
Electron. 

Written by Carl Graham and edited by Nick Hampshire, 
publisher of Commodore Computing International. £6.95 

Write in for a catalogue. z 
DUCKWORTH 

The Old Piano Factory, 43 Gloucester Crescent, London NW! 
Tel: 01-485 3484 





! 
-~~~ . ------ . 

Duckworth Home Computing 
EXPLORING ADVENTURES ON THE ELECTRON 
by Peter Gerrard 
This is a complete look at the fabulous world of Adventure 
Games for the Electron Computer. Starting with an 
introduction to adventures, and their early history, it takes you 
gently through the basic programming necessary on the 
Electron before you can start writing your own games. 

Inputting information, room mapping, movement, 
vocabulary - everything required to write an adventure game 
is explored in detail. There follow a number of adventure 
scenarios, just to get you started, and finally three complete 
listings written specially for the Electron, which will send you 
off into wonderful worlds where almost anything can happen. 
The three games listed in this book are available on one 
cassette . 

Peter Gerrard, former editor of Commodore Computing 
International, is the author of two top- el Ii ng adventure games 
for the Cc>mmodore 64 and a regular contributor to Personal 
Computer News, Which Micro? and Software Review and 
Commodore Horizons. 

ISBN 0-7156-1820-2 

9 

Duckworth ISBN 071561820 2 
The Old Piano Factory 
43 Gloucester Crescent, London NW1 IN UK ONLY £6.95 NET 




