on the
Commodore 64

ADVENTURES

Exploring Adventures
on the Commodore 64

EXPLORING
ADVENTURES

on the
Commodore 64

Peter Gerrard

s

Duckworth

First published in 1983 by
Gerald Duckworth & Co. Ltd.
The Old Piano Factory
43 Gloucester Crescent, London NW1

©1983 by Peter Gerrard

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the
publisher.

ISBN 0 7156 1778 8

British Library Cataloguing in Publication Data
Gerrard, Peter

Exploring adventures on the Commodore 64.

1. Electronic games 2. Commodore 64
iComputer) — Frogramming

I. Title

794.8'028'5642 (GV1469.2

ISBN 0-7156-1778-8

Typeset by The Electronic Village, Richmond
from text stored on a Commodore 64
Printed in Great Britain by
Redwood Burn Ltd., Trowbridge
and bound by Pegasus Bookbinding, Melksham

Contents

Introduction

An Introduction to Adventure Games

—_

How to Solve Adventures
Programming Adventures in Basic
Writing Your Own Adventures
Creating Your Own Adventures
Underground Adventure
Castlemaze Adventure

Tunnel Adventure

© © N @ o A& W N

Further Information

Index

vii

13
47
79
115
135
215
225
235

241

INTRODUCTION

This book is for anyone interested in the world of adventure games
on the Commodore 64.

Whether you like to play them, write them, or write about them, this
book has been written with you in mind.

More specifically, it is aimed at the person who loves to get absorbed
in a game for hours on end, has always wanted to write one of his
own, but has taken one look at a listing of someone else’s game and
thought ‘There is no way that | could write something like that!’

This book shows you how to write a fully fledged adventure game,
with unigue sections on room mapping, data structure, input routines,
verb handling, and everything you’ll need to know to write an adventure
of your own.

The main game in the book, Underground Adventure, is gone through
line by line, with each piece of code explained so that you know
precisely what is going on.

By the end of this book, you will be in a position to produce your own
game for the Commdore 64.

Thanks to Steve Darnold, for getting me started in all this (although
you didn’t know it at the time!).

Thanks also to Jim Butterfield, who gave me my first game of
Adventure. And what a game to start with!

Finally, a couple of dedications. Thanks to my wife for doing all the
illustrations. Living with her has certainly been an adventure!

vii

And last of all, to the lad with whom | played the longest ever game
of Adventure |'ve played in my life, which probably did more than
anything to get me hooked on these games. This single game lasted
for about twelve hours, after which time we were still bribing trolls,
feeding bears and exploring the bedrock room as we walked to the
pub for a pint. Denis Timm, have you managed to get out of the Pirate’s
maze yet?!

viii

1

An Introduction to Adventure
Games

General Introduction

Adventure Games have been played on computers for many years,
and are one of the most popular of all types of computer games, if
not the most popular.

It is sometimes difficult to describe exactly what an adventure game
consists of. You're in a magical world of the writer’s imagination, doing
battle with unknown and often unseen problems, that sometimes
appear to defy all logical solutions. You can be placed underground,
underwater, in outer space, in colossal caves, or just about anywhere
within the known universe, but the ultimate objectives of all the games
are usually the same: to survive, and collect all the treasure that is
rumoured to exist in these weird and wonderful games.

My own connections with adventure game playing and writing started
with the very first game of all - Adventure - playing an abridged version
on the Commodore PET 3032 computer, with a 3040 disk drive. One
night after a party two of us sat down in front of the computer and,
armed with a bottle of whisky in the real world and nothing more than
a torch, a bottle of water, a key and some food in the adventure world,
began playing a game that was to go on for more than twelve hours!

We simply did not notice that it was now light outside. We were deep
underground, trying to cross a bridge with a bear that was too heavy
for the bridge, and we didn’t care about such commonplace things
as sleep!

That early start has led to a lifetime of interest in that game and
adventure games as a whole, and my interest in the games is shared
by countless other people around the world, who have made this one
of the most popular of computer games.

It is hard to explain this popularity to a non-addict. Peculiar looks and
pitying stares are the usual response when it is revealed that you spend
hours at the keyboard, glued to happenings in an imaginary world.

On the other hand, joining one of the many Adventure user groups
will place you amongst many like-minded people who fully understand
the frustration at trying to solve a particular problem. ‘What do you
do with the platinum pyramid?!’, no longer evokes a ‘What on earth
are you on about now’ attitude, instead you’'re more likely to get a
hundred and one hints and tips on solving the problem of the platinum
pyramid.

Adventure enthusiasts even have their own Agony Aunt now in Tony
Bridges, who writes a regular weekly column for the microcomputer
magazine Popular Computing Weekly. Every week he’ll take a look
at an aspect of adventure playing, or a particular problem in one of
the more popular games, and you’re welcome to contact him over
any problems that you might be experiencing in your own adventure
game.

The number of players of these games is legion, and this book has
been written to help you write your own adventure programs, and to
explain a little bit about the origins of the games, with more than a
passing glance at some of the games (and the people) who helped
to make this genre of game playing the success it's become today.

We're also giving you three complete adventure game listings at the
back of the book, with a full explanation of the Underground Adventure
game and how it was written, and brief explanations for the other two.

If the thought of typing in pages and pages of code is a daunting one,
you'll be pleased to know that the publishers are also offering these
programs on cassette, and that cassette will cost you £7.95, available
direct from the publishers.

The listings and sections on programming are all aimed at the
Commodore 64, using a cassette deck as the storage medium.

It is hoped that, by the end of this book, you'll be more than capable
of writing your own games, and perhaps joining the author’s Fool’s

2

Gold and Tombs of Xeiops as top-selling adventure programs!

So without further ado, let’s take a look at the history of adventure
games, and we'll start with the very first one of all, called, simply,
Adventure: the game from which all others have taken their generic

name.

How It All Began

Although most adventure programs these days seem to be written
in Basic, which is the style of writing that we'll be showing you in this
book, or machine code, the very first one was written in Fortran, not
a language known for its string handling capabilities. Which language
you choose is very much up to you, bearing in mind the restrictions
of the computer in front of you.

Basic is usually chosen because it's easier than anything else, most
Basics have a good set of commands for manipulating strings, and
there is no great requirement for speed in this type of game. The
essence of these games should always be that you have to think, not
act in the frantic fashion of a good arcade game, and because of that
we don’t have to program everything to happen at lightning speed.

Some adventure games are written in machine code - Zork is a classic
example - but the writing of a game like that is beyond the scope of
this introductory tome. It is a vast program, usually supplied on three
different disks, such is its size.

In Zork, speed is required because of the many and varied ways it can
accept the inputting of information from you, the player. Most
adventures are restricted to the TAKE STAFF style of commands: one
verb and one object, but Zork goes beyond that to the level where
you can say something like BURN ALL THE BOOKS EXCEPT THE
BLACK ONE, and other complicated instructions.

The first Adventure game used the simple GO NORTH style of
instructions: for that game, and for just about everything that's
appeared since, credit has to go to Willie Crowther and Don Woods,
who wrote the program on a DEC (Digital Equipment Corporation)
PDP-10, in , as we've seen, Fortran.

That program required about 300K of computer memory to play it:
a great deal more than you get on the Commodore 64!

Abridged versions have appeared since then for most of the popular
home computers, and it was the work of Jim Butterfield that led to
the version now available for all the Commodore range of computers.

Since then, a version has appeared for the IBM Personal Computer,
but for some reason it is being marketed commercially. Odd, since
it is available free of charge from most user groups!

If you want a copy of that game for your Commodore 64, | would
suggest getting in touch with one of your local user groups: several
names and addresses are given at the back of this book.

If you have never played this, the first ever Adventure program, | would
strongly suggest that you do so. Not only is it one of the best adventure
games ever written, it is also the origin of every other adventure game.
Without it, people like Scott Adams and Greg Hassell would probably
have never written their own series of (very good) adventure games.

WEe'll look at some of theirs later, but for now let’s stick to the original.

It is sometimes called the Colossal Cave Adventure, for the opening
scenario goes like this: =

‘Somewhere nearby is colossal cave, where others have found fortunes
in treasure, though it is rumoured that some who enter are never seen
again. Magic is said to work in the cave. | will be your eyes and hands.
Direct me with commands of 1 or 2 words. | should warn you that
I only look at the first five letters of each word, so you'll have to enter
“northeast” as ““ne”’ to distinguish it from north. This program was
developed by Willie Crowther and Don Woods. This version is abridged
for PET disk by Jim Butterfield.’

We'll go into more detail on Adventure (with a capital A to distinguish
it from the games as a whole) in chapter 2.

All of this was developed on a mainframe computer with 300K of
memory. So how did they get to appear on the microcomputers that
we know today ?

The Transition to Microcomputers
The first person to think about putting an adventure onto a small

microcomputer was Scott Adams, an American who is commonly
ackowledged to be the father of adventure games on small computers.

4

His story makes interesting reading, and you can find it in the December
1980 edition of the American magazine BYTE, in which there was a
special feature on adventure games, and Scott Adams related the story
of how it all began.

For the benefit of those who haven’t got access to the magazine, here’s
a brief synopsis:

Scott Adams’ first game was written on a Radio Shack TRS-80 level
|l computer, and came about after he'd already written a few other,
non-adventure, games for it.

At the time he was working as a systems programmer for Stromberg
Carlson, and he’d been introduced to the original Adventure by a friend.
After apparently playing the game for ten days he managed to solve
the whole thing, having been totally addicted from that opening
scenario given earlier.

However, he realised that not everyone could afford a DEC PDP-10!
So, the quest was on to produce a reasonable adventure on a much
smaller computer: in his case the TRS-80.

The idea came to him of producing an adventure interpreter. This would
allow him to write many different adventures, but at the same time
cram an awful lot of information into a very small area of memory.

The programs at the back of this book work along similar lines, in that
routines exist within them to move from room to room, store the room
descriptions, handle the input of data, and so on, and these routines
are common to every listing given. This makes it possible to create
adventures with a minimum amount of work from the writer, but at
the same time they can be different enough to keep people occupied
trying to solve them for many, many hours.

Possibly the most difficult part of writing an adventure, once the actual
program structure has been grasped and understood, is getting the
original idea in the first place, and working it through as a strong idea
that doesn’t rely on the impossible happening before the adventure
can be solved.

The idea for Scott Adams’ first adventure, generally reckoned to be
his best, was not particularly brilliant, in that one was doing the usual
treasure seeking and problem solving. Nevertheless, it did fit into 16K
as opposed to 300K!

-~

After six months of testing his adventure, and of course the interpreter
that was driving it all, this first program (called Adventureland) was
released through The Software Exchange of Milford, New Hampshire,
and Creative Computing Software.

Thus, as he says in his own article, the Scott Adams series of
adventures was born.

Apparently it almost died there and then, since his wife was taking
great exception to him spending six months locked in a room writing
programs! However, all was solved when she decided to write an
adventure, and came up with the idea for Pirate Adventure, the second
best adventure program he’s ever marketed.

In this one the idea is different, in that you have to do slightly more
than merely collect treasures and solve problems. You have to build
a pirate’s ship, and not many people start off with the knowledge to
do that!.

And so the transition to microcomputers was complete. It was possible
to write an adventure with only a minimal amount of memory, and
the market suddenly begain to explode.

The Market Blossoms

Scott Adams has written a large number of adventures now, well into
double figures, and we’ll be taking a look at some of the better ones
later.

But while Scott was doing all his work, there was another, younger,
adventure devotee called Greg Hassett, who is now | believe 16 years
old, but already the author of at least 8 adventure programs.

Some of his programs, natural enough because of his age, are not
worthy competitors to the earlier Adams work, but nevertheless there
are some gems to be found from this young schoolboy.

In particular, Enchanted Island Plus is well worth seeking out. Written
entirely in machine code (as opposed to his earlier Basic Enchanted
Island), solving this one will keep you occupied for a long time to come.

Some of his plots are also refreshingly different. Journeys to the centre

of the earth and visiting Atlantis may be fairly run of the mill, but
situations where you have to save an almost totally polluted earth from

6

extinction are much better. World’s Edge is possibly the best one that
Hassett has written.

Companies producing adventures in these early days tended to be
mainly American, and it took a long while before the rest of the globe
started producing comparable games, although Britain is now catching

up fast.

In those days, Radio Shack themselves started bringing out a couple
of adventures, The Programmers Guild took a few pages out of
Tolkein’s Lord of the Rings and had you fighting orcs and spiders,
while Mad Hatter Adventures, who started off just handling the Hassett
programs, also produced a couple of their own, although these were
generally considered to be rather poor when compared to the
wonderful program that started off the whole craze.

Since then, of course, many companies have started marketing
adventure programs, and now many exist for just about every make
of home microcomputer.

Why They Are So Successful

It is true that adventure games generally have captured the computer
market to a vast extent. They are one of the most popular types of
all computer games, and are now enjoying something of a renaissance,
with many new games currently becoming available for all types of
computers.

Whilst relatively few will have the long-standing success of the original
game, most will probably be worthy of playing, and many will no doubt
tie their buyers to the computer for many weeks to come. Tony Bridges
is going to be very busy in the months ahead.

But why is there this phenomenal success, and why do so many people
spend so long typing in commands on a computer keyboard just to
see what appears next upon the screen ?

It is easy to analyse the success of, say, arcade games. The sound
effects, the stunning graphics, are obviously pleasing to the human
ear and eye, and our society seems to be depressingly heading into
a more violent era. Thus the chance to annihilate a few more aliens
for a mere 20 pence is not one to be missed.

But adventure games have none of this. There is usually no graphical

7

display, although we'll see later that games are available that use
graphics to one extent or another. Generally, there is no sound being
generated by the computer either, although again there are exceptions.

Finally, there is no ‘shoot-em-up and zap-em-down’ approach to
adventures. They are games for the thinker, rather than the person
of action.

And perhaps this is part of the secret of their great success. To solve
a good adventure like the original Crowther and Woods game requires
alot of logical throught, to say nothing of a lot of time. The first people
to start playing the game were computer programmers themselves,
and one survey in the States showed that, when an implementation
of Adventure appeared on the work’s computer, they would lose an
estimated two weeks work due to staff playing the game in their free,
and not so free, time.

Obviously people tried to put a stop to this, and started restricting
access to the game, but it was generally reckoned that whatever a
company tried to do, nothing would stop its employees from playing
the game. Better to let them have their way for a couple of weeks,
and see them emerge contented at having attained the goal of master
adventurer.

The same is true for most people who start playing the game. Once
you've started, it is virtually impossible to rest until you've completely
solved the puzzle.

How can | get past the troll without losing treasure? How do | open
the clam? How do | open the treasure chest in the pirate’s maze? All
these questions have to be solved before attaining the magical status
of master adventurer. Sometimes you're setting yourself an impossible
task, but that won't prevent people from taking hours trying to solve
it, until they give up in disgust.

It becomes a question of pride: ‘l am not going to be beaten by a stupid
computer!’ is the usual response.

Also, pride comes in when you hear of someone else talking about
a room, or a particular problem, that you haven’t encountered. The
desire to find that room, or solve that problem, drives many people
back to the keyboard again.

And, strangely enough, you will very rarely get a direct answer when
you ask someone how to solve a certain problem. You’ll usually get

8

a cryptic hint, but nothing more. So, you're back to your own logic
again, and few people will admit to not being able to solve something.

Finally, adventure games usually have a sense of fun. Take the classic
Adventure. The version by Jim Butterfield produces some lovely
responses at times. Like this:

FEED BIRD

THE BIRD IS NOT HUNGRY, HE IS MERELY PINING FOR THE
FJORDS!

Shades of John Cleese and ex-parrots. If you try typing in the inevitable
rude statements, requesting the snake to do the anatomically
impossible, again a variety of replies can be generated.

So a combination of problem solving, pride and fun have all contributed
to making adventure games required playing for most people.

But what will happen to them in the future, as computers become
more and more sophisticated?

A Glimpse into the Future

There will always be a limit to the amount of technology that can be
squeezed into a home computer, just because of the sheer size of the
thing.

However, there appears to be no limit to the amount of programming
talent that can be squeezed into them, and it is this growth of talent
that will dictate the course of adventures over the next few years.

We can already see the results of one extremely intelligent set of people
in the adventure game Zork, which is in many people’s minds a great
step forward from the original game.

Again this was developed on a PDP-10, and has now appeared as a
three part adventure for a number of home computers. Like a lot of
adventures nowadays it is supplied on disk, and thus not everyone
will get the chance to play it.

Still, there's always the local user club, and most user clubs have people

who are perfectly capable of copying the protected disks on which
Zork is supplied! Saying a disk is protected is like waving a red flag

9

at a bull: sooner rather than later a dedicated programmer is going
to crack any form of protection you care to name. As someone once
observed: ‘You have to have a disk drive to make the protected disk,
and you've got precisely the same disk drive as they have. Therefore,
you've got the equipment to unprotect the disk.’

I'm not advocating software piracy, by the way, but when you see
things like the original Adventure, a public domain program, being sold
for anything up to £30, it just invites copying!

So when we get to the stage where all home computers come supplied
with built-in disk drives, you can guarantee that there’ll be some very
sophisticated adventures coming out.

Just as the Crowther and Woods game requires a disk drive, so will
many future adventures. Why a disk drive ?

Well, there is a limit to how much memory a computer has, and a
disk drive will always have more. Therefore it makes sense to store
the core of a program in the computer, and call up the relevant
descriptions from the drive.

It will also pave the way for many more graphical adventures. If a
computer has got sophisticated graphical capabilities, like many of the
current home computers, it makes sense to use them.

However, to utilise all the graphical features on many computers even
now can take up to 8K of memory per screen. That's a lot of memory
to take up in the computer at one time, and adventures with four rooms
in them tend to be solved fairly quickly.

However, hitch up a half a megabyte disk drive and you’ve got the
capacity to handle over sixty rooms. Much more difficult to solve, and
as disk drives speed up in terms of access time we can’t be too far
away from a true animated adventure.

Whether people want animated adventures or not is another question.
They say that a picture paints a thousand words, but fifty words can
paint a much more graphical image on the mind than an 8K screen
display. :

That is why Lord of the Rings, and other books of that genre, will never
make a successful transition to the cinema screen or the home
computer. The mind is always capable of imagining far more from a
few simple words than can ever be depicted on a screen.

10

perhaps that's why the more successful games are always purely
textual in their display. Leave it up to the player to imagine it all, and
let the computer take care of everything else.

Adventure games that use half-hearted graphics, like the much praised
Temple Of Apshai series, from Epyx, tend to be a great disappointment,
certainly to this writer anyway.

pDungeons and Dragons games in real life are all very well, but the
implementation on the home computer hasn’t yet arrived.

So in this book we'll stick to textual games with no graphics, on the
basis that a) not everyone will have a disk drive, and b) not everyone
wants graphics anyway.

The adventure that we’'ll cover in most detail in this book, the
Underground Adventure, takes up most of the memory of your
computer anyway: it has to, to give it the correct degree of problem
solving and room exploration required of a good adventure.

If this book is re-written in ten years time, maybe we'll be talking about
graphical games, but until then. . .!

1

12

2
How to Solve Adventures

Adventure Scenarios

Whatever the adventure game that you're playing, you will obviously
want to solve all the puzzles presented to you, usually in the minimum
amount of time, but if you're a newcomer to the game you’ll probably
think that the adventure is too difficult and you'll just give up, probably
never to play an adventure again.

This chapter is aimed at solving adventures, and as well as some general
notes we'll be taking a detailed look at the original Adventure (whilst
trying not to give too much away), and also the adventure that forms
a large part of this book, the Underground Adventure.

The type of scenario you're presented with at the start of the game
will obviously vary from game to game, but as a general rule you'll
usually be given a description of what's going on, how you happen
to be there in the first place, and what the object of your mission is.

Pirate Adventures

For instance, in Scott Adams’ Pirate Adventure you start off in an
apartment listening to the roar of the traffic, and only after getting
the non-slip sneakers and entering the secret corridor behind the
bookcase will you be able to start the adventure properly by saying
the magic word and being whisked off to a pirate’s island, where you
have to build a pirate ship and make your escape.

On the island you'll encounter a wonderfully dotty series of characters,

including a drunken pirate and a mongoose, that all add to the charm
of this game.

13

Some of the problems presented to you in various games can at first
appear insurmountable. There’s one game called Castle Adventure,
the object of which is to explore a castle, and make your way safely
back with all the treasures.

However, getting into the castle appears to be impossible at first, since
it is surrounded by a moat, the drawbridge isn't down, and the moat
is full of piranha fish! How do you swim through a shoal of piranhas ?

Sleepy Piranha

The answer is that you don’t. You have to roam around outside the
castle first of all, finding what you can, and on your travels you
eventually discover a set of sleeping pills. Provided that you don’t take
these yourself you can drop them in the moat, whereupon the piranha
obligingly swallow them and go to sleep, thus allowing you to swim
across in safety. Of course, you might get your matches wet and soggy
in the process, but you had thought of that hadn’t you?

Another popular conundrum is the gap in the rocks that is too narrow
to squeeze through with whatever you happen to be carrying at the
time. The original Adventure has a feature like this, and we've taken
that idea and adapted it in the Underground Adventure listing here.

The problem is usually that you can slip through the gap, but nothing
that you're carrying can go through with you. As most of these
adventures take place underground you require a lit torch to be with
you at all times, and if the torch goes out you can’t see anything, which
means that you just have to blunder around until you fall into a pit
and die.

If your torch can’t get through the gap, how can you see anything
when you’re on the other side? The answer usually lies elsewhere in
the game, and there will be something that will fit through with you,
that begins to glow when you’ve got through to the other side, thus
letting you see whatever happens to be there.

As a final example, Philosopher’s Quest for the BBC micro has a
delightful problem when it tells you that you no longer have any
existence! In other words, you can no longer do anything: if you don’t
exist, how can you do anything? The answer is one of those horribly
obvious ones when you think about it, and that in itself is the answer:
if you think, you must exist, as Descartes once said.

14

Thus by thinking the computer acknowledges your existence, and you
can carry on with the game again.

So most adventures follow a fairly standard pattern, although there
have been a number of extremely silly adventures that have appeared
in recent times, and two of them have both been based on popular

television programmes.

There is one adventure based (loosely) on Monty Python’s Flying
Circus, which has you travelling around on buses, mugging old ladies,
and doing all kinds of things in the worst possible taste. Rather like
Python itself, really.

Hitch Hiking Around

A second game has now unfortunately been taken off the market,
because it was infringing someone’s copyright laws. It used to be called
Hitch Hiker's Guide to the Galaxy, better known as a radio, television
and book series, which found its way into an adventure game by Bob
Chappell. All the favourite characters where there, and the plot for
this particular game was about as sensible as the series.

However, it did have to be withdrawn, although it has since re-
appeared under another name, as a thinly disguised version of its former
self.

More usually though, you're exploring caves, or weird haunted castles
and houses, and are presented with a reasonably logical set of problems
to solve.

Often, these problems will have to be tackled in a specific order, as
the solving of one inevitably leads you onto another one that will again
have to be solved before you can progress further.

Underground Adventure features this, in that you have to solve some
16 problems before you can complete the entire game, and those
problems have to be solved in a set order. In fact, it is usually impossible
to progress further if you don’t solve them in the right order.

For ir)stance, you can’t get past the giant deadly fly until you’ve found
the giant deadly fly-spray, which is itself hidden away behind something
else. And so on: solve one problem and you can progress to another.

Some adventures do present almost life-like situations, and your

15

behaviour has to be judged truly in the light of what you would do
if you were actually in that same situation in real life.

Building Ladders

If there’s a gap above your head that you can’t get to, how would
you reach it in real life? Most people would probably go and borrow
a ladder, but as adventure games don't usually feature conveniently
handy neighbours you're going to have to build one for yourself.

What do you need in order to build a ladder? Nails, wood and some
kind of saw are the usual ingredients, so off you go to try and find
them all.

Another popular feature is that of having some kind of animal about
the place. Bears, snakes and revolting insects are the usual order of
the day, and most of them will have two purposes. Bears might eat
you alive at first, but tend to calm down when they’re fed and perform
a number of useful functions.

So the number of possible scenarios is legion, and we can expect just
about anything to turn up at one point or another. However, whatever
the scenario happens to be you're going to have to solve everything
that’s thrown at you sooner or later, so let's go about solving an
adventure.

Solving Adventures

There are a number of golden rules to be observed when setting out
upon a new adventure, and the principal one amongst them must be:

NEVER IGNORE ANYTHING!!

Everything you see will have been put there for a purpose, because
writing adventure games on a home computer does restrict the amount
of data that can be packed in, and therefore you can't really afford
to put in things that will not have a purpose.

Most objects that you enounter will probably only have one role in
the game, although this is by no means a hard and fast rule.

In the classic Adventure, you will repeatedly need to keep the axe with
you, as little dwarves have a habit of racing out from behind rocks

16

and engaging you in mortal combat from time to time, and they can
only be seen off by throwing the axe at them.

The torch also has to be carried with you most of the time, and in
the classic Adventure you have to get a new set of batteries for it after
a while, but more of that later.

Although we've said that everything has a purpose, that purpose may
only be to annoy and delay you in solving the puzzle.

Life in a Dead End

This is particularly true of some roads and corridors. In Underground
Adventure, for instance, there are a number of dead ends. Some of
these are purely dead ends and go no further, but others are there
to test you, and can be got past.

A giant boulder gets in your way at one point, but can be got round
by finding some dynamite, which exists elsewhere in the puzzle, and
blowing it up.

Just make sure that you're not carrying the dynamite yourself when
you decide to light it, as the only thing you’ll blow up then will be
yourself.

Vast chasms are another popular feature, and Underground Adventure
has two of them, which need to be solved in different ways. The
Crowther and Woods game also employs a chasm, and if you're
carrying the black rod with you when you encounter it you should be
all right, provided you can work out the correct verbal syntax.

So, ignore nothing, and investigate everything.

The second rule is also a necessity : =

ALWAYS DRAW A MAP!!

The following two pages show the complete map for Tunnel

Adventure, featured later in this book, and show the kind of rules that
should be obeyed when drawing a map of your own.

17

[oy
I
A
| |
™ (™[] [2rams] [2vers
B N AR AR P | S
| .
* * * ¥ d “ o oW *_
i 13 I
> Vi /4
25 7o) %) (2% " :
¥ * d| [* i |¥ I I
1
s N e M) M = .
* * * ¢ | * I
N
"n awumw
(" =
l
oy
ﬁw&l&%@ﬁqﬁ&l«gw I g
* * : I
h Py
J\EWL»\EN. mect| [P .w,
¥ 4| [el
I s
2y | A7 |
! ey
* | |* _ & ‘
|7 [rd] o]
1
g
I
vy
¥
29
$2MSVY w%uv\w.c Nx*mwn ¥
N 1
Ao o Ev%n.a\lm, =
g
.\N&QBN Wl
-
75242

19

18

Drawing a map

Drawing a map will usually speed up your adventure solving process
considerably, as it will save a lot of roaming about simply covering
the same ground all the time. It will not take long to draw, and thus
the overall advantage is considerable.

Always label the room, and the exits that you can take from that room,
allowing for any hazards that might be in it before you can progress.

As you do go on exploring more and more of the adventure world
presented to you, it will probably become apparent that you've started
off drawing your map in the wrong place on the paper, as usually tends
to be the case when people draw maps of anything. The edge of the
paper shows a considerable distortion of scale!

No matter, you can always go to another sheet of paper.

A lot of adventures will employ a kind of one-way system of movement,
whereby going east from room A to room B will not necessarily mean
that by going west from room B you’ll end up back in room A again,
so these too should be noted.

The fundamental feature that has probably been in more adventure
games than any other is the maze. Underground Adventure is no
exception, and this six room maze can involve a lot of wandering about
before you get out.

How can only six rooms represent a maze? By giving each one the
same description, and allowing you only to move in the desired
direction, if you go off the path the writer has decided will get you
through the maze, you can end up back at the start again. As all the
descriptions for the rooms are the same, you've no way of knowing
whether you're in the first room or the last one.

Make a careful note of the directions you‘'ve gone through as you
wonder through any mazes. You'll get out in the end, and if you haven't
remembered the route it would be a little annoying to encounter the
maze again in a later game.

Drawing maps can be fun, and it's useful to note down the initial

positions of any objects that you find during play. Some adventures
do have a random distribution of objects, but more of them do not,

20

as the solving of many puzzles depends on finding the correct object
in the correct room, and if it isn't there then the game becomes

unsolvable.

Finally, if you're playing a game witr_l a LOAD and SAVE feature that
allows you to store your current position onto tape for later recall, it's
worth saving a game if you're about to do something particularly
cavalier, like attacking a dragon or something. The odds are that your
attack will end in death, and although some games will re-incarnate
you, you'll end up a long way away from where you were when you

died.

It's quicker to re-load a tape than it is to re-create your position by
going through the whole game again.

So to sum up, ignore nothing, always draw a map, and save your
position if possible.

We'll now put all this into practice, with a look at the original Crowther
and Woods Adventure.

The Original Adventure

We've given you the opening lines from this Adventure, and the screen
goes on to display something like this:

‘I know of places, actions and things. Most of my vocabulary describes
places and is used to move you there. To move, try words like building,
enter, east, west, north, south, up or down. | know about a few special
objects like a black rod hidden in the cave. These objects can be
manipulated using some of the action words | know. Usually you will
need to give both the object and action words, but sometimes | can
infer the object from the verb alone.

‘Some objects also imply verbs. In particular, “Inventory”” implies ““Take
Inventory”’, which causes me to give you a list of what you're carrying.

‘The objects have side effects. For instance, the rod scares the bird.
Usually people having trouble moving just need to try a few more
words. Usually people trying unsuccesfully to manipulate an object
are trying something beyond their (or my!) capabilities and should try
a completely different tack.

To speed the game you can sometimes move long distances with a

21

single word. For example, “Building” usually gets you to the building
from anywhere above ground, except when lost in the forest. Also,
note that cave passages turn a lot, and that leaving a room to the north
does not guarantee entering the next from the south. Good luck!’

And finally, you get one last piece of help before being thrown into
the game proper:

‘Maximum points are earned by leaving treasure in the building. It also
helps to get back out in one piece.

‘If you think you have found all the treasure, keep moving around until
something happens.’

And So We Begin

And with that, the game will begin, and you find yourself in a building
known as the well house (since it contains a well!), which houses a
number of useful objects like a torch, a bottle, some food and a key.

From the building it is but a short walk to the forest, which is very
easy to get lost in, and then the real route into the heart of the game
takes you south down a narrow ravine until: =

“You are in a 20 foot depression floored with bare dirt. Set into the
dirt is a strong steel grate mounted in concrete. A dry stream bed leads
into the depression.’

Opening the gate with the key provided in the building lets you into
an underground set of passages, starting off with: =

“You are in a small chamber beneath a 3 by 3 steel grate to the surface.
A low crawl over cobbles leads inward to the west.’

Of Black Rods, Birds and Cages

Nearby you can find a black rod, a bird cage and the little bird itself,
and your first problem solving comes in actually getting hold of the
bird, since it isn't too fond of the rod. You'll also have to light the torch
by now as well, as it gets dark this far underground. The torch is, in
fact, an electric lamp, and it will sooner or later start running down
the batteries you started with. However, you are given the helpful
message:

22

e e

«

"Your batteries are starting to run low. Better wrap it up soon, unless
ou can find new ones. | seem to recall that there’s a vending machine

somewhere in the maze.’

Finding the vending machine in the maze is no easy task, and even
when you get there you must be armed with a set of coins which are
to be found somewhere within the game, otherwise you won't be able
to insert the coins to get the fresh batteries contained in the machine!

But back to the bird, the rod and the cage. Wandering on a little soon
brings you to the first major room description of the game, which is
when you start to realise why this game is a disk based one: some
of these room descriptions can get quite long!

"You are at one end of a vast hall stretching forward out of sight to
the west. There are openings to either side. Nearby a wide stone
staircase leads downward. The hall is filled with wisps of white mist
swaying to and fro almost as if alive. A cold wind blows up the
staircase. There is a passage to the top of a dome behind you.’

Round about here you will also encounter a snake, which bars your
way and refuses to let you pass.

Snaky Problems

Feeding animals is the usual way to calm them down, but attempting
to feed the snake is not a particularly good idea, especially if you're
carrying the bird at the time, since the snake eats the bird and then
just sits there looking at you, still refusing to let you pass.

You can solve that one for yourself!

Round about here, you have a choice of routes, and one of them leads
off across the floor of the hall as far as the aforementioned vast chasm,
Which is where the rod comes in useful. Going on from there will take
You towards the maze with the vending machine in it via a back
entrance, but it will also take you near another maze as weil, which
I8 significantly more difficult to get out of.

It also contains something a lot more interesting, but we'll come to
that one later.

aGOing off in another direction leads you to the mysterious Y2 room,
nd nearby lies the equally mysterious bedrock room, which allows

23

you to explore around at random.

From Y2 you can go to another one of the game’s fine room
descriptions, which is one of the more puzzling points on the route
for beginners to the game:

‘You're at a low window overlooking a huge pit, which extends up
out of sight. A floor is indistinctly visible over 50 feet below. Traces
of white mist cover the floor of the pit, becoming thicker to the left.
Marks in the dust around the window would seem to indicate that
someone has been here recently. Directly across the pit from you and
25 feet away there is a similar window looking into a lighted room.
A shadowy figure can be seen there peering back at you.’

Who, or what, is the shadowy figure?!

Dwarves and Pirates

From here we have a variety of routes, but by now a couple of things
will probably have happened. One is that you will almost certainly have
encountered a dwarf: =

‘A little dwarf just walked around a corner, saw you, threw a little axe
at you which missed, cursed, and ran away.’

Charming!

And the other is a bearded pirate, who lurks about the caves, and who
will occassionally appear and steal all your treasure:

‘Out from the shadows behind you pounces a bearded pirate! ‘“Har
Har", he chortles, “I'll just take all this booty and hide it away with
me chest in deep in the maze!”’ He snatches your treasure and vanishes

into the gloom.’

Since some of the treasures have a useful function to fulfil, as well
as just being valuable and scoring points when you get them back out
to the building, this can be mighty inconvenient!

One of these dual purpose treasures is a trident, which lurks away near

the bedrock room. As well as being jewelled, it will also enable you
to solve one of the game’s more puzzling features.

24

Mysterious Bivalves

Near Y2 there lives a giant clam, although we later find out that it is
in fact an oyster. The program cheerfully tells us that it was never very
good at identifying bivalves after this little bit of mistaken identity. Being
an oyster, it will probably contain a pearl, and so you attempt to open

the clam without success.

You can carry it about with you if you want to, although it is a little
heavy, but you won’t be able to open it until you find the jewelled
trident, which is hidden away in a secret set of rooms, which are
themselves reached via the two pit room, or twopit room, as one
acquaintance used to call it.

In the two pit room is a plant, and like all plants it likes being watered.
Water it enough and it will grow and grow until it reaches the height
of a hole way above your head. You can then climb the plant and get
into this new set of tunnels and corridors, until you realise that your
progress is halted once again as you run into an old rusty door that
needs oiling.

Oh well, there is some oil in here somewhere, so having found that
you can then get past the door and find the jewelled trident. You'll
have to get away from there then, which is none too easy, but can
be accomplished.

A Breath-Taking Description

One of the longest of all room descriptions is to be found round about
the low room, near bedrock, and is worth repeating here in full just
to show you the sort of advantages disk-based systems can give you
over programs stored purely in memory, in terms of the use of text
to illustrate graphically what a room looks like : =

You are on the edge of a breath-taking view. Far below you is an active
VOlcang, from which great gouts of molten lava come surging out,
fascadlng back into the depths. The glowing rock fills the farthest
r:aChes of the cavern with a blood-red glare, giving everything an eerie,
- :cabre appearanc_e. The air is filled with flickering sparks of ash and
> uezvy.smell of brimstone. The walls are hot to the touch, and the
. ':1 ering of the volcano drowns out all other sounds. Embedded

the jagged roof far overhead are myriad twisted formations

25

composed of pure white alabaster, which scatter the murky light into
sinister apparitions upon the walls. To one side is a deep gorge, filled
with a bizarre chaos of tortured rock which seems to have been crafted
by the devil himself. An immense river of fire crashes out from the
depths of the volcano, burns its way through the gorge, and plummets
into a bottomless pit far off to your left. To the right, an immense geyser
of blistering steam erupts continuously from a barren island in the
centre of a sulphurous lake which bubbles ominously. The far right
wall is aflame with an incandescence of its own, which lends an
additional infernal splendour to the already hellish scene. A dark,
foreboding passage exits to the south.’

Wow! Try getting all that into a single picture on the screen. The mind
can imagine far more readily what a place looks like from a description
like that than it can from a poor graphical illustration on the screen.

Round about here you can also find an extremely narrow crack that
you can't get down with anything that you happen to be carrying,
and also a troll, who is not too fussed about eating, but who does
have a streak of avarice in him.

Trying to attack him produces the response : =

“Trolls are brothers of the rocks and have skin like that of a rhinoceros.
He fends off your blows effortlessly.

Even if you try throwing an axe at him, all you'll get is : =

‘The troll catches the axe, examines it, and tosses it back to you saying,

Good workmanship, but not very valuable”.

A tricky customer the troll, and you’ll have your work cut out to get
around him without losing too many points.

On the other side of the troll is another set of passages, including the
breathtaking view described earlier, and also including a bear, who
can be bribed with some food, and who can then be used to scare
away the troll when you want to get back across the bridge again.

However, the bear is heavy, and the bridge is old, and the inevitable
happens ... you plunge to your doom on the rocks below.

And so the game continues, through many different rooms and with

many different problems to solve, and space dictates that we can’t
mention them all here. Even with what we’ve already told you, there’s

26

more than enough in this game to keep you occupied for a long time
yet!

But one final feature does deserve mention, and that is the end of the
ame itself, after you've found all of the treasures and taken them back

to the building.

The End Game

As you wander about the caves, convinced that there’s nothing more
to find, a sepulchral voice booms out and tells you that the caves are
closing, and you'd better leave by the main exit.

But where is the main exit?

So off you scurry to try and find a way out, but always its too late,
and the caves close! As they do so, mysterious forces snatch your
keys out of your posession, and a few other items as well for good
measure, and you find yourself:

. . . at the northeast end of an immense room, even larger than the
giant room. It appears to be a repository for the *“Adventure”’ program.
Massive torches far overhead bathe the room with smoky yellow light.
Scattered about you can see a pile of bottles (all of them empty), a
nursery of young beanstalks murmuring quietly, a bed of oysters, a
bundle of black rods with rusty stars on their ends, and a collection
of brass lanterns. Off to one side a great many dwarves are sleeping
on the floor snoring loudly. A sign nearby reads DO NOT DISTURB
THE DWARVES! An immense mirror is hanging against one wall, and
strfetches to the other end of the room, where various other sundry
objects can be glimpsed dimly in the distance.’

And if you get out of that room? You enter this one : =

f:l/ﬁ)ufar_e at the southwest end of the repository. To one side is a pit

i of fierce green §nakes. Qn the other side is a row of small wicker

abguensé|eaCh of which contains a little sulking bird. In one corner is

St e o_f black rods with rusty marks on their ends. A large number

pos et pillows are scattered about on the floor. A vast mirror stretches
to the northeast.

‘Atyour feetis alar ich i i i
ge steel grate, next to which is a sign which reads
EASURE VAULT. KEYS IN MAIN OFFICE.’

27

And what happens then? Well, you'll just have to play it all and find
out for yourself!

We've given a lot of exposure to Adventure here, because it was the
first serious adventure game, and holds many a fond memory for
everyone who's ever played it, whether on a PDP-10, or a Commodore
PET:

It also contains most of the ideas which have influenced other
adventurers over the years, and as such is more than worthy of its
place here.

Try your local user group if you're thinking of getting hold of a copy.
It'll be worth it, but you won’t get much sleep after you've got it.

But since Adventure, there have been many others to solve, so we'll
take a look at some of those now.

Other Adventures

The other main contender in the adventure game stakes is obviously
Scott Adams, who's done so much to popularise these games on
microcomputers.

We've taken a brief look at some of his games earlier on in this book,
but to go into a little more detail on some of them, we'll start with
the very first one he wrote, Adventureland.

This is a very natural romp, in that most of the features you encounter
are perfectly natural, such as bogs, lakes, and a tree (which must
become a tree stump before you can get very far into the game), as
well as the nasty chiggers. Nasty what? Look it up in the dictionary!

It's all very lighthearted, and a nice sense of humour runs throughout
the game. A good starting point for anyone who's fairly new to the
adventure world, as solving it is not too complicated. Nevertheless
it should keep you entertained for quite a while.

As will the second Adams adventure, Pirate Adventure, with a story
line developed by his wife. This one probably more than Adventureland,

set the standard that Adams was to adhere to throughout his game
writing series.

There are four main locations for this adventure, including a London

28

rtment, an Island, a Treasure Island, and Never-Never Land. It was
one of the first games of this genre to give you a mission other than
pure collection of treasures, in that you have to work out how to build

a boat!

Along with some of the characters who inhabit this world, such as
the parrot that keeps shouting ‘Pieces Of Eight’, and who does give
you some helpful hints along the way, this is a nicely humourous game.

Mystery Fun House came next, and differs from the usual run of the
mill games by taking place in a carnival fun house. All sorts of problems
to solve, and many, many corridors to explore, and this was the first
Adams adventure to pit you against a time limit, as well as all the other
problems.

Mission Impossible has appeared on more computers than possibly
any other Adams adventure, and is one of the most difficult ones that
he’s done. It's also a mission adventure, rather than a treasure
collecting one, in that you're on a race against time (as in Mystery
Fun House) to try to stop a nuclear reactor from being destroyed by
unknown enemies.

Spaced Out

Strange Odyssey is set in another world altogether, as it starts with
you all alone on a strange planetoid, with only a shattered spaceship
and your own skills as an adventurer to protect you.

Many outer space games have appeared over the years, and in a brief

aside we'll take a look at a couple of non-Adams ones, starting with
A Stellar Trek.

This is another version of the final frontier, where you boldly go where
Eo computer has gone before, you are in command of the starship
nterprise, and have the simple task of defending the galaxy against

the threat of the invading Klingon empire and their friends the
Romulans.

;lr1htlf| is more of a role-playing game than the true textual adventure,
tact'at you must begin by selecting your crew and adopting various
Ics that will stick with you throughout the game.

N : p .
st‘i:l,lne the less, our basic rules of ignoring nothing and drawing maps
apply, although as we'll see in another game there are instances

29

where examining everything in sight can lead you into great trouble!

This is basically a graphical game, and some may not find it to their
liking if they're aficionados of the real thing. Still, an enjoyable and
frustrating game, that should keep you out of trouble for a while.

Two other games that can dubiously be described as fitting into the
adventure world, although really they are more at home with the
Dungeons and Dragons fanatics, are Starfleet Orion and Invasion
Orion. These are war in space games, with a lot of tactical planning
and craft maneouvering going on, and so don't really belong as true
adventures. But, like A Stellar Trek, they should keep you amused
for a while.

Back to Normal

A new venture for Adams was away from space and into the world
of vampires and other assorted nasties.

In The Count you are out to rid the world of Count Dracula once and
for all, and, in the best traditions of ancient horror movies, you must
race against time to catch the count in his human form before driving
the stake home and removing him from the planet.

Voodoo Castle is set along similar lines, with you involved in an attempt
to save the cursed Count Christo, which sets you off exploring the
hallways and dungeons of Voodoo Castle. An entertaining game, with
voodoo dolls, a juju man, and more.

The final two we’ll mention from Adams are again set in two totally
different worlds, with Pyramid of Doom taking you to an unexplored
pyramid somewhere in the depths of Egypt. This is one of the more
difficult Adams adventures, and many would say the hardest one he's
ever put together.

When you begin writing your own adventures, you'll find that one of
the most dfficult things to judge is precisely how difficult you're going
to make the game.

Since you control the rooms, the objects in them, and the problems
that have to be solved, the game can effectively be made as easy or
as difficult as you like. As you’re going through it, you may well find
yourself thinking that this is a very easy game, and no-one would ever
have any problems solving it.

30

remember that other people haven’t got access to your maps,

ell . : S ;
el diagrams, your list of objects and their original locations,

your routé
and so on.

The easiest solution to this i§ to get an adventure playing friend to
come around, once you're satisfied that _the adyenture is complete and
bug-free (it won’t be, of course - your friend will type in omething you
never thought of, and the computer will be equally as stumped), and
have him sit down and play the game, while you hover nervously in

the background.

From his reports, you can then modify the game, making it more or
less difficult, depending on how it's all gone.

The Wild and Woolly West

In an adventure theme that hasn’t seen too much experimentation,
although Lost Dutchman’s Gold comes near the same area, the last
of the Adams games, Ghost Town, sets you in an American ghost
town that has you expecting John Wayne and Audie Murphy to put
in cameo roles.

Good fun, as you encounter saloons, jails, boot hill, piano playing
ghosts, and a whole collection of ludicrous characters, this is a suitable
Adams game to bow out with. A very enjoyable game.

There are plenty of other games out there that are worthy of
exploration, but for our last one in this section we'll take a look at the
game that’s been described as being as much of an improvement on
Adventure as Adventure was on Wumpus.

What's Wumpus? One of the most boring computer games of all time,
where you have to walk around a few (typically 24) rooms trying not
to b'un}p into the Wumpus, an amiable beast who likes to spend most
pf his time asleep. A few arrows can be fired now and again, but overall
It does not rate very high on the entertainment stakes.

Tosaya game can improve on the original Adventure by that much is
abold claim, but Zork has captivated everyone who has ever played it.

;\l;w in thrge parts, sold on three separate disks, each part is a unique
adventure in its own right, and pits you against wonderful problems

i i : :
")ﬂl_elrd worlds, but with a number of great improvements over that
Origina| game.

31

Zork: the Greatest Adventure?

Zork was the brainchild of four people: Marc Blank, Tim Anderson,
Bruce Daniels, and P. David Lebling, and (like our original Adventure),
was written on a PDP-10.

However, as Zork grew and grew it began to run out of memory space
even on that computer (at the time a giant megabyte, but that doesn't
look too much now), and they decided to completely re-write the game
for a microcomputer.

A strange decision? Well, not really, because most microcomputers
even then had disk drives, and now of course these disk drives are
growing in capacity.

However, to re-write Zork in order to make it all fit was no easy task.
It might be possible to fit all the data and text required for the game
onto a single disk, but what about the program to manipulate it all?
Even the original Adventure control program takes up about 13K
without running it, and as you probably know, as soon as the program
is run, various variables are declared that take up even more memory
space.

So Zork had to undergo a few drastic changes.

The first of these was to write a Zork-language, which could be
swopped from machine to machine merely by changing that language
to suit the machine, and then write all of the program in the Zork-
language.

In other words, just as all micros require a different Basic interpreter,
so the Zork interpreter swops around from machine to machine.
However, the rest of Zork can remain the same, and so the actual work-
load on the authors was considerably reduced. Only the interpreter
had to keep on being re-written, and now exists for just about every
popular make of computer.

The complete story behind all this can be read in a very interesting
article in the July 1980 issue of Creative Computing, called ‘How to
fit a large program into a small computer’, which was co-written by
one of the authors of Zork, Marc Blank.

Having crammed Zork into a small machine, it was now available to
many people, and some of its features are truly amazing.

32

The ability to say more than just DROP BOMB for instance, which
can now be said in a variety of ways. For example, TELL THE ROBOT
TO PUT THE BOMB ON THE SHELF, and other variations, do much
to add to the power, and ease of use, of this game.

Such control over the vocabulary is beyond the scope of this book,
although we will be taking an extensive look at string handling on the
Commodore 64 in chapter 3.

Suffice it to say that if you can get hold of a copy of Zork, do so! We've
given you a few addresses at the back of the book.

But is Zork the ultimate adventure? With graphical and role-playing
games coming more to the fore, let’s take a look at some of those,
and see if we can guess what will happen over the next few years.

Graphical and Role-Playing Adventures

We've already talked about graphical adventures of the future in an
earlier section, and will end our discussion here with the same sort
of conclusion as was reached then: not many people want to see
fabulous displays on the screen, when fabulous descriptions can
conjure up far more in the mind of the player and his alter ego as they
wander about the universe created for them.

Instead, the future would tend to lie in the direction of role-playing
games, best personified by the original Dungeons and Dragons games,
and their variants such as Tunnels and Trolls, Traveller, and the
countless other board games that have sprung up since the first game
appeared.

In these games there is one great difference over the classic

Adyenture/ Zork scenario: you adopt a character role, rather than just

taking on the one that the computer conjures up for you, and your

success or failure in the game depends to a very large extent on th
of character adopted.

In Adventure, you know that if you get the bear you can always get
- ck past the troll again, and escape over the rickety bridge to
OMparative) safety, but if the same situation were to occur in one
&eq games that might not always be the case. Your character might
unfriendly towards the bear, and the bear would bite your hand

Off, or some other dire fate might befall you.

Again, in Adventure, a fight with a dwarf will always have one of twg
options. You will either win and emerge unscathed, or lose and dig,

A fightin a D and D game could have a number of different outcomes,
as well as the two simple ones outlined above. You might win the fight,
but suffer a gaping wound that leaves you temporarily below your best:
an easy victim for the next antman who comes along.

So that is the chief difference: the games are more varied, and indeeq
one could argue a strong case for there being an infinite number of
variations contained within the same game.

However, these advantages are not gained without some other
advantages being lost.

In Adventure and Zork you have a vast vocabulary at your disposal
(Zork can handle over 600 different words, with about 100 verbs to
be used), but in D and D games you're usually restricted to a much
smaller number. This is typically of the order of 20 commands, or even
less: the much rated Temple of Apshai has a very small vocabulary
indeed.

Still, you do have the option of choosing a character who is much
more to your liking than a simple “You are’, appearing on the screen
every time. It is far more satisfying to watch ‘Pete The Great' stalking
about the screen (or whatever you would choose, of course), and for
some reason it seems to make the game a lot more realistic if you know
that it is more specifically YOUR success or failure in the game that's
at stake.

From Boards to Computers

One of the less attractive attributes of Dungeons and Dragons is that
it takes a referee to make sense of it all, and bribing the referee, all
part and illegal parcel of playing the game, has been known to sway
many an outcome. The real life ‘I'll buy you a pint when we've finished'
is far more likely to influence the referee than a simple ‘How about
20 gold pieces then?’ whilst in the middle of a game.

Also, the referee’s job is not an easy one, as most actions have t0
be decided by a concentrated study of maps, charts and rules, and
thus a simple fight between two protagonists could take as long a8
half an hour, or even more, to resolve.

34

|n computer simulations of these games the computer becomes the
referee, and the screen the board on whlgh all thg action takes place,
and as these games are alway.s played in real time that action can
sometimes be decnde:d very rapidly. Our half-hc_)ur fight could be over
in ten seconds, and it's back to the keyboard in a hurry to see what
damage you and your trusty sword have suffered in the duel.

Character Traits

your character in these games is determined by six factors: three
mental (ego, intelligence and intuition), and three physical (dexterity,
strength, and constitution).

In the old days these were decided by rolling three dice and adding
up the spot scores, and thus any one attribute could range from a low
score of three to a high score of eighteen. On the computer, you can
usually choose from a total score and divide that score up amongst
the six attributes, and since our scores can range from 3 to 18 for each
one (or 16 different possibilities), we can create a massive 16 to the
power 6 different characters, or over 16 million!

Since we are creating each character as we go along, we can also
bring in characters from other games, which helps to explain the
popularity of this type of game. If you've survived an exhaustive game
of Dungeons and Dragons as Denis The Unsteady it helps to have the
same character with you next time you set out to play The Curse of
Ra, or whatever. :

These six differing character straits interact subtly throughout any one
game, and the final outcome of that game always depends on the role
you have adopted. A highly intuitive character will find secret trap doors
WIt_h ease, whereas one with low intuition would only find them by
falling into them. Similarly, a high ego would keep going when the

?noing' got tough, but a low ego would probably cry and ask for his
um!

And so it goes on, with each attribute perhaps altering slightly as the
2ame progresses and you discover magic potions, bargain in the
Pothecary Shoppe, and in any one of a hundred different situations.

zzg‘?ps this_ is the true way forward for adventure games in the future,
gam:encreasmgly role playing will play a dominant part in this type of

35

The Ideal Way

The ideal would be to have a combination of the traditional textua]
adventure with a character playing role as well, as graphics are largely
redundant in these games. Thus one would keep the advantages of
a large vocabulary, a large number of locations, and a large number
of hazards and problems to solve, whilst at the same time having a
multitude of variations on the same game by being able to pick your
character from one of the 16 million mentioned earlier.

But that must wait for another time, and for now we'll turn our attention
to the game Underground Adventure, which will be featured heavily
throughout this book, and we'll begin by explaining what it’s all about.

Underground Adventure

This is a classic text-only one character game, because for writing your
first adventure | don’t feel that we should be too optimistic. You may
well, after reading this book and understanding everything that’s going
on, want to go on and develop extremely complicated games, and
if you do then the purpose of this book will have been achieved.

But for now, we'll describe a simple, straightforward adventure that
is (I hope!) a lot of fun to play and solve.

Underground Adventure starts you off outside a series of caves, with
dire warnings about the punishments that await anyone who enters.
But, being a brave young lad with a heart for adventure you merrily
march off into the caves, take three steps inside and CLANG! A
massive gate falls shut against the entrance to the cave, and from then
on it's a question of roaming around trying to find the key that will
enable you to get out again.

There are a total of 16 problems to solve in this adventure, and I've
tried to give you a feeling for the real thing by including a number of
scenes that will be familiar to anyone who's ever played an adventure
before. In later chapters we'll explore the actual writing of those scenes,
and show that it is all possible in Basic, but for now we’ll content
ourselves with simple descriptions.

You start off immediately with a choice of three routes, heading either

east, west or south. North is closed off to you because of the fallen
gate.

36

To the east lies a massive underground tree, yvhich completely blocks

ur path, so you know that one of the things you’ll have to do is
yoﬁn d a way of getting past that tree. What do most people do when
:ﬁey want to remove a tree? They eithgr drag it away or they chop
it down, so you know you're looking for e|ther_ some haulage equipment
(unlikely in an underground cave), or something like a sword or an axe.

To the west, your path is blocked by an extremely large boulder, that
fills up the whole path ar_1d prevents you from going any further. To
get past this, you might first of all try pushing and pulling at it, or even
attempting to pick it up, but the stone is too heavy for you to move
that easily. So, again you must ask yourself the question ‘what would
anyone do when they wanted to remove a large boulder’. Well, again
one could haul it away, but that seems a little unlikely. There could
be a large animal around somewhere that might move it for you, or
perhaps you'll need to blow the thing up with some dynamite. Of the
latter two options, one is the correct one, so we keep an eye out for
either a large animal or a keg of dynamite. Beware of large animals
though: most of them are not very friendly on the first encounter.

To the south, all we can find is a vast chasm, but en route to it we've
already picked up an iron staff, amongst other things. Examining the
staff reveals that ‘it has some useful properties’, so we know that the
staff is capable of solving something. Since we can’t go west, east
or north without finding yet more objects it's reasonable to assume
that we'll have to go south somehow. Attempting to jump the chasm
is not very rewarding, and in fact leads only to your death, so perhaps
if we wave the staff. ..

Ah, perfect, and a bridge now spans the chasm. Good, we can now
head south into the heart of the caves and see what we can find. If
we're unlucky, a living gargoyle will appear, and throw a knife or two
at you, and he must be engaged in combat before moving on,
otherwise he follows you everywhere, continually throwing knives, and
one of them may find its mark. How to kill a living gargoyle? Well,
there must be something dangerous around somewhere, and sure
enough we find an axe eventually. A sure throw with the axe finishes
off the gargoyle (temporarily), and we remember that an axe was one
of the things we were looking for, as a possible means of chopping
the tree down.

Ba(}k across the bridge, chop the tree down, and we find some rope,

\sN ich must come in useful somewhere for climbing up or down

Omfathlng, and a golden bear, who appears none too friendly.
Viously the bear must be calmed down somehow, but how ?

37

That one, and a few other problems, we’ll leave up to you, but you
will have begun to get the idea of solving this adventure. Everything
is there for a reason, and solutions to problems are usually quite logical.
Later on we'll take a very thorough look at this game, and analyse
every verb in the game and how it works, along with the rest of the
listing, and we'll also see how each part of the listing comes together
to make a whole game.

For now, here are a few facts and figures about Underground
Adventure that will help you in the next section, when we come to
basic programming on your computer, and how we'll use a knowledge
of Basic to go about writing adventures.

First of all, a partly finished map drawn by someone who started off
playing this game but then ground to a halt. Since the game is equipped
with a LOAD and SAVE procedure, to allow the stopping of games
and subsequent re-starting without going through everything again,
it is possible to stop this game at any convenient point (i.e. when you
think you're about to be killed), and use the map again later.

Underground Map

21)08 op wygoyd < _ |

spelge pifosn — ¥

/¥ |8+ |é oc

7 o0,
d m+

w7 dagp ageod
droys ool]
Qe A—wor C N
|
) \.DQQ Joa® == P sanog
Nﬂuﬂ. m/at Fopaf - FeP o) By i b % 1
¥* Qv 6 Le| 1L * ¢ (o 74 |

4

22 oIF ! 7 7| [P0 W
g | 723| |Yula ».SQQL 7| | T | B | s pase
27| & 17 ¥ oz el I¢_ ¥ c 6| | o1 [* 41
1 : 1 |
Jeuun y20+4 yres) uMu.w_\w\\M \Uw\uatﬂ EWWM\Q
* €T k4 o| ¥ 2« Q
1 _]
pHua? vy e 272
_@N ST |
kﬂu%
w*_na
7] [%rz] [T \g%\\\w\g\w
_on ¥4 62
2102
* e ‘aimuaApy punosbiapun jo dew palsdwos Ajued vy

List of Verbs

We’'ll use this later, when we see how every verb is handled by the
program, and in that section we'll need to know how each verb slots
into the whole program. It will also help you if you decide to take on
the mammoth task of typing this whole thing in! Even if you chicken
out and buy the cassette, at least you'll be able to examine the listing
and see how it all works:

Complete List of Verbs in Underground Adventure

VERB LINE NO. VERB LINE NO.
GO 270 GET 300
LOOK 200 INVENT 500
SCORE 540 DROP 560
HELP 650 QuiT 1890
CROSS 690 TAKE 300
OPEN 780 CLOSE 880
EAT 900 FEED 950
DRINK 1000 OFFER 1050
WAVE 1100 CuT 1150
CHOP 1200 CLIMB 1250
LIGHT 1300 ATTACK 1350
KILL 1400 HIT 1450
MAKE 1500 REFLECT 1550
OIL 1600 STAB 1650
SPRAY 170 THROW 1750
RUB 1800 READ 1850
EXAMINE 1900 JUMP 1950
BREAK 1960 PUSH 1970
SAVE 3000 LOAD 3200

Armed with this, the solving of Underground Adventure will obviously
be a lot easier, but it is essential if we're to make sense of the listing!

Complete List of Objects
Equally essential is a list of all the objects in the game, although just
to make it a little more difficult we won’t tell you where they all start

off. However, by the time you've finished this book you’ll be able to
work it all out for yourself, if you want to cheat!

42

0BJECT

VAST CHASM
ﬁ VAST TREE
‘A THICK COIL OF ROPE
SOME DYNAMITE!
A GOLDEN BEAR
‘A BIG BLACK PANTHER
A TALL LADDER
A HAZY SHIMMERING
CURTAIN
A BLOCKED TRACK
AN EMPTY BOTTLE
THE GHOSTLY DENIZEN
OF THE CAVES!
AN ENORMOUS FLY!

A LUMP OF SOLID MORTAR

A SOLID GATE

A SHINING STONE
SOME WHISKY

AN EVIL KNIFE

A WALL

AN OLD TORCH

A GLOWING LIGHT
PROGRAM

A BOTTLE OF OIL

SOME NICELY SAWN TIMBER

Note that not all of them are objects, and some of them are actually
places. We'll see why later.

Finally, a little bit of dialogue with the program, which is the result

of first starting the game.

OBJECT

AN IRON STAFF

A STOUT AXE

AN ENCHANTED BRIDGE

A PILE OF RUBBLE

A BUN

A LONG WOODEN PLANK

SOME NAILS

A POLISHED MIRROR

A POOL OF OIL

A SOLID WALL OF HAZY
MIST

A HUGE BULBOUS SPIDER

A RICKETY OLD DOOR

A FLY SPRAY!

A NARROW CRACK

A TRUSTY SWORD

A LIVING GARGOYLE!

A KEY

SOME MATCHES

A BLAZING TORCH

AN OLD PARCHMENT

A PILE OF BROKEN GLASS

A BOTTLE OF WHISKY

A Dialogue with Underground Adventure

E;f‘foll(_)wing is one way that a game night start off, with the computer
INg in upper case, and your entries in lower case:

YOU ARE ON AN OLD TRACK HEADING TOWARDS THE CAVES,
YOU CAN SEE :

AN OLD TORCH

YOU CAN GO : SOUTH

WHAT NOW? * (the prompt symbol)

get torch

OK.

WHAT NOW? *

s (or south, or go south)

YOU ARE GETTING EVER NEARER THE CAVES.
YOU CAN GO : NORTH SOUTH
WHAT NOW? *

S

YOU ARE AT THE ENTRANCE OF THE CAVES,WITH PATHS
LEADING EVERYWHERE.

YOU CAN SEE :

A SOLID GATE
SOME MATCHES

YOU CAN GO : NORTH SOUTH EAST WEST
WHAT NOW? *
get matches

OK.

44

gat gate
| CAN'T DO THAT!

WHAT NOW? *
light torch
OK.

inventory

yOU ARE CARRYING :

SOME MATCHES
A BLAZING TORCH

WHAT NOW? *

OH DEAR, THE GATE TO THE CAVES APPEARS TO HAVE
SLAMMED SHUT!

THAT’S TORN IT! YOU'LL HAVE TO FIND THE KEY NOW BEFORE
YOU CAN GET OUT.

BUT DON'T WORRY. IT'S IN HERE SOMEWHERE!
WHAT NOow? *
And so it goes on, with your adventure now well and truly under way.

In chapter 3 we'll take a look at some of the knowledge of Basic
'equired to produce this sort of program.

3

Programming Adventures in
Basic

Why Bother?

This ranks alongside asking Chris Bonnington why he climbs
mountains, or Patrick Moore why he looks at the stars. It's something
that they enjoy doing, for some reason that probably they couldn’t
even explain if asked to sit down and actually state a concrete set of
reasons.

So it is with programmers. People enjoy programming, just as much
as some enjoy climbing mountains or some enjoy peering through
telescopes. As with any other pursuit, there are a variety of ways of
programming, and there are a variety of things to write programs about.

This book will teach you all about programming for one subject, that
of adventure games. It will also only teach you one style of
Programming: of necessity, that will be the style adopted by the author.

However, it is to be hoped that originality will shine through on your
part, and you’ll go on to produce programs that are wildly different
from the ones shown here.

Satisfaction

The_ major reason why people write any sort of program must be for
BIr own satisfaction, rather than anything else, although one is

Sometimes tempted to think that the mercenary attitude shines through
On occasions|

47

To complete a program that is over 30K long, as some of these
adventures undoubtedly will be, is quite an achievement, and even
if no one comes along and says ‘That was great!’, at least you'll stil|
be satisfied with it yourself.

All the better then when someone else does play the game, and
congratulates you for writing it. It makes all the hours spent poring
over the keyboard desperately trying to solve a programming problem
worthwhile.

In return, its nice to think of the person ultimately playing the adventure
taking far longer to solve the program that it took you to write it!

Money

We mentioned mercenary attitudes earlier, and that is obviously one
reason why you should bother writing anything, let alone adventure
games.

From one point of view there’s always the possibility of seeing them
go on sale and being marketed by a reputable company, and that is
very satisfying.

Another point of view would be that it saves having to buy a lot of
adventure games written by other people, but that must be a secondary
reason. If you've written the program it won’t take you too long to
solve it, no matter how many random elements you've put in there.

Level of Skill

One does not have to be the greatest programmer in the world in order
to write satisfactory adventure games. You don’t need a knowledge
of machine code, and the amount of Basic coding that you have to
be thoroughly proficient in is not too great: we’ll be covering most
of what you’ll require in the rest of this chapter.

Essentially we’re concerned with string handling, and the number of
commands in Basic that allow you to manipulate strings is a fairly
limited sub-set of the language as a whole.

Once one is au fait with those, the rest of Basic required is mainly

standard stuff, with one or two ‘tricks of the trade’ which we’ll be
showing you later.

48

How to Start

thing in the world is to sit down in front of an empty

t
st and think ‘My God! I've got to write 30K of code!’.

wmputer,

kin to the old writer's syndrome .of staring at a blank shget of
r and not having a clue what to write or yvhere to start. Obvnously

u map things out first, and we'll be looking at that in more detail
= hapter 4, as we begin to pull all the separate pieces of knowledge
::e‘ive learnt together into a coherent whole.

It's @

Writing an adventure game is not as daunting a task as you might at
first think. Certainly, to look at a listing for an adventure program
(perhaps you might care to glance at the listing for Tunnel Adventqre,
as that is presented in full at the back of the book) is to invite a feeling
of nausea as you are confronted by a million and one IF ... THEN,
GOTOs and GOSUBs sending program execution careering about all

over the place.

However, the listing, when examined carefully and closely, as we shall
be doing, does eventually begin to make sense, and you realise that
every part of the program is playing its proper role in keeping the whole
thing running, whether it's an INPUT routine that stops you entering
the wrong type of information, or dropping out of the program;
whether it’s a routine to handle movement of the character from one
room to another; or whatever it is doing, it's all there for a purpose,
and later on we'll find out exactly what all those purposes are!

Cooking

What? No, you haven’t stumbled into the wrong book, but a useful
analogy with programming adventures is to think of the problems
Posed to a chef, when he/she is presented with a set of ingredients,
and told to come up with the finished meal.

We'll present you with a set of program subroutines that handle various
tasks, andin this first program we'll also give you the recipe and make
them into the finished program.

We May not turn you into the Robert Carrier of the adventure
z%fammlng world, but at least we'll get you doing more than just
aking beans on toast!

A Brief Outline

Just to let you know what's coming up, the next section in this chaptey
will be devoted to learning the commands that are essential to thg
producing of good adventure games, with obvious emphasis on thg
string handling ones.

As well as covering the range of commands mentioned earlier (IF . _
THEN, GOSUB and GOTO), we'll also take a brief look at all the othgr
necessary statements taken in conjunction with their use in adventurg
games.

This is not meant to replace the Basic programming guide in your
handbook, but at least will enable you to get going.

This will be followed by a short set of listings, all taken from
Underground Adventure, along with a thorough explanation of how
they all work, so that you can use them either as they stand, or suitably
amended, in your own games.

Our final guide to writing adventures will concentrate on more example
listings, together with a set of helpful sections on a good procedure
to adopt when sitting down and writing them yourself.

We've even given you a number of scenarios for possible games, which
you may like to adapt into your own first adventures!

Underground Adventure is gone through in great detail, with a couple
of pages for each verb in our vocabulary, and an explanation of how
the code for that verb works, and by following that you should be able
to make out what Castle and Tunnel Adventures are doing. You should
also learn how to incorporate new words (as you will obviously need
to) in your own programs.

Finally, a round up of information on adventures generally, together
with a useful set of addresses to contact for further help and
information.

Adventure Programming in Basic
In this section we'll look at the commands available to us in Basic for

string handling and data handling, and then start tying them up int0
useful routines.

50

Input

.« is simply a way of typing in information, from a program, that
thels,_,mq_;lram will understand and then use in the rest of the program.

before we can start using Input, we need to talk about a

ver,
lowes her things: cursor control mode, and the concept of

couple of ot
variables.

Cursor Control

If you type in PRINT ”, and then start trying to move the cursor, you'l
see that the cursor just moves to the left, leaving behind a trail of
strange characters. These are known as the cursor control characters,
and you'll soon get to know which one corresponds to which cursor

key.

Pressing Shift and Return will always get you out of this mode, but
for now we'll stay in it.

To make it easier for you to type in listings, the following symbols will
be used to represent one key press of the corresponding key:

[Cul : CURSOR UP (USE SHIFT)
[CD1] : CURSOR DOWN

[CL1 : CURSOR LEFT (USE SHIFT)
[CR1] : CURSOR RIGHT

[CLR] : CLEAR SCREEN (USE SHIFT)
[HOME] : CURSOR HOME

LRVS] : REVERSE ON (USE CONTROL)
LOFF) : REVERSE OFF (USE CONTROL)

If ever we want you to press a key more than once, the following
notation will be used : =

[5CR,CD for example, means press the cursor right key five times,
and the cursor down key once.

ﬁOT instance, the following program will print HELLO in the top left
and corner of the screen, as well as clearing the screen:

10 FRINT »roLRIHELLO"

51

Variables

A variable is simply a term used to describe a number, or some text,
that can be stored in the computer.

There are three different types of variables, real, string, and integer.

Real variables are just numbers, and any of the following is a lega|
syntax for a variable NAME:

A, AS, AZ, BANANA, JAWS, etc.

That is, the name must be at least one letter long, and must start with
a letter, and anything after that can either be a letter or a number,
However, the computer only recognises the first two letters of any
variable name, so that (to the computer) PLOD and PLANK mean the
same thing.

If you're using longer names to make your program more readable,
remember the above rule.

String variables can be numbers, letters, or a mixture of both, and
the restrictions on string variable names are the same as for real
variables, with one addition.

String variable names must end with a dollar ‘$’ sign. Thus, all of the
following are legal string variable names:

A$, Al$, ZZ%, FRED$, etc.

Integer variables are again numbers, but this time without the decimal
part attached.

Thus an example of a real variable might be A =12.5, but the integer
counterpart would be A% = 12. All integer variable names must end
with the ‘%" sign.

The following would all be acceptable variables of their own individual
types:

A=264.45, A%=54, A%$="I"M A STRING VARIABLE", ALs="1
AM 1 2!, etc.

52

three variable names, known as reserved variables, that

+ be used on your Commodore 64. These are ST$ (used in
canno put operations), ST (which changes during these operations),
;nd -#:nd Ti$, which both refer to the 64's internal clock. Thus you

can't use names like:

are

TIMES# . sTATE, CAST, BUTI, etc.

contain one or other of those reserved variable names. Also,

all ;
il ough, you can't use any of the reserved Basic words.

logically en

Back to Input

Input allows you to type some information into the computer from
a program, and that information is stored as a variable. For example:

10 PRINT "CCLRIHELLO, WHAT'S YOUR NAME "

20 INFUT AF
Z0 PRINT "HELLO ";A%

would allow you to enter your name, and then say hello to you.
If you tried typing in 1.45 as your name, you'd have been referred to

as 1.45! That’s because we specified that we wanted a string to be
input (A$). Try the following:

10 PRINT "[CLRIHELLO, HOW OLD ARE YOU "
20 INFUT A
30 FRINT "[CDITHAT MEANS YOU'RE ";A*365;" DAYS OLD!"

If you'd typed in your age as FRED, the computer would have
responded with ?PREDO FROM START. It was expecting a number,
not a string, and you’ll have to type something sensible in.

!f You press Return, and nothing else, the program will continue, but
It will treat the string as a null one, i.e. one that contains nothing.

Input can also contain some text as well, as in the next example:

;g INPUT “[CLRIHELLO, WHAT'S YOUR NAME";A$
FRINT "HI THERE, ";A%

Not only does it make the program shorter, it also makes it neater.

53

However, there are ways of getting out of an input statement like thig
one, so we'll be taking a look later on at some more elaborate wayg
of presenting input statements that stops the player of your adventurg
from crashing out of the program.

Data and the Inputting of it

We've already seen that we can get information, or data, into g
program by using the input statement, and of course a lot of
information could be typed in just by using a lot of input statements,

However, this could get exceedingly tedious if you were using the same
information over and over again, hence the need for data statements,

Here the data is typed in as part of a program, read off from within
the program, and then acted upon.

Not only does it save you typing in vast amounts of data each time
you run the program, but it also allows you to change just one data
item, and see how that affects the rest of the program.

In this short example we'll read ten numbers, add them up and then
take an average of the whole lot.

10 PRINT "[CLR1"

20 READ A

25 IF A=0 THEN 40

30 B=R+A

40 C=B/10

45 PRINT “[CDITHE TOTAL IS ";E

50 PRINT "CCDIAND THE AVERAGE NUMBER READ WAS ";C
60 END

70 DATA 1,2,4,5,6,7,3,35,80,43,0

The IF ... THEN branching statement in line 25 will be explained more
fully later, but here it allows us to stop adding up numbers when we've
read ten of them, and reached a number of 0: the last data statement.

Data statements can be anywhere in a program, and if you're reading
real numbers, that’s what the data statements must contain. If you're
reading strings, again they must contain strings. Otherwise you'll get
a BAD DATA error message flung at you, and quite right too!

What you must remember is that data is read as it is encountered,

54

rever it does happen to be in the program, make sure that it
onds to what you want to read.

so whe
correspP!

, mak
actually tyPe
make extensive use of data statements in these adventure

jways ensure that the right data is being read by the right
d that the right amount of data is being read.

e sure that you don't try to read more data than you've
d in, otherwise an OUT OF DATA error will occur.

since we
listings @
variable, an
ou try to read the same data again, another OUT OF DATA error

f
\IM}G take place, unless you use the ...

RESTORE command

This allows you to re-read data, and takes the following syntax: =

55 RESTORE
56 GOTO 20

One concept to explain here. GOTO, which transfers program
execution from one part of a program to another, will again be gone
into in more detail later.

To finish with data for a while, here’s a short example that mixes strings
and numeric data:

10 PRINT “CCLR1"

20 READ A$,B,C,D

30 PRINT "[CDI1";A%$;" I
AND ";D;" DAYS OLD!'"
40 GOTOZ0

S0 DATA FETE,25,7,3

60 DATA BERYL,24,10,0

"iBi" YEARS, "iCi" MONTHS

.When run, this will generate an OUT OF DATA error, as we send
[tback 1o line 20 to read more data that isn’t there, but the concept
S, none the less, a sound one.

GET, IF and THEN

We'l confine ourselves to using the keyboard, where we find that GET
o °W§ Us to input one character at a time, without the need to keep
'éssing the RETURN key.

55

The following program will illustrate this point:

10 FRINT "L[CLRIFRESS ANY KEY"

20 GET A%¥:IF A%=""THENZ20

30 FRINT "[CD1YOU PRESSED ";A$;"!"
40 GOTO 20

A number of new ideas here.
In line 20, the line is executed as follows:

Step 1) See if a key has been pressed on the keyboard.

Step 2) If it hasn't (i.e. if a null string, ””, has been
detected) then go back and try again.

Step 3) It has, so we fall through to line 30, where it
prints out which key was actually pressed.

Line 40 just sends us back to line 20 again, and waits for another key
to be pressed.

The only way to stop this program is by pressing the Run/Stop key,
otherwise it will loop around for ever!

We can be selective in which key we press, by moving on only if the
correct one is depressed. For instance, suppose we want to halt a
program until the space bar is pressed. This part of our program might
look something like:

100 GET A#%: IFAF< " "THEN 100
11Q carry on s

Here, if A$ is not equal to (the < and > keys together) a space, i.e.
the space bar has not been pressed, then go back to line 100 and wait
until it has.

This can be extended further, for example if we want someone to make
a Yes or No decision, and only want them to press the Y or N keys.
There are a number of ways of doing this (although we don't
recommend typing in those parts of the program that are in lower
case!):

100 GET A#: IFA$=""THEN100

110 IFA$="Y"THEN goto another bit of the program.
20 IFA#="N"THEN go somewhere else.

130 6OTO 100

So, if they press Y we go to one part of the program, N and we g0

56

another put if neither are pressed then we wait until one of them is.
w ’

or how abOUt this:

GET A$: IFA$<>"Y" AND A$<>"N"THEN100
108 1FA$="Y"THEN goto one part of the program
1;0 this is what happens if A% is equal to N

Here, We sit and wait till either Y or N is pressed. It takes up less
prog;'am space, and is just another way of doing the same thing.

This kind of selective key pressing is one of the principal uses of the
IF ... THEN statement.

Its other main role is in decision making according to the value of string
or numerical variables.

Strings or numbers can be compared using the greater than ‘>" and
less than ‘<’ operators, which have the following connotations:

: A greater than B

: A greater than or equal to B
: A equal to B

: A less than or equal to B

: A less than B

: A not equal to B

>
\%
o)

ANAN IV
\% Il
Wmmwowwm

>r>r>r

Thus our program might contain a line something like : =

100 IF A <= B THEN 200

Thus, if A is less than or equal to B then we go to line 200. If A is
greater than B we simply slip through to the next line of the program.

Strings are compared alphabetically. Thus “AAAA" is reckoned to
less than “ABAA", and so on, and these can also be used in IF
+-. THEN statements as above.

Subroutines

g:g!e sections of a program have to be performed time and time again,

« ¢ ltwould become very tedious, as well as wasting a lot of memory,

You had to keep typing out the following lines every time you wanted
Program to execute them:

57

10 A=B+C

20 D=E+F

30 H=A+D

40 FRINT H

50 REM GET ON WITH FPROGRAM AGAIN.

Of course, if our program segments were only this long there wouldn't
be too much trouble, but as we learn more and more commands the
complexity of our programs will grow, and the need to perform
repetitive calculations will grow with it.

Thus we have subroutines, lines which are used a lot within a main
program, and which generally just perform one specific function.

We'll see how to ‘call up’ subroutines in the next couple of pages,
but the point to be made here is that they too, like the rest of the
program, should be REMmed.

For instance:

SOOO0 REM 553656 55 55 9696 396 396 3 36 3 3 36 3 3 3 96 3 3 3 96 3 3 3 3 3 3 3 3 % %
5010 REM # START OF BORDER DRAWING SUBROUTINE *
SOR0 REM 555555556 585 3 32 023222 2 3 3 2 06 2606 9 360666 6 06
5030 FRINT "LCLRI +++++++++tttttttttttttttttt+++it
B o S S

5040 A=A+1: IFA=24THENSQ&L0

S050 FRINT"+ +
H

S060 FRINT " Attt bbb b bbb bbb b+
+II;

EOT70 REM 55533 5 3 39 5 3 363 5 3 3963 369 96 3 3 396 3 9 36 3 936 0 36 36 %

5080 REM * END OF BORDER DRAWING SUBROUTINE *
S5O0 REM 33 5% 3 3 3 3 5 3 3 3 33 3 5 3 3 33 33 333 539 393 3K 3% %

| don’t pretend for a minute that this is the most elegant way of drawing
a border around the screen, but at least it works, using only the
commands we've so far encountered.

By structuring programs in this way, the REM statement becomes @
powerful ally in keeping your programs neat, tidy and intelligible.
More String Commands: LEN

LEN, as you might reasonably guess, is associated with the LENgth
of a string.

58

r instance, if we assign a string A$ to be equal to “A LONG
STRING”, the command:

PRINT LEN (A%)

would return a value of 13, this being the number of characters
(including spaces), contained within the string A$.

We can also assign another variable to be equal to the length of a string,
thus:

10 AF="ANDTHER STRING"
20 B=LEN(A%¥)
30 PRINTB

Running this would give us the result 14, this being the value of the
variable B, or in other words the number of characters in the string A$.

LEN comes into its own when taken in conjunction with the next set
of string commands.

MID$

This is the most flexible of all the string handling commands, and is
taken first because its probably the one that you'll use most often.

Strings can be manipulated in many ways. As we've seen, they can

be added up (more correctly termed ‘concatenated’), they can be

compared with each other, but MID$ opens up a whole new field.

The command takes the following syntax:

MID$ (A%, 1,7)

Let us take a typical example.

We'l assign the string A$ to be equal to the name of my home county,
Ncashire. So, if we say A$ = “LANCASHIRE" A$ becomes a string

of length 10 characters.

-
c": command MID$(AS$,1,J) takes the string A$, starts at the Ith
facter in that string, and takes J characters out of it.

T .
9 give a programming example.

10 A$="LANCASHIRE"
20 PRINT MID$(A%,4,4)
When run, this would print out the new string CASH : A$ is unaffecteq,

As with LEN, this can also be assigned to another variable. For
instance:

10 A$="LANCASHIRE"
20 B$=MID$ (A%,7,4)
30 FRINT B$

would result in the string HIRE being printed out, this being the value
now stored in B$.

There is one other way in which MID$ can be used, and this is to take
all the characters in a string, starting from a specified point. That is,

MID$(AS$,1), would start at the Ith character, and take all the remaining
ones.

Thus, with our string A$="LANCASHIRE"”, the command:
PRINT MID% (A$,6)

would print out the word SHIRE.

LEFTS

Not as flexible as MID$, but none the less a command with its uses
when handling strings, is LEFT$.

It is a fairly safe bet to assume that this has something to do with the
left-hand side of a string, and indeed it does.

Sticking with counties, we'll assign the string A$ to equal “DEVON".
When we issue the following command:

FPRINT LEFT#(A$,4)

the result is printed to the screen as DEVO. Thus, with LEFT$ wé

always start at the first character in the string, and take as many
characters as indicated in the argument.

60

So, in the following program:

A$="DEVON"
1o B$=LEFTS (A%,3)
30 PRINT B#
we would get the rather strange word DEV being printed out.

As you can see, not as powerful as MID$, but not without its uses.

RIGHTS

Well, you'd never guess would you?

RIGHTS$ is concerned with the right-hand side of a string, and works
in pretty much the same way as LEFT$.

Thus, if we assign the string A$=""CORNWALL", the command:
PRINT RIGHT# (A%,4)

would print out the word WALL.

As before, other variables can be assigned using this same command.
For example, the following program will define the variable B$:

10 A$="CORNWALL"
20 B$=RIGHT$ (A$,7)
30 PRINT B$

and print it out to as ORNWALL.

Of °0urse,.all these commands can be combined in many ways, to
Make manipulation of strings very easy.

Take the following short program:

;g A$="PETER GERRARD"
BE=LEFTS (A%, 6)

2 g =MID% (A%,4,5)

So $=RIGHT$ (A%,7)
FRINT B$;cC$;Ds

61

When run, this would print out:
PETER ER GE GERRARD

To further illustrate, how about this program to reverse the direction
of a word:

10 A%¥="SURFING"

20 B¥=MID$(A%,7,1)

30 C#=MID% (A%$,6,1)

40 D¥=MID¥(A%,5,1)

50 E$=MID$(A%,4,1)

60 F#=MID%(A%,3,1)

70 GF=MID% (A%,2,1)

80 H&=MID$(A%$,1,1)

90 I1$=B$+C+DI+ES+FE+GE+HE
100 FRINTI#$

When run, the word GNIFRUS is printed out.

There are much more elegant ways of doing this kind of thing, as we’'ll
see when we encounter FOR ... NEXT loops shortly.

STR$ and VAL

Two functions which are essentially the inverse of each other, and
both of which are concerned with string and numeric manipulation.

Take a number A, equal to (say) 12.123.
The command:
PRINT STR#(A)

will print out the string 12.123, although the number A has remained
the same.

This command is more useful when assigning variables, so the
following program shows this in action:

10 A=24.232425
20 AF=STR¥ (A)

30 FPRINT A%

40 PRINT LEN(A$)

62

RINT MID$ (A%,1,2)

. ERINT MID$(A$,4)

When run, this program will print out the following : =

24.232425

9

24

232425

So you can see, by finding the position of the decimal point, we can
split a number up into its two components.

How do we do this?
Well, one way would be to use the inverse function, VAL.

VAL takes a string, and converts it into a number. Thus, if the string
A$ was equal to “10”, the command:

PRINT VAL (A%)
would print out the number 10.

lfA$ ="12.123", VAL(A$) would also equal 12.123, but of course this
time it would be in numerical format.

VAL bceomes to a halt when it comes across something that is not a
number.

Thus, if A$="88A88B", VAL(A$) would return just 88.

We can also print out straightforward variables. That is, in the following

Program, we are defining the variable A to be equal to the VALue of
Various strings:

10 A=VAL("23.23")
§0 PRINTA
0 A=VAL(IIAII

)
40 PRINTA
50 A:V L

AL ("—100.9")
80 PRINTA

Wi
hen run, the results on the screen would be : =

23.23
0
-100.9

So, to split a number up into its component parts, we must find thg
decimal point by turning the number into a string, taking each numbg
at a time until we find the decimal point, and so on. Thus:

10 A=345. 4678
15 B=E+1

20 A$=MID$ (STR$ (A) , B, 1)

30 IF VAL (A%$)=0THEN100:REM THE DECIMAL FODINT

40 B$=B$+A%$:GOTO15:REM KEEF ADDING NUMBERS UNTIL y
E REACH DECIMAL FOINT

100 C#=MID% (STR$ (A) ,B+1)

110 FRINT E$,C$

Just to explain a little : =

Line 10 : define the number
Line 15 : increment our counter
Line 20 : turn A into a string, and take one character at a time
Line 30 : is that character a decimal point (VAL(A$) equal to zero)
: if yes go to line 100
: otherwise, add the number to our string B$ (line 40)
Line 100 : C$ is made equal to the string equivalent of the number,
starting at the character after the decimal point.
Line 110 : print out the numbers

The resulting display would read:
345 678

Two powerful functions!

CHR$ and ASC

Another two analogous functions, again concerned with strind
handling, but ASC in particular assumes great importance when talking
about communicating from one microcomputer to another.

ASC is short for ASCIl, the American Standard Code for thé

Interchange of Information, although when used on the Commodoré
64 it would probably be more correct to call it ComSCll, as Commodoré

64

seem 10 enter a world of their own when designing character sets.

still, to generate them on the screen the following syntax is used:

PRINT ASC("A")
which would return a value of 65, or:
PRINT ASC (A%)

which would return the Ascii value of the first character contained in
the string A$.

CHRS$ is the opposite of this.

For instance, you probably know that to switch graphics modes you
type the Shift and Logo keys simultaneously.

This can also be achieved with the following statement:
FRINT CHR#(14)
Upper case is reached with CHR$(142), to save you looking it up!

Everything else, like printing in black text, printing letters, etc., can
all be done with the CHR$ command.

Both of these commands can again be used to define other variables.
For example:

A=ASC ("A")

will put the value of 65 into the variable A, and
AF=CHR#$ (13)

‘Kg' put the character string 13 (in fact, a carriage return) into the string

FOR ... NEXT
Where would we be without FOR ... NEXT loops?

Al ; . y

a :ﬂwbgh we've been instructing the computer to do the same thing

‘Ioo, 'f\ er of tlmgs over, by use of a simple incrementing variable, the
P approach is far better, and far easier to operate.

For instance:

10: PRINT “CCLR3"

20 FOR I =1 TO 100
I0 PRINT I

40 NEXT

This will just print out the numbers from 1 to 100 in rapid succession,
but illustrates the point.

Line 20 is the start of our loop, and tells the computer that we want
to do something 100 times. In fact, we want to print out the numberg
from 1 to 100, and as the value of | increases, it is printed out in ling
30. Line 40 then tells the computer NEXT, i.e. there’s more to come,
and the program branches back to line 20.

It keeps on doing this until | has reached the value of 100, at which
point it stops and our short program ceases execution.

Actually, | reaches the value of 101. Why? Well, when it has the value
of 100, it prints it out as in line 30, sees the NEXT statement in line
40, and increases the value of | to 101. However, on branching back

the computer finds that the limit of the loop is when | is equal to 100,
so it stops!

The correct syntax in line 40 should have been:
40 NEXT I

as we can have more than one loop active at a time. Like this:

10 PRINT “CCLR21"
20 FOR I = 1 TO 20

Z0 FOR J 1 TO =
40 PRINT J,I

S50 NEXT J

60 NEXT I

The first time around, | is set to 1, and J counts through from 1 t0
3. Thus the display goes something like : =

1 1
2 1
3 1

Then J has finished, so we go onto line 60, where | is incremented
again, so it's back through the loop once more, for:

66

2
i 2
3 2
and so on, until we finally reach:
] 20
2 20
3 20

at which point everything stops.

Lines 50 and 60 could have been abbreviated to the rather more
straightforward : =

50 NEXT J,I

Just make sure you keep everything in the right order, and don’t have
more than 26 loops in action at the same time, otherwise the computer
will blow its stack (computing joke).

Loops can be made to count in steps as well, for instance:

20 FORI=1TO100STEP2
30 PRINTI
40 NEXTI

when run, will print out the numbers 2,4,6, ... 100. We can also o
backwards : = -

20 FORI=100TO1STEF-2
30 PRINTI
40 NEXTI

When run, will print out the numbers 100,98,96 . . . 2.

For an ; : AL .
an interesting application, using only commands we've seen so

:ar, can you work out what this program is doi iti
You can’tl)? program is doing (type it in and see,

30 SETBS: IFE$=""THENZ0
4 ORI=1TOLEN (A$)

0
So ;FB*=MID$ (A%,1,1) THENFRINTE$; : GOTO20
EXTI: soToZO '

67

GOTO somewhere

We've already encountered this one. Basically it sends command of
a program to somewhere else within the program, or back to the samg
line as in the example on the previous page in line 20.

The syntax used is GOTO xxx, where xxx is an existing line number,

If it isnt, you'll get the UNIDENTIFIED STATEMENT error being ‘
thrown in your face! ‘

As a short example : =

10 PRINT "LCCLR3I"j
20 PRINT "HELLO!'"
30 GOTO 20

When run, this just prints up hundreds of HELLO!s, until you hit the
run/stop key.

Changing line 30 to read GOTO 10, produces a slightly flickering
display.

GOSUB and RETURNing

Subroutines have been met before, as small, or maybe even large,
segments of programs that have to be repeated many times.

Performing the same function over and over again is a repetitive task,
and having to type the code in each time you wanted it actioned would
take a lot of time, and a lot of memory.

Thus subroutines were born, and the command used to send program
control to them is GOSUB xxx, where xxx is the line number at the
start of the subroutine.

Once actioned, the command to send control back to the main program
again is RETURN.

Great care must be taken in matching up GOSUBs with RETURNS

otherwise a RETURN WITHOUT GOSUB error will take place soonéf
rather than later.

68

with FOR ... NEXT loops you can have up to 26 subroutines in
action at the same time, but no more.

Thus you can jump about f!'om one subroutine to another, and quite
it is necessary to do this, but it isn't really very good programming

pmctice.
A few examples:

10 PRINT "LCLRI"

20 A=S: B=10

=0 GOSUB 100

240 GOSUB 200

50 GOSUB 100

60 FRINT A, E

70 END: REM IMPORTANT, OTHERWISE FROGRAM FALLS THR

120 RETURN
200 B=B-1
210 RETURN

When run, the first subroutine is encountered twice, the second once
only, and the resultant printout is : =

905 9

Of course, one can get a lot more complicated than this!

10 PRINT"[CLRI"
20 A=1:R=2:C=x
30 BOSUB1OO

40 BOSUEZ00

50 GOSUEZO00

€0 PRINTA,E,C
70 END

100 A=A+E+C
110 Gosur200
120 RETURN

200 BOSURZOO
210 A=p+p+C
220 GOSURZOO
230 RETURN

300 A=p+q

310 RETURN

What value will A have when this program is run? Try it and see!

69

What's GOing ON

Quite often within a program, the subroutine or line number you want
to go to will depend on the value of a particular variable.

This could be achieved in the following way : =

10 IF A = 1 THEN 100
20 IF A = 2 THEN 200
I0 IF A = 3 THEN 200
40 IF A = 4 THEN 400
S0 IF A = 5§ THEN S00
60 etc.

Although this works, it could hardly be described as an elegant way
of programming.

In its place we can use the ON ... GOTO command, and the similar
ON ... GOSUB. As both work in the same way we’ll take the former
as an example, although with the latter you do have to take care over
matching up RETURNs with GOSUBs.

10 ON A BOTO 100,200,300,400,500
Here, if A has the value 0, the program continues execution at line

100 onwards, a value of 1 and it goes to line 200, and so on up to
a value of 4, when it goes to line 500.

A can be varied, to make it match our earlier IF ... THEN example
as follows:

10 ON A-1 GOTO 100,200,300,400,500

Thus we now have an exact match of the original program, but in four
fewer lines! Now, if A equals 1 program execution continues at liné
100, and so on.

Just one example of this command in use could be something like
this, which is an interesting use of string handling:

70

jc$="ABCDE"

10 CCINTUACTIVITY ‘A’ : PRESS A
gg FRINT"ACTIVITY ‘B’ : PRESS B
20 PRINT"ACTIVITY 'C’ : PRESS C
&% PRINT"ACTIVITY ‘D’ : FRESS D

‘E’ : PRESS E

PRINT"ACTIVITY

70 GETA¥
FORI=1TOLEN (K$)

IFA$=MID# (K$,1,1) THEN100O

90
100 NEXT I
110 GOTO70
1000 ON (ASC (A%)-65) GOTO 1100,1200,1300,1400,1500

1100 rest of program.

RaNDom INTegers

Like most of the home computers currently available, the Commodore
64 is not without a random number generator.

Alas, like most of them it isn't particularly random, and so a few
operations have to be done before we can begin setting up ‘genuinely’
random numbers.

The syntax to be observed is RND (A), which will give a number in
the range 0 to 1.

]’o start things off differently every time, we’ll need to use the 64's
internal clock. Thus, our first number should be made using RND (-T1).

After that, A should remain as a positive number, otherwise a zero
will return the same random number as the last one, or a negative
mfmber will start everything off again. Using the same negative number
will always give us the same sequence of not very random numbers.

The INT command comes in useful here, as elsewhere. It chops off
the numbers after the decimal point, basically, so INT(2.24) becomes

2, as does INT (2.89).

:NT of a negative number returns the next lower number. Thus, INT
2.24) becomes -3!

So, to generate an integer random number, we could use : =
10 FRINT INT(RND (-TI))
Ho . .
Wever, this will not be very satisfactory for generating future

VAL

numbers, since RND always returns a number between 0 and 1. So,
we need to scale things up a little:

10 PRINT INT(RND(.S5)%*10+1)
which will produce a number in the range 1 to 10.

To generate numbers between a given range, where X is the top limit
and Y the lower limit, we must use the formula : =

10 PRINT INT((X-Y+1)*RND(.5)+Y)

This is used in our adventures for producing random events e.g. the
appearance of a gargoyle, or the success or failure of throwing a knife,

A New DIMension

We've already seen how numbers and strings can be stored as variables
like A, A$, and so on. However, this gets a mite restrictive after a while,
and we need to resort to other things. After all, there are only so many
numbers in the alphabet!

Let’s say that we're generating ten random numbers, and we want
to store them all as variables.

We could have a very lengthy program to do this:

10 A=INT(RND(.S5) *10+1)
20 B= ,.400s etc.

but this is extremely space consuming, and there are better ways.
This is where arrays, otherwise called subscripted variables, come in.
The syntax for referring to these is A(0), A(1), etc., up to a normal
limit of A(10), and these subscripted variables could be assigned

numbers something like this:

10 FORI=0TO10
20 A(I)=INT(RND(.5)*10+1)
30 NEXT I

Where now we have the eleven different numbers stored in A(0), A(1)
etc. up to A(11).

72

numbers can then be selected at will. For example, PRINT (A(4))
|| print the fifth number, or element, in our array A: remember that
m‘e first element is referenced as number 0.

To prove it, we could print them all out by adding to our program:
40 FORI=0TO10

50 PRINTA(D)

50 NEXT I

The numbers in an array can be assigned to other variables (e.g.
— A(3)), or even calculated dynamically by using another variable
(e.g.PRINT A(B*2)).

However, more often than not we'll be wanting to use a lot more than
eleven elements in an array, and this is where the DIM statement comes

n.

The syntax for this is DIM A(199), or whatever, which sets aside a
certain amount of room in the computer’s memory for storing all the
numbers that you might be wanting to save. Whether you use them
all or not, that memory is reserved, so use arrays selectively.

A useful trick, if running low on memory space, is to use something
like DIM A(2), if we're only going to need a maximum of three numbers
storing in the array A. Any array you refer to in your program

- automatically has 11 elements of memory space reserved for it, and

the few bytes saved might mean all the difference to the amount of
program you can cram into your machine!

Arrays are not limited to one dimension either. You can dimension
something as A(7,7) if you like, for instance in a chess game, where
You have a board 8 squares by 8.

The elements in that array are referred to as A(1,5), A(6,3), and so

On. Itis helpful to think of these values as being stored in rows and

columns, where the first number refers to the row and the second to

the column. Thus A(5,7) is the seventh column of the fifth row.

inking of it all as boxes of numbers, or strings, stored in rows and

°9'U{nns will always help when you want to reference a particular one
In a program.

W°I Il be using arrays extensively in all our adventures, so it's useful
€arn how they operate!

73

Getting Started

Now that we've learnt most of what we'll need to know about stringg,
data and dimensioning arrays, it's about time we started looking g
the results of using this in an actual program. ‘I

Our example, as always, will be the Underground Adventure listing,
so now we'll start explaining some of the variables that are used i
this game, so that we can get an understanding of how the varioys
parts of the program operate. ‘

Lines 2 to 27 define one set of variables, which relate to the gate being
open (GF), and door being open (DF), CR$ is set equal to a carriage
return, line 10 goes respectively to the subroutines that print up the
introduction, and read in all our data, followed by defining the variable
CP, which is the Character Position, and relates to the room number
that you happen to be in at the time.

The next set of 4 variables just contain messages that we'll use later
on in the program.

2 BF=1:DFm=]

S CR#&=CHR® (173)

10 GOSUBR10000: BOSUB2000: CF=1

15 FDE="1IT IS NOW FITCH DARK.CARRY ON AND YOU'LLFA
Ll INTO W PIT Y

20 IM#£="YOU CAN'T GO THAT WAY."

25 GF$="THE GATE IS NOW SHUT."

26 D$="DOWNLZCDIDOWNLICDIDOWNLICDIDOWNLICDIDOWN! "
27 DF#="THE DOOR IS SHUT"

Moving Around
Line 200 sets us off to the routine that checks for character movement:

200 BOsSUR S000

but before we look at that, we’ll jump down to line 2000 and definé
a few more variables:

2000 NV=38=NN=53:P=1GD:LU=53=DIMP$(P),FZ(P,E),09‘(
L.0) , OB% (LO) ,VEE (NV) ,NOE (NN)

74

.« controls all our data reading which takes place in lines 2001 to
0. These are reproduced in chapter 6, but the variables are set as

follows:
NV = the number of verbs we're going to use.

NN = the number of nouns we're going to use.
p = the number of rooms contained in the adventure.

LO = the number of nouns again, but is used to control the LOcation
of every object in the game, there being as many objects as there are

nouns.

DIM P$(P) = dimension the variable P$ to be equal to the number
of rooms in the game. P$(l) then contains the description for the Ith

room.

DIM P%(P,3) = dimension the variable P% to be equal to the number
of rooms, with four sub-elements to each level of P%. These are used
to determine the direction one can take from within a room, and
indicate NORTH, SOUTH, EAST and WEST respectively. Thus
P%(l,2) refers to the direction EAST from room |I.

DIM OB$(LO) = dimension the variable OB$ to be equal to the number
of nouns. OB$(l) then contains the description of the Ith object.

DIM OB%(LO) = dimension the variable OB% to be equal to the
number of nouns. OB% then contains the position of each object in
the game, by referring to its room number. Thus OB %) refers to the
Ith object, and if set equal to J puts the Ith object in the Jth room.

DIM VB$(NV) = dimension the variable VB$ to be equal to the number
of verbs. VB$ then contains the actual verb itself. Thus VB$(1) is the
Ith verb. For instance, VB$(1) is the verb GO.

DIMNO$(NN) = dimension the variable NO$ to be equal to the number
of nouns. NO$(1) then contains the shorthand description for the Ith
foun. Thus if OB$(1) contained the string “A RICKETY OLD DOOR”,
NO$(I) would contain just “DO0", for door.

Now, let's Jook at the actual room moving routine, contained in lines
to 5206.

75

Room Movement Routine

This routine is used to handle all room movement in the game, so we/))
take a close look at it.

5000 PRINT"[CLRI"

5001 IFOB%(46) < »~1AND (CF>4ANDCP<100) THENPRINTED$p
D=1:RETURN

5002 PRINT"YOU ARE "F#(CF)iPD=0

5003 IFCP=42ANDTE=1ANDPY (42, 1) =0THEN&OS4

$004 VB$="[CDIYOU CAN SEE :

5006 FORI=1TOLO: IFOBY (1) =CPTHENPRINTVES$; OB$ (1) 1 VB
z“ "

5008 NEXTI

5009 IFCP=3ANDGF=0THENPRINT: PRINTGF$

S010 FL=0O
5012 PRINT"L2CDIYOU CAN GO: "3t FORI=0TOZ: IFP%(CP
y DK >OTHENFRINTDD# (1) 3" "5 sFl=1

S014 NEXT I

H5O015 IFNF=1THEN&LOOO

5016 IF(CP:20ANDCF<B68) AND (INT (RND (. 5) #10+1) »9) THEN
NF=1:GOTOL000

5018 IFCP< »69THENRETURN

5020 IFP%L(69,3)=70THENRETURN

5022 IFOB%(15)<»-1THENPRINT"YOU CAN'T FASS YET."iR
ETURN

5024 FPRINT"THE SHIMMERING CURTAIN WASHES AWAY THE
MIST, AND REVEALS A NEW TUNNEL!'"

S025 P%U(6F,3)=70:0B% (15)=0:22=2Z2~1:F$ (69) ="WALKING
FAST AN ICE COLD S8POT."

5026 OB%(20)=0:RETURN

Explanation of Routine
We’'ll take this line by line, so:
Line 5000 simply clears the screen.

Line 5001 checks to see if you're holding a blazing torch (OB % (46))-
If the variable is set to -1 it means that you're carrying it. If it's not
equal to -1, the line carries on to see if you're in a room lying between
room numbers 5 and 99. If you are, it then prints up the variable PD$
as defined in line 15 and returns to the WHAT NOW prompt, having
set the darkness variable PD equal to 1. Any attempt to move noW

76

out lighting the torch will make you fall into a pit and plummet
10 your doom-

g 5002 prints up “YOU ARE" followed by the description of the
me, You are always in room CP. The darkness variable PD is set
10 0, since if we've moved, we can’t be in darkness.

Line 5003 checks the ‘bear following’ variable TB. If the bear is following

and you're in room 42 (which holds a fierce panther to begin with),
and’ there is no path south from room 42, the program transfers
execution to line 6054, which prints up what happens when the bear

meets the panther!

Line 5004 is the start of the ‘you can see’ routine, which goes on to:

Line 5006, which checks to see if the location of any object, OB%,
is equal to the current room number CP. If it is, then it tells you that
you can see it, but if nothing’s there it just prints up nothing.

Line 5009 checks to see if your in room 3, and if the flag for the state
of the gate (open or closed) is set or not (1 or 0), and if it is set prints
up the variable GF$, as defined in line 25.

Line 5010 just clears the variable FL, used in the next routine:

Lines 5012 to 5014 go through the four possible directions from each
room, and check to see whether you can go in any of them, by seeing
if the relevant part of the variable P% is set to 0, in which case you
can't, or something else, in which case you can. It then prints up the
right part of the variable DD$, which is set to equal the words NORTH,
SOUTH, EAST and WEST earlier on in the program.

Une.5015 checks to see if there’s a gargoyle chucking a knife at you,
and if there is transfers program execution to line 6000, which we’'ll
come to later.

Line 5016 goes through a random number generation, and if that

Number is greater than 9 (on a scale of 1 to 10), and if you're in a room

Number greater than 20 but less than 88 sets the gargoyle present flag
P and goes off to line 6000.

';("9 5918 checks to see if you're in room 69. If you're not, program
€Cution returns from this subroutine.

Lines 5020 onwards are assuming you are in room 69, which is initially

77

guarded by a hazy mist, through which you cannot pass until varigyg
conditions are met. These are checked in lines 5020 to 5026, and |
let you work out for yourself what those are!

Basically you have to be carrying a certain object before you can ggt
past, and if you are then obviously the hazard doesn’t exist any morg
and we have to change the relevant parts of the variable P%(69) t(;
allow us to move safely through here in future, and the room
description P$(69), all of which is done in line 5025.

Line 5026 simply makes the object you must be carrying disappear,

So, you can see the checks that have to be made before we can allow
our explorer to move through certain areas.

It would be an easy matter to alter this routine to suit your own
adventure requirements, just by changing the conditions that have to
be met, and checking for the right room numbers and the right flags
being set.

As we've said, you'll find all the data in chapter 6.

Now, we've seen how one routine works. Let's sit down and write
an adventure!

78

4
Writing Your Own Adventures

Let’s Get Started

We've seen one of the major routines in the game now, that of handling
the movement of the character within the adventure, once we've
established from other routines whether or not the character can in
fact go in that direction.

That is achieved using the verb GO, which we'll come to along with
all the other verbs in chapter 6.

All the data that is necessary for this game, together with a thorough
pxplanation of how it all works, what it all means and how it's all stored
in the program, will also be found in chapter 6.

Meanwhile, there’s an awful lot of additional coding which doesn’t
come into either of those sections, and the purpose of this chapter
Is tq present you with the rest of it, including standard routines for
the Inputting of data, checking on the validity of a move, checking
Whe.ther the words you've typed in make sense, and one or two other
foutines which are especially for this game (we couldn’t just give you
all of the listing bar a couple of lines!), but which could nonetheless
adapted for use in your own games.

Y°“'!| know the sort of occasions when it is necessary to include these
z‘:%'lal rogtines, what they’re doing (and equally important, how
€y're doing what they're doing), and so you will be able to use

variati :
ariations on them in your own games.

So, between this chapter and chapter 6 you'll get the complete listing

79

for Underground Adventure, and perhaps by presenting it in smal|
chunks like this you'll feel more inclined to type it all in!

If not, you could always buy the cassette containing the threg
adventures in this book, configured to run on a Commodore 64, ang
study the listing that way.

Summary So Far

You know what a number of the essential variables in this game arg
now doing, and can readily adapt them for use in your own games,

The variable CP for instance, which is used to keep track of the room
number, and is updated as you move from room to room.

The variable NP, to detect whether or not a living gargoyle has emerged
from the rocks and is about to engage you in mortal combat.

The variable PD to check for darkness, and the carrying of the blazing
torch.

These, and the others, are the backbone of the game, and without
them this adventure could not function. Without similar variables in
your own games it would be equally impossible to play and/or write
them.

Variables like these are there to make life easier for you. Use them
in your own games, and the actual writing of a complete adventure
will soon become relatively easy.

However, there's a lot to learn yet, like the drawing of maps, the placing
of objects, the positioning of any hazards en route, and everything
that goes up to make the total game.

In the next section we'll start again from scratch, and assume that
you'‘ve sat down with a blank sheet of paper, and want to start writing
an adventure game.

So let's get going!

The First Steps

Possibly the most difficult step of all is outlining the story that you'ré

80

going to have as the backbone of the adventure.

it will have to be a miniature novel, involving (relatively) realistic
e cepts, although an ingredient of most adventure worlds is that little
touch of magic that sets them aside from the real world.

plot, just as in a good novel, must flow smoothly from one stage
to the next, with no totally unexpected, inexplicable events. One
enture | know suddenly has a sword that you've been happily
carrying along turn into a snake in your hands, which then bites you

and kills you off.

This is totally inexcusable, and shouldn’t find a home in any real
adventure. The impossible happens quite often in these games, but
at least there should be a warning that it's going to happen, and it
should not be sufficient to kill off the character.

So if we're going to have magic, let’s keep it on a fairly reasonable
level, and stick to iron staffs being waved and causing a bridge to
appear over the chasm.

Events that kill off the hero, like crossing a rickety bridge with a heavy
bear in tow, should generally be as expected as possible, and only
be the fault of the adventurer. In real life, would you expect a rickety
bridge to support the weight of a heavy, lumbering bear?

In Underground Adventure, dynamite has to be employed in one
instance before you can progress. It is reasonable to assume that
lighting the dynamite whilst you're still holding it will not do you any
good, and so it should be placed on the ground first of all.

On the other hand, some of the elements in this game, and others,
are randomised to give the game some semblance of reality. Not that
you'd often bump into a living gargoyle carved out of the rock, who
then engages you in a duel to the death every time you meet him,
but should such an event take place it is reasonable to assume that
the outcome of the fight will not always be the same.

Thus you will sometimes get killed (though not very often, otherwise
© game would get very tedious), and sometimes your throws will

"'ISS_the gargoyle, but again you should conquer him (her?!) most of
€ time and live to carry on the game.

izl?nWhing that happens in the game must have a remote base in
Ity, and the inexplicable shouldn’t really happen without at least

81

being safe to the player. pining one of these new ideas with the character choosing role

com ssed earlier could pave the way for a whole new set of computer

discy

games-

work is up to you though, and your plot, whatever it consists of,
ust ring trué throughout, and keep the player of the game constantly

mt,gnained, forever pitting him against new challenges, new tasks,
keeping the interest by finding out just that little bit extra with

each game.

Getting the Idea

As we've said, this is possibly the most difficult part of all. Map

adventures have now been written, and coming up with an origing|
scenario each time is getting gradually harder and harder. Somg
possible ideas are presented in chapter 5, where we’ve gone through
a number of adventure scenarios, and described them in somg
considerable detail.

. . The Hazards
However, there is of course no constraint on you to use them at all,
so your own ideas will have to come from somewhere. Now there’s a television program! But no, nothing to do with car driving
American lunatics in an otherwise sleepy mid-western village, one of
the most important parts of any adventure game will be the constant
search for new problems to set the player, new tasks that have to be
accomplished before you can proceed further, and making those
hazards solvable, but (preferably) as difficult as possible.

One tried and trusted idea is by dipping into a few books such as Lord
of the Rings, in which there are a multitude of possible plots which
could be turned into very reasonable games. However, as in all
implementations of this sort one has to be very careful about the laws
of copyright, as we’ve seen with the Hitch Hiker's Guide to the Galaxy
game, so you'll probably have to change a lot of names to protect
the innocent, i.e. you!

The number of problems set will always vary from game to game, and
should to some extent depend on the number of rooms in the game.
Perhaps on a 1 to 6 ratio, with a new task to be solved every half dozen
The traditional thud and blunder adventure, steeped in Gothic names rooms or so ?
and ancient runes, has been done by many authors, although obviously
the scope here is vast for doing variations on a theme. Some games favour a constant source of worry, and indeed
Underground Adventure does the same, with the living gargoyle
coming up every now and again, along with a random chance that,
as well as fighting with you, he might just nip in and steal a few useful

items that you happen to be carrying and hide them in the maze.

One possible answer might be to read a few science fiction novels
(bearing in mind the author’s copyright), such as the works of Michael
Moorcock, and obtain a few ideas from there.

Asa helping hand, here’s a list of the hazards presented in Underground

To the beginner though it must seem that just about every possible
Adventure, and the rooms in which they are first found:

idea has been tried before, including exploring ancient tombs and
crypts, jungle adventures that pit you against various natives and native
problems, cowboy adventures, outer space adventures, underwater
adventures, and the like, and that it would be impossible to come up
with a new and original plot-line for your story.

A vast chasm that is too wide to jump: room 15
Mmassive tree that blocks your path: room 21
deep drop that is to steep to climb down: room 35
blocked wall that prevents you from going further: room 4
golden bear that will not let you pass: room 27
fierce black panther that stands in your way: room 42
Other 'deep chasm amongst the rocks: room 10
A :te_BD lnqline that is to steep to climb up: room 45
Immering curtain of light that dazzles you: room 93
old mining track that is blocked up: room 79
82y wall of mist that is too thick to pass through: room 69

But bear in mind that there have been many more novels written than
there have been computer adventures, and people still keep managing
to come up with original themes for those, so the ideas are always
there: it’s just a question of thinking them up.

Visitors from outer space, detective adventures, psychological
adventures, biblical adventures, are all relatively new areas, and perhap®

82

The denizen of the caves, who will not let you through: room 50
A giant spider, out to eat you: room 84

A giant fly, out to kill you: room 74

An old door that blocks your path: room 60

A narrow crack, which you can’t squeeze through: room 53

There are 100 rooms in Underground Adventure, so we fit nicely ing,
our 1 in 6 ratio, with the above 16 problems to solve. We'll tell you
some solutions along the way, but not all of them!

Constant Problems

As well as all of the above, there are a number of constant problemg
that keep recurring, like the gargoyles, and any reasonable adventurg
has the same kind of mixture. A good solid set of problems which give
the player plenty to chew over, along with a reasonable set of constant
events that can also give cause for worry.

However, whatever the kind of problem, be it in a set place or occuring
at random, one golden rule of programming this type of game remains
the same: if the player solves the problem, make sure the program
checks for this and adjusts its variables accordingly.

There is nothing worse for a player than, having spent hours achieving
one goal, to throw away the relevant object which has enabled him
to do this (or perhaps have it taken away by the program once it has
fulfilled its duty), and then to see a bug in the program causing the
problem to re-appear!

In other words, don’t make your adventures impossible, which i
always a problem when you’re manipulating a lot of objects. Just
placing one of them in the wrong room could cause the program 10
become unsolvable: a cardinal sin.

One of the more common constant problems is that of a torch. If you'ré
deep underground it's fairly safe to assume that you won’t be ablé
to see very much, and so a torch becomes vital.

To light the torch you will also need some matches, and these must
also be hidden in the game somewhere.

Finding the torch and lighting it is usually no problem, but keepind

it lit often is. A sudden gust of wind perhaps (which could easily be
done in the earlier movement routine by checking for, say, room

84

atever, and whenever the player walks through there the torch
or plown out), or a swim through some water would do the trick.
fyou 90 through water, you would also get the matches wet, so how
do you light the torch again?

torch carries with it another problem. There is usually a limit on how
much you can carry at a time, and certain objects will always have
to be with you, like torches, axes, and so on, and so the problem
pecomes what do you carry at the same time.

propping things often breaks them (e.g. bottles), so you'll have to
make your adventure as devious as possible, to ensure the maximum
amount of thinking for the person who will ultimately play it.

All of these problems will have to take place in some kind of land or
other, so let's draw a map.

Drawing the Map

We'll assume you have worked out some rough kind of plot line, and
you want to draw the map up to see what it all looks like.

Underground Adventure all takes place underground, with a number
of different areas, and believe it or not my original map looked like this:

85

Undeyprsion Mdadin
QI'UINMV'Q'}W\ unde WD e ls Cose,

Do fants SN At) & (L,.)Lq E‘.f““"’”“"n\

N,W{M 51% ~(

lép—d’! E et .

e, - (50 — e Los proiitas
Prete ¥ pe ld . Bodes L
~ |5 -chasm 0-&.05“\. 9
N Q)| -tree > whane b B
< 25 wep i repo G
Mook wd rpgraathe L 4O
~bnav: aabun L ¥
NG - eesther s boar!
= vesl abvaam 3 pleakl 04 . 3
. el | 2
- Lps l-l.hd“,"'::slu;;':‘; u:\.b il vsoms ek 1 LB 30
93 . tManerty e e P, |
L TR - Mo e LAY s 2%

- 2
R e 67 - o, i ety
LI ® §2 2@ 2
seOY ~grak e 1V 121 "
N3 - gleak Gy ¢ blpprns wt
N,v' \-(,O-."'w.h'-ivlﬂ “MG‘(‘;"‘ ;;\l !;i \31,
S ot iyt il G933 3 yo
g o pyranl wia b ke 43 LY qa
€3¢2e 2 N
gd a ax 11
1"*1."‘ S4 ﬂ)‘\'@"‘ 43¥F 4 Sy a6 1292
"3 .2 4 S 5% @ 10
‘V_g alo (%] (,L} 1‘; \ooh qy
¢ -
wx@N > o %2 Vap B Bear L vonen |y
B 312 o
£5
/.W»ﬁ-

v
v kit vl s Pﬂ-ﬁl

H- haye B Gonas” 4oftevy h\'«f u\-'o‘\‘ Q—- TS (mady ol § ¢ j
sy blek path. : Sleae [N s, wantre'in ..-udﬁ-. Yisogyhsns -

VDwerds (o u—a-"t) l‘,q el kacus o you,

AR, B v e (D) magly ¢) ...;.um;a&',,'-lm

Refining the Map

well that was certainly nothing to write home about! However, it
rlzed, pecause having drawn up all the room numbers | then had
much better idea of fitting the adventure together as a whole, and
:°u|d commence setting up the problems for the player.

first thing | did was to label 16 rooms (ringed, in the diagram),
decide that this was where the problems would occur. Then, |
to write down what each problem would consist of, and those
are the notes at the left of the sheet.

\\: \ The brief scrawl at the top was an indication of the general outline
3 s of the whole thing. There was to be no finding of treasures, it would
5 all be a question of survival, with the all important mission being to
\.; find the key to e_nable you to open the door that had slammed shut,
\"’t and get out again.

The notes at the bottom where there as guidelines for one or two of
the problems, and from that map the whole game was written.

s Well, that’s not quite true!

A number of changes were made to the original plan, including the
location of one or two of the objects in the adventure area, and before
| set fingers to keyboard there were a number of other notes to be
made first.

We'll see what they were in the next section.

BUt'for now, you'll have drawn your map, however rough it may be,

You've got some idea of the general plot for the whole story, and you

0w (again roughly) where all the hazards are going to present
selves.

Y°“'V9 got a fairly good idea of everything that will happen to our
A id explorer, and in chapter 6 you'll see one way of turning these

3 into the necessary data statements that form the fabric of the
Entire game,

But We're concerned with the programming side of it, rather than the

€er slog of getting all the data statements typed in, so let's start
Ing the transition to the computer.

87

t typing anything in, but inevitably we'll have to add objects to
r list as we go along developing the program, but in Basic that is

o difficulty.

nderground Advc_enture originally started out life with about 48 objects,
put ended up having 53, due to circumstances arising during testing
of the program thgt | just hadn’t envisaged beforehand. It's nice to
track everything first before you start though.

Moving from Paper to Computer

One of the first steps is to draw a much more sensible looking ma,
as we've shown over the page for one of the other adventures in thié
book, the Castle Adventure.

This should be big enough to enable you to list everything you Want
to in each room, including any objects that are to be found in them,

and any hazards that may be expecienced in that room. A New and Better Map

Having done that, you'll obviously want to know what all of thogg This is the final map for Castle Adventure, as re-drawn from an initial
objects are! So the next step is to look at the list of hazards as yqy scrawl on a tiny sheet of paper.

originally drew them up, and decide what the solution would be tg

each hazard, bearing in mind that you can only move on to the next Something like this is a lot easier to program from!

part of the adventure after you've solved the problem. In other words,
don’t put the solution further into the game than the problem!

A list of solutions will give you a healthy list of objects, and these will
then form the basis of the list that we'll type into our program later.

With the program set up as it is, although obviously you could modify
it if you want to, the routine that checks your data entry only looks
at the first three letters of each word. Thus if you had a TRACK and
a TRAM in your adventure the program listing would interpret them
to be the same object, and you would get some very strange displays
being shown up on the screen!

So, if you're going to follow the methods outlined in this book, it helps
to give all the objects individual names. As we'll see later, there are
enough problems coping with EMPTY BOTTLE, BOTTLE OF OIL and
BOTTLE OF WHISKY in Underground Adventure as it is, so we don't
want to encourage more of them!

This list of objects will have to be extended beyond a simple list of
those generated by the problems and their solutions. We haven't
mentioned lamps, or anything like that, so you'll have to have words
for LAMP.

What happens if you drop a bottle? If you're going to have it break:
you’ll also need to have an object something like A PILE OF BROKE
GLASS.

These, and other problems will all have to be thought of before we

88 89

*_m ¥ | ¥ d
T
S| | Yy (U7 “CR| |SHs
¥ d ¥ *
R R e ey
00, 2
T3 a1 |*
[oY [T
AR A = .
* %
21
iy Er AR == g7
* *
] I - e
ooy §§lmsw Lo
* d| TR

* v
mg—_ ‘

3.

i

i 3

s2msvas) \ spalqo ydosrr— X
a1pos op umpgard —4

91

And on to Verbs

As well as our list of nouns, the other great list in any adventure gameg
and the list that to a large extent dictates how good a game it is, is'
the list of verbs.

Some adventures have many more verbs than others, and as we'yg
seen Zork can handle around a hundred of them, but Undergroung
Adventure confines itself to a mere 38, although this could easily hayg
been extended by another dozen or so.

To have a response to a verb can, as we'll see in chapter 6, take up
an awful lot of code, but others can be very short. The reason for
having short verb responses is simple.

If everything the player types in gets the response THAT DOESN'T
MAKE SENSE TO ME, he could get the impression, perhaps wrongly,
that he was playing a very poor adventure and that there were better
games on the market. If the responses vary, at least the interest wil
be kept, and the player will be constantly thinking of different ways
of using a verb, not knowing that a couple of lines of code are
producing (at random) one of three responses to the use of that verb.

So, alot of verbs is a good idea, and your original starting list should
always be the first ten verbs listed earlier for Underground Adventure.
These are all standard verbs, like GET, LOOK, HELP, GO, and so on,
that should occur in every adventure, and the routines for handling
these same verbs from game to game do not vary very much. Obviously
they will change a little as the needs of the different games change,
but it's a healthy and encouraging start when you see your initial list
of forty (or whatever) verbs almost immediately whittled down to thirty-

The rest of the verbs are very much up to you, but again they will
to a large extent be dicated by the problems that have to be solved.

There is no point in having a can of fly spray to kill the giant fly if the
verb SPRAY is not included in the vocabulary. KILL is too woolly @
word, and could produce the wrong response if the spray was not
being held.

Additional verbs should also be there, just to encourage diversification

of response from the computer, and keep the player’s interest. A'g
idea is to give bizarre ideas on the part of the player equally bizarré

92

rasponses from the computer.

it all adds to the humour of playing this type of game.

Amazing

gvery adventure has a maze of one sort or another, and having got
our verbs and nouns, it makes sense to put a maze somewhere.

As the diagram below shows, hard mazes are very easy to construct,
simply by giving every one of (say) six rooms the same description,
so the player always thinks he’s in the same room, and if he makes
amove in any one of the three directions you don’t want him to move
in, why, send him back to the start! Like this : =

)
> _€62 _ééal

Saze HMaze Maze

o4 65 ()
AN

N

Sflaze Sfaze Loor

Construction o a simple maze wsing a
one-tay sysfem.

7;/(”3 a wrong tfu_mmj results in the
,o/ayer rez‘am//'z/o to room Gl .

f

el Gl
62 ol 6l) 60
ol 6l |

T hre m& way {/Lrocﬁﬁ the mase /s to
go W=~ S—fF —~£.

Some General Rules

Although we've been looking at specifics for the last few pages, for
the next half dozen pages or so we'll turn our attention to some gengrg
rules when writing these games, and concentrate on five of the Most
important parts of every adventure game:

1) Movement of characters

2) Responses to inputs

3) Screen displays

4) Picking things up & dropping them down

5) Problem solving

Movement

As your character moves around his wonderful adventure world, there
are obviously certain rooms he will and will not be able to go into
straight away.

Some rooms will be purely east-west or north-south corridors, in which
case it would be rather silly to tell your character that he could move
north/south and east/west respectively.

You may or may not display which directions he can move in at all.
Certainly the original Adventure didn’t, and you were left to your own
devices to find every possible direction out of a room, hence the need
to draw a map. That game was additionally complicated by having
up and down as well as the four cardinal compass points, and also
having north-east, south-west and so on.

In Underground we've stuck purely to the four cardinal directions, with
up and down movements being handled in specific problem areas:

If you don’t want to display the possible directions it will certaif_'W
prompt the player into drawing a map, and it might well annoy him
considerably to be told over and over again ‘YOU CAN'T GO TH_A'r
WAY’, although interest could be sustained by the addition of the little
word YET, thus making him think Aha! perhaps | can go along theré
later.

94

nally, I'm in favour of displaying the available choice of directions,
; uits speeds up the playing process, but if necessary you can just resort
1 hints like ‘A VAGUE TRACK HEADS OFF TO THE SOUTH’, and

the like-

s up to you, but whatever style you pick, make sure that you stick
to it throughout the game.

Screen Responses

This is obviously the factor that is most important in keeping the interest
and attention of the player throughout the game, and if you want to
resort to sound, colour and graphics that's up to you.

However, the simple text-only game without any sound has been used
throughout this book, so that’s what we’ll concentrate on here.

In designing and writing your adventure there is an important factor
to bear in mind whenever you're planning the responses to the
statements typed in by the player in response to the WHAT NOW
prompts, and that is that people playing adventures will never, ever
type in what you want them to.

You may have a situation where a player comes to a halt in front of
a gate that he can’t climb over because the top of it is riddled with
barbed wire (an escape from Colditz type adventure?), until he gets
hold of a set of wire cutters. You have programmed all your responses
to GET GATE, GET WIRE, and so on, and are waiting for the player
to get the cutters and type CUT WIRE.

What if he types CUT GATE? What happens then? Or what about
Something typed in in sheer desperation, as people do, like EAT GATE?
the gate get swallowed up in a display of apparent relish?

t»‘t\:‘r\ticipating people’s lines of enquiry is one of the most difficult things
allow for, and will take up an awful lot of program code that will
Probably never be used.

Sti il
t‘::: eVep if it is used only once at least you'll have the satisfaction
’snompg that someone out there will consider that the game that
Playing is an extremely robust, well thought-out adventure.

Alwa e : .
VS try to anticipate the impossible. You'll never manage all of it,
course, and will have to rely on some stock | DON'T UNDERSTAND

95

type responses, but a few of those mixed up and one picked oyt at
random will keep the interest from flagging.

And never forget the use of the word YET. It will keep a player tryijp,
long after the more straightforward “YOU CAN'T OPEN THE GATg:

will.

So the golden rule here must be to keep it interesting, and try o
anticipate everything that the player might type in. You won’t get them,
all, but at least you can conjure up some different responses.

Also, a large list of verbs is a great help here: even if the responseg
are only short and sweet, at least the player will be seeing something
different on the screen.

Screen Displays

To a small extent we've covered this one already, but it's worth going
over some of the ground again.

The use of graphics has been deplored often enough before now to
render any comment here redundant, although you might think the
odd display of a sword or amulet every now and again might liven
things up a little. But nothing can beat the written word.

Sound is a different question, and the arguments concerning this are
almost as legion as those concerning the use of graphics.

My own view is that if you're going to use sound, it must be done
extremely well, as the computer is capable of a very complex series
of sound outputs. If you're only going to give a little beep every now
and again, it's hardly worth the effort of putting it in there in the first
place, and you'll soon have people racing for the volume control and
a blessed silence.

If done well, it can greatly enhance a game, as people who have played
the Temple of Apshai on a Commodore 64 will know: the use of sound

is very good here, and the whole atmosphere of moody, omnipresent

danger is well presented.

On the other hand, all their programming efforts are wasted if
somebody turns the volume down. Be prepared to have sound in your

programs if you wish, but don’t be disappointed if everyon®
immediately adopts to play out the game in silence.

96

he words that are displayed in the screen are obviously dictated by

responses you've allowed for, but an overall attractive layout is
10 desired, usually using lower case, since most people seem to
prefef that for some reason. Perhaps it's more restful on the eyes as
you do battle against a giant troll!

silly jittle things can so easily spoil a game in this area - if your room
descriptions overlap the edge of the screen so that words are split up,
oran inventory list causes some of the objects to be displaced against
each other, or even if your output is riddled with spelling errors.

It doesn’t take too long to check all of these things, and the results
are well worth the trouble. A neat adventure is more likely to be played
than a badly spelt, badly laid out one.

The golden rule here? Keep it simple, but keep it tidy.

Picking Things Up and Putting Them Down

Two of the most important words in the adventurer’s catalogue are
GET and DROP, and in chapter 6 we take a more detailed look at these
two words as they apply to the game Underground Adventure.
However, a few general words of advice before we get to that chapter.

O_bviously, in any game there will be a number of things that you can
pick up, and a number that you can’t, with the former probably far
outwe!ghing the latter. Nevertheless, all possible occurences must be
taken Into account, and just because you know that the BARRED
GATE is too heavy to carry, that won't stop virtually every player who
comes along from attempting to pick it up and walk off with it.

Anotl_mu: annoying thing to find in any adventure program is a
fﬁ:ﬁrlptlon that might read something like “YOUR PROGRESS IS
WAI:rED BY A SOLID WALL OF ROCK’, and when you type in GET
0 'L, the only response is ‘Il CAN'T SEE ANY WALL HERE’, or ‘I
NT KNOW WHAT A WALL IS".

Look oyt for that one, for although it can be covered by a blanket
Onse of NO!, that is not very good practice and will certainly not
uce an excellent adventure game. Far better to have a response

a
ccma"v geared to the request like ‘THE WALL CANNOT BE

ARRIED’, or something like that.

ne things in a game are only meant to be carried after certain actions

97

have taken place, in which case you'll need a number of variableg
flag the progress of the adventurer, and you'll also have to use
word YET to keep the level of interest there. "YOU CAN'T CARRY

IT YET’, will have someone attempting to carry whatever IT is untj

the cows come home, even if they never can carry it.

When dropping things, a subtle level of difficulty comes into the gamg
In Underground, after you've made friends with the bear and he’é
happily trundling around the caves after you, dropping anything wjj
cause him to think that you're throwing things at him, and he/|
disappear in a sulk to a random part of the caves, never to be GOT
again.

Dropping bottles is usually a good one, since you can have them break
on your adventurer, thus rendering them useless for the rest of the
game. The original Adventure had as one of its treasures a Ming Vasg,
but dropping it caused it to smash into delicate little pieces, unless
(of course!) you'd taken the precaution of placing a pillow underneath
it.

GET and DROP are fun, and don't confuse GET with TAKE. The two
words are not the same! For instance, people talk about TAKEing
medicine, not GETting it!

Problem Solving

The key to any adventure is how good and how complicated the
problems may be in a game, but don’t make it too complicated to get
started, or your adventurer might give up in disgust and never play
an adventure game again.

Encourage people by at least letting them get started, and then pile
the problems on, preferably making the first few lean towards the easy
side, and have them get harder as the game gradually progresses:

The Scott Adams games are particularly good here, as it is always
possible to get somewhere at a first sitting, even if that somewheré
isn’t very far, and you can gradually improve your progress just ab:
every time you play the game.

Problems usually have to be solved in a set order too, in that solvind
one leads you to another, which gives you a clue to an earlier hazd
you were puzzling over, which in turn sets you off somewhere elsé
and so on.

98

The number of problems in a game is obviously up to the writer of
the game but too many will soon discourage people. A problem every
m will become totally boring after only a short playing session, but

e intervention .of a few rooms between hazards will soon perk up
the player, even if he does walk into another one almost immediately.

me problems will have to rely on a number of events taking place.
n Undergroqnd.Adventure, one of the hazards you're faced with is
a very steep incline that you can’t climb up by yourself, and the rope
that you've previously used to shimmy down a steep drop isn’t of any
use to you here.

A little thought, or a read of the old parchment if you find it, leads
you to conclude that you must build yourself a ladder, for which you
need some wood (you recall a plank somewhere), some nails, and
something to hit it all into shape with. Aha! The axe. But the wood
has to be cut into shape first, before you can make a ladder. Only when
you've got a collection of neatly cut timber can you make the ladder

and proceed to the next set of problems. ’

So, keep up the interest, and let people get a little further each time.
And above all, don’t make it an unsolvable adventure!

Program Listings From Underground
Adventure

In this sgction of chapter 4 we're going to give you all the lines of code
that you've not already seen, and which won't be found in the sections
on vel_'bs ar_1d data on chapter 6. So, if you're going to type the whole
thing in, this is the place to look at for that missing piece of code that's
N puzzling you.

Of course, in common with the rest of the book we're not going to
Present the code without any sort of explanation.

FaCho:jne will, where appropriate, be fully explained, along with an
how that line could be incorporated into a program of your own.

sonr.uel ;ef tl’ti)e sections of the program that we'll be covering here include

eena out what happens when the bear is following you, the fights

carryin the gargoyle’and yourself, the checks to see whether you're

bottle g adbottle .of oil, a bottle of whisky or just a plain old empty

of dat’a Nd most important of all the lines that deal with the inputting
» and the analysing if that data as it is typed in.

99

We’'ll take each section as it comes in the game, rather than diy;
about all over the place, so that hopefully you'll be able to sgg
coherent whole being slowly built up, with all the missing parts 3|°an
logically into place, bearing in mind of course that you've already seen
the movement listing, and that the data comes later on.

So, without further ado, let’s get into the game.

If, by the way, you think that we've sometimes left rather large gaps
on the pages, this is very true, but it's only there for you to use tq
put your own notes in when adapting these routines for your owp
purposes, so the book builds up to become more YOUR book of
exploring adventures rather than just a text book.

Don’t worry: we'd have charged you the same even if we had filled
up every page!

The Bear and the Verbs

This part of the program deals with the presence of the bear, and the
handling of the verb number as it comes back from the routine in lines
390 to 412, which we’ll come to in a minute.

206 IFTBTHENOBY (9)=CP
208 IFTB=1THENPRINT:PRINT:PRINT"THERE 'S A TAME BEA
R FOLLOWING YOU!"

209 IFTEANDCP=45THENFRINT"THE LADDER SNAFS IN TWO!
1Y OB% (13) =01 P% (45, 1) =01 CP=45

210 BOSUR 390

220 IFVB=34THEN1950

225 IFVE>9ANDNO$=""THENPRINT"YOU NEED A DIRECT OBJ
ECT. ":BOTO210

227 IFENO$<>""ANDVE=1ANDNO=0THENPRINT"THAT DOESN'T
MAKE ANY SENSE.":GOT0210

240 ONVBGOTD270,300,200,500,540,560,650, 1890 ,690,3
00, 780,880,900, 950

250 ONVE-1460T01000,1050,1100,1150,1200, 1250, 1300,
1350

260 ONVB-2260T01400,1450,1500, 1550,1600, 1650, 1700
1750, 1800, 1850, 1900, 1950

262 ONVE-34B0T01960,1970,3000,3200

100

Explanation

Line 206: check the bear flag (TB) and if this is set put the bear
(OB%(9’) into the current room (CP).

Line 208: check for bear again, and if present print up a simple message.
Line 209: check the bear is there, and if he is and you're climbing up
the ladder in room 45, then the ladder snaps in two! The ladder
disappears (OB%(13)=0), the south exit from room 45 is closed
(P%(45,1)=0), and you are back in room 45.

Line 210: gosub to the input routine.

Line 220: if the verb number is equal to 34 (JUMP), then go to line 1950.

Line 225: if the verb number is greater than 9, but you've only typed
in one word, print out a simple message and start again.

Line 227: if the verb number is 1 (GO), and you've typed in a non-
recognised word (NO =0, and NO$ = “something”), then print a simple
message and try again.

!.ines 240-262: take the verb number and go to the appropriate line
in the program.

101

Data Validation Routine
Explanation

This checks to see what you've typed in from the subroutine in lingg
60000 to 60140, which we'll get to later, and splits your input up intg

ine 390: print up the WHAT NOW? * prompt, and go to the subroutine
a verb and a noun, where applicable.

;60000 to get the input of data.

Line 392: declare a few variables (length of noun, length of verb, verb

390 PRINT:PRINT"CCD,RVSIWHAT NOW?LOFF1 " :BOSURB&og number and noun number) to equal zero.

OO FPRINT:

392 NOF="":VEE=""3:VB=0:NO=0

394 LC=LEN(CM#$) :FORI=1TOLC: IFMID$(CM$,I,1)<>" "THe
NVE#=VB$+MID#% (CM%,1,1) : NEXT

396 V1$=VBE$: VB$=LEFT$ (V1$,3) :FORI=1TONV: IFVEB$ (1) =y
BETHENVE=1:G0TO402

198 NEXT

400 VB=1:NOF=VE£:B0T0406

402 IFLEN(V1#$)+1>=LEN(CM%¥) THENNO=0: RETURN

404 NO#=RIGHTS# (CM#$,LEN(CM#$) -1-LEN(V1$))

406 N1$=NO$:NO$=LEFT$ (NO%¥,3) : FORI=1TONN: IFNO$=NO$(
I)THEN41Z

408 NEXTI

410 NO=0: RETURN

412 NO=I:RETURN

Line 394: perform a loop LC times, where LC is the length of the input
string CM$. Carry on until you find a space in CM$, by searching
through one character at a time.

Line 396: set Vi$ equal to the verb, and take the first three letters of
it, since that's all we analyse. Perform a loop NV (number of verbs)
times, to see if we recognise the verb, and if we do set the verb number
equal to | : the Ith verb. Then GOTO line 402

Line 398: carry on the NV loop, because we don’t recognise the verb

yet.

Line 400: there’s no verb, therefore only one word was typed in.
Assume the verb is an implied GO, as in GO NORTH. Set the noun
string equal to the verb string (i.e. that which was typed in as CM$).
GOTO line 406

Line 402: if the length of the string plus 1 is equal to or greater than
the length of the input string, i.e. we’ve only typed in one word, then
there is no noun, and we return from th subroutine with a single verb.

Line 404: find the noun NO$ from the original input string CM$, by
taking the RIGHT$ of CM$, starting at the character after the space.

'Line 406 set N1$ equal to the noun. Check to see if we recognise
itby going through the loop NN (number of nouns) times and checking
10 see if it's equal to a known noun. If it is go to line 412.

Line 408: continue loop because we don’t recognise the noun.

Line 410: unrecognised noun, so set noun number to zero and return
Om subroutine.

102 103

Death or Glory!

This is the death routine, and is called up from a number of spots i
the program in case of an untimely demise.

612 FRINT"YQU'RE DEAD!'"
614 PRINT"DD YOU WANT TO FLAY ABAIN (Y OR N) 7
b16 GETFA%: IFPAE="Y" THENRUN
618 IF FAF="N"THENFRINT"OKAY, BYE.":END
620 GOTO 616
Explanation
Line 612: print the ‘you're dead!” message.
Line 614: ask for another game.

Line 616: if they've typed 'Y’ then RUN the program again.

Line 618: if they've typed ‘N’ then print out a goodbye, and END the
program.

Line 620: no one’s pressed anything, so loop back to line 616 and
continue to do so until they do.

The Start and the End

These lines appear at the very start of the program, as you get the
door slamming shut behind you, and the very end, if you ever manage
to get out alive. In reverse order we have:

2510 PRINT: PFRINT"AND YOU CAN NOW LEAVE THE CAVES!"
s PRINT: FRINT"CONBRATULATIONS ! " s END

Explanation
Line 2510: you're out, called up from another line in the program, in

the OPEN routine, lines 780 to 794, so print a message of
congratulations and end the program!

104

00 PRINT"LCLRIOH DEAR, THE GATE TO THE CAVES AFF
ﬁgR TO HAVE SLAMMED SHUT!'"
EA02 FRINT:FRINT"THAT 'S TORN IT! YOU'LL HAVE TO F
920% HEKEY NOW BEFORE YOU CAN GET OUT."
;204 PRINT: FRINT"BUT DON'T WORRY. IT'S IN HERE 80
”ENHERE!"
5205 PY%(T,0)=0
2206 BF=0160T0210

Explanation

Lines 5200-5204: print message to say gate’s closed behind you, called
from line 277 in the GO routine.

Line 5205: close of the north exit from room 3 (P%(3,0))

Line 5206: set the gate flag, GF, and return back to line 210 again.

Checking for Bottles and Torches

This routine is called up many times in the program, and is used to
check to see whether you mean a lit or an unlit torch, or a bottle of
whisky, a bottle of oil, or an empty bottle.

This is necessary because the data checking routine covers earlier will
halt at the first noun it recognises, and the response in all the verbs
will obviously depend on whether you've got the relevant torch or
bottle. So, we must adjust the noun number NO accordingly.

S300 IFNO=4SANDOEY (46) =-1THENNO=46: RETURN
5302 IFNO=19ANDOEY (51) =1 THENNO=S51 ; RETURN
9304 IFNO=19ANDOEY (52) =—1 THENNO=52: RETURN
5306 IFNO=1B8ANDOBEY (51) =—1 THENNO=S11 RETLIRN
5308 IFNO=3I9ANDORY (52) === 1 THENNO=%52: RETURN
S310 RETURN

Explanation
Line 5300: if the object number is for the old torch (OB%(45)), and
oy '€ carrying the blazing torch (OB %(46) = -1) then change the noun
Mmber accordingly. Return from this subroutine to whatever part of

€ Program called it up.

Line 5302: if the object number is for the empty bottle (OB%(19)),

105

and you're carrying the bottle of oil (OB%(51) =-1) then change th

noun number accordingly. Return from this subroutine to Whate\,e, =
part of the program called it up. Explanatlon
Line 5304: if the object number is for the empty bottle (08%(19))

and you're carrying the bottle of whisky (OB%(52) =-1) then chang;
the noun number accordingly. Return from this subroutine to Whateyg,
part of the program called it up.

Line 6000: print out a hostile message.

Line 6001: if the random number generated is greater than 99, in a
range of 1 to 100, then the gargoyle turns into a thief at lines 6020
Line 5306: if the object number is for the pool of oil (0B%(18)), angd p
you're carrying the bottle of oil (OB %/(51) =-1) then change the noyp
number accordingly. Return from this subroutine to whatever part of
the program called it up.

Line 6002: print out ‘He’s got a knife and throws it at you’, and place
the gargoyle in the room CP, meaning that he’s here until the bitter end.

Line 6004: if the random number generated is greater than 99, on a
scale of 1 to 100, the gargoyle has been successful and killed you.

Line 5308: if the object number is for the pool of whisky (03%(45”'
GOTO the death routine.

and you're carrying the bottle of whisky (OB %(52) = -1) then changg
the noun number accordingly. Return from this subroutine to whatever
part of the program called it up. Line 6006: a shoddy shot and he missed, so return from this subroutine.
Line 5310: none of these options, so return from the subroutine. Line 6010: if the random number generated is greater than 1, on a scale
of 1 to 10, then you've killed him, so jump to line 6014 and remove
. the gargoyle (0B % (40) =0).

The Hostile Gargoyle
Line 6011: yah boo! you missed, so the gargoyle stays there.
This is the routine that handles the hostile gargoyle, and checks to
see whether he or you have been succesful in your knife and axe
throwing attempts.

Line 6012: your axe (OB%/(4)) is placed in the room CP, the number
of objects that you're carrying (ZZ) is therefore reduced by 1

Line 6013: delay to enable reading of message on screen, then GOTO

6000 PRINT:PRINT"THERE 1S A HOSTILE GARGOYLE WATCH
line 200

ING YOUFROM THE SHADOWS!'"

6001 IFCINT(RND (L 85) #100+1)) >99THENLOZ0

6002 PRINT"HE HAS A KNIFE : HE THROWS IT AT YOU!"
OB% (40) =CF

6004 IF (INT (RND (. 5)*100+1)) *99THENPRINT"HE ‘'S KILLE
D YOU!":GOTO612

6006 PRINT"IT MISSED!":RETURN

6010 IFINT(RND(.5)*10+1) >1 THENPRINT"YOU'VE JusT KI
LLED A GARGOYLE!":0R%Z(40)=0:60T06014

6011 PRINT"YOU MISSED THE GARGOYLE!":OB%(40)=CP
6012 OB%(4)=CP:ZZ=ZZ7-1

601T FORI=1TOZ000:NEXT:BOTOZ00

6014 NF=0:G60TO6012

Line 6014: clear gargoyle present flag, since you’ve killed him, and
GOTO line 6012

The Thieving Gargoyle

The gargoyle has turned into a thief, and here we check to see what
Can take.

6
‘sfgs:gINT"HE AFFEARS FROM THE SHADOWS AND STEALS

&

6852 IFDEZ(Q)u—iTHENDBZ(Z)=63nPRINTOB$(2):GS=GS+1
602¢ IFOEZ(?)=~1THENDBZ(7)=63:PRINTOE$(7)IBS=BS+1
+1 IFDBZ(14)=—1THENOBZ(14)=63:FRINTDE!(14)=GS“GS

106 107

+1

LHOZO IFOBA (19) =~1THENOBY (19) =631 FRINTOE#£ (19)

6HO3Y IFOE{'/.(.-n)=—1THENOE'/.(33)#63:PRINTOB*(33)|Gs.es
+1

bOI2 IFDB'/.(34)=-—1THENOE'/.(34)=63|PRINTDB$(34)|Gs.es
+1

b0E4 IFOEZ(38)=—1THENOBZ(38)=63=PRINTDB£(3B)=Bsuas
+1

6OZ6 IFOBZ(44)=—1THENDEZ(44)-63:FRINTDB#(44)lGS-Bs
+1

6038 IFGES=0THENFRINT"NOTHING! VYOU WERE LUCKY!",
&H040 RETURN

Explanation
Line 6020: print simple message.

Line 6022: if you're carrying the staff (OB%/(2)), then place them in
the maze (CP =62) and increase the thief counter GS.

Line 6024: if you're carrying the dynamite (OB%(7)), then place itin
the maze (CP =62) and increase the thief counter GS.

Line 6026: if you're carrying the nails (OB%/(14)),then place them in
the maze (CP =62) and increase the thief counter GS.

Line 6028: if you're carrying the mirror (OB%(16)), then place it in the
maze (CP=62) and increase the thief counter GS.

Line 6030: if you're carrying the bottle (OB%(19)), then place it in the
maze (CP=62) and increase the thief counter GS.

Line 6031: if you're carrying the brick (0B%(33)),then place it in the
maze (CP=62) and increase the thief counter GS.

Line 6032: if you're carrying the fly spray (OB%(34)), then place it in
the maze (CP =62) and increase the thief counter GS.

Line 6034: if you're carrying the sword (OB%(38)), then place itin the
maze (CP=62) and increase the thief counter GS.

108

6028 IFDBZ(16)=—1THENDB%(16)=63=FRINTOE$(16):Gs.ea

6036 if you're carrying the matches (OB % (44)), then place them
in the maze (CP=62) and increase the thief counter GS.

ine 6038: if the thief counter GS hasn’t been set, then nothing has
peen stolen, so print a simple message on the screen.

Line 6040: return from the thieving subroutine.

Of Panthers and Crevices

Two separate routines here, one for dealing with the panther in the
presence of the bear, and one for the problem encountered in room
53: the narrow crevice.

6054 FRINT"THE FANTHER FLEES AT THE SIGHT OF THE
BEAR ! "1 F%4(42,1)=43:0R%(11) =0

6055 F#(42)="WALKING FAST THE SCENT OF OLD FANTH
ER!":BOTOS004

Explanation

Line 6054: print appropriate message, clear south path from room 42,
and remove the panther (OB%/(11))

Line 6055: change the room message, and back to line 5004.

6300 OC=0:FORI=1TOLO: IFOBY (1) ==1THENOC=0C+1

6302 NEXT

6304 IFQCH1THENFRINT"SOMETHING WON'T FIT THROUGH H
ERE. ": GOTO210

6306 IFOBEY(37)<»~1THENPRINT"SORRY. I CAN'T FIT THR
OUBH. ": GOTOR10

6308 CP=100: FRINT"THE STONE GLOWS WITH A SHINY LIG
HT AND LETS YOU THROUGH. "

6310 BOTD 210

109

0 POKESI280,61POKESI281,7: PRINT"LCLR,CD , BLK IWE
E TO «..... UNDERGROUND ADVENTURE !

02 PRINT:FRINT:PRINT'"HERE YOU ARE,MILES AWAY FR.
HOME , TRYINGTO DECIDE HOW TO SFEND '"j

04 PRINT"YOUR AFTERNOONS. "

06 PRINT:PRINT:PRINT"DO YOU LOOK FOR PEACE AND
JTUDE,OR DOYOU LOOK FOR DANGER AND "3

o8 FRINT"ADVENTURE ?":PRINT:PRINT:PRINT"OF COUR
yoU LOOK FOR ADVENTURE! LIFE IS TOO SHORT!

510 BOSUE 12000

012 PRINT'LCLR,CDIYOU ARE ON A DUSTY OLD BEATEN
HEADING SOUTH ";

= PRINT"TOWARDS SOME CAVES "j

014 PRINT'"HIDDEN AWAY IN THE HILLSIDE IN THE DIS

Explanation
Line 6300: set object counter OC to zero, and go through a loop | g
times to check for the presence of every object. If you find one, incregge
the variable OC. ‘

Line 6302: next time around!

s

Line 6304: if you're carrying more than one thing, then print suitabje
message and go to line 210 '

ﬁ?i FRINT: FRINT:FRINT"IT IS RUMODURED THAT THE CA
ARE DANGEROUS. "

018 PRINT:FRINT:FRINT"FAH! YOU SAY, AND QUITE RI
TOO. "

T20 FRINT: FRINT: FRINT"WHO KNOWS WHAT I8 TO BE FO

INSIDE THEMwRY

22 PRINT:FRINT:FRINT"YOU DECIDE TO GO AND HAVE

00ok. "

024 GOSUE 12000

26 PRINT:PRINT:FRINT"OK, JUST SETTING EVERYTHIN

P FOR YOU."

28 RETURN

000 PRINT:FRINT:FRINT"PRESS ‘SFACE’ TO CONTINUE"

Line 6306: if you're not carrying object 37 print suitable message ang
GOTO 210. i

Line 6308: put you in room 100, print message.

Line 6310: back to line 210 again.
May | Introduce You ?

explanation. The first line just sets the screen, border and backgro
colours. 002 BETSF#: IFSP$<»" "THEN12002

004 RETURN

110 m

Input Subroutine Explanation

This all-important routine governs what can and what can’t be ty
in, and is also a way of stopping anyone using the cursor contro| keys
to foul up the inputs.

Line 60000: set input CM$ to zero string.

Line 60002: print up prompt in reverse field, print a **’, and move the
cursor back over it.

Line 60005: get a character, and if nothing is pressed wait around until
it is.

It will allow you to delete characters only up to the input prompt, ang
won't allow you to press RETURN on a null prompt. If the STOP key
was disabled, it would also prevent crashing out of the program as we|),

HO000 CME=""y

60002 PRINT"LRVSI*LOFF,CLI1";

60005 BETZ#: IFZ#=""THENLOOOS

60010 Z=ABC(Z%) 1 IFZXFBTHENSLOOOS

60080 ZL=LEN(CM#) 1 IFZL.»27 THEN6O110

60100 IFZ>T1THENCME=CME+Z$1 FRINTZ#; : GOTOL0002
60110 IFZ=1ZANDZLTHENPRINT" ":RETURN

60120 IFZ=20ANDZLTHENCM$=LEFTE (CM¥, ZL~1) : PRINTZ$;
60140 BOTOLOO0Z

Line 60010: check the ASC value of the key being pressed, and if it's
r than 95 go back for another character. This stops any unwanted
characters being accepted by the computer.

Line 60080: take the length of the input string, and if it's greater than
97 then GOTO 60110, because we've had enough!

Line 60100: if the ASC value is greater than 31, then it's a legitimate
entry. Add it to our input string, and echo it back to the screen.

Line 60110: if we've pressed a carriage return, and the string length
is greater than 0, then return from the subroutine.

Line 60120: if we've pressed the space bar, and the string is greater
than 0, then the input string becomes the left side of the string, taking
the ZL-1 first characters. Echo the character to the screen.

Line 60140: go back to 60002 and start off again with the next character.

A powerful routine that could easily be adapted to trap even more
characters if necessary.

112 113

114

Creating Your Own Adventures

Introduction

We've already mentioned that one of the hardest parts of creating an
idual adventure game is making it just that: individual.

e and more brave new worlds are being explored every day, and
nce at any computer magazine, particularly the advertisements
e it, will reveal that there are many, many adventures on the market
for all kinds of machines, and the themes used seem to range from
the sublime to the ridiculous, from Colossal Caves to Pi-Men.

Five New Adventures

e newcomer, eyeing this vast range of adventure games, it must
m that there is nothing new under the sun, and that any attempt
Create a new, wonderfully different, adventure world is doomed
 failure.

ing could be further from the truth, and in this section we're going
. iOUtllne five full adventures for you, some old, some new, but all
th one thing in common: they haven’t been written yet.

owledgment
if any of you take up the challenge, | hope one day to see
Ntures based on these themes on the market. No royalty would

°ha"90d, no copyright laws infringed, but an acknowledgment
nice!

115

The five areas that we'll look at are all individual in their way, and py,
of them cross over into any of the others: they are five unique scengy:
that could easily be built up into complete and enjoyable gameg The Streets of London
We won't be giving you any maps, so that you can construct the €Ntirg
game for yourself, but an overview of the game, along with a selegtj
of possible problems, and the corresponding objects to go with them
will be given.

To round off this section, we’ll give a complete overview of the art
of designing a new adventure.

But for now, let’s head off in search of fame and glory, and arrive in,

TlEhe=

116

117

could try taking a taxi, but the taxi takes you on a scenic tour
'af London that takes hours before you get to your proper destination.
—nen the fare is too high, you haven’t got enough money, and you
ve t0 haggle with a noisy taxi driver in the middle of the streets of

London.

re are many other possible problems that one could construct, all
very much on real life in this re-construction of a real town into

an adventure game.

Introduction

This would be a relatively easy map to construct, since London is
well documented town. Of course, you could always choose your g
town as the base for a game if you wanted to, but an adventure b
on London is probably destined for more success than one baseq on
Wigan: sorry, Wigan!

So what is the theme of the adventure? you would have to be careful that the details about the locations of
objects were true to life. You couldn’t, for instance, have someone
taking the Victoria line and ending up at the Barbican, since the Victoria
Theme ine goes nowhere near there.
There could be a number of different themes here, as Britain’s capita|
city isrich in ideas. As one possible starting point, you may remember
the Golden Hare game that was constructed a while ago.

On the other hand, just about every diary ever printed contains a map
of the London underground, so you could soon chart up a reasonable
map for your game.

This was certainly a real life adventure game, in that the reading of
a book gave one a certain number of clues as to the whereabouts of
a Golden Hare, buried underground somewhere in Britain. This caught
the imagination of the public so much that many people were sent
scurrying around the countryside, following the clues and trying to
find the Hare.

Other Adventures

Or indeed, the underground could also be used as the basis for your
whole adventure, with a series of Reginald Perrin type disasters
occuring to prevent you from getting from A to B in the given time
limit. The sort of disasters that kept Perrin from getting to work on
time every day: a wombat escapes from London Zoo and chews its
way through the underground line, and so on.

In the end it was, | believe, a dog that found the Hare, by digging
nearby its owner as he took it for a walk, but that, | suppose, is life!

Atour of London could give the would be adventure writer more ideas

This idea could be adapted, and our hero could be sitting in a London
than just about anything else.

apartment, reading the evening newspaper, and find to his amazement
that the paper contains a series of clues to the whereabouts of some
great treasure hidden somewhere in the city. How about going down to Kew Gardens, and taking a walk through
Tropical House? That ought to be good for a few ideas for a jungle
Following the clues leads you all over the city, and hazards there would adventure, with man-eating plants and other hazards to avoid.
be a-plenty.
Or again, the Chamber of Horrors in Madame Tussauds ought to
Conjure up a demonic idea or two.
Hazards B
Ut to end up with one solid adventure, we'll take that original idea
S0me treasure being buried under the streets of London, and all

The underground could go on strike, and you'd find yourself having
U know is that it’s in London somewhere.

to take a bus. None come for hours, thus losing valuable time, an
then four of them turn up at once, only one going in the right directio™
Which one do you catch?

118 119

_ famous scene in the re-make of the Thirty Nine Steps, a hazardous
5“ mb out onto the clock face could be another hazard to overcome.
Scenario

Reading the evening paper one Monday night in your apartment, y,
discover a strange article that seems to point to the location of a by
treasure buried deep underground somewhere in the city of Londop,

conclusion

An adventure like this is a departure from the usual themes, and as
’ would score on the originality stakes. The problems to solve could
pe (relatively) realistic ones, and the player would have that sense of

The only clue that the article gives to this location is that the treasyrg
having been here before, but in real life.

originally came from ‘Underneath the Arches’, and was moved from
there many years ago.

Qur next adventure takes us into more familiar adventure territory, as
You decide to set off in search of adventure, and head towards the we head off into outer space!

arches.

Thus we could start off, and the first problem could be to get from
the apartment in Muswell Hill to the Arches, which (in our adventurer's
mind) would presumably be the arches behind Charing Cross Station,

After solving that problem (GET BUS, BUY TICKET, and so on),
arriving at the arches would reveal a pub called the Ship and Shovel,

Is this the next clue? Does our intrepid hero have to go off and acquire
a shovel and find a ship? Or does he merely go into the pub?

ENTER PUB
OK.

THE BARTENDER IS AUSTRALIAN, AND SAYS THAT ‘DOWN
UNDER IS THE ONLY PLACE TO BE’

WHAT NOW *

Down under? Another clue, and so we go off in search of a shovel:
and somewhere to dig underground.

This could be the start of a very intriguing adventure, set as it i in
real life situations (one of the bartenders really is Australian!) that wou
give the player a sense of familiarity, but pitching those situations int0
a different role from the norm.

The game could encompass many famous London Iandmarks,_eacr:
holding a clue on the trail, and each presenting its own partlcul_a
problems. Big Ben would presumably feature somewhere, and, 88 L

120 121

Lost in Space Introduction

There have been a number of adventures set in outer space, and the

ic Star Trek series of games that have been written for every
puter under the sun, were probably the inspiration for a number
of early games in this genre.

However, most of the Star Trek ones tend to be tactical battles, rather

true adventure games, and one has to go beyond the usual “You
in command of the US Enterprise, and your mission is to destroy
the Klingons' type of game, and put the player into a true adventure

setting.

Theme

One possible idea would be to have your hero cast up on a dim and
distant planet, deep in space, with a damaged spacecraft that needs
rebuilding before he can take off again and get back home.

Here we could use some of the more traditional ideas of adventure
games, but put into a modern setting. For example, the majority of
thud and blunder adventures require that you carry a torch around
with you. This could be replaced in this game by an oxygen tank, with
a limited amount of gas, so that the mission would have to be
completed in a set time.

There would be a number of different settings in this sort of adventure.
One part would take place on board the damaged ship, in a search

plans, more oxygen, and equipment to repair the damage, and if
the hero was silly enough to be wearing the oxygen tank on board

u‘r\;vaculd lose valuable time when it came to going out onto the planet's
ce.

l'|GVing thoroughly explored the ship, and cut past tangled metal,
Opened locked doors, and any other hazards you could dream up, the
Would come to go outside, with oxygen, and the living gargoyles
little dwarfs that inhabit older adventure worlds could be replaced
hostile aliens and strange life forms.

122 123

Alien Hazards

To any reader of science fiction there should be no problem in comj
up with a million and one problems for an adventurer to solve ag
explores the surface of a hitherto undiscovered planet. Undiscoye
because then he won’t be able to anticipate any of the problems thaé
might arise.

Here too, as in the Streets of London, a reasonable amount of realigp,
must come into the game, but your imagination can have a much freer
rein deep in outer space.

Perhaps one could use the discovery of planet-like bodies around the
star Vega, in the constellation of Lyra. A mission could be sent tq
explore, but a technical hitch causes the ship to crash and leaves ygy
as the sole survivor. Being a good few light years away from earth
it's impossible to signal for help, and in any case the radio probably
wouldn’t work, so you'd be on your own in a do-or-die mission oriented
adventure.

This could even be written as a two-stage adventure, in that you get
the spaceship working again, but instead of steering your course for
home you head off into the wilds of outer space, since the steering
device hasn’t been fixed properly, and then the exploration would take
place aboard the ship in an effort to correct the mistake before it was
too late, and you ended up in Andromeda or something. | knew | should
have turned left at the Pleiades!

Conclusion

QOuter space is rich in many things, and it is certainly a rich sourcé of
inspiration for the would-be adventure writer. A nice touch could.be
added by having various cameo roles from E.T., Darth Vader, Patrick

Moore, and other stars of screen and space.

But now we'll turn our attention down home again, and travel back
in time to the wild west!

124

Way Out West

125

and somehow you’d have to get out again.

Introduction
’ guilding upP the Game
To anyone who's ever seen the wonderful Marx Brothers movig
the same name, well, you've already got an adventure game wrij
for you! Trains that come off the tracks, keeping the engine going
by burning all the carriages, all the essential ingredients of problemg

disasters and humour are there.

above scenario could be built into a long and enjoyable game,

many more hazards than the ones we've detailed above. The
.£al|s are obviously immense, and the number of different scenes
could be played with a fine humour.

But for the idea that we'll consider in detail, we're into the more famjjig,
territory of Butch Cassidy and the Sundance Kid, and an attempt ¢,
rob the town safe.

perhaps some real characters from days of old could be included, like
poc Holliday, Buffalo Bill and the rest.

|t's a simple enough matter to build up a town plan, and some of the
characters involved are already there for you, in terms of the sheriff,
the bungling deputy who obligingly drops a key on the floor: just out
of reach of course, nothing is too easy in adventure games.

Theme

You're a desperado on the edge of town, town being a sleepy little
mid-west collection of hotels, saloons and good-time gals. The stars
twinkle in the skys above, but are not joined by the twinkling of money,
which you haven’t had for a long time.

From this one basic idea, there are many other themes that could be
developed, and which readily lend themselves into adaptation as
adventure games.

You know that this town is used by the railroad to store freight on
long journeys, and that last night the mail train came through. That
train was loaded with money, and all the money is now stored in the
town safe, under the watchful eyes of the sheriff, who's currently
watching a whisky in the saloon down town.

Variations on a Theme

We haven’t so far mentioned Indians, the civil war, the railroad
pioneers, the gold rush, or any of the other great themes that made
America what it is today.

The safe, as you know, is too heavy to carry, and no one’s going t0
sell dynamite to someone who looks like you! The Gold Rush would be ideal as an adventure, panning for gold, with
many natural hazards en route that would have to be overcome.
Since safe-picking is not your acknowledged art, you're going to havé
to steal some dynamite to blow it up. This means you'll also need 8
source of light somewhere, and when the sheriff hears what's goind
on, you'll also need a pistol and some bullets to shoot it out with him

when he finds you.

You could explore underground mines, although that has been done

ore in Lost Dutchman’s Gold and Fool’s Gold. Nevertheless, the
area is still barely touched, and a good adventure could still make use
of some of the ideas presented in these games.

But for a)) that, the idea of robbing the town safe is probably the best,

;‘w";taipp?d, idea, that could lead to a very good adventure indeed. Good
ng

You'll need a horse to get away, but you can’t buy one. Perhaps the
local blacksmith could be bribed into giving you a horse, but only
good one. You don’t want an old nag that collapses under the weight
as soon as you attempt to ride off.

You'll need something to put the money in as well, and you'll need
a small light to work by. A powerful torch would make people_co_“!e
and investigate, and the game would be up, you’d be slung In ja

126 127

Murder Mystery Introduction

ne of the great untouched ideas in adventure game writing is the
solving of a mystery, not necessarily a murder, although that is what
we'll look at here, but any mystery.

It's hard to explain why this should be so.

Certainly detective novels sell in vast quantities year after year, and
there would definitely be no shortage of plots for the adventure writer
who would like to concentrate on creating a series of mystery
adventures, perhaps with a connecting link like Agatha Christie’s
Hercule Poirot, or Conan Doyle’s Sherlock Holmes (not forgetting
Doctor Watson!), so that the games are linked together as a whole,
although each one enjoys a separate identity as a full adventure game.

The sort of game that could be created would depend to some extent
on the character adopted as the adventurer. ‘Of all the adventure games
in all the world, you had to walk into mine’ players would enjoy a
different game from ‘it’s all part of life’s rich pageant’ bungling French
detectives, so the game itself would have to take on a character akin
to that of the adventurer solving it.

The Story

As the great detective, a new case is brought to your attention. In
the old manor belonging to the squire of the local village, a few village
notables were sitting down to a pleasant evening meal when one of
them pitched over, dead!

Obviously, the body is examined and found to contain an overdose
of some poison, which narrows the number of suspects down to the
People who were sitting down to the meal, plus all the servants who
Normally attend the house. In total, a dozen people are suspected,
and you have to find out who the real villain was.

I3GVeIoping the Story
In €ssence, this is a variation on the old Cluedo theme, the popular

%ard game from Waddington's, in that there are a number of suspects
In a confined area, and you have to eliminate everyone bar one

128 129

person: the murderer.

Exploration of the manor in search of clues could provide the bag; The Valley of Death
adventure scenario, whilst the questioning of the suspects coulq be
kept on a very simple level, in order to accomodate our tWo-worg
adventure type of game.

In a more advanced game of the Zork variety one could well indulge
in elaborate question and answer routines, but here we'd haye to
restrict ourselves to much simpler ideas, perhaps using TAKg
STATEMENT when you’re in the same room as one of the suspects
or something like that. EXAMINE SMITH, or EXAMINE SQUIRE,
might reveal some vital clue about their person.

Building the story up in this way could then provide the basis for g
enjoyable romp, with the detective having to do an awful lot of work
to uncover the truth.

Conclusion

Detective games of this nature, that is, combining an adventure with
a little bit of amateur sleuthing, have been very much neglected, and
could lead to some good games if developed properly.

Not only would the exploration of the manor, or whatever environment
you pitch our adventurer into, provide some entertaining diversions,
by way of locked doors, guard dogs, hidden tunnels, and other hazards,
but the level of brainwork required could combine to produce a good
few hours entertainment.

But now, a much more traditional theme, as we enter the Valley of
Death!

130 131

Introduction

The Valley of Death! You can tell from the title alone just what S0
of world we’re about to enter, and it is very much the traditional hq
of the adventure writer, with mythical beasts and dragons, hobgoblins
orcs and trolls, necromancers and black riders, and a myriad of Othe;
illustrious villains from the halls of the mountain king, or More
specifically the pages of books such as Lord of the Rings!

This type of game is now enjoying a renaissance in the cinema, with
a number of terrible films pitting the super-hero in life and death
struggles against ancient myths and modern animation.

Nevertheless, as a serious adventure game, these can be great fup
to play, and equally fun to write, as you dream up the weird and
wonderful world into which you’re about to send your hero.

Origins

The very first Adventure set the tone for this type of game, with hidden
corridors, vast chasms, erupting volcanoes, and descriptions like this
as you go into the heart of the colossal cave:

“You are at the edge of a large underground reservoir. An opaque cloud
of white mist fills the room and rises rapidly upwards. The lake is fed
by a stream which tumbles out of a hole in the wall about 10 feet
overhead and splashes noisily into the water somewhere within the
mist. The only passage goes back toward the south.’

Or how about this, for a true Gothic description, with just a dash of
humour:

‘“You are in a north/south canyon about 25 feet across. The floor is
covered by white mist seeping in from the north. The walls extef‘d
upward for well over 100 feet. Suspended from some unseen point
far above you, an enormous two-sided mirror is hanging parallel 10
and midway between the canyon walls. (The mirror is obviou

provided for use by the dwarves, who, as you know, are extremehf
vain.) A small window can be seen in either wall some 50 feet UP:

Tremendous stuff! You know straightaway the kind of world you e
walking in, where characters from a Jules Verne novel like Journé

132

¥ wthe Centre of the Earth might be expected to appear at any moment.

The Story

Al good, traditional stuff, but the area is so vast that many adventures
are still to be written that put the adventurer into a world filled with
strange creatures, and countless hazards to overcome.

The story of the valley is a simple one. Stranded (you can work out
how!) at the top of the valley, you have to make your way down to
the mouth, walking alongside the river as it gushes down to the sea,
sinking into quicksand, building canoes that do little more than pitch
you headlong into the rapids, with hostile natives stalking you from
the shadows every step of the way.

Strange, terrible creatures inhabit the valley, and you have to kill them
all with a mixture of dexterity, wit and courage before you can safely
leave and make your escape back to civilisation.

Ropes must be built across the river, native arrows must be avoided,
and many other problems must be solved along the way.

The range of story lines in this sort of field is vast, and one could conjure
up a thousand and one tales of sword and sorcery, dungeon and
dragon, that would leave the adventure player just waiting for your
next game.

Conclusion

Here we've explored just five different areas out of the many thousands
that could be used to form the basis of a good, solid, adventure game.
Many areas are still to be touched, and it is worth taking your time
n t_ieveloping an adventure scenario, as the plot and story line are major
Points in the success or failure of writing an adventure game.

89 too are the problems that must be solved, and the ease or difficulty
With which the player can progress to other levels in the game, but
None the less it is the story line that will initially attract a player, and
Start him playing your game rather than any other.

We mentioned earlier the Bible as a source of inspiration, and there

are an infinite number of stories in there that could be turned into long
€nture games. I'm not suggesting you wander across the desert

133

for forty years, but you might have fun trying to cross the Red Sea

In the end, it is your own mind that is going to conjure up a gooq o
a bad adventure, and the story must hold true throughout the eng
game, or people will just tire of it and not consider any more of your
games, not matter how good.

It is a lot easier to bore people than it is to entertain them!
So, at the risk of boring you with a lot of writing, let’s take a look at

the construction of Underground Adventure, and the entire selectigp
of verbs that are used in the game.

134

6
Underground Adventure

In this chapter we are going to present you with the rest of
Underground Adventure, to complement the listings that you've
already seen in chapters 3 and 4.

All that's left to do now is to look at the data, which we’ll list in full,
followed by three pages of explanations for the verb data, the objects
data, and the rooms data, and the entire list of verbs that are used
in the game.

As you've probably never written an adventure before, we're going
to go through each verb in turn, giving on one page the listing for that
verb, and every part of the program that handles it, and on the opposite
page we'll give an explanation for the listing, line by line.

Some verbs take up more room than others, and in particular the SAVE
and LOAD routines are quite long. Others do not take up so much
Space in this adventure, and so there will be a fair amount of blank
Space left on a number of pages. This is there for your own notes,

use in many instances the verb will require a lot more code in your
OWn games that we've used here.

Thu_s the space can be used to amplify on the original listing, without
aving to have lots of separate sheets of paper lying around
everywhere.

The Scenario

Yoy are outside a set of caves that look invitingly out at you. They

135

seem worthy of exploration, and so off you go into the caves anq
darkness within. Finding an old torch and some matches, yoy |;
the torch, and the blazing light fills the caves. As you step further jng;
the gates are rocked by the reverberating sound of a solid gate being
slammed shut behind you, and your avenue of escape is blocked.

uce a different and meaningful description for each room. This
P _blem could be surmounted by the addition of a few extra lines of
code in the routine from line 5000 onwards, e.g.

so11 IF CF=24 THEN 8000
Somewhere in the caves lies the key to the gate, which you must fing 4
before you can escape. You got yourself into the caves, now only you
can get yourself out.

6000 PRINT "IN A LONG DARE TUNNEL THAT HAS EBEEN C

ARVED OUT OF THE ROCES."

goo2 PRINT "THE ROCES HAVE WEATHERED OVER THE YEA
INTO A THOUSAND AND ONE"

goo4 FRINT "FANTASTIC FORMATIONS. THE LIGHT FROM

yoUR TORCH FLICKERS EERILY"

gooé FRINT "AMONGST THE SHADDWS, CAUSING THE LIGHT

70 DANCE ABOUT FROM THE ROCES

and so on, before returning back to the main progr

am again.

We took a fairly detailed look at this adventure earlier on, so
description of the perils involved in finding the key can be read therg
but it's worth pondering a while on the story line as we've got it sg;
out here.

The Story Line

This game is set in traditional adventure territory, deep underground,
fighting off mythical creatures and exploring some unusual terrain,

The tunnels and corridors much loved by Crowther and Woods have
been incorporated here, together with a few swamps, a little touch
of magic, and a hazy, misty land that is difficult to pass through. Some
of the hazards will be familiar to players of other adventures, whilst
some will be new, as will be the manner in which these puzzles have
to be solved.

Other than that, it works, so let’s look at the verbs, starting with GO.

The Complete List of Verbs

These verbs are to be covered one at a time, with two pages reserved

;g;ieach verb, one for the listing and one for the explanation of that
ng.

This mixture of old and new has been adopted to a) put the player
at ease with familiar territory, and the writer with a good stock of useful
verbs and subroutines that can be used in other stories, and b) to have
enough new material to keep the player interested, and give the writer
some ideas of how new verbs can be accomodated into his own
adventures.

The Writing

This is not to say that this is the only way to write adventure games:
of course it isn't. But it does produce a fairly fast response from the
computer, and it does allow a large range of verbs and nouns t0 be
accomodated quite easily.

One of its weaknesses is the length of the room descriptions: thesé
tend to be rather short, and in this way it is sometimes difficult to

136 137

GO

This verb covers all movement in the game, in the four carg.
directions. ’

,Janation

2 270 - if the noun string is not equal to zero, but the noun number

+hen the word is not recognised, a message printed, and back for
er input.

270 IFNO#<>""ANDNO=OTHENFRINT"I DON'T KNOW THAT |

RD. "1 BOTO210 E

272 IFND>2B80RNO<Z21THENPRINT"I DON'T UNDERSTAND,

aT0210 7

274 IFNO>24THENNO=NO-4

276 NO=NO-21

277 IFNOANDCF=3ANDGF=1THENS200

278 IFNOANDPDTHENPRINT"YOU HAVE FALLEN INTO A pr

"1 60TO612 4

288 IFPZ(CP,NO) =0THENPRINT"YOU CAN'T GO THAT way,

16OTO210

289 IFCF=53ANDNO=1THEN&LZOO

290 CP=P%(CF,NO):GOTO200

e 272 - if the noun number NO is greater than 28, or less than 21,
n it is not one of the eight movement nouns (NORTH, SOUTH,
WEST, N, S, E, W), and so the computer doesn’t understand!

ne 276 - adjust NO to lie between 0 and 3.

277 - if we're moving in room 3 and the gate is open (GF=1),
en it’s the start of the game, so GOTO5200 to set the start up by
hutting the gate.

278 - if we're moving but it’s pitch dark (PD is set), then print
age and GOTO death routine.

288 - if P% (room number, direction) is equal to zero, then we can’t
t way, so print out message and back for more input.

138 139

|anation

GET

This verb handles the picking up of all objects in the game,

- if the noun number is zero, then we don’t know what the

Dm":n is, 5o GOTO 1900 to print out message.
200 IFNO=0THEN1700 > 302 - GOSUB to routine to check bottles and torches.
302 GOSUB S5I00 Liné
304 IFOB%(NO)=-1THENFRINT"YOU'VE ALREADY GOT Iy«
GOTO210 e
306 IFOB%(NO)<>CPTHENFRINT"I CAN'T SEE IT HERE,uq
0TO210
308 IFND=1BANDOEY (19) < >~1THENFRINT"YOU HAVE NO ggy
TAINER. ": GOTO210
I10 IFNO=3I9ANDOBY (19) < >~1THENPRINT"YOU HAVE NO gy
TAINER. ":GOTO210
312 IFNO=39ANDOBY (19)=-1THENOBY (39) =0: NO=52: 0B%(19g
)=0:22=2Z~1:GOTO389
314 IFNO=18ANDOE% (19)=~1THENOEY (18) =01 NO=51: 0B% (19
)=01:22Z=2Z~1:6G0TOZ89
315 IFNO=10RNO=Z0RNO=60RNO=90RNO=110RNO=17THENPRIN
T'DON'T BE STUPID!":G0OTO210
I16 IFNOD=200RNO=290RNO=Z00RNO=310RNO=220RNO=350RNQ
=36THENPRINT"I CAN'T DO THAT!":B0T0210
318 IFND=400RNO=410RNO=4Z0RNO=49THENFRINT"IT CAN'T
BE DONE'":GOTO210
320 IFNO=B0ORNO=SOTHENPRINT"THERE 'S NO POINT, S0 I
WON'T!": GOTO210
322 IFZZ»4THENFRINT"YOU'RE CARRYING TOO MUCH.":BGOT
0210
324 IFND=12ANDCF=10THENF%(10,3)=0:F$(10)="FACED BY
A VAST CHASM."
326 IFND=15ANDSC=0THENFRINT"YOU CAN'T GET IT YET.'
:GOTO210
I89 ZZ=ZZ+1:PRINT"OK.":OBR%(NO)=-1:60TO210

Line 304 - if the object number is set to minus 1, we're already carrying
it!

Line 306 - if the object number isn’t equal to the room number, then
itisﬂ't here, so print message and try again.

Line 308 - if you're trying to get object 18, the pool of oil, but you're
not carrying the empty bottle, object number 19, then you can’t have it!

Line 310 - ditto for trying to get object 39, the whisky.

Line 312 - on the other hand, if you want the whisky and you are
carrying the bottle, then you can have it. The pool of whisky
disappears, change the noun number to refer to the bottle of whisky,
object 52, set the empty bottle to disappear, and decrement the number
of objects being carried counter ZZ before GOTO 389

Line 314 - ditto for the pool of oil

Line 315 - list of objects (see data tables later) that you can’t carry:
mainly big things that would be too heavy, so if you're trying to get
one of them, print out a suitable message and go back for another
input.

Line 316 - more unobtainable objects.

Line 318 - and yet more, including object 49, the word PROGRAM:
Someone would type it in!

Line 320 - silly objects that people might try and pick up, a pile of rubble
and some broken glass.

Line 327 check to see how much is already being carried.

Line 324 - if you pick the plank up from room 10, then you can’t get
Past the chasm again, so adjust everything accordingly.

Line 326 - f you're trying to get the shimmering curtain, but you haven't

140 141

worked out how to get past it (in which case the shimmering -

nation
counter isn’'t set), then you can’t have it!

- print out a simple message, and set the variable GS to zero,

Line 389 - everything’s OK, increase the number of objects being the number of objects being carried to zero.

counter, put the object in your possession, and go to line 21‘

, 502 - start a loop up that will be gone through LO (number of
-ts) times, and check to see if the object is being carried i.e. if
o5(1) is equal to minus one. If itis, then print up on the screen the
t's description from the variable OB$, and increment the two
rs GS and ZZ.

INVENTORY

This verb is used to give a list of everything that you're carrying.
you can take stock of a given situation, and decide what to |g

behind. , 504 - NEXT step through the loop.

SO0 FRINT"YOU ARE CARRYING :=":@ES=0:2Z=0

502 FORI=1TOLO: IFOB%(I)=-1THENFRINTOB# (I) : GS=GS.
127=27+1 -

S04 NEXT
906 IFES=0THENFRINT"NOTHING. "
S08 6OTO 210

506 - if GS is equal to zero, then you can't be carrying anything,
just print out the word NOTHING.

e 508 - go back and get another input.

142 143

DROP

This verb is used to drop anything that you might be Carfying_‘

_, 560 - noun not recognised, so GOTO 1900

560 IFNO=0OTHEN1900
562 BGOSUBIIOO :
564 IFOBY%(NO)<»=1THENFRINT"YOU HAVEN'T GOT ITiu,.
TO0210 ¥
S66 IFNO=19THENFRINT"S8MASH. .. "1 0B% (19) =0: 0BY (50,
P:Z2Z=272-1:6G0T0210
568 IFNO=51THENFRINT"SMASH. .. ": 0B% (51) =0: OB% (50) =n
P:2Z=272-1:60T0O210]
570 IFNO=52THENFRINT"SMASH. .. ": 0B% (52) =0: OB% (50) =
P:Z2Z=27-1:60T0210 5
572 IFNO=16THENFRINT"OH DEAR! IT VANISHES IN A gpy
RELE OF SHATTERED GLASS!" i
573 IFNO=16THENOE% (16) =01 ZZ=2Z~-1:60T0210
574 IFNO=46THENOEY (NQ) =0: OB% (45) =CPt ZZ=ZZ~1: PRINT
Ok " BOTO210

57% IFNO< »12THENS80
576 IFCF »10THENSB0 .
5768 FRINT"BRILLIANT! NOW YOU CAN WALEKE ACROSS THE

FLANE!"

579 OB%(12)=CP:PF%(10,3)=14:F% (10)="WALKING ACROSS
THE PLANK.":ZZ=ZZ-1:60T0210

580 PRINT"OK, ":2Z=22-1:0B% (ND) =CF: IFTB=1THENS84
582 GOTO 210 }
584 FRINT"THE BEAR GLARES AT YOU AND RUNS AWAY!":T
B=03: OB%(9) = (INT (RND (. &) *41+1))
586 27=72-1:60TO210

.o 562 - GOSUB 5300 to check the bottle and torch situation.

» 564 - if you're not carrying it then you can’t drop it!

« o 566 - if you drop the bottle, then it breaks, the empty bottle
sappears, a pile of broken glass appears in the room CP, the object
ounter is decreased, and it's back for another input.

e 568 - ditto for the bottle of oil.

1ine 570 - and for the bottle of whisky.

line 572 - if you attempt to drop object number 16, the mirror, it
shes, so print out a suitable message.

Line 573 - remove mirror, and decrement object counter, then GOTO
210 for more input.

574 - dropping the blazing torch causes the blazing torch to
ppear, the old torch to appear in the room, the object counter to
ease, the word OK to be printed on the screen, and GOTO210

,} e 575 - if you're not trying to drop object 12, the plank, then off
to line 580.

Line 576 - if you're not trying to drop the plank in room 10, then off
0 line 580 as well.

578 - print out a message of congratulations at doing something
ight.

ine 579 - put the plank in the room, enable you to go west from room

change the description for room 10, decrement the object counter,
ihd GOTO 210

g 580 - everything'’s all right, we can drop something! Print OK,
-rement the object counter, put the object in the room, and check
Y See if we've got the bear with us. If we have then GOTO 584

8 582 - back to 210 for more input.

144 145

Line 584 - the bear thinks you're throwing something at it, SO |
away! Set the bear flag to zero, put the bear (object 9), in g
somewhere between rooms 1 and 41. s 1890 - print out a message, and give the player the chance of
ing the game onto tape, for starting again at the next session

Line 586 - decrement the object counter, and back to 210

QuiIT

This is the verb used to end a game, and has to ask you a couple
questions before you can actually leave the game. &

11892 - wait for a key to be pressed on the keyboard, and if it's
wy’ then GOTO3000, the start of the SAVE routine.

“17394 - if they’vg pressed ‘N’ then GOTO 614, which gives you
chance of running through the game again before definitely
ishing.
e 1896 I- they haven’t pressed anything, so go back and wait until
y have

It's used to give you the chance of saving your progress onto tar
should you choose to do so. '

1890 FRINT"OK.":FPRINT"DO YOU WANT TO SAVE YOUR Pf
GRESS ONTO TAFE (Y OR N)?"
1892 GETFR#: IFFR#="Y"THENIOQO
1894 1IFPR#="N"THEN&14

1896 GOTO 1892

146 147

CROSS

This verb is used whenever the player wants to get across so
and can’t be bothered to type in a direction.

lanation

, 690 - if you don’t understand what noun has been typed in, ask
-m what it is they want to cross, and go back to line 210 again.

o 692 - if they're not in rooms 15 or 10, the only two rooms that
,ve got chasms in them, then there’s nothing to cross, so tell the
ver so and go back to 210 again.

In this game the verb doesn’t really have any use, but in o
adventures it could be a very useful way of getting from ong p|.
to another, which just by a logical NORTH or whatever they coyje
do 1e 694 - if they're not trying to cross the chasm, the bridge or the
nk, then assume they’re trying some strange breeding program,

HPSIRECRBE, JOU ' MEVE R ERECK the Tooim MOMESCE, Sup int out a suitable response on the screen, and go back to line 210

that there’s something in place that they can cross, whisk them acra
to the other side by changing CP to the appropriate value.

ine 696 - a cop-out, since we don't really use this verb in the program,

S3G “SINCRGTHERRIINT (Cheigs Whial 71 TRUTEEeS »suggest that they type in a direction instead, and then back to 210.

HERE TO CROSS!":60TO210
694 TFNO< > 1ANDNO< »6ANDNO * 1 2THENFRINT "MMMM . .,
AT A STRANGE IDEA!":BOTOZ10
696 FRINT"WHY DON'T YOU JUST TRY TYFING IN A
DIRECTION!":GOTOZ10

&K

v

148 149

OPEN

There are a number of things that can be OPENed in this game
at least attempted to be opened, like gates and doors, so thig ye,
deals with all of that.

780 - if you don’t recognise the noun, ask them what they're trying
pen, and GOT0210

782 - if they’re not in rooms 60 or 3 then there’s nothing to open,

If you had treasure chests or something in your games, the relgy, I, 20, and GOTO210

lines to handle opening of the chest could be used here. . 784 - if they're in room 60 then GOT0790

780 IFNO=OTHENFRINT"QFEN WHAT 7!":GOTO210
782 IFCP< »60ANDCF< >ZTHENPRINT"THERE 'S NOTHING
TO OFPEN.":GOTO210

784 IFCP=60THEN7?0

786 IFGF=1THENPRINT"BUT IT I8 OFEN!":B0TO210 1
788 IFOR%(42)< »~1THENPRINT"BUT YOU HAVEN'T GOT 4 |

EY.":GOTO210

789 PRINT"THE GATE SWINGS SLOWLY OFEN.":GF=1:p
0)=2:60TO2510

790 IFDF=1THENFRINT"BUT IT'S ALREADY OFEN!":G0T021
0 n
792 IFOB%(33) < »~1THENFRINT"YOU'VE NOTHING STRING E
NOUGH TO OFEN IT WITH.":G0T0210

794 PRINT"YOU'LL JUST HAVE TO TRY AND DO THIS SOME
OTHER WAY!":60TO210

- 786 - if the gate flag is set then the gate is already open, so tell
em, and GOTO210

e 788 - if they’'re not carrying object 42, the key, then they can't
,en it anyway, so tell them again, and GOT0210

ne 789 - they can open the gate, so print a suitable message. This
nifies the end of the game, so set the gate flag, let them go north
om room 3 to room 2, and GOT02510 to print a congratulatory
essage and end the game.

ne 790 - if the door flag is set then it's already open, so tell them
p and GOTO210

ine 792 - if they’re not carrying the lump of mortar they’ve nothing
rong enough to open the door with, so tell them so by printing a
pelling mistake on the screen (sorry!), and GOTO 210

ine 794 - you don’t open a door with a lump of mortar, you have
) do something else, so tell them so, and GOT0210

150 151

CLOSE

This is used whenever the player attempts to close something in
game. In Underground Adventure the only things that they can
are the gate or the door, so we check for that accordingly,

o 880 - if you don’t recognise the noun, ask them what it is they
to close, and GOTO210

880 IFNO=OTHENFRINT"CLOSE WHAT 7!":GOT0210
881 IFNO<»32ANDNO< »3STHENPRINT"HUH?" : BOTO210
882 IFCP=3THENB90

884 IFDF=OTHENFRINT"IT'S ALREADY CLOSED.":GOTQay,
886 PRINT"OK.":F%(60,1)=01DF=0:F$(60)="FACED Wit
A CLOSED DOOR ABGAIN'':BOTO210
890 IFGF=0THENPRINT"BUT IT'S ALREADY CLOSED!";gaq
210
892 PRINT"THE GATE IS A MAGICAL ONE, AND ONCE gp

CANNOT BE CLOSED.":B0T0210 1 change the message for room 60, and GOTO 210

ine 890 - if the gate flag is set to zero then it's already closed, so tell
em so and GOTO 210

ine 892 - just print out a simple message telling them that the gate
isa magical one, and cannot be closed by you! Then off to 210 again
or another input.

152 153

EAT '

Most adventure games seem to feature food of one sort or gnos
and although this food is very rarely intended for the consumpt;,
the player, it is inevitable that sooner or later someone is gojng
attempt to eat it for themselves. ! , 902 - check to see if anyone’s attempting to eat the bottle or the

1agnation

Hence this routine, which copes with greedy adventure playerg
904 - if the object that they want to eat isn’t in their possession,

isn't in the room either, then they can’t have it, so print out
able message and GOTO 210

900 IFND=OTHEN1900
902 BOSUBSIOO0

904 IFOE%(NO) < >~1ANDOBY (ND) < >CPTHENPRINT "I CAN*
EE IT HERE.":GOTO210
906 IFND<>10THENFRINT"I DON'T THINK SO, SOMEHOW
BOTO210 3
908 PRINT"MMMM-MMMM! DELICIOUS!":OB%(10) =0 Z2=~1,
070210

e 906 - if they're attempting to eat anything other than object
mber 10, a bun, then warn them off with a suitable message.

1 908 - fair enough, the delicious bun is eaten, with an appropriate
sage, the bun then disappears (inside the player’s stomach), the
ject counter is decremented, and we go off to 210 for another input.

154 155

;.nation

FEED

Since there is some food about, someone has obviously got tg ;
it to something, and you'd be surpised by the things some adyep
players try and force on the unsuspecting occupants of the adygng
world.

e 950 - if you don't recognise the noun, then tell the player so, and
. off back to line 210 again for another try.

o952 - if you're not carrying the bun, object 10, then whatever you're
ng to feed fobs you off with an excuse, and GOT0210

In Underground Adventure, the only thing that’s interested in gay;
is the bear, and the only thing it wants to eat is the bun, apart f
you, perhaps.

1e 954 - if you're trying to feed anything other than the bear, then
.suddenly feigns a lack of hunger, so we print a suitable message
, the screen and go back to 210 again.

ne 956 - Ahal We're trying to feed the bear, so we go to line 1072,
here this same sequence of events is handled by another verb,
FFER, in case someone decides to OFFER BUN, rather than feeding
e bear.

950 IFNO=OTHENFRINT"I DON’T UNDERSTAND.":B0T0210
952 IFNO« *9THENFPRINT"IT ISN'T HUNGRY'"IGOTO210
954 IFOB%(10) < »=1THENFRINT"YOU 'VE NOTHING TO Fg
IT WITH.":GOTO210
986 GOTD 1072

157
156

DRINK

An occupation favoured by many adventure players, but when it oo ,I
to actually playing a game of adventure people will try and drink gqr
very odd things indeed. S

ation

» 1000 - if you don’t understand the noun, then it's off to the
»routine at line 1900

» 1002 - GOSUB 5300 to check we're not mixing up bottles and
Like eating in adventures, the drink is usually reserved for somear hes. '
else’s use rather than that of the player, and consumption by the pja,, .
will, in the end, result in an adventure that can’t be finished, e 1004 - if they're not trying to drink either of the two liquids in
, program, i.e. the oil or the whisky, then print out a suitable
Still, they don’t know this when they start, and so the approprig tement and GOTO 210 as usual.
routine has to be inserted to handle this. W :
e 1006 - some people try to drink strange things in these games,
1000 IFNO=O0THEN1900 d oil is one of them. However, if that is what they want to drink
1002 BGOSUBSIO0 B y must face the consequences, so print a ‘this is revolting’ message
1004 IFNO<>51ANDNO< »S2THENFRINT"YOU MUST BE JOKING 1 the screen, remove the bottle of oil from the player’s possession,

M EOTO210 ; lace it with an empty bottle, and GOTO 210.
1006 IFNO=S51THENFRINT"URGGHH ' !": 0B% (51)=0:0B% (19)

~1:6BOTO210 '
1008 PRINT"GLUG GLUG GLUG ... HIC!'":0B%(52)=0;0B%
19)=-1:60T0O210

ne 1008 - if you will drink whisky! Print out the message, remove
e bottle of whisky, replace it with an empty bottle, and GOTO 210.

158 159

OFFER .

This is one of the commonest ways of transferring possessiong +,
the player to someone else, and in this adventure there are twg ¢
that change hands, and get you through a couple of awkward g, k.

. .planation

e 1050 - if you don’t recognise the noun, then ask them what they
~nt to offer, and GOTO 210

e 1052 - check that we're not confusing the various bottles and

= " 2N : "
10850 IFNO=OTHENFRINT"OFFER WHAT ?!":60T0O210 es by the subroutine at 5300

1052 GOSUBSIOO
1054 IFOB% (NO) < »~1THENFRINT"YOU'VE GOT TO HOLD
TO OFFER IT!":GOTO210

1056 IFNO=10THEN1O70 :
1058 IFNO< XS2THENFRINT"YOU 'VE NOTHING WORTH OFFgg.
NG!":GOTOZ10 ‘
1060 IFCP«>SOTHENFRINT"THERE 'S NO-ONE HERE WHO wan
T8 IT (EXCEPTYOU!)":B0TO210 ;
1062 PRINT"THE DENIZEN OF THE CAVERNS DOWNS IT
ONE DRAUGHT, AND GRATEFULLY "j i
1064 FRINT"SHOWS YOU A NEW TUNNEL BEFORE GOING Al
Y TQ SLEEP OFF HIS HANGOVER."

1066 OBZ%(S52)=0:0B%(19)=-1:P%(50,3)=50: F$(50)="
ING PAST OLD SPIRITS."

1067 OB%(29)=0:60T0210

1070 IFCPC 27 THENFRINT" THERE 'S NOTHING HERE THAT W
ANTS IT!":G60TOZ210

1072 FPRINT"THE BEAR GRATEFULLY ACCEFTS THE BUN,
DETANDS ASIDE TO REVEAL A NEW ";

1074 PRINT"FATH. HE ATTACHES HIMSELF TO YOU LIKE
A LIMPET!":P%(27,0)=28

1075 P$(27)="WALKING PAST A SCENT OF OLD BEAR"
1076 OB%(10)=0:2Z=2Z~1:TB=1:60T0210

Line 1054 - if they’re not carrying the object you can’t offer it, so print
the message and GOTO 210

ine 1056 - if they're talking about the bun then GOT0O1070

line 1058 - if they're not carrying the bottle of whisky, then forget
itl Print out message and GOTO 210

Line 1060 - if they’re not in room 50 then there’s no one who's interested
in the whisky, except them, so print out the message and GOTO 210

ne 1062 - aha! The denizen of the caves gratefully accepts their kind
sent, so print out a suitable message.

ine 1064 - rest of message.

ine 1066 - remove the bottle of whisky, and replace with an empty
one. Allow them to go west from room 50 to room 55. Change the
'oom description for room 50.

ine 1067 - remove the denizen of the caves, and GOTO 210

e 1070 - if they’re not in room 27, then no one’s interested. GOTO

e 1072 - the bear eats the bun! Print out message.

-ine 1074 - print rest of message and allow you to go north from room
</ 1o room 28.

® 1075.- change the description for room 27.

Ne 1076 - remove the bun, decrement the object counter, set the
*6ar flag, so that he tags along behind the player, and GOTO 210

160 161

WAVE

One of the key features of most adventures is waving something,
can quite often cause a magical feat, and usually this happens re
early on in a game.

1100 - if you don’t recognise the noun, then GOTO 1900.

. » 1102 - our usual trip to the subroutine at line 5300.

z‘, 1104 - if the object is not in the player’s possession, nor is it in

This early success seems to go to some people’s heads, who the » room, then print out a suitable message and GOTO 210

merrily wave anything they can get their hands on, so we have to chea

for all of that. 1e 1106 - if they’re not waving object number 2, the staff, then print

ut silly message and GOTO 210
1100 IFNO=0THEN1900 '
1102 GOSUBSIOO

1104 IFOBY(ND) < >~1ANDOBZ (NO) < >CPTHENFRINT"BUT
HAVEN'T GOT IT!":GOTO210 Y
1106 IFNO< »2THENFRINT"WAVE, WAVE, WAVE, BUT NOTHI
G HAPFENS!":60TOZ210) | A N
1108 IFCP<>1STHENPRINT'NOTHING HAPFENS.":B0T0210 ne 1110 - if the bridge flag is set, then tell them that they've already

here and waved a staff, before going to 210 again.

ne 1108 - even if they're waving the staff, nothing will happen unless
ey're also in room 15, so print out the message and GOTO 210 as

TOZ10
1112 PRINT"A CRYSTAL BRIDGE NOW SFANS THE CHASM!",
OB%(6)=CP:P%(15,1)=17
1114 PL(1S,2)=16:P£(15)="WALKING ACROSS THE CHASM,
"1 BOTOZ210

ne 1112 - print the magic message, put the bridge in the room, allow
hem to go south from room 15 to room 17, and set the bridge flag.

ine 1114 - allow the player also to go east from room 15 to room 16,
hange the description for room 15, and finally GOTO 210

162 163

CUT and CHOP

In this adventure the two words are synonymous, in that both achiey,
the same object in the same way. ine 1150 - speaks for itself!

‘explanation

However, some games may care to give them a different meanjn. ine 1200 - if you don’t recognise the noun, off to 1900
so we've left them both in here. o :

Usually used to cut something up or chop it down, like a tree, or g
tangled mass of vines, or something of that ilk.

Ll‘,ossesslon and itisn'tin the room, then print out a suitable message

1150 BOTO 1200:REM CUT AND CHOF ARE THE SAME 1N \ =nd GOTO 210

I8 GAME!

1200 IFNO=0THEN1900

1202 GOSURSIOO g Line 1205 - if they're not trying to chop the tree, the shimmering curtain,

1204 IFOBY%(ND) < :=1ANDOE% (NQ) < *CPTHENPRINT"I CAN‘ -m the rope, the plank, or the old door, then tell them that it can’t be

SEE IT HERE!":G0TO210 done, and GOTO 210

1205 IFNO< »IANDNO- > 1 SANDNO< »*SANDNO- » 1 2ANDNO< »32 1 ¢
" " - % £ 5

TESZNIFgg;Ti??>E?$:SNP;?EJI?§L1J$ YOU'VE NOTHING Line 1206 - if the player is not carrying object number 4, the axe, then

UT IT WITH!":GOTO210 Y’ve nothing to chop anything with, so tell them so and GOTO 210

1208 IFNO< »ZANDNO< »12THENFPRINT"YOUR AXE I8 NOT again.

ONG ENQUGH. ": GOTO210

1210 IFNOD=3THEN1220

1212 PRINT"THE FLANK I8 NOW NICELY SHAFED, BUT

NEED SOMETHING ELSE BEFORE "j

1214 PRINT"YOU CAN MAKE A LADDER!":0B%(12)=0:0B%(

3)=-1:160TO210

1220 PRINT"TIMBERRRRRR! THE TREE CRASHES TO THE

BGROUND ! "

1222 P%(21,2)=22:FP$(21) ="WALKING FAST A DEAD TREE.

":OB‘(*)H”AN EX TREE":G0TO210

A Line 1208 - unless they're trying to cut the tree or the plank, then the
‘ axe isn't strong enough and they’ll have to try a different tack, so tell
- them so, and GOTO 210

Line 1212 - print a message about the plank.

§ Line 1214 - rest of message, remove the plank, put the neatly sawn
mmber in their possession (a fine piece of axemanship!), and GOTO 210

f‘Line 1220 - print message about the tree.
i vUne 1222 - let them go east from room 21 to room 22, change the

degcription for room 21, change the description of object 3, and GOTO

As it stands, this will let players repeatedly chop down the ex-tree,

8hould they choose to do so, but a simple test could be carried out
to disable this.

164
165

slanation

CLIMB

In most adventures there is a degree of climbing somewhere gjgn.
the way, but the ability to climb something usually depends op the
player having already collected or made something else. i

1250 - if the object concerned isn’t the tree, the rope or the ladder,
_n the player can’t climb it, so a suitable response is given before
~ing back to 210

Such is the case with Underground, where we need to a) find a rgpe »;riﬁz se is given as to why he can't, and back to 210
and b) build a ladder before we can climb the two obstacles prese
to us.

1250 IFND< >ZANDNO< >S5ANDND< > 1 3THENPRINT" 1 BEG youR
PARDON 7' ":GOTO210 - Line

1252 IFNO=3THENFRINT"OH, THESE OLD WAR WOUNDS! sgr it so print a message and GOTO 210
RY, CAN'T DO IT.":GOTO210 : “
1254 IFNO=STHEN1266 i
1256 IFOBY(13) < >CPTHENPRINT"I DON'T SEE IT ON THE
BROUND ANYWHERE. ":GOTO210 '
1257 IFCP<>4SANDCF<>47THENPRINT"THERE 'S NO POINT ¢
LIMEING THE LADDER HERE. ": GOTO210 -
1258 IFCP=45THENOEY (13)=47:CF=47:G0TO200
1260 OB%(13)=45: CP=45: GOTO200

1266 IFOB%(S)<>CPTHENPRINT"I DON'T SEE IT ON THE B Line

ROUND ANYWHERE. ": GOTO210 and GOTO 200
1267 IFCF< >ISANDCF< »I6THENFRINT"THERE ‘S NO POINT C

LIMBING THE ROFE HERE.'":GOTO210

1268 IFCP=I5THENOEY (5) =36: CP=36: B0TO200
1270 OB%(5)=35: CP=35: GOTO200

Line 1257 - if the player isn't himself in rooms 45 or 47 then there’s
no point in climbing the ladder, so print a message and GOTO 210

s 1258 - if the player’s in room 45, then put him in room 47, put
ladder in room 47, then GOTO 200 for a LOOK.

ine 1266 -if the rope isn’t in the room, then the player can’t climb
it, so print a message and GOTO 210

Line 1267 - if the player himself isn’t in rooms 35 or 36 then there's
no point in climbing the rope, so print a message out and GOTO 210

Line 1268 - if the player’s in room 35 then put him and the rope in
0om 36, print a message and GOTO line 200

Line 1269 - otherwise, put the player and the rope in room 35, and
GOTO 200

167
166

LIGHT

Torches are quite a common feature of adventures, and obyjq
they’ll have to be lit at some time or other during the course of
game. ‘

janation
. » 1300 - unrecognised noun, so GOTO 1900
» 1302 - the usual check using the subroutine at 5300

ine 1304 - check to see if the object they're trying to light is either

. . < : I as i _
Occasionally other objects will have to be lit as well, as in the 7ing held or in the room, and if not print a message and GOTO 210

of Underground where the dynamite has to be used, and checks
be made to see what the player is trying to light, and if he's got the
necessary equipment to light something with : usually matches,

1ine 1306 - if the player isnt holding object 44, i.e. the matches, then
» can't light anything, so print message and GOTO 210

1300 IFNO=0THEN1900
1702 GOSUBSIO0 {
1304 IFOBY%(NO) < *CFANDOBY (NO) < »=1 THENFRINT"IT stm§|
HERE. "1 BOTO210 .
1306 IFOBE%(44)<>~1THENPRINT"YOU'VE NOTHING TO Ligy
T IT WITH.":1GOTO210 !
1308 IFNO<»>4SANDNO< »7THENPRINT"DON'T BE SILLY.";60
TO210

1310 IFNO=7THEN1320 _
1312 IFOB%(46)=—1THENFRINT"IT 'S ALREADY LIT!":G0TO

Line 1308 - if they’re not trying to light the torch or the dynamite, then
it can’t be lit, so print message and GOTO 210

e 1310 - if the object trying to be lit is the dynamite then GOTO 1320

Line 1312 - if they're carrying the blazing torch, object 46, then there’s
o point lighting the torch, so say so and GOTO 210

210 Line 1314 - OK, the player can light the torch, the old torch disappears,
1314 PRINT"OK. "1 OB% (46)=-110B% (45) =01 FD=0: GOTO210 the blazing torch is placed in the player's possession, the darkness
1320 IFOB%(7)==1THENPRINT"EROOOOOM! YOU'VE JUST BLO flag PD is set to zero, and we can GOTO 210

WN YOURSELF UF!":B0TO612
1322 IFCP<>»4THENPRINT"KABOOOOM! THE DUST CLEARS, B

UT NOTHING ' 'SCHANGED. ": OB%(7) =0

1323 IFCP« >4THENZZ=2Z-1:G0T0210

1324 PRINT"KABOOOOOM! THE WALL 'S BEEN BLOWN TO
SMITHEREENS ! "]
1326 OB%(7)=0:12Z=2Z-1:P%(4,3)=5:P%(4)="WALKING ALO
NG A DUSTY TRACK.":GOTO210

Line 1320 - if the player is holding the dynamite whilst trying to light
it, this is understandably fatal, so GOTO 612 for the death routine.

Line 1322 - if the player isn’t in room 4, then the dynamite blows up
but nothing else happens, so make the dynamite disappear.

Line 1323 - following on from that, the object counter must be
‘Gecremented, and then off to 210

ne 1324 - print a suitable message.
® 1326 - remove the dynamite, decrement the object counter, enable

the player to go west from room 4 to room 5, change the description
Stroom 4, and GOTO 210

168 169

ATTACK

Adventure players seem to be a bloodthirsty lot when they

0 1350 - the noun isn’t recognised, so go to the routine at line 1900
1 print an appropriate message.

Usually it doesn’t do any good, although here we've let them off \y;
a mild warning. However, the routine could easily be adapted to ingjy,
things like killing the player if he attempts to attack a dragop
something of that ilk.

» 1351 - GOSUB the subroutine at 5300 to clear up any doubts about
les or torches, and then check that the thing to be attacked is either
s player’s possession or in the room. If it isn’t, print a suitable
-sage and GOTO line 210

1350 IFNO=0THENFRINT"ATTACK WHAT 7!":B60TO210
1751 GOSUBRSIO0: IFOEY (NO) < >CPANDOEY (NO) < ~1 THENPR]
T'"WHERE IS IT!":60T0O210 ’
1352 IFNO+« *9ANDNO< »1 1ANDNO< > 29ANDNO > ZOANDNOY 531 1
ENFRINT"WHAT AN ODD REQUEST!":B0T0210 g
1354 PRINT"THIS IS NOT ONE OF YOUR BETTER
SUGGESTIONS! ": B0TO210

sbab ly trying to attack an inanimate object, so print out the message
d go back to 210 for another input.

ne 1354 - warn the player gently that this is not a very good idea,

170
171

KILL

Another verb that people try and use quite a lot, althgyg,
Underground Adventure we haven’t utilised the verb at g|],

1400 - if it's an unknown noun, request the player to type in what
'_,he really wants to try to kill, then go back to line 210.

1401 - GOSUB the routine at 5300 to clear up the problem of the
os and the torches, and then check to see whether the object of
yer’s affections is either in the room or in his possession. If it

Nevertheless, in case people do try and type in the command to e pla
-}“, then ask him where it is and go back to 210 again.

BEAR, or whatever, a few lines of code are necessary in order tg
with the request.
This is certainly one of the routines that could be expanded in ve ine 1402 - GOTO line 1352 and deal with everything from there.
own games. For instance, attempting to kill the dragon in the origj

Adventure game produces the following series of responiE ling with a straightforward command like this isn't allowed in this

al g!
kill dragon
WITH WHAT? YOUR BARE HANDS?

yes

CONGRATULATIONS! YOU HAVE JUST KILLED A 20 TOl
DRAGON! HARD TO BELIEVE, ISN'T IT?

1400 IFNO=0THENPRINT"KILL WHAT ?!":60T0O210
1401 GOSUBSZ00: IFOB% (NO) < »CPANDOEY (NO) < »- 1 THENFR
T'"WHERE IS IT!":60T0210
1402 GOTO1352

173
172

HIT

Another common verb, this one is usually used when people are gt
fed up with not being able to get anywhere, and are typ
commands almost at random in a vain hope of getting someth
happen.

gnation

,1450 - if it's an unknown noun, request the player to type in what
‘he really wants to try to hit, then go back to line 210.

, 1452 - GOSUB the routine at 5300 to clear up the problem of the
+1es and the torches, and then check to see whether the object of
» player’s affections is either in the room or in his possession. If it
"+ then ask him where it is and go back to 210 again.

In one of the games printed in this book, hitting a wall does progy,
some response other than getting a sore hand. However, it isn’t th

- 1454 - just print a message and go back to 210 again.
1450 IFNO=OTHENFRINT"HIT WHAT ?!":60T0210 %

1452 GOSUBSIQO: IFOBZ (NO) « *CPANDOBZ (NO) < »~1 THENFR]
T'"WHERE IS IT!":G0TO210

1454 PRINT"YOU HURT YOUR HAND, BUT NOTHING HAPFEN
1" GOTO210 -

g anything in Underground Adventure gets you nowhere, other
an hurting your hand!

174 175

MAKE

Most adventures require you to do a lot more than just trundle are,,,
solve a few problems and find a few treasures. In order to com,
the adventure, you'll usually have to make something along the w
in order to get from one location to another.

'.4 slanation

e 1500 - if it's an unrecognised noun then print up a simple statement
effect and go to line 210

ine 1502 - if the player isn’t trying to make a ladder, admit that you've
faith in his ability as an adventurer and GOTO line 210 again.

In Pirate Adventure for instance, you have to build a boat, and ino
of the other games listed in this book you have to make yoyr o
dynamite, since it isn't provided for you. i

1504 - check to see if the player is holding the nicely sawn timber,
nails and the axe, and if he isn’t inform him that he needs to collect
. ething else yet before he can make a ladder, and then GOTO 210
In this one, you have to make a ladder, and the materials to dg g gain.
are fairly obvious: an axe to chop the wood with, some nails : - ; .
it all together, and of course the wood itself. % Line 1506 - brllllgnt! you mak’e a ladder, so print out the rlghy message,
ut the ladder in the player’s possession, remove the nails and the
er, and decrement the object counter by one, since we've swopped

e nails and some timber for a ladder (two objects for one).

1500 IFNO=0THENFRINT"MAKE WHAT ?":60TO210
1502 IFNO« >13THENFRINT"I DON'T UNDERSTAND YOU
TIMES!": GOTO210

1504 IFOB%(53) < »~10R0OB% (14) < »~10R0OB% (4) < »~1THE|
NT"YOU NEED MORE MATERIALS!":G0OTO210

1506 FRINT"YOU HMAVE A BRAND NEW LADDER'!":0OB%(13)=-
1:0B%(14)=0:0BA(53)=0: ZZ=Z7~1 B
1508 GOTO 210

ine 1508 - back to 210 again.

176 177

REFLECT

This is a verb that | haven’t seen in any other adventure, and jg e,
to solve a problem peculiar to this one.

I nation

- 1550 - an unrecogmsed noun, so print an appropriate message
GOTO 210 to try again.

5 1552 - if the object that the player is trying to reflect isn't the

It is illustrated here as an example of how easy it is to add then print an ‘I don’t understand’ message and try again.

commands to the player’s vocabulary, but like all commands there
be some clue as to the actual word involved. Most players woy
try to REFLECT an axe for example, but give them a mirror and jt .
a word that they might well try to use. '

:1554 - if the player isn’t in room 93, where the shimmering curtain
nothing happens, so print the message and back to 210

o 1556 - if the SC counter has been set, then print a message to
e effect that the player is repeating himself, and go back and try

Having used it once, they will then try to reflect everything under t
sun, so have a few suitable responses ready. g

1550 IFNO=OTHENFPRINT"REFLECT WHAT ?!":G0T0210
1552 IFNO<>47THENFRINT"I DON‘'T COMPUTE THIS INSTRY
CTION.":GBOTD210 '
1554 IFCP<»9ITHENFRINT"NOTHING HAFPENS. ":G0TO210
1556 IFSC=1THENFRINT"YOU'VE ALREADY DONE THAT!":GQ
TD210
1558 PRINT:PRINT"THE LIGHT IS REFLECTED BACKE AND T
HE CURTAIN FALLS ASIDE!"]
1560 PL(93,0)=95:0B% (15)=CF:FP$(93)="WALKING PAST A
SHIMMERING LIGHT.":8C=1:60T0210

e 1558 - print the all important message.

1e 1560 - allow the player to go north from room 93 to room 95,
it the shimmering curtain in room 93 (CP =93 of course, since we're
hat room), change the room description for room 93, set the SC
nter, and GOTO 210

e readers will realise that we should also have a line like:

i1 GOSUBSZ00 : IFOB%Z(16)<>=1THEN?"YOU AREN'T H
DING THE MIRROR":GOTOZ210

0 check that the mirror is in the player's possession!

178 179

OIL

Oil frequently occurs in adventure games, and is usually used to rgn
something that is being sticky and refusing to budge. '

planation
_» 1600 - usual check for an unrecognised noun.

- 1602 - if the player isn’t carrying the bottle of oil, then he can’t

Obviously, players will attempt to oil everything, so suitable regp ons ' nything, so print the message up and GOTO 210

must be made. If a player makes a mistake and oils the wrong
then some kind of message must be printed up, and the oil must
trickle away, never to be found again, thus rendering the adye
unsolvable through the fault of the player.

e 1604 - if we're not in room 79 then there isn’t anything worth
, so we inform the player and then go back to line 210. This is
g kind to the player really, since he could have wasted his oil. Such

!
1600 IFNO=OTHENFRINT"OIL WHAT ?!":GOTOZ10

1602 IFOBZ(51) < »-1THENFRINT"YOU 'VE NO OIL.":60TQ:
5] 4
1604 IFCP<>79THENFRINT"NOTHING WORTH OILING AR
HERE. ": GOTO210 :
1605 IFNO< >17THENFRINT"YOU 'VE JUST WASTED A LOT
OIL.":0B%(51)=0:0B%(19)=~1:60TO210 ,
1606 FPRINT"THE TRACE SLIDES NOISELESSLY AWAY, TO
REVEAL MORE TUNNELS!'"
1608 OB (S51)=0:0B%4(19)=-1:P%(79,2)=B0:FL(79,3) =
1610 FE(79) ="WALKING FAST A SMOOTH TRACK. ":OB%(!
=0 B0TO210

1605 - nevertheless, if he now doesn’t oil the track, object 17,
wastes all the oil, so we print up the message, remove the bottle
of il and replace it with an empty bottle, and go back to 210

Line 1606 - print the message of success.

ine 1608 - remove the bottle of oil, replace it with an empty bottle,
allow the player to go east from room 79 to room 80, and west

o room 81.

ine 1610 - change the room description for room 79, get rid of the
rack now that we’ve solved the problem, and GOTO 210

= 181

STAB

Not a verb that is commonly encountered, and again the yge
should serve to show how easy it really is to add tailor-made commap.
to any adventure scenario.

, 1650 - usual check for an unrecognised noun.

» 1651 - usual check for bottles and torches.

1652 - if the object the player is trying to stab isn’t in his possession

IE K riot & sword Wit & 1Ot of poogi Wouki at it SR § isn't in the room, then inform him of that fact and GOTO 210

the presence of a sword should trigger off the idea in the mi

a few players. g ; . .
pay! e 1653 - if you're not holding the sword, object 38, then you can’t

Still, those familiar with Lord of the Rings, who will have read ab anything, so print the message up and go back to line 210

passage about Shelob, should know that every good Hobbit g
stabs a nasty spider with his sword, and that is indeed the use of 1
verb in Underground Adventure. ol lab

e 1654 - if the player isn't trying to stab the spider, then print a
e message and GOTO 210

1650 IFNO=OTHEN1900 Qe print the message.

1651 GOSUBSIOO
1652 IFOB%(ND) < >-1ANDOBY% (NO) < *CPTHENFRINT"BUT IT
SN'T HERE!":60TO210
1653 IFOBR%(E8) < »—1THENFRINT"YOU'VE NOTHING TO
IT WITH!":GOTO210
1654 IFNO<XZOTHENFRINT"THE "3 OB (NO) : FRINT"IS NOT
IMPRESSED ! ": GOTO210
1656 FRINT"THE SFIDER DIES IN A GLORIOUS DISPLAY |
FRIT-ACTING, AND REVEALS :=" E
1658 FRINT"A NEW FASSAGEWAY!":F%(B4,2)=861F% (84,3
:0B$(Z0)="A DEAD SFIDER!"
1660 F$(84)="WALKING PAST A DEAD SFIDER'":B0T0210

e 1658 - continue the message. Allow the player to go east from
84 to room 86, and west to room 85. Change the description
object number 30, the spider.

ne 1660 - change the room description of room 84, and go back to

e 210.

jain we didn’t put in any checks to make sure that the player was
the correct room (IF CP < > etc.), but the checking in line 1652
es care of that.

182 183

anation

SPRAY

This could well be the first adventure to feature this word! Cgrta
| can’t think of any others with the word in, although there are ng o,
some floating around somewhere. B

qe 1700 - you should be used to this by now!
e 1701 - ditto!

. # - and again, our usual check for th ject.
Being an unusual word, one has to give the player g, ne 1702 9 eck for the presence of an object

encouragement to use it, and the finding of the can of fly sp

ay A - if the player isn’t holding the fl H
eliminating the spider should give most people the right kind of ide; hig R e i T

wthing, so we print up the message and GOTO 210 as usual.

A check is made to see if it is the fly that you're trying to
as usual we've been kind to the player and not exhausted the ﬂy
if he sprays the wrong thing. 7

ne 1704 - if the object to be sprayed is not the fly, object 31, then
e player only succeeds in making himself cough, and we go back
‘,," 10

1700 IFNO=0THEN1900
1701 GOSUBSIOO

1702 IFOBZ (NO) < >—1ANDOBY (NO) < *CPTHENFRINT"BUT IT
SN'T HERE!":60T0O210)
1702 IFOB%(34) <»-1THENPRINT"YOU 'RE NOT CARRYING |
Y SPRAY.":60TO210
1704 IFNO<>31THENFRINT"COUGH~COUBH SFLUTTER-SPLUT
ER!":16GOTOZ10
1706 PRINT"THE FLY COUBHS ITS LAST, AND REVEALS ¢
HIDDEN TUNNEL.."
1708 PL(74,3)=75:P$(74)="WALKING FAST A DEAD FLY!
:0B$ (X1)="A DEAD FLY!":60TO210

ne 1706 - print the message.

ne 1708 - allow the player to go west from room 74 to room 75,
nange the room description of room 74, change the object description
of object 31, and then GOTO 210

184 185

THROW

This is often given the same meaning as drop, but just as in reg i
here we differentiate between a simple dropping of something, a4
a determined throw into the middle distance. i

If we attempt to throw anything other than the lump of mortar or g
axe, then it is treated as if the player just wished to drop the objans
in question, but those two particular objects have two very import- N1

roles to fill, as we shall see : =

1750 IFNO=0THENFRINT"THROW WHAT!":G0TO210
1751 IFNO< >ZZANDNO< *4THENS62

1752 IFNO=4ANDNF=0THENS&2

1752 IFNO=4ANDNP=1THEN&O10
1754 IFCP<>60THENFRINT"OK!
OF DUST.":0B%Z(33)=0:2Z=ZZ~1:60T0210
1756 PRINT"THE DOOR FLIES OFEN UNDER THE FORCE OF
THE BLOW, TO REVEAL A NEW PASSAGE!
1758 PL(60,0)=61:P%(60,3)=60:F$(60)="WALKING PAST

THE DOOR.":0B% (33) =0
1760 ZZ=77-1:DF=1:60T0O210

186

IT VANISHES IN A CLOUD

_planation
» 1750 - as usual.

o 1751 - if the player isn’t throwing the mortar or the axe then transfer

ogram execution to the drop routine starting at line 562

e 1752 - if the player is throwing the axe and the gargoyle present
aq isn’'t set, then assume he just wants to drop it, so go to line 562

gain-

een player and gargoyle.

ine 1754 - if the lump of mortar is thrown anywhere other than in
pom 60, the room with the old door, then it just disappears in a cloud
f dust, nothing else happens, we decrement the object counter, and
GOTO 210.

Line 1756 - it's been thrown in the right place, so print the appropriate
essage.

Line 1758 - allow the player to go north from room 60 to room 61,
and west to room 65, change the description of room 60, and remove
he lump of mortar from the game.

i ine 1760 - decrement the object counter, and set the door flag, before
going off to line 210 again.

Astute readers will realise that we should also have a line like:

f'3a GOSUBSZ00 : IFOBYZ(33)«*—1THEN?"YOU AREN’T H
LDING THE MORTAR":GOTOZ10

'0check that the mortar is in the player’s possession! You also, round
foout this point, realise the value of numbering programs in steps of
. '€ or more, as we would now have to renumber line 1754 to be
'€ 1755, in order to fit this new line in.

187

RUB

There are a number of things that one might be inclined to rub gy,
an adventure, but the usual one is a lamp or torch, perhaps mijng;
of Aladdin and his lamp. '

ne 1800 - usual check for the presence of an unknown noun.

-0 1801 - usual check in subroutine at 5300 for bottles and torches.

Indeed, rubbing the lamp in the original Adventure produces
interesting response, when you're told for the first time that the |5
is, in fact, an electrical one, so nothing much happens.

ine 1802 - usual check to see if an object is in the player’s possession,
jsin the room, and if it isnt print some kind of response and GOTO
10 again for another input.

In Underground Adventure, nothing happens either, but people ;
wont to type in anything they can think of, so the listing go
something like: ;

ne 1804 - print the standard response to all RUBbing suggestions.

1800 IFNO=0THEN1900
1801 GOSUBRSZIOO '

1802 IFOBY (NO) < >—1ANDORY (ND) < >CPTHENFRINT"BUT IT
SN‘'T HERE TO RUE!":6G0T0210 .
1804 FPRINT"INTERESTING, BUT UNREWARDING!":GOTO21¢

188 189

READ

Quite often one will find objects scattered about inside an adyen
that look as if they might have something written on them, SO th
obvious command is to read object, to see what it says. 4

The replies are usually meant as helpful hints for the playing of th
game, and set you off thinking in a direction you might otherwisg
have thought off.

e 1852 - if they’re not trying to read object 48, the old parchment,
n tell them that nothing is written on it, and go back to line 210

1854 - check to see if the object is in the player’s possession, and

Sometimes, however, they are anything but, and give ¢ ,
: hidgs S f it isn't print a suitable message and GOTO 320 again.

like the weather forecast for five years ago, although even that y
makes you think of something. Occasionally they’re not even .
in English, as is the case with Spelunker Today, the magazine to ba
found in the original Adventure, which is written in Dwarvishl

Line 1856 - print the first part of the message contained on the old
ment.

1850 IFNO=0THEN1900 ne 1858 - continued.

1851 GOSUBESI00 .
1852 IFNO< »48THENPRINT"THERE ‘'S NOTHING ON IT TO RE
AD. ":GOTO210
1854 IFOBY%(48)<»~1THENFRINT"YOU 'RE NOT HOLDING IT.
" BOTO210
1856 PRINT"CRVSITHERE 'S MATERIAL IN HERE TO EBUILD
A "
1858 PRINT"LRVSILADDER, LIKE NAILS, AND FLANKS AND
AXES"

1859 FRINT"LRVSI1AND THINGS.

ne 1859 - continued.
Line 1860 - continued.

Line 1862 - end of message, and back to line 210 for more input.

1860 FRINT"[RVSITHERE ‘'S ALSD A LITTLE BIT OF MABIC

1862 PRINT"LRVSIIN THE AIR!
"160TO210

190 191

EXAMINE

This is one of the most useful words in the adventurer's vocahyjq,
as any object should be able to be examined, and the examina
of it will reveal valuable clues about it.

EXP lanation

2 1900 - usual check for an unrecognised noun.

Line 1901 - if they want to examine the wall, the chasm, or the bridge,
en tell them there’s nothing interesting here, and GOTO 210
Even if the result of EXAMINE TORCH reveals nothing more than [T
JUST AN OLD TORCH, it at least tells you that the torch hag ne.
magical powers (although someone might be fooling ...1) 3

Line 1903 - off to 5300 to check for torches and bottles.

Line 1904 - if the_ object is not in the player’s possession, and isn’t in
Moré oftei: you'llbs toid something about the cbject. sbsutR he room, then it can’t be examined, and so back to 210.
i | , or i ign. 5 . <N

its usefulness, or its actual design Line 1905 - if the player is examining the staff, the mirror, the brick,
the shining stone or the sword, then he's told that it has useful powers,

In Underground Adventure, you're just told whether it's magical or .‘* batore GOTO 210

1900 IFNO=OTHENFRINT"WHAT'S A "{Ni$;"!'":60T0210
1901 IFNO=4ZT0RNO=10RNO=6THENPRINT"THERE 'S NOTHING
INTERESTING HERE.":60T0210

1903 GOSUBRSIO0 i
1904 IFOBY%(NO) < »—1ANDOEY (NO) < *CPTHENFRINT"I CAN'T
SEE IT MERE.":60T0O210 f
1905 IFNO=20RNO=160RNO=ZI0RNO=2%70RNO=Z8THENPRINT T
HIS HAS USEFUL FOWERS.":G0TO210

1906 FRINT"IT 'S NOTHING MORE THAN :=":PRINTOES (NO)
:GOTO210

Line 1906 - otherwise just print that it's nothing more than : and the
object description from OB$(NO). Then, off to 210 again.

JUMP and BREAK

These are grouped together here because they don‘t take up mu
code, and they don't perform a great function in this particular game

Nevertheless, JUMP could be a useful command in some gamgg
enabling a player to jump across gaps that he couldn’t simply wa||2
across, if any player chose to take the risk.

Break is again not used here, but sometines it could be used as a tegy
of the player’s ingenuity. Something could only be broken if, say, the
bear was following the player, in which case the bear would have the
strength to break the object for the player.

1950 IFCP=150RCF=100RCF=45THENFRINT"I TOLD YOU sp
ceees"IPRINTD#: GOTO612

1952 PRINT"WHEEE!":BOTO210

1960 IFNO=OTHENFRINT"BREAK WHAT ?!":60T0210

1961 GOSUBSIOO

1962 IFDEY% (NO) < >~1ANDOEZ (NO) < *CPTHENPRINT"I CAN‘T,
IT ISN'T HERE!":GOTO210

1964 PRINT"YOU'RE NOT STRONG ENODUGH TO BREAK
ANYTHING BY YOURSELF!":GO0TO210

194

gxplanation

Line 1950 - if the player tries to jump in room 15, 10 or 45 (i.e. across
achasm or down a steep incline) then print a sarcastic message, print
the variable D$, and go into the death routine.

Line 1952 - otherwise, print out a silly message and GOTO 210 again.
Line 1960 - usual check for unknown noun.

Line 1961 - GOSUB 5300 for the routine check.

Line 1962 - if the object isn’t in the player's possession and isn't in
the room then he can’t break it, so tell him so and then go back to 210

Line 1964 - tell the player the sad news, and GOTO 210 again.

195

PUSH

A verb that is used in a number of games, and one that could hgy.
been used in this one. As it is, an attempt to push the one thing tha,
moves results only in the player being told to try doing this in anothar
way.

XF lanation
Line 1970 - familiar!
Line 1971 - familiar again!

Line 1972 - and again!

1970 IFNO=0THENFRINT"PUSH WHAT 7!":B0TO210
1971 GOSUBSIOO I
1972 IFOB%(NO) < »=1ANDOEZ (NO) « >CRTHENFRINT"I CAN‘T,
IT ISN'T HERE!"3B60T0210 g
1974 IFCF<>79THENFRINT"YOU CAN'T!":BOTO210 j
1976 PRINT"TRY DOING THIS ANOTHER WAY (LIKE USING
SOMETHING ELSE!)":60TO210 '
1999 END

Line 1974 - if the player isn't in room 79, i.e. the one where the track
is stuck, then there’s nothing to move, so the player is told before
sending program control back to line 210 again.

Line 1976 - print out a helpful message before going to line 210

Line 1999 - the last line before the great assembly of data begins!

196 197

SAVE

A useful, and one could say vital part of any adventure game, i the
ability to stop a game in mid-flight and save one’s progress onto tape
including all the room descriptions that change, the object descripﬁons'
the positions of all the objects that have moved, the flags that indicate'
the successful or otherwise completion of a problem, and of Course
the room number.

In Underground Adventure, this is achieved by typing in SAVE PROG,
in response to the WHAT NOW * prompt. It does just save the data,
not the whole program!

Z000 PRINT"CCLRIINSERT TAFE AND FRESS ‘SFACE’ WHEN
READY"

2002 GETFF#: IFFP$< " "THENIOO2

T004 FRINT"OK."

J006 OPEN1,1,1,"UNDERGROUND DATA"

T007 FORI=1TOLO:PRINT#1,0B%(1);CRS$;

2008 NEXTI

3009 FRINT#1,CP; CR#; TB; CR#; GF;CR#; FD; CR#; 27 ; CR#; 8C
§CRE; DF 3 CRE; BR; CRE§NF; CR¥

010 PRINTH#1,FP$(10);CRE;F$(60) ;CRE; F#(50) ; CR¥; PE(2
7)1CRE;PECLIS) ;CRE; PE(21) ; CRE;

TO12 PRINT#1,P$(4) ;CR¥; P$(93) ; CR¥; P£(79) ; CR¥; F¥ (B4
)iCR¥3P¥(74) ;CR%;

3014 PRINT#1,P$(69) ;CR¥; P$(42) ; CR$; OB# (20) ; CR$; OBS
(Z) ;CR$; OB% (31) ; CR#;

2016 PRINT#1,P%(45,1) ;CR$;F%(10,3) ;CR¥;F%(3,0) ;CRE
i P% (60, 1) 3 CRE; PL(S0,3) ; CRE;

TO18 PRINT#1,P%Z(27,0) ;CR$;P%L(15,1) ;CR$;P%(15,2) ;CR
$31F%(21,2) s CRE;PY% (4,3) 3 CRE;

J0Z20 PRINT“l,PZ(?E,O);CR$|PZ(79,2);CR$;PZ(B4,2);CR
F31F%(84,3) ;CRE;FL(74,3) ;CRE;

1022 PRINTH1,P%(60,0) ; CRE;P%(60,3) ; CR$; P% (69,3) 3CR

¥;P%(42,1) ;CR¥;

3024 CLOSE1L

T026 GOTOLL4

198

Explanation

Line 3000 - tell the player to put a tape in the cassette unit and press
space when ready.

Line 3002 - wait for the space bar to be pressed.
Line 3004 - print OK.

Line 3006 - open a file for writing to the cassette unit called
UNDERGROUND DATA.

Line 3007 - save the position of all the objects, separating each one
with a carriage return, defined in line 5.

Line 3008 - next step in the loop.

Line 3009 - save all the variable flags and counters.

Line 3010 - save some of the room descriptions that change.
Line 3012 - and save some more!

Line 3014 - and yet more, along with the three object descriptions that
change.

Line 3016 - save some of the room direction data that changes as
problems are solved in the course of the game.

Line 3018 - save some more
Line 3020 - and more.

Line 3022 - and more!

Line 3024 - close the file.

Line 3026 - go to the routine at 614 requesting another game. The player
Mmay just have saved the data because he's about to try something risky!

199

LOAD

Vital of course, since we have got a save routine, and this just reg
all the data back and starts the game off again at the point wherg it
had finished.

To use this, just type in LOAD PROG in response to the first WHAT
NOW * prompt.

3200 PRINT"[CLRIINSERT TAPE AND PRESS 'SPACE’ WHgy
READY"

3202 GETFP$: IFFP$<>" "THENIZ02

3204 PRINT"OK,"

3206 OPEN1,1,0,"UNDERBROUND DATA"

3207 FORI=1TOLO: INFUT#1,0B% (1)

3208 NEXTI

3209 INFUT#1,CF,TB,GF,PD,2Z,8C,DF,BR,NF

I210 INFUTHI,P$(10) ,F$(60) ,F$(50) ,F$(27) ,P$(15) ,ps
(21)

3212 INFUT#1,P$(4) ,P$(9T) ,FP$(79) ,F$(84) ,FP$(74)
3214 INPUTH1,P$(69) ,FP£(42) ,0B$(30) ,0B%(3) ,0B%(31)

216 INFUTH1,P%Z(45,1) ,PL(10,3) ,P%(3,0) ,P%(60,1) ,P%
(50,3)

3218 INPUTH1,P%(27,0) ,P%(15,1) ,P%(15,2) ,P%(21,2) ,P
%(4,3)

3220 INFUTH1,P%(93,0) ,P%(79,2) ,F%(84,2) ,P%(B4,3) P

%(74,3)

I222 INFUTH#1,P%(60,0) ,P%(60,3) FP%(69,3) ,F%(42,1)

3224 CLOSE1

1226 BOTOZ00

Explanation

Line 3200 - tell the player to put a tape in the cassette unit and press
gpace when ready.

Line 3202 - wait for the space bar to be pressed.
Line 3204 - print OK.

Line 3206 - open a file for reading from the cassette unit called
UNDERGROUND DATA.

Line 3207 - read the position of all the objects.

Line 3208 - next step in the loop.

Line 3209 - read all the variable flags and counters.

Line 3210 - read some of the room descriptions that change.
Line 3212 - and read some more!

Line 3214 - and yet more, along with the three object descriptions that
change.

Line 3216 - read some of the room direction data that changes as
problems are solved in the course of the game.

Line 3218 - read some more
Line 3220 - and more.

Line 3222 - and more!

Line 3224 - close the file.

Line 3226 - go to the routine at 200 that starts the LOOK sequence.

201

The Rest of the Verbs

Just four more to go now, and they all perform fairly minor functiq,
so we'll group these up two to a page. There should still be enoug{,
space for your own notes later.

LOOK

This doesn’t even have a line of its own, but just goes to line 200, Th;g
sends it off to the subroutine at line 5000.

SCORE

Two lines only, and these are : =

540 FRINT"THERE ARE NO FOINTS TO BE SCORED IN THIS

GAME. YOU'VE JUST GOT TO ESCAPE!"
S542 GOTO 210

Just a simple message, and no points to be scored at all in this game.
All you have to do is survive and get out!

202

HELP

Another simple one, this could be used to great effect in some games,
giving vital clues for the sake of taking points away, but in
Underground Adventure you get no help at all, like this : =

50 PRINT"I'M AFRAID YOU WON'T GET MUCH HELF FROM
ME! "t PRINT

p52 FRINT"SD JUST KEEP ON TRYING THINGS!'“:PRINT:PR
INT"IF NOTHING'S HAPFENING, TRY USING ";

p54 PRINT" DIFFERENT WORDS INSTEAD."

456 GOTO 210

Only a simple message that tells you to keep examining things.

TAKE

In this game, take functions in exactly the same way as GET, so
program execution is just transferred to line 300 and everything dealt
with in the usual way.

It could be useful in some ways, as we've already mentioned, in that
one talks of TAKEing medicine, rather than GETting it, and there are
other ways in which the two words are different.

However, in Underground Adventure they behave in the same way.
That's the end of the verbs!

Let's get on and look at some data now.

Linking Everything Together

We've had to split up the various separate parts of Undergound
Adventure in order to be able to explain properly how each section
works.

Consequently, the listing is split up into a vast number of different
sections scattered around the length and breadth of this bogk
However, every single line is in here somewhere, and the only sectiOr;
that we haven’t yet seen is the data, and this follows immediately afte
this page.

Itincludes the data for the 100 rooms contained in the game, although
some of these rooms are little more than tunnels and corridors,
Whether you have this many in your games is up to you, since some
people prefer the ‘less rooms, more objects’ principle of adventure
writing.

This is all very well, and the trade-off in memory space saved is usually
the equivalent of something like four or five rooms per object on the
kind of system that we've been employing throughout the book. By
all means have more objects than we've used here, but do realise that
this will mean a corresponding rise in the number of verbs used.

No bad thing, but it all takes up memory space, and whether you want
a lot of rooms, or a lot of objects, is up to you.

Personally, | prefer the more rooms approach. It gives you lots of space
to explore about in, and means that the problems presented can be
spaced out at reasonable intervals, rather than coming one after the
other, with little chance for the adventure player to get a good feel
for the game, and for the area he is exploring.

It also seems more realistic, in that a stroll underground in a set of
caves is hardly likely to throw up hundreds of objects in each room,
but will provide a lot of cross-linking tunnels and corridors for you 0
walk along.

But we've elected to go for a hundred rooms in total, and as we've
seen we'll be giving you all the descriptions in a moment.

To sum up the job of typing in this entire listing: it is scattered about
all over the place, but it is all here somewhere, with the data hereé

204

the verbs earlier on in this chapter, most of the routines in the last
gection of chapter 4, and the moving room routine in the last section
of chapter 3.

of course, you can always buy the cassette of the game and save
yourself a lot of time and trouble!

The Data

This is the complete collection of data for the entire adventure, and
runs through the room data first, including description and direction,
the initial locations and descriptions of the objects, the shortened forms
of the object names, and of course the all important verbs.

A description of how each piece of data is used follows the listing.

2001 F#(1)="ON AN OLD TRACK HEADING TOWARDS THE CA
VES":DATA 0,2,0,0

2002 P#£(2)="GETTING EVER NEARER THE CAVES.'":DATA 1
Yoy 0,0

2004 F#(3)="AT THE ENTRANCE OF THE CAVES, WITH F
ATHS LEADING EVERYWHERE'"

2006 F#(4)="IN FRONT OF A SOLID WALL OF ROCKAND YO
UR PROGRESS 18 HALTED."

2008 P$(5)="IN A SUBTERRANEAN TOME, DOTTED AROUT

WITH CRACKS AND CREVICES., "

2010 P#$(6)="WALKING AROUND THE SIDE OF THE CREVIC
E ROOM. "

2012 P#(7)="SURROUNDED EY BRICKED UF WALLS."

2013 DATA 2,15,20,4,0,0,3,0,6,1%,4,9,0,5,0,7,0,9,6
B0 10,7,0,7¢12,5, 10

2014 P£(B)="NEAR THE GREAT CHASM IN THE ROCKWHICH

PLUNGES DOWN HUNDREDS OF FEET.

2016 P#(9)="IN THE HEAKT OF THE CREVICE ROOMWITH T
UNNELS LLEADING OFF EVERYWHERE.

2017 pATA 8,11,9,0,10,0,12,0,9,0,13,11,5,0,0,12,0,
0,10,0,3,0,0,0,0,18,0,15

2018 P$(10)="IN FRONT OF A BREAT CHASM WHICH IS MU
CH TODO DEEP AND WIDE TO CROSS.

2019 DATA 15,33,18,19,16,34,0,17,0,32,17,0,0,0,21,
$,0,0,0,20,235,0,0,21

2020 P£(11)="0ON THE SOUTHERN RIM OF THE CHASMIN A

JUMELE OF ROCKS AND EBOULDERS.

2022 Pg(12)="LOST IN CHASM COUNTRY!'"

2024 PE(1T)="IN A ROOM FULL OF ROCKS, ROCKS, ROCKS
AND ROCKS! "

205

2026 FP#(14)="0N THE WEST SIDE OF THE CHASM, BUT T

HE VIEWS FRETTY LIMITED."
2028 P$(15)="FACED WITH A CRACK IN THE FLOOR Thgy
I8 MUCH TO WIDE TO JUMF."

2030 F#(16)="IN AN EAST-SIDE CHAMBER,"

2032 P$(17)="ON THE MAIN TRACK THROUBH THE Caygg
, SURROUNDED EY SIDE-TUNNELS.

2034 P$(18)="AWAY FROM THE CENTRE TRACK, WITHA gyg
ICE OF ROUTES AS THE TUNNELS "

2035 P$(18)=P$(18) +"WIDEN OUT INTO REASONABLY g,
WORKED FATHS. THIS IS MINING

2036 F$(18)=P%(18)+" COUNTRY, AND THE EVIDENCEQF g
LD WORKS STILL REMAINS., "

2037 FP$(19)="IN A SHARFLY TWISTING CORRIDOR, "
2038 P$(20)="ON A LONG EAST-WEST TRACK INTO THg p
EPTHS OF THE MINES,"

2040 P$(21)="FORCED TO A HALT BY A LARGE UNDER
GROUND TREE."

2042 P#(22)="HEADING DOWN A TWISTY FATH INTO AN QL
D ANIMAL 'S LLAIR. YOU CAN SEE

2047 PF(22)=F$(22)+" FROM THE OLD PAW FRINTS THAT
SOMETHING BIG MUST LIVE HERE!

2044 F#(23)="SURROUNDED BY ROCK IN A MIXTURE OF €O
RRIDORS. ": DATAZS ,22,24,0

2045 F#(24)="WALKING ALONG AN OLD TUNNEL CARVE
D OUT OF THE ROCKS."

2046 F#(25)="FORCED TO TURN SHARFLY.'":DATAZ6,0,0,2
3,0,23,26,0,27,24,0,25

2048 P$(26)="WALKING ALONG A FAIRLY LARGE CORRI
DOR. "

2050 P$(27)="FACE TO FACE WITH A LARGE BEAR!":DATA
0,26,0,0,0,27,30,29

2052 P$(28)="AT A T-JUNCTION BEHIND THE BEAR’
8 LAIR."

2054 F$(29)="AT A DEAD END.":DATA 0,0,28,0,31,0,0,
28,0,30,0,0

2056 P$(I0)="NEAR THE HEART OF THE BEAR'S HIDIN
6 FLACE."

2057 P#(31)="IN AN OLD CAVE,USED AS A RESTINGPLACE
BY THE BEAR."

2058 P$(32)="HEADING DOWN AN OFF-8SHOOT FROM THE M

AIN MINE.":DATA19,42,3%,41
2060 P$(33)="FACED WITH A CHOICE OF ROUTES, AS YO
U STAND HERE SURROUNDED "

2061 P#(33)=P$(33)+"BY SHORED UF TIMBERS AND WALL
8. "1 DATAL7,0,34,32

2062 P$(34)="HEADING DOWN A LONG CORRIDOR, CRAWL
ING OVER STONES AND RUBBLE." .
2064 P$(35)="FACED WITH A VERY DEEF DROF THATIS T
0 DEEF TO JUMP OR CLIMB," 3
2065 DATA 18,0,35,3%,0,0,0,34,0,0,38,0,0,38,39,0s
7,0,0,36,0,0,40,37,0,0,0,39

206

066 F$(36)="AT THE FOOT OF THE DROP, WITH CORRI

pORS STRETCHING OUT BEFORE YOU.

2068 F$(37)="AT THE FOOT OF THE DROF, WITH A CORRI

pOR HEADING EAST."

2070 F%(I8)="FORCED INTO A SHARF TURN HERE ASTHE F

ATH TWISTS AND TURNS. "

072 PE(I9)="ON A LONG LOW EAST-WEST CORRIDOR."

2074 FP$(40)="IN A DEAD END, AND CAN GO NO FURTH
"

5075 DATA 0,0,32,0,32,0,0,0,42,0,44,46,0,45,0,43,4

4,0,0,0,0,0,43,0,0,52,49,48

2076 F#(41)="AT THE WEST OF THE CAVES, AND WELL

AND TRULY STOPPED!"

2078 P#(42)="FACE TO FACE WITH AN EXTREMELY ANGRY

PANTHER ' "

2080 P#$(43)="AT AN UNDERGROUND T-JUNCTION. "

2082 P$(44)="NEAR A BREAT INCLINE."

2084 F¥(45)="AT THE FOOT OF A BGREAT INCLINE THAT

18 MUCH TOO STEEP TO CLIME. "

2086 F%(46)="IN A DEAD-END,"

2088 F$(47)="AT THE TOP OF THE GREAT INCLINE."

2090 F#(48)="NEAR AN OLD SCARY FART OF THE CAVES

, REFPUTEDLY HAUNTED"

2092 P$(49)="NEAR A REFUTEDLY MAGICAL FART OFTHE C

AVES +.u.."

2097 DATA 0,51,47,50,0,53,54,47,0,0,48,0,48,66,0,0

,47,77,0,0,49,100,0,0,0,0,88,49

2094 FP#$(50)="GROUND TO A HALT BY THE BHOSTLY SFIRI

T OF THE CAVES!"

2096 F$(51)="0ON AN OFF-SHOOT FROM THE MAIN TRACK

2097 P#(S2)="0ON AN OLD FATH HEADING NORTH- SOUTH

2098 F£(53)="STOFFED EY AN EXTREMELY NARROW SQUEE
ZE THAT YOU CAN'T GET THROUGH."

2099 P#(54)="NEAR THE MABICAL CAVERNS!'"

2100 DATAS6,57,50,58,0,%%,0,0,55,0,0,0,0,0,55,59,6
0,0,58,0,0,%9,0,0

2102 P$(55)="IN AN OFEN CORRIDOR, WITH EXITS [RVS]
EVERYWHERE ! LOFF 1"

2104 P#(56)="8TUCK IN A DEAD END."

2106 P$(S57)="STUCK IN A DEAD END."

2108 F#(58)="0ON A WELL TRODDEN EAST-WEST FATH"
2110 P#£(59)="FORCED TO TURN AS THE PATH BOBS AND W
EAVES AMONGST THE ROCKS."

2112 P#$(60)="FACED WITH A DOOR MARKED WITH THE W
ORDS [RVSIBEGONE STRANGER!"

2114 DATA 61,61,61,62,61,61,61,63,61,64,61,61,61,6
1,65,61,61,61,60,61

2115 Ps(61)="IN A MAZE OF TWISTY LITTLE PASS-AGES,
ALL ALIKE!™

2116 P#(62)="IN A MAZE OF TWISTY LITTLE FASS-AGES,

207

ALL ALIKE!"

2117 PH(63)="IN A MAZE OF TWISTY LITTLE FASS-Aggg
ALL ALTKE!" '

2118 P$(64)="IN A MAZE OF TWISTY LITTLE PASS-AGES
ALL ALIKE!"

2119 P$(65)="IN A MAZE OF TWISTY LITTLE PASS-ABEg,
ALL ALIKE!"

2120 DATAS1,67,0,68,66,0,0,69,0,69,66,0,68,0,67,q.

0,71,69,0,70,72,0,74,71,0,0,7%

2122 F$(66) ="WALKING ALONG AN INDISTINCT FATHAND 1

HE WALLS LOOK RATHER DAMP,"

2124 P$(67)="IN A LOW, DAMF CORRIDOR."

2126 F$(68)="IN A LOW CORRIDOR. 1T ALL SEEMSTO pg
A LITTLE DAMF AROUND HERE.

2128 P$(69)="STOFPED BY A WALL OF HAZY MIST THar

OBSCURES ALL LIGHT."

2130 P$(70)="ON THE SOUTH SIDE OF THE MIST. THE 4
IR SEEMS8 CLEARER HERE, "
2132 P$(71)="HEADING ALONG A CLEAR PATH CUT FROM
THE LIVING ROCK."

2134 PH(72)="IN A SHARFLY TWISTING CORRIDOR, "

2136 P$(73)="TWISTING AND TURNING AMONGST THEROCKS
IN THE CRVSIFLYLOFF] ROOM!"

2138 P$(74)="FACE TO FACE WITH A GIANT FLY WHICH
COMFLETELY BLOCKS YOUR FATH

2140 DATA 74,0,72,0,0,73,71,0,0,0,74,76,0,0,7%,0

2142 P$(75)="IN A LOW EAST-WEST CORRIDOR THATIS TO

TALLY FREE OF INSECTS!'"

2144 P£(76)="IN A COMFLETE DEAD~END AND CAN GO NO
FURTHER. "

2146 DATA 52,78,0,0,77,79,0,0,78,0,0,0,0,83,0,79,0
,82,79,0,81,0,0,0,80,84,0,0

2148 P$(77)="STILL HEADING NORTH-SOUTH!"

2150 P$(78)="AT THE BOTTOM OF A LONG, LOW NORTH
~SOUTH PASSAGE, "

2152 P#(79)="PREVENTED FROM GOING FURTHER BY AN OL
D SEIZED UF MINING TRACK."

2154 P#(80)="WEAVING AROUND, WITH OLD AND pUSTY
COBWEES HANGING EVERYWHERE, "

2156 P$(B81)="ON THE WEST SIDE OF THE TRACK."

2158 P$(82)="IN THE C[RVSISALVAGE ROOMCOFF] BUT CAN
B0 NO FURTHER."

2160 P$(83)="NEAR TO THE [RVSISFIDERLOFF] ROOM!"
2162 P$(84)="IN SPIDER COUNTRY AND THE LARGE SPIDE

R HERE WON'T LET YOU PASS!'"

2164 P$(B5)="IN AN OLD CHAMEER KNOWN AS THE C[RVSI

SFIDER'S BRAVEYARD!" '

2166 P$(86)="NEAR THE [RVSISFIDERLOFFI ROOM."
2168 F$(87)="IN A TOTAL DEAD END. YOUR ROUTEENDS

HERE !

2169 DATA 83,0,0,0,0,0,84,0,0,87,0,84,86,0,0,0
2170 DATA 89,90,92.54,0,88, 91.0,88.94,0,0, 0, 92

208

934

g9,91,0,97,88,0,97,0,91
2172 F$(B8)="IN THE HEART OF MABICAL CAVERNS,WITH
pATHS GOING OFF EVERYWHERE. "
2173 F$(89)="IN A NORTHERN OFF-8HOOT FROM THE M
IN PATH. "
2174 P$(90)="WALKING ALONG A MAGICAL CORRIDOR"
2176 P$(91)="IN A DIMLY LIT CORRIDOR."
2178 P$(92)="NEAR TO THE SOURCE OF THE MAGIC."
2180 P$(93)="HALTED BY A MAGICAL SHIMMERING CURTA
IN THAT WILL NOT LET YOU PASS.
2182 DATA 90,0,0,0,0,93,96,0,99,0,98,95,9%,0,0,92,
0,0,0,96,0,96,0,0,5%,0,0,0
2184 F#(94)="FOOLED YOU' DEAD END."
2186 F#(95)="0ON THE NORTH SIDE OF THE SHIMM- ERING
CURTAIN, "
2188 P#(96)="IN A LLOW CORRIDOR."
2189 F$(97)="TREADING OVER DIMLY LIT ROCKS AND R
UBBLE., "
2190 F$(98)="IN A DEAD END.THE WALL'S BRICKEDUF HE
RE, AND YOU CAN'T GO ANYWHERE.
2191 F£(99)="IN A NORTHERN OFF-SHOOT FROM THE M
AIN PATH. "
2192 P£(100)="IN AN OLD WAREHOUSE ONCE USED EYTHE
MINER 'S TOOLMAKERS. "
2200 FORI=1TOP:FORJ=0TOZ: READF%(I,J) t NEXTJ, I
2210 DATALS,20,21,34,24,0,40,0,27,7,42,46,0,14,93,
67,79,48,98,69
2212 DATAA VAST CHASM,AN IRON STAFF,A VAST TREE,A
BTOUT AXE,A THICK COIL OF ROPE
2214 DATAAN ENCHANTED BRIDGE,SOME DYNAMITE',A FILE
OF RUBBLE,A GOLDEN BEAR
2216 DATAA BUN,A BIG BLACK PANTHER,A LONG WOODEN F
LANK,A TALL LADDER,SOME NAILS
2218 DATAA HAZY SHIMMERING CURTAIN,A POLISHED MIRK
OR,A BLOCKED TRACK
fzgg DATAA FOOL OF OIL,AN EMFTY BOTTLE,A SOLID WAL
HAZY MIST
gizz FORI=1TO20: READOEY (1) s NEXTI:FORI=1T0D20: READ O
(1) :NEXT
2224 DATA 50,84,74,60,76,87,3,53,63,31,73,0,0,100,
0,2,1,0,0,39,0,0,0,0, 0
2226 DATATHE GHOSTLY DENIZEN OF THE CAVES!,A HUGE
BULBOUS GIANT SPIDER
2229 DATAAN ENORMOUS FLY'!,A RICKETY OLD DOOR,A LUM
P OF SOLID MORTAR,A FLY SPRAY!
2230 DATAA SOLID BATE,A NARROW CRACK ,A SHINING STO
NE,A TRUSTY SWORD,SOME WHISKY
2232 DATAA LIVING BARGOYLE',AN EVIL KNIFE,A KEY,A
WALL , SOME MATCHES,AN OLD TORCH
2234 pATAA BLAZING TORCH,A GLOWING LIGHT,AN OLD FA
RCHMENT , PROGRAM
2234 DATAA PILE OF BROKEN BLASS

209

2237 DATAA BOTTLE OF OIL,A BOTTLE OF WHISKY,SoMg
ICELY SAWN TIMBER N
2278 FORI=29TOLO: READOE% (1) t NEXT

2240 FORI=29TOLO: READOES (1)1 NEXT

2250 DATACHA,STA, TRE,AXE,ROF,BRI,DYN,RUB,BEA,BUy p
AN,FLA,LAD,NAI ,CUR,MIR, TRA '
2252 DATAOIL,BOT,MIS,NOR,S0U,EAS,WES,N,S,E,W,GH0, g
F1,FLY,DOO,MOR,SFR,BAT,CRA)
2254 DATASTO,SWO,WHI,BAR,KNI,KEY,WAL ,MAT,TOR, TOR, |
16,PAR,FRO,BLA,BOT,BOT,TIM 3
2256 DATAGO,GET,L.00, INV,SCO,DRO,HEL,QUI,CRO, TAK,gp
E,CLO,EAT,FEE,DRI,OFF , WAV

2258 DATACUT,CHO,CLI,LIG,ATT,KIL,HIT,MAK,REF,DIL g
TA,SPR, THR, RUE,REA,EXA, JUM

2260 DATARRE,PUS,SAV,LOA

2762 FORI=1TONN: READNOS# (1)t NEXT

2264 FORI=1TONV:READVES (1) :NEXT

2266 DATANORTH,SOUTH,EAST ,WEST

2968 FORI=OTOT: READDD® (1) i NEXT

2270 RETURN

Using the Data

Here we'll explain how all the data is used, and how it all works. In
other words, what are all those words and numbers that you've just
typed in!

We'll start off with the room data.

Data for the Rooms

There are one hundred rooms in all, and each one is given a description.
Some of these descriptions are used for a number of different rooms,
in particular in the maze where we want to confuse the player totally:

The room descriptions are stored in the variable P$(l), where Pﬁ(l)
contains the description of the Ith room, which is used in the routiné
from line 5000 onwards when actually printing the description onto
the screen.

Using strings in this way naturally limits the length of description that
we can give to a room, although it is possible to lengthen some ©
these by concatenating strings together, as has been done for room
22 for instance, in line 2043.

This has the effect of looking better on the screen, and also gives the

210

jayer a more realistic description of the room he is currently in.
pemember though that there is a limit to how long a string can be,
and also how long a string can be saved onto tape, so keep your longer
descriptions for rooms that are not going to change as the player solves
a series of problems.

Associated with each room are four numbers, stored in the variable
p%(l,J), where P%(l,J) refers to the Jth direction from room I.

For instance, the four values for room 1 are 0,2,0,0. This means the
player cannot go north, east or west, but can go south. Moving south
will take him to room 2, which has the data 1,3,0,0. This signifies that
the player can move north to room 1, south to room 3, but cannot
move east and west.

In room thre'e, we have our first choice of routes, since the data for
room three is 2,15,20,4 : the player can go north to room 2, south
to 15, east to 20, and west to 4.

Judicious use of room numbering can greatly enhance an adventure,
although this is by no means the only system in use today. However,
it is possibly one of the easiest to master, and is certainly easy to
program.

Data for Nouns

Just like the rooms, each noun, or object, has two variables associated
with it, and these are OB$(l), used to refer to the description of the
Ith object, and OB%!(l), which holds the current room number of the
|th object. If this number is a zero it isn’t currently in the game, and
if it is equal to minus 1, it is in the possession of the player.

In line 2222 we read in this data for the first 20 objects, position first,
and then the lengthy description.

There then follows a gap of eight object descriptions and positions,
as these are used to hold the words NORTH, SOUTH, EAST, WEST,
N, s, E W respectively. This enables us to use both longhand forms
of typing in a movement request (GO NORTH), and the simple one-
Word request like NORTH, or even just N.

In lines 2238 and 2240 the next set of descriptions and locations are

[ead in for the objects from 29 up to the upper limit set by the variable
0, as defined in line 2000.

211

The shortened forms for the nouns, that is, the words that we u
when analysing any data that has been typed in, are stored in lingg
2250 to 2254, and are read in as NO$(l) in line 2262.

Data for the Verbs

This is only of use when analysing what has been typed in, ang
obtaining a verb number, which is then used in lines 240 to 262 of the
program in order to send program execution off to the correct pary
of the program.

The data, in three-letter format for speed of verb identification, is storeq
in lines 2256 to 2260, and is read into the variable VB$(l) in line 2264,

This data is used throughout the program to keep the adventurer on
the move, and the large number of verbs provided ensures that a
reasonable degree of interest should be maintained throughout the
lifetime of the game.

The final lot of data, in line 2266, is only used once, in the routine
starting up at line 5000, to print out the directions which our intrepid
explorer can go off in.

It is read in in line 2268, in the order that the numbers in the variable
P%I(l,J) are read. That is, NORTH first, then SOUTH, EAST and
WEST.

And that's it! A whole adventure!

Conclusion on Underground Adventure

It is not the world’s greatest adventure, simply because we have
explained it all in great detail, so that you now know precisely how
it all works, and could probably solve it in a matter of one or tWo
sittings.

Nevertheless, it is not to be decried because of that, if it achieves the
aim it set out to do: that of presenting clearly and logically a complété
adventure game listing, that anyone could take and adapt to produce
their own compelling adventure games.

212

Machine Code Adventuring

This approach, in Basic, is obviously limited, and it would be possible
to write much faster games in machine code. However, to write an
adventure in machine code would be the work of many, many months,
possibly even years, and most of us want to see results in far less time
than that!

Using the approach outlined here, it should be possible to produce
adventure games at a reasonable rate, although a programmer’s utility
is virtually essential for writing a program this long.

Finding all the occurrences of the variable P%(54, anything), and
others, are problems you want answers to all the time, and most Basics
aren’t equipped with such useful functions as these!

Role-Playing Adventures

We also haven't really considered adventure role-playing games,
although it is a subject | may tackle at a later date. Still, we have given
a few brief outlines here, and even the simple approach followed
throughout this book could be used as the model for a role-playing
game.

The number of rooms would have to be a little less, but within reason,
and with some competent programming, the same level of difficulty,
the same kind of vocabulary, and the same number of objects, could
all be retained, to provide a fascinating game.

The one real limitation of this approach is that of the acceptance of
an input from the user. We have restricted ourselves to the purely VERB
OBJECT school, although this hasn’t stopped a large number of
adventures from being very successful programs in the past, viz.
Crowther and Woods, Adams, et al.

Verbal Adventures

TO go in for a greater level of response is possibly beyond Basic, as
it would take a long time to sort through the response and break it
down into its proper component parts. Just because the program can
accept something like VERB OBJECT ACTION, i.e. like ‘Take the Box

213

and Close the Lid’, doesn’t mean that the player will always Wwant to
use all of those options, and the program, unless cleverly, and QUickiy
written, could find itself getting into a terrible muddle. 8

But the purpose of this book, and the game Underground Adventyy,
was to get you exploring adventures and writing them, and on a 9006
level we have, | hope, succeeded.

Have fun adventuring, and we'll leave you with two final listings, Tunng|
Adventure and Castlemaze Adventure.

214

7
Castlemaze Adventure

Introduction

This is a full-blown adventure listing, written using the same routines
as Underground Adventure, so you should be able to follow what's
going on.

Itisn’t as sophisticated in looks as the first game, but it is a challenging
adventure that should keep you occupied for many a long day. Of
course, if you cheat by looking at the listing you’ll solve it very quickly,
but you wouldn’t do that, would you. . .!

We've already given you the map for this, so you should know what's
going on, but watch out for the evil sorceror and the Black Knight.
Oh yes, and the deadly maze is VERY deadly!

Have fun!

215

GOSUE 20000

GB$="A GOLD BAR FALLS OUT'"

D1$="GULF-BULP-GULP. YOU ARE SHRINKING!
DI$="YOU HAVEN'T GOT IT."

CME=CHR$ (44)

X=RND (~TI): X=032ZZ=1:PI=12

OT$=CHR$ (34)

YT$="BEHIND THE SIGN IS A VAULT IN THE WALL. Tug
VAULT I8 LOCKED.

10 PRINT"[CLR1":PRINT,"CASTLEMAZE ADVENTURE"

17 DE$="YOU MUST SUFFLY A DIRECT OBJECT."

18 DEFFNR(G) =INT (RND (1) %Q) +1

19 CF=49:51$="1 DON'T SEE IT HERE.":S2%="DON'T Bg
RIDICULOUS. ":BOTO1700
20 GOTO1500
30 IFCP=S2ANDKN=0THEN1170
40 IFOB(2,0)=-1ANDPI=CFTHEN1240
50 IFCP=29ANDSF=0THEN13I30
60 T=T+1:GOSUB1430: IFVE$="3, 1" THENP (30,2)=31:60T02
0
70 IFVB=-1AND (NO>21ANDND<3I0) THENVE=1
90 IFVE$="CRO"THENIF (CP=520RCF=53) THENCP=52+ABS (CP
-53) : GOTOZ0

110 IFVE< >IOAND (VE>100RVE=200RVB=6) ANDNO$=""THENFR
INTDES$: GOTO60

140 IFVE=30THEN1070

160 IFVE=-1ANDNO< >OAND (NO<220RNO »29) THENFRINT"YOU
MUST SUFFLY A VERE.'":GB0T0&0

170 IFVE<1ANDNO=OTHENPRINT"I DON’T KNOW HOW TO "@T
$N1$OTE" ANYTHING. ":GOTO60

190 IFNO=0ANDVE>10THENPRINT"I DON'T KNOW WHAT A '@
TEN1OT" 1S.":B0T060

200 ONVBGOTO210,280,20,350,380,400,920,470,830,137
0,510,520 ,550,280,660,740,770
205 ONVE-17B80T0640,840,840,550,400,460,940,950,980
,1010,400,1050,1070

210 IF (ND<220RND>29) ANDNO$< >" " THENPRINT" I DON'T KN
OW HOW TO DO THAT.":BOTO&L0

220 IFNO$=""THENPRINT"WHERE?":B0T0&0

230 IFNO>25THENNO=NO-4

240 NO=NO-22: IFF (CP,NO) =OTHENPRINT"THERE 18 NO WAY
TO GO IN THAT DIRECTION.":B0T0&0

250 IFCP=1ANDNO=1ANDDF=0THENFRINT"THE CASTLE DOOR
1S LOCKED.":GOTO60

260 1FCP=17ANDNO=1ANDCF=0THENPRINT"THE CRACK 18 TO
0 SMALL FOR YOU.":GOTO&0

265 1FCP=1BANDNO=0ANDOE (9 ,0)=-1THENPRINT"THE PAINT
ING IS TOO BIG FOR THE CRACK.":BOT0&0

267 IFNO=0ANDOE (20,0) =CPTHENFRINT"THE SORCEROR TUR
NS YOU INTO A FROG.'":GOTO1220

270 CP=P (CF,ND) : BOTO20

oW EARN-O

216

280 IFDB(NO,0)=-1THENFRINT"YOU'VE ALREADY GOT IT!"
s GOTO60

290 IFNO=OTHENPRINT"WHAT 'S A "N1$"?":B0T060

300 IFOB(NO,0Q)<>CPTHENPRINTS1$1G0T060

310 IFNO=170RNO=210RND=200RNO=16THENPRINTS2$: GOT06

0

120 IFZZ>4THENFRINT"YOU ARE UNABLE TO CARRY ANY MO
RE. "1 GOTO6O

730 IFNO=19ANDPF=0THENFRINTYT$: PF=1:0B(16,0) =CF: OB
(19,0)=~1322=22+11 BOTOL0

140 PRINT"OK":ZZ=ZZ+1:0B (NO,Q)=~1:B0TO&L0

3850 [FZZ=O0THENPRINT"YOU ARE EMPTYHANDED. ":GOT0&0
160 PRINT"YOU ARE HOLDING THE FOLLOWING:":FORI=1TO
LO: IFOB(I,0)==1THENPRINT" "OB$(I)

770 NEXTI:iPRINT:GBOTOL0

80 GOSURIB4: BOTOLO

384 J=0:FORI=1TOLO: IFOR(I,0)=1THENJ=J+0B(I,1)

%85 NEXT:PRINT"YOU HAVE SCORED"J"POINTS OUT OF 100
LM IFJC 100 THENRETURN

390 PRINT,,"[CD,RVSIWELL DONE 'COFF1":END

400 IFND< *OANDOE (NO, Q) < =1 THENSBO

440 IFNO=OTHENFRINT"I'VE NEVER HEARD OF A "N1%",":
BOTOLO

445 IFNO=1BANDOE(17,0) < >CPTHENOES (18) ="A SHATTERED
VASE": OB (18,1) =0

450 OB (NO,0)=CF:PRINT"OK": ZZ=2Z~1:GOT0&0

460 IFNO=BORNO=14THENFRINT"TRY ‘SWING'":GOTOLO

462 IFNO=10RNO=4THENFRINT"TRY ‘SHOOT'":B0TO60

464 IFNO=10THENPRINT"TRY ‘SHARPEN'":;GOTO&0

465 IFNO=31THENFRINT"TRY ‘JUMP’":BOTO60

466 IFNO=1ITHENFRINT"JUST ‘DROF’ IT WHERE YOU NEED
IT. ":BOTO60

468 PRINT"I DO NOT UNDERSTAND.":BOTO&0

470 IFCP<49ANDCP »44 THENCF=CP =251 B0T0O20

474 1FCP<24ANDCF »19THENCP=CP+25: GOTO20

477 PRINT"THAT IS8 NOT POSSIELE.":BOTOIO

510 PRINT"ALRIGHT...";N1$:B0TO60

520 IFOB(NO,0)<>=1THENFRINTDI#: GOTOL0

530 IFNO<»7THENPRINTS2$: GOTO60

540 PRINTD1#$:22=2Z~1:0B(7,0)=01CF=1160T060

550 IFNO< »Z1ANDNO< »16ANDNOY >IOTHENPRINT"I DON'T KN
OW HOW TO OPEN SUCH A THING.'":GOT0&0

g?gélFNDIIbANbost16,0)<>CPTHENPRINT"WHAT VAULT?": B

0

S70 IFNO=16ANDOE(2,0) < »=1THENFRINT"YOU DON‘'T HAVE

THE KEY.":GOTOL0

580 IFNO=16THENFRINT"THE VAULT I8 OFEN":VF=1: IFORE(
15,0) =0THENPRINTGES$: OB (15,0) =CP

S90 IFNO=16THEN&O

600 IFNO=31THEN1140

610 IFCP<>1THENPRINT"WHAT DOOR?":GOTO&0

217

620 IFOR(2,0) < =1 THENPRINT"YOU DON'T SEEM TO HAVE

THE KEY.":B0TO&L0

6HZ0 PRINT"THE DOOR IS OFEN.":DF=1:60TD&0

660 FRINT"HOW?": GOTOLO

740 IFOB(NO,O)« >=1THENPRINT"YOU DON’'T HAVE IT."18p

TOLO

750 IFNO« »ITHENFRINT"HOW DO YOU EXFECT TO READ "0

B (NO) 3 "?":160TO60

760 FPRINT"IT SAYS: [RVSIA SECRET FASSAGE LIES Ngp

REY"

761 PRINT,"CRVSIIT OFENS IF YOU NUMBER FI "1 BOTE

bo

770 IFOE(ND,0)<>=1ANDOE (NO,O) « *CRTHENFRINT"I DON‘T
SEE THAT HERE.":B0TO60

780 IFOB(1,0)<>~1THENFRINT"YOU DON'T HAVE A BOW!",

GOTOLO

785 IFOB(4,0)<>-1THENPRINT"YOU DON'T HAVE AN ARROW
1 BOTO60

820 ZI=77-1:0B(4,0)=CF:B0TOL0

830 PRINT"YOU NEED A TOOL.":GOTO&0

840 IFNO=160RNO=TO0RNO=Z1THENB7O

850 IFOB(NO,Q) < »~1THENBIS

8460 FPRINT"I DON'T ENOW HOW TO CLOSE SUCH A THING,"
1 BO0TOLO

870 IFNO=16ANDOE(16,0) < *CPTHENFRINT"WHAT VAULT?":6

0TO6O

880 IFNO=14THENFRINT"THE VAULT IS CLOSED AND LOCKE

D.":VF=0: BOTO&LO

890 IFNO=2Z1THEN1110

Q00 IFCP<>*1THENPRINT"WHAT DOOR?":GOTO&0

910 PRINT"THE DOOR IS CLOSED AND LOCEED.":DF=0:G0T

060

920 IFCP<B8THENFRINT"BE FPERSISTENT.":B0T0&0

922 IFCP<20THENPRINT"EXAMINE THINGS.":60TO60

924 IFCP<24THENPRINT"WHAT GOES UFP MUST COME DOWN."
160TOLO

92% IFCP<E4THENFRINT"VALUE THINGS. ":B0TOL0

926 IFCP<41THENPRINT"DO AS HANSEL AND GRETEL DID."
1BOTOLO

928 IFCP<4STHENFPRINT"THINK, ":GOTO&0

930 IFCP<S2THENPRINT"THIS ADVENTURE HAS A VIOLENT

BEGINNING. ":BOTO&60

932 PRINT"CROSS THE BRIDGE.":6G0T0&60

940 PRINT"ITS VALUE IS"OE(NO,1)"POINTS.":BOTO&0

950 IFOB(NDO,0)<>=1THENPRINT"YOU DON'T SEEM TO HAVE
IT. "1 60TOL0

952 IFNO< »14THEN960

954 FORI=1TO19: IFOB(I,0)==1THENOB(I,0Q)=CF

956 NEXT: ZZ=0:1CP=23:6OTO20

560 IFNOC *BTHENFRINT"WOW, THIS I8 FUN!":BOTO60
962 IFOB(20,0)<»CPTHENPRINT"WHOOSH! " GOTOL0

218

965 IFSH=0THENFRINT"THE SWORD BOUNCES OFF THE S0ORC
ERER AND HITS YOU.":GOTO1220

967 FRINT"THE SHARF SWORD SLICES THE SORCERER.'":SH
=8H+1: IFSHT4THENTIO

g70 OB(20,0)=0:0B(14,0)=CF:FPRINT"THE SORCERER DISA
PPEARS. ": GOTOTO

980 IFOB(NO,O)<>~1THENFRINT"YOU DON'T SEEM TO BE H
OLDING IT.":GOTO&O

90 IFNO<»BTHENFRINTS2%: BOTO6O

995 IFOB(10,0)<»~-1THENBIO

1000 FRINT"THE SWORD I8 NOW RAZOR SHARF. '":8H=1:60T

060

1010 IF (CP=1ANDNO=3Z0) OR (CF=44ANDNQ=11) THEN1O22
1011 IFOB(NO,O) < »~1ANDOE (NO,O) < *CPTHENFRINTS1$: GOT
060

1012 IFNO=17ANDOE (2,0)=0THENOB(2,0) =CF: FRINT"SOMET
HING'S IN HIS POCKET!'!":BOTO&0

1017 IFNO=21ANDOE (&,0) =0THENOE (& ,0) =CP: FRINT"SOMET
HING 'S IN THE STOMACH!":GOTO60

1014 IFNO=BANDSH=0THENFRINT"IT'S BLUNT.":G0T0&0
1016 IFNO=8THENFRINT"IT'S SHARF.":B80T0&0

1018 IFND=7THENFRINT"ON THE BOTTOM IT SAYS ‘DRINK
ME ‘"1 GOTOLO

1020 IFNO=18THENPRINT"IT 'S VERY FRAGILE.":B0T0O60
1022 IFNO=31THENFRINT"IT'S BIG ENOUGH TO JUMP OUT
OF. "1 BOTOL0

1024 IFNO=10RNO=IOTHENFRINT"IT 'S MADE OF WOOD.":GO
TOLO

1025 IFNO=19ANDOE(19,0) =3ISTHENFRINT"IT'S JUST HANG
ING THERE.":GOT0&L0

1026 IFNO=20THENFRINT"HE ‘S PREPARING TO CAST A SFE
LL ON YOU.":GOTO&0

1028 IFNO=13ZTHENPRINT"IT'S SOFT.":B0TO&0

10Z0 IFNO=10THENPRINT"IT 'S GRAY AND GRITTY.":60T06&
0

1038 PRINT"IT'S JUST "OBE£(NO)".":60TO60

1050 IFNO=4ANDOE (4,0) =22THENPRINT"LOOK FOR IT IN T
HE FOREST.":B0T060

1052 IFNO=2ANDOE (2,0) =0THENPRINT"EXAMINE THINGS. ":
BOTO&O

1055 IFOB(NDO,0)=-1THENFRINT"YOU'RE HOLDING IT, STU
PID!": GOTOLO

1057 IFOB(NDO,0)=CPTHENFRINT"IT'S RIGHT IN FRONT OF
YOU, STUPID!":GOTO&0

1060 IFNO< »20THENPRINT"FULL YOUR FINGER OUT AND LD
Ok FOR IT!":B0T0O60

1062 PRINT"LCLRIYOU'RE IN THE SORCERER'S TORTURE C
HAMBER~~ HE HAS A WHITE~HOT FOKER";

1064 PRINT" AND HE IS COMING TOWARD YOU''":FORJ=1
TOZ: GOSURL 430

1065 IFVE=25ANDNO=14ANDOE (14 ,0) =—1THENSS0

219

1066 FRINT"THE SORCERER THRUSTS THE FOKER AT ygu

sNEXT: GOTOL1220

1070 IF(CPPiQANDCP(24)0RCP@34THENPRINT”DDNNECD]DDN

NCCDIDOWNLCDIDOWNLCDIDOWN" : GOTO1220

1080 IFCF< »44THENFRINT"WHEEEE! ": GOTO60

1090 IFWF=0THENCF=43: GOTO1080

1100 FRINT"YOU LAND SAFELY IN THE TREE'S BRANCHEg,
"1 CP=21:60TO&0

1110 IFCP<>44THENFRINT"I DON'T SEE A WINDOW.":GoTg

60

1120 IFWF=0THENFRINT"IT 18 ALREADY CLOSED.":G0TDgq
1130 PRINTY"IT'S STUCK. ":GOTOLO

1140 ITFCPC >44THEN1110

11850 ITFWF=1THENFRINT"IT IS ALREADY OFEN.":G0T0&0
1160 FRINT"IT 'S NOT EASY, BUT YOU MANAGE TO GET TH

EWINDOW OFEN. YOU SEE A"

1161 PRINT" RBIG LEAFY TREE AROUT 2 METERS BELOW T

HE WINDOW. ":WF=1:0B0TO60

1170 PRINT"A BLACK ENIGHT IS8 RIDING ACROSS THE
BRIDGE TOWARD YOU!": GOSLEL4T0

1180 IFVEC>170RNOC »17THENL1Z210

1190 IFOB(1,0)<»~1THENPRINT"YOU HAVE NO BOW!":B0TOD
1210

119% IFOB(4,0) < ~1THENFRINT"YOU HAVE NO ARROW!":60
TO1210

1200 PRINT"THE ARROW FINDS A CHINK IN THE KNIGHT'S
ARMOR. HE FALLS.

1208 KN=1:2Z=272-1:0B(4,0)=52:0B(17,0)=02:60T060
1210 PRINT"THE ENIGHT SKEWERS YOU WITH HIS LANCE."
1220 FORI=1TO2800:NEXT:FRINT"[RVEIYOU ARE DEADCLOFF
1" FORT=1TO28500: NEXT: GOTO1370

1240 FRINT"A FIRATE SNEAKS UF ON YOU AND STEALS TH
EKEY. [RVS8IHAR HAR HARLOFF1"j:PI=0

1250 PRINT" HE CHORTLES:"sPRINT"CRVS1I'LL HIDE THI
8 DEEF IN THE MAZE'

1290 OB(2,0)=34:22=22~1:6B0TO&0

1330 PRINT"A BGIANT SFIDER DROFS FROM THE CEILING!
1335 PRINT"IT IS MOVING TOWARD YOU!":GOSUR14T0
1337 IFVE<>170RNO< >21THEN1ZS0

1340 IFOE(1,0)<»=1THENPRINT"YOU HAVE NO BOW!":GOTO
1350

1342 IFOB(4,0)<>~1THENFRINT"YOU HAVE NO ARROW!":G0
TO13S0

1345 PRINT"THE ARROW RIFS INTO THE SPIDER.":8P=1:l
I=7Z~1

17547 OB(21,0)=29:0B(4,0)=0:0B(5,0) =291 60T0&0

1350 PRINT"THE SFIDER POUNCES ON YOU AND SINKS ITS
FANGS INTO YOUR NECK.":B0T01220

1370 PRINT"[CLRI": GOSUBIB84: FOKE4O, 1: END

1430 FRINT"LCD,RVSIWHAT NOW?LOFF] '";:GOSUBL0O000
1440 PRINT:N1$=""gV1$=""3NO=0: VB=03 NO$=""; VE$=""

220

1450 CM=LEN (CM#$) : FORI=1TOCM: IFMID$ (CM%$,1,1)<>" “TH

ENVI#=V1£+MID¥ (CM$,1,1) :NEXTI

1460 VEX=LEFTE(V1#£,3) : FORI=1TONV: IFVES (1) =VEETHENY

p=1:6G0T01480

1465 NEXTI

1470 VB=-1iN1$=V1$:60T01490

1480 IFLEN(V1E)+1LEN(CM$) THENNO=O: RETURN

1485 N1#=RIGHT# (CM#%,LEN(CM#$)~1-LEN(V1%))

1490 NO#=LEFT#(N1%,2) :FORI=1TONN: IFNO$ (I) =NO$THENN

D=1: RETURN

1493 NEXTI

1495 RETURN

1500 FRINT"[CLRI":FRINT"YOU'RE ";F$(CF):PRINT: SS%=

"YOU CAN SEE :=":FORI=1TOLO

1510 IFOB(I,0)=CPTHENFRINTSSS: FRINTOES (1) : SS#="[QU

"

18520 NEXTI

1530 IFCP=1ANDDF=0THENFRINT"THE DOOR I8 LOCKED."

1540 IFCF=18ANDVF=0ANDOR(16,0) =18THENFRINT " THE VAU

£ 18 LOCKED: "

1850 IFCP=17ANDCF=0THENFRINT"A NARROW CRACK LEADS

SOUTHWARD. "

1560 IFCP=1ANDDF=1THENFRINT"THE DOOR IS OFEN, "

1870 IFCF=35ANDVF=1ANDOE (16,0) =I5 THENFRINT " THE VAL

B =18 OPEN. Y

1590 IFCF=17ANDCF=1THENFRINT"A WIDE CRACK LEADS SO

UTHWARD ., "

1600 IFCF=0THENF (17,1)=0

1610 IFCP=44ANDWF=1THENFRINT" THE WINDOW IS OFEN.

A TREE I8 2 METERS BELOW.

1620 K=0:FPRINT"LCDIYOU CAN GO "1 :FORI=0OTOZ: IFP(CP,

1) =0THEN1 450

1630 IFK=1THENFRINT", ";

1640 FRINTD$(1);:k=1

1650 NEXTI: IFK=0THENPRINT"NOWHERE., "

1660 IFK=1THENFRINT

1670 PRINT:F(17,1)=18:160TOI0

1700 NF=53: L0=35: NN=31:NV=30: DIMP (NF,3) ,F$ (NF) ,VE$

(NV) ,NO$ (NN) ,0B(LO,1) ,0E$(LO)

1710 P$(1)="0UTSIDE A MEDIEVAL CASTLE. THE PAVEM

ENT HAS AN INSCRIFTION: "

1;é1 F#(1)=F% (1) +CHR$ (13) +"[RVSILEAVE ALL TREASURE
RE. "

1715 DATA0,B8,4,0,53,7,%,6,0,0,3,2

1720 P$(2)="AT A CROSS ROAD.":F$(3)="ON THE GREAT

EAST ROAD."

1;33 FP#(4)="0ON THE GREAT WEST ROAD.":DATAO,0,2,1,0

1V ,4

1740 P$(3)=FP%(4) 1P$(&6)=P$(4):DATAO,0,2,5

1755 P$(7)="0ON THE GREAT SOUTH ROAD. ":DATAZ,7,0,0

1760 P$(B)="IN A SPLENDID CHAMBER 30 FEET HIGH.

221

"iDATAL,11,0,10

1770 P#(9)="IN A COSY SITTING ROOM.":DATA10,0,11 gq
1780 P#(10)="IN THE MASTER BEDROOM.'":DATA0,9,8,0
1790 F$="IN A VAST CORRIDOR STRETCHING OUTOF SIgny
TO THE ":P$(11)=F$+"SOUTH. "

1795 DATA 8,12,14,9

1800 P#(12)=P$+"NORTH AND SOUTH.":DATA11,13,15, 25
1810 P#(173)=P$+"NORTH. ":DATA12,0,16,17

1820 P$="IN A BEDROOM WITH A ":F$(14)=P$+"STONE F_
OOR. ": P#(15) =P$+"WOODEN FLOOR

1825 P#(16)=P$+"DIRT FLOOR.":DATA0,0,0,11,0,0,0,12
,0,33,0,13

1830 P#(17)="IN A DUSTY PANTRY.

1835 DATA 0,18,13,24

1840 P$(18)="IN A PRIVATE ART BALLERY.":DATA17,26,
0,19

1850 P#(19)="IN A STORE ROOM. COBWEES ARE EVER
YWHERE . "

1860 F$(20)="AT THE TOF OF A BIG TREE."

1870 P$(21)=FP$(20)

1880 P#$(22)=P$(20)

1890 P$(23) =P$(20)

1900 DATAO,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1910 F$(24)="IN THE KITCHEN.":DATA25,0,17,0,0,24,1
2,0,18,28,29,0

1920 F$(25)="IN THE DINING ROOM.":P$(26)="IN A SHA
DOWY ALCOVE. "

1925 P#$(27)="IN AN AUSTERE OFFICE.":DATA0,0,28,0
1930 P$(28)="IN THE DRAWING ROOM.":DATA26,0,0,27,0
,0,30,26,0,0,0,29

1940 P#$(29)="IN THE PARLOR.":P$(30)="IN THE STUDY.

1945 P$(I1)="IN A DAMP STONE PASSAGE."

1950 F$(32)="IN THE DUNGEON.":DATAO,0,32,30,41,0,0
31

1960 FORI=1TONP:FORJ=0TOZ:READP (I1,J) st NEXTJsNEXTI
1970 P$(33)="IN AN ANCIENT CONFERENCE ROOM.":DATAL
6,0,35,0 !
1980 P$(34)="IN A TOWER WHICH OVERLOOKS A HUGE
1981 P$(34)=P$(34)+"KINGDOM DOWN A MONSTEROUS MOUN
TAIN. THEGRASS 1S GREENER " L
1982 P$(34)=P$(34)+"THAN BGREEN ITSELF.":DATA40,0,
' ss
1990 P$(35)="IN A MAZE OF TWISTY LITTLE PA
ABES, ALL ALIKE." ¢
1995 FORI=36TD40:P# (1)=P%(35) :NEXTI:DATAZ6 36,36,
%,37,35,35,35,36,36,38,36 g
1996 DATAZG,I6,36,39,40,36,36,36,36,34,36,36,42,
0,0

2000 P$(41)="ON A LONG FLIGHT OF STAIRS DOWN."
2001 P$(43)="ON A LONG FLIBGHT OF STAIRS UP."

222

2002 P#(42)="IN A MILE-LONG PASSAGE. STAGNANTWATE
R REACHES YOUR ANKLES.

2010 P$(44)="AT THE END OF THE CASTLE. YOU CANSEE
A FOREST OUT A SMALL WINDOW., "

2015 DATA43,41,0,0,44,42,0,0,0,43,0,0

2020 F$(45)="IN A DENSE DARK FOREST."

2025 FORI=46T048:F$(1)=F$(45) :NEXTI: DATALS,49,46,4
8,45,47 ,46,49,50,51,46,48

2026 DATA4S,47,49,48

2030 FP$(49)="0ON AN OLD PATH MADE BY HORSES."

2035 P$(51)="IN THE MIDDLE OF A CLEARING. TO T
HE SOUTH IS A BRIDGE. "

2037 P$(52)="0ON THE NORTH SIDE OF THE BRIDGE."
2038 P$(53)="0ON THE SOUTH SIDE OF THE BRIDGE."
2039 DATA 45,50,46,48,49,47,46,48,47,52,0,0,51,0,0
,0,0,2,0,0

2040 DATABOW,KEY,BOO,ARR,EBRO,SAF,LI0,S5W0,PAL ,WHE,S
IL,PEN,PIL,SCE

2045 DATA BAR,VAU,KNI,VAS,SIG,S0R,SFI,NOR,S0U,EAS,
WES,N,S,E,W,D00,WIN

2050 DATAGO,GET,LOO,INV,SCO,DRO,HEL,CLI,DIG,QUI,SA
Y,DRI,0PE, TAK,KIL,REA,SHO,ATT

2055 DATACLO,LOC,UNL,BIV,USE,VAL,SWI,SHA,EXA, THR,F
IN,JUM

2060 FORI=1TONN:READNO#$ (I):NEXTI:FORI=1TONV: READVE
$(1) tNEXTI

2070 DATA A LONG BOW,-1,0,A BRONZE KEY,0,0,A LEATH
ER-BOUND BOOK,30,0

2072 DATA A SILVER ARROW,22,10,A BROKEN ARROW,0,10
,A BIBANTIC SAPFHIRE,0,10

2074 DATAA VIAL OF AMBER LIQUID,24,0,A GOLDEN SWOR
D,34,10

2077 DATAA LARGE REMBRANDT PAINTING, 18,20

2080 DATA A WHETSTONE,19,0,A SET OF SILVERWARE,2S,
10,A PLATINUM FEN,27,10

2082 DATA A VELVET FILLOW,44,0,THE SORCERER'S SCEP
TER,0,10,A BOLD BAR,0,10

2084 DATA A VAULT IN THE WALL,0,0,A DEAD KNIGHT,O,
0,A MING VASE,%,10

2086 DATA"A SIGN SAYING: [RVSIDIABOLICAL MAZELOFF]
",35,0,A WICKED SORCERER,32,0

2090 DATAA DEAD SFIDER,0,0

2100 FORI=1TO21:READOE$(I),0B(I,0) ,0B(I,1) NEXTI
2110 DATA NORTH,SOUTH,EAST,WEST

2120 FORI=0TOZ: READD$ (1) tNEXTI

2150 P$(50)="AT THE END OF A PATH, WITH FORESTSURR
OUNDING YOU IN ALL DIRECTIONS. "

2160 P#(47)=P$(47)+CHR$(13)+"T0 THE SOUTH THERE SE
EMS TO BE LIGHT."

2270 GOTO20

20000 FOKE S3I280,6:1FOKE 53281,7:PRINT"CBLK]

20999
LOOOO
L0005
L0010
60012
LHOOBO
LHOL100
60110
60120
60140

READY .

224

RETURN
CM’s "nnu
PRINT"CRVSI1#[OFF,CL.1"
GETZ#: IFZ%=""THEN60OO1

0

7=ASC(Z#%) 1 IFZ>FSTHENLOOLO
ZL=LEN(CM#) : IFZL»>27 THEN6O110

IFZ 31 THENCME=CME+Z 81 PRINTZ$5 : GOTOL0005

IFZ=13ANDZLTHENFRINT"

IFZ=20ANDZL THENCM$=LEFT# (CM#, ZL~1) s PRINTZ$,

GOTOLOO0D

"1 RETURN

8
Tunnel Adventure

Another full-blown adventure, and again written in the same style as
Castlemaze Adventure and Underground Adventure. This should serve

to illustrate how easy it is to produce a large number of different games
from the same basic rules.

This again is challenging, although it doesn’t have the glossy edges
of Underground. However it should keep you very busy trying to solve
the many problems presented along the way.

Watch out for the vicious cat, and the evil hooded cobra, and the
affectionate turtle encrusted with diamonds isn’t all he seems either,
in the ancient city of Kez!

225

0 GOSUB 700 _
4 Wi$="THE PANTHER SEES THE SNAKE AND FLEES.'":g4g.
"YOU‘RE NOT HOLDING IT."

6 W2$="YOU ARE OUT OF MATCHES.":DR$="[RVSIIT'S ygg
Y DRAFTY HERE" u

8 GE$="A BIRD SWOOPS DOWN OUT OF THE SKY AND Lay
DS IN FRONT OF YOU.

10 I1$="YOU NEED A DIRECT OBJECT.

12 WS$="THE TURTLE EATS THE CARROT AND RUES YOURLg
6 AFFECTIONATELY.

14 WAS="NO WAY! THE BOSS SAYS I HAVE TO PAY FORAN
YTHING YOU BREAK.

16 WE$="IT DOESN'T BURN.":SP#$="YOU DISCOVER A SECR
ET PASSAGE. " et

18 KN$="THERE 'S SOMETHING IN HIS POCKET.": IM$="THa
T I8 NOT POSSIBLE."

20 WD$="IT'S PITCH DARK.":CR$=CHR$ (13):PRINT"[CLR)
21 JA$="THE JAVELIN GLIDES THROUGH THE AIR AS IFPU
LLED BY MAGIC. ,

22 S1$="1 DON'T SEE IT HERE.":82$="DON'T BE RIDICU
LOUS. ": CP=39

24 SZ$="1 DON'T KNOW THAT WORD.":GOTD44é

26 GOSUB414 _

28 IFTGTHENOEY (29,0) =CF: IFCP=34THENTG=0

30 IFTGTHENPRINT"CLCDITHE TURTLE IS FOLLOWING YOU."
32 IFTGANDCP=11THENGOSUE148: PRINT"[CLRICAVE~IN '[4
CDI":F%(13,3) =01 P%(9,1) =03 CP=13

34 BOSUBIFO

36 IFMF=1ANDM2=0THENM2=1

38 IFVB>9ANDVES >20ANDNO#=""THENPRINTI1$: 60T0O34

40 IFNO$<>""ANDVE=1ANDNO=0THENPRINT"THAT DOESN'T M
AKE SENSE TO ME.":B0TO3I4

42 IFOB%(35,0) ANDNO=32THENNO=3S]
44 IFVE>10ANDNO=OTHENFRINT"I DON‘T KNOW WHAT A "Ni
$" 18!";BOTO34

46 ONVEGOTOSZ,72,26,98,106,110,128,376,136,72,154,
172,174,194 ,202

48 ONVE-15B0T0216,226,234,236 4
50 ONVE-19G60T0238,246,248,246,262,272,274,296,304,
226,356,364 ,168

52 IFNO$<>""ANDNO=OTHENPRINTSI$: GOTOI4 .
54 IFNO>2B80RNO<21 THENPRINT"I DON’T UNDERSTAND. ":
TOZ4

56 IFNO>24THENNO=NO-4

58 NO=NO-21 oyt
60 IFNODANDPDTHENPRINT"YOU HAVE FALLEN INTO A .
1GOTO612 e

62 IFNDANDOB% (30,0) =CPTH

64 IFGF=0ANDCP=1BANDNO=1THENPRINT"THE GATE 18 LOCK
ED!":BOTO34

66 1FPY%(CP,NO)=0ANDCF< »1 THENPRINTIM$: GOTOZ4

226

68 IFFZ(CF,NO)=0THENFRINT"YOU CAN‘T GO THAT WAY.":
BOTOI4

70 CF=F%Z(CF,NO): B0TO26

72 IFNO$=""THENFRINTI1$:B0T0O34

74 IFOBZ(NO,0)==-1THENPRINT"YOU 'VE ALREADY (<8 il Rl
:BOTOX4

76 IFNO=OTHENFRINTSZ$: GOTOX

78 IFCFP=18ANDNO=Z1THENSS

80 IFNO< »I70RCF< »29THENSS

82 IFOBZ(17,0) +1THENPRINT"YOU NEED A CONTAINER, "y
0TOZ4

84 OB%L(17,0)=0:60T096

86 IFOBZ(NO, Q)< *CPTHENPRINTS1$: GOTOZ4

88 IF (NO*18ANDNO<I2) ORNO *49THENFRINT"IT'S TOO HEAV
Y. " GOTOZ4

90 IFNO=12THENGDSURL 40

92 IFZZ>3THENPRINT"YOUR HANDS ARE FULL.":GOTOZ4

94 Z7=712+1

Fé6 PRINT"OR" : OB% (NO, 0) =~1 3 BOTOZ4

78 FRINT"YOU ARE CARRYING:":ZZ=0

100 FORI=1TOLO: IFOB%(I,0) ==1THENFRINT" "OB£(I):22Z
=77+1

102 NEXTI:IFZZ=0THENFRINT" NOTHING

104 GOTOZ4

106 FRINT"FOINTS ARE SCORED BY LEAVING VALUABLES
AT THE MOUTH OF THE TUNNEL.

108 GOSURZI78:60TOI4

110 IF NO=OANDNO#$< >""THENFRINT"WHAT 'S A "N1£"?": 60
TOZ4

112 IFNO=OTHENFRINT"HUH?": BOTOI4

114 IFOBY(NO,O) < »>~1THENPRINT"YOU HAVE NO " N1#: GOT
034

116 IFNO=Z5THENOBRYZ (35, 0) =0; NO=32

118 IFNO=1S5THENPRINT"YOU CAN'T. IT'S STUCK TO You
R HAND.":B0T03Z4

120 OB%(NOQ,0)=CP: Z2Z=ZZ~1

122 IFND=17THENDBZ(17,0)'OIDEZ(EB,Q)'CPIpRINT“CRAS
H!": GOTO34

124 IFDBZ(12,0)=08%(30,0)THENPRINTN1$IOHZ(30,0)=O=
GOTO*4

126 FPRINT"OK":BOTOZ4

128 IFCP=31THENPRINT"READ THE MEDALLION. ":GOTOZ4
130 IFCP=7THENPRINT"TRY FRIME NUMBERS. ": GOT0O34

132 IFJ=90ANDOBY (41,0) =0THENFRINT "SOME MUSIC wouLD
BE NICE.":60T0O34

134 PRINT"TRY EXAMINING THINGS. ": BOTOZ4

136 IFCP=430RCP=44THENCF=87-CF: B0TO26

138 PRINTIM#$:B0TO34

140 PRINT"THE SNAKE BITES YOU. "t BI=BI+8: RETURN

142 PRINT"THE PANTHER POUNCES ON YOU.":60T0612

144 IFOB%(32,0) THENRETURN

227

146 OB CE2,0)=0B%(35,0) : OB% (25, 0) =0: RETURN

148 FORI=1TOOBY (31,1) :NEXT:BOSUE144:0B% (31,1) =100,

RETURN

150 FORI=1TO54: IFOB%(I,0)=13THENOBE% (I,0) =55

152 NEXT:RETURN

154 IFNO=Z1ANDCF=1B8THEN162

156 IFNO=31THENPRINT"I SEE NO GATE HERE.":B60T0OzZ4

158 IFOB%(NO,0) < >~1THENFRINTS4%: GOTOX

160 PRINT"THAT 'S NOT NECESSARY.'":BGOTOZ4

162 IFGF=1THENFRINT"IT 'S8 ALREADY OFEN.":G0TOZ4

164 IFOB%(4,0)=-1THENGF=1: PRINT"THE GATE SWINGS Qp

EN.":60TOZ4

166 PRINT"YOU NEED A KEY TO OFPEN THE LOCKED GATE,n
1 BOTOI4

168 IFNO< *460ROB% (46,0) < »-1THEN110

170 OB%(46,0)=1722Z2=22~-1:PRINTJIA$: GOTOZ4

172 PRINT"TRY ‘FUSH’'":60TO34

174 IFOB%(NO,O) < >-1THENFRINTS4$: GOTO34

176 TFNO< >2ANDNOC =1 6ANDNOC » 1 BANDNO =STHENFRINT " THE

RE ‘S8 NO WRITING.":60TOZ4

178 PRINT"IT SAYS:";: IFNO<>2THEN1B86
180 PRINT,"LRVE]

1l FOR 20 YEARS FROFESS

182 PRINT,"L[RVS] SEARCHED FRUITLESSL":FPRINT,"[RVS]
HIDDEN CITY OF KEZ"

184 FRINT,"[RVS] "1 BOTOZ4

186 IFNO=18THENFRINT,"[RVSIFELINES" :PRINT,"[RVSIH

A V E":PRINT,"[LRVSIENEMIES" : GOTOX4

188 IFNO=1&6THENPRINT" [RVSIFERMENTED JUICE I8 ALEX
IFPHARMIC" : GOTOZ4

190 PRINT,"TAKE THE FIRST S8IX LETTERS8"sPRINT," TH

ROW AWAY THE LEFT HALF

192 PRINT, ,"[CLIDOUBLE THE MIDDLE":PRINT,," TURN
IT ROUND":GOTOZ4

194 IFOB%(NO, Q)< »~1THENFRINTS4%: GOTOI4

196 IFNQ< > 1ITHENFRINTS2#: BG0TOZ4

198 IFOB%(13,0)<>=~1THENZ210

200 2Z=ZZ~1:PRINT"YUK! IT TASTES TERRIBLE!":0B%(1
I3,0)=0:B0TOZ4

202 IFDBY(NO,Q)<»~1ANDOBY (NO,0) < *CPTHENPRINTS14: 60
TOZ4

204 IFNO<>12ANDNO< >29ANDNO< »>ZOANDNO< »41 THEN218
206 IFNO=IZOTHEN142

208 IFNO=12THENBOSUE140:60TO34

210 IFOB%Z(13,0)<»=1THENPRINT"YOU HAVE NO FOOD, ":60
TOZ4

212 IFDBE%(29,0)<>CPTHENPRINT"WHAT TURTLE?":B0TOT4
214 722=77~1:PRINTWS$:0B%(13,0)=0:TE=1:60OTOI4

216 IFDBZ(ND,O)()—IANDOB%(ND,0)<)CPTHENPRINTSI#IGO
TO34

218 IFNO<>12ANDNO< »41ANDNO< >29ANDND< >3O THENPRINT "1

"t PRINT, "LRVS

228

T ISN'T ALIVE.":60TOZ4

220 IFNO=12THENGOSUE140:B0T0OZ4

222 IFNO=Z0THEN142

224 PRINT"IT'S IMMORTAL.":B0T0Z4

226 IFNO+ »22ANDNO< »1 1 THEN23IO

228 IFCP=21ANDFZ(21,1)=0THENFZ(21,1)=9: PFRINT"YOU 'V
E BROKEN THROUGH!":GOTOZ4

A0 CIFOBZL (12,0)=CPTHENGOSURL140: B0TOZ4

232 PRINT"NOTHING HAFFENS.":60TOZ

2%4 PRINT"YOU DON'T HAVE ENOUGH CHARISMA. ":B0T0OZ4
236 PRINT"TRY ‘OFEN’'":G60T0Z4

278 IFNO< *S1THENFRINT"NO EFFECT.":60T0%4

240 IFCP<»22THENFRINT"WHAT MIRROR?":GOTOZ4.

242 IFMITHENPYZ (22,1) =4-P% (22, 1) s FRINT"IT ROLLS EAS
ILY.":GOTOI4

244 PRINT"IT'S STUCE.":6G0TOZ4

246 FRINT"TRY ‘USBE’"i160T0O3I4

248 IFNO< *I9ANDNO< »Z7THENFRINT"EXFRESS THAT A DIFF
ERENT WAY.":60TOZ4

2890 IFOB% (NQ, Q) < »~1THENFRINTS4%: GOTOI4

2592 IFNO=39THEN258

254 IFCPX22THENFRINT"THERE 'S8 NO USE FOR 0QIL HERE.
"1 GOTOE4

266 MI=1:FRINT"THE ROLLERS ARE NOW OILED.":60T03Z4
268 IFOBZ%Z(15,0) +1THENPRINT"YOUR NAILS ARE NICE AND
CLEAN NOW.":BOTOZ4

260 OBA(1S,0)=CP: ZZ=2Z~1:FRINT"THE STATUETTE SLIFS
FROM YOUR GRASF.":G0TOZ4

262 IFNO< *Z6THENFRINTS2%: 60TOX4

264 IFOB%(36,0)<»-1THENFRINT"YOU HAVE NO WINE.":GO
TOI4

266 FRINT"GLUG~GLUG~GLUG" : OB% (36 ,0) =0: OB% (17 ,0) m=—1
268 IFBITHENPRINT"AHHH...IT CURES THE SNAKERITE.":
BI=0

270 BOTOX4

272 FRINTWA$: BGOTOZ4

274 IFNOLE20RNO>ZSTHENFPRINT IM£: GOTOZ4

276 IFOB%(ZZ,0)<»-1THENPRINT"YOU DON‘T HAVE A MATC
H. "1 60TO%4

278 IFNO=Z3ITHENFRINT"THE MATCHES BURN BRIGHTLY.":Z
I=77-1:0B%(33,0)=0:GOTOZ4

280 IFNO< »34THENZ90

282 IFOB%(34,0)=-1THENGOSUE1481 PRINT"YOU ARE BLOWN
TO BITS. "160T0612

284 IFOB%(34,0)< »CPTHENFRINTS1#: B0TOZ4

286 IFCP=13THENPZ(13,2)=24:1P$(13) =F$(9) 1 CF=11:60SU
B1SO

288 OB%Z(34,0)=0: B0SUR148: BOTOZ4

290 IFORZ(35,0) THENFRINT"IT I8 ALREADY LIT.":GOTOZ
4

492 IFOB%(32,0) =-1THENOBY (I2,0) =0: OB% (35,0) =—1: FD=

229

01 6BOTOZ26

294 FRINT"YOUW HAVE NO TORCH. ":GBOTOE4

296 IFNO »48THENFRINT"WHAT?" : GOTOZE4

298 IFORA (48 ,0) < -1 THENFRINTS4%: GOTOI4

FOO IFCPESTHENFRINTGES: ORZ (41 ,0) =CF:GOTOZ4

02 GOSUBL48:FPRINT"LCLRICAVE~IN !'[CDI":G0OTO612

204 ITFNOC*11THENIL4

306 IFCP=21THENFRINT"THE SOUTH WALL IS BADLY ERODE
D.":GOTO%4

308 IFCP=17ANDP% (17 ,5) =OTHENFZ (17 ,5) =54 : FRINTSF$;
aTOI4

310 IFCP=24ANDFZ (34 ,73) =0THENF% (24 ,2) =251 PA(35,2) =3
4: PRINTSF#: GOTOZ4

12 PRINT"YOU FIND NOTHING SFPECIAL.":1G0TOI4

314 IFNO=F1ANDCP=18THENZIZ20

316 IFNO=Z7ANDCF=29 THENFRINT"IT 'S JUST OIL.":B0TO
4

18 IFOBZ(NO,0) < *CPANDOBZ (NO,O) < >~ 1THENFPRINTS1 #: 60
TOZ4

320 IFNO=20RNO=160RNO=18THEN174

T22 IFNO=13THENPRINT"IT'S NOT FIT FOR HUMAN CONSUM
FTION. ":BOTOZ4

224 IFNO=40THENFRINT"IT S TOFAZ.":60TOX

326 IFNO=9THENFRINT"IT'S MALACHITE.":60TOZ4

328 IFNO=41THENFRINT"IT'S MADE OF GOLD!":GBOTOZI4
330 IFNO=1OTHENFRINT"IT'S LAFIS LAZULI.":GOTOZ4
IB2 IFNO=42THENFRINT"IT'S FYRITE.":B60T0Q3%4

334 IFNO=12THENGOSUER140: 6BOTOI4

236 IFNO=ZJOTHENI142

II8 IFNO=1THENFRINT"IT'S EMBROIDERED WITH GOLD THR
EAD. "1 BOTOI4

F40 IFNO=1STHENPRINT"IT GLISTENS.":GOTOI4

I42 IFNO=46ANDOEBY (46,0) =17THENPRINT"IT'S FOINTING
TOWARD THE WEST.":B0OTOX4

Z44 IFNO=SOTHENFRINT"IT CONTAINS SACRED OIL.":60TO
4

244 TFNO=S51THENFRINT"IT'S ON ROLLERS.":B0TOX4

348 IFNO=52THENTI&6

350 IFNO=20ANDOBE% (33,0) =0THENFRINTKEN®: OB% (33%,0) =43
1 B0TOX4

IE2 IFNO=20ANDOEY (4,0) =0THENPRINTKNS: OB% (4,0) =43: 06
OTOZ4

254 PRINT"IT'S JUST "OBH(NO)".":B0TOI4

IH6 IFNO< >ZT4THENFRINT"I DON'T KNOW HOW TO DO THAT.
"1 B0TOZ4

358 IFOB%(3,0)=~1ANDOBY% (&,0) =~1ANDDEY% (14 ,0) =—1 THEN
362

Z60 PRINT"YOU AREN’T MOLDING ALL THE INGREDIENTS."
1 GOTOZ4

J62 DB%(E,O)=O=DBZ(6,O)=0=OBZ(14,0)=0=DBZ(34,0)='1
1272=Z27~2:FRINT"DONE. ": GOTOZ4

230

Tb4 FRINTU"TRY ‘MAKE’":60TOZ
366 FRINT"WHICH COMPARTMENT NUMBER? "j:GOSUR&LL14:NOD
=VAL (CM#F) : IFNO=O0RNO >100THENZ4
268 IFNO=1ZANDOBY% (49,0) =0THENOR% (49 ,0) =7: GOTOX74
370 IFNO=71ANDOB% (8, 0) =0THENOBZ (8,0)=7: BOTOI74
372 PRINT"CCDITHAT COMPARTMENT I8 EMFTY.":G0T0O34
274 FRINT"LCDISOMETHING FELL OUT.":60T0O4
A276 GOSURE78: BOTOIBS
278 J=0:FORI=1TOLO: IFOB%(I,0)=26THENJ=J+0B%Z (1,1)
382 NEXTI
84 FPRINT"YOU HAVE SCORED"J"FOINTS QUT OF 100.":IF
JL99THENRE TURN
IB6 FPRINT"LCD, RVSIWELL DONE
288 END
Q0 PRINT"LCD,RVSIWHAT NOW?LOFFI "::GO0SUB614:FRINT
s IFBI *OTHENBI=RT +1
A2 NO$F=""yVEE=""1 VR=0: NO=O
394 LC=LEN(CM$) s FORI=1TOLC: IFMIDE(CM¥,1,1) <" "THE
NVE$=VEE+MIDE (CM$, 1, 1) t NEXT
296 Vig=VEEIVEE= EFTE(V1I$, D) 1 FORI=1TONV: IFVEBE () =V
BETHENVE=1: GOTO402
298 NEXT
400 VB=13:NO$=VEE: GO0TO406
402 IFLEN(VLIE) +1 »=_EN(CM$) THENNO=0: RETURN
404 NOF=RIGHTH (CM#, LEN (CM$) ~1-LEN(V1$))
406 N1£=NOE:NOE=LEFTE(NO¥,2) s FORT=1TONN: IFNQ$=NC#¥ (
1) THEN4L2
408 NEXTI
410 NO=O: RETURN
412 NO=I:RETURN
414 PRINT"LCLRI": IFCPa=l&THENT=T+1: IFT*2THENFRINTDR
3 IFTH>EANDRND (1) < T*, 1 THENGOSUB1445 T=0
416 ITFOBZ(ES,0)+1ANDCP<ASTHENFRINTWDS:: FD=1: RETURN
418 FPRINT"YOU'RE "F&(CP)","sPD=0
420 VE£="[20DIYOU CAN SEE :

"

422 FORI=LOTO1STEF~1: IFOR%L(I,0)=CPTHENFRINTVES; OR¥
(I):VEE=" "

424 NEXTI

426 FL=0

428 PRINT"L2CDIYOU CAN GO: "3:FORI=OQOTOZ: IFFZ(CF,I
) POTHENFRINTD® (1) 3" "3 eFL=1

47350 NEXTI

432 PRINT:PRINT

434 IFBIX12THENPRINT,"C2CDI1>»> THE BITE I8 THROBBI
NG 4«

436 IFBIX2ITHENFRINT,">»>> YOU ARE GETTING DIZZY <«
o«

LY
438 IFBI>34THENFRINT,"»>»> IT I8 HARD TO BREATHE <<

M IFBEIX42THENG12
440 IFCP<»1BTHENRETURN

231

442 IFGF=1THENFRINT"LCDITHE GATE IS OFEN.":RETURN
444 FRINT"[CDITHE GATE IN THE GRILL IS LOCKED.'";Rg
TURN

446 NN=54:NV=32:F=51:L0=S54: DIMPS (F) ,P%(P,3) 088 (Lp
) ,OB% (LO, 1) , VES (NV) ,NO$ (NN)

448 P#(1)="IN A STOREROOM."+CR#+"THE WALLS ARE CoON
CRETE

450 DATA18,0,5,0,25,%3,8,12,0,7,31,0

452 PE()="IN A DUSTY PASSAGEWAY"

454 P#(3)="IN THE QUARTERS OF PRINCESS ANKA"

456 PE£(4)="IN THE KING'S HAREM":DATAZ2,0,0,0,0,0,2
1,1,6,15,6,19

458 F$(S) =P (1)

460 PE(6)="IN A TWISTY LITTLE TUNNEL

462 FE(7)="IN THE JEWELRY NICHE":DATAZ,0,0,0

464 FP$(B)="IN AN ARTIST'S STUDIO":1DATAO,0,0,2

466 FE(9)="CRAWLING OVER A JUMBLE OF EROKEN ROCK";
DATAZ1,10,0,0

468 PE(10)=P$(6) 1DATAY ,6,6,6

470 P#(11)="IN A TUNNEL":DATAO,20,13,0

472 P$(12)="IN AN ANCIENT LIBRARY":DATAO,0,2,0

474 PE(175)=P$(11)+CR$+"A THICK BRICK WALL BLOCKS T
HE WAY":DATAO,0,0,11

476 F$(14)=P$(6)1DATALD,19,20,19

478 P£(1%)=P$(6)1DATAL,b,6,10

480 P$(16)=F$(6)1DATALS,6,6,6

482 P£(17)="IN A WINE CLOSET":DATAO,0,30,0

484 P#$(18)=F$(11)+CR$+"A METAL BRILL BLOCKS THE WA
Y":DATAZS,1,0,0

486 P#(19)=FP$(6)1DATAL,16,6,6

488 F$(20)=P$(6) 1DATALL, 16,16,16

490 P#$(21)=P$(1):DATAD,0,0,5

492 P$(22)="KING KALEE'S BEDROOM":DATAO,0,0,31

494 P$(23)="IN SLAVES' GUARTERS":DATAZ6,27,0,0,28,
0,25,13

496 P#$(24)="AT THE WEST END OF A TEMPLE. AN UB
LY HOLE I8 IN THE WEST WALL"

498 P$(25)="AT THE EAST END OF A TEMFLE'":DATA29,2,
0,24

500 P#(26)="IN THE WARRIORS ' GQUARTERS":DATAO,23,0,
33

502 P£(27)="IN A STABLE":DATAZ3,0,0,0

504 P$(28)="IN THE HIGH PRIEST'S VESTRY":DATAO,24,
0,0

506 P$(29)="IN THE SHRINE OF ISIS":DATAOQ,25,0,0
H508 P£(30)="IN A KITCHEN":DATAO,0,33,17

510 P$(31)="IN AN ANTECHAMBER":DATAZ3,32,22,3

512 P$(I2)="IN THE THRONE ROOM":DATAZ1,0,0,0

514 P$(3I3)=P$(2) 1 DATAZ,31,26,30

516 P$(3I4)="IN A SECRET COMPARTMENT":DATAO,0,17,0
518 P#(35)=P$(11)+CR$+"YOU SEE DAYLIBHT TO THE NOR

232

TH":DATA %6,18,0,0

520 P¥(36)="AT THE MOUTH OF A TUNNEL":DATAZ7,35,0,
0,51,36,0,0

522 P$(37)="AT THE ROAD’'S END."+CR$+"A MOUNTAIN IS
TO THE SOUTH"

524 P$(I8)="IN A DENSE DARK FOREST":DATAIB,I9,38,3
8

526 F#(I9)="ON AN OLD FATH MADE BY HORSES":DATAZS,
40,38,38,7%9,41,78, 38

528 F$(40)="AT THE END OF A FPATH WITH FOREST SURKD
UNDING YOU IN ALL DIRECTIONS

520 F$(41)=F$(I8) +CR$+"TO THE SOUTH THERE SEEMS TO
EE LIGHT":DATA40,42,38,38

532 P£(42)="IN THE MIDDLE OF A CLEARING. TO TH

E SOUTH IS A BRIDGE

534 DATA41,43,0,0,42,0,0,0:F$(4%)="0ON THE NORTH SI
DE OF THE BRIDGE

536 P#(44)="0ON THE SOUTH SIDE OF THE BRIDGE":DATAO
,45,0,0

538 F¥(4%)="AT A CROSS ROAD":DATA44,48,47,46

540 F¥(46)="0ON THE GREAT WEST ROAD":DATAO,0,4%,46

542 FP£(47)="0ON THE GREAT EAST ROAD":DATAO,0,47,45

544 FORI=48TOS1:F$(1)="0N THE GREAT SOUTH ROAD":NE
XT

546 DATALS,49,0,0,45,50,0,0,45,51,0,0,45,37,0,0

548 FORI=1TOP:FORJ=0TOSZ: READPY(1,J) tNEXTJ, I

550 DATAZ8,10,37,0,1,0,0,10,28,0,5,0,4,10,0,10,13,

0,18,10,0,0,36,0,%0,0,21,0

552 DATAB,10,12,0,0,0,34,10,32,0,43,0

554 DATAAN EFHOD,A SCRAF OF NEWSPAPER,A KEG OF CHA

RCOAL

556 DATAA SILVER KEY,A FARCHMENT SCROLL,A KEG OF S

ALTPETRE

558 DATAA PLATINUM CHASTITY BELT,A RUBY EARRING

560 DATAA GREEN PEBBLE,A ELUE STONE,,A VICIOUS COE

RA,A SHRIVELED CARROT

562 DATAA KEG OF SULFHUR,A JADE STATUETTE,AN OLD M

EDICAL BOOK,AN EMPTY BOTTLE

564 DATAA GOLD MEDALLION,A THRONE MADE OF SOLID GO

LLD,A DEAD KNIGHT,27,10

566 FORI=1TD20: READOEY (I1,0) : READOEY (1,1) 1 NEXT

568 FORI=1T020:READOBS (1) :NEXT

570 DATAT1,0,0,20,35,0,0,0,0,0,0,0,17,0,0,0,0,0,3,

0,11,10,0,10,1%,0,30,0,8,0

572 DATA23,0,26,0,27,0,32,0,0,0,29,0,22,0,7,0,22,0
3,0

574 DATAA GIANT TURTLE ENCRUSTED WITH DIAMONDS

576 FORI=29T054:READOEY(I,0) st READOB%(I, 1) 1NEXT

578 DATAA HUNBRY FANTHER,A GATE,AN OLD TORCH

580 DATASOME MATCHES, THREE KEGS OF GUNPOWDER,A SHI

NING TORCH,A EOTTLE OF WINE

233

582 DATAA BOTTLE OF OIL,SOME BROKEN GLASS,A JAR OF
NAIL-POLISH REMOVER

584 DATASOME BROWN AND FINK BRAVEL,A BIRD,A GOLD N
UGBET

586 DATAA WOODEN SPOON,A BLOCK OF MARELE,A SET OF
MANACLES ,A RUSTY JAVELIN

588 DATASTRAW AND DUNG,A BRASS CLARION,A SATIN RIR
BON,A MARBELE FONT

590 DATAA HUBE MIRROR ON THE SOUTH WALL,100 LITTLE
COMPARTMENTS

592 DATAA KING-SIZE BED,A TRICLINIUM

594 FORI=29TOS4: READOES (1) sNEXTI

596 DATAEPH,NEW,CHA,KEY ,8CR,8AL ,BEL ,EAR,FEB,5TO, WA
L,COB,CAR,SUL,STA,BOO, BOT

598 DATAMED, THR,KNI ,NOR,S0U,EAS,WES,N,S,E,W, TUR,FA
N,GAT,TOR,MAT,BUN, TOR,WIN

600 DATAOIL,BLA,REM,BRA,BIR,NUG,SFO,BLD,MAN,JAV,ST
R,CLA,RIBE,FON,MIR,COM, BED

602 DATATRI,BGO0,BET,L00, INV,SC0,DRO,HEL,QUI,CRO, TAK
,OPE ,MOV,REA ,EAT ,FEE ,KIL,HIT

604 DATACHA,UNL ,PUS,REM,USE,OIL,DRI ,BRE,LIG,PLA,EX
A,KIC,MAK ,MIX, THR

606 FORI=1TONN:READNOS (1) :NEXT:FORI=1TONV: READVES (
1) iNEXT

608 DATA NORTH,SOUTH,EAST,WEST

610 FORI=OTOZ:READD® (I):NEXT:B0T0O26

612 FORI=1TO2000:NEXT:PRINT,"[CD,RVS1YOU ARE DEAD.
[2CD1": BOTO376

614 CM$=""

615 PRINT"[RVS1%[OFF,CL1";

616 GETZ$:IFZ$=""THENb1b

617 I=ASC(Z$): IFZ>9STHENG16

618 ZL=LEN (CM$): IFZL »28THEN622

620 IFZ>T1THENCM$=CM$+Z$: PRINTZ$;:60T0615

622 IFZ=13ANDZLTHENPRINT" "i:RETURN

624 1FZ=20ANDZLTHENCM$=LEFT# (CM$,ZL~1) s PRINTZ#;
626 BOTD6LS

700 POKE S53280,6:FPOKE 53281,7
705 PRINT"CCLR,BLK]
RI=1TO20001NEXTI

799 RETURN

TUNNEL ADVENTURE":FO

READY.

9
Further Information

Introduction

We've presented you with information on various adventures from both
the U.K. and the U.S.A. over the pages of this book, but most of the
games mentioned so far have been fairly old, in that they go back as
far as some of the earliest microcomputers like the Apple and the
Commodore PET.

In this last section we'd like to round off by going through a few
currently available adventures for various microcomputers that are
relatively recent, at least at the time of writing.

Some are classics, some are obviously destined to be so, and some
will probably fade over the years into a delightful obscurity and never
be heard of again.

The rest of this chapter will give you some useful information on where
to find out more about adventures generally, as well as listing a number
of popular newstand magazines that do sometimes carry features about
this sort of game.

Finally, a few useful names and addresses, and especially for those
of you who own Commodore kit and want to acquire a copy of the
legendary Adventure by Crowther and Woods that has featured
prominently in this book, the name and address of the person to
contact at the Independent Commodore Products Users’ Group.

For owners of other machines, it's worth asking around to see if a
copy exists for your particular machine, but if you haven’t got disk

235

drives, forget it! This game relies almost entirely on a disk-based mode
of operation, and would require an awful lot of memory before it woulq
function on a micro that was sans disks.

That's all for now, except to say thanks to a few people. Obviously
Crowther and Woods, but also Jim Butterfield, for producing the
orginal PET version, and to Steve Darnold, for inadvertently getting
me started on this whole adventure writing lark in the first place, and
who provided the original code for Castlemaze Adventure and Tunnel
Adventure.

Current Adventure Games

All the names and addresses of the companies involved can be found
in most of the current popular magazines, as most of them seem to
advertise quite extensively.

If not, a copy of Personal Computer News, the (at the moment!) 50
pence weekly, has a tri-weekly round up of software available, and
covers most of the adventure games around.

So, to get the ball rolling, how about The Hobbit, which must rank
as one of the classic modern games of adventure, which is available
from Melbourne House for the 48K Spectrum.

A complete solving of this would take a very long time indeed, and
I've yet to hear of anyone who has actually solved the entire thing.
A nice style of entering your commands here as well.

PIMania seems to be the other game currently ‘in vogue’ as it were,
although | think I'd like it a lot better if it wasn't for the inept advertising
by the company who handle it, namely Automata UK. Are they really
trying to produce the worst advertising in the microcomputer industry?!

Still, at least the game is good, and has the virtue of working on the
Spectrum, Dragon and BBC.

Sphinx, for the BBC model B, from John Wiley and Sons is also quite
a good, classical adventure, involving all the usual thud and blunder
techniques beloved by writers of this particular type of adventure.

John Wiley also do a few more for the model B as well, so they're
worth checking out if you're tuned into Auntie Beeb.

236

Microdeal have inevitably produced a series of adventures for the
Dragon, including Escape, Flipper, and Mansion Adventure, or at least
they call them adventure games. Personally the only one | thought
was of lasting interest was the Mansion Adventure, but then we all
have our different tastes.

For the Commaodore 64, well, Romik have produced a couple of games,
and modesty prevents me from telling you how wonderful they are,
but | would like to thank Kevin Bergin for some last minute
programming on those!

And the Vic 20 ? Well, there are always the cartridge versions of the
Scott Adams games, and Kayde Electronics have produced the Swamp
(...In the Swamp, no one can hear you scream..., runs the advertising.
Yawn...), although it, not suprisingly, requires a minimum of 16K
expansion.

Those are just some, but any periodical should give you details of many
more.

237

More Information

Strangely enough, the general magazines don’t appear to have picked
up too strongly on this resurgence of interest in adventures, although
Personal Computer News regularly carries a number of reviews for all
kinds of machines, and most of the others mention them every now
and again.

However, there are three classic issues of old magazines which the
serious adventure freak must have.

The December 1980 issue of Byte magazine, the one Daley Thompson
does weight training with, is mainly devoted to adventuring, and
features a whole host of excellent articles by many of the top authors
around at the time, including Scott Adams, P. Lebling, Bob Liddell,
and many more. A great issue, if you can dig it out.

The other two are different issues of the same magazine, but finding
them is not going to be easy.

The magazine in question is Creative Computing, and the first major
article appeared in August 1979, when the data structure behind the
Scott Adams series of adventures was explained in full. This has
inspired a number of people to begin writing their own adventures,
including David Malmberg, who went on to write the very good Castle
Adventure (the one with the sleepy piranha in it that | mentioned
earlier!).

July 1980 was another good issue, including the article that explained
the working of the program Zork, in the excellent ‘How to fit a large
program into a small computer’.

All required reading for the serious adventure fan, but keep your eyes
on the newstands for other, newer issues of magazines.

Who to Contact

User Groups are the people to contact, and the following covers most
of the popular makes of home computers.

BBC: Laserbug
Paul Barbour
10 Dawley Ride
Colnbrook
Slough
Berkshire

or Beebug
Sheridan Williams/David Graham
P.O. Box 50
St. Albans
Hertfordshire

Dragon: Brixham Dragon Owners Club
lan Chipperfield
22 Brookdale Court
Brixham
Devon

Commodore: ICPUG
Mick Ryan
Riverhead
154 Chesterfield Drive
Sevenoaks
Kent

Spectrum: Sinclair User Group
Irving Brand
Polytechnic of North London
Holloway Road
London N7

Writing to the appropriate address for your machine should produce
the desired response.

\xll/
=

EXPLORING
ADVENTURES
ON THE 64

The three adventures in this
book are available on a
cassette at £7.95, from
all good computer stores
and bookshops, or in case
of difficulty, direct
from the publisher.

Send your cheque/
postal order to:
Gerald Duckworth & Co Ltd
The Old Piano Factory
43 Gloucester Crescent
London NW1

and they will be sent to you
post-free

Index

This index usually only shows the first appearance of a subject in the book,
but if a second (and subsequent) entry is important, it is also noted down.

240

Adams, Scott : 4,5,6,28,29,30
Adventure : 1,4,21

Asc command : 64
Attack verb : 170

Bears : 100

Bottles : 105

Break verb : 194
Butterfield, Jim : 4,9
Castlemaze adventure : 215
Chop verb : 164

Chr$ command : 64
Climb verb : 166

Close verb : 152
Contents : v

Creating adventures : 115
Cross verb : 148
Crowther, Willie : 3,8,10,21
Cursor Control : 51

Cut verb : 164

Data command : 54

Data validation : 102
Death! : 104

Dialogue : 44,45

Dim command : 72

Drink verb : 158

Drop verb : 144
Dungeons and Dragons : 35
Eat verb : 154

Examine verb : 192

Feed verb : 156

For command : 65
Gargoyle : 106,107

Get command : 55

Get verb : 140

Go verb : 138

Gosub command : 68
Goto command : 68
Hassett, Greg : 6
Hazards : 83,84

Help verb : 203

Hit verb : 174

If command : 55

Input command : 53
Input subroutines : 112,113
Int command : 71
Introduction : vii
Inventories : 142

Jump verb : 194

Kill verb : 172

Left$ command : 60

Len command : 58
Light verb : 168

Load verb : 200

Logical Operators : 57
London adventures : 117
Look verb : 202

Lord of the Rings : 7,10
Make verb : 176

Map drawing : 17,20,85,87
Mazes : 93

Mid$ command : 59
Movement : 74,76
Murder adventures : 128
Next command : 65
Noun data : 211

Objects : 42

Obstacles : 83

Offer verb : 160

Oil verb : 180

On command : 70

Open verb : 150
Panthers : 109

Personal Computer News : 238
Philosopher’s Quest : 14
Pirate Adventure : 13,28
Popular Computing Weekly : 2
Problem solving : 83,98
Push verb : 196

Quit verb : 146

Read verb : 190

Reflect verb : 178
Restore command : 55
Return command : 68
Right$ command : 61

241

Traditional adventures : 131
Tunnel adventure : 225
Underground Adventure : 36 \

Rnd command : 71
Rub verb : 188
Save verb : 198

Score verb : 202
Screen Responses : 95

Underground variables : 75
Underground verbs : 100,137

Solving adventures : 16
Space adventures : 122
Spray verb : 184

Stab verb : 182
Storylines : 80,81,82
Str$ command : 62
Subroutines : 57

Take verb : 203
Temple of Apshai : 11
Then command : 55
Throw verb : 186
Torches : 105

242

Underground data : 205
User Groups : 239

Val command : 62
Variables : 52

Verb data : 212

Verbs : 42,92
Vocabulary : 34

Wave verb : 162
Western adventures : 125
Woods, Don : 3,8,10,21
Zork : 3,9,31,32

DUCKWORTH
HOME COMPUTING

anew series

All books written by Peter Gerrard, former editor of Commodore Computing

International, author of two top-selling adventure games for the Commodore

64, or by Kevin Bergin. Both are regular contributors to Personal Computer
News, Which Micro? and Software Review.

USING THE COMMODORE 64 Peter Gerrard
A complete look at the latest home computer from Commodore Business
machines. Starting with a refresher course in Basic Programming, it moves on
through machine code, before considering in great detail sprites, graphics
and sound. A section on peripherals, and then the heart of the book: an
in-depth look at the chips that make it work, including the 6581 Sound
Interface Device and the 6566 Video Controller Chip, as well as the heart of
the computer, the 6510. The comprehensive appendices cover the full Basic
and Machine Code Instruction sets, as well as several useful reference
tables, and a complete machine code assembler/disassembler listing.
Available now £9.95

THE BEGINNER'’S GUIDE TO COMPUTERS AND
COMPUTING Peter Gerrard
Written for the person who knows absolutely nothing about computers, this
book introduces you gently to this exciting and fast-moving world. It guides
you through the history of computers into the 1980s and introduces you to
many of the personalities who dictate how computers will develop in the
future. It comes complete with a glossary of computing terms, including all
the often used ‘buzz words’, and even an ‘alternative’ computer glossary.
October £6.95

Other titles in the series include Sprites & Sound on the 64, 12 Simple
Electronic Projects for the VIC, Will You Still Love Me When I'm 64,
Advanced Basic & Machine Code Programming on the VIC, Advanced
Basic & Machine Code Programming on the 64, as well as Pocket
Handbooks for the VIC, 64, Dragon, Spectrum and BBC Model B.

Write in for a descriptive leaflet (with details of cassettes).

DUCKWORTH
The Old Piano Factory, 43 Gloucester Crescent, London NW1 7DY
Tel: 01-485 3484

243

e

" EXPLORING ADVENTURES ON THE 64

by Peter Gerrard

Thls is a complete look at the fabulous world of Adventure
Commodore 64 Computer. Starting with an

introduction to adventures, and their ea rly history, it takes you

gently through the basic programming necessary on the 64

before you can start writing your own games.

Inputting information, room mapping, movement,
vocabulary —everything required to write an adventure game
is explored in detail. There follow a number of adventure
scenarios, just to get you started, and finally three complete
listings written specially for the 64, which will send you off into
wonderful worlds where almost anything can happen.

The three games listed in this book are available on one
cassette.

1111 —

0715617788

Duckworth
The Old Piano Factory
43 Gloucester Crescent, London NW1

