
EXPLORING
ADVENTURES

on the
Commodore 64

_.JalaAL
....

- j i i : : f'W 7 I ' I • - I: ~Y :;_•

•<•< I .., I I T f U I I P • • I ••-

,'': -, " I I ~ I " ~ o I t ' • '""" "

O •• • I ~ ~ ~ I • .. ' ' ! o• •' •.j• fl•

Exploring Adventures
on the Commodore 64

EXPLORING
ADVENTURES

on the
Commodore 64

Peter Gerrard

Duckworth

First published in 1983 by
Gerald Duckworth & Co. Ltd.

The Old Piano Factory
43 Gloucester Crescent, London NW1

© 1983 by Peter Gerrard

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system,

or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the

publisher.

ISBN 0 7156 1778 8

British Library Cataloguing in Publication Data
Gerrard, Peter

Exploring adventures on the Commodore 64.
1. Electronic games 2. Commodore 64

(Computer) - Programming
I. Title
794.8'028'542 GV1469.2

ISBN 0-7156-1778-8

Typeset by The Electronic Village, Richmond
from text stored on a Commodore 64

Printed in Great Britain by
Redwood Burn Ltd., Trowbridge

and bound by Pegasus Bookbinding, Melksham

Contents

Introduction

1. An Introduction to Adventure Games

2. How to Solve Adventures

3. Programming Adventures in Basic

4. Writing Your Own Adventures

5. Creating Your Own Adventures

6. Underground Adventure

7. Castlemaze Adventure

8. Tunnel Adventure

9. Further Information

Index

vii

13

47

79

115

135

215

225

235

241

INTRODUCTION

This book is for anyone interested in the world of adventure games
on the Commodore 64.

Whether you like to play them, write them, or write about them, this
book has been written with you in mind.

More specifically, it is aimed at the person who loves to get absorbed
in a game for hours on end, has always wanted to write one of his
own, but has taken one look at a listing of someone else's game and
thought 'There is no way that I could write something like that!'

This book shows you how to write a fully fledged adventure game,
with unique sections on room mapping, data structure, input routines,
verb handling, and everything you'll need to know to write an adventure
of your own.

The main game in the book, Underground Adventure, is gone through
line by line, with each piece of code explained so that you know
precisely what is going on.

By the end of this book, you will be in a position to produce your own
game for the Commdore 64.

Thanks to Steve Darnold, for getting me started in all this (although
you didn't know it at the time!).

Thanks also to Jim Butterfield, who gave me my first game of
Adventure. And what a game to start with!

Finally, a couple of dedications. Thanks to my wife for doing all the
illustrations. Living with her has certainly been an adventure!

vii

And last of all, to the lad with whom I played the longest ever game
of Adventure I've played in my life, which probably did more than
anything to get me hooked on these games. This single game lasted
for about twelve hours, after which time we were still bribing trolls,
feeding bears and exploring the bedrock room as we walked to the
pub for a pint. Denis Timm, have you managed to get out of the Pirate's
maze yet?!

viii

1

An Introduction to Adventure
Games

General Introduction

Adventure Games have been played on computers for many years,
and are one of the most popular of all types of computer games, if
not the most popular.

It is sometimes difficult to describe exactly what an adventure game
consists of. You 're in a magical world of the writer's imagination, doing
battle with unknown and often unseen problems, that sometimes
appear to defy all logical solutions. You can be placed underground,
underwater, in outer space, in colossal caves, or just about anywhere
within the known universe, but the ultimate objectives of all the games
are usually the same: to survive, and collect all the treasure that is
rumoured to exist in these weird and wonderful games.

My own connections with adventure game playing and writing started
with the very first game of all - Adventure - playing an abridged version
on the Commodore PET 3032 computer, with a 3040 disk drive. One
night after a party two of us sat down in front of the computer and,
armed with a bottle of whisky in the real world and nothing more than
a torch, a bottle of water, a key and some food in the adventure world,
began playing a game that was to go on for more than twelve hours!

We simply did not notice that it was now light outside. We were deep
underground, trying to cross a bridge with a bear that was too heavy
for the bridge, and we didn't care about such commonplace things
as sleep!

That early start has led to a lifetime of interest in that game and
adventure games as a whole, and my interest in the games is shared
by countless other people around the world, who have made this one
of the most popular of computer games.

It is hard to explain this popularity to a non-addict. Peculiar looks and
pitying stares are the usual response when it is revealed that you spend
hours at the keyboard, glued to happenings in an imaginary world.

On the other hand, joining one of the many Adventure user groups
will place you amongst many like-minded people who fully understand
the frustration at trying to solve a particular problem. 'What do you
do with the platinum pyramid?!', no longer evokes a 'What on earth
are you on about now' attitude, instead you're more likely to get a
hundred and one hints and tips on solving the problem of the platinum
pyramid.

Adventure enthusiasts even have their own Agony Aunt now in Tony
Bridges, who writes a regular weekly column for the microcomputer
magazine Popular Computing Weekly. Every week he'll take a look
at an aspect of adventure playing, or a particular problem in one of
the more popular games, and you're welcome to contact him over
any problems that you might be experiencing in your own adventure
game.

The number of players of these games is legion, and this book has
been written to help you write your own adventure programs, and to
explain a little bit about the origins of the games, with more than a
passing glance at some of the games (and the people) who helped
to make this genre of game playing the success it's become today.

We're also giving you three complete adventure game listings at the
back of the book, with a full explanation of the Underground Adventure
game and how it was written, and brief explanations for the other two.

If the thought of typing in pages and pages of code is a daunting one,
you'll be pleased to know that the publishers are also offering these
programs on cassette, and that cassette will cost you £7.95, available
direct from the publishers.

The listings and sections on programming are all aimed at the
Commodore 64, using a cassette deck as the storage medium.

It is hoped that, by the end of this book, you'll be more than capable
of writing your own games, and perhaps joining the author's Fool's

2

Gold and Tombs of Xeiops as top-selling adventure programs!

So without further ado, let's take a look at the history of adventure
games, and we'll start with the very first one of all, called, simply,
Adventure: the game from which all others have taken their generic
name.

How It All Began

Although most adventure programs these days seem to be written
in Basic, which is the style of writing that we'll be showing you in this
book, or machine code, the very first one was written in Fortran, not
a language known for its string handling capabilities. Which language
you choose is very much up to you, bearing in mind the restrictions
of the computer in front of you.

Basic is usually chosen because it's easier than anything else, most
Basics have a good set of commands for manipulating strings, and
there is no great requirement for speed in this type of game. The
essence of these games should always be that you have to think, not
act in the frantic fashion of a good arcade game, and because of that
we don't have to program everything to happen at lightning speed.

Some adventure games are written in machine code - Zork is a classic
example - but the writing of a game like that is beyond the scope of
this introductory tome. It is a vast program, usually supplied on three
different disks, such is its size.

In Zork, speed is required because of the many and varied ways it can
accept the inputting of information from you, the player. Most
adventures are restricted to the TAKE STAFF style of commands: one
verb and one object, but Zork goes beyond that to the level where
you can say something like BURN ALL THE BOOKS EXCEPT THE
BLACK ONE, and other complicated instructions.

The first Adventure game used the simple GO NORTH style of
instructions: for that game, and for just about everything that's
appeared since, credit has to go to Willie Crowther and Don Woods,
who wrote the program on a DEC (Digital Equipment Corporation)
PDP-10, in, as we've seen, Fortran.

That program required about 300K of computer memory to play it:
a great deal more than you get on the Commodore 64!

3

Abridged versions have appeared since then for most of the popular
home computers, and it was the work of Jim Butterfield that led to
the version now available for all the Commodore range of computers.

Since then, a version has appeared for the IBM Personal Computer,
but for some reason it is being marketed commercially. Odd, since
it is available free of charge from most user groups!

If you want a copy of that game for your Commodore 64, I would
suggest getting in touch with one of your local user groups: several
names and addresses are given at the back of this book.

If you have never played this, the first ever Adventure program, I would
strongly suggest that you do so. Not only is it one of the best adventure
games ever written, it is also the origin of every other adventure game.
Without it, people like Scott Adams and Greg Hassell would probably
have never written their own series of (very good) adventure games.

We'll look at some of theirs later, but for now let's stick to the original.

It is sometimes called the Colossal Cave Adventure, for the opening
scenario goes like this: =

'Somewhere nearby is colossal cave, where others have found fortunes
in treasure, though it is rumoured that some who enter are never seen
again. Magic is said to work in the cave. I will be your eyes and hands.
Direct me with commands of 1 or 2 words. I should warn you that
I only look at the first five letters of each word, so you'll have to enter
"northeast" as "ne" to distinguish it from north. This program was
developed by Willie Crowther and Don Woods. This version is abridged
for PET disk by Jim Butterfield.'

We'll go into more detail on Adventure (with a capital A to distinguish
it from the games as a whole) in chapter 2.

All of this was developed on a mainframe computer with 300K of
memory. So how did they get to appear on the microcomputers that
we know today ?

The Transition to Microcomputers

The first person to think about putting an adventure onto a small
microcomputer was Scott Adams, an American who is commonly
ackowledged to be the father of adventure games on small computers.

4

His story makes interesting reading, and you can find it in the December
1980 edition of the American magazine BYTE, in which there was a
special feature on adventure games, and Scott Adams related the story
of how it all began.

For the benefit of those who haven't got access to the magazine, here's
a brief synopsis:

Scott Adams' first game was written on a Radio Shack TRS-80 level
II computer, and came about after he'd already written a few other,
non-adventure, games for it.

At the time he was working as a systems programmer for Stromberg
Carlson, and he'd been introduced to the original Adventure by a friend.
After apparently playing the game for ten days he managed to solve
the whole thing, having been totally addicted from that opening
scenario given earlier.

However, he realised that not everyone could afford a DEC PDP-10!
So, the quest was on to produce a reasonable adventure on a much
smaller computer: in his case the TRS-80.

The idea came to him of producing an adventure interpreter. This would
allow him to write many different adventures, but at the same time
cram an awful lot of information into a very small area of memory.

The programs at the back of this book work along similar lines, in that
routines exist within them to move from room to room, store the room
descriptions, handle the input of data, and so on, and these routines
are common to every listing given. This makes it possible to create
adventures with a minimum amount of work from the writer, but at
the same time they can be different enough to keep people occupied
trying to solve them for many, many hours.

Possibly the most difficult part of writing an adventure, once the actual
program structure has been grasped and understood, is getting the
original idea in the first place, and working it through as a strong idea
that doesn't rely on the impossible happening before the adventure
can be solved .

The idea for Scott Adams' first adventure, generally reckoned to be
his best, was not particularly brilliant, in that one was doing the usual
treasure seeking and problem solving . Nevertheless, it did fit into 16K
as opposed to 300K!

5

..
After six months of testing his adventure, and of course the interpreter
that was driving it all, this first program (called Adventureland) was
released through The Software Exchange of Milford, New Hampshire,
and Creative Computing Software.

Thus, as he says in his own article, the Scott Adams series of
adventures was born.

Apparently it almost died there and then, since his wife was taking
great exception to him spending six months locked in a room writing
programs! However, all was solved when she decided to write an
adventure, and came up with the idea for Pirate Adventure, the second
best adventure program he's ever marketed.

In this one the idea is different, in that you have to do slightly more
than merely collect treasures and solve problems. You have to build
a pirate's ship, and not many people start off with the knowledge to
do that!.

And so the transition to microcomputers was complete. It was possible
to write an adventure with only a minimal amount of memory, and
the market suddenly begain to explode.

The Market Blossoms

Scott Adams has written a large number of adventures now, well into
double figures, and we'll be taking a look at some of the better ones
later.

But while Scott was doing all his work, there was another, younger,
adventure devotee called Greg Hassett, who is now I believe 16 years
old, but already the author of at least 8 adventure programs.

Some of his programs, natural enough because of his age, are not
worthy competitors to the earlier Adams work, but nevertheless there
are some gems to be found from this young schoolboy.

In particular, Enchanted Island Plus is well worth seeking out. Written
entirely in machine code (as opposed to his earlier Basic Enchanted
Island), solving this one will keep you occupied for a long time to come.

Some of his plots are also refreshingly different. Journeys to the centre
of the earth and visiting Atlantis may be fairly run of the mill, but
situations where you have to save an almost totally polluted earth from

6

extinction are much better. World's Edge is possibly the best one that
Hassett has written.

Companies producing adventures in these early days tended to be
mainly American, and it took a long while before the rest of the globe
started producing comparable games, although Britain is now catching
up fast.

In those days, Radio Shack themselves started bringing out a couple
of adventures, The Programmers Guild took a few pages out of
Tolkein's Lord of the Rings and had you fighting ores and spiders,
while Mad Hatter Adventures, who started off just handling the Hassett
programs, also produced a couple of their own, although these were
generally considered to be rather poor when compared to the
wonderful program that started off the whole craze.

Since then, of course, many companies have started marketing
adventure programs, and now many exist for just about every make
of home microcomputer.

Why They Are So Successful

It is true that adventure games generally have captured the computer
market to a vast extent. They are one of the most popular types of
all computer games, and are now enjoying something of a renaissance,
with many new games currently becoming available for all types of
computers.

Whilst relatively few will have the long-standing success of the original
game, most will probably be worthy of playing, and many will no doubt
tie their buyers to the computer for many weeks to come. Tony Bridges
is going to be very busy in the months ahead.

But why is there this phenomenal success, and why do so many people
spend so long typing in commands on a computer keyboard just to
see what appears next upon the screen ?

It is easy to analyse the success of, say, arcade games. The sound
effects, the stunning graphics, are obviously pleasing to the human
ear and eye, and our society seems to be depressingly heading into
a more violent era. Thus the chance to annihilate a few more aliens
for a mere 20 pence is not one to be missed.

But adventure games have none of this. There is usually no graphical

7

display, although we' ll see later that games are available that use
graphics to one extent or another. Generally, there is no sound being
generated by the computer either, although again there are exceptions.

Finally, there is no 'shoot-em-up and zap-em-down' approach to
adventures. They are games for the thinker, rather than the person
of action.

And perhaps this is part of the secret of their great success. To solve
a good adventure like the original Crowther and Woods game requires
a lot of logical throught, to say nothing of a lot of time. The first people
to start playing the game were computer programmers themselves,
and one survey in the States showed that, when an implementation
of Adventure appeared on the work's computer, they would lose an
estimated two weeks work due to staff playing the game in their free,
and not so free, time.

Obviously people tried to put a stop to this, and started restricting
access to the game, but it was generally reckoned that whatever a
company tried to do, nothing would stop its employees from playing
the game. Better to let them have their way for a couple of weeks,
and see them emerge contented at having attained the goal of master
adventurer.

The same is true for most people who start playing the game. Once
you've started, it is virtually impossible to rest until you've completely
solved the puzzle.

How can I get past the troll without losing treasure? How do I open
the clam? How do I open the treasure chest in the pirate's maze? All
these questions have to be solved before attaining the magical status
of master adventurer. Sometimes you're setting yourself an impossible
task, but that won't prevent people from taking hours trying to solve
it, until they give up in disgust.

It becomes a question of pride: ' I am not going to be beaten by a stupid
computer! ' is the usual response.

Also, pride comes in when you hear of someone else talking about
a room, or a particular problem, that you haven't encountered. The
desire to find that room, or solve that problem, drives many people
back to the keyboard again.

And, strangely enough, you will very rarely get a direct answer when
you ask someone how to solve a certain problem. You'll usually get

8

a cryptic hint, but nothing more. So, you're back to your own logic
again, and few people will admit to not being able to solve something.

Finally, adventure games usually have a sense of fun . Take the classic
Adventure. The version by Jim Butterfield produces some lovely
responses at times. Like this:

FEED BIRD

THE BIRD IS NOT HUNGRY, HE IS MERELY PINING FOR THE
FJORDS!

Shades of John Cleese and ex-parrots. If you try typing in the inevitable
rude statements, requesting the snake to do the anatomically
impossible, again a variety of replies can be generated.

So a combination of problem solving, pride and fun have all contributed
to making adventure games required playing for most people.

But what will happen to them in the future, as computers become
more and more sophisticated?

A Glimpse into the Future

There will always be a limit to the amount of technology that can be
squeezed into a home computer, just because of the sheer size of the
thing .

However, there appears to be no limit to the amount of programming
talent that can be squeezed into them, and it is this growth of talent
that will dictate the course of adventures over the next few years.

We can already see the results of one extremely intelligent set of people
in the adventure game Zork, which is in many people's minds a great
step forward from the original game.

Again this was developed on a PDP-10, and has now appeared as a
three part adventure for a number of home computers. Like a lot of
adventures nowadays it is supplied on disk, and thus not everyone
will get the chance to play it.

Still, there's always the local user club, and most user clubs have people
who are perfectly capable of copying the protected disks on which
Zork is supplied! Saying a disk is protected is like waving a red flag

9

at a bull: sooner rather than later a dedicated programmer is going
to crack any form of protection you care to name. As someone once
observed: 'You have to have a disk drive to make the protected disk,
and you've got precisely the same disk drive as they have. Therefore,
you've got the equipment to unprotect the disk.'

I'm not advocating software piracy, by the way, but when you see
things like the original Adventure, a public domain program, being sold
for anything up to £30, it just invites copying!

So when we get to the stage ·where all home computers come supplied
with built-in disk drives, you can guarantee that there'll be some very
sophisticated adventures coming out.

Just as the Crowther and Woods game requires a disk drive, so will
many future adventures. Why a disk drive ?

Well, there is a limit to how much memory a computer has, and a
disk drive will always have more. Therefore it makes sense to store
the core of a program in the computer, and call up the relevant
descriptions from the drive.

It will also pave the way for many more graphical adventures. If a
computer has got sophisticated graphical capabilities, like many of the
current home computers, it makes sense to use them.

However, to utilise all the graphical features on many computers even
now can take up to 8K of memory per screen. That's a lot of memory
to take up in the computer at one time, and adventures with four rooms
in them tend to be solved fairly quickly.

However, hitch up a half a megabyte disk drive and you've got the
capacity to handle over sixty rooms. Much more difficult to solve, and
as disk drives speed up in terms of access time we can't be too far
away from a true animated adventure.

Whether people want animated adventures or not is another question.
They say that a picture paints a thousand words, but fifty words can
paint a much more graphical image on the mind than an 8K screen
display.

That is why Lord of the Rings, and other books of that genre, will never
make a successful transition to the cinema screen or the home
computer. The mind is always capable of imagining far more from a
few simple words than can ever be depicted on a screen.

10

Perhaps that's why the more successful games are always purely
textual in their display. Leave it up to the player to imagine it all, and
let the computer take care of everything else.

Adventure games that use half-hearted graphics, like the much praised
Temple Of Apshai series, from Epyx, tend to be a great disappointment,
certainly to this writer anyway.

Dungeons and Dragons games in real life are all very well, but the
implementation on the home computer hasn't yet arrived.

So in this book we'll stick to textual games with no graphics, on the
basis that a) not everyone will have a disk drive, and b) not everyone
wants graphics anyway.

The adventure that we'll cover in most detail in this book, the
Underground Adventure, takes up most of the memory of your
computer anyway: it has to, to give it the correct degree of problem
solving and room exploration required of a good adventure.

If this book is re-written in ten years time, maybe we'll be talking about
graphical games, but until then .. . !

11

12

2

How to Solve Adventures

Adventure Scenarios

Whatever the adventure game that you're playing, you will obviously
want to solve all the puzzles presented to you, usually in the minimum
amount of time, but if you're a newcomer to the game you'll probably
think that the adventure is too difficult and you'll just give up, probably
never to play an adventure again.

This chapter is aimed at solving adventures, and as well as some general
notes we'll be taking a detailed look at the original Adventure (whilst
trying not to give too much away). and also the adventure that forms
a large part of this book, the Underground Adventure.

The type of scenario you're presented with at the start of the game
will obviously vary from game to game, but as a general rule you'll
usually be given a description of what's going on, how you happen
to be there in the first place, and what the object of your mission is.

Pirate Adventures

For instance, in Scott Adams' Pirate Adventure you start off in an
apartment listening to the roar of the traffic, and only after getting
the non-slip sneakers and entering the secret corridor behind the
bookcase will you be able to start the adventure properly by saying
the magic word and being whisked off to a pirate's island, where you
have to build a pirate ship and make your escape.

On the island you'll encounter a wonderfully dotty series of characters,
including a drunken pirate and a mongoose, that all add to the charm
of this game.

13

Some of the problems presented to you in various games can at first
appear insurmountable. There's one game called Castle Adventure,
the object of which is to explore a castle, and make your way safely
back with all the treasures.

However, getting into the castle appears to be impossible at first, since
it is surrounded by a moat, the drawbridge isn't down, and the moat
is full of piranha fish! How do you swim through a shoal of piranhas?

Sleepy Piranha

The answer is that you don't. You have to roam around outside the
castle first of all, finding what you can, and on your travels you
eventually discover a set of sleeping pills. Provided that you don't take
these yourself you can drop them in the moat, whereupon the piranha
obligingly swallow them and go to sleep, thus allowing you to swim
across in safety. Of course, you might get your matches wet and soggy
in the process, but you had thought of that hadn't you?

Another popular conundrum is the gap in the rocks that is too narrow
to squeeze through with whatever you happen to be carrying at the
time. The original Adventure has a feature like this, and we've taken
that idea and adapted it in the Underground Adventure listing here.

The problem is usually that you can slip through the gap, but nothing
that you're carrying can go through with you. As most of these
adventures take place underground you require a lit torch to be with
you at all times, and if the torch goes out you can't see anything, which
means that you just have to blunder around until you fall into a pit
and die.

If your torch can't get through the gap, how can you see anything
when you're on the other side? The answer usually lies elsewhere in
the game, and there will be something that will fit through with you,
that begins to glow when you've got through to the other side, thus
letting you see whatever happens to be there.

As a final example, Philosopher's Quest for the BBC micro has a
delightful problem when it tells you that you no longer have any
existence! In other words, you can no longer do anything: if you don't
exist, how can you do anything? The answer is one of those horribly
obvious ones when you think about it, and that in itself is the answer:
if you think, you must exist, as Descartes once said.

14

Thus by thinking the computer acknowledges your existence, and you
can carry on with the game again.

So most adventures follow a fairly standard pattern, although there
have been a number of extremely silly adventures that have appeared
in recent times, and two of them have both been based on popular
television programmes.

There is one adventure based (loosely) on Monty Python's Flying
Circus, which has you travelling around on buses, mugging old ladies,
and doing all kinds of things in the worst possible taste. Rather like
Python itself, really.

Hitch Hiking Around

A second game has now unfortunately been taken off the market,
because it was infringing someone's copyright laws. It used to be called
Hitch Hiker's Guide to the Galaxy, better known as a radio, television
and book series, which found its way into an adventure game by Bob
Chappell. All the favourite characters where there, and the plot for
this particular game was about as sensible as the series.

However, it did have to be withdrawn, although it has since re­
appeared under another name, as a thinly disguised version of its former
self.

More usually though, you're exploring caves, or weird haunted castles
and houses, and are presented with a reasonably logical set of problems
to solve.

Often, these problems will have to be tackled in a specific order, as
the solving of one inevitably leads you onto another one that will again
have to be solved before you can progress further.

Underground Adventure features this, in that you have to solve some
16 problems before you can complete the entire game, and those
problems have to be solved in a set order. In fact, it is usually impossible
to progress further if you don't solve them in the right order.

For instance, you can't get past the giant deadly fly until you've found
the giant deadly fly-spray, which is itself hidden away behind something
else. And so on: solve one problem and you can progress to another.

Some adventures do present almost life-like situations, and your

15

behaviour has to be judged truly in the light of what you would do
if you were actually in that same situation in real life.

Building Ladders

If there's a gap above your head that you can't get to, how would
you reach it in real life? Most people would probably go and borrow
a ladder, but as adventure games don't usually feature conveniently
handy neighbours you're going to have to build one for yourself.

What do you need in order to build a ladder? Nails, wood and some
kind of saw are the usual ingredients, so off you go to try and find
them all.

Another popular feature is that of having some kind of animal about
the place. Bears, snakes and revolting insects are the usual order of
the day, and most of them will have two purposes. Bears might eat
you alive at first, but tend to calm down when they're fed and perform
a number of useful functions.

So the number of possible scenarios is legion, and we can expect just
about anything to turn up at one point or another. However, whatever
the scenario happens to be you're going to have to solve everything
that's thrown at you sooner or later, so let's go about solving an
adventure.

Solving Adventures

There are a number of golden rules to be observed when setting out
upon a new adventure, and the principal one amongst them must be:

NEVER IGNORE ANYTHING!!

Everything you see will have been put there for a purpose, because
writing adventure games on a home computer does restrict the amount
of data that can be packed in, and therefore you can't really afford
to put in things that will not have a purpose.

-
Most objects that you enounter will probably only have one role in
the game, although this is by no means a hard and fast rule.

In the classic Adventure, you will repeatedly need to keep the axe with
you, as little dwarves have a habit of racing out from behind rocks

16

d engaging you in mortal combat from time to time, and they can
~~ly be seen off by throwing the axe at them.

The torch also has to be carried with you most of the time, and in
the classic Adventure you have to get a new set of batteries for it after
a while, but more of that later.

Although we've said that everything has a purpose, that purpose may
only be to annoy and delay you in solving the puzzle.

Life in a Dead End

This is particularly true of some roads and corridors. In Underground
Adventure, for instance, there are a number of dead ends. Some of
these are purely dead ends and go no further, but others are there
to test you, and can be got past.

A giant boulder gets in your way at one point, but can be got round
by finding some dynamite, which exists elsewhere in the puzzle, and
blowing it up.

Just make sure that you're not carrying the dynamite yourself when
you decide to light it, as the only thing you'll blow up then will be
yourself.

Vast chasms are another popular feature, and Underground Adventure
has two of them, which need to be solved in different ways. The
Crowther and Woods game also employs a chasm, and if you're
carrying the black rod with you when you encounter it you should be
all right, provided you can work out the correct verbal syntax.

So, ignore nothing, and investigate everything.

The second rule is also a necessity : =

ALWAYS DRAW A MAP!!

The following two pages show the complete map for Tunnel
Adventure, featured later in this book, and show the kind of rules that
should be obeyed when drawing a map of your own.

17

18

- - - - ~n,µ- - -- - - - - - - - --a-z-£~ - - - 1

1---..:.-.J I
I

~~ <::.'
~t(

19

Drawing a map

Drawing a map will usually speed up your adventure solving process
considerably, as it will save a lot of roaming about simply covering
the same ground all the time. It will not take long to draw, and thus
the overall advantage is considerable.

Always label the room, and the exits that you can take from that room,
allowing for any hazards that might be in it before you can progress.

As you do go on exploring more and more of the adventure world
presented to you, it will probably become apparent that you've started
off drawing your map in the wrong place on the paper, as usually tends
to be the case when people draw maps of anything. The edge of the
paper shows a considerable distortion of scale!

No matter, you can always go to another sheet of paper.

A lot of adventures will employ a kind of one-way system of movement,
whereby going east from room A to room B will not necessarily mean
that by going west from room B you'll end up back in room A again,
so these too should be noted.

The fundamental feature that has probably been in more adventure
games than any other is the maze. Underground Adventure is no
exception, and this six room maze can involve a lot of wandering about
before you get out.

How can only six rooms represent a maze? By giving each one the
same description, and allowing you only to move in the desired
direction, if you go off the path the writer has decided will get you
through the maze, you can end up back at the start again. As all the
descriptions for the rooms are the same, you've no way of knowing
whether you're in the first room or the last one.

Make a careful note of the directions you've gone through as you
wonder through any mazes. You'll get out in the end, and if you haven't
remembered the route it would be a little annoying to encounter the
maze again in a later game.

Drawing maps can be fun, and it's useful to note down the initial
positions of any objects that you find during play. Some adventures
do have a random distribution of objects, but more of them do not,

20

the solving of many puzzles depends on finding the correct object f: the correct room, and if it isn't there then the game becomes

unsolvable.

Finally, if you're playing a game wit~~ LOAD and SAVE feature that
allows you to store your current pos1t1on onto tape for later recall, it's
worth saving a game if you're about to do something particularly
cavalier, like attacking a dragon or something. The odds are that your
attack will end in death, and although some games will re-incarnate
you, you'll end up a long way away from where you were when you
died.

It's quicker to re-load a tape than it is to re-create your position by
going through the whole game again.

So to sum up, ignore nothing, always draw a map, and save your
position if possible.

We'll now put all this into practice, with a look at the original Crowther
and Woods Adventure.

The Original Adventure

We've given you the opening lines from this Adventure, and the screen
goes on to display something like this:

'I know of places, actions and things. Most of my vocabulary describes
places and is used to move you there. To move, try words like building,
enter, east, west, north, south, up or down. I know about a few special
objects like a black rod hidden in the cave. These objects can be
manipulated using some of the action words I know. Usually you will
need to give both the object and action words, but sometimes I can
infer the object from the verb alone.

'Some objects also imply verbs. In particular, "Inventory" implies "Take
Inventory", which causes me to give you a list of what you're carrying.

'The objects have side effects. For instance, the rod scares the bird.
Usually people having trouble moving just need to try a few more
Words. Usually people trying unsuccesfully to manipulate an object
are trying something beyond their (or my!) capabilities and should try
a completely different tack.

'To speed the game you can sometimes move long distances with a

21

single word. For example, "Building" usually gets you to the building
from anywhere above ground, except when lost in the forest. Also,
note that cave passages turn a lot, and that leaving a room to the north
does not guarantee entering the next from the south. Good luck!'

And finally, you get one last piece of help before being thrown into
the game proper:

'Maximum points are earned by leaving treasure in the building. It also
helps to get back out in one piece.

'If you think you have found all the treasure, keep moving around until
something happens.'

And So We Begin

And with that, the game will begin, and you find yourself in a building
known as the well house (since it contains a well!), which houses a
number of useful objects like a torch, a bottle, some food and a key.

From the building it is but a short walk to the forest, which is very
easy to get lost in, and then the real route into the heart of the game
takes you south down a narrow ravine until: =

'You are in a 20 foot depression floored with bare dirt. Set into the
dirt is a strong steel grate mounted in concrete. A dry stream bed leads
into the depression.'

Opening the gate with the key provided in the building lets you into
an underground set of passages, starting off with:=

'You are in a small chamber beneath a 3 by 3 steel grate to the surface.
A low crawl over cobbles leads inward to the west.'

Of Black Rods, Birds and Cages

Nearby you can find a black rod, a bird cage and the little bird itself,
and your first problem solving comes in actually getting hold of the
bird, since it isn't too fond of the rod. You'll also have to light the torch
by now as well, as it gets dark this far underground. The torch is, in
fact, an electric lamp, and it will sooner or later start running down
the batteries you started with. However, you are given the helpful
message:

22

'Y ur batteries are starting to run low. Better wrap it up soon, unless
~can find new ones. I seem to recall that there's a vending machine

yo . h ,
somewhere m t e maze.

Finding the vending machine in the maze is no easy task, and even
when you get there you must be armed with a set of coins which are
to be found somewhere within the game, otherwise you won't be able
to insert the coins to get the fresh batteries contained in the machine!

But back to the bird, the rod and the cage. Wandering on a little soon
brings you to the first major room description of the game, which is
when you start to realise why this game is a disk based one: some
of these room descriptions can get quite long!

'You are at one end of a vast hall stretching forward out of sight to
the west. There are openings to either side. Nearby a wide stone
staircase leads downward. The hall is filled with wisps of white mist
swaying to and fro almost as if alive. A cold wind blows up the
staircase. There is a passage to the top of a dome behind you.'

Round about here you will also encounter a snake, which bars your
way and refuses to let you pass.

Snaky Problems

Feeding animals is the usual way to calm them down, but attempting
to feed the snake is not a particularly good idea, especially if you're
carrying the bird at the time, since the snake eats the bird and then
just sits there looking at you, still refusing to let you pass.

You can solve that one for yourself!

Round about here, you have a choice of routes, and one of them leads
off across the floor of the hall as far as the aforementioned vast chasm,
which is where the rod comes in useful. Going on from there will take
You towards the maze with the vending machine in it via a back
~ntrance, but it will also take you near another maze as weil, which
is significantly more difficult to get out of.

It also contains something a lot more interesting, but we'll come to
that one later.

Going off in another direction leads you to the mysterious Y2 room,
and nearby lies the equally mysterious bedrock room, which allows

23

you to explore around at random.

From Y2 you can go to another one of the game's fine room
descriptions, which is one of the more puzzling points on the route
for beginners to the game:

'You're at a low window overlooking a huge pit, which extends up
out of sight. A floor is indistinctly visible over 50 feet below. Traces
of white mist cover the floor of the pit, becoming thicker to the left.
Marks in the dust around the window would seem to indicate that
someone has been here recently. Directly across the pit from you and
25 feet away there is a similar window looking into a lighted room.
A shadowy figure can be seen there peering back at you.'

Who, or what, is the shadowy figure?!

Dwarves and Pirates

From here we have a variety of routes, but by now a couple of things
will probably have happened. One is that you will almost certainly have
encountered a dwarf: =

'A little dwarf just walked around a corner, saw you, threw a little axe
at you which missed, cursed, and ran away.'

Charming!

And the other is a bearded pirate, who lurks about the caves, and who
will occassionally appear and steal all your treasure:

'Out from the shadows behind you pounces a bearded pirate! "Har
Har", he chortles, "I'll just take all this booty and hide it away with
me chest in deep in the maze!" He snatches your treasure and vanishes
into the gloom.'

Since some of the treasures have a useful function to fulfil, as well
as just being valuable and scoring points when you get them back out
to the building, this can be mighty inconvenient!

One of these dual purpose treasures is a trident, which lurks away near
the bedrock room. As well as being jewelled, it will also enable you
to solve one of the game's more puzzling features.

24

Mysterious Bivalves

Near Y2 there lives a giant clam, although we later find out that it is
in fact an oyster. The program cheerfully tells us that it was never very
good at identifying bivalves after_ this little bit of mistaken identity. Being
an oyster, it wrll probably contain a pearl, and so you attempt to open
the clam without success.

You can carry it about with you if you want to, although it is a little
heavy, but you won't be able to open it until you find the jewelled
trident, which is hidden away in a secret set of rooms, which are
themselves reached via the two pit room, or twopit room, as one
acquaintance used to call it.

In the two pit room is a plant, and like all plants it likes being watered.
Water it enough and it will grow and grow until it reaches the height
of a hole way above your head. You can then climb the plant and get
into this new set of tunnels and corridors, until you realise that your
progress is halted once again as you run into an old rusty door that
needs oiling.

Oh well, there is some oil in here somewhere, so having found that
you can then get past the door and find the jewelled trident. You'll
have to get away from there then, which is none too easy, but can
be accomplished.

A Breath-Taking Description

One of the longest of all room descriptions is to be found round about
the low room, near bedrock, and is worth repeating here in full just
to show you the sort of advantages disk-based systems can give you
over programs stored purely in memory, in terms of the use of text
to illustrate graphically what a room looks like : =

'You are on the edge of a breath-taking view. Far below you is an active
volcano, from which great gouts of molten lava come surging out,
cascading back into the depths. The glowing rock fills the farthest
reaches of the cavern with a blood-red glare, giving everything an eerie,
macabre appearance. The air is filled with flickering sparks of ash and
a heavy smell of brimstone. The walls are hot to the touch, and the
~hundering of the volcano drowns out all other sounds. Embedded
rn the jagged roof far overhead are myriad twisted formations

25

composed of pure white alabaster, which scatter the murky light into
sinister apparitions upon the walls. To one side is a deep gorge, filled
with a bizarre chaos of tortured rock which seems to have been crafted
by the devil himself. An immense river of fire crashes out from the
depths of the volcano, burns its way through the gorge, and plummets
into a bottomless pit far off to your left. To the right, an immense geyser
of blistering steam erupts continuously from a barren island in the
centre of a sulphurous lake which bubbles ominously. The far right
wall is aflame with an incandescence of its own, which lends an
additional infernal splendour to the already hellish scene. A dark,
foreboding passage exits to the south.'

Wow! Try getting all that into a single picture on the screen. The mind
can imagine far more readily what a place looks like from a description
like that than it can from a poor graphical illustration on the screen.

Round about here you can also find an extremely narrow crack that
you can't get down with anything that you happen to be carrying,
and also a troll, who is not too fussed about eating, but who does
have a streak of avarice in him.

Trying to attack him produces the response : =

'Trolls are brothers of the rocks and have skin like that of a rhinoceros.
He fends off your blows effortlessly.

Even if you try throwing an axe at him, all you'll get is : =

'The troll catches the axe, examines it, and tosses it back to you saying,
"Good workmanship, but not very valuable".'

A tricky customer the troll, and you'll have your work cut out to get
around him without losing too many points.

On the other side of the troll is another set of passages, including the
breathtaking view described earlier, and also including a bear, who
can be bribed with some food, and who can then be used to scare
away the troll when you want to get back across the bridge again.

However, the bear is heavy, and the bridge is old, and the inevitable
happens ... you plunge to your doom on the rocks below.

And so the game continues, through many different rooms and with
many different problems to solve, and space dictates that we can't
mention them all here. Even with what we've already told you, there's

26

more than enough in this game to keep you occupied for a long time

yet!

But one final feature does deserve mention, and that is the end of the
ame itself, after you've found all of the treasures and taken them back

g 'Id' to the bu1 ing.

The End Game

As you wander about the caves, convinced that there's nothing more
to find, a sepulchral voice booms out and tells you that the caves are
closing, and you'd better leave by the main exit.

But where is the main exit?

So off you scurry to try and find a way out, but always its too late,
and the caves close! As they do so, mysterious forces snatch your
keys out of your posession, and a few other items as well for good
measure, and you find yourself:

' ... at the northeast end of an immense room, even larger than the
giant room. It appears to be a repository for the" Adventure" program.
Massive torches far overhead bathe the room with smoky yellow light.
Scattered about you can see a pile of bottles (all of them empty), a
nursery of young beanstalks murmuring quietly, a bed of oysters, a
bundle of black rods with rusty stars on their ends, and a collection
of brass lanterns. Off to one side a great many dwarves are sleeping
on the floor snoring loudly. A sign nearby reads DO NOT DISTURB
THE DWARVES! An immense mirror is hanging against one wall, and
str~tches to the other end of the room, where various other sundry
obiects can be glimpsed dimly in the distance.'

And if you get out of that room? You enter this one : =

'You a~e at the southwest end of the repository. To one side is a pit
full of fierce green snakes. On the other side is a row of small wicker
cages, each of which contains a little sulking bird. In one corner is
a bundle of black rods with rusty marks on their ends. A large number
of Velvet pillows are scattered about on the floor. A vast mirror stretches
off to the northeast.

:Rt Your feet is a large steel grate, next to which is a sign which reads
EASURE VAULT. KEYS IN MAIN OFFICE.'

27

And what happens then? Well , you'll just have to play it all and find
out for yourself!

We've given a lot of exposure to Adventure here, because it was the
first serious adventure game, and holds many a fond memory for
everyone who's ever played it, whether on a PDP-10, or a Commodore
PET.

It also contains most of the ideas which have influenced other
adventurers over the years, and as such is more than worthy of its
place here.

Try your local user group if you're thinking of getting hold of a copy.
It'll be worth it, but you won't get much sleep after you've got it.

But since Adventure, there have been many others to solve, so we'll
take a look at some of those now.

Other Adventures

The other main contender in the adventure game stakes is obviously
Scott Adams, who's done so much to popularise these games on
microcomputers.

We've taken a brief look at some of his games earlier on in this book,
but to go into a little more detail on some of them, we'll start with
the very first one he wrote, Adventureland.

This is a very natural romp, in that most of the features you encounter
are perfectly natural, such as bogs, lakes, and a tree (which must
become a tree stump before you can get very far into the game), as
well as the nasty chiggers. Nasty what? Look it up in the dictionary!

It's all very lighthearted, and a nice sense of humour runs throughout
the game. A good starting point for anyone who's fairly new to the
adventure world, as solving it is not too complicated. Nevertheless
it should keep you entertained for quite a while.

As will the second Adams adventure, Pirate Adventure, wLth a story
line developed by his wife. This one probably more than Adventureland,
set the standard that Adams was to adhere to throughout his game
writing series.

There are four main locations for this adventure, including a London

28

Apartment, an Island, a Treasure Island, and Never-Never Land. It was
e of the first games of this genre to give you a mission other than

~:re collection of treasures, in that you have to work out how to build

a boat!

Along with some of the characters who inhabit this world, such as
the parrot that keeps shouting 'Pieces Of Eight' , and who does give
you some helpful hints along the way, this is a nicely humourous game.

Mystery Fun House came next, and differs from the usual run of the
mill games by taking place in a carnival fun house. All sorts of problems
to solve, and many, many corridors to explore, and this was the first
Adams adventure to pit you against a time limit, as well as all the other
problems.

Mission Impossible has appeared on more computers than possibly
any other Adams adventure, and is one of the most difficult ones that
he's done. It's also a mission adventure, rather than a treasure
collecting one, in that you're on a race against time (as in Mystery
Fun House) to try to stop a nuclear reactor from being destroyed by
unknown enemies.

Spaced Out

Strange Odyssey is set in another world altogether, as it starts with
you all alone on a strange planetoid, with only a shattered spaceship
and your own skills as an adventurer to protect you.

Many outer space games have appeared over the years, and in a brief
aside we'll take a look at a couple of non-Adams ones, starting with
A Stellar Trek.

This is another version of the final frontier, where you boldly go where
no computer has gone before, you are in command of the starship
Enterprise, and have the simple task of defending the galaxy against
the threat of the invading Klingon empire and their friends the
Romulans.

Th· · . is is more of a role-playing game than the true textual adventure,
in t~at you must begin by selecting your crew and adopting various
tactics that will stick with you throughout the game.

~~1ne the less, our basic rules of ignoring nothing and drawing maps
s 1 apply, although as we' ll see in another game there are instances

29

where examining everything in sight can lead you into great trouble!

This is basically a graphical game, and some may not find it to their
liking if they're aficionados of the real thing. Still, an enjoyable and
frustrating game, that should keep you out of trouble for a while.

Two other games that can dubiously be described as fitting into the
adventure world, although really they are more at home with the
Dungeons and Dragons fanatics, are Starfleet Orion and Invasion
Orion. These are war in space games, with a lot of tactical planning
and craft maneouvering going on, and so don't really belong as true
adventures. But, like A Stellar Trek, they should keep you amused
for a while.

Back to Normal

A new venture for Adams was away from space and into the world
of vampires and other assorted nasties.

In The Count you are out to rid the world of Count Dracula once and
for all, and, in the best traditions of ancient horror movies, you must
race against time to catch the count in his human form before driving
the stake home and removing him from the planet.

Voodoo Castle is set along similar lines, with you involved in an attempt
to save the cursed Count Christo, which sets you off exploring the
hallways and dungeons of Voodoo Castle. An entertaining game, with
voodoo dolls, a juju man, and more.

The final two we'll mention from Adams are again set in two totally
different worlds, with Pyramid of Doom taking you to an unexplored
pyramid somewhere in the depths of Egypt. This is one of the more
difficult Adams adventures, and many would say the hardest one he's
ever put together.

When you begin writing your own adventures, you'll find that one of
the most dfficult things to judge is precisely how difficult you're going
to make the game.

Since you control the rooms, the objects in them, and the problems
that have to be solved, the game can effectively be made as easy or
as difficult as you like. As you're going through it, you may well find
yourself thinking that this is a very easy game, and no-one would ever
have any problems solving it.

30

Well, remember that other people h_aven't got a~ces~ ~o your ~aps,
your route diagrams, your list of objects and their original locations,

and so on.

The easiest solution to this is to get an adventure playing friend to
ome around, once you're satisfied that the adventure is complete and

~ug-tree (it won't be, of course - your friend will type in omething you
never thought of, and the computer will be_ equally as stumped), a~d
have him sit down and play the game, while you hover nervously 1n
the background.

From his reports, you can then modify the game, making it more or
less difficult, depending on how it's all gone.

The Wild and Woolly West

In an adventure theme that hasn't seen too much experimentation,
although Lost Dutchman's Gold comes near the same area, the last
of the Adams games, Ghost Town, sets you in an American ghost
town that has you expecting John Wayne and Audie Murphy to put
in cameo roles.

Good fun, as you encounter saloons, jails, boot hill, piano playing
ghosts, and a whole collection of ludicrous characters, this is a suitable
Adams game to bow out with. A very enjoyable game.

There are plenty of other games out there that are worthy of
exploration, but for our last one in this section we'll take a look at the
game that's been described as being as much of an improvement on
Adventure as Adventure was on Wumpus.

What's Wumpus? One of the most boring computer games of all time,
where you have to walk around a few (typically 24) rooms trying not
to bump into the Wumpus, an amiable beast who likes to spend most
?f his time asleep. A few arrows can be fired now and again, but overall
it does not rate very high on the entertainment stakes.

To say a game can improve on the original Adventure by that much is
a bold claim, but Zork has captivated everyone who has ever played it.

Now in three parts, sold on three separate disks, each part is a unique
~dve~ture in its own right, and pits you against wonderful problems
in .w_e1rd worlds, but with a number of great improvements over that
original game.

31

Zork: the Greatest Adventure?

Zork was the brainchild of four people: Marc Blank, Tim Anderson,
Bruce Daniels, and P. David Lebling, and (like our original Adventure),
was written on a PDP-10.

However, as Zork grew and grew it began to run out of memory space
even on that computer (at the time a giant megabyte, but that doesn't
look too much now), and they decided to completely re-write the game
for a microcomputer.

A strange decision? Well, not really, because most microcomputers
even then had disk drives, and now of course these disk drives are
growing in capacity.

However, to re-write Zork in order to make it all fit was no easy task.
It might be possible to fit all the data and text required for the game
onto a single disk, but what about the program to manipulate it all?
Even the original Adventure control program takes up about 13K
without running it, and as you probably know, as soon as the program
is run, various variables are declared that take up even more memory
space.

So Zork had to undergo a few drastic changes.

The first of these was to write a Zerk-language, which could be
swapped from machine to machine merely by changing that language
to suit the machine, and then write all of the program in the Zork­
language.

In other words, just as all micros require a different Basic interpreter,
so the Zork interpreter swaps around from machine to machine.
However, the rest of Zork can remain the same, and so the actual work­
load on the authors was considerably reduced. Only the interpreter
had to keep on being re-written, and now exists for just about every
popular make of computer.

The complete story behind all this can be read in a very interesting
article in the July 1980 issue of Creative Computing, called 'How to
fit a large program into a small computer', which was co-written by
one of the authors of Zork, Marc Blank.

Having crammed Zork into a small machine, it was now available to
many people, and some of its features are truly amazing.

32

The ability to say more. than just DROP BOMB for instance, which
now be said in a variety of ways. For example, TELL THE ROBOT

~~ pUT THE BOMB ON THE SHELF, and other variations, do much
to add to the power, and ease of use, of this game.

such control over the vocabulary is beyond the scope of this book,
lthough we will be taking an extensive look at string handling on the
~ommodore 64 in chapter 3.

Suffice it to say that if you can get hold of a copy of Zork, do so! We've
given you a few addresses at the back of the book.

But is Zork the ultimate adventure? With graphical and role-playing
games coming more to the fore, let's take a look at some of those,
and see if we can guess what will happen over the next few years.

Graphical and Role-Playing Adventures

We've already talked about graphical adventures of the future in an
earlier section, and will end our discussion here with the same sort
of conclusion as was reached then: not many people want to see
fabulous displays on the screen, when fabulous descriptions can
conjure up far more in the mind of the player and his alter ego as they
wander about the universe created for them.

Instead, the future would tend to lie in the direction of role-playing
games, best personified by the original Dungeons and Dragons games,
and their variants such as Tunnels and Trolls, Traveller, and the
countless other board games that have sprung up since the first game
appeared.

In these games there is one great difference over the classic
Ad~enture/Zork scenario: you adopt a character role, rather than just
taking on the one that the computer conjures up for you, and your
success or failure in the game depends to a very large extent on th
type of character adopted.

~n Adventure, you know that if you get the bear you can always get
(ack past the troll again, and escape over the rickety bridge to
~omparative) safety, but if the same situation were to occur in one
~e these: games that might not always be the case. Your character might
off unfriendly towards the bear, and the bear would bite your hand

' or some other dire fate might befall you.

33

Again, in Adventure, a fight with a dwarf will always have one of two
options. You will either win and emerge unscathed, or lose and die.

A fight in a D and D game could have a number of different outcomes,
as well as the two simple ones outlined above. You might win the fight,
but suffer a gaping wound that leaves you temporarily below your best:
an easy victim for the next antman who comes along.

So that is the chief difference: the games are more varied, and indeed
one could argue a strong case for there being an infinite number of
variations contained within the same game.

However, these advantages are not gained without some other
advantages being lost.

In Adventure and Zork you have a vast vocabulary at your disposal
(Zork can handle over 600 different words, with about 100 verbs to
be used), but in D and D games you're usually restricted to a much
smaller number. This is typically of the order of 20 commands, or even
less: the much rated Temple of Apshai has a very small vocabulary
indeed.

Still, you do have the option of choosing a character who is much
more to your liking than a simple 'You are', appearing on the screen
every time. It is far more satisfying to watch 'Pete The Great' stalking
about the screen (or whatever you would choose, of course), and for
some reason it seems to make the game a lot more realistic if you know
that it is more specifically YOUR success or failure in the game that's
at stake.

From Boards to Computers

One of the less attractive attributes of Dungeons and Dragons is that
it takes a referee to make sense of it all, and bribing the referee, all
part and illegal parcel of playing the game, has been known to sway
many an outcome. The real life 'I'll buy you a pint when we've finished'
is far more likely to influence the referee than a simple 'How about
20 gold pieces then?' whilst in the middle of a game.

Also, the referee's job is not an easy one, as most actions have to
be decided by a concentrated study of maps, charts and rules, and
thus a simple fight between two protagonists could take as long as
half an hour, or even more, to resolve.

34

omputer simulations of these games the computer becomes the
lnfcree and the screen the board on which all the action takes place,
ree ' I I d' I· h · d as these games are a ways p aye 1n rea time t at action can
an metimes be decided very rapidly. Our half-hour fight could be over
~o ten seconds, and it's back to the keyboard in a hurry to see what
~amage you and your trusty sword have suffered in the duel.

Character Traits

Your character in these games is determined by six factors: three
mental (ego, intelligence and intuition), and three physical (dexterity,
strength, and constitution).

In the old days these were decided by rolling three dice and adding
up the spot scores, and thus any one attribute could range from a low
score of three to a high score of eighteen. On the computer, you can
usually choose from a total score and divide that score up amongst
the six attributes, and since our scores can range from 3 to 18 for each
one (or 16 different possibilities), we can create a massive 16 to the
power 6 different characters, or over 16 million!

Since we are creating each character as we go along, we can also
bring in characters from other games, which helps to explain the
popularity of this type of game. If you've survived an exhaustive game
of Dungeons and Dragons as Denis The Unsteady it helps to have the
same character with you next time you set out to play The Curse of
Ra, or whatever.

These six differing character straits interact subtly throughout any one
game, and the final outcome of that game always depends on the role
Y~u have adopted. A highly intuitive character will find secret trap doors
w1t.h e~se, whereas one with low intuition would only find them by
fal~ing into them. Similarly, a high ego would keep going when the
going got tough, but a low ego would probably cry and ask for his
mum!

And so it goes on, with each attribute perhaps altering slightly as the
iame progresses and you discover magic potions, bargain in the

Pothecary Shoppe, and in any one of a hundred different situations.

Pe~h~ps this is the true way forward for adventure games in the future,
an increasingly role playing will play a dominant part in this type of
game.

35

The Ideal Way

The ideal would be to have a combination of the traditional textual
adventure with a character playing role as well, as graphics are largely
redundant in these games. Thus one would keep the advantages of
a large vocabulary, a large number of locations, and a large number
of hazards and problems to solve, whilst at the same time having a
multitude of variations on the same game by being able to pick your
character from one of the 16 million mentioned earlier.

But that must wait for another time, and for now we'll turn our attention
to the game Underground Adventure, which will be featured heavily
throughout this book, and we'll begin by explaining what it's all about.

Underground Adventure

This is a classic text-only one character game, because for writing your
first adventure I don't feel that we should be too optimistic. You may
well, after reading this book and understanding everything that's going
on, want to go on and develop extremely complicated games, and
if you do then the purpose of this book will have been achieved.

But for now, we'll describe a simple, straightforward adventure that
is (I hope!) a lot of fun to play and solve.

Underground Adventure starts you off outside a series of caves, with
dire warnings about the punishments that await anyone who enters.
But, being a brave young lad with a heart for adventure you merrily
march off into the caves, take three steps inside and CLANG! A
massive gate falls shut against the entrance to the cave, and from then
on it's a question of roaming around trying to find the key that will
enable you to get out again.

There are a total of 16 problems to solve in this adventure, and I've
tried to give you a feeling for the real thing by including a number of
scenes that will be familiar to anyone who's ever played an adventure
before. In later chapters we'll explore the actual writing of those scenes,
and show that it is all possible in Basic, but for now we'll content
ourselves with simple descriptions.

You start off immediately with a choice of three routes, heading either
east, west or south. North is closed off to you because of the fallen
gate.

36

h ast lies a massive underground tree, which completely blocks
Tot eaeth so you know that one of the things you'll have to do is
Your P ' h f d a way of getting past that tree. What do most people do w en
to in want to remove a tree? They either drag it away or they chop
~hdey n so you know you're looking for either some haulage equipment
1t ow , d) h' l'k d (unlikely in an undergroun cave , or somet 1ng 1 ea swor or an axe.

To the west, your path is blocked by an extremely large boulder, that
flls up the whole path and prevents you from going any further. To 1

t past this, you might first of all try pushing and pulling at it, or even
g~empting to pick it up, but the stone is too heavy for you to move
:hat easily. So, again you must ask yourself the question 'what would
anyone do when they wanted to remove a l~rge bo~lder'. Well, again
one could haul it away, but that seems a httle unlikely. There could
be a large animal around somewhere that might move it for you, or
perhaps you'll need to blow the thing up with some dynamite. Of the
latter two options, one is the correct one, so we keep an eye out for
either a large animal or a keg of dynamite. Beware of large animals
though: most of them are not very friendly on the first encounter.

To the south, all we can find is a vast chasm, but en route to it we've
already picked up an iron staff, amongst other things. Examining the
staff reveals that 'it has some useful properties', so we know that the
staff is capable of solving something. Since we can't go west, east
or north without finding yet more objects it's reasonable to assume
that we'll have to go south somehow. Attempting to jump the chasm
is not very rewarding, and in fact leads only to your death, so perhaps
if we wave the staff .. .

Ah, perfect, and a bridge now spans the chasm. Good, we can now
head south into the heart of the caves and see what we can find. If
we're unlucky, a living gargoyle will appear, and throw a knife or two
at you, and he must be engaged in combat before moving on,
otherwise he follows you everywhere, continually throwing knives, and
one of them may find its mark. How to kill a living gargoyle? Well,
there must be something dangerous around somewhere, and sure
enough we find an axe eventually. A sure throw with the axe finishes
off the gargoyle (temporarily), and we remember that an axe was one
of the things we were looking for, as a possible means of chopping
the tree down.

Ba~k across the bridge, chop the tree down, and we find some rope,
Which must come in useful somewhere for climbing up or down
~0m.ething, and a golden bear, who appears none too friendly.

bv1ously the bear must be calmed down somehow, but how?

37

That one, and a few other problems, we'll leave up to you, but you
will have begun to get the idea of solving this adventure. Everything
is there for a reason, and solutions to problems are usually quite logical.
Later on we'll take a very thorough look at this game, and analyse
every verb in the game and how it works, along with the rest of the
listing, and we'll also see how each part of the listing comes together
to make a whole game.

For now, here are a few facts and figures about Underground
Adventure that will help you in the next section, when we come to
basic programming on your computer, and how we'll use a knowledge
of Basic to go about writing adventures.

First of all, a partly finished map drawn by someone who started off
playing this game but then ground to a halt. Since the game is equipped
with a LOAD and SA VE procedure, to allow the stopping of games
and subsequent re-starting without going through everything again,
it is possible to stop this game at any convenient point (i.e. when you
think you're about to be killed), and use the map again later.

38

Underground Map

39

B

A
 p

ar
tly

 c
om

pl
et

ed
 m

ap
 o

f
U

nd
er

gr
ou

nd
 A

dv
en

tu
re

.
j3

1
*

ca
.v

e

-
,

Un
de

~r
ot

in
d

2
9

2.

f>

l3
0

D
ea

d

'-
Ju

""
. I

I t
.a.

i...
r

e
n

.C
l.

I
I

1 2
7

? *•

~

B
l
 I

R

7
'-

t:
L

cl
fl

I -
tu

rn
 I

 I
 c

om
a.

1k

6
2

123

Hl4
 *

b
ri

ck
d

si
ck
..
~

-t.
rr

u.
.k.

ro

e I
<

tu
n

n
d

~
c
~

9
::5

4

?
3

2
0

* H

2
1

7
~1

.2
.

A
em

lJ
:

to
M

.h

w
a

ll

&
if

:n
,,r

.
i
?
~

&
ee

.
cw

1:
s/

y
~
v
i
e

II

12

13

I
~

p

s.
,,n

..
~

f"
oc

.k

e
lto

.s
M

N

X
J/

"I

~
·
~

41

H3
2

J
.)

.
o

/
9/

-f;

ca
ve

s
o'

hc
ot

(:J

,;,
/#

s
~

~7

~
3
9

~
~
~

fe
d'

"!-
~!
""

cU
.D

..c
l

dr
aj

t:>

~
.

e.n
oL

4
2

?

"
3
~

~

,'
tx

r"
f

ol
>

-o
p

4
3

T

. .;:
;fu

.n
c.

.

4
5

?

N

~'
.1

t
5

0
 114-

s
"*H

4-7
 I

dt

n;
3

s
u

u
y

-tr
,7

51

?
_

,,o
J-

o6
L.

v>
. -

i.o
 s

ol
ve

.

!ft
1

* -
U

.S
o/

ui
.

CJ
l:je

d:
s

~
b

~
~

'-
--

-r

~

List of Verbs

We'll use this later, when we see how every verb is handled by the
program, and in that section we'll need to know how each verb slots
into the whole program. It will also help you if you decide to take on
the mammoth task of typing this whole thing in! Even if you chicken
out and buy the cassette, at least you'll be able to examine the listing
and see how it all works:

Complete List of Verbs in Underground Adventure

VERB LINE NO. VERB LINE NO.

GO 270 GET 300
LOOK 200 INVENT 500
SCORE 540 DROP 560
HELP 650 QUIT 1890
CROSS 690 TAKE 300
OPEN 780 CLOSE 880
EAT 900 FEED 950
DRINK 1000 OFFER 1050
WAVE 1100 CUT 1150
CHOP 1200 CLIMB 1250
LIGHT 1300 ATTACK 1350
KILL 1400 HIT 1450
MAKE 1500 REFLECT 1550
OIL 1600 STAB 1650
SPRAY 170 THROW 1750
RUB 1800 READ 1850
EXAMINE 1900 JUMP 1950
BREAK 1960 PUSH 1970
SAVE 3000 LOAD 3200

Armed with this, the solving of Underground Adventure will obviously
be a lot easier, but it is essential if we're to make sense of the listing!

Complete List of Objects

Equally essential is a list of all the objects in the game, although just
to make it a little more difficult we won't tell you where they all start
off. However, by the time you've finished this book you'll be able to
work it all out for yourself, if you want to cheat!

42

OBJECT

A VAST CHASM
A VAST TREE
A THICK COIL OF ROPE
soME DYNAMITE!
A GOLDEN BEAR
A BIG BLACK PANTHER
A TALL LADDER
A HAZY SHIMMERING

CURTAIN
A BLOCKED TRACK
AN EMPTY BOTTLE
THE GHOSTLY DENIZEN

OF THE CAVES!
AN ENORMOUS FLY!
A LUMP OF SOLID MORTAR
A SOLID GATE
A SHINING STONE
SOME WHISKY
AN EVIL KNIFE
A WALL
AN OLD TORCH
A GLOWING LIGHT
PROGRAM
A BOTTLE OF OIL
SOME NICELY SAWN TIMBER

OBJECT

AN IRON STAFF
A STOUT AXE
AN ENCHANTED BRIDGE
A PILE OF RUBBLE
A BUN
A LONG WOODEN PLANK
SOME NAILS
A POLISHED MIRROR
A POOL OF OIL
A SOLID WALL OF HAZY

MIST
A HUGE BULBOUS SPIDER
A RICKETY OLD DOOR
A FLY SPRAY!
A NARROW CRACK
A TRUSTY SWORD
A LIVING GARGOYLE!
A KEY
SOME MATCHES
A BLAZING TORCH
AN OLD PARCHMENT
A PILE OF BROKEN GLASS
A BOTTLE OF WHISKY

Note that not all of them are objects, and some of them are actually
places. We'll see why later.

Finally, a little bit of dialogue with the program, which is the result
of first starting the game.

A Dialogue with Underground Adventure

Th
1
e. foll~wing is one way that a game night start off, with the computer

ta king 1n upper case, and your entries in lower case:

43

YOU ARE ON AN OLD TRACK HEADING TOWARDS THE CAVES.

YOU CAN SEE:

AN OLD TORCH

YOU CAN GO : SOUTH

WHAT NOW? * (the prompt symbol)

get torch

OK.

WHAT NOW?*

s (or south, or go south)

YOU ARE GETTING EVER NEARER THE CAVES.

YOU CAN GO : NORTH SOUTH

WHAT NOW? *

s

YOU ARE AT THE ENTRANCE OF THE CAVES,WITH PATHS
LEADING EVERYWHERE.

YOU CAN SEE:

A SOLID GATE
SOME MATCHES

YOU CAN GO : NORTH SOUTH EAST WEST

WHAT NOW? *

get matches

OK.

44

WHAT NOW? *

get gate

I CAN'T DO THAT!

WHAT NOW? *

light torch

OK.

inventory

YOU ARE CARRYING :

SOME MATCHES
A BLAZING TORCH

WHAT NOW? *

e

OH DEAR, THE GATE TO THE CAVES APPEARS TO HAVE
SLAMMED SHUT!

THATS TORN IT! YOU'LL HAVE TO FIND THE KEY NOW BEFORE
YOU CAN GET OUT.

BUT DON'T WORRY. IT'S IN HERE SOMEWHERE!

WHAT NOW? *

And so it goes on, with your adventure now well and truly underway.

In chapter 3 we'll take a look at some of the knowledge of Basic
required to produce this sort of program.

45

46

3

Programming Adventures in
Basic

Why Bother?

This ranks alongside asking Chris Bonnington why he climbs
mountains, or Patrick Moore why he looks at the stars. It's something
that they enjoy doing, for some reason that probably they couldn't
even explain if asked to sit down and actually state a concrete set of
reasons.

So it is with programmers. People enjoy programming, just as much
as some enjoy climbing mountains or some enjoy peering through
telescopes. As with any other pursuit, there are a variety of ways of
programming, and there are a variety of things to write programs about.

This book will teach you all about programming for one subject, that
of adventure games. It will also only teach you one style of
programming: of necessity, that will be the style adopted by the author.

However, it is to be hoped that originality will shine through on your
part, and you'll go on to produce programs that are wildly different
from the ones shown here.

Satisfaction

Thi: major reason why people write any sort of program must be for
their own satisfaction, rather than anything else, although one is
sometimes tempted to think that the mercenary attitude shines through
on occasions!

47

To complete a program that is over 30K long, as some of these
adventures undoubtedly will be, is quite an achievement, and even
if no one comes along and says 'That was great!', at least you'll still
be satisfied with it yourself.

All the better then when someone else does play the game, and
congratulates you for writing it. It makes all the hours spent poring
over the keyboard desperately trying to solve a programming problem
worthwhile.

In return, it's nice to think of the person ultimately playing the adventure
taking far longer to solve the program that it took you to write it!

Money

We mentioned mercenary attitudes earlier, and that is obviously one
reason why you should bother writing anything, let alone adventure
games.

From one point of view there's always the possibility of seeing them
go on sale and being marketed by a reputable company, and that is
very satisfying.

Another point of view would be that it saves having to buy a lot of
adventure games written by other people, but that must be a secondary
reason. If you've written the program it won't take you too long to
solve it, no matter how many random elements you've put in there.

Level of Skill

One does not have to be the greatest programmer in the world in order
to write satisfactory adventure games. You don't need a knowledge
of machine code, and the amount of Basic coding that you have to
be thoroughly proficient in is not too great: we'll be covering most
of what you'll require in the rest of this chapter.

Essentially we're concerned with string handling, and the number of
commands in Basic that allow you to manipulate strings is a fairly
limited sub-set of the language as a whole.

Once one is au fait with those, the rest of Basic required is mainly
standard stuff, with one or two 'tricks of the trade' which we'll be
showing you later.

48

HoW to Start

st thing in the world is to sit down in front of an empty
The woterr and think 'My God! I've got to write 30K of code!'.
cornpu '

, k'n to the old writer's syndrome of staring at a blank sheet of
It 5 a ~nd not having a clue what to write or where to start. Obviously
paper ap things out first, and we'll be looking at that in more detail
i,,0~:Spter 4, as we begin to pull all the separate pieces of knowledge
we've learnt together into a coherent whole.

Writing an adventure game is not a~ d.aunting a task as you might at
first think. Certainly, to look at a hstmg. f~r an adventure program
(perhaps you might care to glance at the listing for Tunnel Adventure,
as that is presented in full at the back of the book) is to invite a feeling
of nausea as you are confronted by a million and one IF ... THEN,
GOTOs and GOSUBs sending program execution careering about all
over the place.

However, the listing, when examined carefully and closely, as we shall
be doing, does eventually begin to make sense, and you realise that
every part of the program is playing its proper role in keeping the whole
thing running, whether it's an INPUT routine that stops you entering
the wrong type of information, or dropping out of the program;
whether it's a routine to handle movement of the character from one
room to another; or whatever it is doing, it's all there for a purpose,
and later on we'll find out exactly what all those purposes are!

Cooking

What? No, you haven't stumbled into the wrong book, but a useful
analogy with programming adventures is to think of the problems
posed to a chef, when he/she is presented with a set of ingredients,
and told to come up with the finished meal.

We'll present you with a set of program subroutines that handle various
tasks, and in this first program we'll also give you the recipe and make
them into the finished program.

We may not turn you into the Robert Carrier of the adventure
~og.ramming world, but at least we'll get you doing more than just

aking beans on toast!

49

A Brief Outline

Just to let you know what's coming up, the next section in this chapter
will be devoted to learning the commands that are essential to the
producing of good adventure games, with obvious emphasis on the
string handling ones.

As well as covering the range of commands mentioned earlier (IF ...
THEN, GOSUB and GOTO), we'll also take a brief look at all the other
necessary statements taken in conjunction with their use in adventure
games.

This is not meant to replace the Basic programming guide in your
handbook, but at least will enable you to get going.

This will be followed by a short set of listings, all taken from
Underground Adventure, along with a thorough explanation of how
they all work, so that you can use them either as they stand, or suitably
amended, in your own games.

Our final guide to writing adventures will concentrate on more example
listings, together with a set of helpful sections on a good procedure
to adopt when sitting down and writing them yourself.

We've even given you a number of scenarios for possible games, which
you may like to adapt into your own first adventures!

Underground Adventure is gone through in great detail, with a couple
of pages for each verb in our vocabulary, and an explanation of how
the code for that verb works, and by following that you should be able
to make out what Castle and Tunnel Adventures are doing. You should
also learn how to incorporate new words (as you will obviously need
to) in your own programs.

Finally, a round up of information on adventures generally, together
with a useful set of addresses to contact for further help and
information.

Adventure Programming in Basic

In this section we'll look at the commands available to us in Basic for
string handling and data handling, and then start tying them up into
useful routines.

50

input

. ·s simply a way of typing in information, from a program, that
This 'rogram will understand and then use in the rest of the program.
the P

However, before we can start using Input, we need to talk about a
couple of other things: cursor control mode, and the concept of

variables.

cursor Control

If you type in PRINT", and then start trying to move the cursor, you'll
see that the cursor just moves to the left, leaving behind a trail of
strange characters. These are known as the cursor control characters,
and you'll soon get to know which one corresponds to which cursor
key.

Pressing Shift and Return will always get you out of this mode, but
for now we'll stay in it.

To make it easier for you to type in listings, the following symbols will
be used to represent one key press of the corresponding key:

[CUJ
[CDJ
[CLJ
[CRJ
[CLRJ
[HOMEJ
ERVSJ
[OFF>

CURSOR UP <USE SHIFT>
CURSOR DOWN
CURSOR LEFT <USE SHIFT>
CURSOR RIGHT
CLEAR SCREEN <USE SHIFT>
CURSOR HOME
REVERSE ON <USE CONTROL>
REVERSE OFF CLISE CONTROL>

If ever we want you to press a key more than once, the following
notation will be used : =

[5CR,CD for example, means press the cursor right key five times,
and the cursor down key once.

~or instance, the following program will print HELLO in the top left
and corner of the screen, as well as clearing the screen:

10 PRINT "[CLRJHELLO"

51

Variables

A variable is simply a term used to describe a number, or some text
that can be stored in the computer. '

There are three different types of variables, real, string, and integer.

Real variables are just numbers, and any of the following is a legal
syntax for a variable NAME:

A, A5, AZ, BANANA, JAWS, etc.

That is, the name must be at least one letter long, and must start with
a letter, and anything after that can either be a letter or a number.
However, the computer only recognises the first two letters of any
variable name, so that (to the computer) PLOD and PLANK mean the
same thing.

If you're using longer names to make your program more readable,
remember the above rule.

String variables can be numbers, letters, or a mixture of both, and
the restrictions on string variable names are the same as for real
variables, with one addition.

String variable names must end with a dollar'$' sign. Thus, all of the
following are legal string variable names:

A$, A1$, ZZ$, FRED$, etc.

Integer variables are again numbers, but this time without the decimal
part attached.

Thus an example of a real variable might be A= 12.5, but the integer
counterpart would be A% = 12. All integer variable names must end
with the'%' sign.

The following would all be acceptable variables of their own individual
types:

A=26.45, AF.=54, A$="I'M A STRING VARIABLE", A1$="l
AM 1 2 ! " , etc.

52

re three variable names, known as reserved variables, that
There ta be used on your Commodore 64. These are ST$ (used in
?8nn~ utput operations), ST (which changes during these operations),
~:~~loand Tl$, w~ich both refer to the 64's internal clock. Thus you

can't use names hke:

TIMES$, STATE, CAST, BUT!, etc.

they all contain one or other of those reserved variable names. Also,
f~ically enough, you can't use any of the reserved Basic words.

Back to Input

Input allows you to type some information into the computer from
a program, and that information is stored as a variable. For example:

10 PRINT "CCLRJHELLO, WHAT ' S YOUR NAME "
20 INPUT A$
30 PRINT "HELLO ";A$

would allow you to enter your name, and then say hello to you.

If you tried typing in 1.45 as your name, you'd have been referred to
as 1.451 That's because we specified that we wanted a string to be
input (A$). Try the following:

10 PRINT "CCLRJHELLO, HOW OLD ARE YOU "
20 INPUT A
30 PRINT "CCDJTHAT MEANS YOU ' RE ";A*365;" DAYS OLD!"

If you'd typed in your age as FRED, the computer would have
responded with ?REDO FROM START. It was expecting a number,
not a string, and you'll have to type something sensible in.

~f you press Return, and nothing else, the program will continue, but
it will treat the string as a null one, i.e. one that contains nothing.

Input can also contain some text as well, as in the next example:

lO INPUT "CCLRJHELLO WHAT ' S YOUR NAME";A$
20 PRINT "HI THERE, :, ; A$

Not only does it make the program shorter, it also makes it neater.

53

However, there are ways of getting out of an input statement like this
one, so we'll be taking a look later on at some more elaborate ways
of presenting input statements that stops the player of your adventure
from crashing out of the program.

Data and the Inputting of it

We've already seen that we can get information, or data, into a
program by using the input statement, and of course a lot of
information could be typed in just by using a lot of input statements.

However, this could get exceedingly tedious if you were using the same
information over and over again, hence the need for data statements.

Here the data is typed in as part of a program, read off from within
the program, and then acted upon.

Not only does it save you typing in vast amounts of data each time
you run the program, but it also allows you to change just one data
item, and see how that affects the rest of the program.

In this short example we'll read ten numbers, add them up and then
take an average of the whole lot.

10 PRINT "[CLRJ"
20 READ A
25 IF A=O THEN 40
30 B=B+A
40 C=B/10
45 PRINT "[CDJTHE TOTAL IS "; 8
50 PRINT "[CDJAND THE AVERAGE NUMBER READ WAS ";C
60 END
70 DATA 1,2,4,5,6,7,3,35,B0,43,0

The IF ... THEN branching statement in line25will be explained more
fully later, but here it allows us to stop adding up numbers when we've
read ten of them, and reached a number of 0: the last data statement.

Data statements can be anywhere in a program, and if you're reading
real numbers, that's what the data statements must contain. If you're
reading strings, again they must contain strings. Otherwise you'll get
a BAD DATA error message flung at you, and quite right too!

What you must remember is that data is read as it is encountered,

54

herever it does happen to be in the program, make sure that it
sO w ands to what you want to read.
corresP

make sure that you don't try to read more data than you've
Also,lly typed in otherwise an OUT OF DATA error will occur.
actua '

. we make extensive use of data statements in these adventure
~,~c~s always ensure that the right data is being read by the right
hsti~able' and that the right amount of data is being read.
van '

If you try to read the same data again, another OUT OF DATA error
will take place, unless you use the ...

RESTORE command

This allows you to re-read data, and takes the following syntax: =

55 RESTORE
56 GOTO 20

One concept to explain here. GOTO, which transfers program
execution from one part of a program to another, will again be gone
into in more detail later.

To finish with data for a while, here's a short example that mixes strings
and numeric data:

10 PRINT "[CLRJ"
20 READ A$,B,C,D
30 PRINT 11 (CDJ;';A$;" IS ";B;" YEARS, ";C;" MONTHS
AND ";D;" DAYS OLD!"
40 GDT020
50 DATA PETE,25,7,3
60 DATA BERY~,2~,io,o

_When run, this will generate an OUT OF DATA error, as we send
~t back to line 20 to read more data that isn't there, but the concept
is, none the less, a sound one.

GET, IF and THEN

~e'll confine ourselves to using the keyboard, where we find that GET
P ow~ us to input one character at a time, without the need to keep
ressing the RETURN key.

55

The following program will illustrate this point:

10 PRINT "[CLRJPRESS ANY f<EY"
20 GET A:t:IF A:t=""THEN20
30 PRINT "[CDJYOU PRESSED ";A$;"!"
40 GOTO 20

A number of new ideas here.

In line 20, the line is executed as follows:

Step 1) See if a key has been pressed on the keyboard .
Step 2) If it hasn't (i.e. if a null string, "", has been

detected) then go back and try again.
Step 3) It has, so we fall through to line 30, where it

prints out which key was actually pressed.

Line 40 just sends us back to line 20 again, and waits for another key
to be pressed.

The only way to stop this program is by pressing the Run/Stop key,
otherwise it will loop around for ever!

We can be selective in which key we press, by moving on only if the
correct one is depressed. For instance, suppose we want to halt a
program until the space bar is pressed. This part of our program might
look something like:

100 GET A$: IFA:t< >" "THEN 100
110 carry on

Here, if A$ is not equal to (the < and > keys together) a space, i.e.
the space bar has not been pressed, then go back to line 100 and wait
until it has.

This can be extended further, for example if we want someone to make
a Yes or No decision, and only want them to press the Y or N keys.
There are a number of ways of doing this (although we don't
recommend typing in those parts of the program that are in lower
case!):

100 GET A$:IFA$=""THEN100
110 IFA$="Y"THEN goto another bit of the program.
120 IFA:t="N"THEN go somewhere else.
130 GOTO 100

So, if they press Y we go to one part of the program, N and we go

56

ther but if neither are pressed then we wait until one of them is.
toano •

Or hoW about this:

GET A$: IFA:t< >"Y" AND A$< >"N"THEN100
100 IFA:f.="Y "THEN goto one par-t of the pr-ogr-am
~~~ this is what happens if A$ is equal to N 

Here we sit and wait till either Y or N is pressed. It takes up less 
prog~am space, and is just another way of doing the same thing. 

This kind of selective key pressing is one of the principal uses of the 
IF ... THEN statement. 

Its other main role is in decision making according to the value of string 
or numerical variables. 

Strings or numbers can be compared using the greater than '>' and 
less than '<' operators, which have the following connotations: 

A > B : A greater than B 
A > = B : A greater than or equal to B 
A = B : A equal to B 
A < = B : A less than or equal to B 
A < B : A less than B 
A < > B : A not equal to B 

Thus our program might contain a line something like : = 

100 IF A <= B THEN 200 

Thus, if A is less than or equal to B then we go to line 200. If A is 
greater than B we simply slip through to the next line of the program. 

Strings are compared alphabetically. Thus "AAAA" is reckoned to 
be less than "ABAA", and so on, and these can also be used in IF 
· · · THEN statements as above. 

Subroutines 

~o:e sections of a program have to be performed time and time again, 
if n it would become very tedious, as well as wasting a lot of memory, 
thYou had to keep typing out the following lines every time you wanted 

e Program to execute them: 

57 



10 A=B+C 
20 D=E+F 
30 H=A+D 
40 PRINT H 
50 REM GET ON WITH PROGRAM AGAIN. 

Of course, if our program segments were only this long there wouldn't 
be too much trouble, but as we learn more and more commands the 
complexity of our programs will grow, and the need to perform 
repetitive calculations will grow with it. 

Thus we have subroutines, lines which are used a lot within a main 
program, and which generally just perform one specific function. 

We'll see how to 'call up' subroutines in the next couple of pages, 
but the point to be made here is that they too, like the rest of the 
program, should be REMmed. 

For instance: 

5000 REM ************************************** 
5010 REM * START OF BORDER DRAWING SUBROUTINE * 
5020 REM ************************************** 
5030 PRINT 11 CCLRJ ++++++++++++++++++++++++++++++++ 
++++++ "; 
5040 A=A+l:IFA=24THEN5060 
5050 PRINT"+ +" 
; 
5060 PRINT II +++++++++++++++++++++++++++++++++++++ 
+"; 
5070 REM ************************************ 
5080 REM * END OF BORDER DRAWING SUBROUTINE * 
5090 REM ************************************ 

I don't pretend for a minute that this is the most elegant way of drawing 
a border around the screen, but at least it works, using only the 
commands we've so far encountered. 

By structuring programs in this way, the REM statement becomes a 
powerful ally in keeping your programs neat, tidy and intelligible. 

More String Commands: LEN 

LEN, as you might reasonably guess, is associated with the LENgth 
of a string. 

58 

instance, if we assign a string A$ to be equal to "A LONG 
~~RING", the command: 

PRINT LENCA$) 

Id return a value of 13, this being the number of characters 
wou · d . h" h . A$ (including spaces). contame wit m t e string . 

We can also assign another variable to be equal to the length of a string, 

thus: 

lO A$="ANOTHER STRING" 
20 B=LENCA$) 
30 PRINTB 

Running this would give us the result 14, this being the value of the 
variable B, or in other words the number of characters in the string A$. 

LEN comes into its own when taken in conjunction with the next set 
of string commands. 

MID$ 

This is the most flexible of all the string handling commands, and is 
taken first because its probably the one that you'll use most often. 

Strings can be manipulated in many ways. As we've seen, they can 
be added up (more correctly termed 'concatenated'), they can be 
compared with each other, but MID$ opens up a whole new field. 

The command takes the following syntax: 

MID$< A:t, I , J) 

Let us take a typical example. 

We'll assign the string A$ to be equal to the name of my home county, 
Lancashire. So, if we say A$= "LANCASHIRE" A$ becomes a string 
of length 10 characters. 

~~e comn:iand MID$(A$,l,J) takes the string A$, sta~s at the Ith 
aracter 1n that string, and takes J characters out of 1t. 

To give a programming example. 

59 



10 A$="LANCASHIRE" 
20 PRINT MID$(A$,4,4l 

When run, this would print out the new string CASH : A$ is unaffected. 

As with LEN, this can also be assigned to another variable. For 
instance: 

10 A$= "LANCASHIRE" 
20 8$=MID$1A:t.,7,4l 
3 0 PRINT 8$ 

would result in the string HIRE being printed out, this being the value 
now stored in 8$. 

There is one other way in which MID$ can be used, and this is to take 
all the characters in a string, starting from a specified point. That is, 
MID$(A$,1), would start atthe Ith character, and take all the remaining 
ones. 

Thus, with our string A$= "LANCASHIRE", the command: 

PR I NT MID$ (A$ , 6 l 

would print out the word SHIRE. 

LEFT$ 

Not as flexible as MID$, but none the less a command with its uses 
when handling strings, is LEFT$. 

It is a fairly safe bet to assume that this has something to do with the 
left-hand side of a string, and indeed it does. 

Sticking with counties, we'll assign the string A$ to equal "DEVON". 

When we issue the following command: 

PRINT LEFT$(A$,4l 

the result is printed to the screen as DEVO. Thus, with LEFT$ we 
always start at the first character in the string, and take as manY 
characters as indicated in the argument. 

60 

·n the following program: 
$0, I 

10 A$=="DEVDN" 
B·*===LEFT$ (A$, 3 l 20 ... 

30 PRINT 8$ 

we would get the rather strange word DEV being printed out. 

As you can see, not as powerful as MID$, but not without its uses. 

RIGHT$ 

Well, you'd never guess would you? 

RIGHT$ is concerned with the right-hand side of a string, and works 
in pretty much the same way as LEFT$. 

Thus, if we assign the string A$= "CORNWALL", the command: 

PRINT RIGHT$(A$,4) 

would print out the word WALL. 

As before, other variables can be assigned using this same command. 

For example, the following program will define the variable 8$: 

10 A$="CORNWALL" 
20 8$=RIGHT$(A$,7l 
30 PRINT 8$ 

and print it out to as ORNWALL. 

Of course, all these commands can be combined in many ways, to 
make manipulation of strings very easy. 

Take the following short program: 

lO A$="PETER GERRARD" 
20 8$=LEFT$(A$,6) 
30 c ... 
40 ~=MID$CA$,4,5l 

D$=RIGHT$(A$ 7) 
So PRINT 8$;C$;0$ 

61 



When run, this would print out: 

PETER ER GE GERRARD 

To further illustrate, how about this program to reverse the direction 
of a word: 

10 A$="SURFING" 
20 B$=MID$(A$,7,1) 
30 C$=MID$(A$,6,1> 
40 D$=MID$(A$,5,1) 
50 E$=MID$(A$,4,1> 
60 F$=MID$(A$,3,1) 
70 G$=MID$(A$,2,1) 
BO H$=MID$(A$,1,1l 
90 I$=B$+C$+D$+E$+F$+G$+H$ 
100 f'RINTI$ 

When run, the word GNIFRUS is printed out. 

There are much more elegant ways of doing this kind of thing, as we'll 
see when we encounter FOR ... NEXT loops shortly. 

STR$ and VAL 

Two functions which are essentially the inverse of each other, and 
both of which are concerned with string and numeric manipulation. 

Take a number A, equal to (say) 12.123. 

The command: 

PRINT STR$ <A> 

will print out the string 12.123, although the number A has remained 
the same. 

This command is more useful when assigning variables, so the 
following program shows this in action: 

10 A=24.232425 
20 A$=STRS<A> 
30 PRINT A$ 
40 PRINT LEN<A$) 

62 

pRINT MID$(AS,1,2) 
50 pRINT MID$(A$,4) 
60 

When run, this program will print out the following : = 

24.232425 
9 
24 
232425 

So you can see, by finding the position of the decimal point, we can 
split a number up into its two components. 

How do we do this? 

Well, one way would be to use the inverse function, VAL. 

VAL takes a string, and converts it into a number. Thus, if the string 
A$ was equal to "10", the command: 

PRINT VAL<A$) 

would print out the number 10. 

If A$= "12.123", VAL(A$) would also equal 12.123 but of course this 
time it would be in numerical format. ' 

VAL comes to a halt when it comes across something that is not a 
number. 

Thus, if A$= "88A888", VAL(A$) would return just 88. 

We can also print out straightforward variables. That is, in the following 
pro.gram, we are defining the variable A to be equal to the VALue of 
various strings: 

lO A=VAL ("?' ""''") 
20 PRINTA -~·· ..,_~. 

30 A=VAL ("A"> 
!O PRINTA 
~O A=VAL ( "-100. 9") 

O PRINTA 

When run, the results on the screen would be : = 

63 



23.23 
0 
-100.9 

So, to split a number up into its component parts, we must find the 
decimal point by turning the number into a string, taking each number 
at a time until we find the decimal point, and so on. Thus: 

10 A=345.678 
15 B=B+ l 
20 AS=MIDS ISTRSIAl,B,ll 
30 I F VAL IA$ l =OTHEN100: REM THE DEC IMAL POI NT 
40 8$=8$ +A$ : GOT015 : REM KEEP ADDING NUMBERS UNTI L W 
E REACH DECI MAL POINT 
100 C$ =MIDS <STR$ 1Al,B+l l 
110 PRINT B$,C$ 

Just to explain a little : = 

Line 10 
Line 15 
Line 20 
Line 30 

Line 100 : 

Line 110: 

define the number 
increment our counter 
turn A into a string, and take one character at a time 
is that character a decimal point (VAL(A$) equal to zerol 
if yes go to line 100 
otherwise, add the number to our string 8$ (line 40) 
C$ is made equal to the string equivalent of the number, 
starting at the character after the decimal point. 
print out the numbers 

The resulting display would read : 

345 678 

Two powerful functions! 

CHR$ and ASC 

Another two analogous functions, again concerned with string 
handling, but ASC in particular assumes great importance when talking 
about communicating from one microcomputer to another. 

ASC is short for ASCII, the American Standard Code for the 
Interchange of Information, although when used on the Commodore 
64 it would probably be more correct to call it ComSCll, as Commodore 

64 

seern to enter a world of their own when designing character sets. 

Still, to generate them on the screen the following syntax is used: 

PRINT ASC l"A" I 

which would return a value of 65, or: 

pRINT ASC( A$1 

which would return the Ascii value of the first character contained in 
the string A$. 

CHA$ is the opposite of this. 

For instance, you probably know that to switch graphics modes you 
type the Shift and Logo keys simultaneously. 

This can also be achieved with the following statement: 

PRINT CHR$ < 141 

Upper case is reached with CHR$(142), to save you looking it up! 

Everything else, like printing in black text, printing letters, etc., can 
all be done with the CHR$ command. 

Both of these commands can again be used to define other variables. 
For example: 

A=ASC C "A" I 

will put the value of 65 into the variable A, and 

A$=CHR$ C 13 I 

will put the character string 13 (in fact, a carriage return) into the string 
A$. 

FOR ... NEXT 

Where would we be without FOR ... NEXT loops? 

:lthough we've been instructing the computer to do the same thing 
'lo~~ber of times over, by use of a simple incrementing variable, the 

P approach is far better, and far easier to operate. 

For instance: 

65 



10 PRINT "[CLRJ" 
20 FDR I 1 TD 100 
30 PRINT I 
40 NEXT 

This will just print out the numbers from 1 to 100 in rapid succession 
but illustrates the point. ' 

Line 20 is the start of our loop, and tells the computer that we want 
to do something 100 times. In fact, we want to print out the numbers 
from 1 to 100, and as the value of I increases, it is printed out in line 
30. Line 40 then tells the computer NEXT, i.e. there's more to come 
and the program branches back to line 20. ' 

It keeps on doing this until I has reached the value of 100, at which 
point it stops and our short program ceases execution. 

Actually, I reaches the value of 101. Why? Well, when it has the value 
of 100, it prints it out as in line 30, sees the NEXT statement in line 
40, and increases the value of I to 101. However, on branching back 
the computer finds that the limit of the loop is when I is equal to 100, 
so it stops! 

The correct syntax in line 40 should have been: 

40 NEXT I 

as we can have more than one loop active at a time. Like this: 

10 PRINT "[CLRJ" 
20 FOR I = 1 TD 20 
30 FOR J = 1 TO 3 
40 PRINT J' I 
50 NEXT J 
60 NEXT I 

The first time around, I is set to 1, and J counts through from 1 to 
3. Thus the display goes something like : = 

1 
2 
3 

Then J has finished, so we go onto line 60, where I is incremented 
again, so it's back through the loop once more, for: 

66 

1 
2 
3 

2 
2 
2 

and so on, until we finally reach: 

1 20 
2 20 
3 20 

at which point everything stops. 

Lines 50 and 60 could have been abbreviated to the rather more 
straightforward : = 

50 NEXT J, I 

Just make sure you keep everything in the right order, and don't have 
more than 26 loops in action at the same time, otherwise the computer 
will blow its stack (computing joke). 

Loops can be made to count in steps as well, for instance: 

20 FORI=1TD100STEP2 
30 PRINT! 
40 NEXT! 

when run, will print out the numbers 2,4,6, ... 100. We can also go 
backwards : = 

20 FDRI=lOOTOlSTEP-2 
30 PRINT! 
40 NEXT! 

when run, will print out the numbers 100,98,96 . .. 2. 

For an intere f 1· · · f s mg app 1cat1on, using only commands we've seen so tv' can you work out what this program is doing (type it in and see 
ou can't!)? • 

;~ A$::" ABCDEFG" 
30 GETB$:IFB$=""THEN20 

F'ORI==1TOLEN(A$) 40 IPB$-
So NEXT-I~. ID$(A$,I,1>THENPRINTB$;:GOT020 

GOTD20 

67 



GOTO somewhere 

We've already encountered this one. Basically it sends command of 
a program to somewhere else within the program, or back to the sarne 
line as in the example on the previous page in line 20. 

The syntax used is GOTO xxx, where xxx is an existing line number. 

If it isn't, you'll get the UNIDENTIFIED STATEMENT error being 
thrown in your face! 

As a short example : = 

10 PRINT "[CLRJ"; 
20 PRINT "HELLO'" 
30 GOTO 20 

When run, this just prints up hundreds of HELLO ls, until you hit the 
run/stop key. 

Changing line 30 to read GOTO 10, produces a slightly flickering 
display. 

GOSUB and RETURNing 

Subroutines have been met before, as small, or maybe even large, 
segments of programs that have to be repeated many times. 

Performing the same function over and over again is a repetitive task, 
and having to type the code in each time you wanted it actioned would 
take a lot of time, and a lot of memory. 

Thus subroutines were born, and the command used to send program 
control to them is GOSUB xxx, where xxx is the line number at the 
start of the subroutine. 

Once actioned, the command to send control back to the main program 
again is RETURN. 

Great care must be taken in matching up GOSUBs with RETURNS, 
otherwise a RETURN WITHOUT GOSUB error will take place sooner 
rather than later. 

68 

with FOR ... NEXT loops you can have up to 26 subroutines in 
A5

. n at the same time, but no more. 
act10 

Thus you can jump about f~om o~~ s~broutine to another, and quite 
often it is necessary to do this, but 1t 1sn t really very good programming 

practice. 

A few examples: 

10 PRINT "[CLRJ" 

2o A=5:B=10 
3o GOSUB 100 
40 GDSUB 200 
50 GOSUB 100 
60 PRINT A,B 
70 END: REM IMPORTANT, OTHERWISE PROGRAM FALLS THR 
OUGH' 
100 A=A*A 
110 A=A+5 
120 RETURN 
200 B=B-1 
210 RETURN 

When run, the first subroutine is encountered twice, the second once 
only, and the resultant printout is : = 

905 9 

Of course, one can get a lot more complicated than this! 

10 PRINT" CCLRJ" 
20 A=l: B=2: C=3 
30 GDSUBlOO 
40 GOSUB200 
50 GDSUB300 
60 F'RINTA,B,C 
70 END 
lOO A=A+B+C 
l 10 GOSUB200 
l20 RETURN 
200 GOSUB300 
21 0 A=A+B+C 
220 GOSUB300 
230 RETURN 
30o A=A+l 
31 0 RETURN 

What Value will A have when this program is run? Try it and see! 

69 



What's GOing ON 

Quite often within a program, the subroutine or line number you want 
to go to will depend on the value of a particular variable. 

This could be achieved in the following way : = 

10 IF A THEN 100 
20 I F A 2 THE N 200 
3 0 I F A 3 THEN 300 
40 IF A 4 THEN 400 
50 IF A 5 THEN 500 
60 etc . 

Although this works, it could hardly be described as an elegant way 
of programming. 

In its place we can use the ON .. . GOTO command, and the similar 
ON ... GOSUB. As both work in the same way we'll take the former 
as an example, although with the latter you do have to take care over 
matching up RETURNs with GOSUBs. 

10 ON A GOTO 100 , 200 , 300 ,400 ,500 

Here, if A has the value 0, the program continues execution at line 
100 onwards, a value of 1 and it goes to line 200, and so on up to 
a value of 4, when it goes to line 500. 

A can be varied, to make it match our earlier IF .. . THEN example 
as follows: 

10 ON A- 1 GOTO 100 , 200 , 300,400 ,500 

Thus we now have an exact match of the original program, but in four 
fewer lines! Now, if A equals 1 program execution continues at line 
100, and so on. 

Just one example of this command in use could be something like 
this, which is an interesting use of string handling: 

70 

1 O 1($=" ABCDE " 

20 
pRJNT"ACTIVI TY ' A' 

30 
pRJNT"ACTIVITY ' B ' 

40 pRJNT " ACTIVITY ' C ' 

50 
pRJNT"ACTIVITY 'D ' 

bO PRINT"ACTIVITY 'E' 
70 GETA$ 

PRESS A 
PRESS B 
PRESS C 
PRESS D 
PRESS E 

SO FDRI=1TOLEN( K$) 
qO JFA$=MI0$( K$,l,1lTHEN1000 

100 NEXT I 
l 10 GOT070 
1000 ON <ASC(A$l-65) GOTO 1100,1200,1300,1400,1500 
1100 rest of program. 

RaNDom INTegers 

Like most of the home computers currently available, the Commodore 
64 is not without a random number generator. 

Alas, like most of them it isn't particularly random, and so a few 
operations have to be done before we can begin setting up 'genuinely' 
random numbers. 

The syntax to be observed is RND (A), which will give a number in 
the range 0 to 1. 

!o start things off differently every time, we'll need to use the 64's 
internal clock. Thus, our first number should be made using RND (-Tl) . 

A!ter that, A should remain as a positive number, otherwise a zero 
will retur~ the same random number as the last one, or a negative 
n~mber will start everything off again. Using the same negative number 
will always give us the same sequence of not very random numbers. 

The INT command comes in useful here, as elsewhere. It chops off 
~he numbers after the decimal point, basically, so INT(2.24) becomes 
' as does INT (2.89). 

INT of a · 
(_2 2 

negative number returns the next lower number. Thus, INT 
· 4) becomes -3! 

So, to generate an integer random number, we could use : = 

lO PRINT INT<RND< - TI>> 

However, th '1s w·111 not be very satisfactory for generating future 

71 



numbers, since RND always returns a number between 0 and 1. So 
we need to scale things up a little: ' 

10 PRINT INTIRNDC.51•10+11 

which will produce a number in the range 1 to 10. 

To generate numbers between a given range, where Xis the top limit 
and Y the lower limit, we must use the formula : = 

10 PRINT INTCIX-Y+11•RNDC.5l+YI 

This is used in our adventures for producing random events e.g. the 
appearance of a gargoyle, or the success or failure of throwing a knife. 

A New DIMension 

We've already seen how numbers and strings can be stored as variables 
like A, A$, and so on. However, this gets a mite restrictive after a while, 
and we need to resort to other things. After all, there are only so many 
numbers in the alphabet! 

Let's say that we're generating ten random numbers, and we want 
to store them all as variables. 

We could have a very lengthy program to do this: 

10 A=INTIRNDC.51•10+11 
20 B= •.••• etc. 

but this is extremely space consuming, and there are better ways. 

This is where arrays, otherwise called subscripted variables, come in. 

The syntax for referring to these is A(O), A( 1), etc., up to a normal 
limit of A(10), and these subscripted variables could be assigned 
numbers something like this: 

10 FDRI=OTD10 
20 AIIl=INTIRNDC.51*10+11 
30 NEXT I 

Where now we have the eleven different numbers stored in A(O), A( 1 l 
etc. up to A(11). 

72 

ese numbers can then be selected at will. For example, PRINT (A(4)) 
~II rint the fifth number, or element, in our array A: remember that 
~~ ~rst element is referenced as number 0. 

To prove it, we could print them all out by adding to our program: 

40 FDRI=OT010 

50 pRINTACII 
bO NEXT I 

The numbers in an array can be assigned to other variables (e.g. 
A== A(3)), or even calculated dynamically by using another variable 
(e.g.PRINT A(B*2)). 

However, more often than not we'll be wanting to use a lot more than 
eleven elements in an array, and this is where the DIM statement comes 
in. 

The syntax for this is DIM A(199), or whatever, which sets aside a 
certain amount of room in the computer's memory for storing all the 
numbers that you might be wanting to save. Whether you use them 
all or not, that memory is reserved, so use arrays selectively. 

A useful trick, if running low on memory space, is to use something 
like DIM A(2), if we're only going to need a maximum of three numbers 
storing in the array A. Any array you refer to in your program 
automatically has 11 elements of memory space reserved for it, and 
the few bytes saved might mean all the difference to the amount of 
program you can cram into your machine! 

Arrays are not limited to one dimension either. You can dimension 
something as A(7,7) if you like, for instance in a chess game, where 
you have a board 8 squares by 8. 

The elements in that array are referred to as A(1,5), A(6,3), and so 
on. It is helpful to think of these values as being stored in rows and 
columns, where the first number refers to the row and the second to 
~h~ c?lumn. Thus A(5,7) is the seventh column of the fifth row. 

hink1ng of it all as boxes of numbers, or strings, stored in rows and 
c~lu~ns will always help when you want to reference a particular one 
Within a program. 

~~'II be using arrays extensively in all our adventures, so it's useful 
0 earn how they operate! 

73 



Getting Started 

Now that we've learnt most of what we'll need to know about strings 
data and dimensioning arrays, it's about time we started looking at 
the results of using this in an actual program. 

Our example, as always, will be the Underground Adventure listing, 
so now we'll start explaining some of the variables that are used in 
this game, so that we can get an understanding of how the various 
parts of the program operate. 

Lines 2 to 27 define one set of variables, which relate to the gate being 
open (GF), and door being open (OF), CR$ is set equal to a carriage 
return, line 10 goes respectively to the subroutines that print up the 
introduction, and read in all our data, followed by defining the variable 
CP, which is the Character Position, and relates to the room number 
that you happen to be in at the time. 

The next set of 4 variables just contain messages that we'll use later 
on in the program. 

2 GF=1:DF""'1 
5 CR:f.=CHR:$(13l 
10 GOSUB10000:GOSLIB2000 :CP=1 
15 PD:t.="IT IS NOW PITCH DARK.CARRY ON AND YOU'LLFA 
LL INTO A PIT! II 

20 IM:t:="YOU CAN 'T GO THAT WAY." 
25 GF$="THE GATE IS NOW SHUT." 
26 D$="DOWNC3CDJDOWNC3CDJDOWNC3CDJDOWNC3CDJDOWN!" 
27 DF$="THE DOOR IS SHUT" 

Moving Around 

Line 200 sets us off to the routine that checks for character movement: 

200 GOSUB 5000 

but before we look at that, we'll jump down to line 2000 and define 
a few more variables: 

2000 NV=38:NN=53:P=100:L0=53:DIMP$(Pl,PXCP,3l ,oef( 
LO) ,OBX<LOl ,VB$CNVl,N0$CNNl 

74 

. controls all our data reading which takes place in lines 2001 to 
~~~- These are reproduced in chapter 6, but the variables are set as 

follows:

NV === the number of verbs we're going to use.

NN === the number of nouns we're going to use.

p === the number of rooms contained in the adventure.

LO === the number of nouns again, but is used to control the LOcation
of every object in the game, there being as many objects as there are

nouns.

DIM P$(P) = dimension the variable P$ to be equal to the number
of rooms in the game. P$(1) then contains the description for the Ith
room.

DIM P%(P,3) = dimension the variable P% to be equal to the number
of rooms, with four sub-elements to each level of P%. These are used
to determine the direction one can take from within a room, and
indicate NORTH, SOUTH, EAST and WEST respectively. Thus
P%(1,2) refers to the direction EAST from room I.

DIM OB$(L0) = dimension the variable OB$ to be equal to the number
of nouns. OB$(1) then contains the description of the Ith object.

DIM OB%(L0) = dimension the variable OB% to be equal to the
number of nouns. OB% then contains the position of each object in
the game, by referring to its room number. Thus OB%(1) refers to the
Ith object, and if set equal to J puts the Ith object in the Jth room.

DIM VB$(NV) = dimension the variable VB$ to be equal to the number
of verbs. VB$ then contains the actual verb itself. Thus VB$(1) is the
Ith verb. For instance, VB$(1) is the verb GO.

DIM N0$(NN) = dimension the variable NO$ to be equal to the number
of nouns. N0$(1) then contains the shorthand description for the Ith
nNoun. Thus if OB$(1) contained the string "A RICKETY OLD DOOR",

0$(1) would contain just "DOO", for door.

SOoo
Now, let's look at the actual room moving routine, contained in lines

to 5206.

75

Room Movement Routine

This routine is used to handle all room movement in the game, so we'll
take a close look at it.

5000 PRINT"CCLRJ"
5001 IFOB'l.<46> <>- 1AND<CP >4ANDCP<100lTHENPRINTPD$ 1p
D=1:RETURN
5002 PR I NT II YOU ARE II P:f: (CP) I PD•O
5003 IFCP=42ANDTB=1ANDPX<42,1l•OTHEN6054
5004 VB$="CCDJYOU CAN SEE :

II

5006 FORI=1TOLO; IFOBXCil=CPTHENPRINTVB$10B$<Il1VB$
=1111

5008 NEXT!
5009 IFCP=3ANDGF•OTHENPRINT:PRINTGF$
5010 FL=O
5012 PRINT" C2CDJYOU CAN GO: 11

;; FORI=OT031 IFP/. CCP
I I) < >OTHENF'RINTDD:t: (I)' II II; l FL=1
5014 NEXT I
5015 IFNP=1THEN6000
5016 IF<CP >20ANDCP<88lANDCINT<RND<.5l*10+1)) 9lTHEN
NP=l:GOT06000
5018 IFCP<>69THENRETURN
5020 IFPX<69, 3 l=70THENRETURN
5022 IFOBX (15) < >- 1 THENPRINT"YOU CAN'T PASS YET." 1R
ETURN
5024 PRINT"THE SHIMMERING CURTAIN WASHES AWAY THE

MIST, AND REVEALS A NEW TUNNEL!"
5025 PX<69,3l=70:0BX<15l=O:ZZ=ZZ - 1:P$C69l="WALKINB

PAST AN ICE COLD SPOT."
5026 OBX<20l=O:RETURN

Explanation of Routine

We'll take this line by line, so:

Line 5000 simply clears the screen.

Line 5001 checks to see if you're holding a blazing torch (08%(46)).
If the variable is set to -1 it means that you're carrying it. If it's not
equal to -1, the line carries on to see if you're in a room lying between
room numbers 5 and 99. If you are, it then prints up the variable PD$
as defined in line 15 and returns to the WHAT NOW prompt, having
set the darkness variable PD equal to 1. Any attempt to move now

76

. h ut lighting the torch will make you fall into a pit and plummet
wit o
to your doom.

. 5002 prints up "YOU ARE" followed by the description of the
Lin~ You are always in room CP. The darkness variable PD is set
r00

0 ·since if we've moved, we can't be in darkness.
to '

U e fJ(X)3 checks the 'bear following' variable TB. If the bear is following
"u and you're in room 42 (which holds a fierce panther to begin with),

Y~d' there is no path south from room 42, the program transfers
:xecution to line 6054, which prints up what happens when the bear
meets the panther!

Line 5004 is the start of the 'you can see' routine, which goes on to:

Line 5006, which checks to see if the location of any object, 08%,
is equal to the current room number CP. If it is, then it tells you that
you can see it, but if nothing's there it just prints up nothing.

Line 5009 checks to see if your in room 3, and if the flag for the state
of the gate (open or closed) is set or not (1 or 0), and if it is set prints
up the variable GF$, as defined in line 25.

Line 5010 just clears the variable FL, used in the next routine:

Lines 5012 to 5014 go through the four possible directions from each
room, and check to see whether you can go in any of them, by seeing
if the relevant part of the variable P% is set to 0, in which case you
can't, or something else, in which case you can. It then prints up the
right part of the variable DD$, which is set to equal the words NORTH,
SOUTH, EAST and WEST earlier on in the program.

Line 5015 checks to see if there's a gargoyle chucking a knife at you,
and if there is transfers program execution to line 6000, which we'll
come to later.

Line 5016 goes through a random number generation, and if that
number is greater than 9 (on a scale of 1to10), and if you're in a room
nNumber greater than 20 but less than 88 sets the gargoyle present flag

P and goes off to line 6000.

Line 5018 checks to see if you're in room 69. If you're not, program
execution returns from this subroutine.

lines 5020 onwards are assuming you are in room 69, which is initially

77

guarded by a hazy mist, through which you cannot pass until various
conditions are met. These are checked in lines 5020 to 5026, and I'll
let you work out for yourself what those are!

Basically you have to be carrying a certain object before you can get
past, and if you are then obviously the hazard doesn't exist any more
and we have to change the relevant parts of the variable P%(69) t~
allow us to move safely through here in future, and the roorn
description P$(69), all of which is done in line 5025.

Line 5026 simply makes the object you must be carrying disappear.

So, you can see the checks that have to be made before we can allow
our explorer to move through certain areas.

It would be an easy matter to alter this routine to suit your own
adventure requirements, just by changing the conditions that have to
be met, and checking for the right room numbers and the right flags
being set.

As we've said, you'll find all the data in chapter 6.

Now, we've seen how one routine works. Let's sit down and write
an adventure!

78

4

Writing Your Own Adventures

Let's Get Started

We've seen one of the major routines in the game now, that of handling
the movement of the character within the adventure, once we've
established from other routines whether or not the character can in
fact go in that direction.

That is achieved using the verb GO, which we'll come to along with
all the other verbs in chapter 6.

All the data that is necessary for this game, together with a thorough
explanation of how it all works, what it all means and how it's all stored
in the program, will also be found in chapter 6.

Meanwhile, there's an awful lot of additional coding which doesn't
?ome into either of those sections, and the purpose of this chapter
is to present you with the rest of it, including standard routines for
the inputting of data, checking on the validity of a move, checking
whether the words you've typed in make sense, and one or two other
routines which are especially for this game (we couldn't just give you
~II of the listing bar a couple of lines!), but which could nonetheless
e adapted for use in your own games.

You'!I know the sort of occasions when it is necessary to include these
~~ec!al ro~tines, what they're doing (and equally important, how
va~Y r_e doing what they're doing), and so you will be able to use

1at1ons on them in your own games.

So, between this chapter and chapter 6 you'll get the complete listing

79

for Underground Adventure, and perhaps by presenting it in small
chunks like this you'll feel more inclined to type it all in!

If not, you could always buy the cassette containing the three
adventures in this book, configured to run on a Commodore 64, and
study the listing that way.

Summary So Far

You know what a number of the essential variables in this game are
now doing, and can readily adapt them for use in your own games.

The variable CP for instance, which is used to keep track of the room
number, and is updated as you move from room to room.

The variable NP, to detect whether or not a living gargoyle has emerged
from the rocks and is about to engage you in mortal combat.

The variable PD to check for darkness, and the carrying of the blazing
torch.

These, and the others, are the backbone of the game, and without
them this adventure could not function. Without similar variables in
your own games it would be equally impossible to play and/or write
them.

Variables like these are there to make life easier for you. Use them
in your own games, and the actual writing of a complete adventure
will soon become relatively easy.

However, there's a lot to learn yet, like the drawing of maps, the placing
of objects, the positioning of any hazards en route, and everything
that goes up to make the total game.

In the next section we'll start again from scratch, and assume that
you've sat down with a blank sheet of paper, and want to start writing
an adventure game.

So let's get going!

The First Steps

Possibly the most difficult step of all is outlining the story that you're

80

. to have as the backbone of the adventure.
going

ffect it will have to be a miniature novel, involving (relatively) realistic
In e epts although an ingredient of most adventure worlds is that little
conch of'magic that sets them aside from the real world.
toUC

Th plot, just as in a good novel, must flow smoothly from one stage

0
~he next, with no totally unexpected, inexplicable events. One

t dventure I know suddenly has a sword that you've been happily
~rrying along turn into a snake in your hands, which then bites you
and kills you off.

This is totally inexcusable, and shouldn't find a home in any real
adventure. The impossible happens quite often in these games, but
at least there should be a warning that it's going to happen, and it
should not be sufficient to kill off the character.

so if we're going to have magic, let's keep it on a fairly reasonable
level, and stick to iron staffs being waved and causing a bridge to
appear over the chasm.

Events that kill off the hero, like crossing a rickety bridge with a heavy
bear in tow, should generally be as expected as possible, and only
be the fault of the adventurer. In real life, would you expect a rickety
bridge to support the weight of a heavy, lumbering bear?

In Underground Adventure, dynamite has to be employed in one
instance before you can progress. It is reasonable to assume that
lighting the dynamite whilst you're still holding it will not do you any
good, and so it should be placed on the ground first of all.

On the other hand, some of the elements in this game, and others,
are randomised to give the game some semblance of reality. Not that
you'd often bump into a living gargoyle carved out of the rock, who
then engages you in a duel to the death every time you meet him,
but should such an event take place it is reasonable to assume that
the outcome of the fight will not always be the same.

Thus you will sometimes get killed (though not very often, otherwise
th~ game would get very tedious), and sometimes your throws will
rnhiss _the gargoyle, but again you should conquer him (her?!) most of
t e time and live to carry on the game.

So ~nything that happens in the game must have a remote base in
reality, and the inexplicable shouldn't really happen without at least

81

being safe to the player.

Getting the Idea

As we've said, this is possibly the most difficult part of all. Many
adventures have now been written, and coming up with an original
scenario each time is getting gradually harder and harder. Some
possible ideas are presented in chapter 5, where we've gone through
a number of adventure scenarios, and described them in some
considerable detail.

However, there is of course no constraint on you to use them at all
so your own ideas will have to come from somewhere. '

One tried and trusted idea is by dipping into a few books such as Lord
of the Rings, in which there are a multitude of possible plots which
could be turned into very reasonable games. However, as in all
implementations of this sort one has to be very careful about the laws
of copyright, as we've seen with the Hitch Hiker's Guide to the Galaxy
game, so you'll probably have to change a lot of names to protect
the innocent, i.e. you!

The traditional thud and blunder adventure, steeped in Gothic names
and ancient runes, has been done by many authors, although obviously
the scope here is vast for doing variations on a theme.

One possible answer might be to read a few science fiction novels
(bearing in mind the author's copyright), such as the works of Michael
Moorcock, and obtain a few ideas from there.

To the beginner though it must seem that just about every possible
idea has been tried before, including exploring ancient tombs and
crypts, jungle adventures that pit you against various natives and native
problems, cowboy adventures, outer space adventures, underwater
adventures, and the like, and that it would be impossible to come up
with a new and original plot-line for your story.

But bear in mind that there have been many more novels written than
there have been computer adventures, and people still keep managing
to come up with original themes for those, so the ideas are always
there: it's just a question of thinking them up.

Visitors from outer space, detective adventures, psychological
adventures, biblical adventures, are all relatively new areas, and perhapS

82

b'ning one of these new ideas with the character choosing role
~f;1u~ed earlier could pave the way for a whole new set of computer

games.

work is up to you though, and your plot, whatever it consists of,
The t ring true throughout, and keep the player of the game constantly
rn~:rtained, forever pitting him against new challenges, new tasks,
:~d keeping the interest by finding out just that little bit extra with

each game.

The Hazards

Now there's a television program! But no, nothing to do with car driving
American lunatics in an otherwise sleepy mid-western village, one of
the most important parts of any adventure game will be the constant
search for new problems to set the player, new tasks that have to be
accomplished before you can proceed further, and making those
hazards solvable, but (preferably) as difficult as possible.

The number of problems set will always vary from game to game, and
should to some extent depend on the number of rooms in the game.
Perhaps on a 1 to 6 ratio, with a new task to be solved every half dozen
rooms or so?

Some games favour a constant source of worry, and indeed
Underground Adventure does the same, with the living gargoyle
coming up every now and again, along with a random chance that,
as well as fighting with you, he might just nip in and steal a few useful
items that you happen to be carrying and hide them in the maze.

As a helping hand, here's a list of the hazards presented in Underground
Adventure, and the rooms in which they are first found:

A vast chasm that is too wide to jump: room 15
A massive tree that blocks your path: room 21
A deep drop that is to steep to climb down: room 35
~ blocked wall that prevents you from going further: room 4
A golden bear that will not let you pass: room 27
A fierce black panther that stands in your way: room 42
Another _deep chasm amongst the rocks: room 10
A st~ep incline that is to steep to climb up: room 45
Anshimm~ri_ng curtain of light that dazzles you: room 93
A hold mining track that is blocked up: room 79

azy wall of mist that is too thick to pass through: room 69

83

The denizen of the caves, who will not let you through: roorn 50
A giant spider, out to eat you: room 84
A giant fly, out to kill you: room 74
An old door that blocks your path: room 60
A narrow crack, which you can't squeeze through: room 53

There are 100 rooms in Underground Adventure, so we fit nicely into
our 1 in 6 ratio, with the above 16 problems to solve. We'll tell You
some solutions along the way, but not all of them!

Constant Problems

As well as all of the above, there are a number of constant problems
that keep recurring, like the gargoyles, and any reasonable adventure
has the same kind of mixture. A good solid set of problems which give
the player plenty to chew over, along with a reasonable set of constant
events that can also give cause for worry.

However, whatever the kind of problem, be it in a set place or occuring
at random, one golden rule of programming this type of game remains
the same: if the player solves the problem, make sure the program
checks for this and adjusts its variables accordingly.

There is nothing worse for a player than, having spent hours achieving
one goal, to throw away the relevant object which has enabled him
to do this (or perhaps have it taken away by the program once it has
fulfilled its duty), and then to see a bug in the program causing the
problem to re-appear!

In other words, don't make your adventures impossible, which is
always a problem when you're manipulating a lot of objects. Just
placing one of them in the wrong room could cause the program to
become unsolvable: a cardinal sin.

One of the more common constant problems is that of a torch. If you're
deep underground it's fairly safe to assume that you won't be able
to see very much, and so a torch becomes vital.

To light the torch you will also need some matches, and these must
also be hidden in the game somewhere.

Finding the torch and lighting it is usually no problem, but keepinQ
it lit often is. A sudden gust of wind perhaps (which could easily ~
done in the earlier movement routine by checking for, say, room

84

whatever, and whene~er the player walks through there the torch
or ts blown out), or a swim through some water would do the trick.
ge u go through water, you would also get the matches wet, so how
~:~ou light the torch again?

A torch carries with it another problem. There is usually a limit on how
uch you can carry at a time, and certain objects will always have

rn be with you, like torches, axes, and so on, and so the problem
~~comes what do you carry at the same time.

Dropping things often breaks them (e.g . bottles), so you'll have to
make your adventure as devious as possible, to ensure the maximum
amount of thinking for the person who will ultimately play it.

All of these problems will have to take place in some kind of land or
other, so let's draw a map.

Drawing the Map

We'll assume you have worked out some rough kind of plot line, and
you want to draw the map up to see what it all looks like.

Underground Adventure all takes place underground, with a number
of different areas, and believe it or not my original map looked like this:

85

u~~ ~<~-

;J row.., I~. ~<..~ ~ '~- •

()..,.,...~ ~_,,.. ~ ;..u t: p~ ~ ~M. .:~
N .~,~ "~ ·C ~ .

' ·-~~ .. - <.__ •• ..-..~ ~ : ""'" ""'""'-\ ~ '\-'!. '-~ ~ ~ ·-
.... ~..._ ~ ' ol...- ,Do.. .:.Jl. ·~ -...\..•,,. 161.. c..Ai.. l...,..., •
~ " •4) i..-. ~:. 1.. .. .:.. ... ,_.,

~~,-"' ~-.. ~ (.~ ~ '1''61 _.,. r .,....-. ..,. , "'1'J

86

Refining the Map

W 11 that was certainly nothing to write home about! However, it
erked, because having drawn up all the room numbers I then had

w~uch better idea of fitting the adventure together as a whole, and
~ould commence setting up the problems for the player.

The first thing I di~ was to label 16 rooms (ringed, in the diagram),
and decide that this was where the problems would occur. Then, I
had to write down what each problem would consist of, and those
are the notes at the left of the sheet.

The brief scrawl at the top was an indication of the general outline
of the whole thing. There was to be no finding of treasures, it would
all be a question of survival, with the all important mission being to
find the key to enable you to open the door that had slammed shut,
and get out again.

The notes at the bottom where there as guidelines for one or two of
the problems, and from that map the whole game was written.

Well, that's not quite true!

A number of changes were made to the original plan, including the
location of one or two of the objects in the adventure area, and before
I set fingers to keyboard there were a number of other notes to be
made first.

We'll see what they were in the next section.

But.for now, you'll have drawn your map, however rough it may be,
you ve got some idea of the general plot for the whole story, and you
know (again roughly) where all the hazards are going to present
themselves.

~ou'v.e got a fairly good idea of everything that will happen to our
:~trep~d explorer, and in chapter 6 you'll see one way of turning these
e e~s into the necessary data statements that form the fabric of the
nt1re game.

~~t We're concerned with the programming side of it, rather than the
l"ll e:r slog of getting all the data statements typed in, so let's start

a ing the transition to the computer.

87

Moving from Paper to Computer

One of the first steps is to draw a much more sensible looking rnap
as we've shown over the page for one of the other adventures in thi~
book, the Castle Adventure.

This should be big enough to enable you to list everything you want
to in each room, including any objects that are to be found in thern
and any hazards that may be expecienced in that room. '

Having done that, you'll obviously want to know what all of those
objects are! So the next step is to look at the list of hazards as you
originally drew them up, and decide what the solution would be to
each hazard, bearing in mind that you can only move on to the next
part of the adventure after you've solved the problem. In other words,
don't put the solution further into the game than the problem!

A list of solutions will give you a healthy list of objects, and these will
then form the basis of the list that we'll type into our program later.

With the program set up as it is, although obviously you could modify
it if you want to, the routine that checks your data entry only looks
at the first three letters of each word. Thus if you had a TRACK and
a TRAM in your adventure the program listing would interpret them
to be the same object, and you would get some very strange displays
being shown up on the screen!

So, if you're going to follow the methods outlined in this book, it helps
to give all the objects individual names. As we'll see later, there are
enough problems coping with EMPTY BOTTLE, BOTTLE OF OIL and
BOTTLE OF WHISKY in Underground Adventure as it is, so we don't
want to encourage more of them!

This list of objects will have to be extended beyond a simple list of
those generated by the problems and their solutions. We haven't
mentioned lamps, or anything like that, so you'll have to have words
for LAMP.

What happens if you drop a bottle? If you're going to have it break,
you'll also need to have an object something like A PILE OF BROKEN
GLASS.

These, and other problems will all have to be thought of before we

88

rt fYping anything in, but in~vitably we'll have to add objects to
sta list as we go along developing the program, but in Basic that is
our ·tt· lty

great d1 1cu . no

U derground Adv~nture originally ~tarted out life with about 48 objects,
b~t ended up having~· due to,circu':'1stances arising during testing
f the program that I JUSt hadn t envisaged beforehand. It's nice to

~ack everything first before you start though .

A New and Better Map

This is the final map for Castle Adventure, as re-drawn from an initial
scrawl on a tiny sheet of paper.

Something like this is a lot easier to program from!

89

n------ * ~ ~
Lt!}<----- ~. ~ ~

~l al k1 :. r
...___..'--' 1--_..!.....J ~

.----..~ * g
('-. ~

90 91

And on to Verbs

As well as our list of nouns, the other great list in any adventure games
and the list that to a large extent dictates how good a game it is, i~
the list of verbs.

Some adventures have many more verbs than others, and as we've
seen Zork can handle around a hundred of them, but Underground
Adventure confines itself to a mere 38, although this could easily have
been extended by another dozen or so.

To have a response to a verb can, as we' ll see in chapter 6, take up
an awful lot of code, but others can be very short. The reason for
having short verb responses is simple.

If everything the player types in gets the response THAT DOESN'T
MAKE SENSE TO ME, he could get the impression, perhaps wrongly,
that he was playing a very poor adventure and that there were better
games on the market. If the responses vary, at least the interest will
be kept, and the player will be constantly thinking of different ways
of using a verb, not knowing that a couple of lines of code are
producing (at random) one of three responses to the use of that verb.

So, a lot of verbs is a good idea, and your original starting list should
always be the first ten verbs listed earlier for Underground Adventure.
These are all standard verbs, like GET, LOOK, HELP, GO, and so on,
that should occur in every adventure, and the routines for handling
these same verbs from game to game do not vary very much. Obviously
they will change a little as the needs of the different games change,
but it's a healthy and encouraging start when you see your initial. list
of forty (or whatever) verbs almost immediately whittled down to th1rtv.

The rest of the verbs are very much up to you, but again they will
to a large extent be dicated by the problems that have to be solved.

There is no point in having a can of fly spray to kill the giant fly if the
verb SPRAY is not included in the vocabulary. KILL is too woolly a
word, and could produce the wrong response if the spray was not
being held.

Additional verbs should also be there, just to encourage diversificatio~
of response from the computer, and keep the player's interest. A goo
idea is to give bizarre ideas on the part of the player equally bizarre

92

onses from the computer.
resP

It all adds to the humour of playing this type of game.

Amazing

everv adventure has a maze of one sort or another, and having got
our verbs and nouns, it makes sense to put a maze somewhere.

As the diagram below shows, hard mazes are very easy to construct,
simply by giving every one of (say) six rooms the same description,
50 the player always thinks he's in the same room, and if he makes
a move in any one of the three directions you don't want him to move
in, why, send him back to the start! Like this : =

ConsCIUC-bon o/ a. strriple 1'10).e. US!~ a.

one-w~ ~sf~.

7 ak0:J a. w-rong tu.rl'Zln3 1Csuii.s ,n_ f:Ae

player rdurn.;1:5 f:o root'? GI .

f

The ~ ~ !Ju-~/, /he mC13e is to
~ v-v-s-£-£.

93

Some General Rules

Although we've been looking at specifics for the last few pages, for
the next half dozen pages or so we'll turn our attention to some general
rules when writing these games, and concentrate on five of the most
important parts of every adventure game:

1) Movement of characters

2) Responses to inputs

3) Screen displays

4) Picking things up & dropping them down

5) Problem solving

Movement

As your character moves around his wonderful adventure world, there
are obviously certain rooms he will and will not be able to go into
straight away.

Some rooms will be purely east-west or north-south corridors, in which
case it would be rather silly to tell your character that he could move
north/south and east/west respectively.

You may or may not display which directions he can move in at all.
Certainly the original Adventure didn't, and you were left to your own
devices to find every possible direction out of a room, hence the need
to draw a map. That game was additionally complicated by having
up and down as well as the four cardinal compass points, and also
having north-east, south-west and so on.

In Underground we've stuck purely to the four cardinal directions, with
up and down movements being handled in specific problem areas.

If you don't want to display the possible directions it will certai~ly
prompt the player into drawing a map, and it might well annoy ht~
considerably to be told over and over again 'YOU CAN'T GO THA
WAY', although interest could be sustained by the addition of the little
word YET, thus making him think Aha! perhaps I can go along there
later.

94

ersonally, I'm in favou~ of displaying th~ available choice of directions,
p 't speeds up the playing process, but tf necessary you can just resort
:~~ints like 'A VAGUE TRACK HEADS OFF TO THE SOUTH', and

the like.

It's up to you, but whatever style you pick, make sure that you stick
to it throughout the game.

screen Responses

This is obviously the factor that is most important in keeping the interest
and attention of the player throughout the game, and if you want to
resort to sound, colour and graphics that's up to you.

However, the simple text-only game without any sound has been used
throughout this book, so that's what we'll concentrate on here.

In designing and writing your adventure there is an important factor
to bear in mind whenever you're planning the responses to the
statements typed in by the player in response to the WHAT NOW
prompts, and that is that people playing adventures will never, ever
type in what you want them to.

You may have a situation where a player comes to a halt in front of
a gate that he can't climb over because the top of it is riddled with
barbed wire (an escape from Colditz type adventure?), until he gets
hold of a set of wire cutters. You have programmed all your responses
to GET GATE, GET WIRE, and so on, and are waiting for the player
to get the cutters and type CUT WIRE.

What if he types CUT GATE? What happens then? Or what about
something typed in in sheer desperation, as people do, like EAT GATE?
Does the gate get swallowed up in a display of apparent relish?

Anticipating people's lines of enquiry is one of the most difficult things
to allow for, and will take up an awful lot of program code that will
Probably never be used.

Still ev 'f · · d f k, ~n 1 1t 1s use only once at least you'll have the satisfaction

ho , nowmg that someone out there will consider that the game that
es Pia · · Ying 1s an extremely robust, well thought-out adventure.

~~ays try to anticipate the impossible. You'll never manage all of it,
ourse, and will have to rely on some stock I DON'T UNDERSTAND

95

type responses, but a few of those mixed up and one picked out at
random will keep the interest from flagging.

And never forget the use of the word YET. It will keep a player trying
long after the more straightforward 'YOU CAN'T OPEN THE GATE•
will.

So the golden rule here must be to keep it interesting, and try to
anticipate everything that the player might type in. You won't get thern
all, but at least you can conjure up some different responses.

Also, a large list of verbs is a great help here: even if the responses
are only short and sweet, at least the player will be seeing something
different on the screen.

Screen Displays

To a small extent we've covered this one already, but it's worth going
over some of the ground again.

The use of graphics has been deplored often enough before now to
render any comment here redundant, although you might think the
odd display of a sword or amulet every now and again might liven
things up a little. But nothing can beat the written word.

Sound is a different question, and the arguments concerning this are
almost as legion as those concerning the use of graphics.

My own view is that if you're going to use sound, it must be done
extremely well, as the computer is capable of a very complex series
of sound outputs. If you're only going to give a little beep every now
and again, it's hardly worth the effort of putting it in there in the first
place, and you'll soon have people racing for the volume control and
a blessed silence.

If done well, it can greatly enhance a game, as people who have played
the Temple of Apshai on a Commodore 64 will know: the use of sound
is very good here, and the whole atmosphere of moody, omnipresent
danger is well presented.

On the other hand, all their programming efforts are wasted if
somebody turns the volume down. Be prepared to have sound in your
programs if you wish, but don't be disappointed if everyone
immediately adopts to play out the game in silence.

96

'The words that ar~ displayed in the screen are obviously. dictated by
h responses you ve allowed for, but an overall attractive layout is

t ebe desired, usually using lower case, since most people seem to
to f P h . , efer that or some reason. er aps 1t s more restful on the eyes as
pru do battle against a giant troll!
yo

Silly little things can so easily spoil a game in this area - if your room
descriptions ov~rlap the edge of the screen so that words are split up,
or an inventory hst ca~ses some of the objects to be displaced against
each other, or even if your output is riddled with spelling errors.

It doesn't take too long to check all of these things, and the results
are well worth the trouble. A neat adventure is more likely to be played
than a badly spelt, badly laid out one.

The golden rule here? Keep it simple, but keep it tidy.

Picking Things Up and Putting Them Down

Two of the most important words in the adventurer's catalogue are
GET and DROP, and in chapter 6 we take a more detailed look at these
two words as they apply to the game Underground Adventure.
However, a few general words of advice before we get to that chapter.

~bviously, in any game there will be a number of things that you can
pick u~, ~nd a number that you can't, with the former probably far
outwe1gh1ng the latter. Nevertheless, all possible occurences must be
taken into account, and just because you know that the BARRED
GATE is too heavy to carry, that won't stop virtually every player who
comes along from attempting to pick it up and walk off with it.

Anot~e~ annoying thing to find in any adventure program is a
~escnpt1on that might read something like 'YOUR PROGRESS IS

ALTED BY A SOLID WALL OF ROCK', and when you type in GET
~0AL,L, the only response is 'I CAN'T SEE ANY WALL HERE', or 'I

NT KNOW WHAT A WALL IS'.

~ook out for that one, for although it can be covered by a blanket
Prs~onse of NO!, that is not very good practice and will certainly not
ac~ uce an excellent adventure game. Far better to have a response
CA~aRlly geared to the request like 'THE WALL CANNOT BE

IED', or something like that.

80rneth' · ings in a game are only meant to be carried after certain actions

97

have taken place, in which case you'll need a number of variables to
flag the progress of the adventurer, and you'll also have to use the
word YET to keep the level of interest there. 'YOU CAN'T CARRv
IT YET', will have someone attempting to carry wha~ever IT is until
the cows come home, even if they never can carry 1t.

When dropping things, a subtle level of difficulty comes into the garne.
In Underground, after you've made friends with t~e bear a~d he's
happily trundling around the caves afte~ you, .dropping .anything Will
cause him to think that you're throwing things at him, and he'll
disappear in a sulk to a random part of the caves, never to be GOT
again.

Dropping bottles is usually a good one, since you can have them break
on your adventurer, thus rendering them useless for the r~st of the
game. The original Adventure had as one of i~s trea~ures ~Ming Vase,
but dropping it caused it to smash into delicate little pieces, unless
(of course!) you'd taken the precaution of placing a pillow underneath
it.

GET and DROP are fun, and don't confuse GET with TAKE. The ~o
words are not the same! For instance, people talk about T AKEmg
medicine, not GETting it!

Problem Solving

The key to any adventure is how good and how complicated the
problems may be in a game, but don't make it too complicated to get
started, or your adventurer might give up in disgust and never play
an adventure game again.

Encourage people by at least letting them get started, and then pile
the problems on, preferably making the first few lean towards the easv
side, and have them get harder as the game gradually progresses.

The Scott Adams games are particularly good here, as it is always
possible to get somewhere at a first sitting, even if that s~mewhe~~
isn't very far, and you can gradually improve your progress iust abo
every time you play the game.

Problems usually have to be solved in a set order too, in that solvin~
one leads you to another, which gives you a clue to an earlier hazar
you were puzzling over, which in turn sets you off somewhere else,
and so on.

98

number of problems in a game is obviously up to the writer of
fhe ame, but too many will soon discourage people. A problem every
the~ will become totally boring after only a short playing session, but
roo ·ntervention of a few rooms between hazards will soon perk up
!~:~layer, even if he does walk into another one almost immediately.

5
me problems will have to rely on a number of events taking place.

1
° Underground Adventure, one of the hazards you 're faced with is

nverv steep incline that you can't climb up by yourself, and the rope
~hat you've previously used to shimmy down a steep drop isn't of any
use to you here.

A little thought, or a read of the old parchment if you find it, leads
you to conclude that you must build yourself a ladder, for which you
need some wood (you recall a plank somewhere), some nails, and
something to hit it all into shape with. Aha! The axe. But the wood
has to be cut into shape first, before you can make a ladder. Only when
you've got a collection of neatly cut timber can you make the ladder,
and proceed to the next set of problems.

So, keep up the interest, and let people get a little further each time.
And above all, don't make it an unsolvable adventure!

Program Listings From Underground
Adventure

In this section of chapter 4 we're going to give you all the lines of code
that you've not already seen, and which won't be found in the sections
on verbs and data on chapter 6. So, if you're going to type the whole
thing in, this is the place to look at for that missing piece of code that's
been puzzling you.

Of course, in common with the rest of the book we' re not going to
present the code without any sort of explanation.

~ach line will, where appropriate, be fully explained, along with an
1 ea of how that line could be incorporated into a program of your own.

~orne of the sections of the program that we'll be covering here include
be rules about what happens when the bear is following you, the fights
~tw~en the gargoyle and yourself, the checks to see whether you're
berrying a bottle of oil, a bottle of whisky or just a plain old empty
of ~le, and most important of all the lines that deal with the inputting

ata, and the analysing if that data as it is typed in .

99

We'll take each section as it comes in the game, rather than divin
about all over the place, so that hopefully you'll be able to see 9

coherent whole being slowly built up, with all the missing parts slottin a
logically into place, bearing in mind of course that you've already see~
the movement listing, and that the data comes later on.

So, without further ado, let's get into the game.

If, by the way, you think that we've sometimes left rather large gaps
on the pages, this is very true, but it's only there for you to use to
put your own notes in when adapting these routines for your own
purposes, so the book builds up to become more YOUR book of
exploring adventures rather than just a text book.

Don't worry: we'd have charged you the same even if we had filled
up every page!

The Bear and the Verbs

This part of the program deals with the presence of the bear, and the
handling of the verb number as it comes back from the routine in lines
390 to 412, which we'll come to in a minute.

206 IFTBTHENOB/.(9) =CP
208 I FTBc 1THENPR I NT:PR I NT:PRINT "THERE ' S A TAME BEA
R FOLLOWING YOU! "
209 I FTBANDCP•45 THENPRINT" THE LADDER SNAPS I N TWO!
!":08/.(1 3)=01 Pl.<45 ,1)=0 :CP=45
2 10 GOSUB 390
2 20 I FVB=3 4THEN 1950
225 IFVB>9ANDNO$=" " THENPRINT" YOU NEED A DIRECT OBJ
ECT.": GOT02 10
2 27 IFNO:t:<> "" ANDVB =1 ANDNO =O THENPR INT " THAT DOESN ' T
MAl<E ANY SENSE . II : GOT021 0
2 40 ONVBGOT0270 ,30 0 ,200 , 500,540 , 560,650 , 1890 , 690 , 3
00,780,880,900 ,950
250 ONVB-14GOT01 0 0 0 ,1050 ,11 00, 1150,1200,1 250,1 3001
13 5 0
260 ONV8-22GOT0 1400, 1450 ,1500 1 1550 ,1600,1650, 17001
1750 ,1800,1850 ,1900 ,1950
26 2 ONVB- 3 4GOT01960 , 1970,3000 , 320 0

100

Explanation

Line 206: check the bear flag (TB) and if this is set put the bear
(OB%(9)) into the current room (CP).

une .208: check for bear again, and if present print up a simple message.

Line 209: check the bear is there, and if he is and you're climbing up
the ladder in room 45, then the ladder snaps in two! The ladder
disappears (08%(13) = 0), the south exit from room 45 is closed
(P%(45,1)=0), and you are back in room 45.

Line 210: gosub to the input routine.

Une220: if the verb number is equal to 34 (JUMP), then go to line 1950.

Line 225: if the verb number is greater than 9, but you've only typed
in one word, print out a simple message and start again .

Line 227: if the verb number is 1 (GO) , and you've typed in a non­
recognised word (NO = 0, and NO$ = "something"), then print a simple
message and try again.

~ines 240-262: take the verb number and go to the appropriate line
1n the program.

101

Data Validation Routine

This checks to see what you've typed in from the subroutine in lines
60000 to 60140, which we'll get to later, and splits your input up into
a verb and a noun, where applicable.

:590 PRINT: PRINT" CCD I RVSJWHAT NOW?COFFJ "': GOSUB6oo
00: PFH NT:
392 NO$="":VB:t="":VB=O :NO=O
394 LC=LEN (CM$): FORI=1 TOLC: I FM ID$ <CM$ I I I 1) < >" "THE:
NVB$=VB$+MID:f.<CM:t,I,1l:NEXT
396 V1$=VB:f.:VB$=LEFT$CV1$ 1 3 l:FORI=1TONV:IFVB$Cil•V
BSTHENVB=I:GDTD402
398 NEXT
400 VB=1:NOS=VBS:GOT0406
402 IFLEN<V1$l+1 >=LEN<CM$lTHENNO=O:RETURN
404 NO$=RIGHT$CCM$,LEN<CM$l-1 - LEN<V1$))
406 N1$=NO$:NO$=LEFT:f.(N0$,3l:FORI=1TONN:IFNO$=NO•(
IlTHEN412
408 NEXT!
410 NO=O:RETURN
412 ND=I:HETURN

102

Explanation

une 390: print up the WHAT NOW?* prompt, and go to the subroutine
at 60()00 to get the input of data.

Line 392: declare a few variables (length of noun, length of verb, verb
number and noun number) to equal zero.

Line 394: perform a loop LC times, where LC is the length of the input
string CM$. Carry on until you find a space in CM$, by searching
through one character at a time.

Line 396: set Vi$ equal to the verb, and take the first three letters of
it, since that's all we analyse. Perform a loop NV (number of verbs)
times, to see if we recognise the verb, and if we do set the verb number
equal to I : the Ith verb. Then GOTO line 402

Line 398: carry on the NV loop, because we don't recognise the verb
yet.

Line 400: there's no verb, therefore only one word was typed in.
Assume the verb is an implied GO, as in GO NORTH. Set the noun
string equal to the verb string (i.e. that which was typed in as CM$).
GOTO line 406

Line 402: if the length of the string plus 1 is equal to or greater than
the length of the input string, i.e. we've only typed in one word, then
there is no noun, and we return from th subroutine with a single verb.

Line 404: find the noun NO$ from the original input string CM$, by
taking the RIGHT$ of CM$, starting at the character after the space.

~ine 406: set N1$ equal to the noun. Check to see if we recognise
rt by going through the loop N N (number of nouns) times and checking
to see if it's equal to a known noun. If it is go to line 412.

Line 408: continue loop because we don't recognise the noun.

fline 410: unrecognised noun, so set noun number to zero and return
ram subroutine.

103

Death or Glory!

This is the death routine, and is called up from a number of spots in
the program in case of an untimely demise.

612 F'RINT"YOU ' RE DEAD!"
614 PRINT"DO YOU WANT TO PLAY AGAIN <Y DR N> ? 11

616 GETPA$: I FPA:t:= II y II THEN RUN
618 IF F'A$= "N" THENPRINT"Df<AY 1 BYE. ":END
620 Gt1TO 616

Explanation

Line 612: print the 'you're deadl' message.

Line 614: ask for another game.

Line 616: if they've typed 'Y' then RUN the program again.

Line 618: if they've typed 'N' then print out a goodbye, and END the
program.

Line 620: no one's pressed anything, so loop back to line 616 and
continue to do so until they do.

The Start and the End

These lines appear at the very start of the program, as you get the
door slamming shut behind you, and the very end, if you ever manage
to get out alive. In reverse order we have:

251 (l PR I NT: Pru NT II AND YOU CAN NOW L EAVE THE CAVES! II

: PRINT: PRINT"CONGRATULATIDNS ! II: END

Explanation

Line 2510: you're out, called up from another line in the program, in
the OPEN routine, lines 780 to 794, so print a message of
congratulations and end the program!

104

..,00 PR I NT" [CLR JOH DEAR 1 THE GATE TO THE CAVES APP
5... ro HAVE SLAMMED SHUT! II

E~~~ F'RINT:PRINT"THAT ' S TORN IT! YOU'LL HAVE TD F
5-'c ... THE~:EY NOW BEFORE YOU CAN GET OUT. "
I~g4 F•RINT: PRINT"BUT DON ' T WORRY. IT ' S IN HERE SO
5" RE'" r!EWHE • · -:r • _

205 PX(._, IC)) -0
: 2o6 GF=C>1GOT0210

Explanation

Lines 5200-5204: print message to say gate's closed behind you, called
from line 277 in the GO routine.

Line 5205: close of the north exit from room 3 (P%(3,0))

Line 5206: set the gate flag, GF, and return back to line 210 again.

Checking for Bottles and Torches

This routine is called up many times in the program, and is used to
check to see whether you mean a lit or an unlit torch, or a bottle of
whisky, a bottle of oil, or an empty bottle.

This is necessary because the data checking routine covers earlier will
halt at the first noun it recognises, and the response in all the verbs
will obviously depend on whether you've got the relevant torch or
bottle. So, we must adjust the noun number NO accordingly.

5300 IFN0=45ANDOBX<461 = -1THENN0=46:RETURN
5302 IFN0=19ANDOBX<51)•- 1THENN0=51:RETURN
~304 IFN0=19ANDOBX<52l = -1THENN0=52:RETURN
5306 IFN0=18ANDDBX<51>=-1THENN0=51:RETURN
5308 IFN0=3 9ANDDBX<521=-1THENN0•52:RETURN
~310 RETURN

Explanation

Line 5300: if the object number is for the old torch (08%(45)), and
You're carrying the blazing torch (08%(46) =-1) then change the noun
~Urnber accordingly. Return from this subroutine to whatever part of

e Program called it up.

Line 5302: if the object number is for the empty bottle (08%(19)),

105

and you're carrying the bottle of oil (08%(51) =-1) then change th
noun number accordingly. Return from this subroutine to whatevee
part of the program called it up. r

Line 5304: if the object number is for the empty bottle (08%(19))
and you're carrying the bottle of whisky (08%(52) = -1) then chang~
the noun number accordingly. Return from this subroutine to whatever
part of the program called it up.

Line 5306: if the object number is for the pool of oil (08%(18)), and
you're carrying the bottle of oil (OB %(51) = -1) then change the noun
number accordingly. Return from this subroutine to whatever part of
the program called it up.

Line 5308: if the object number is for the pool of whisky (08%(45)),
and you're carrying the bottle of whisky (08%(52) = -1) then change
the noun number accordingly. Return from this subroutine to whatever
part of the program called it up.

Line 5310: none of these options, so return from the subroutine.

The Hostile Gargoyle

This is the routine that handles the hostile gargoyle, and checks to
see whether he or you have been succesful in your knife and axe
throwing attempts.

6000 PRINT:PRINT"THERE IS A HOSTILE GARGOYLE WATCH
ING YOUFROM THE SHADOWS!"
6001 IFCINTCRNDC.5>*100+1))) 99THEN6020
6002 PRINT"HE HAS A f<NIFE : HE THROWS IT AT YOU! "1

OB'l. (40 > ==CP
6004 IF C INT CRND C. 5) *100+1 l > >99THENPRINT"HE ' S KILLE
D YOU!":GOT0612
6006 PRINT"IT MISSED!":RETURN
6010 IF INT CRND <. 5> * 1 O~· ll > 1 THENPR INT" YOU' VE JUST 1(1
LLED A GARGOYLE!":OB'l.C40l=O:GOT06014
6011 PRINT"YOU MISSED THE GARGOYLE!":OB'l.C40l=CP
6012 OB'l.C4l =CP:ZZ •ZZ-1
6013 FORl==1T02000 :NEXT:GOT0200
6014 NP=O:GOT06012

106

Explanation

Line 6QOO: print out a hostile message.

Line 6001: if the random number generated is greater than 99, in a
range of 1 to 100, then the gargoyle turns into a thief at lines 6020

to 6()40.

Line 6002: print out 'He's got a knife and throws it at you', and place
the gargoyle in the room CP, meaning that he's here until the bitter end.

Line 6004: if the random number generated is greater than 99, on a
scale of 1 to 100, the gargoyle has been successful and killed you .
GOTO the death routine.

Line 6006: a shoddy shot and he missed, so return from this subroutine.

Line 6010: if the random number generated is greater than 1, on a scale
of 1 to 10, then you've killed him, so jump to line 6014 and remove
the gargoyle (08%(40)=0).

Line 6011: yah boo! you missed, so the gargoyle stays there.

Line 6012: your axe (08%(4)) is placed in the room CP, the number
of objects that you're carrying (ZZ) is therefore reduced by 1

Line 6013: delay to enable reading of message on screen then GOTO
line 200 '

Line 6014: clear gargoyle present flag, since you've killed him and
GOTO line 6012 '

The Thieving Gargoyle

Th he gargoyle has turned into a thief, and here we check to see what
e can take.

~~20 PRINT"HE APPEARS FROM THE SHADOWS AND STEALS
· :Gs::o
:~~2 IFOB%C2l•- 1THENOB%C2>=63aPRINTOB$C2l:GS=GS+1
602

4 IFOB%<7>=- 1THENOB%C7)=63:PRINTOB$(7l1GS=GS+l
•t 6 IFOB%C14l=-1THENOB%C14>=63:PRINTOB$C14l:GS=GS

107

6028 IFOBX(161=-1THENOBX<16l=63:PRINT08$(16l:Gs-Gs
+1
6030 IFOBX<191=- 1THENOBX<191=63:PRINTOB$C19l
6031 IFOBX(331=- 1THEN08X(33l =631PRINTOB$(3311Gs.Gs
+1
6032 IFOBX<341=- 1THENOBXC34l=63:PRINT08$(34l:GS=Gs
+1
6034 IFOBXC 38l=-1THENOBXC38l=63:PRINTOB$(38l:Gs~Gs
+1
6036 IFOBXC441=-1THENOBXC44l•63:PRINTOB$C4411GS•Gs
+1
6038 I FGS=OTHENPR I NT II NOTH I NG! YOU WERE LUCf<Y ! II I
6040 RETURN

Explanation

Line 6020: print simple message.

Line 6022: if you're carrying the staff (08%(2)), then place them in
the maze (CP = 62) and increase the thief counter GS.

Line 6024: if you're carrying the dynamite (08%(7)), then place it in
the maze (CP = 62) and increase the thief counter GS.

Line 6026: if you're carrying the nails (08%(14)),then place them in
the maze (CP = 62) and increase the thief counter GS.

Line 6028: if you're carrying the mirror (08%(16)), then place it in the
maze (CP=62) and increase the thief counter GS.

Line 6030: if you're carrying the bottle (08%(19)), then place it in the
maze (CP=62) and increase the thief counter GS.

Line 6031: if you're carrying the brick (08%(33)),then place it in the
maze (CP = 62) and increase the thief counter GS.

Line 6032: if you're carrying the fly spray (08%(34)), then place it in
the maze (CP=62) and increase the thief counter GS.

Line 6034: if you're carrying the sword (08%(38)), then place it in the
maze (CP=62) and increase the thief counter GS.

108

. e6036: if you're carrying the matches (08%(44)), then place them
~nthe maze (CP = 62) and increase the thief counter GS.

L·ne 6038: if the thief counter GS hasn't been set, then nothing has
b~en stolen, so print a simple message on the screen.

Line 6040: return from the thieving subroutine.

Of Panthers and Crevices

Two separate routines here, one for dealing with the panther in the
presence of the bea~, and one for the problem encountered in room
5,1: the narrow crevice.

6054 PRINT 11 THE PANTHER FLEES AT THE SIGHT OF THE
BEAR ! II : P/. (42 I 1) =43: OB/. (11) =O

6055 P$C421= 11 WALf<ING PAST THE SCENT OF OLD PANTH
ER! II : GOT05004

Explanation

Line 6054: print appropriate message, clear south path from room 42,
and remove the panther (08%(11))

Line 6055: change the room message, and back to line 5004.

6300 OC=O:FORI=1TOLO: IFOB/.Cil=- 1THENOC=OC+1
6302 NEXT
6304 IFOC >1THENPRINT"SOMETHING WON ' T FIT THROUGH H
ERE.":GOT0210
6306 I FOB/. (37 I < >-1 THENPR I NT 11 SORFN. I CAN 'T FIT THR
OUGH. II: GOT0210
6308 CP=100: PF~INT"THE STONE GLOWS WITH A SHINY LIG
HT AND LETS YOU THROUGH. 11

6310 GOTO 210

109

Explanation

Line 6300: set object counter QC to zero, and go through a loop LO
times to check for the presence of every object. If you find one, increase
the variable OC.

Line 6302: next time around!

Line 6304: if you're carrying more than one thing, then print suitable
message and go to line 210

Line 6306: if you're not carrying object 37 print suitable message and
GOTO 210.

Line 6308: put you in room 100, print message.

Line 6310: back to line 210 again.

May I Introduce You 7

This is just the introduction to the game, and doesn't really need any
explanation. The first line just sets the screen, border and background
colours.

110

on POKE53280,6:POKE53281,7:PRINT''CCLR,CDfBLKJWE
100M~ TO • ••••• UNDERGROUND ADVENTURE!
L-~~n 2 PF~ I NT: PR I NT: PR I NT 11 HERE YOU ARE, MI LES AWAY FR .
1 C)t HOME' TRY I Nf3TO DEC I DE HOW TO SPEND II ;

OM 04 PR I NT 11 YOUR AFTERNOONS. 11

1 O~o6 F'R I NT: PR I NT: PR I NT 11 DD YOU LOOI< FOR PEACE AND
1 O. j TUDE, OR DD YOU LODf< FOF< DANGER AND 11

;

s~;00 PR I NT 11 ADVENTUF~E ? 11
: PR I NT: PR 1 NT: PR r NT 11 OF couR

lLEL YOU LOOK FOR ADVENTURE' LIFE rs TOO SHORT!
S ' UB 1'"' . . r o010 GOS 4UUJ
~0012 PRINT 11 CCLR,Cf)]YOU ARE ON A DUSTY OLD BEATEN
RACf<' HEAD I NG SOUTH II ;

i11013 PRINT 11 TDWARDS SOME CAVES 11
;

i0014 F'RINT 11 HIDDEN AWAY IN THE HILLSIDE IN THE DIS

TANCE. II

10016 PRINT:F'RINT:PRINT 11 IT IS RUMOURED THAT THE CA
VES ARE DANGEROUS. 11

10018 PRINT: PRINT: PRINT 11 F'AH ! YOU SAY, AND QUITE RI
GHT TOO. II

10020 PRINT: PRINT: F'RINT 11 WHO f<NDWS WHAT IS TO BE FD
UNO INSIDE THEM ? 11

10022 PRINT:PRINT:PRINT 11 YOU DECIDE TO GO AND HAVE
A LOOK. II

10024 GOSUB 12000
10026 PRINT:PRINT:PRINT 11 0K, JUST SETTING EVERYTHIN
G UP FDR YOU. II

10028 RETURN
12001) PR I NT: PR I NT: PR I NT II PF~ESS 'SPACE ' TO CONT I NUE II
I

12002 GETSP:f.: I FSP:t.< >II II THEN 12002
12004 RETURN

111

Input Subroutine

This all-important routine governs what can and what can't be typed
in, and is also a way of stopping anyone using the cursor control keys
to foul up the inputs.

It will allow you to delete characters only up to the input prompt, and
won't allow you to press RETURN on a null prompt. If the STOP key
was disabled, it would also prevent crashing out of the program as wen.

60000 CM$= II II :
60002 PRINT" CRVSHCOFF, CLJ ";
60005 GET z $1 IF z $=II II THEN6000:S
60010 Z=ASCCZ$l1IFZ>95THEN6000:S
60080 ZL=LENCCMt.l:IFZL >27THEN6011 0
60100 IFZ >31THENCM$~CM$+Z$1PRINTZ$;:GOT060002
60110 IFZ =13ANDZLTHENPRINT" ":RETURN
60120 IFZ=20ANDZLTHENCM$=LEFT$CCM$,ZL-11:PRINTZ$;
60140 GOT060002

112

Explanation

. e 6()000: set input CM$ to zero string. un
une 6()002: print ~P prompt in reverse field, print a'*', and move the
cursor back over 1t.

une 6()005: get a character, and if nothing is pressed wait around until

it is.

Line 60010: check the ASC value of the key being pressed, and if it's
greater than 95 go back for another character. This stops any unwanted
characters being accepted by the computer.

Line 60080: take the length of the input string, and if it's greater than
v then GOTO 60110, because we've had enough!

Line 60100: if the ASC value is greater than 31, then it's a legitimate
entry. Add it to our input string, and echo it back to the screen.

Line 60110: if we've pressed a carriage return, and the string length
is greater than 0, then return from the subroutine.

Line 60120: if we've pressed the space bar, and the string is greater
than 0, then the input string becomes the left side of the string, taking
the ZL-1 first characters. Echo the character to the screen.

Line 60140: go back to 60002 and start off again with the next character.

A powerful routine that could easily be adapted to trap even more
characters if necessary.

113

114

5

Creating Your Own Adventures

Introduction

We've already mentioned that one of the hardest parts of creating an
individual adventure game is making it just that: individual.

More and more brave new worlds are being explored every day, and
a glance at any computer magazine, particularly the advertisements
inside it, will reveal that there are many, many adventures on the market
for all kinds of machines, and the themes used seem to range from
the sublime to the ridiculous, from Colossal Caves to Pi-Men.

Five New Adventures

To the newcomer, eyeing this vast range of adventure games, it must
seem that there is nothing new under the sun, and that any attempt
to create a new, wonderfully different, adventure world is doomed
to failure.

Nothing could be further from the truth, and in this section we're going
to. outline five full adventures for you, some old, some new, but all
With one thing in common: they haven't been written yet.

Acknowledgment

So, if any of you take up the challenge, I hope one day to see
~ventures based on these themes on the market. No royalty would
"" Charged, no copyright laws infringed, but an acknowledgment

0uld be nice!

115

The five areas that we'll look at are all individual in their way, and no
of them cross over into any of the others: they are five unique scenarj ne
that could easily be built up into complete and enjoyable games.Os

We won't be giving you any maps, so that you can construct the entir
game for yourself, but an overview of the game, along with a selectio e
of possible problems, and the corresponding objects to go with the~
will be given.

To round off this section, we'll give a complete overview of the art
of designing a new adventure.

But for now, let's head off in search of fame and glory, and arrive in ...

116

The Streets of London

117

Introduction

This would be a relatively easy map to construct, since London is a
well documented town. Of course, you could always choose your ow
town as the base for a game if you wanted to, but an adventure base~
on London is probably destined for more success than one based on
Wigan: sorry, Wigan!

So what is the theme of the adventure?

Theme

There could be a number of different themes here, as Britain's capital
city is rich in ideas. As one possible starting point, you may remember
the Golden Hare game that was constructed a while ago.

This was certainly a real life adventure game, in that the reading of
a book gave one a certain number of clues as to the whereabouts of
a Golden Hare, buried underground somewhere in Britain. This caught
the imagination of the public so much that many people were sent
scurrying around the countryside, following the clues and trying to
find the Hare.

In the end it was, I believe, a dog that found the Hare, by digging
nearby its owner as he took it for a walk, but that, I suppose, is life!

This idea could be adapted, and our hero could be sitting in a London
apartment, reading the evening newspaper, and find to his amazement
that the paper contains a series of clues to the whereabouts of some
great treasure hidden somewhere in the city.

Following the clues leads you all over the city, and hazards there would
be a-plenty.

Hazards

The underground could go on strike, and you'd find yourself havin~
to take a bus. None come for hours, thus losing valuable time, an
then four of them turn up at once, only one going in the right direction.
Which one do you catch?

118

could try taking a taxi, but the taxi takes you on a scenic tour
Yf~ondon that takes hours before you get to your proper destination.
0 n the fare is too high, you haven't got enough money, and you
'Thee to haggle with a noisy taxi driver in the middle of the streets of
h8V
London.

'fhere are many other possible problems that one could construct, all
based very much on real life in this re-construction of a real town into
an adventure game.

you would have to be careful that the details about the locations of
objects were true to life. You couldn't, for instance, have someone
taking the Victoria line and ending up at the Barbican, since the Victoria
line goes nowhere near there.

on the other hand, just about every diary ever printed contains a map
of the London underground, so you could soor:i chart up a reasonable
map for your game.

Other Adventures

Or indeed, the underground could also be used as the basis for your
whole adventure, with a series of Reginald Perrin type disasters
occuring to prevent you from getting from A to B in the given time
limit. The sort of disasters that kept Perrin from getting to work on
time every day: a wombat escapes from London Zoo and chews its
way through the underground line, and so on.

A tour of London could give the would be adventure writer more ideas
than just about anything else.

How about going down to Kew Gardens, and taking a walk through
the Tropical House? That ought to be good for a few ideas for a jungle
adventure, with man-eating plants and other hazards to avoid.

Or ~gain, the Chamber of Horrors in Madame Tussauds ought to
coniure up a demonic idea or two.

Bfut to end up with one solid adventure, we'll take that original idea
0 some treasure being buried under the streets of London, and all
You know is that it's in London somewhere.

119

Scenario

Reading the evening paper one Monday night in your apartment, Yo
discover a strange article that seems to point to the location of a buri~
treasure buried deep underground somewhere in the city of London.

The only clue that the article gives to this location is that the treasure
originally came from 'Underneath the Arches', and was moved frorn
there many years ago.

You decide to set off in search of adventure, and head towards the
arches.

Thus we could start off, and the first problem could be to get frorn
the apartment in Muswell Hill to the Arches, which (in our adventurer's
mind) would presumably be the arches behind Charing Cross Station.

After solving that problem (GET BUS, BUY TICKET, and so on),
arriving at the arches would reveal a pub called the Ship and Shovel.

Is this the next clue? Does our intrepid hero have to go off and acquire
a shovel and find a ship? Or does he merely go into the pub?

ENTER PUB

OK.

THE BARTENDER IS AUSTRALIAN, AND SAYS THAT 'DOWN
UNDER IS THE ONLY PLACE TO BE'

WHAT NOW*

Down under? Another clue, and so we go off in search of a shovel,
and somewhere to dig underground.

This could be the start of a very intriguing adventure, set as it is in
real life situations (one of the bartenders really is Australian!) that would
give the player a sense of familiarity, but pitching those situations into
a different role from the norm.

The game could encompass many famous London landmarks, each
holding a clue on the trail, and each presenting its own particul~r
problems. Big Ben would presumably feature somewhere, and, as in

120

e famous scene in the re-make of the Thirty Nine Steps, a hazardous
:irob out onto the clock face could be another hazard to overcome.

conclusion

An adventure like this is a departure from the usual themes, and as
such would score ?n.the originality stakes. The problems to solve could
be (relatively) realistic ones, and the player would have that sense of
having been here before, but in real life.

our next adventure takes us into more familiar adventure territory, as
we head off into outer space!

121

Lost in Space

+

122

...:;. ...
(

.... (~

6 .'·
\~

Introduction

h re have been a number of adventures set in outer space, and the
~ ~ic Star Trek series of games that have been written for every
carnputer under the sun, were probably the inspiration for a number
co . h' of early games in t 1s genre.

However, most of the Star Trek ones tend to be tactical battles, rather
than true adventure games, and one has to go beyond the usual 'You
are in command of the US Enterprise, and your mission is to destroy
the Klingons' type of game, and put the player into a true adventure
setting.

Theme

One possible idea would be to have your hero cast up on a dim and
distant planet, deep in space, with a damaged spacecraft that needs
rebuilding before he can take off again and get back home.

Here we could use some of the more traditional ideas of adventure
games, but put into a modern setting. For example, the majority of
thud and blunder adventures require that you carry a torch around
with you. This could be replaced in this game by an oxygen tank, with
a limited amount of gas, so that the mission would have to be
completed in a set time .

There would be a number of different settings in this sort of adventure.
One part would take place on board the damaged ship, in a search
for plans, more oxygen, and equipment to repair the damage, and if
the hero was silly enough to be wearing the oxygen tank on board
he would lose valuable time when it came to going out onto the planet's
surface.

Having thoroughly explored the ship, and cut past tangled metal,
~J)ened locked doors, and any other hazards you could dream up, the
rne Would come to go outside, with oxygen, and the living gargoyles
~nd littl: dwarfs that inhabit older adventure worlds could be replaced
Y hostile aliens and strange life forms.

123

Alien Hazards

To any reader of science fiction there should be no problem in cornin
up with a million and one problems for an adventurer to solve as h g
explores the surface of a hitherto undiscovered planet. Undiscoverec1e
b~cause _then he won't be able to anticipate any of the problems that
might arise.

Here too, as in the Streets of London, a reasonable amount of realisrn
must come into the game, but your imagination can have a much freer
rein deep in outer space.

Perhaps one could use the discovery of planet-like bodies around the
star Vega, in the constellation of Lyra. A mission could be sent to
explore, but a technical hitch causes the ship to crash and leaves you
as the sole survivor. Being a good few light years away from earth
it's impossible to signal for help, and in any case the radio probably
wouldn't work, so you'd be on your own in a do-or-die mission oriented
adventure.

This could even be written as a two-stage adventure, in that you get
the spaceship working again, but instead of steering your course for
home you head off into the wilds of outer space, since the steering
device hasn't been fixed properly, and then the exploration would take
place aboard the ship in an effort to correct the mistake before it was
too late, and you ended up in Andromeda or something. I knew I should
have turned left at the Pleiades!

Conclusion

Outer space is rich in many things, and it is certainly a rich source of
inspiration for the would-be adventure writer. A nice touch could be
added by having various cameo roles from E.T., Darth Vader, Patrick
Moore, and other stars of screen and space.

But now we'll turn our attention down home again, and travel back
in time to the wild west!

124

Way Out West

125

Introduction

To anyone who's ever seen the wonderful Marx Brothers movie of
the same name, well, you 've already got an adventure game writte
for you! Trains that come off the tracks, keeping the engine goin n
by burning all the carriages, all the essential ingredients of problernsg
disasters and humour are there. '

But for the idea that we'll consider in detail, we're into the more familiar
territory of Butch Cassidy and the Sundance Kid, and an attempt to
rob the town safe.

Theme

You're a desperado on the edge of town, town being a sleepy little
mid-west collection of hotels, saloons and good-time gals. The stars
twinkle in the skys above, but are not joined by the twinkling of money,
which you haven't had for a long time.

You know that this town is used by the railroad to store freight on
long journeys, and that last night the mail train came through. That
train was loaded with money, and all the money is now stored in the
town safe, under the watchful eyes of the sheriff, who's currently
watching a whisky in the saloon down town.

The safe, as you know, is too heavy to carry, and no one's going to
sell dynamite to someone who looks like you!

Since safe-picking is not your acknowledged art, you're going to have
to steal some dynamite to blow it up. This means you'll also need a
source of light somewhere, and when the sheriff hears what's going
on, you'll also need a pistol and some bullets to shoot it out with him
when he finds you.

You'll need a horse to get away, but you can't buy one. Perhaps the
local blacksmith could be bribed into giving you a horse, but only a
good one. You don't want an old nag that collapses under the weight
as soon as you attempt to ride off.

You'll need something to put the money in as well, and you' ll need
a small light to work by. A powerful torch would make people co.~~
and investigate, and the game would be up, you'd be slung in 181

'

126

d
somehow you'd have to get out again.

an

suildinQ up the Game

fhe above scenario could be built into a long and enjoyable game,
"th many more hazards than the ones we've detailed above. The

~tfalls are obviously immense, and the number of different scenes
~~uld be played with a fine humour.

perhaps some real characters from days of old could be included, like
ooc Holliday, Buffalo Bill and the rest.

It's a simple enough matter to build up a town plan, and some of the
characters involved are already there for you, in terms of the sheriff,
the bungling deputy who obligingly drops a key on the floor: just out
of reach of course, nothing is too easy in adventure games.

From this one basic idea, there are many other themes that could be
developed, and which readily lend themselves into adaptation as
adventure games.

Variations on a Theme

We haven't so far mentioned Indians, the civil war, the railroad
pioneers, the gold rush, or any of the other great themes that made
America what it is today.

The Gold Rush would be ideal as an adventure, panning for gold, with
many natural hazards en route that would have to be overcome.

You could explore underground mines, although that has been done
before in Lost Dutchman's Gold and Fool's Gold. Nevertheless, the
area is still barely touched, and a good adventure could still make use
of some of the ideas presented in these games.

But for all that, the idea of robbing the town safe is probably the best,
un~pped, idea, that could lead to a very good adventure indeed. Good
Writing!

127

Murder Mystery

128

Introduction

e of the great untouched ideas in adventure game writing is the
~vinQ of a mystery, not necessarily a murder, although that is what
we'll look at here, but any mystery.

It's hard to explain why this should be so.

Certainly detective novels sell in vast quantities year after year, and
there would definitely be no shortage of plots for the adventure writer
who would like to conce·ntrate on creating a series of mystery
adventures, perhaps with a connecting link like Agatha Christie's
Hercule Poirot, or Conan Doyle's Sherlock Holmes (not forgetting
Doctor Watson!), so that the games are linked together as a whole,
although each one enjoys a separate identity as a full adventure game.

The sort of game that could be created would depend to some extent
on the character adopted as the adventurer. 'Of all the adventure games
in all the world, you had to walk into mine' players would enjoy a
different game from 'it's all part of life's rich pageant' bungling French
detectives, so the game itself would have to take on a character akin
to that of the adventurer solving it.

The Story

As the great detective, a new case is brought to your attention. In
the old manor belonging to the squire of the local village, a few village
notables were sitting down to a pleasant evening meal when one of
them pitched over, dead!

Obviously, the body is examined and found to contain an overdose
of some poison, which narrows the number of suspects down to the
people who were sitting down to the meal, plus all the servants who
normally attend the house. In total, a dozen people are suspected,
and You have to find out who the real villain was.

Developing the Story

In essence, this is a variation on the old Cluedo theme, the popular
~r~ game from Waddington's, in that there are a number of suspects

1th1n a confined area, and you have to eliminate everyone bar one

129

person: the murderer.

Exploration of the manor in search of clues could provide the bas·
adventure scenario, whilst the questioning of the suspects could~
kept on a very simple level, in order to accomodate our two-word
adventure type of game.

In a more advanced game of the Zork variety one could well indulge
in elaborate question and answer routines, but here we'd have to
restrict ourselves to much simpler ideas, perhaps using TAKE
STATEMENT when you're in the same room as one of the suspects
or something like that. EXAMINE SMITH, or EXAMINE SQUIRE'
might reveal some vital clue about their person. '

Building the story up in this way could then provide the basis for an
enjoyable romp, with the detective having to do an awful lot of work
to uncover the truth.

Conclusion

Detective games of this nature, that is, combining an adventure with
a little bit of amateur sleuthing, have been very much neglected, and
could lead to some good games if developed properly.

Not only would the exploration of the manor, or whatever environment
you pitch our adventurer into, provide some entertaining diversions,
by way of locked doors, guard dogs, hidden tunnels, and other hazards,
but the level of brainwork required could combine to produce a good
few hours entertainment.

But now, a much more traditional theme, as we enter the Valley of
Death!

130

The Valley of Death

131

Introduction

The Valley of Death! You can tell from the title alone just what sort
of world we're about to enter, and it is very much the traditional horne
of the adventure writer, with mythical beasts and dragons, hobgoblins
ores and trolls, necromancers and black riders, and a myriad of othe~
illustrious villains from the halls of the mountain king, or rnore
specifically the pages of books such as Lord of the Rings!

This type of game is now enjoying a renaissance in _the_ cinema, with
a number of terrible films pitting the super-hero in hfe and death
struggles against ancient myths and modern animation.

Nevertheless, as a serious adventure game, these can be great fun
to play, and equally fun to write, as you dream up the weird and
wonderful world into which you're about to send your hero.

Origins

The very first Adventure set the tone for this type of game, with hidden
corridors, vast chasms, erupting volcanoes, and descriptions like this
as you go into the heart of the colossal cave:

'You are at the edge of a large underground reservoir. An opaque ~loud
of white mist fills the room and rises rapidly upwards. The lake 1s fed
by a stream which tumbles out of a hole in the wall abou~ 1~ feet
overhead and splashes noisily into the water somewhere within the
mist. The only passage goes back toward the south.'

Or how about this, for a true Gothic description, with just a dash of
humour:

'You are in a north/~outh c~ny~n about 25 feet across. The floor i~
covered by white mist seeping in from the north. The walls exte~
upward for well over 100 feet. Suspended from some unseen point
far above you, an enormous two-sided mirror is hanging para_llel ~o
and midway between the canyon walls. (The mirror is obv1ou?
provided for use by the dwarves, who, as you know, are extreme~
vain.) A small window can be seen in either wall some 50 feet UP·

Tremendous stuff! You know straightaway the kind of world you'r~
walking in, where characters from a Jules Verne novel like Journe

132

to the Centre of the Earth might be expected to appear at any moment.

The Story

All good, traditional stuff, but the area is so vast that many adventures
Still to be written that put the adventurer into a world filled with are

strange creatures, and countless hazards to overcome.

The story of the valley is a simple one. Stranded (you can work out
how!) at the top of the valley, you have to make your way down to
the mouth, walking along~id~ the river as it gus~es down to the ~ea,
sinking into quicksand, bu~lding ~anoes ~hat d~ little m~re than pitch
you headlong into the rapids, with hostile natives stalking you from
the shadows every step of the way.

Strange, terrible creatures inhabit the valley, and you have to kill them
all with a mixture of dexterity, wit and courage before you can safely
leave and make your escape back to civilisation.

Ropes must be built across the river, native arrows must be avoided,
and many other problems must be solved along the way.

The range of story lines in this sort of field is vast, and one could conjure
up a thousand and one tales of sword and sorcery, dungeon and
dragon, that would leave the adventure player just waiting for your
next game.

Conclusion

Here we've explored just five different areas out of the many thousands
that could be used to form the basis of a good, solid, adventure game.
Many areas are still to be touched, and it is worth taking your time
in developing an adventure scenario, as the plot and story line are major
Points in the success or failure of writing an adventure game.

So too are the problems that must be solved, and the ease or difficulty
With which the player can progress to other levels in the game, but
none the less it is the story line that will initially attract a player, and
Start him playing your game rather than any other.

We mentioned earlier the Bible as a source of inspiration, and there
are an infinite number of stories in there that could be turned into long
adventure games. I'm not suggesting you wander across the desert

133

for forty years, but you might have fun trying to cross the Red Sea.

In the end, it is your own mind that is going to conjure up a good or
a bad adventure, and the story must hold true throughout the entire
game, or people will just tire of it and not consider any more of Your
games, not matter how good.

It is a lot easier to bore people than it is to entertain them!

So, at the risk of boring you with a lot of writing, let's take a look at
the construction of Underground Adventure, and the entire selection
of verbs that are used in the game.

134

6
Underground Adventure

In this chapter we are going to present you with the rest of
Underground Adventure, to complement the listings that you've
already seen in chapters 3 and 4.

All that's left to do now is to look at the data, which we'll list in full,
followed by three pages of explanations for the verb data, the objects
data, and the rooms data, and the entire list of verbs that are used
in the game.

As you've probably never written an adventure before, we're going
to go through each verb in turn, giving on one page the listing for that
verb, and every part of the program that handles it, and on the opposite
page we'll give an explanation for the listing, line by line.

Some verbs take up more room than others, and in particular the SA VE
and LOAD routines are quite long. Others do not take up so much
space in this adventure, and so there will be a fair amount of blank
space left on a number of pages. This is there for your own notes,
because in many instances the verb will require a lot more code in your
own games that we've used here.

Thus the space can be used to amplify on the original listing, without
having to have lots of separate sheets of paper lying around
everywhere.

l'he Scenario

You are outside a set of caves that look invitingly out at you. They

135

seem worthy of exploration, and so off you go into the caves and th
darkness within. Finding an old torch and some matches, you Ii he
the torch, and the blazing light fills the caves. As you step further ins~d t
the gates are rocked by the reverberating sound of a solid gate bein e
slammed shut behind you, and your avenue of escape is blocked~

Somewhere in the caves lies the key to the gate, which you must find
before you can escape. You got yourself into the caves, now only You
can get yourself out.

We took a fairly detailed look at this adventure earlier on, so the
description of the perils involved in finding the key can be read there
but it's worth pondering a while on the story line as we've got it set
out here.

The Story Line

This game is set in traditional adventure territory, deep underground,
fighting off mythical creatures and exploring some unusual terrain.

The tunnels and corridors much loved by Crowther and Woods have
been incorporated here, together with a few swamps, a little touch
of magic, and a hazy, misty land that is difficult to pass through. Some
of the hazards will be familiar to players of other adventures, whilst
some will be new, as will be the manner in which these puzzles have
to be solved.

This mixture of old and new has been adopted to al put the player
at ease with familiar territory, and the writer with a good stock of useful
verbs and subroutines that can be used in other stories, and bl to have
enough new material to keep the player interested, and give the writer
some ideas of how new verbs can be accomodated into his own
adventures.

The Writing

This is not to say that this is the only way to write adventure games,
of course it isn't. But it does produce a fairly fast response from the
computer, and it does allow a large range of verbs and nouns to be
accomodated quite easily.

One of its weaknesses is the length of the room descriptions: these
tend to be rather short, and in this way it is sometimes difficult to

136

oduce a different and meaningful description for each room. This
problem could be surmounted by the addition of a few extra lines of
~e in the routine from line 5000 onwards, e.g.

5011 IF CP=24 THEN 8000

aoOO PRINT "IN A LONG DARK TUNNEL THAT HAS BEEN C
ARVED OUT OF THE ROCKS. "

8002 PRINT "THE ROCl<S HAVE WEATHEF:ED OVER THE YEA
RS INTO A THOUSAND AND ONE"

8oo4 PRINT "FANTASTIC FORMATIONS. THE LIGHT FROM
yQUR TORCH FLICKERS EERILY"
9006 PRINT "AMONGST THE SHADOWS, CAUSING THE LIGHT

TO DANCE ABOUT FROM THE ROCKS
and so on, before returning back to the main progr
am again.

Other than that, it works, so let's look at the verbs, starting with GO.

The Complete List of Verbs

These verbs are to be covered one at a time, with two pages reserved
for each verb, one for the listing and one for the explanation of that
listing.

137

GO

This verb covers all movement in the game, in the four cardinal
directions.

270 I FNO:t:< > 11 11 ANDNO=OTHENPR I NT" I DON· T ~:Now THAT wo
RD.":GOT0210
272 I FNO >280RNO< 21 THEN PR I NT" I DON 'T UNDERSTAND, "

1
G

EJT0210
274 IFN0 >24THENNO=N0-4
276 NO=N0-21
277 IFNOANDCP=3ANDGF=1THEN5200
278 IFNOANDPDTHENPRINT 11 YOU HAVE FALLEN INTO A PIT,
11 :GOT0612
288 I FPI. (CP, NO) =OTHENPR I NT 11 YOU CAN'T GO THAT WAY,"
:GOT0210
289 IFCP=53 ANDND•1THEN6300
290 CP=PXCCP,N0>1GOT0200

138

£JCP180ation

. e 270 - if the noun string is not equal to zero, but the noun number
~nthen the word is not recognised, a message printed, and back for
15, . t
another inpu .

une 272 - if the noun number NO is greater than 28, or less than 21,
then it is not one of the eight movement nouns (NORTH, SOUTH,
EAST, WEST, N, S, E, Wl, and so the computer doesn't understand!

Une 274 - just adjust NO, if it's greater than 24, to lie between 21 and 25.

Line 276 - adjust NO to lie between 0 and 3.

Line 277 - if we're moving in room 3 and the gate is open (GF = 1),
then it's the start of the game, so GOT05200 to set the start up by
shutting the gate.

Line 278 - if we're moving but it's pitch dark (PD is set), then print
message and GOTO death routine.

Line288- if P%(room number,direction) is equal to zero, then we can't
go that way, so print out message and back for more input.

Line 289 - if we're in room 53, and we're trying to go south, then GOTO
6300

line 290 - update the room number CP from the variable P%, then
GOTO 200

139

GET

This verb handles the picking up of all objects in the game.

300 IFNO=OTHEN1900
302 GOSUB 5300
304 IFOB/.(N0)=-1THENPRINT 11 YOU'VE ALREADY GOT IT1 11 . I GOT0210
306 I FOB/. (NO) < >CPTHENF'R I NT 11 I CAN 'T SEE IT HERE:. "

1
G

OT0210
308 I FNO= 1 BANDOB/. (19) < >-1 THENPR I NT 11 YOU HAVE NO CON
TAINER. 11 :GOT0210
31 O I FN0=39ANDOB/. (19) < >-1 THEN PR I NT 11 YOU HAVE NO CON
TAINER. 11 :GOT0210
312 IFN0=39ANDOB/.(19l=-1THENOB/.(39l=O:ND=52:DBX(19
>=O:ZZ=ZZ-1:GOT0389
314 IFN0=18ANDOB/.(19>=-1THENOB/.(18l=O:N0=51:0BX<19
>=C>:ZZ=ZZ-1:GOT0389
315 IFN0=10RN0=3DRN0=60RN0=90RN0=110RND=17THENPRIN
T11 DON'T BE STUPID!":GOTD210
316 IFN0=20DRN0=290RN0=3C>ORN0=310RN0=320RN0=350RNO
=36THENPRINT"I CAN'T DD THAT!":GOT0210
318 IFND=40DRN0=41DRND=430RND=49THENF'RINT"IT CAN'T

BE DONE!":GOT0210
320 IFNO=BORN0=50THENPRINT 11 THERE'S NO POINT, SO I
WON'T! 11 :GOT0210
322 IF Z Z >4 THENF'R I NT" YOU ' RE CARRY I NG TOO MUCH. 11

: GOT
0210
324 I FNO= 12ANDCP= 1 OTHENP/. (10, 3) =O: F'$ (10) ="FACED BY

A VAST CHASM."
326 I FNO= 15ANDSC=OTHENPR I NT" YOU CAN 'T GET IT YET· "
:GOT0210
389 ZZ=ZZ+1: F'FilNT"Of(. ":OBI. <NO> =-1: GOT0210

140

EJCP1anation

. e 300 - if the noun number is zero, then we don't know what the
Linun is so GOTO 1900 to print out message.
no '

. e 302 - GOSUB to routine to check bottles and torches. Lin

une 304- if the object number is set to minus 1, we're already carrying

it!

L"ne 306 - if the object number isn't equal to the room number, then
it.

1
isn't here, so print message and try again.

une 308 - if you're trying to get object 18, the pool of oil, but you're
not carrying the empty bottle, object number 19, then you can't have it!

Line 310 - ditto for trying to get object 39, the whisky.

Line 312 - on the other hand, if you want the whisky and you are
carrying the bottle, then you can have it. The pool of whisky
disappears, change the noun number to refer to the bottle of whisky,
object 52, set the empty bottle to disappear, and decrement the number
of objects being carried counter ll before GOTO 389

Line 314 - ditto for the pool of oil

Line 315 - list of objects (see data tables later) that you can't carry:
mainly big things that would be too heavy, so if you're trying to get
one of them, print out a suitable message and go back for another
input.

Line 316 - more unobtainable objects.

Line 318 - and yet more, including object 49, the word PROGRAM:
someone would type it in!

line 320- silly objects that people might try and pick up, a pile of rubble
and some broken glass.

Line 322 - check to see how much is already being carried.

line 324 - if you pick the plank up from room 10, then you can't get
Past the chasm again, so adjust everything accordingly.

line 326 - if you're trying to get the shimmering curtain, but you haven't

141

worked out how to get past it (in which case the shimmering c .
counter isn't set), then you can't have it! lJrta111

Line 389- everything's OK, increase the number of objects being ca .
counter, put the object in your possession, and go to line 21Q "lied

INVENTORY

This verb is used to give a ·list of everything that you're carrying
you can take stock of a given situation, and decide what to I~~
behind. e

500 PRINT"YOU ARE CARRYING :=":GS=O:ZZ=O
502 FORI=lTOLO:IFOBX<I>=-lTHENPRINTOBSCil:GS=GS+ti
ZZ=ZZ+1
504 NEXT
506 IFGS=OTHENPRINT"NOTHING."
508 GOTO 210

142

~18nation

. 500- print out a simple message, and set the variable GS to zero,
1.Jnde also the number of objects being carried to zero.
sn
. 502 - start a loop up that will be gone through LO (number of

:;;ctsl times, and check to see if the object is being carried i.e. if
oe%(1) is equal to minus one. If it is, then print up on the screen the
object's description from the variable 08$, and increment the two
counters GS and ll.

une 504 - NEXT step through the loop.

une 506 - if GS is equal to zero, then you can't be carrying anything,

50 just print out the word NOTHING.

Line 508 - go back and get another input.

143

DROP

This verb is used to drop anything that you might be carrying.

560 IFND•OTHEN1900
562 GOSUB5300
564 I FOB/. (ND l < >-1 THENPRI NT 11 YOU HAVEN ' T GOT IT 1" (3
T0210 . : 0

566 I FNO= 19THENF'R I NT II SMASH ••• II : OBI. (19) =O: DB% (50).
P:ZZ=ZZ-1:GDT0210 C
568 IFNCl=51 THENPR INT II SMASH ••• II: OBI. (51) =O: OB/, (50) "'C
P:ZZ=ZZ-1:GOT0210
570 IFN0=52THENPRINT 11 SMASH •• • 11 10B'Y.<52l=O:DB%<50l•C
P:ZZ=ZZ-1:GOT0210
572 IFN0=16THENPRINT 11 DH DEAR! IT VANISHES IN A SPA
Rl<LE OF SHATTERED GLASS!"
573 IFND=16THENDB'Y.<16l=O:ZZ=ZZ-1:GOT0210
574 IFN0=46THENDB'l.<NOl=O:OB%<45l=CP1ZZ= ZZ -1 :PRINT"
Of<. II: GOT0210
575 IFN0<> 12THEN580
576 IFCF'<> 10THEN580
578 PR I NT 11 BR I LL I ANT ! NOW YOU CAN WALi(ACROSS THE
PLAN~~ ! II

579 OBI. (12l =CF' : F'f. (10 1 3) =14: P:f (10) = 11 WAU<ING ACROSS
THE PLANI<. II: ZZ=ZZ-11 GOT0210
580 PRINT 11 01<. II : ZZ=ZZ-1: OB/. <NO) =CF' : IFTB=l THEN584
582 GOTO 2 10
584 PR I NT II THE BEAR GLARES AT YOU AND RUNS AWAY! II: T
B=O:OBl.<9l=<INT<RND(.5l*41+lll
586 ZZ=ZZ-1:GOT0210

144

EJCP18 nation

Line 560 - noun not recognised, so GOTO 1900

une 562 - GOSUB 5300 to check the bottle and torch situation.

une 564 - if you're not carrying it then you can't drop it!

une 566 - if y~u drop the bottle, then it. breaks, the empty bottle
disappears, a pile of broken glass appears in the room CP, the object
counter is decreased, and it's back for another input.

Line 568 - ditto for the bottle of oil.

Line 570 - and for the bottle of whisky.

Line 572 - if you attempt to drop object number 16, the mirror, it
vanishes, so print out a suitable message.

Line 573 - remove mirror, and decrement object counter, then GOTO
210 for more input.

Line 574 - dropping the blazing torch causes the blazing torch to
disappear, the old torch to appear in the room, the object counter to
decrease, the word OK to be printed on the screen, and GOT0210

Line 575 - if you're not trying to drop object 12, the plank, then off
to line 580.

Lin~ 576 - if you're not trying to drop the plank in room 10, then off
to hne 580 as well .

~ine 578 - print out a message of congratulations at doing something
nght.

L'
1

1ne 579- put the pla~k.in the room, enable you to go west from room
0, change the description for room 10, decrement the object counter

and GOTO 210 '

~ine 580 - everything's all right, we can drop something! Print OK,

t
ecrement the object counter, put the object in the room and check
0 s 'f , ee 1 we've got the bear with us. If we have then GOTO 584

Line 582 - back to 210 for more input.

145

Line 584 - the bear thinks you're throwing something at it, so
away! Set the bear flag to zero, put the bear (object 9), in a r~lls
somewhere between rooms 1 and 41. 0 rn

Line 586 - decrement the object counter, and back to 210 agait1.

QUIT

This is the verb used to end a game, and has to ask you a couple of
questions before you can actually leave the game.

It's used to give you the chance of saving your progress onto tape
should you choose to do so. '

1890 PRINT"OK. ": PRINT"DO YOU WANT TD SAVE YOUR PRO
GRESS ONTO TAPE CY DR NI?"
1892 GETPR:t:IFPR:t="Y"THEN3000
1894 IFPR$="N"THEN614
1896 GOTO 1892

146

fJCplanation

·ne 1890 - print out a message, and give the player the chance of
LI vin9 the game onto tape, for starting again at the next session
~hout having to go through the whole rigmarole of playing the game

8gain!

une 1892 - wait for a key to be pressed on the keyboard, and if it's

8
'Y' then GOT03000, the start of the SAVE routine.

une 1894 - if they'v~ pressed 'N' then GOTO 614, which gives you
the chance of running through the game again before definitely
finishing.

Line 1896 - they haven't pressed anything, so go back and wait until
they have!

147

CROSS

This verb is used whenever the player wants to get across som h'
and can't be bothered to type in a direction. et 1ng,

In this gam.e the verb doesn't really have any use, but in at
adventures 1t could be a very useful way of getting from one 1 her
to another, which just by a logical NORTH or whatever they co Pldace
do. u n't

In that ca~e, you'd ~av~ to check the room number CP, and provid
that there s so~ethmg in pl~ce that they can cross, whisk them acr ed
to the other side by changing CP to the appropriate value. ass

690 IFNO=OTHENPRINT"CRDSS WHAT ?!" : GOTD210
692 IF CCP< >15) AND CCP< > 10) THENPRINT"THERE 'S NOTHING
HEF~E TD CROSS! ": GDTD21 (I

694 I FND < > 1 ANDND< >6 ANDNO< > 12 THENPR I NT " MMMM • • , ! WH
AT A STRANGE IDEA !" : GDTD210
696 PFU NT "WHY DON ' T YOU JUST TRY TYP ING IN A
D I RECT ION ! II : GOTD2 10

148

E>CP18 nation

une 690 - if .y~u don't understand what noun has been typed in, ask
ttiern what 1t 1s they want to cross, and go back to line 210 again.

Line 692 - if they'~e not in rooms 15 or 10, the only two rooms that
have got chasms in them, then there's nothing to cross, so tell the
player so and go back to 210 again.

Line 694 - if they're not trying to cross the chasm, the bridge or the
plank, then a:-sume they're trying some strange breeding program,
print out a suitable response on the screen, and go back to line 210
again.

Une 696 - a cop-out, since we don't really use this verb in the program,
so suggest that they type in a direction instead, and then back to 21 o.

149

OPEN

There are a number of things that can be OPENed in this garne
at least attempted to be opened, like gates and doors, so this ~e~
deals with all of that.

If you had treasure chests or something in your games, the relevant
lines to handle opening of the chest could be used here.

780 IFNO=OTHENPRINT"OPEN WHAT ?! " :GOT021C>
782 I FCP<: >60ANDCP< >3THENPR I NT" THERE'S NOTH I NG HERE

TO OPEN.":GOT02 10
784 IFCP=60THEN790
786 IFGF=1THENPRINT"BUT IT IS OPEN!":GOT0210
788 I FOB/.< 42) < >- 1 THENPR I NT" BUT YOU HAVEN'T GOT A K
EY.":GOT0210
789 PRINT"THE GATE SWINGS SLOWLY DPEN.":GF=1:P%<3,
0>=2:GOT02510
790 I FDF= 1 THENPR I NT" BUT IT'S ALREADY OPEN! 11

: GOTD21
0
792 I FOB/. (33) < >-1 THENPR I NT 11 YOU ' VE NOTH I NG STRING E
NOUGH TD OPEN IT WITH. 11

: GOTD210
794 PRINT 11 YOU ' LL JUST HAVE TO TRY AND DO THIS SOME
OTHER WAY! 11 :GOT0210

150

EJ'P18 nation

. e 700- if you don't recognise the noun, ask them what they're trying
!:open, and GOT0210

·ne 782- if they're not in rooms 60 or 3 then there's nothing to open,
~tell them so, and GOT0210

Line 784 - if they're in room 60 then GOT0790

une 786 - if the gate flag is set then the gate is already open, so tell
them, and GOT0210

une 788 - if they're not carrying object 42, the key, then they can't
open it anyway, so tell them again, and GOT0210

Line 789 - they can open the gate, so print a suitable message. This
signifies the end of the game, so set the gate flag, let them go north
from room 3 to room 2, and GOT02510 to print a congratulatory
message and end the game.

Line 790 - if the door flag is set then it's already open, so tell them
so and GOT0210

Line 792 - if they're not carrying the lump of mortar they've nothing
strong enough to open the door with, so tell them so by printing a
spelling mistake on the screen (sorry!), and GOTO 210

Line 794 - you don't open a door with a lump of mortar, you have
to do something else, so tell them so, and GOT0210

151

CLOSE

This is used whenever the player attempts to close something in
game. In Underground Adventure the only things that they can cl the
are the gate or the door, so we check for that accordingly. OSe

880 IFNO=OTHENPRINT"CLOSE WHAT ?!" :GOTD210
881 I FNO < >32ANDNO< >35THENPR I NT II HUH? II: GOT0210
882 IFCP=3THEN890
884 IFDF=OTHENPRINT" IT'S ALREADY CLOSED.": GOT02io
886 PRINT"m~ . ":Pr. <60, 1 > =O: DF==O: P:t: <60> ="FACED WITH
A CLOSED DOOR AGAIN 1 ": GOT02 10
990 r FGF=OTHENPR r NT" sur I,-· s ALREADY CLOSED! ":Gora
210
892 PRINT"THE GATE IS A MAGICAL ONE, AND ONCE OPEN
CANNOT BE CLOSED.":GOT0210

152

fJCplanation

Line 880 - if you don't recognise the noun, ask them what it is they
.,..,ant to close, and GOT0210

Line 881 - if they're not trying to close the old door or the gate, then
tell them that you don't understand the request, and GOTO 210

Line 882 - if they're in room 3 then GOTO 890

Line 884- if the door flag is set to zero then the door is already closed,

50 tell them so and GOTO 210

une 886- print OK, close off the south exit from room 60, set DF equal
to zero, change the message for room 60, and GOTO 210

Une 890- if the gate flag is set to zero then it's already closed, so tell
them so and GOTO 210

Line 892 - just print out a simple message telling them that the gate
is a magical one, and cannot be closed by you! Then off to 210 again
for another input.

153

EAT

Most adventure games seem to feature food of one sort or anoth
and although this food is very rarely intended for the consurnptio er,
the player, it is inevitable that sooner or later someone is gain~ Of
attempt to eat it for themselves. to

Hence this routine, which copes with greedy adventure players!

900 IFNO= OTHEN1900
9 0 2 GOSUB53 00
9 0 4 I FOB/. <NO l < >- 1 ANDO Bl. <NO) < >CPTHENF'R I NT 11 I CAN· T S
EE IT HERE. II : GOT02 10
9 0 6 I FNO< > 1 OTHENPR I NT 11 I DON ' T TH INK SO, SOMEHOW! "a
GOT02 10
908 PRINT 11 MMMM-MMMM ! DELICIOUS! II: OBI. (10) =O: ZZ=-1:(3
OT021 0

154

~planation

. e gOO - if you don't recognise the noun then GOTO the routine at
~~ to print out a suitable message.

une 902 - check to see if anyone's attempting to eat the bottle or the
torch. They do, they do!!

une 904 - if_the object th~t they want to eat isn't in th~ir poss~ssion,
and it isn't in the room either, then they can 't have 1t, so print out

8 suitable message and GOTO 210

une 906 - if they're attempting to eat anything other than object
number 10, a bun, then warn them off with a suitable message.

Line 908 - fair enough, the delicious bun is eaten, with an appropriate
message, the bun then disappears (inside the player's stomach), the
object counter is decremented, and we go off to 210 for another input.

155

FEED

Since there is some food about, someone has obviously got to f
it to something, and you'd be surpised by the things some adven~
players try and force on the unsuspecting occupants of the advent re

Ure
world.

In Underground Adventure'. th~ only thing tha~'s interested in eatin
is the bear, and the only thing 1t wants to eat 1s the bun, apart fro~
you, perhaps.

950 IFNO=OTHENPRINT 11 I DON'T UNDERSTAND. 11 :GOT0210
952 I FNO< >9THENPR I NT II IT I SN . T HUNGRY ! II : GOT0210
954 I FOB/. (10l <>-- 1 THENF'R I NT 11 YOU ' VE NOTH I NG TO FEED
IT WITH. 11 1GOT0210
956 GOTO 10 72

156

EJ<planation

L·ne 950 - if you don't recognise the noun, then tell the player so, and
g~ off back to line 210 again for another try.

une 952- if you're not carrying the bun, object 10, then whatever you're
wing to feed fobs you off with an excuse, and GOT0210

Line 954 - if you're trying to feed anything other than the bear, then
it suddenly feigns a lack of hunger, so we print a suitable message
on the screen and go back to 210 again.

Line 956 - Ahal We're trying to feed the bear, so we go to line 1072,
where this same sequence of events is handled by another verb,
OFFER, in case someone decides to OFFER BUN, rather than feeding
the bear.

157

DRINK

An occupation favoured by many adventure players, but when it corri
to actually playing a game of adventure people will try and drink 80 es
very odd things indeed. Ille

Like eating in adventures, the drink is usually reserved for someo
else's use rather than that of the player, and consumption by the playne
will, in the end, result in an adventure that can't be finished. er

Still, they don't know this when they start, and so the appropriate
routine has to be inserted to handle this.

1000 IFNO=OTHEN1900
1002 GOSUB5300
1004 I FNO< >51 ANDNO< >52THENF'R I NT 11 YOU MUST BE JOKING
!":GOT0210
1006 IFN0=51 THENPR INT 11 URGGHH ! ! ":OBI. C 51) =O: OBI. (19>::
-1 :GOT0210
1 008 F'R I NT II GLUG GLUG GLUG • • • HI c ! II : OBI. (52) =O: OB'% (
19>=- 1:GOT021 0

158

~la nation

. e 1000 - if you don't understand the noun, then it's off to the
;:;broutine at line 1900

une 1002 - GOSUB 5300 to check we're not mixing up bottles and
torches.

une 1004 - if they're not trying to drink either of the two liquids in
the program, i.e. the oil or the whisky, then print out a suitable
statement and GOTO 210 as usual.

Une 1006 - some people try to drink strange things in these games,
and oil is one of them. However, if that is what they want to drink
theY must face the consequences, so print a 'this is revolting' message
on the screen, remove the bottle of oil from the player's possession,
replace it with an empty bottle, and GOTO 210.

Line 1008 - if you will drink whisky! Print out the message, remove
the bottle of whisky, replace it with an empty bottle, and GOTO 210.

159

OFFER

This is one of the commonest ways of transferring possessions fr
the player to someone else, and in this adventure there are two thi~lll
that change hands, and get you through a couple of awkward spo~~

1050 IFND=OTHENPRINT"DFFER WHAT ? ! ":GOTD210
1052 GOSUB5300
1054 IFDB/.CND> <>-1THENPRINT"YDU'VE GOT TO HOLD Ii
TO OFFER IT!":GOTD210
1056 IFN0=10THEN1070
1058 IFND<> 52THENPRINT"YOU'VE NOTHING WORTH OFFER!
NG!":GOT0210
1060 IFCP<>50THENPRINT"THERE ' S NO-ONE HERE WHO WAN
TS IT CEXCEPTYOU ! l ": GOT0210
1062 PRINT"THE DENIZEN OF THE CAVERNS DOWNS IT IN

ONE DRAUGHT, AND GRATEFULLY ";
1064 PR I NT" SHOWS YOU A NEW TUNNEL BEFORE GO I NG AWA
Y TO SLEEP OFF HIS HANGOVER."
1066 OBI. C52) =O: OBI. (19) =- 1: P'%. C50, 3) =55: P$ C50l ="WALK
ING PAST OLD SPIRITS."
1067 OB/.C29l=O:GOT0210
1070 IFCP< >27THENF'RINT"THERE ' S NOTHING HERE THAT W
ANTS IT! II: GOT0210
1072 PR I NT" THE BEAR GRATEFULLY ACCEPTS THE BUN, AN
DSTANDS ASIDE TD REVEAL A NEW ";
1074 PRINT"PATH. HE ATTACHES HIMSELF TO YOU LIKE

A LIMPET 1 ":P'%.C27,0l=28
1075 P$C27l="WALKING PAST A SCENT OF OLD BEAR"
1076 OB/.C10l=O:ZZ=ZZ - 1:TB=l:GOT0210

160

EJ<planation

une 1050- if you don't recognise the noun, then ask them what they
want to offer, and GOTO 210

une 1052 - check that we're not confusing the various bottles and
torches by the subroutine at 5300

une 1054 - if they're not carrying the object you can't offer it, so print
out the message and GOTO 210

Line 1056 - if they're talking about the bun then GOT01070

Line 1058 - if they're not carrying the bottle of whisky, then forget
itl Print out message and GOTO 210

Line 1060 - if they're not in room 50 then there's no one who's interested
in the whisky, except them, so print out the message and GOTO 210

Line 1062- aha! The denizen of the caves gratefully accepts their kind
present, so print out a suitable message.

Line 1064 - rest of message.

Line 1066 - remove the bottle of whisky, and replace with an empty
one. Allow them to go west from room 50 to room 55. Change the
room description for room 50.

Line 1067 - remove the denizen of the caves, and GOTO 210

Line 1070 - if they're not in room 27, then no one's interested. GOTO
210

line 1072 - the bear eats the bun! Print out message.

Line 1074- print rest of message and allow you to go north from room
27 to room 28.

Line 1075. - change the description for room 27.

~ine 1076 - remove the bun, decrement the object counter, set the
ear flag, so that he tags along behind the player, and GOTO 210

161

WAVE

One of the key features of most adventures is waving something, Wh' h
can quite often cause a magical feat, and usually this happens relativ~ly
early on in a game.

This early success seems to go to some people's heads, who then
merrily wave anything they can get their hands on, so we have to check
for all of that.

1100 IFND=OTHEN1900
1102 GOSU85300
1104 !FOB/. <ND> < >-1ANDDB'I. <ND> < >CPTHENPRINT"BUT YOU
HAVEN. T GOT IT! II: GOT0210
1106 I FND< >2THENPR INT "WAVE, WAVE, WAVE, BUT NOTH IN
G HAPPENS!":GOTD210
1108 IFCP<> 15THENPRINT"NDTHING HAPPENS.":GOT0210
1110 IFBR=1THENPRINT"YOU'VE ALREADY DONE THAT!" 1GO
TD210
1112 PR I NT II A CRYSTAL BR I OGE NOW SPANS THE CHASM! II I

DB'l.<6l=CP:P'l.<15,1l=17
1114 P'l.<15,2l=16:P$(15l="WAU<ING ACROSS THE CHASM,
":GDTD210

162

EJCP1anation

. e 1100 - if you don't recognise the noun, then GOTO 1900.
un
. e 1102 - our usual trip to the subroutine at line 5300.

Lin

L·ne 1104 - if the object is not in the player's possession, nor is it in
~e room, then print out a suitable message and GOTO 210

Line 1106- if they're not waving object number 2, the staff, then print
out silly message and GOTO 210

une 1108- even if they're waving the staff, nothing will happen unless
they're also in room 15, so print out the message and GOTO 210 as

usual.

Line 1110 - if the bridge flag is set, then tell them that they've already
stood here and waved a staff, before going to 210 again.

Line 1112- print the magic message, put the bridge in the room, allow
them to go south from room 15 to room 17, and set the bridge flag .

Line 1114 - allow the player also to go east from room 15 to room 16,
change the description for room 15, and finally GOTO 210

163

CUT and CHOP

In this adventure the two words are synonymous, in that both ach·
the same object in the same way.

1
eve

However, some games may care to give them a different rneani
so we've left them both in here. ng,

Usually used to cut something up or chop it down, like a tree or
tangled mass of vines, or something of that ilk. ' a

1150 GOTO 1200:REM CUT AND CHOP ARE THE SAME IN TH
IS GAME!
12~) IFNO=OTHEN1900
1202 GOSLl85300
1204 I FOB/. <NO) < >-1 ANDOB'l. (NO> < >CPTHENPR I NT" I CAN• T
SEE IT HERE!":GOT0210
1205 IFND<>3ANDN0<> 15ANDN0<>5ANDN0<> 12ANDN0<>32THE
NPRINT"NOTHING DOING!":GOT0210
1206 I FOB/. (4) < >- 1 THEN PR I NT" BUT YOU ' VE NOTH I NG TO c
UT IT WITH! II: GOT0210
1208 IFNO< >3ANDNO< >12THENPRINT"YOUR AXE IS NOT STR
ONG ENOUGH.":GOT0210
1210 IFND=3THEN1220
1212 PRINT"THE PLANK IS NOW NICELY SHAPED, BUT YOU

NEED SOMETHING ELSE BEFORE ";
1214 PRINT"YOU CAN MAKE A LADDER!":OB'l.C12)=0:08%(5
3l=-1iGOT0210
1220 PRINT"TIMBERRRRRR! THE TREE CRASHES TO THE

GROUND!"
1222 Pl. <21, 2l =22 : P$ <21) ="WALKING PAST A DEAD TREE.
":08$(3)= "AN EX TREE":GOT0210

164

f,cptanation

une 1150 - speaks for itself!

une 1200 - if you don't recognise the noun, off to 1900

une 1202 - as usual, check with the' subroutine at 5300 before
proceeding further.

Line 1204- if the object they're trying to cut or chop isn't in the player's
possession, and it isn't in the room, then print out a suitable message
and GOTO 210

Line 1205 - if they're not trying to chop the tree, the shimmering curtain,
the rope, the plank, or the old door, then tell them that it can't be
done, and GOTO 210

Line 1206 - if the player is not carrying object number 4, the axe, then
they've nothing to chop anything with, so tell them so and GOTO 210
again.

Line 1208 - unless they're trying to cut the tree or the plank, then the
axe isn't strong enough and they'll have to try a different tack, so tell
them so, and GOTO 210

Line 1210 - if it's the tree they're after, then line 1220 handles it.

Line 1212 - print a message about the plank.

Line 1214 - rest of message, remove the plank, put the neatly sawn
timber in their possession (a fine piece of axemanship!), and GOTO 210

Line 1220 - print message about the tree.

Line 1222 - let them go east from room 21 to room 22, change the
description for room 21, change the description of object 3, and GOTO
210

As it stands, this will let players repeatedly chop down the ex-tree,
should they choose to do so, but a simple test could be carried out
to disable this.

165

CLIMB
.

In most adventures there is a degree of climbing somewhere alo
the way, but the ability to climb something usually depends on t~g
player having already collected or made something else. e

Such is the case with Underground, where we need to a) find a rope
and b) build a ladder before we can climb the two obstacles presented
to us.

1250 IFN0<>3ANDN0<>5ANDN0<> 13THENPRINT''I BEG YOUR
PARDON ?!" :GOT0210
1252 IFN0=3THENPRINT"OH, THESE OLD WAR WOUNDS! SOR
RY , CAN ' T DO IT . " : GOT0210
1254 IFN0=5THEN1266
1256 IFOB/.C 13> <> CPTHENPRINT"I DON ' T SEE IT ON THE
GROUND ANY WHERE . " : GOT0210
1257 IFCP<> 45ANDCP<> 47THENPRINT"THERE ' S NO POINT c
LIMBING THE LADDER HERE.":GOT02 10
1258 IFCP=45THENOB/.C13)=47 : CP= 47 : GOT0200
1260 OB/.C13)=45 : CP=45 : GOT0200
12 6 6 I FOB/.C5> <>CPTHE NPRI NT"I DON ' T SEE I T ON THE G
ROUND ANYWHERE . ":GOTD2 10
1267 IFCF'< >35ANDCP< >36Tl-IENPRINT"THERE 'S NO POINT C
LIMBI NG THE ROPE HERE." : GOT02 10
1268 IFCP=35THENOB/.C5>=36 : CP=36: GOT0200
127 0 OB/.C5>=3 5 : CP•35:GOT0200

166

EJ<planation

une 1250 - if the object concerned isn't the tree, the rope or the ladder,
then the player can 't climb it, so a suitable response is given before
going back to 210

Line 1252 - if the player is attempting to climb object 3, the tree, an
excuse is given as to why he can 't, and back to 210

Line 1254 - if the player is trying to climb object 5, the rope, then off

to 1266

Line 1256 - if the ladder isn't in the room then the player can't climb
it, so print a message and GOTO 210

Line 1257 - if the player isn't himself in rooms 45 or 47 then there's
no point in climbing the ladder, so print a message and GOTO 210

Line 1258 - if the player's in room 45, then put him in room 47, put
the ladder in room 47, then GOTO 200 for a LOOK.

Line 1260 - otherwise, put the ladder and the player in room 45 again,
and GOTO 200

Line 1266 -if the rope isn't in the room, then the player can't climb
it, so print a message and GOTO 210

Line 1267 - if the player himself isn't in rooms 35 or 36 then there's
no point in climbing the rope, so print a message out and GOTO 210

Line 1268 - if the player's in room 35 then put him and the rope in
room 36, print a message and GOTO line 200

Line 1269 - otherwise, put the player and the rope in room 35, and
GOTO 200

167

LIGHT

Torches are quite a common feature of adventures, and obvio
they'll have to be lit at some time or other during the course of ~~ly
game. e

Occasionally other objects will have to be lit as well, as in the ca
of Underground where the dynamite has to be used, and checks rnuse
be made to see what the player is trying to light, and if he's got thst
necessary equipment to light something with : usually matches. e

1300 IFND=OTHEN1900
1302 GOSUB5300
1304 I FOB'l. <ND> < >CPANDOB'l. (ND) < >- 1 THENPR I NT" IT I SN· T

HERE. 11 1GOTD210
1306 I FOB'l. (44 l < >-1 THENPR I NT" YOU 'VE NOTH I NG TO LI !3H
T IT WITH. II I GOTD210
1308 IFND< >45ANDND<>7THENPRINT"DON'T BE SILLY. "•!30
TD210
1310 IFN0=7THEN1320
1312 I FOB'l. < 46) =-1 THEN PR I NT" IT ' S ALREAD°Y LIT ! " : GOTO
210
1314 PRINT"OK."10B'l.<46)=-110B'l.<45)m01PD=01GOTD210
1320 IFOB'l.<7>=-1THENPRINT"BDODOOM! YOU'VE JUST BLO
WN YOURSELF UP!":GOT0612
1322 IFCP< >4THENPRINT"KABOOOOM! THE DUST CLEARS, 8
UT NDTHING ' SCHANGED. 11 108%(7)=0
1323 IFCP<>4THENZZ=ZZ-1:GOT0210
1324 PRINT"KABOOOOOM! THE WALL ' S BEEN BLOWN TO

SMITHEREENS!"
1326 OB'l.<7l=O:ZZ=ZZ-1:P'l.(4,3>=51P$C4) .. "WALKING ALO
NG A DUSTY TRAC~'. . II I GOT0210

168

f)<planation

une 1300 - unrecognised noun, so GOTO 1900

une 1302 - the usual check using the subroutine at 5300

Line 1304 - check to see if the object they're trying to light is either
being held or in the room, and if not print a message and GOTO 210

Line 1306 - if the player isn't holding object 44, i.e. the matches, then
he can't light anything, so print message and GOTO 210

Line 1308- if they're not trying to light the torch or the dynamite, then
it can't be lit, so print message and GOTO 210

Line 1310 - if the object trying to be lit is the dynamite then GOTO 1320

Line 1312 - if they're carrying the blazing torch, object 46, then there's
no point lighting the torch, so say so and GOTO 210

Line 1314 - OK, the player can light the torch, the old torch disappears,
the blazing torch is placed in the player's possession, the darkness
flag PD is set to zero, and we can GOTO 210

Line 1320 - if the player is holding the dynamite whilst trying to light
it, this is understandably fatal, so GOTO 612 for the death routine.

Line 1322 - if the player isn't in room 4, then the dynamite blows up
but nothing else happens, so make the dynamite disappear.

Line 1323 - following on from that, the object counter must be
decremented, and then off to 210

Line 1324 - print a suitable messagti.

Line 1326 - remove the dynamite, decrement the object counter, enable
the player to go west from room 4 to room 5, change the description
of room 4, and GOTO 210

169

A IT ACK

Adventure players seem to be a ~loodthirs~ lot when they get a
keyboard in front of them, and quite often hke to attack things.

Usually it doesn't do any good, al~hough here .we've let them off With
a mild warning. However, the routine could easily be adapted to include
things like killing the player if he attempts to attack a dragon, or
something of that ilk.

1350 IFNO.,OTHENF'RINT"ATTACK WHAT ?!":GOT0210
1351 GOSUB5300:IFOBXCNOl <>CF'ANDOBXCN0> <>- 1THENPRIN
T"WHERE IS IT ! II: GOT0210
1352 IFN0<>9ANDN0() 11ANDN0<>29ANDN0<>30ANDN0<>31TH
ENF'RINT"WHAT AN ODD REQUEST!":GOT0210
1354 PRINT"THIS IS NOT ONE OF YOUR BETTER

SUGGESTIONS!":GOT0210

170

El'P1anation

. e 1350- the noun isn't recognised, so go to the routine at line 1900
~;d print an appropriate message.

. 1351 - GOSUB the subroutine at 5300 to clear up any doubts about
IJ':ies or torches, and then check that the thing to be attacked is either
~the player's possession or in the room. If it isn't, print a suitable
~essage and GOTO line 210

Li e 1352 - if the player isn't trying to attack the bear, the panther,
th~ denizen of the caves, t~e g!ant spid~r or the ~iant fly, then he's

obably trying to attack an inanimate obiect, so print out the message
~~d go back to 210 for another input.

Line 1354 - warn the player gently that this is not a very good idea,
and go back to 210 and try something else.

171

Kill

Another verb that people try and use quite a lot alth
d

' OUgh ·
Un erground Adventure we haven't utilised the verb at all. 111

Nevertheless, in case people do try and type in the command t
BEAR, or whatever, a few lines of code are necessary in order~ KILL
with the request.

0
dea1

This is certainly one of the routines that could be expanded in
own games. For instance, attempting to kill the dragon in the oriY?ur
Adventure game produces the following series of responses: ginal

kill dragon

WITH WHAT? YOUR BARE HANDS?

yes

CONGRATULATIONS! YOU HAVE JUST KILLED A 20 TON
DRAGON! HARD TO BELIEVE, ISN'T IT?

1400 IFNO=OTHENPRINT"f<ILL WHAT ?! ":GOT0210
1401 GOSUB5300:IFOB/.CNO> < >CPANDOB/.CN0> <>- 1THENPRIN
T"WHERE IS IT ! ":GOT0210
1402 GOT01352

172

f)Cplanation

une 1400- if it's an unknown n~un, request the player to type in what
it is he really wants to try to kill, then go back to line 210.

une 1401 - GOSUB the routine at 5300 to clear up the problem of the
bottles and the torches, and then check to see whether the object of
the player's affections is either in the room or in his possession. If it
isn't, then ask him where it is and go back to 210 again.

Line 1402 - GOTO line 1352 and deal with everything from there.

Killing with a straightforward command like this isn't allowed in this
game!

173

HIT

Another common verb, this one is usually used when people are getti
fed up with not being able to get anywhere, and are typing ~g
commands almost at random in a vain hope of getting something ~~
happen.

In one of the games printed in this book, hitting a wall does produc
some response other than getting a sore hand. However, it isn't thi:
one, so all this routine consists of in Underground adventure is:

1450 IFNO=OTHENF'RINT"HIT WHAT 7!":GOT0210
1452 GOSUB53001IFOBXCNO> <>CPANDOBXCNOl <>-1THENPRIN
T"WHERE IS IT!":GOT0210
1454 PRINT"YOU HURT YOUR HAND, BUT NOTHING HAPPENS
! ":GOT0210

174

~planation

. 1450- if it's an unknown noun, request the player to type in what
IJ~ehe really wants to try to hit, then go back to line 210. n IS

. e 1452- GOSUB the routine at 5300 to clear up the problem of the
IJ"tties and the torches, and then check to see whether the object ~f
bO player's affections is either in the room or in his possession. If 1t
:.t, then ask him where it is and go back to 210 again.

une 1454 - just print a message and go back to 210 again.

Hitting anything in Underground Adventure gets you nowhere, other
than hurting your hand!

175

MAKE

Most adventures require you to do a lot more than just trundle a
solve a few problems and find a few treasures. In order to co~und,
the adventure, you'll usually have to make something along th Plete
in order to get from one location to another. e Way

In Pirate Adventure for instance, you have to build a boat, and in
of the other games listed in this book you have to make your one
dynamite, since it isn't provided for you. own

In this one, you have to make a ladder, and the materials to do
are fairly obvious: an axe to chop the wood with, some nails to ho~
it all together, and of course the wood itself.

1500 IFNO=OTHENPRINT"MAt<E WHAT ?":GOT0210
1502 I FNO< > 13THENPR I NT" I DON'T UNDERSTAND YOU SOME
TIMES!":GOT0210
1504 IFDBXC53l <>-10ROBXC141 <>-10ROBXC4l <>-1THENPRI
NT"YOU NEED MORE MATERIALS!":GOT0210
1506 PR I NT" YOU HAVE A BRAND NEW LADDER ! " 1 OBX < 13) •­
l 10BX C 14l=010BX < 53 l =O: Z Z= Z Z-1
1508 GOTO 210

176

fJ<planation

une 1500- if it's an unrecognised noun then print up a simple statement
to that effect and go to line 210

une 1502 ~if t~e pl~yer isn't trying to make a ladder, admit that you've
iost faith 1n his ab1hty as an adventurer and GOTO line 210 again.

une 1504- check to see if the player is holding the nicely sawn timber,
the nails and the axe, and if he isn't inform him that he needs to collect
something else yet before he can make a ladder, and then GOTO 210
again.

Line 1506- brilliant! you make a ladder, so print out the right message,
put the ladder in the player's possession, remove the nails and the
timber, and decrement the object counter by one, since we've swopped
some nails and some timber for a ladder (two objects for one).

Line 1508 - back to 210 again.

177

REFLECT

This is a verb that I haven't seen in any other adventure, and ·
to solve a problem peculiar to this one. is useci

It is illustrated here as an example of how easy it is to add
commands to the player's vocabulary, but like all commands there new
be some clue as to the actual word involved. Most players wou~u~
try to REFLECT an axe for example, but give them a mirror and . n_ t
a word that they might well try to use. it is

Having used it once, they will then try to reflect everything under th
sun, so have a few suitable responses ready. e

1550 IFND=OTHENPRINT"REFLECT WHAT ?!":GDT0210
1552 IFND< >47THENPRINT"I DON'T COMPUTE THIS INSTR
CTION.":GDTD210 U
1554 IFCP<>93THENPRINT"NOTHING HAPPENS.":GDT0210
1556 IFSC=lTHENPRINT"YDU'VE ALREADY DONE THAT'"iGQ
T0210 .
1558 PRINT: PRINT"THE LIGHT IS REFLECTED BACK AND T
HE CURTAIN FALLS ASIDE!"
1560 P/.C93,0l=95:DB/.(15l=CP:P$C93l="WALKING PAST A

SHIMMERING LIGHT.":SC=11GOT0210

178

f.J'P180ation

une 1550 - an unrecognised noun, so print an appropriate message

d GOTO 210 to try again.
an
une 1552 - if t~e obje,ct tha; the player is trying to reflect isn't the
LIGHT, then print an I don t understand' message and try again.

une 1554 - if the player isn't in room 93, where the shimmering curtain
iS, nothing happens, so print the message and back to 210

une 1556 - if the SC counter has been set, then print a message to
the effect that the player is repeating himself, and go back and try

again.

une 1558 - print the all important message.

Line 1560 - allow the player to go north from room 93 to room 95,
put the shimmering curtain in room 93 (CP =93 of course, since we're
in that room), change the room description for room 93, set the SC
counter, and GOTO 210

Astute readers will realise that we should also have a line like:

1551 GDSUB5300 : I FOB/. (16) < >-1 THEN?" YOU AREN'T H
OLDING THE MIRROR": GOT0210

To check that the mirror is in the player's possession!

179

OIL

Oil frequently occurs in adventure games, ~nd is usually used to rem
something that is being sticky and refusing to budge. oVe

Obviously, players will attempt to oil everything, so suitable responses
must be made. If a player makes a mistake and oils the wrong thin
then some kind of message must be ~rinted up, and ~he oil must s1o.Jy
trickle away, never to be found again, thus rendering the adventure
unsolvable through the fault of the player.

1600 IFNO=OTHENPRINT"OIL WHAT ?!":GOT0210
1602 IFOB/. (51 l < >- 1 THENPRINT"YOU 'VE ND OIL.": GOro21
0
1604 I FCF'< > 79THENF'F<l NT" NOTH I NG WORTH 0 I LI NG AROUND

HERE.":GOT0210
1605 I FNO< > 1 7THENF'R I NT" YOU ' VE JUST WASTED A LOT OF

0 IL. ":OBI.< 5 l. l =O: OBI.< 19 l = - 1: GOT0210
1606 PR I NT" THE TF~ACf:'. SL I DES NO I BELESSL Y AWAY, TO

REVEAL MORE TUNNELS!"
1608 OBl.<51l=O:OB/.(19l=- 1:Pl.<79,2l•80:Pl.<79,3l•81
1610 F'$ (79) , .. "WAL~'. ING P~sr A SMOOTH TRACI< . II: OB'l.<17>
=O:GOT0210

180

fleplanation

. e 1600 - usual check for an unrecognised noun.
!Jn

. e 1602 - if the player isn't carrying the bottle of oil, then he can't
~:~anything, so print the message up and GOTO 210

Line 1604 - if we're not in room 79 then there isn't anything worth
"ling so we inform the player and then go back to line 210. This is

~ing,kind to the player really, since he could have wasted his oil. Such
1argesse!

Line 1605 - nevertheless, if he now doesn't oil the track, object 17,
he wastes all the oil, so we print up the message, remove the bottle
of oil and replace it with an empty bottle, and go back to 210

Line 1606 - print the message of success.

Line 1608 - remove the bottle of oil, replace it with an empty bottle,
and allow the player to go east from room 79 to room 80, and west
to room 81.

Line 1610 - change the room description for room 79, get rid of the
track now that we've solved the problem, and GOTO 210

181

STAB

Not a verb that is commonly encountered, and again the us h
should serve to show how easy it really is to add tailor-made com~ ere
to any adventure scenario. ands

It is not a word that a lot of people would at first think of, altho
the presence of a sword should trigger off the idea in the mind~gh
a few players. of

Still, those familiar with Lord of the Rings, who will have read the
passage about Shelob, should know that every good Hobbit alway
stabs a nasty spider with his sword, and that is indeed the use of th s
verb in Underground Adventure. e

1650 IFNO=OTHEN1900
1651 GOSUB5300
t 652 I FOB'l. (NO> < >- 1 ANDO Bf. <NO l < >CPTHENPR I NT 11 BUT IT I
SN'T HERE!":GOT0210
1653 IFOB'l.<38> <>-lTHENPRINT"YOU'VE NOTHING TO STAB

IT WITH! 11 1 GOT0210
1654 IFNO< >30THENPRINT"THE II; OB:t: <NO): PRINT" IS NOT
I MF'RESSED ! II : GOT0210 .
1656 PRINT 11 THE SPIDER DIES IN A GLORIOUS DISPLAY O
FBIT-ACTING, AND REVEALS :="
1658 PRINT"A NEW PASSAGEWAY! 11 1F'f.(84,2l=86:Pf.C84,3>
=85:0B$(30>= 11 A DEAD SPIDER!"
1660 P$ < 84 > = 11 WALn NG PAST A DEAD SP I DER! 11

: Goro210

182

EJCP1anation

une 1650 - usual check for an unrecognised noun.

une 1651 - usual check for bottles and torches.

une 1652- if the object the player is trying to stab isn't in his possession
and isn't in the room, then inform him of that fact and GOTO 210

une 1653 -.if you're ~ot holding the sword, object 38, then you can't
stab anything, so print the message up and go back to line 210

une 1654 - if the player isn't trying to stab the spider, then print a
suitable message and GOTO 210

Une 1656 - print the message.

Line 1658 - continue the message. Allow the player to go east from
room 84 to room 86, and west to room 85. Change the description
of object number 30, the spider.

Line 1660 - change the room description of room 84, and go back to
line 210.

~gain we didn't put in any checks to make sure that the player was
in the correct room (IF CP< > etc.), but the checking in line 1652
takes care of that.

183

SPRAY

This could well be the first _adventure t? feature this word! Certainly
I can't think of any others with the word 1n, although there are no do b'
some floating around somewhere. u t

Being an unusual word, one has to give the player sorn
encouragement to use it, and t_he finding of the can.of fly_ spray afte~
eliminating the spider should give most people the right kind of idea.

A check is made to see if it is the fly that you're trying to spray, but
as usual we've been kind t? the player and not exhausted the fly spray
if he sprays the wrong thing.

1700 IFNO=OTHEN1900
1701 GOSUB5300
1 702 I FOB/. <NO> < >-1 ANDOB'l. <NO> < >CPTHENPR I NT" BUT IT I
SN ' T HERE!":GOT0210
1 703 I FOB/. < 34 > < >- 1 THENPR I NT" YOU 'RE NOT CARRY I NG AN
Y SPRAY. ":GOT0210
1704 IFND<>31THENPRINT"COUGH-COUGH SPLUTTER-SPLUTT
ER!": GOT0210
1 706 PRINT" THE FLY COUGHS I TS LAST, AND REVEALS A

HIDDEN TUNNEL."
1708 P'l.<74 1 3l=75:P$(74l="WALf(ING PAST A DEAD FLY!"
:08$(31l="A DEAD FLY!" :GOT0210

184

EJeplanation

. e 1700 - you should be used to this by now! un
LJne 1701 - ditto!

LJne 1702 - and again, our usual check for the presence of an object.

LJne 1703 - if the player isn't holding the fly spray then he can't spray
anything, so we print up the message and GOTO 210 as usual.

Line 1704 - if the object to be sprayed is not the fly, object 31, then
the player only succeeds in making himself cough, and we go back
to 210

Line 1706 - print the message.

Line 1708 - allow the player to go west from room 74 to room 75,
change the room description of room 74, change the object description
of object 31, and then GOTO 210

185

THROW

This is often given the same meaning as drop, but just as in real lif
here we differentiate between a simple dropping of something e,
a determined throw into the middle distance. 'and

If we attempt to throw anything other than the lump of mortar or th
~xe, th~n it is treated as if the.player j~st wished to drop the obj~
in question, but those two particular obiects have two very important
roles to fill, as we shall see : =

1750 IFNO=OTHENPRINT"THROW WHAT!":GOT0210
1751 IFN0 < >33ANDN0<>4THEN562
1752 IFN0=4ANDNP=OTHEN562
1753 IFN0=4ANDNP=1THEN6010
1754 IFCP < >60THENPRINT"OK ! IT VANISHES IN A CLOUD
OF DUST.":08/.(33)=0:ZZ=ZZ-1:GOT0210
1756 PRINT"THE DOOR FLIES OPEN UNDER THE FORCE OF

THE BLOW, TO REVEAL A NEW PASSAGE!
1758 P/.(60,0l=61:P/.(60,3)=65:F'$(60l="WALKING PAST
THE DOOR.":08/.(33)=0
1760 ZZ=ZZ - 1:DF=l:GOT0210

186

~planation

une 1750 - as usual.

une 1751 - if the player isn't throwing the mortar or the axe then transfer
program execution to the drop routine starting at line 562

une 1752 - if the player is throwing the axe and the gargoyle present
flag isn't set, then assume he just wants to drop it, so go to line 562

8gain.

une 1753 - if the player is throwing the axe, and there is a gargoyle
hanging around, then we go to line 6010 and continue the fight
between player and gargoyle.

Line 1754 - if the lump of mortar is thrown anywhere other than in
room 60, the room with the old door, then it just disappears in a cloud
of dust, nothing else happens, we decrement the object counter, and
GOTO 210.

Line 1756 - it's been thrown in the right place, so print the appropriate
message.

Line 1758 - allow the player to go north from room 60 to room 61,
and west to room 65, change the description of room 60, and remove
the lump of mortar from the game.

Li~e 1760 - decrement the object counter, and set the door flag, before
going off to line 210 again.

Astute readers will realise that we should also have a line like:

l753a GOSUB53 00 : IFOB'l. <33) < >-1 THEN?"YOU AREN'T
OLDING THE MORTAR": GOTD210

H

To check that the mortar is in the player's possession! You also, round
~out this point, realise the value of numbering programs in steps of
r ree or more, as we would now have to renumber line 1754 to be
1ne 1755, in order to fit this new line in.

187

RUB
There are a number of things that one might be inclined to rub dur·
an adventure, but the usual one is a lamp or torch, perhaps min~~g
of Aladdin and his lamp. lll

Indeed, rubbing the lamp in ~he original Ad~ent~re produces an
interesting response, when you re told for the first time that the larn
is, in fact, an electrical one, so nothing much happens. P

In Underground Adventure, nothing happens either, but people are
wont to type in anything they can think of, so the listing goes
something like:

1800 IFNO=OTHEN1900
1801 GOSUB5300
1802 I FOB% <NO l < >-1 AN DOB I. (NO) < >CPTHENPR I NT" BUT IT I
SN ' T HERE TO RUB!":GOT0210
1804 PRINT"INTERESTING, BUT UNREWARDING! 11 1GOTD210

188

El'Planation

Line 1800 - usual check for the presence of an unknown noun.

Line 1801 - usual check in subroutine at 5300 for bottles and torches.

une 1802- usual check to see if an object is in the player's possession,
or is in the room, and if it isn't print some kind of response and GOTO
210 again for another input.

Line 1804 - print the standard response to all RUBbing suggestions.

189

READ

Quite often one will find objects scattered about inside an adve
that look as if they might have something written on them s nture
obvious command is to read object, to see what it says. '

0
the

The replies are usually meant as helpful hints for the playing of h
game, and set you off thinking in a direction you might otherwise t e
have thought off. not

Sometimes, however, they are anything but, and give you someth'
like the weather forecast for five years ago, although even that usu~~g
makes you think of something. Occasionally they're not even writt Y
in English, as is the case with Spelunker Today, the magazine to~
found in the original Adventure, which is written in Dwarvish!

1850 IFND=OTHEN1900
1851 GOSUB5300
1852 IFND<> 48THENPRINT"THERE ' S NOTHING ON IT TO RE
AD. 11 1GOTD210
1854 IFOBl.<48> <>-1THENPRINT"YOU ' RE NOT HOLDING IT.
"1GOT0210
1856 PRINT" [RVSJTHERE ' S MATERIAL IN HERE TO BUILD
A "
1858 PR I NT" [RVS J LADDER, LI KE NA I LS, AND F'LANf<S AND

AXES"
1859 PRINT " ERVSJAND THINGS.

1860 PR I NT" [RVS JTHERE ' S ALSO A LITT LE BIT OF MAG IC

1862 PRINT"ERVSJIN THE AIR!
":GOT0210

190

EJeplanation

une 1850 - usual check for an unrecognised word.

une 1851 - usual check for bottles and torches with the subroutine
at line 5300

une 1852 - if they're not trying to read object 48, the old parchment,
then tell them that nothing is written on it, and go back to line 210

une 1854 - check to see if the object is in the player's possession, and
if it isn't print a suitable message and GOTO 320 again.

Une 1856 - print the first part of the message contained on the old
parchment.

Une 1858 - continued.

Line 1859 - continued.

Line 1860 - continued.

Line 1862 - end of message, and back to line 210 for more input.

191

EXAMINE

This is one of the most useful words in th~ adventurer's vocabulary
as any object should be able to be examined, and the exarninatio'

b . n of it will reveal valuable clues a out 1t.

Even if the result of EXAMINE TORCH reveals nothing more than IT'S
JUST AN OLD TORCH, it at least tel!s you that ~he torch has no
magical powers (although someone might be fooling ... !)

More often, you'll be told something about the object, about its value,
its usefulness, or its actual design.

In Underground Adventure, you're just told whether it's magical or not.

1900 IFNO=OTHENPRINT "WHAT ' S A " ;N1$;"!":GOT0210
190 1 IFN0=430RN0=10RN0=6THENPRINT"THERE ' S NOTHING
INTERESTING HERE. " :GOT02 10
1903 GOSUB5300
1 904 I FOB/. (NO) < >-1 ANDOB'l. (NO) < >CPTHENPR I NT " I CAN ' T
SEE IT HERE.":GOT0210
1905 IFN0=20RN0=160RN0=330RN0=370RN0=38THENPRINT"T
HIS HAS USEFUL POWERS.":GOT0210
1906 PRINT"IT ' S NOTHING MORE THAN :=":PRINT08$(NO>
:GOT02 10

192

f"planation

Line 1900 - usual check for an unrecognised noun.

une 1901 - if they want to examine the wall, the chasm, or the bridge,
then tell them there's nothing interesting here, and GOTO 210

Line 1903 - off to 5300 to check for torches and bottles.

Line 1904 - if the object is not in the player's possession, and isn't in
the room, then it can't be examined, and so back to 210.

Line 1905 - if the player is examining the staff, the mirror, the brick,
the shining stone or the sword, then he's told that it has useful powers,
before GOTO 210

Line 1906 - otherwise just print that it's nothing more than : and the
object description from 08${NO). Then, off to 210 again.

193

JUMP and BREAK

These are grouped together here because they don't take up much
code, and they don't perform a great function in this particular game

Nevertheless, JUMP could be a useful command in some games
enabling a player to jump across gaps that he couldn't simply Walk
across, if any player chose to take the risk.

Break is again not used here, but sometines it could be used as a test
of the player's ingenuity. Something could only be broken if, say, the
bear was following the player, in which case the bear would have the
strength to break the object for the player.

1950 IFCP=150RCP=100RCP=45THENPRINT''I TOLD YOU SO
•••••

11 :PRINTD$:GOT0612
1952 PRINT 11 WHEEE! 11 1GOT0210
1960 I FNO=OTHENPR I NT II BREA~~ WHAT ? ! II : GOTD210
1961 GOSUB5300
1962 !FOB"/. <NO> < >- 1ANDOB"/. <ND> < >CPTHENPRINT 11 I CAN'T.

IT ISN. T HERE! II I GOT0210
1964 PRINT 11 YOU'RE NOT STRONG ENOUGH TD BREAK

ANYTHING BY YOURSELF! 11 1GOT0210

194

f"planation

une 1950 - if the player tries to jump in room 15, 10 or 45 (i.e. across
8 chasm or down a steep incline) then print a sarcastic message, print
the variable 0$, and go into the death routine.

Line 1952- otherwise, print out a silly message and GOTO 210 again.

Line 1960 - usual check for unknown noun.

Line 1961 - GOSUB 5300 for the routine check.

Line 1962 - if the object isn't in the player's possession and isn't in
the room then he can't break it, so tell him so and then go back to 210

Line 1964 - tell the player the sad news, and GOTO 210 again .

195

PUSH

A verb that is used in a number of games, and one that could hav
been used in this one. As it is, an attempt to push the one thing tha~
moves results only in the player being told to try doing this in another
way.

1970 IFNO=OTHENF'RINT"PUSH WHAT ?!":GOT0210
1971 GOSU85300
1972 I FOB/.< NO> < >-1 ANDOB'X <ND) < >CF'THENF'R I NT" I CAN· T,

IT ISN'T HERE! 11 1 GOT0210
1974 IFCF'<>79THENF'RINT"YOU CAN ' T!":GOT0210
1976 PRINT"TRY DOING THIS ANOTHER WAY <LIKE USING

SOMETHING ELSE ! >":GOT0210
1999 END

196

Explanation

Line 1970 - familiar!

une 1971 - familiar again!

Line 1972 - and again!

Line 1974 - if the player isn't in room 79, i.e. the one where the track
is stuck, then there's nothing to move, so the player is told before
sending program control back to line 210 again.

Line 1976 - print out a helpful message before going to line 210

Line 1999 - the last line before the great assembly of data begins!

197

SAVE

A useful, and one could say vital part of any adventure game, is th
ability to stop a game in mid-flight and save one's progress onto tapee
including all the room descriptions that change, the object descriptions'
the positions of all the objects that have moved, the flags that indicat'
the successful or otherwise completion of a problem, and of cour~
the room number.

In Underground Adventure, this is achieved by typing in SAVE PROG
in response to the WHAT NOW* prompt. It does just save the data'
not the whole program! '

3000 PRINT"[CLRJINSERT TAPE AND PRESS ' SPACE' WHEN
READY"

3002 GETPP$1IFPP:i<>" "THEN3002
:;;.oo4 PRINT"Df<."
3006 DPEN1 1 1,1,"UNDERGROUND DATA "
3007 FORI=1TOLO:PRINT#1,0BXCI>1CR$;
3008 NEXT!
3009 PRINT#1,CP;CR$;TB;CR:i;GF;CR$;PD;CRS;ZZ;CR$;SC
;CRS;DF;CRl;BR;CRS;NP;CRS;
3010 PRINT#1,PSC10l;CR$;P:iC601;CR$;P:iC501;CR:i;P$C2
71;CRS;PIC151;CRS;P$1211;CR$;
3012 PRINT#1,P$C41;CR$;PSC931;CR:i;PSC791;CRS;P$(84
l;CRl;PSC741;CR$;
3014 PRINT#1,P$C691;CR$;P$C421;CR$;08$C301;CR$;0B$
C31;CR$;08$C311;CRS;
3016 PRINT#1,PXC45,11;CRS;PXl10,31;CR$;PXC3,0l;CR$
;PX160,11;CR$;PXC50,31;CR$;
3018 PRINT#1,PXl27,0>;CR$;PXC15,11;CR:i;PXl15,21;CR
S;PXC21,21;CRS;PX<4,31;CRS;
3020 PRINT#1,PXl93,0l;CRS;PXl79,21;CR:i;PXl84,2);CR
S;PXl84,31 ;CRS;PXl74,31;CR$;
3022 PRINT#1,PXl60,0l;CRS;PXl60,31;CR:i;PXl69,31;CR
:i;PXl42,11;CRS;
3024 CLOSE1
3026 GOT0614

198

i:,cplanation

Line 3000 - tell the player to put a tape in the cassette unit and press
space when ready.

Line 3002 - wait for the space bar to be pressed.

Line 3004 - print OK.

Line 3006 - open a file for writing to the cassette unit called
UNDERGROUND DATA.

Line 3007 - save the position of all the objects, separating each one
with a carriage return, defined in line 5.

Line 3008 - next step in the loop.

Line 3009 - save all the variable flags and counters.

Line 3010 - save some of the room descriptions that change.

Line 3012 - and save some more!

Line 3014 - and yet more, along with the three object descriptions that
change.

Line 3016 - save some of the room direction data that changes as
problems are solved in the course of the game.

Line 3018 - save some more

Line 3020 - and more.

Line 3022 - and more!

Line 3024 - close the file.

Line '.3026 - go to the routine at 614 requesting another game. The player
rnay Just have saved the data because he's about to try something risky!

199

LOAD

Vital of course, since we have got a save routine, and this just read
all the data back and starts the game off again at the point where ·~
had finished.

1

To use this, just type in LOAD PROG in response to the first WHAT
NOW * prompt.

3200 PRINT"CCLRJINSERT TAPE AND PRESS 'SPACE' WHEN
READY"

3202 GETPP$:IFPP$() " "THEN3202
3204 PRINT"m: ."
3206 OPENl,1,0,"UNDERGROUND DATA"
3207 FORI=lTOLO: INPUT*l,OBX<I>
3208 NEXTI
3209 INPUT*l,CP,TB,GF,PD,ZZ,SC,DF,BR,NP
32 10 INPUT*1,PS<10) ,PS<60l ,PS(50) ,P$<27) ,P$(15> ,Pt
(21)

3212 INPUT#1,P$(4) ,P$(93) ,P$(79l ,P$1841 ,P$(741
3214 INPUT#1,P$169) ,PS<42) ,08$(30) ,08$(3) 1 08$(31>
3216 INPUT#1,PX<45,11 ,PX<l0,31 ,PX<3,0) ,PX<60,1) ,PX
(50, 3)
32 18 INPUT#l ,PX (27 ,Ol ,PX (15, 1) ,PX (15,2) ,PX <21,21 ,P
X<4,3)
3220 INPUT#1,PXC93,0) ,PXl79, 2) ,PX<84, 2) ,PX<84,31,P
%174, 3)
3222 INPUT#1,PXC60,0l ,PX(60 ,3 1 ,PX<69, 3) ,PX<42,1)
3224 CLOSEl
3226 GOT0200

200

fJ(planation

une 3200 - tell the player to put a tape in the cassette unit and press
space when ready.

une 3202 - wait for the space bar to be pressed.

Line 3204 - print OK.

une 3206 - open a file for reading from the cassette unit called
UNDERGROUND DATA.

Line 3207 - read the position of all the objects.

Line 3208 - next step in the loop.

Line 3209 - read all the variable flags and counters.

Line 3210 - read some of the room descriptions that change.

Line 3212 - and read some more!

Line 3214- and yet more, along with the three object descriptions that
change.

Line 3216 - read some of the room direction data that changes as
problems are solved in the course of the game.

Line 3218 - read some more

Line 3220 - and more.

Line 3222 - and more!

Line 3224 - close the file.

Line 3226 - go to the routine at 200 that starts the LOOK sequence.

201

The Rest of the Verbs

Just four more to go now, and they all perform fairly minor function
so we'll group these up two to a page. There should still be enoug~
space for your own notes later.

LOOK

This doesn't even have a line of its own, but just goes to line 200. This
sends it off to the subroutine at line 5000.

SCORE

Two lines only, and these are : =

5 4 0 PR I NT " THERE ARE ND POINTS TD BE SCORE D IN THIS
GAME. YOU ' VE JUST GOT TO ESCAPE !"
5 4 2 GOTO 2 10

Just a simple message, and no points to be scored at all in this game.
All you have to do is survive and get out!

202

HELP

,Another simple one, this could be used to great effect in some games,
in giving vital clues for the sake of taking points away, but in
Underground Adventure you get no help at all, like this : =

650 F'RINT"I'M AFRAID YOU WON'T GET MUCH HELP FROM
ME! II : PRINT
652 PRI NT"SO JUST KEEP ON TRYING THINGS! " : P F~INT : PR
JNT"IF NDTH ING'S HAPPENING, TRY USING";
654 PRINT" DIFFERENT WORDS INSTEAD . "
656 GOTO 210

Only a simple message that tells you to keep examining things.

TAKE

In this game, take functions in exactly the same way as GET, so
program execution is just transferred to line 300 and everything dealt
with in the usual way.

It could be useful in some ways, as we've already mentioned, in that
one talks of TAKEing medicine, rather than GETting it , and there are
other ways in which the two words are different.

However, in Underground Adventure they behave in the same way.

That's the end of the verbs!

Let's get on and look at some data now.

203

Linking Everything Together

We've had to split up the various separate parts of Undergound
Adventure in order to be able to explain properly how each section
works.

Consequently, the listing is split up into a vast number of different
sections scattered around the length and breadth of this book.
However, every single line is in here somewhere, and the only section
that we haven't yet seen is the data, and this follows immediately after
this page.

It includes the data for the 100 rooms contained in the game, although
some of these rooms are little more than tunnels and corridors.
Whether you have this many in your games is up to you, since some
people prefer the 'less rooms, more objects' principle of adventure
writing.

This is all very well, and the trade-off in memory space saved is usually
the equivalent of something like four or five rooms per object on the
kind of system that we've been employing throughout the book. By
all means have more objects than we've used here, but do realise that
this will mean a corresponding rise in the number of verbs used.

No bad thing, but it all takes up memory space, and whether you want
a lot of rooms, or a lot of objects, is up to you.

Personally, I prefer the more rooms approach. It gives you lots of space
to explore about in, and means that the problems presented can be
spaced out at reasonable intervals, rather than coming one after the
other, with little chance for the adventure player to get a good feel
for the game, and for the area he is exploring.

It also seems more realistic, in that a stroll underground in a set of
caves is hardly likely to throw up hundreds of objects in each room,
but will provide a lot of cross-linking tunnels and corridors for you to
walk along.

But we've elected to go for a hundred rooms in total, and as we've
seen we'll be giving you all the descriptions in a moment.

To sum up the job of typing in this entire listing: it is scattered about
all over the place, but it is all here somewhere, with the data here,

204

the verbs earlier on in this chapter, most of the routines in the last
section of chapter 4, and the moving room routine in the last section
of chapter 3.

Of course, you can always buy the cassette of the game and save
yourself a lot of time and trouble!

The Data

This is the complete collection of data for the entire adventure, and
runs through the room data first, including description and direction,
the initial locations and descriptions of the objects, the shortened forms
of the object names, and of course the all important verbs.

A description of how each piece of data is used follows the listing.

2001 P$ (1 > ="ON AN OLD TRACf< HEAD I NG TOWARDS THE CA
VES":DATA 0 1 2 1 0 1 0
2002 P$(2)="GETTING EVER NEARER THE CAVES.":DATA
,3,o,o
2004 P$(3)="AT THE ENTRANCE OF THE CAVES, WITH P
ATHS LEADING EVERYWHERE!"
2006 P$(4)="IN FRONT OF A SOLID WALL OF ROCKAND YD
UR PROGRESS IS HALTED."
2008 P$(5)="IN A SUBTERRANEAN TOMB, DOTTED ABOUT
WI TH CRACf<S AND CREVICES. "
2010 P$(6)="WALKING AROUND THE SIDE OF THE CREVIC
E ROOM."
2012 P$ (7) ="SURROUNDED BY BF~ I Cf< ED UP WALLS. "
2013 DATA 2,15,20,4,0,0,3,0 1 6,13,4,9 1 0,5,0,7,0,9,6
,s,0,10,1,0,7,12,5,10
2014 P$ (8) "'"NEAR THE GREAT CHASM IN THE ROCf<WHICH
PLUNGES DOWN HUNDREDS OF FEET.
2016 F':$(9)="IN THE HEART OF THE CREVICE RODMWITH T
UNNELS LEADING OFF EVERYWHERE.
2017 DATA 8,11,9,0,10,0 1 12,0,9 1 0 1 13, 11 1 5,0,0,1 2 ,0,
0,10,0,3,0,0,0,0,18,0,15
2018 P$(10>="IN FRONT OF A GREAT CHASM WHICH IS MU
CH TOO DEEP AND WIDE TO CROSS.
2019 DATA 15, 33 ,18,19 1 16,34,0,17,0, 32 ,17,0,0,0,21,
3,0,0,0,20,23,0,0,21
2020 P$(11)="0N THE SOUTHERN RIM OF THE CHASMIN A
JUMBLE OF ROCKS AND BOULDERS.
2022 P:f. (12) ="LOST IN CHASM COUNTRY!"
2024 P$ (13) =" IN A ROOM FULL OF ROCf<S, ROCf<S, ROC~:s

AND ROCKS ! "

205

2026 P$ (14 l ="ON THE WEST SI DE OF THE CHASM BU.,.. .,..
HE VIEWS PRETTY LIMITED. II ' I I

2028 p,f < 15l ="FACED WITH A CRACf< IN THE FLOOR THAT
IS MUCH TCJ WIDE TO JUMP."
2030 P$<16l="IN AN EAST- SIDE CHAMBER."
2032 P:t.<17)="0N THE MAIN TRACI<. THROUGH THE
, SURROUNDED BY SIDE-TUNNELS.
2034 P$(18l="AWAY FROM THE CENTRE TRACK, WITHA CH
I CE OF ROUTES AS THE TUNNELS " ~ 0
2035 P$ (18) =P$ (18) +"WIDEN OUT INTO REASONABLY WEL

WORKED PATHS. THIS IS MINING l
2036 P$ (18) =P$ (18) +II COUNTRY I AND THE EV I DENCEOF 0
LD WORf(S STILL REMA!NS. II
2037 P$(19)="IN A SHARPLY TWISTING CORRIDOR."
2038 F'$(20l="ON A LONG EAST-WEST TRACK INTO THE D
EPTHS OF THE MINES."
2040 P$<21l="FORCED TO A HALT BY A LARGE
GROUND TREE."

UNDER

2042 F'$(22l="HEADING DOWN A TWISTY PATH INTO AN OL
D ANIMAL'S LAIR. YOU CAN SEE
2043 F':t. (22) =F'$ (22) +" FROM THE OLD PAW PRINTS THAT
SOMETHING BIG MUST LIVE HERE!
2044 P$(23l="SURROUNDED BY ROCK IN A MIXTURE OF CO
RRIDORS. II: DATA25,22,24,0
2045 P$<24l="WALKING ALONG AN OLD TUNNEL CARVE
D OUT OF THE ROC~~S. "
2046 P$(25l="FORCED TO TURN SHARPLY.":DATA26 1 0 1 0,2
3,0,23,26,0,27,24,0,25
2048 P$ (26) ="WAU<ING ALONG A FAIRLY LARGE CORRI
DOR. II

2050 P$ <27) ="FACE TD FACE WITH A LARGE BEAR!": DATA
0,26,0,0,0,27,30,29

2052 P$(28l="AT A T-JUNCTION BEHIND THE
s LAIR. II

BEAR'

2054 p'*: (29l="AT A DEAD END. 11 1DATA o,o,2e,o,31,0,0,
20,0,30,0,0
2056 P$(30l="NEAR THE HEART OF THE BEAR'S HIDIN
G PLACE."
2057 P$(31l="IN AN OLD CAVE,USED AS A RESTINGPLACE

BY THE BEAR."
2058 P$(32l="HEADING DOWN AN OFF-SHOOT FROM THEM·
AIN MINE. ":DATA19,42,33,41
2060 P$<33l="FACED WITH A CHOICE OF ROUTES, AS YO
U STAND HERE SURROUNDED "
2061 P$(33l=P$(33l+"BY SHORED UP TIMBERS AND WALL
S.":DATA17,0,34,32
2062 P$(34l="HEADING DOWN A LONG CORRIDOR, CRAWL
ING OVER STONES AND RUBBLE."
2064 P:t <35) "'"FACED WITH A VERY DEEP DROP THAT IS TO
0 DEEP TD ,1UMP OR CL! MB. II

2065 DATA 1s,o,35,33,o,o,o,34,o,o,3B,o,o,38,39,o, 3

7,0,0,36,0,0,40,37,0,0,0,39

206

zobb P$(36l="AT THE FOOT OF THE DROP, WITH CORRI
ooRS STRETCHING OUT BEFORE YOU.
"068 P$<37l="AT THE FOOT OF THE DROP, WITH A CORRI
pOR HEADING EAST."
zo70 P$ (38) =II FORCED I NTD A SHARP TURN HEF(E AS THE p
ATH TWISTS AND TURNS."
2072 P:f.(39)="0N A LONG LOW EAST-WEST CORRIDOR."
2074 P$(40l="IN A DEAD END, AND CAN GO NO FURTH
ER· II
2075 DATA 0,0,32,0,32,o,o,o,42,0,44,46,0,45,0,43,4
4 ,o,o,o,o,o,43,o,o,52,49,48
2076 P:t (41> ="AT THE WEST OF THE CAVES, AND WELL
AND TRULY STOPPED!"
2078 P$(42l="FACE TO FACE WITH AN EXTREMELY ANGRY
PANTHER!"

'2080 F'$ (43) =II AT AN UNDERGROUND T--JUNCT I ClN. II
2082 P:t (44) ="NEAR A GREAT INCLINE. II

2084 P$ (45) ="AT THE FOOT OF A GREAT INCL.I NE THAT
IS MUCH TOO STEEP TO CL I MB, "
2086 P$ (46) =II IN A DEAD-·- END. II
2088 P$ (47) ="AT THE TOP OF THE GREAT INCLINE."
2090 F'$(48l="NEAR AN OLD SCARY PART OF THE CAVES
, REPUTEDLY HAUNTED •.••. "
2092 P$(49l ="NEAR A REPUTEDLY MAGICAL PART OFTHE C
AVES •.... II
2093 DATA 0,51,47,50,0,53,54,47,0,0,48,0,48 1 66,0,0
,47,77,0,0,49,100,0,0,0,0,88,49
2094 P$ (50 l ="GROUND TO A HALT BY THE GHOSTLY SP IF(I
T OF THE CAVES I II
2096 F'$ (51 l ="ON AN OFF-SHOOT FROM THE MAIN TRAC~::

2097 P:t<52l="ON AN OLD PATH HEADING NORTH- SOUTH

2098 P$(53l="STOPPED BY AN EXTREMELY NARROW SQUEE
ZE THAT YOU CAN'T GET THROUGH."
2099 P:t<54l="NEAR THE MAGICAL CAVERNS!"
2100 DATA56,57,50,58,0,55,0,0,55,0,0,0,0,0,55,59,6
0,0,58,0,0,59,0,0
2102 P:t<55l="IN AN OPEN CORRIDOR, WITH EXITS CRVSJ
EVERYWHERE!COFFJ"
2104 P$ (56) ="STUC~: IN A DEAD END. II

2106 P$<57)="STUC~: IN A DEAD END."
2108 P:f. (58) ="ON A WELL TRODDEN EAST-WEST F'ATH"
2110 P$(59l="FORCED TO TURN AS THE PATH BOBS AND W
EAVES AMONGST THE ROC~<S. "
2112 P:f. (60> ="FACED WITH A DOOR MARKED WITH THE W
OROS CRVSJBEGONE STRANGER!"
~114 DATA 61,61,61 1 62,61,61,61 163 1 61,64 1 61,61 1 61 1 6
165,61,61,61,60,61

2115 P$(61l="IN A MAZE OF TWISTY LITTLE PASS-AGES,
ALL ALIKE!"

2116 P$(62l="IN A MAZE OF TWISTY LITTLE PASS-AGES,

207

ALL
2117

ALL
2118

ALL
2119

ALH'..E! II

P$(63)=="IN
ALH<E ! II
P$(64>="IN
ALIKE!"
P$(65)="IN

ALL ALIKE!"

A MAZE

A MAZE

A MAZE

OF TWISTY LITTLE PASS-AGEs
' OF TWISTY LITTLE PASS-AGES
'

OF TWISTY LITTLE PASS-AGES
'

2120 DATA51,67,0,68,66,0,0,69,0,69,66,0,68,0,67 O
0 '71 '69 '0 '70 '72' 0' 7 4' 71 '0 '0' 73 ' '
2122 P$C66)="WALKING ALONG AN INDISTINCT PATHAND T
HE WALLS LOOK RATHER DAMP."
2124 P:t(67>="IN A LOW, DAMP CORRIDOR."
2126 P$ (68) :::"IN A Low' CORRIDOR. IT ALL SEEMSTO BE

A LITTLE DAMP AROUND HERE."
2128 P$(69)="STOPPED BY A WALL OF HAZY MIST THAT
OBSCURES ALL LIGHT."
2130 P:i C7C>l ="ON THE SOUTH SIDE OF THE MIST. THE A
IR SEEMS CLEARER HERE."
2 132 P$C71)="HEADING ALONG A CLEAR PATH CUT FROM
THE LIV I NG ROC~'. . "
2134 P:t. <72> ="IN A SHAF<PLY TWISTING CORRIDOR."
2136 P:t. (73) ="TWIST I NG AND TURN I NG AMONGST THEROCt<S

IN THE CRVSJFLYCDFFJ ROCJM ! II
2138 P:t.<74>=="FACE TO FACE WITH A GIANT FLY WHICH

COMPLETELY BLOCKS YOUR PATH
2140 DATA 74,0,72,0,0,73,71,o,o,0,74,76,0,0,75,0
2142 P$ <75> ="IN A LOW EAST-WEST CORRIDOR THAT IS TO
TALLY FREE OF INSECTS!"
2 3.44 P$(76l="IN A COMPLETE DEAD- END AND CAN GO NO

FURTHER. II

2146 DATA 52,78,0,0,77,79,0,0,78,0,o,o,0,83,0,79,0
,82,79,0,81,0,0,0,80,84,0,0
2148 P$(77>="STILL HEADING NORTH-SOUTH!"
2150 P:t<78>="AT THE BOTTOM OF A LONG, LOW
- SOUTH PASSAGE."

NORTH

2152 P$(79> ="PREVENTED FROM GOING FURTHER BY AN OL
D SEIZED UP MINING TRACK."
2154 P$(80>="WEAVING AROUND, WITH OLD AND

COBWEBS HANGING EVERYWHERE."
2156 F'$(81)="0N THE WEST SIDE OF THE TRACK."

DUSTY

2158 P:I> (82 > =" IN THE C RVS J SALVAGE ROOM COFF J BUT CAN
GO ND FURTHER."

2160 P$(83)="NEAR TD THE CRVSJSPIDER[QFFJ ROOM!"
2162 P$<84>="IN SPIDER COUNTRY AND THE LARGE SPIDE
R HERE WON'T LET YOU PASS!"
2164 P$ <85) ="IN AN OLD CHAMBER KNOWN AS THE CRVSJ
SPIDER. s GRAVEYARD! II .

2166 P$ (86) "'"NEAR THE CRVSJSPIDERCOFFJ ROOM. II s
2168 P:l><87J="IN A TOTAL DEAD END. YOUR ROUTEEND
HERE!"
2169 DATA 83,o,o,o,o,o,84,o,o,87,0,84,86,o,o,o

93 2170 DATA 89,90,92,54,0,88,91,0,88,94,0,o,o,92, '

208

99,91,0,97,88,0,97,0,91
"1172 P:t.<8B>="IN THE HEART OF MAGICAL CAVERNS.WITH
~ATHS GOING OFF EVERYWHERE."
2173 F'$ <89) ="IN A NORTHERN OFF- SHOOT FROM THE M
AIN PATH. II

2174 P$(90l="WAU<ING ALONG A MAGICAL COF~RIDOR"
"1176 P:t.<91>="IN A DIMLY LIT CORRIDOR. "
2178 P:t.<92> ="NEAR TD THE SOURCE OF THE MAGIC."
2180 P:t<93J:::"HAL.TED BY A MAGICAL SHIMMERING CURTA
IN THAT WILL. NOT LET YOU PASS.
2102 DATA 90,0,o,o,o,93,96,0,99,0,98,95,93,0,0,92,
0 ,o,o,96,0,96,o,o,53,o,o,o
2184 P$ (94) ="FOOLED YOU! DEf~D END."
2186 F'$(95>="0N THE NORTH SIDE OF THE SHIMM- ERING
CURTAIN."

2188 P:f.(96) == "IN A LOW CORRIDOR."
2189 P:t. (97> ="TREADING OVER DIMLY LIT ROC~: s AND R
UBBLE."
2190 F'$ C 98) =" IN A DEAD END. THE WALL ' S BR I Ct~: EDUP HE
RE, AND YOU CAN'T GO ANYWHERE.
2191 F'$(99)="IN A NORTHERN OFF-SHOOT FROM THE M
AIN PATH."
2192 F'$(100)="IN AN OLD WAREHOUSE ONCE USED BYTHE
MINER'S TOOLMAKERS."
2200 FORI=1TDP:FORJ=OT031READPX<I,J):NEXTJ,I
2210 DATA15 1 20,21,34,24,0,40,0,27 1 7,42,46,0 1 14,93,
67,79,48,98,69
2212 DATAA VAST CHASM,AN IRON STAFF,A VAST TREE,A
STOUT AXE,A THICK COIL OF ROPE
2214 DATAAN ENCHANTED BRIDGE,SOME DYNAMITE! ,A PILE

OF RUBBLE,A GOLDEN BEAR
2216 DATAA BUN,A BIG BLACK PANTHER,A LONG WOODEN P
LANK,A TALL. LADDER,SOME NAILS
2218 DATAA HAZY SHIMMERING CURTAIN,A POLISHED MIRR
OR,A BLOCKED TRACK
2220 DATAA POOL OF DIL,AN EMPTY BOTTLE,A SOLID WAL
L OF HAZY MIST
2222 FORI=1T020:READDBX<I>:NEXTI:FORI =1T020:READ 0
B:i<I> :NEXT
2224 DATA 50,84,74 1 60 1 76,87 1 3 1 53 1 63 ,31,73,0 1 0 1 100,
0,3,1,0,0, 39,0,0,0,0,0
2226 DATATHE GHOSTLY DENIZEN OF THE CAVES! ,A HUGE
BULBOUS GIANT SPIDER
2228 DATAAN ENORMOUS FLY! ,A RICKETY OLD DOOR,A LUM
P OF SOLID MORTAR,A FLY SPRAY!
2230 DATAA SOLID GATE,A NARROW CRACK,A SHINING STD
NE,A TRUSTY SWDRD,SDME WHISKY
2232 DATAA LIVING GARGOYLE! ,AN EVIL KNIFE, A KEY,A
WALL,SOME MATCHES,AN OLD TORCH
2234 DATAA BLAZING TORCH,A GLOWING LIGHT,AN OLD PA
RCHMENT,PROGRAM
2236 DATAA PILE OF BROKEN GLASS

209

2237 DATAA BOTTLE OF OIL,A BOTTLE OF WHISKY,SOME N
ICELY SAWN TIMBER
2238 FORim29TOLO:READOB%Cil:NEXT
2240 FORI=29TOL01READOB•<Il1NEXT
2250 DATACHA,STA,TRE,AXE,ROP,BRI,DYN,RUB,BEA,euN,p
AN,PLA,LAD,NAI,CUR,MIR,TRA
2252 DATAOIL,BOT,MIS,NOR,SOU,EAS,WES,N,S,E,W,GHO,s
PI,FLY,DOO,MOR,SPR,GAT,CRA
22.54 DATASTO, SWO, WHI, GAR, KNI, KEY, WAL, MAT, TOR, TOR,L
IG,PAR,PRO,GLA,BOT,BOT,TIM
2256 DATAGO,GET,LOO,INV,SCO,DRO,HEL,QUI,CRO,TAK,op
E,CLO,EAT,FEE,DRI,OFF,WAV
2258 DATACUT,CHO,CLI,LIG,ATT,KIL,HIT,MAK,REF,OIL,S
TA,SPR,THR,RUB,REA,EXA,JUM
2260 DATABRE,PUS,SAV,LOA
2262 FORI=1TONN:READNO$Cil:NEXT
2264 FORI=1TONV:READVB$Cll:NEXT
2266 DATANORTH,SOUTH,EAST,WEST
2268 FORI~OT03:READDD$Cll:NEXT
2270 RETURN

Using the Data

Here we'll explain how all the data is used, and how it all works. In
other words, what are all those words and numbers that you've just
typed in!

We'll start off with the room data.

Data for the Rooms

There are one hundred rooms in all, and each one is given a description.
Some of these descriptions are used for a number of different rooms,
in particular in the maze where we want to confuse the player totally.

The room descriptions are stored in the variable P$(1), where p~(I)
contains the description of the Ith room, which is used in the routine

d · · onto from line 5000 onwards when actually printing the escnpt1on
the screen.

. .. fd ·fnthat Using strings in this way naturally l~m.1ts the ~ength o escnp 10 e of
we can give to a room, although 1t 1s possible to lengthen som rn
these by concatenating strings together, as has been done for roo
22 for instance, in line 2043.

d I ·ves the This has the effect of looking better on the screen, an a so g1

210

player a more realistic description of the room he is currently in.
r:iernember though that there is a limit to how long a string can be,
and also how long a string can be saved onto tape, so keep your longer
descriptions for rooms that are not going to change as the player solves

8 series of problems.

,Associated with each room are four numbers, stored in the variable
p%(1,J), where P%(1,J) refers to the Jth direction from room I.

For instance, the four values for room 1 are 0,2,0,0. This means the
player cannot go north, east or west, but can go south . Moving south
will take him to room 2, which has the data 1,3,0,0. This signifies that
the player can move north to room 1, south to room 3, but cannot
move east and west.

In room three, we have our first choice of routes, since the data for
room three is 2, 15,20,4 : the player can go north to room 2, south
to 15, east to 20, and west to 4.

Judicious use of room numbering can greatly enhance an adventure,
although this is by no means the only system in use today. However,
it is possibly one of the easiest to master, and is certainly easy to
program.

Data for Nouns

Just like the rooms, each noun, or object, has two variables associated
with it, and these are 08$(1), used to refer to the description of the
Ith object, and 08%(1), which holds the current room number of the
Ith object. If this number is a zero it isn't currently in the game, and
if it is equal to minus 1, it is in the possession of the player.

In line 2222 we read in this data for the first 20 objects, position first,
and then the lengthy description .

There then follows a gap of eight object descriptions and positions,
as these are used to hold the words NORTH, SOUTH, EAST, WEST,
N, S, E, W respectively . This enables us to use both longhand forms
of typing in a movement request (GO NORTH), and the simple one­
Word request like NORTH, or even just N.

In lines 2238 and 2240 the next set of descriptions and locations are
read in for the objects from 29 up to the upper limit set by the variable
LO, as defined in line 2000.

211

The shortened forms for the nouns, that is, the words that we
when analysing any data that has been typed in, are stored in ruse
2250 to 2254, and are read in as N0$(1) in line 2262. rnes

Data for the Verbs

This . i~ only of use when a~al~sing what ~as been typed in, and
obtarnrng a verb number, which rs then used rn lines 240 to 262 of th
program in order to send program execution off to the correct pa~
of the program.

!h~ data, in three-letter for~at for _speed of verb identification, is stored
rn lrnes 2256 to 2260, and rs read rnto the variable VB$(1) in line 2264.

This data is used throughout the program to keep the adventurer on
the move, and the large number of verbs provided ensures that a
reasonable degree of interest should be maintained throughout the
lifetime of the game.

The final lot of data, in line 2266, is only used once, in the routine
starting up at line 5000, to print out the directions which our intrepid
explorer can go off in.

It is read in in line 2268, in the order that the numbers in the variable
P%(1,J) are read. That is, NORTH first, then SOUTH, EAST and
WEST.

And that's it! A whole adventure!

Conclusion on Underground Adventure

It is not the world's greatest adventure, simply because we have
explained it all in great detail, so that you now know precisely how
it all works, and could probably solve it in a matter of one or two
sittings.

Nevertheless, it is not to be decried because of that, if it achieves the
aim it set out to do: that of presenting clearly and logically a complete
adventure game listing, that anyone could take and adapt to produce
their own compelling adventure games.

212

Machine Code Adventuring

This approach, in Basic, is obvi.ously limited, and it would be possible
to write much faster games in machine code. However, to write an
adve~ture in machine code would be the work of many, many months,
possibly even years, and most of us want to see results in far less time
than that!

Using the approach outlined here, it should be possible to produce
adventure games at a reasonable rate, although a programmer's utility
is virtually essential for writing a program this long.

Finding all the occurrences of the variable P%(54, anything), and
others, are problems you want answers to all the time, and most Basics
aren 't equipped with such useful functions as these!

Role-Playing Adventures

We also _h~ven't ~eally considered adventure role-playing games,
although rt rs a sub1ect I may tackle at a later date. Still, we have given
a few brief outlines here, and even the simple approach followed
throughout this book could be used as the model for a role-playing
game.

The n~mber of rooms would have to be a little less, but within reason,
and wrth some competent programming, the same level of difficulty,
the same ~ind of vocabulary, and the same number of objects, could
all be retained, to provide a fascinating game.

Th~ one real limitation of this approach is that of the acceptance of
an rnput from the user. We have restricted ourselves to the purely VERB
OBJECT school, although this hasn't stopped a large number of
adventures from being very successful programs in the past, viz.
Crowther and Woods, Adams, et al.

Verbal Adventures

~o go in for a greater.level of response is possibly beyond Basic, as
Would take a long trme to sort through the response and break it

dow · · n rnto rts proper component parts. Just because the program can
accept something like VERB OBJECT ACTION, i.e. like 'Take the Box

213

and Close the Lid', doesn't mean that the player will always want t
use all of those options, and the program, unless cleverly, and quicklyo
written, could find itself getting into a terrible muddle. '

But the purpose of this book, and the game Underground Adventure
was to get you exploring adventures and writing them, and on a good
level we have, I hope, succeeded.

Have fun adventuring, and we'll leave you with two final listings, Tunnel
Adventure and Castlemaze Adventure.

214

7

Castlemaze Adventure

Introduction

This is a full-blown adventure listing, written using the same routines
as Underground Adventure, so you should be able to follow what's
going on.

It isn't as sophisticated in looks as the first game, but it is a challenging
adventure that should keep you occupied for many a long day. Of
course, if you cheat by looking at the listing you'll solve it very quickly,
but you wouldn't do that, would you ... !

We've already given you the map for this, so you should know what's
going on, but watch out for the evil sorceror and the Black Knight.
Oh yes, and the deadly maze is VERY deadly!

Have fun!

215

0 GOSUB 20000
1 GBS="A GOLD BAR FALLS OUT!"
2 D1:t:="GULP-GULP-GULP. YOU ARE SHRINKING!
3 DU= II YOU HAVEN ' T GOT IT. II

4 CM$=CHR$(44l
5 X=RND<-Til:X=O:ZZ=1:PI=12
8 QT$=CHR$(34l
9 VTS="BEHIND THE SIGN IS A VAULT IN THE WALL. THE

VAULT IS LOCKED.
10 PRINT"CCLRJ":PRINT,"CASTLEMAZE ADVENTURE"
17 DB:t:="YOU MUST SUf'PLY A DIRECT OBJECT."
18 DEFFNR(Q)=INT<RNDC1)*Q)+1
19 CP,.,49:S1$="I DON'T SEE IT HERE.":S2$,.,,"DON'T BE
RIDICULOUS.":GOT01700
20 GOT01500
30 IFCP=52ANDKN=OTHEN1170
40 IFOBC2,0l=-1ANDPI=CPTHEN1240
50 IFCP=29ANDSP=OTHEN1330
60 T=T+1:GOSUB1430:IFVB$="3.1"THENP(30,2)=31:GOT02
0
70 IFVB=-1ANDCND >21ANDN0<30lTHENVB=1
90 IFVB$="CRO"THENIF<CP=520RCP=53lTHENCP=52+ABS<CP
- 53l:GOT020
110 IFVB<>30AND<VB >100RVB=200RV8=6>ANDND$=""THENPR
INTDB$:GOT060
140 IFVB=30THEN1070
160 IFVB=-1ANDND< >OAND<ND <220RN0 >29lTHENPRINT"YOU
MUST SUPPLY A VERB.":GOT060
170 IFVB< 1ANDNO=OTHENPRINT"I DON'T KNOW HOW TO "QT
$N1$QT$" ANYTHING. 11 1GOT060
190 IFND=OANDVB>10THENPRINT"I DON'T KNOW WHAT A "Q
T$N1$QT$" IS.":GOT060
200 ONVBGOTD210,2B0,20,350,380,400,920,470,830,137
0,510,520,550,280,660,740,770
205 ONVB-17GOT0660,840,840,550,400,460,940,950,980
,1010,400,1050,1070
210 IFCND<22DRND >29lANDN0$()" "THENPRINT"I DON'T KN
OW HOW TD DO THAT.":GOT060
220 IFNO$=""THENPRINT"WHERE?":GOT060
230 IFN0>25THENNO=ND-4
240 NO=N0-22:IFPCCP,ND>=OTHENPRINT"THERE IS ND WAY

TO GO IN THAT DIRECTION.":GOT060
250 IFCP=1ANDN0==1ANDDF=OTHENPRINT"THE CASTLE DOOR
Is LOC~~ED. II : GOT060
260 IFCP=17ANDND•1ANDCF=OTHENPRINT"THE CRACK IS TO
0 SMALL FOR YOU.":GOT060
265 IFCP=18ANDNO=OANDDB<9,0>=-1THENPRINT"THE PAINT
ING IS TOO BIG FOR THE CRACK. 11 1GDT060
267 IFNO=OANDOB<20,0)=CPTHENPRINT"THE SORCEROR TUR
NS YOU INTO A FRDG.":GOT01220
270 CP=PCCP,NO>:GOT020

216

::zeo IFDBCN0,0>=-1THENPRINT"YOU'VE ALREADY GOT IT!"
1 GOT060
'.290 IFND=OTHENPRINT"WHAT'S A "N1$"?":GOT060
300 IFOBCNO,O> <>CPTHENPRINTS1$1GDT060
310 IFN0=170RN0=21DRND=20DRN0=16THENPRINTS2$:GOT06
0
3'.20 IFZZ>4THENPRINT"YDU ARE UNABLE TD CAF~RY ANY MO
RE·":GOT060
330 IFN0= 19ANDPF=OTHENPRINTVT$:PF=1:08<16,0l=CP:OB
C19,0>=-1:ZZ=ZZ+1:GOT060
340 PRINT 11 m:. 11

: ZZ=ZZ+1: OB <ND,Ol .. -1: GOT060
350 IFZZ ,..OTHENPRINT"YOU ARE EMPTYHANDED.":GOT060
360 PRINT"YOU ARE HOLDING THE FOLLDWING:":FDRI•1TD
L.0: I FOB (I I 0) =- l. THENPR I NT II II OB$ (I)
370 NEXTI:PRINT:GOT060
380 GOSU8384:GOT060
384 J=O:FORI=1TDLD:IFOBCI,0>=1THENJ =J+OBCI,1>
385 NEXT:PRINT"YOU HAVE SCORED"J"POINTS OUT OF 100
,":IFJ < lOOTHENRETURN
390 PRINT'," CCD I RVSJWELL DONE ! COFFJ II: END
400 IFNO<>OANDOB<N0,0> <>- 1THEN980
440 IFND=OTHENPRINT"I ' VE NEVER HEARD OF A "N1:S:"."1
GOT060
445 I FNO= 1 BANDOB < 13, 0 l < >C PTHENDEt:t. C 18 > == "A SHATTERED

VASE" : OB C 18, 1 l =O
450 OBCNO,O>=CP:PRINT"Df(":ZZ=ZZ-1:GOT060
460 IFNO=BORN0=14THENPRINT"TRY ' SWING'":GOT060
462 IFN0=1DRN0=4THENPRINT"TRY 'SHDOT'":GOT060
464 IFNO=lOTHENPRINT"TRY 'SHARPEN' 11 1GOT060
465 IFN0=31THENPRINT"TRY ' JUMP' 11 1GOT060
466 IFN0=13THENPRINT"JUST 'DROP' IT WHERE YOU NEED

IT.":GOT060
468 PRINT"! DD NOT UNDERSTAND.":GOT060
470 IFCP<49ANDCP >44THENCP•CP-251GOT020
474 IFCP<24ANDCP>19THENCP=CP+251GOT020
477 PRINT"THAT IS NOT POSSIBLE."1GOT030
510 PRINT"ALRIGHT ..• ";N1*1GDT060
520 IFOB<N0,0>< >-1THENPRINTDI$:GOT060
530 IFN0<>7THENPRINTS2$1GOTD60
540 PRINTD1$:ZZ=ZZ-110BC7,0>=01CF=11GOT060
550 I FNO< >31ANDNO<> 16ANDND<)30THENPR I NT II I DON . T l<N
OW HOW TO OPEN SUCH A THING.":GOT060
560 IFND=16AND08(16 1 0l <>CPTHENPRINT"WHAT VAULT?":G
0T060
570 IFN0=16ANDOBC2,0>< >- 1THENPRINT"YOU DON'T HAVE
THE ~:EV. II I GOT060
590 IFN0=16THENPRINT"THE VAULT IS OPEN 11 1VF=1:IFOBC
15,0>=0THENPRINTG8$:08C15 1 0)•CP
590 IFN0•16THEN60
600 IFN0=31THEN1140
610 IFCP<> lTHENPRINT"WHAT DDOR?":GOT06C>

217

620 IF08(2,0> <>-1THENPRINT"YOU DON'T SEEM TO HAVE
THE b::EY. II : GOT060
630 PFi I NT II THE DOOR Is OPEN. II: OF= 1: GOT060
660 PRINT"HOW?":GOT060
740 IFOB<N0,0> <> -1THENPRINT"YOU DON'T HAVE IT. ":Go
T060
750 IFN0<> 3THENPRINT"HOW DO YOU EXPECT TO READ ";O
B:t<NO>;"?":GOT060
760 PRINT" IT SAYS: [RVSJA SECRET PASSACiE LIES NEA
RBY"
761 PRINT. II [RVSJ IT OPENS IF YOU NUMBER PI II I GOTO
60
770 IFOBIN0,0><>-1ANDOBIND,O><>CPTHENPRINT''I DON'T

SEE THAT HERE.":GDT060
780 IFDB<1,0> < >-1THENPRINT"YDU DON'T HAVE A BOW!":
GOT060
785 IFDB<4,0> <>-1THENPRINT 11 YOU DON ' T HAVE AN ARROW
1 ":GDT060
820 ZZ=ZZ-1:DB<4,0>=CP:GOT060
830 PRINT 11 YOU NEED A TOOL.":GOT060
840 IFND=160RN0=300RN0=31THEN870
850 IFDB<N0,0>< >-1THEN835
860 PRINT''I DON'T KNOW HOW TO CLOSE SUCH A THING."
:GOT060
870 IFN0=16ANDOB(16,0> <>CPTHENPRINT 11 WHAT VAULT?":G
OT060
880 IFND=16THENPRINT"THE VAULT IS CLOSED AND LOCKE
D.":VF=O:GOT060
890 IFN0=31THEN1110
900 IFCP<> 1THENPRINT"WHAT DOOR?"1GOT060
910 PRINT 11 THE DOOR IS CLOSED AND LOCKED. 11 :DF=O:GOT
060
920 IFCP<8THENPRINT"BE PERSISTENT. 11 :GOT060
922 IFCP<20THENPRINT"EXAMINE THINGS.":GOT060
924 IFCP<24THENPRINT 11 WHAT GOES UP MUST COME DOWN."
:GOT060
925 IFCP<34THENPRINT"VALUE THINGS.":GOT060
926 IFCP<41THENPRINT"DO AS HANSEL AND GRETEL DID."
:GOT060
928 IFCP<45THENPRINT 11 THINK. 11 :GOT060
930 IFCP<52THENPRINT 11 THIS ADVENTURE HAS A VIOLENT
BEGINNING. 11 1GOT060
932 PRINT 11 CROSS THE BRIDGE. 11 1GOT060
940 PRINT 11 ITS VALUE IS 11 0B<N0,1> 11 POINTS. 11 :GOT060
950 IFOB<N0,0><>-1THENPRINT"YOU DON'T SEEM TO HAVE

IT."1GOT060
952 IFN0<> 14THEN960
954 FORI=1T019:IFOB<I,0>=-1THENOB<I,O>•CP
956 NEXT:ZZ=O:CP=23:GOT020
960 I FNO< >8THENF'R I NT II wow' TH Is Is FUN! II: GOT060
962 IFOB<20,0><>CPTHENPRINT 11 WHOOSH! 11 1GOT060

218

965 IFSH=OTHENPRINT 11 THE SWORD BOUNCES OFF THE SORC
ERER AND HITS YOU. 11 :GOT01220
967 PRINT 11 THE SHARP SWORD SLICES THE SOFiCEREFi. 11

: SH
~sH+1:IFSH< 4THEN30

970 OBl20,0>=0:08(14,0l=CF':PRINT 11 THE SORCERER DISA
ppEARS. 11 :GOTD30
980 IFDB<ND,0> <>-1THENPRINT 11 YDU DON'T SEEM TD BE H
OLDING IT. 11 :GOTD60
990 IFNO<>BTHENPRINTS2$:GOT060
995 IF08(10,0> <>- 1THEN830
1000 PRINT 11 THE SWORD IS NOW ~~AZOR SHARP.": SH=1: GOT
060
1010 IF<CP=1ANDN0=30>0RICP=44ANON0=31>THEN1022
1011 IF081N0,0> <>- 1ANDOB<ND,O> <>CPTHENPRINTS1S:GDT
060
1012 IFN0=17ANDOBl2,0> =0THENDB<2,0) =CP:PRINT"SDMET
HING ' S IN HIS POCKET!":GOT060
1013 IFN0=21ANDOBl6,0)=0THENOBl6,0>=CP:PRINT"SOMET
HING'S Il\I THE STOMACH! ":GOT060
1014 IFN0=8ANDSH=OTHENPRINT"IT'S BLUNT.":GOT060
1016 IFNO=BTHENPRINT 11 IT ' S SHARP.":GOT060
1018 I FN0=7THENPR I NT" ON THE BOTTOM IT SAYS 'DR I Nb::
ME ' " : GOT060
1020 IFND=18THENPRINT"IT'S VERY FRAGILE.":GOT060
1022 IFN0=31THENPRINT"IT'S BIG ENOUGH TO JUMP OUT
OF.":GDTD60
1024 IFN0=10RN0=30THENPRINT"IT ' S MADE OF WOOD.":GO
T060
1025 IFN0=19ANDOBl19,0)=35THENPRINT''IT'S JUST HANG
ING THERE. 11 :GDT060
1026 IFN0=20THENPRINT"HE'S PREPARING TD CAST A SPE
LL ON YDU.":GDTD60
1028 IFN0=13THENPRINT"IT'S SOFT.":GOT060
1030 IFN0=10THENPRINT"IT'S GRAY ANO GRITTY.":GOT06
0
1038 PRINT 11 IT'S JUST "OB:t:<NO>".":GOT060
1050 IFN0=4ANDDB<4,C>>=22THENPRINT"LOOK FDR IT IN T
HE FOREST. 11 :GOT060
1053 IFND=2ANDOB<2,0)=0THENPRINT"EXAMINE THINGS.":
GDT060
1055 IFDBIND,0>=-1THENPRINT"YDU'RE HOLDING IT, STU
PIO!":GOT060
1057 IFDB<NO,O>=CPTHENPRINT''IT'S RIGHT IN FRONT OF

YOU, STUPIO!":GDTD60
1060 IFND< >20THENPRINT"PULL YOUR FINGER OUT AND LO
DK FOR IT! II: GOT060
1062 PRINT''CCLRJYOU'RE IN THE SORCERER'S TORTURE C
HAMBER- - HE HAS A WHITE-HOT F'DKER";
1064 PRINT" AND HE IS COMING TOWARD YOU!":FORJ=1
i03:GOSUB1430
1065 IFV8=25ANDN0=14ANDOBC14,0>=-1THEN950

219

1066 PRINT "THE SORCERER THRUSTS THE Pm:ER AT You. "
:NEXT:GOT01 220
1070 IF (CF' > 19ANDCP< 24) ORCP='.3 4 THEN PR I NT" DOWN t CD 1 Dow
NCCDJDOWN CCDJDOWNCCDJDOWN":GOT01220
1080 IFCP<>44THENPRINT"WHEEEE!":GOT060
1090 IFWF=OTHENCP=43:GOT01080
1100 PF(I NT " YOU LAND SAFELY IN THE TREE ' S BRANCHES,
": CP=2 1:GOT060
111 0 IFCP<> 44THENPRINT"I DON'T SEE A WINDOW. " : Gor o
60
11 20 IFWF =OTHENPRINT" IT I S ALREADY CLOSED.":GOT060
l. t 30 PR I NT" IT ' S STUCK . " : GOT060
11 40 IFCP<> 44THEN1 110
11 50 IFWF=1THENPRINT"IT IS ALREADY OPEN.":GOT060
1160 PRINT"IT ' S NOT EASY , BUT YOU MANAGE TO GET TH
EW I NDOW OPEN. YOU SEE A" ;
1161 PRI NT" BIG LE AFY TREE ABOUT 2 ME TERS BELOW T
HE WI NDOW. ":WF=t : GOT060
11 70 PRINT"A BLAC~: KNIGHT IS RIDING ACROSS THE

BR r DGE TCJWAFm You ! " : GOSUEt 1430
1180 IFVB<> 170RN0<>17THEN1210
1190 IF08(1, 0 ><>- 1THENPRINT"YOU HAVE NO BOW 1 ":GOTO
12 10
1195 IFOB<4,0> <>- 1THENPRINT"YOU HAVE NO ARROW!"1GO
T0121 0
1200 PRINT"THE ARROW FINDS A CHINK IN THE KNIGHT ' S

ARMOR. HE FALLS.
1 20~i KN=l:ZZ=ZZ - l:OB<4,Cl) .. 52:0B<17, 0) =52:GOT060 I ,
12 10 PRINT" THE f<NIGHT Sl<EWERS YOU WITH HIS LANCE.'
1220 FORI =1T02500:NEXT:PRINT"CRVSJYOU ARE DEAOCOFF
J": FOFU=1 T02500: NEXT: GOT01370
1240 PRINT"A PIRATE SNEA~:: s UP ON YOU ANO STEALS TH
Ef<EY. CRVSJHAR HAR HARCOFFJ";:PI=O
1250 PRINT" HE CHORTLES:": PRINT" CRVS J I ' LL HIDE THI
S DEEP IN THE MAZE!
1290 OB(2 1 0)=34:ZZ =ZZ - 1:GOT060
1330 PRINT"A GIANT SPIDER DROPS FROM THE CEILING!
1335 PRINT"IT IS MOVING TOWARD YOU!":GOSUB1430
1337 IFVB< >170RN0<>21THEN1350
1340 IFOB<1,0> <>- 1THENPRINT"YOU HAVE NO BOW!":GOTD
1350 " GO
1342 IFOB<4,0> <>- 1THENF'RINT"YOU HAVE NO ARROW!:
TD1 350
1345 PR I NT" THE ARROW RI PS INTO THE SP I DEF<. ":SP= 11 z
Z=ZZ - 1
1347 OBC21,0l=29:0BC4,0> =0:0B<5,0>=291GOT060 ITS
1350 PRINT"THE SPIDER POUNCES ON YOU AND SINKS

FANGS INTO YOUR NECK.":GOT01220
1 :370 PR I NT" (CLR J II I GOSU8384: POKE40. 1 : END
1430 PRINT"CCD,RVSJWHAT NOW? COFFJ ";:GOSUB6000?,

11 1440 PRINT:Nl$= " ":V1$="":NO=O:VB•O:NO$="":VB:t:=

220

1450 CM•LENCCM$) :FORI=1TOCM:IFMI0$CCM:t., I ,1> <>" "TH
ENV1$=Vl$+MID$(CM$,I,1>:NEXTI
1460 V8$a LEFTSCV1:t., 3 >:FORI=1TONV:IFVBSCI> • VBSTHENV
Et=I:GOT01480
1465 NEXT!
1470 VB=- 1:N1S=V1$:GOT01490
1480 IFLENCV1$)+1 >LENCCMS>THENNO•O:RETURN
1485 N1$=RIGHT$<CM$ 1 LEN<CMS> - 1 ~LENIV1Sll
1490 NO$=LEFTSCN1$,3l:FOR I• 1TONN:IFNOS<I> • NOSTHENN
O= I : RETUf(N
1493 NEXTI
1495 RETURN
1500 PRINT"CCLRJ " :PRINT"YOU'RE " ;P$(CPl: PRINT:SS$=
"YOU CAN SEE :=": FORI=1TOLO
1510 IFOBCI,Ol=CPTHENPRINTSSS:PRINTOBSCI>:SSS• ''CCU
J "
1520 NEXT!
1530 I FCP= 1 ANDOF=OTHENPR I NT" THE DOOR IS LOC~: ED. "
1540 I FCF'= 1 BANDVF=OANDOB C 16, 0) = 1 BTHENPR I NT" THE VAU
LT I S LOCf(ED."
1550 IFCP=1 7 ANDCF=OTHENPRINT"A NARROW CRACf(LE ADS
SOUTHWARD."
1560 IFCP=1ANODF=1THENPRINT"THE DOOR IS OPEN."
1570 I FCF· ~•35ANDVF= 1 AN DOB C 16, 0 > =35THENF'R I NT" THE VAU
LT IS OPEN."
1590 I FCP=l 7ANDCF=1 THENPRINT"A WIDE CRACf< LEADS SO
UTHWARD."
1600 IFCF=OTHENPC17,1l=O
1610 IFCP=44ANDWF=1THENPRINT" THE WINDOW IS OPEN.
A TREE IS 2 METERS BELOW.
1620 f<=O: PRINT" CCOJYOU CAN GO ";: FORI=OT03: IFP CCP,
I> =OTHEN1650
1630 IFK=l THENPRINT", ";
1640 PRINT0$CI>;: K=1
1650 NEXTI:IFl<=OTHENPRINT"NOWHERE."
1660 IFK =1THENPRINT
1670 PRINT:P<17,1)=181GOT030
1700 NP=53:L0=35:NN=31:NV=30:DIMP<NP, 3 l,P$CNP>,VB$
CNV> ,NOS<NN> ,OB<L0,1> ,08$(LO>
1710 P:$(1)="0UTSIDE A MEDIEVAL CASTLE. THE PAVEM
ENT HAS AN INSCRIPTION:"
1711 P:$ C 1I=P$C1) +CHR$ C 13 > +" CRVSJLEAVE ALL TREASURE
HERE."

1715 DATAO,B,4, 0 ,53,7, 3 ,6,0,0, 3 , 2
1720 P:f; C2 > ="AT A CROSS ROAD.": F•:f; C3 > ="ON THE GREAT
EAST ROAD."
1730 P$(4)="0N THE GREAT WEST ROAD.":DATA0,0,2,1,0
,0,2,4
1740 P$C5>=PSC4>:P:$C6l=P$C4l:OATA0,0 1 2 1 5
1755 PSC7>="0N THE GREAT SOUTH ROAO.":DATA2,7,0,0
1760 P$(8)="IN A SPLENDID CHAMBER 30 FEET HIGH.

221

":DAHH,11,0,10
1770 P$(9l="IN A COSY SITTING ROOM.":DATA10 1 0,11,o
1780 P$< 10)="1N THE MASTER BEDROOM."1DATA0 1 9,B,o
1790 P$= "IN A VAST CORRIDOR STRETCHING OUTOF SIGHT

TO THE II: P$ (11) =F'$+"SOUTH. II

1795 DATA 8,12,14,9
1800 P$(12>=P$+"NORTH AND SOUTH.":DATA11,13,15,25
1810 P$<13>=P$+"NORTH.":DATA12,0,16,17
1820 P:t.="IN A BEDROOM WITH A ":P$(14>=P$+"STONE FL
OOR.":P$(15l ""P$+"WOODEN FLOOR
1825 P$(16l=P:$:+ "DIRT FLOOR.":DATAO,o,o,11,0,o,o,12
,o' 33 ' 0, 13
1830 P$(17l="IN A DUSTY PANTRY.
183 5 DATA 0,18,13,24
1840 P$(18l = "IN A PRIVATE ART GALLERY.":DATA17 1 26,
0' 19
1850 P$ (1 9 > =" IN A STORE ROOM. COBWEBS ARE EVER
YWHERE."
1860 P:t.<20l="AT THE TOP OF A BIG TREE."
1870 P$(21l=P$(20l
1880 P$(22l=P$<20)
1890 P$(23 l•P$(20>
1900 DATAo,o,10,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o
1910 P$<24l="IN THE ~~ ITCHEN.":DATA25,0,17,0,0,24 1 1

2 ,0,18,28,29,0
1920 F'$ (25) =II IN THE DIN I NG ROOM. II : P$ (26) =II IN A SHA
DOWY ALCOVE."
1925 P$(27l="IN AN AUSTERE OFFICE.":DATA0,0,28,0
1930 P$(28l="IN THE DRAWING ROOM.":DATA26,0,0,27,0
,0, 30, 26,0,0,0,29
1940 P$(29l="IN THE PARLOR.":P$(30l="IN THE STUDY.

1945 P:t.<31l="IN A DAMP STONE PASSAGE."
1950 P$(32 l="IN THE DUNGEON.":DATA0,0,32,30,41,0,0
, 3 1
1960 FORI=1TONP:FORJ=OT03:READPCI,Jl:NEXTJ1NEXTI
1970 P$(33l="IN AN ANCIENT CONFERENCE ROOM.":DATA1
6,0,35,0
1980 P$(34l="IN A TOWER WHICH OVERLOOKS A HUGE"
1 981 P$ (34) =P$ < 34) +"~:. I NGDOM DOWN A MONSTEROUS MOUN
TAIN. THEGRASS IS GREENER "
l. 982 P$ (34) =F'$ (34) +II THAN GREEN ITSELF. II: DATA40' 0 I 0
,o s
1990 P$(35l="IN A MAZE OF TWISTY LITTLE PAS
AGES, ALL ALIKE." 3 1995 FORI=36T040:P$(ll=P$(35l:NEXTI:DATA36,36,36,~
3,37,35,35,35,36,36,38,36 ~z
1996 DATA36,36,36;39,40,36 1 36,36,36,34,36,36,42,~
,o,o
2000 P$(41l="ON A LONG FLIGHT OF STAIRS DOWN."
2001 P:t:<43l="ON A LONG FLIGHT OF STAIRS UP."

222

2002 P$<42 l="IN A MILE- LONG PASSAGE. STAGNANTWATE
R REACHES YOUR ANKLES.
:2010 P$<44l =" AT THE END OF THE CASTLE. YOU CANSEE
A FOREST OUT A SMALL WINDOW."
20 15 DATA43 ,41,0,0,44 1 42,0,0,0,43,0,0
2020 P$(45l="IN A DENSE DARK FOREST."
2025 FORI=46T048:P$(Il=P$(45l:NEXTI:DATA45,49,46,4
8,45,47,46,49,50,51,46,48
2026 DATA45,47,49,48
2030 P$(49)= " 0N AN OLD PATH MADE BY HORSES."
2035 F'$ (51 >="IN THE MIDDLE OF A CLEARING. TO T
HE SOUTH IS A BRIDGE."
2037 P$(52l="ON THE NORTH SIDE OF THE BRIDGE."
2038 P$(53l="ON THE SOUTH SIDE OF THE BRIDGE."
2039 DATA 45,50,46,48,49,47,46,48,47,52 ,0,0,51 1 0,0
,o,0,2,o,o
2040 DATABOW,KEY,BOO,ARR,BRO,SAP,LIQ,SWO,PAI,WHE,S
IL,PEN,PIL,SCE
2045 DATA BAR,VAU,KNI,VAS,SIG,SOR,SPI,NDR,SOU,EAS,
WES,N,S,E,W,DOD,WIN
2050 DATAGO,GET,LOO,INV,SCD,DRO,HEL,CLI,DIG,QUI,SA
Y,DRI,OPE,TAK,KIL,REA,SHO,ATT
2055 DATACLO,LOC,UNL,GIV,USE,VAL,SWI,SHA,EXA,THR,F
IN,JUM
2060 FORI=1TDNN:READN0$(Il:NEXTI:FORI=1TONV:READVB
$(Il :NEXT!
2070 DATA A LONG BOW,-1,0,A BRONZE KEY,O,O,A LEATH
ER-BOUND BOOK,30,0
2072 DATA A SILVER ARROW,22,10,A BROKEN ARROW,0,10
,A GIGANTIC SAPPHIRE,0,10
2074 DATAA VIAL OF AMBER LIQUID,24,0,A GOLDEN SWOR
D,34, 10
2077 DATAA LARGE REMBRANDT PAINTING,18,20
2080 DATA A WHETSTONE,19,0,A SET OF SILVERWARE,25,
10,A PLATINUM PEN,27 1 10
2082 DATA A VELVET PILLOW,44,0,THE SORCERER'S SCEP
TER,0,10,A GOLD BAR,0,10
2084 DATA A VAULT IN THE WALL,O,O,A DEAD KNIGHT,O,
O,A MING VASE,9,10
2086 DATA"A SIGN SAYING: [RVSJDIABDLICAL MAZE[QFFJ
II' 35' 0' A WIC~~ED SORCERER' 32' 0
2090 DATAA DEAD SPIDER,O,O
2100 FORI=l T021: READOB$ (I) ,OB (I ,Ol ,OB< I, 1>1 NEXT I
2110 DATA NORTH,SOUTH,EAST,WEST
2120 FORI=OT03:READD$(Il1NEXTI
2.150 P$ < 50 >="AT THE END OF A PATH, WITH FDRESTSURR
OUNDING YOU IN ALL DIRECTIONS."
2160 P$(47l=P:t:<47l+CHR$(13l+"TO THE SOUTH THERE SE
EMS TO BE LIGHT. II

2270 GOT020
20000 POf<E 53280, 6: POf<E 53281 , 7: PR I NT" [BLK J

223

20999 RETURN
60000 CM:t=""
60005 PRINT"CRVSJ* CDFF , CLJ";
60010 GETZ$:1FZ$=""THEN60010
60012 Z=ASCIZSl:IFZ >95THEN60010
60080 ZL=LENICM$1:IFZL) 27THEN60110
60100 IFZ >31THENCMS=CM$+ZS1PRINTZS;1GOT060005
60110 IFZ=13ANDZLTHENPRINT" ":RETURN
60120 IFZ=20ANDZLTHENCMS=LEFTSICMS,ZL-111PRINTZ$1
60140 GDT060005

READY.

224

8

Tunnel Adventure

Another full-blown adventure, and again written in the same style as
Castlemaze Adventure and Underground Adventure. This should serve
to illustrate how easy it is to produce a large number of different games
from the same basic rules.

This again is challenging, although it doesn't have the glossy edges
of Underground. However it should keep you very busy trying to solve
the many problems presented along the way.

Watch out for the vicious cat, and the evil hooded cobra, and the
affectionate turtle encrusted with diamonds isn't all he seems either,
in the ancient city of Kez!

225

0 GOSUB 700
4 w 1 $=II THE F'ANTHER SEES THE SNAl<E AND FLEES. II: 84$..
"YOU'RE NOT HOLDING IT."
6 W2$="YOU ARE OUT OF MATCHES.":DR$="CRVSJIT'S VE:R
Y DRAFTY HERE"
8 G8$="A BIRD SWOOPS DOWN OUT OF THE SKY AND LAN
OS IN FRONT OF YOU.
10 IU="YOU NEED A DIRECT OBJECT.
12 W5$="THE TURTLE EATS THE CARROT AND RUBS YOURLE:
G AFFECTIONATELY.
14 WA$="NO WAY! THE BOSS SAYS I HAVE TO PAY FORAN
YTHING YOU BREAK.
16 WB$="IT DOESN ' T BURN.":SP$="YOU DISCOVER A SECR
ET PASSAGE."
18 KN$="THERE'S SOMETHING IN HIS POCKET.":IM$s:"THA
TIS NOT POSSIBLE."
20 WD$=" IT'S PITCH DARK.": CR$=CHR$ (13): PRINT" CCLRJ
21 JA$="THE JAVELIN GLIDES THROUGH THE AIR AS IFPU
LLED BY MAGIC.
22 SU=" I DON'T SEE IT HERE.": S2$="DON 'T BE RIDICU
LOUS.":CP=39
24 S3$= II I DON. T ~~NOW THAT WORD. II: GOT0446
26 GOSU8414
28 IFTGTHENOBY.<29,0l=CP:IFCP=36THENTG=O
30 IFTGTHENPRINT"CCDJTHE TURTLE IS FOLLOWING YOU."
32 IFTGANDCP•11THENGOSUB148:PRINT"CCLRJCAVE-IN ![4
CDJ II: F'Y. (13 I :3) =O: Pl. (9 I 1) =O: CP=13
34 GOSUB390
36 IFMF=1ANDM2=0THENM2=1
38 IFVB>9ANDVB< >20ANDNO$=" "THENPRINTI U: GOT034
40 IFNO$<>""ANDVBn:1ANDNO=OTHENPRINT"THAT DOESN'T M
AKE SENSE TO ME.":GOT034
42 IFOB/.(35,0>ANDN0=32THENN0=35
44 IFVB>10ANDNO•OTHENPRINT"I DON'T KNOW WHAT A "N1
$" IS! 11 1 GOT034
46 ONVBGOT052,72,26,98,106,110,128,376,136,72,154,
1 72 I 174 I 194 I 202
48 ONV8-15GOT0216 1 226,234,236
50 ONV8-19GOT0238,246,248 1 246,262,272,274,296,304,
226,356,364,168
52 IFNO$<>""ANDNO=OTHENPRINTS3:t::GOT034
54 IFN0 >280RN0<21THENPRINT"I DON'T UNDERSTAND.":GO
T034
56 IFN0>24THENNO=N0-4
58 NO=N0-21
60 IFNOANDPDTHENPRINT"YOU HAVE FALLEN INTO A PIT.

11

:GOT0612
62 IFNOANDOB/.(30 1 01=CPTHEN142
64 IFGF=OANDCP=18ANDN0 ... 1THENPRINT"THE GATE IS LOCK
ED!":GOT034
66 IFP/.(CP,NO>=OANDCP<>1THENPRINTIM$:GOT034

226

68 IFPY.<CP,NOl=OTHENPRINT"YOU CAN'T GO THAT WAY.":
BOT034
70 CP=PY.<CP,NOl:GOT026
72 IFNO$=""THENPRINTIU::GOT034
74 IFOBl.<NO,Ol=-1THENPRINT"YOU ' VE ALREADY GOT IT!"
:GOT034
76 IFNO=OTHENPRINTS3$:GOT034
78 IFCP=18ANDN0=31THEN88
80 IFN0<>370RCP<>29THEN86
82 IFOBY.<17,0l~·1THENPRINT"YOU NEED A CONTAINER. ":G
OT034
84 OBY.<17,0l•O:GOT096
86 IFOB/.(NO,O> < >CPTHENPRINTS1$:GOT034
88 IF<N0 >18ANDN0<32)0RN0 >49THENPRINT''IT'S TOO HEAV
Y.":GOT034
90 IFN0=12THENGOSU8140
92 IFZZ>3THENPRINT"YOLJR HANDS ARE FULL.":GOT034
94 ZZ=ZZ+l
96 PR I NT II OI(II : OB/. (NO I 0) =-1 : GOT034
98 PRINT"YOU ARE CARRYING:":ZZ=O
100 FORI=1 TOLD: IFOB/. <I 1 0) =- 1 THENF'RINT" "OB$ (I): zz
=ZZ+l
102 NEXT!: IFZZ=OTHENPRINT" NOTHING
104 GOT034
106 PRINT"POINTS ARE SCORED BY LEAVING VALUABLES
AT THE MOUTH OF THE TUNNEL.
108 GOSU8378:GOT034
110 IF NO=OANDNO$ <> ""THENPRINT"WHAT'S A "N1:f." 7 ":GO
T034
112 IFNO=OTHENPRINT"HUH?":GOT034
114 IFOBY.<N0,0>< >-1THENPRINT"YOU HAVE NO ";N1$:GOT
034
116 IFN0•35THENOBY.(35 1 0)=0:N0=32
118 IFN0=15THENPRINT"YDU CAN'T. IT'S STUCK TO YOU
R HAND.":GOT034
120 OBY.<NO,O>=CP:ZZ=ZZ-1
122 IFN0=17THENOB/.(17,0l=01DB/.(38,0>=CP:PRINT"CRAS
H! II: GOT034
124 IFDBl.<12,0)=0BY.(30,0)THENPRINTW1$:0B/.(30

1
0)=0:

GOT034
126 PRINT"OI<": GOT034
128 IFCP=31THENPRINT"READ THE MEDALLION.":GOT034
130 IFCP=7THENPRINT"TRY PRIME NUMBERS."1GOT034
132 IFJ=90ANDDBl.<41,0l=OTHENPRINT"SOME MUSIC WOULD

BE NICE.":GOT034
134 PRINT"TRY EXAMINING THINGS.":GOT034
136 IFCP=430RCP=44THENCPm87-CP:GOT026
138 PRINTIM$:GOT034
140 PRINT"THE SNAr<E BITES YOU. 11 1 BI=BI+81 RETURN
142 PRINT"THE PANTHER POUNCES ON YOU.":GOT0612
144 IFOBY.<32,0lTHENRETURN

227

146 OBX< 32 ,0l=OBX<35, 0 l:OBX<35,0l=O:RETURN
148 FORI=1TOOBX< 3 1,11:NEXT:GOSUB144:08X(31,11=1 00·
RETURN '
150 FORI=1T054:IFOBX<I,01=1 3 THENDBX<I,01=55
152 NEXT:RETURN
15 4 IFN0=3 1ANDCP= 18THEN162
15 6 IFN0==3 1THENPRINT " I SEE NO GATE HERE.": GOT034
158 IFOBX<NO,Ol <>- 1THENPRINTS4S:GOT03 4
160 PRINT"THAT ' S NOT NECESSARY.":GOT034
162 IFGF=1THENPRINT"IT ' S ALREADY DPEN.":GOT034
164 IFOBX<4,0l=-1THENGF=1:PRINT"THE GATE SWINGS DP
EN.":GOT03 4
166 PRINT"YOU NEED A KEY TO OPEN THE LOCKED GATE. "
:GOT03 4
168 IFND<> 46DRDBX(46 , 0l < >- 1THEN110
170 OBX(46,01 = 171ZZ=ZZ-l:PRINTJA$1GOT03 4
1 7 2 PR I NT II TRY ' PUSH ' II: GOT03 4
174 IFOBX<ND,Ol < >-1THENPRINTS4$:GOT034
176 IFND< >2ANDND<> 16ANDND< >18ANDN0< >5THENPRINT" THE
RE' s NO WR !TING. II I GOT03 4
178 PRINT" IT SAYS:";: IFND<) 2THEN186
180 PRINT, 11 CRVSJ 11 1PRINT,"CRVS
J FOR 20 YEARS PROFESS
182 PRINT,"CRVSJ SEARCHED FRUITLESSL":PRINT,"CRVSJ

HIDDEN CITY OF KEZ"
184 PRINT,"CRVSJ ":GOT034
186 IFND=18THENPRINT' II CRVSJFELINES 11

: PRINT I II CRVSJH
AV E":PRINT, 11 CRVSJENEMIES 11 :GOT03 4
188 IFNO= l6THENPRINT 11 CRVSJFERMENTED JUICE IS ALEX
IPHARMIC":GOT03 4
190 PRINT , 11 TAKE THE FIRST SIX LETTERS":PRINT," TH
ROW AWAY THE LEFT HALF
192 PR I NT I ' II [CL J DOUBLE THE MI DOLE II : PR I NT' ' II TURN

IT ROUND 11 :GOT034
194 IFOBX<ND,Ol <>- 1THENPRINTS4$1GOT034
196 IFN0< >13THENPRINTS2$1GOT034
198 IFOBXC13,0l <>-1THEN210
200 ZZ=ZZ-l:PRINT"YUf<! IT TASTES TERRIBLE ! ":OBX(l
3,0l=O:GOT034
202 IFOBXCNO,Ol <>-1ANDOBl.<NO,Ol < >CPTHENPRINTS1$1GO
T034
204 IFN0< >12ANDND<>29ANDN0<>30ANDN0<> 41THEN218
206 IFN0~30THEN142
208 IFN0=12THENGOSUB140 1GOT034
210 IFOB/.(13 1 01 <>-lTHENPRINT"YOU HAVE ND FOOD. 11 1GO
T034
212 IFDB/.C29,0l <>CPTHENPRINT"WHAT TURTLE?":GOT03 4
214 ZZ•ZZ-1:PRINTW5$:08%(1 3 ,0l=O:TG=11GOT034
216 IFOBl.<NO,Ol <>- 1ANDOB/.CNO,Ol <>CPTHENPRINTS1f:G0
T034
218 IFND<> 12ANDN0()41ANDN0< >29ANDN0<) 30THENPRINT"I

228

T !SN ' T ALIVE. II: GOT034
220 IFN0= 12 THENGOSUB140:GOT034
222 IFN0=3 0THEN142
224 PRINT " IT ' S IMMORTAL.":GOTD34
226 IFN0<>22ANDND<> 11THEN230
228 IFCP=21ANDPXC21,11=0THENPl.< 2 1,11=9:PRINT"YOU ' V
E BROKEN THROUGH !" :GOT0 34
2 3 0 IFDBl.<1 2 ,0l=CPTHENGOSUB140 1GOT03 4
232 PRINT"NDTHING HAPPENS .":GOT0 3 4
234 PRINT"YOLJ DON ' T HAVE ENOUGH CHARISMA. " :GOT03 4
236 PRINT"TRY ' OPEN ' ":GOT034
2 38 IFND<>51THENPRINT " NO EFFECT. ":GOT03 4
2 40 IFCP< >22THENPRINT"WHAT MIRROR'? " 1 GOT034.
2 42 I FMITHENPX< 22,11 =4- P%<22 ,11:PRINT''IT ROLLS EAS
ILY.":GOT034
2 44 PRINT"IT'S STUCl< .":GOT03 4
246 PRINT"TRY ' USE ' 11 1GOT034
2 48 I FN0<>39ANDN0<>3 7THENPRINT"EXPRESS THAT A DIFF
ERENT WAY.":GOTD34
250 I FDBl.<ND,Ol <>- 1THENPRINTS4$:GOT034
252 IFN0=3 9THEN258
254 I FCP< >22THENF'R I NT" THERE'S NO USE FDR OIL HERE.
II: GOT0:54
256 MI=l:PRINT"THE ROLLERS ARE NOW DILED.":GOT034
2~i8 IFOB/. < 15, 01+1 THENPR I NT" YOUR NA !LS ARE NICE AND

CLEAN NOW.":GOT034
260 DB/.(1 5 ,0l=CP:ZZ = ZZ - l:PRINT"THE STATUETTE SLIPS

FROM YOUR GRASP.":GOT0 3 4
2 62 I FND< >36 THENPR I NTS2$:GOT03 4
264 IFOBl. <36,Cll <>- lTHENPRINT " YOU HAVE NO WINE. ":GD
T03 4
266 PRINT"GLUG-GLUG- GLUG":OB/.(36,0l =O:OBX<17,0 l "' - 1
268 I FBITHENPRINT"AHHH ..• IT CURES THE SNAKEBITE.":
BI =O
210 r.mro :.;; 4
272 PRINTWA$:GOT03 4
274 IFND<320RN0 >35THENPRINTIM$:GOT034
276 IFOB/.C33,0l <>- 1THENPRINT"YOU DON'T HAVE A MATC
H.":GOT03 4
278 IFN0=3 3THENPRINT"THE MATCHES BURN BRIGHTLY.":Z
Z=ZZ - 110B/.C33 1 01•01GOT034
280 IFND< >34THEN290
282 IFOBX<34,0l=-1THENGOSUB1481PRINT"YOU ARE BLOWN

TO BITS. II I GOT0612
284 IFOB/.(34,0l <>CPTHENPRINTS1f:GOT034
286 IFCP=13THENP/.(1 3 ,21=241P$(1 3 1aP$<91:CP=11:GOSU
8150
288 08/.(3 4, 0 l= O:GOSUB148:GOT03 4
290 IFOB/.(35,0ITHENPRINT"IT IS ALREADY LIT."1GOT03
4
29 2 IFOBl.<32 ,0l =- 1THENOBX<32,01 =010B/.135,0l =-1:PD=

229

O:GOT026
294 PRINT"YCJU HAVE NO TORCH.":GOT034
296 IFN0<>4BTHENPRINT"WHAT? ":GOT034
298 IFOBXC48,0l <>- 1THENPRINT84$:GOT034
300 IFCP >35THENPRINTGBS:OBXl41,0l•CP:GOT034
302 GOSUB 148: PR I NT II [CLRJ CAVE- IN ! [CD J II: GDT0612
304 IFN0<> 11THEN314
306 IFCP=21THENPRINT"THE SOUTH WALL IS BADLY ERODE
D.":GOT034
308 IFCP=17ANDPXC17,3l =OTHENPXl17,31=34:PRINTSPS:G
OT034
310 IFCP=34ANDPX1 34,31=0THENPXC34,31=35:PX135,21=3
4:PRINTSP$:GOT034
3 12 PRINT"YOU FIND NOTHING SPECIAL."1GOT034
314 IFN0=31ANDCP~1BTHEN320
316 IFN0=37ANOCP=29THENPRINT"IT'S JUST OIL.":GOT03
4
318 IFOBXINO,Ol <>CPANDOBXIN0,01 ()- 1THENPRINTS1$:GO
TD34
320 IFN0=20RN0=160RN0=18THEN174
322 IFN0=13THENPRINT"IT'S NOT FIT FOR HUMAN CONSUM
PT ION. II: GOT034
:324 IFN0=40THENPRINT" IT, s TOPAZ. II: GOT034
326 IFN0=9THENPRINT"IT'S MALACHITE.":GOT034
328 IFN0=41THENPRINT"IT'S MADE OF GOLD!":GOT034
~;30 IFN0=10THENPRINT"IT'S LAP IS LAZULI. ":GOT034
332 IFN0=42THENPRINT"IT'S PYRITE.":GOT034
334 IFN0=12THENGOSU8140:GOT034
336 IFN0=30THEN142
338 IFN0=1THENPRINT"IT'S EMBROIDERED WITH GOLD THR
EAD."1GOT034
340 IFN0=15THENPRINT 11 IT GLISTENS.":GOT034
342 IFN0=46ANDOBXl46 1 01=17THENPRINT''IT'S POINTING
TOWARD THE WEST. 11 1GOT034
:::;;44 IFN0=50THENPRINT" IT CONTAINS SACRED OIL. 11

: GOTO
34
:546 I FN0=51 THENPR I NT" IT ' S ON ROLLERS. " : GOT034
348 IFN0=52THEN366
350 IFN0=20AND08%133,0l=OTHENPRINTKN$:0BXC33,0l=43
:C30T034
352 IFN0=20ANDOBXl4,0l=OTHENPRINTKN$:0BXC4,0l=43:G
OT034
354 PRINT"IT'S JUST "OB$1NOl".":GOT034
356 I FNO< >34 THENPR I NT" I DON ' T 1<:NOW HOW TO DO THAT•
":C30T034
358 IFOBXl3,0l=-1ANDOB'l.16,0l=- 1ANDOBXC14,0l=-1THEN
362
360 PRINT"YOU AREN'T HOLDING ALL THE INGREDIENTS."
:GOT034
362 OB'l.13 1 0l=O:OBXC6,0l=O:OB'l.114,0l=O:OB'l.C34,0l=-1
:ZZ•ZZ-2:PRINT"DONE.":GOT034

230

364 PR I NT II TRY 'MAk:E ' II : GOT034
366 PRINT"WHICH COMPARTMENT NUMBER? "1:GOSUB614:NO
=VALCCM$l:IFNO=OORN0>100THEN34
368 IFN0•13ANDOBXC49,0l=OTHENOBXC49,0l•7:GDT0374
370 IFN0=71ANDOBXCB,Ol=OTHENOBXCB,Ol•7:GOT0374
:.::;72 PR I NT II [CD J THAT COMPARTMENT Is EMPTY. II : GOT0:;:;4
374 PR I NT II [CD J SOMETHING FELL OUT. II: GOTC.l::::A
376 GOSUB378:GOT0388
378 J=O:FORI=1TOLO:IFOBXII,01=36THENJ=J+OBXCI,11
::';82 NEXTI
384 PRINT"YOU HAVE SCORED"J"POINTS OUT OF 100.":IF
J (99THENRETURN
386 PRINT"CCD,RVSJWELL DONE
388 END
390 PRINT"CCD,RVSJWHAT NOW?COFFJ ";:GOSUB614:PRINT
:IFBI >OTHENBI=BI+l
392 NO$="":VB$="":VB=O:NO=O
394 LC=LENCCM$l:FORI=1TOLC1IFMID$CCMS,I,11 < >" "THE
NVB$•VB•+MID$CCM$,I,11:NEXT
396 V11=VB$:VB$=LEFT$1V1$,3):FORI=1TONV: IFVBSCil=V
BSTHENVB=I:GOT0402
:599 NEXT
400 VB•l:NO$=VB$:GOT0406
402 IFLENCV1$)+1>=LENICMSITHENNO=O:RETURN
404 NO$=RIGHT$1CM$,LENCCM$1-1-LENIV1$ll
406 N1$=NOS:NO$=LEFTSINOS,3l:FORI=1TONN:IFNOS=N0$(
IITHEN412
408 NEXT!
410 NO=O:RETURN
412 NO=I:RETURN
414 PRINT"CCLRJ":IFCP,.,.16THENT=T+1:IFT >2THENPRINTDR
S:IFT >3ANDRNDC11 <T*.1THENGOSUB1441T=O
416 IFOBXC35,01+1ANDCP<35THENPRINTWDS:PD=1:RETURN
418 PR I NT II YOU , RE II P:$: (CP) II • II : F'D=O
420 VB$="C2CDJYOU CAN SEE :

422 FORI=LOT01STEP-1:IFOBXII,Ol=CPTHENPRINTVB$;0B$
(I): VB$=" II

424 NEXT!
426 FL=O
428 PRINT" [2CDJYOU CAN GO: 11

;: FORI=OT03: IFPX ICP, I
) < >OTHENPRINTD$ (I); II ";: FL=l
430 NEXT!
432 PRINT:PRINT
4:;,4 !FBI >12THENPRINT, "C2CDJ >>> THE BITE IS THROBBI
NG <<<
436 IFBI>23THENPRINT,">» YOU ARE GETTING DIZZY <<
(

438 !FBI >34THENF'RINT, ">>> IT IS HARD TO BREATHE <<
<":IFBI>42THEN612
440 IFCP<>lBTHENRETURN

231

442 IFGF=1 THENPRINT" CCDJTHE GATE IS OPEN.": f~ETURN
444 PRINT"CCDJTHE GATE IN THE GRILL IS LOCKED.":RE
TURN
446 NN•54:NV=32:P=51:L0=54:DIMP:$CPI ,PXCP,31 ,OBtlLO
I ,OBXIL0,11 ,V8:$INVI ,NOtlNNI
448 P$C1>="IN A STOREROOM."+CR:f.+"THE WALLS ARE CON
CRETE
450 DATA18,0,5,0,25, 33,8,12,0 1 7,31 1 0
4~52 P$ 121 ="IN A DUSTY PASSAGEWAY"
454 Pt. 131 ="IN THE QUARTERS OF PRINCESS ANf<A"
456 P$ (41 =11 IN THE f(ING 's HAREM": DATA22 I 0 ,o, 0 ,o Io, 2
1, 1,6, 15,6, 19
458 P$ 151=P:$I1 I
460 P$C61="IN A TWISTY LITTLE TUNNEL.
462 P:$:(71="IN THE JEWEL.RY NICHE":DATA3,o,o,o
464 F':$ 18> ="IN AN ARTIST'S STUDIO" a DATAO, O, O, 2
466 F':t. c 9 > "' 11 CRAWL r NG OVER A JUMBLE OF BROKEN Roe~: 11 :

DATA21,10,0,0
468 P$C10>•P$C611DATA9 1 6 1 6,6
470 P$1111="IN A TUNNEL 11 :DATA0,20 1 13,0
472 P$112>="IN AN ANCIENT LIBRARY":DATA0,0,2,0
474 F'$C131=P:t:C111+CR:t:+"A THICf(BRIC~'.. WALL BLOCKS T
HE WAY":DATA0,0,0 1 11
476 P:f.C141=P$C61:DATA19,19 ,20,19
478 P$C151•P$C611DATA6,6,6,10
480 P:t:C161=P:t:C61:DATA14,6,6,6
482 P:$'. (171 ="IN A WINE CLOSET" I DATAO I 0 '30 I 0
484 P:f.C181=P:t:l111+CR$+"A METAL GRILL BLOCKS THE WA
Y":DATA35,1,0,0
486 P$C191=P$161:DATA6,16,6,6
488 PSC201=P$C61:DATA11,16,16,16
490 P$C211=P$Cll:DATA0,0 1 0,5
492 P$C221="KING KALEB'S BEDROOM":DATA0,0,0,31
494 P$C231= 11 IN SLAVES ' QUARTERS":DATA26,27,0,0,28,
0,25,l.3
496 Pt. C 24 I•" AT THE WEST END OF A TEMPLE. AN UG
LY HOLE IS IN THE WEST WALL"
498 P$1251="AT THE EAST END OF A TEMPLE 11 :DATA29,2,
0,24
500 P$C261="IN THE WARRIORS' QUARTERS":DATA0,23,0,
33
502 P:$C27)="IN A STABLE":DATA23,o,o,o
504 PSC281="IN THE HIGH PRIEST ' S VESTRY":DATA0,24,
o,o
506 P:$1291="IN THE SHRINE OF ISIS":DATA0,25,C>,O
508 P$C301="IN A ~: ITCHEN":DATA0,0,33,17

510 P$C311="IN AN ANTECHAMBER":DATA33,32,22,3
512 P$C321="IN THE THRONE ROOM":DATA31,0,o,o
514 P$1331=P:f.C211DATA2 1 31,26 1 30
516 P:$C341="IN A SECRET COMPARTMENT 11 1DATA0,0 1 17,0
518 P:t:C351,.P:f.C111+CR:f.+"YOU SEE DAYLIGHT TO THE NOR

232

TH 11 :DATA 36,18,0,0
520 P:$1361 ="AT THE MOUTH OF A TUNNEL":DATA37,35,0,
0,51,36,0,0
522 F'$C371 ="AT THE ROAD ' S END. 11 +CR$+ 11 A MOUNTAIN IS

TO THE SOUTH"
524 P$ C 38 I =="IN A DENSE DARf< FOREST": DATA38, 39, 38, 3
8
526 F':$'· (39 I =II ON AN OLD PATH MADE BY HORSES II : DATA38 I

40,38,38, 39,41, 38,38
528 F':t. 1401 ="AT THE END OF A PATH WITH FOREST SURRO
UNDING YOU IN ALL DIRECTIONS
530 P:f.C411=F':f.1381+CR:t.+"TO THE SOUTH THERE SEEMS TO

BE LIGHT" I DATA40, 42 I 38 I :38
532 P$C421=="IN THE MIDDLE OF A CLEARING. TD TH
E SOUTH IS A BRIDGE
534 DATA41,43,0,0,42 1 0,0 1 0:P$143 1=="0N THE NORTH SI
DE OF THE BRIDGE
536 P:t.C441="0N THE SOUTH SIDE OF THE BRIDGE":DATAO
,45,o,o
538 P:.t:1451="AT A CROSS ROAD":DATA44,48,47,46
540 P,._<461="0N THE GREAT WEST ROAD":DATA0,0,4~:i,46
542 P:t.C47)="0N THE GREAT EAST RDAD":DATA0,0,47,45
544 FORI=48T051:P:t.Cil="ON THE GREAT SOUTH ROAD":NE
XT
546 DATA45,49,0,0,45,50,0,0,45,51,0 1 0 1 45, 37,0,0
548 FORI=1TOP1FORJ=OT03:READPXCI,Jl:NEXTJ,I
550 DATA28 1 10,37,0,1,0,0,10 1 28 1 0,5,0 1 4,10,0,10 1 13 1
o,10,10,0,0,36,0,30,o,21,o
552 DATAB,10,12,0,0,0,34,10,32,0,43 1 0
554 DATAAN EPHOD,A SCRAP OF NEWSPAPER,A KEG OF CHA
RCOAL
556 DATAA SILVER KEY,A PARCHMENT SCROLL,A KEG OF S
ALTPETRE
558 DATAA PLATINUM CHASTITY BELT,A RUBY EARRING
560 DATAA GREEN PEBBLE,A BLUE STONE,,A VICIOUS COB
RA,A SHRIVELED CARROT
562 DATAA KEG OF SULPHUR,A JADE STATUETTE,AN OLD M
EDICAL BOOK,AN EMPTY BOTTLE
564 DATAA GOLD MEDALLION,A THRONE MADE OF SOLID GO
LD,A DEAD KNIGHT,27,10
566 FORI=1T020:READOBXCI 1 01:READOBXII,111NEXT
568 FORI=1T020:READOB:.t:Cil:NEXT
570 DATA31,o,o,20,35,o,o,o,o,o,o,o,11,o,o,o,o,o,3,
0,11,10,0,10,1 3 ,0,30,0,8,0
572 DATA23,0,26,0,27,0,32,0,0,0 1 29,0,22,0,7 1 0,22 1 0
,3,0
574 DATAA GIANT TURTLE ENCRUSTED WITH DIAMONDS
576 FORI=29T054:READOBXCI 1 011READOBXCI,ll1NEXT
578 DATAA HUNGRY PANTHER,A GATE,AN OLD TORCH
580 DATASOME MATCHES,THREE KEGS OF GUNPOWDER,A SHI
NING TORCH,A BOTTLE OF WINE

233

582 DATAA BOTTLE OF OIL,SDME BROKEN GLASS,A JAR OF
NAIL-POLISH REMOVER

584 DATASOME BROWN AND PINK GRAVEL,A BIRD,A GOLD N
LIGGET
586 DATAA WOODEN SPOON,A BLOCK OF MARBLE,A SET OF
MANACLES,A RUSTY JAVELIN
588 DATASTRAW AND DUNG,A BRASS CLARION,A SATIN RIB
BON,A MARBLE FONT
590 DATAA HUGE MIRROR ON THE SOUTH WALL,100 LITTLE

COMPARTMENTS
592 DATAA KING-SIZE BED,A TRICLINIUM
594 FORI=29T054:READOB$(Il:NEXTI
596 DATAEPH,NEW,CHA,KEY,SCR,SAL,BEL,EAR,PEB,STO,WA
L,COB,CAR,SUL,STA,BOO,BOT
598 DATAMED,THR,KNI,NDR,SOU,EAS,WES,N,S,E,W,TUR,PA
N,GAT,TOR,MAT,GUN,TOR,WIN
600 DATADIL,GLA,REM,GRA,BIR,NUG,SPO,BLO,MAN,JAV,ST
R,CLA,RIB,FON,MIR,COM,BED
602 DATATRI,GO,GET,LDO,INV,SCO,DRO,HEL,QUI,CRO,TAK
,OPE,MOV,REA,EAT,FEE,KIL,HIT
604 DATACHA,UNL,PUS,REM,USE,OIL,DRI,BRE,LIG,PLA,EX
A,KIC,MAK,MIX,THR
606 FORI•1TONN:READN0$(Il:NEXT:FORI=1TONV:READVB$1
I l : NEXT
608 DATA NORTH,SOUTH,EAST,WEST
610 FORI=OT031READD$IIl1NEXT1GOT026
612 FORI=1T02000:NEXT:PRINT,"CCD,RVSJYOU ARE DEAD.
C2CDJ":GOT0376
614 CM$=""
615 PRINT"CRVSJ*COFF,CLJ";
616 GETZ$1IFZ:t:=""THEN616
617 Z•ASC(Z$):IFZ >95THEN616
618 ZL=LEN<CM$)1IFZL >28THEN622
620 IFZ >31THENCM$=CM$+Zt-:PRINTZt-;:GOT0615
622 IFZ•13ANDZLTHENPRINT" 11 1RETURN
624 IFZ=20ANDZLTHENCMt-=LEFT$(CMt-,ZL-1>:PRINTZt-;
626 GOT0615
700 POKE 53280 1 61POKE 53281 1 7
705 PR I NT II [CLR' BU(J TUNNEL ADVENTURE II : FD
RI•1T020001NEXTI
799 RETURN

READY.

234

9

Further Information

Introduction

We've presented you with information on various adventures from both
the U.K. and the U.S.A. over the pages of this book, but most of the
games mentioned so far have been fairly old, in that they go back as
far as some of the earliest microcomputers like the Apple and the
Commodore PET.

In this last section we'd like to round off by going through a few
currently available adventures for various microcomputers that are
relatively recent, at least at the time of writing.

Some are classics, some are obviously destined to be so, and some
will probably fade over the years into a delightful obscurity and never
be heard of again.

The rest of this chapter will give you some useful information on where
to find out more about adventures generally, as well as listing a number
of popular newstand magazines that do sometimes carry features about
this sort of game.

Finally, a few useful names and addresses, and especially for those
of you who own Commodore kit and want to acquire a copy of the
legendary Adventure by Crowther and Woods that has featured
prominently in this book, the name and address of the person to
contact at the Independent Commodore Products Users' Group.

For owners of other machines, it's worth asking around to see if a
copy exists for your particular machine, but if you haven't got disk

235

drives, forget it! This game relies almost entirely on a disk-based mode
of operation, and would require an awful lot of memory before it would
function on a micro that was sans disks.

That's all for now, except to say thanks to a few people. Obviously
Crowther and Woods, but also Jim Butterfield, for producing the
orginal PET version, and to Steve Darnold, for inadvertently getting
me started on this whole adventure writing lark in the first place, and
who provided the original code for Castlemaze Adventure and Tunnel
Adventure.

Current Adventure Games

All the names and addresses of the companies involved can be found
in most of the current popular magazines, as most of them seem to
advertise quite extensively.

If not, a copy of Personal Computer News, the (at the moment!) 50
pence weekly, has a tri-weekly round up of software available, and
covers most of the adventure games around.

So, to get the ball rolling, how about The Hobbit, which must rank
as one of the classic modern games of adventure, which is available
from Melbourne House for the 48K Spectrum.

A complete solving of this would take a very long time indeed, and
I've yet to hear of anyone who has actually solved the entire thing.
A nice style of entering your commands here as well.

Pl Mania seems to be the other game currently 'in vogue' as it were,
although I think I'd like it a lot better if it wasn't for the inept advertising
by the company who handle it, namely Automata UK. Are they really
trying to produce the worst advertising in the microcomputer industry?!

Still, at least the game is good, and has the virtue of working on the
Spectrum, Dragon and BBC.

Sphinx, for the BBC model B, from John Wiley and Sons is also quite
a good, classical adventure, involving all the usual thud and blunder
techniques beloved by writers of this particular type of adventure.

John Wiley also do a few more for the model B as well, so they're
worth checking out if you're tuned into Auntie Beeb.

236

Microdeal have inevitably produced a series of adventures for the
Dragon, including Escape, Flipper, and Mansion Adventure, or at least
they call them adventure games. Personally the only one I thought
was of lasting interest was the Mansion Adventure, but then we all
have our different tastes.

For the Commodore 64, well, Romik have produced a couple of games,
and modesty prevents me from telling you how wonderful they are,
but I would like to thank Kevin Bergin for some last minute
programming on those!

And the Vic 20 ? Well, there are always the cartridge versions of the
Scott Adams games, and Kayde Electronics have produced the Swamp
(. .. In the Swamp, no one can hear you scream ... , runs the advertising.
Yawn ...), although it, not suprisingly, requires a minimum of 16K
expansion.

Those are just some, but any periodical should give you details of many
more.

237

More Information

Strangely enough, the general magazines don't appear to have picked
up too strongly on this resurgence of interest in adventures, although
Personal Computer News regularly carries a number of reviews for all
kinds of machines, and most of the others mention them every now
and again .

However, there are three classic issues of old magazines which the
serious adventure freak must have.

The December 1980 issue of Byte magazine, the one Daley Thompson
does weight training with, is mainly devoted to adventuring, and
features a whole host of excellent articles by many of the top authors
around at the time, including Scott Adams, P. Lebling, Bob Liddell,
and many more. A great issue, if you can dig it out.

The other two are different issues of the same magazine, but finding
them is not going to be easy.

The magazine in question is Creative Computing, and the first major
article appeared in August 1979, when the data structure behind the
Scott Adams series of adventures was explained in full. This has
inspired a number of people to begin writing their own adventures,
including David Malmberg, who went on to write the very good Castle
Adventure (the one with the sleepy piranha in it that I mentioned
earlier!).

July 1980 was another good issue, including the article that explained
the working of the program Zork, in the excellent 'How to fit a large
program into a small computer'.

All required reading for the serious adventure fan, but keep your eyes
on the newstands for other, newer issues of magazines.

238

Who to Contact

User Groups are the people to contact, and the following covers most
of the popular makes of home computers.

BBC: Laserbug
Paul Barbour

-10 Dawley Ride
Colnbrook
Slough
Berkshire

or Beebug
Sheridan Williams/David Graham
P.O. Box 50
St. Albans
Hertfordshire

Dragon: Brixham Dragon Owners Club
Ian Chipperfield
22 Brookdale Court
Brixham
Devon

Commodore: ICPUG
Mick Ryan
Riverhead
154 Chesterfield Drive
Sevenoaks
Kent

Spectrum: Sinclair User Group
Irving Brand
Polytechnic of North London
Holloway Road
London N7

Writing to the appropriate address for your machine should produce
the desired response.

239

240

EXPLORING
ADVENTURES

ONTHE64

The three adventures in this
book are available on a
cassette at £7.95, from

all good computer stores
and bookshops, or in case

of difficulty, direct
from the publisher.

Send your cheque/
postal order to:

Gerald Duckworth & Co Ltd
The Old Piano Factory
43 Gloucester Crescent

LondonNWl

and they will be sent to you
post-free

Index

This index usually only shows the first appearance of a subject in the book,
but if a second (and subsequent) entry is important, it is also noted down.

Adams, Scott : 4,5,6,28,29,30
Adventure : 1,4,21
Ase command : 64
Attack verb : 170
Bears : 100
Bottles : 105
Break verb : 194
Butterfield, Jim : 4,9
Castlemaze adventure : 215
Chop verb : 164
Chr$ command : 64
Climb verb : 166
Close verb : 152
Contents: v
Creating adventures : 115
Cross verb : 148
Crowther, Willie : 3,8, 10,21
Cursor Control : 51
Cut verb : 164
Data command : 54
Data validation : 102
Death! : 104
Dialogue : 44,45
Dim command : 72
Drink verb : 158
Drop verb : 144
Dungeons and Dragons : 35
Eat verb : 154
Examine verb : 192
Feed verb : 156
For command : 65
Gargoyle : 106, 107
Get command : 55
Get verb : 140
Go verb : 138
Gosub command : 68
Goto command : 68
Hassett, Greg : 6
Hazards : 83,84
Help verb : 203
Hit verb : 174
If command : 55

Input command : 53
Input subroutines : 112, 113
Int command : 71
Introduction : vii
Inventories : 142
Jump verb : 194
Kill verb : 172
Left$ command : 60
Len command : 58
Light verb : 168
Load verb : 200
Logical Operators : 57
London adventures : 117
Look verb : 202
Lord of the Rings : 7, 10
Make verb : 176
Map drawing : 17,20,85,87
Mazes : 93
Mid$ command : 59
Movement : 74,76
Murder adventures : 128
Next command : 65
Noun data : 211
Objects : 42
Obstacles : 83
Offer verb : 160
Oil verb : 180
On command : 70
Open verb : 150
Panthers : 109
Personal Computer News : 238
Philosopher's Quest : 14
Pirate Adventure : 13,28
Popular Computing Weekly : 2
Problem solving : 83,98
Push verb : 196
Quit verb : 146
Read verb : 190
Reflect verb : 178
Restore command : 55
Return command : 68
Right$ command : 61

241

Rnd command : 71
Rub verb : 188
Save verb : 198
Score verb : 202
Screen Responses : 95
Solving adventures : 16
Space adventures : 122
Spray verb : 184
Stab verb : 182
Storylines : 80,81,82
Str$ command : 62
Subroutines : 57
Take verb : 203
Temple of Apshai : 11
Then command : 55
Throw verb : 186
Torches : 105

242

Traditional adventures : 131
Tunnel adventure : 225
Underground Adventure : 36
Underground variables : 75
Underground verbs : 100, 137
Underground data : 205
User Groups : 239
Val command : 62
Variables : 52
Verb data : 212
Verbs : 42,92
Vocabulary : 34
Wave verb : 162
Western adventures : 125
Woods, Don : 3,8, 10,21
Zork : 3,9,31,32

DUCKWORTH
HOME COMPUTING

anew series
All books written by Peter Gerrard, former editor of Commodore Computing
lntema tional, author of two top-selling adventure games for the Commodore
64, or by Kevin Bergin. Both are regular contributors to Personal Computer

News, Which Micro? and Software Review.

USING THE COMMODORE 64 Peter Gerrard
A complete look at the latest home computer from Commodore Business

machines. Starting with a refresher course in Basic Programming, it moves on
through machine code, before considering in great detail sprites, graphics

and sound. A section on peripherals, and then the heart of the book: an
in-depth look at the chips that make it work, including the 6581 Sound

Interface Device and the 6566 Video Controller Chip, as well as the heart of
the computer, the 6510. The comprehensive appendices cover the full Basic

and Machine Code Instruction sets, as well as several useful reference
tables, and a complete machine code assembler/disassembler listing.

Available now £9.95

THE BEGINNER'S GUIDE TO COMPUTERS AND
COMPUTING Peter Gerrard

Written for the person who knows absolutely nothing about computers, this
book introduces you gently to this exciting and fast-moving world. It guides

you through the history of computers into the 1980s and introduces you to
many of the personalities who dictate how computers will develop in the

future. It comes complete with a glossary of computing terms, including all
the often used 'buzz words', and even an 'alternative' computer glossary.

October £6.95

Other titles in the series include Sprites & Sound on the 64, l Z Simple
Electronic Projects for the VIC, Will You Still Love Me When I'm 64,

Advanced Basic & Machine Code Programming on the VIC, Advanced
Basic & Machine Code Programming on the 64, as well as Pocket
Handbooks for the VIC, 64, Dragon, Spectrum and BBC Model B.

Write in for a descriptive leaflet (with details of cassettes).

DUCKWORTH
The Old Piano Factory, 43 Gloucester Crescent, London NWl 7DY

Tel: 01-485 3484

243

' .
~~~~~ .. ~~~~~~~~~·~~~-- -

- . -

. ' . ,_ . 
- . . 

• • ~- ·.--. ' > • _ .. JI; ~ J • • ~ .~ • • ' 

Duckworth Home Computing 

EXPLORING ADVENTURES ON THE 64 
by Peter Gerrard 
This is a complete look at the fabulous world of Adventure 
Games for the Commodore 64 Computer. Starting with an 
introduction to adventures, and their early history, ittakes you 
gently through the basic programming necessary on the 64 
before you can start writing your own games. 

Inputting information, room mapping, movement, 
vocabulary-everything required to write an adventure game 
is explored in detail. There follow a number of adventure 
scenarios, just to get you started, and finally three complete 
listings written specially forthe 64, which will send you off into 
wonderful worlds where almost anything can happen. 

The three games listed in this book are available on one 
cassette. 

0715617788 

Duckworth 
The Old Piano Factory 
43 Gloucester Crescent, London NW1 

ISBN 0715617788 

IN UK ONLY £6.95 NET 




