
THE COMPUTER & VIDEO GAMES

BOOK OF
ADVENTURE

by KEITH CAMPBELL

With listings for:
SPECTRUM, COMMODORE 64
and BBC

Foreword by Scott Adams

-,~j--l.,,_ ,.__w_.,

. . .
'; .::

Tel: ~ ..J.

THE COMPUTER & VIDEO l

BOOK OF ~DVENTUR

by Keith Campbell

~~MELBOURNE
- ·- ·-HOUSE. -lWM £
~_WJ

Published in the United Kingdom by:
Melbourne House (Publishers) Ltd.,
Church Yard,
Tring, Hertfordshire HP23 5LU.
ISBN 0 86161143 8

Published in Australia by:
Melbourne House (Australia) Pty. Ltd.,
Suite 4, 75 Palmerston Crescent,
South Melbourne, Victoria, 3205.

Published in the United States of America by:
Melbourne House Software Inc.,
347 Reedwood Drive,
Nashville TN 37217.

• I

Copyright © 1983 Keith Campbell

All rights reserved. This book is copyright. No part of this book may be
copied or stored by any means whatsoever whether mechanical or
electronic, except for private or study use as defined in the Copyright Act.
All enquiries should be addressed to the publisher.

Printed in Hong Kong by Colorcraft Ltd.
9 8 7 6 5 4 3 2 1 0

ACKNOWLEDGEMENTS

My sincere thanks to:

Terry Pratt
Editor of Computer & Video Games, whose professional eye spent many
hours checking the draft. His faith in this book kept me going - I hope it
was justified!

Steve Willis
Colleague at Seeboard and co-translater of my TRS-80 Adventures into
BBC Basic, who painstakingly checked the program and references to it.

Ruth, Bruce, Neil and Veronica
My wife and children, who claim to have solved more Adventures than I,
and whose telephone calls and TV programs were wrecked many times
by my noisy line printer!

Keith Campbell
June 1983

CONTENTS

Foreword
1 What is Adventure? 1
2 Playing Adventure 5
3 Memorable Adventures 9
4 Essential of an Adventure Program 19
5 The Plot and Locations 23
6 Objects Fixed and Moveable 29
7 Space Time and Structure 33
8 Starting the Program on any Micro 39
9 Interpreting the Player's Input 49

10 On the Move 57
11 Screen Presentation 61
12 Let's Go! 67
13 Take it or Leave it 69
14 Some other common commands 73
15 Trees and Paper 77
16 Opening and Closing 81
17 Escaping from a Great Height 85
18 The Finished Game 89

Appendix 1 - Demonstration Program Listing 95
Appendix 2 - List of Variables Used 99
Appendix 3 - Line Numbers and Blocks 101
Appendix 4 - Spectrum Listing 103
Appendix 5 - BBC Listing 111
Appendix 6 - Commodore Listing 119
Appendix 7 - Schematic Map of Locations & Objects 125
Appendix 8 - Method of Searching String X$
for String Y$ 127
Appendix 9 - Screen Display 129
Appendix 1 O - Screen Display 131
Appendix 11 - Location-Association Arrays 133
Appendix 12 - Exit Codes 135
Appendix 13 - Object-Associated Arrays 137

FOREWORD

PUDDING! Pudding? PUDDING!

In the musical Hello Dolly, Barnaby and Cornelius have decided to go to
the Great City of New York and have the Adventure of their life. To be on
the safe side they want to have a secret password, to use to tell the other
that they are indeed in an Adventure! You guessed it! Their secret word is
pudding.

I've always thought that computer Adventures are indeed very like a
traditional pudding. From the outside both present a smooth even
exterior with nary a look at what is really inside. A good pudding like a
good Adventure requires a basic recipe and then a chef to put it all
together. With the best recipe in the world and a poor chef a pudding can
turn out as a disaster, but a great cook can tum the most basic recipe into
a masterpiece.

You will find inside this book a wonderful recipe for baking your own
Adventures. Only by trying will you find out what quality Adventure Chef
you really are. But no matter if you are a Short Order or Cordon-Bleu you
will find the baking process fascinating! And as they say: The proof is in
the pudding . . .

December 1983
Scott Adams
Longwood Florida
President
Adventure International

CHAPTER1

What is Adventure?

I am in a Ghost Town. I can see a barbershop and a jail.
"GO BARBERSHOP"

I find myself in a barbershop and can see a stetson hat.
"WEAR STETSON"

OK- odd, something seems strange.
Everywhere is deserted, yet somewhere in the distance a bell rings. A

ghostly voice whispers
"VAIN"

I shudder and make for the saloon down the street. Deserted. No
chance of a drink to steady my nerves - all I can see is a bell and a
mirror.

"LOOK MIRROR"
OK - very pretty.
I get annoyed -

"BREAK MIRROR"
Crack! Flying glass slices me. I'm dead. My Adventure is over.

In the beginning there were stories. Some stories were of excitement and
suspense, mystery and intrigue. Such stories were called "Adventure
Yarns", and, as with all fiction, transported the attentive reader to a
fantasy world created by the author. The reader often became so
absorbed in the story that he found it quite impossible to put down the
book. Being so caught up in the excitement of the plot, he had an
overwhelming desire to see how the hero w~uld fare next. He didn't want
to break the spell of fantasy created by the story; putting the book down
would be similar to being awoken before the end of a fascinating dream!

1

But how often might the reader put down the book and think "If only
. .. " If only the hero had taken a different course of action from that

described by the author, then the whole outcome would have been
better.

Although the illusion of realism is so well created that the reader feels
that he is in the shoes of the hero, however hard he might try to move
those shoes along his own path, they will refuse to co-operate and will
follow a set route. The story has a fixed narrative and conclusion. Be it
happy or sad, good or evil, it is written, take it or leave it. How could things
be any different?

Throughout the ages man has played games for relaxa!ion, enjo~me~t
and excitement. The outcome of a game is not predetermined, and m this
way it differs from a story, although there are strong similarities between
the two. Many games have an element of fantasy, in which each player
takes the role of a character quite different from that which he plays in
life.

There are many different fantasy games, but perhaps the best known
is a game called Dungeons and Dragons. Here the players travel through
a network of unknown "dungeons". A Dungeonmaster is the author of
the game. He populates his dungeon with many different creatures, both
benign and malevolent. These are very likely goblins, trolls and dragons.
He will also include a number of cunning traps and a few subtle problems
to be solved by the players. After many hours of work creating his
dungeon, the Dungeonmaster will invite the players to enter the
dungeon.

One by one, the players move into the imaginary dungeon, and the
Dungeonmaster gradually reveals a table-top map of the dungeon, and
on it he represents the population with miniature figures. By looking at his
maps with room and monster information he will, strictly in accordance
with his pre-ordained rules, tell the players the results of their actions.
Each dungeon might be played in an infinite variety of ways, dependent
upon the randomness of the dice, and the unpredictability of the players.

In such a game there is a plot, and the players interact with it. Provided
all the players are gathered together with the Dungeonmaster the
adventure of the exploration continues. When the game is adjourned a
player may think "If only ... ". But this time his thoughts relate to his own
actions within the Dungeonmaster's plot, rather than to the author's
decision as to the actions of the characters. Next time round the player
can try something different to improve the outcome.

Thus stories and games were combined. And then, along came the
computer ...

Take an Adventure story with all the traps and pitfalls into which the
hero might, and often does, fall. Some traps are fatal - in the story our
hero never falls into them! Some traps may be avoided, but if not, the
hero will have to overcome additional problems and difficulties to survive.
Of course, in the story, he always does!

2

Now computerise the story, adding the interactive ingredient of the
Dungeon. ·

In a story, at every major choice of action, what the c~aracter~ ~?t.ual~y
do is determined by the author. The outcome of alternative poss1b1ht1es 1s
left unexplored except in the imagination of the reader.

The computer enables the author and "reader" to bridge the gap
between story and limitless fantasy. The author writes the plot, .but he
now includes in it a number of alternatives at every stage, allowing the
plot to branch in an ever-increasing number of directions. Thus the
author writes a plot that allows the hero to make "wrong" moves - fatal
or otherwise - and to continue the action to a conclusion, within the
constraints imposed by his mistake. The "reader" is put in the position of
the hero and must play his part, deciding on each action to take: He
supplies commands on which the hero acts, and the computer supplies a
description of the outcome. If all the commands are the "right" ones, then
the story will end "happily ever after". If some wrong moves are made,
those that are not fatal to the player will certainly lead to a less than
satisfactory conclusion. .

The reader can now be described as a "player" , and the player will
"win" if the outcome is successful. The story has now become a game.

And yet this description is not entirely accurate. Agreed, it can. be
argued that a computer Adventure is no great literary work, but there 1s a
storyline, together with excitement and humour.

I have deliberately used the word "story" rather than "novel" in
developing this discussion, as "story" implies something less verbose
than "novel". However, Adventures played on large (mainframe)
business computers can be relatively wordy, with replies extending over
more than one page (or screenful). Commands can be fairly complex
sentences, albeit with a restricted structure. Microcomputer Adventures,
spawned from mainframe games, necessarily have less !o say for
themselves due to the limitations of available memory. That this could be
achieved at all whilst retaining the compelling nature of Adventure stories
is a tribute to the pioneer micro-adventure authors.

As micros became commonplace, and peripherals became cheaper,
so it was possible for mainframe games to be adapted with little loss of
text, using disk storage. Access to the disk is made frequently thr~ughout
the game, and commands such as "verbose", "brief'', "super-bn~f" a~e
used to give the player control over the volume of text he receives m
replies. . .

Looking at the trends in the development of Adventure games, 1t 1s not
unlikely that before long the computer Adventurer may .well b~come a
true " reader", playing the part of the hero and commanding actions that
will lead to true novel-like narrative responses from the computer. Not
only will novel-length text be presented to the rea~e.r, but the game will be
fully illustrated in colour, accompanied by reahst1c sound effec~s and
music. And if required, be output to a printer/plotter that would m fact

3

create a "book" . Already two-player games are beginning to appear, in
which the players interact with each other as well as with the plot. How
long will it be before many machines ~an be li.nked together to allow their
owners to join in a simultaneous fully interactive Adventure quest?

Could an ordinary novel offer all this?

4

CHAPTER2

Playing Adventure

Adventure is one of the most popular types of game played on
computers. Adventure, certainly, is a game uniquely suited to the
computer, combining the intricate plot of a story with the interactive
character of Dungeons and Dragons. It is a game that generates
enthusiasts, even addicts, those with a passion for the tantalising puzzle
whose solution is staring them in the face, but is seemingly impossible!

Scott Adams, author of the famous "Adventureland" series which set
the standard for micro-Adventures, scarcely exaggerates when he
proclaims in the instructions introducing his games that the Adventure
player is able to experience the thrill of adventure without ever leaving his
armchair! A good Adventure can be totally absorbing; the danger of
making a false move can become to seem a very real danger, and the
excitement of discovering a hidden exit or new location can give a real
sense of thrill.

So, for the uninitiated, what exactly is Adventure like to play?
In general the game consists of a logically connected network of

" locations" which must be explored or traversed. The network can
contain objects, some useful or valuable, others dangerous or red­
herrings, and creatures, benign or otherwise. Some of the objects and
creatures may be picked up and carried, and thence transported to be
used or manipulated elsewhere in the network, often in obscure ways, in
the progress towards the ultimate goal of the particular game.

The objective of an Adventure game may be to collect and store
treasures or to carry out a particular task such as preventing a bomb from
detonating and thus saving the world!

The game is actually played by typing commands to the computer in
plain English usually in the form of simple two-word sentences consisting
of a verb followed by a noun. The player decides on a suitable command

5

by considering the information displayed successively before him on the
screen. This will usually describe where the player is, certain specific
things that are visible, and perhaps a fe~ clues as to how to mov~ o~ to
another location. There will also be displayed part of the continuing
conversation between player and computer, that is, the player's
commands and the computer's responses to them. If the player uses a
word that is not included in the vocabulary of the game, then the
computer will reply with a suitable comment. By a careful choice of
vocabulary, and by inserting the player's "unknown" command words
into the response, the author is able to create the uncanny illusion that
the player is freely conversing with the computer.

For example, if the player types "TAKE LAMP", and " lamp" is not a
word in the vocabulary of the game, then the response might be " I do not
know what a lamp is". If the word "lamp" is known, but the lamp is not in
the player's current location, then the computer might reply, "I do not see
a lamp here". If the lamp is present, however, the response may be
simply, "OK", and the word "lamp" will disappear from the display. It is
now no longer in the location, it is in the player's hand! Thus, if the player
now commands "INVENTORY", the reply will be "I am carrying the
following: Lamp."

To move from one location to another the player must use a suitable
"movinq" verb followed by a direction or exit. For example, by
commanding "GO NORTH". Then this, if a legal exit, will move the player
to the location logically north of the current one in the network. Details of
the new location, together with any objects present there, will now
replace the old location details on the screen.

In some games, graphics, sometimes in colour, are provided in the
game. There are Adventures that talk, and some with sound effects and
music to accompany the responses on the screen. These features may
enhance a game, but words are the bread and butter of Adventure.
Without words a graphics oriented game becomes a cross between a
maze and an Arcade game, and can no longer be truly described as an
Adventure.

The player, unless he cheats by LISTing the program, has no way of
knowing how many locations or objects are in the game, or what they
might be, until he comes across them. The locations might be so
intricately connected that unless he has carefully drawn up a map from
the outset, he will very easily lose his way and be unable to effectively
exploit the clues and opportunities presented to him as the game
progresses. A map will certainly aid him in travelling back and forth (as
surely he will need to) to complete the puzzle.
. When a game seems to have ground to a complete halt, and the player
is desperate for inspiration, he will find that cheating is not easy whether
th~ game is written in Basic, the English-like language provided on most
micro-computers, or is in machine language.

6

A machine language program consists of a series of code numbers
recognised and acted upon by the particular microprocessor used in the
computer. To "read" such a program involves returning these codes to
their original Assembly language listing, and this requires a piece of
software calied a "disassembler". However, an Assembly language
listing itself consists of a series of mnemonics or "aides-memoire"
designed to make it easier for mere humans to recognise and
understand the machine codes. How helpful would lines like:

LD HL,3COOH
be to the frustrated player trying to read the logic of an Adventure game?

The reasons for using Assembly language in preference to Basic are
twofold. Firstly, it is not only more compact, but can occupy part of
memory normally set aside for Basic housekeeping tasks, thus allowing
a bigger program to be loaded into a given machine. Secondly, such a
program will execute faster than if Basic had been used. This is because
machine code is a series of direct instructions to the machine, whereas
Basic must be first converted into the codes by the interpreter before
being executed. However, Assembly language has the disadvantage of
being difficult to learn, and extremely time-consuming to write in
comparison with English-like Basic. It is also less compatible between
machines. The language will differ depending upon which
microprocessor is driving the computer. Furthermore, the differing
memory maps (the way computers have their different sections of
memory laid out) of computers using the same processor will make
translation difficult, especially if maximum use is made of ROM calls to
make use of sections of code or routines already resident in the machine.

Cheating Adventures in Basic is a lot easier, so quite likely the author
will have made it difficult to list, print or copy. However, although a Basic
listing will usually make plain what the objects and locations are, and give
away the responses, it may still be quicker to solve the game by playing it
than by trying to unravel the logic of the program!

For the really desperate player of a machine language Adventure who
wants to know what vocabulary is used, and the objects or locations still
to be discovered, here is a way to display these secrets, provided that the
English text has not been encoded by the author. Get out of your game by
typing "QUIT', pressing BREAK, or RESET. Do not turn the machine off.
From the command mode type:

FOR I = *****TO%%%%% : PRINT CHR$(PEEK(I));: NEXT I

In place of the asterisks type the decimal number denoting the start of
user memory (RAM), and in place of the percent signs, the end of user
memory. Now press ENTER and interspersed with dark patches and
graphics characters, all the text used in the program will scroll up the
screen. This won't tell you how to actually complete the game, but it will
give you a few jolly good clues to go to work on!

7

8

CHAPTER3

Memorable Adventures

Adventure was around before micros. The game recognised as having
started it all, the "big bang" of Adventures, was written by Crowther and
Woods in Fortran, a scientific and engineering language deriving its
name from FORmula TRANslation. It was played on large business and
university "mainframe" computers in the USA. Variously known as 'The
Original Adventure" or "Colossal Caves", it had college students and
bank clerks alike writing letters to journals requesting help from other
readers on how to solve some of its more tricky problems. It was played in
lunch hours and spare time over periods of many months. Adaptations of
it are now available for a number of popular micros.

When micros started appearing on the US scene in large numbers,
Adventures appeared written in Basic. Greg Hassett, (still only in his
teens), and Lance Micklus were authors whose names became
commonplace. The majority of these games were written for the TRS-80,
which was then the most popular personal micro in the States.

Among these early authors was an advanced computer programmer
at the Florida Institute of Technology named Scott Adams, who having
come across the Colossal Caves became excited with the Crowther and
Woods game because it combined the challenge and logic of a good
game with the imagination of a story. He had just bought a TRS-80 and,
wanting to explore the possibilities of Adventure on a microcomputer,
wrote his first Adventure. This was in 1978, and the Adventure was
Adventureland. It was written in Basic and featured a split screen
showing locations objects and exits at the top, with the player's
instructions and computer replies scrolling independently underneath.
On the advice of Lance Micklus he translated Adventureland into
machine language, having been persuaded that people were concerned
about speed. He realized afterwards what a big difference it made. After

9

that, he wrote his own Adventure language, fo~med his own company,
Adventure International in 1979, and followed with 11 more Adventures.

Scott's Adventures are undoubtedly the most popular games on the
market today, and the fact that in addition to the T~S-80 they have been
made available for the Apple, Sorceror, Atan, Texas and VIC-20
computers testifies to this .. More letters for "H~LP" , the Adventur~r·s
eternal cry, arrive at the offices of Computer & Video Games.mag~in.e
concerning Scott's adventures, than for any other game or senes. This 1s
not to say that they are necessarily more di~icult th~n the rest, but they
imbue the plaver with a sense of compuls1on, their problems are so
intriguing that the player rarely, if ever tires of those that he has not
managed to solve!

Another series of machine language Adventures that is very popular
are the "Mysterious Adventures" written by an English author, Brian
Howarth, and introduced by Molimerx Ltd. Again, originally for the TRS-
80 these games, also published in the US, are now available for BBC
mi~ro and VIC-20. There are currently 1 O games in the series, with titles
ranging from "The Golden Baton" to "Ten little Indians" .

The arrival of the Spectrum has brought with it a new wave of
Adventure games. A series of four games from Artie Computing vary
from poor to interesting - none of them reaching anything like the
standards of Scott Adams. From Melbourne House, "The Hobbit'',
another Spectrum Adventure is quite novel, following very closely the
story in the book, and featuring colour illustrations. The ~ic.tures are
good, but does not the main attraction of Adventu.re .games he in th~ use
of the imagination? The Spectrum has brought in its wake a senes of
"prize" Adventure games, notably Pimania, later made available for the
Dragon and BBC micros.

The BBC micro, a little short of Adventures yet, has its own "standard"
Adventure, "Philosopher's Quest" from Acornsoft, as well as the Brian
Howarth series. Another series of three Adventures, recently converted
from their original TRS-80 version, is the "Fairytale" series by yours truly.
Written along lines very similar to those described in this book, the BBC
versions are enhanced from the TRS-80 versions by having sound and
colour added, also, Molimerx Ltd which now distributes these games, is
exporting them to the U.S.A. where they have been converted for the
IBMPC.

A really mind-bending series of Adventures by Frank Corr, and
available for the TRS-80 and Apple computers, is "Death Maze 5000"
and Asylum I and II. These combine the text entry typical of Adventures
with a fast-reacting graphical maze. They are particularly difficult, and
require careful mapping and note-making on the part of the player.

Graphics also feature in another series, Dunjonquest. whose titles
include The Temples of Aphsai and Hellfire Warrior. A departure from the
usual type of Adventure, these games follow more closely the Dungeons
and Dragon theme, and are variously available on disk or cassette for

10

Apple, Atari and TRS-80 computers.
Avalon Hill, despite specialising more in war-gaming, produce a

couple of nice Adventures in "Empire of the Overmind" and "Lords of
Karma", for the Atari , Apple, Pet and TRS-80 micros. These are
available on disk and cassette, and all versions require more than the
standard memory configuration for the respective machines.

Many other Adventures are to be found in software shops and
magazine pages. Tandy produce their own series which includes
Pyramid and Raaka-Tu. Big disk adventures are available in the form of
Zork for TRS-80 and Atari , running into some 96k of disk space. Zork II
and Ill is available for the Atari , and Xenos for the TRS-80. More
Adventures appear every month. Below are some short reviews of just a
few of the many games currently available.

Adventureland by Scott Adams
My very first taste of Adventure! Set in a swampy forest near a sunny
meadow, the scene soon moves underground to royal chambers and a
chasm. Can you think of uses for an empty wine bladder and evil smelling
mud? The large dragon sleeping peacefully in the meadow begs a good
hard kick - is he really as harmless as it seems? Is it possible to get past
the thin bear and still collect the 13 treasures to complete the game?
Some devious thinking is needed to solve this - but it has been enjoyed
by many beginners and experienced players alike.

Pirate Adventure by Scott Adams
A strong theme runs through this game where you will come across
bottles of rum, old chests, an anchor, and an extremely greedy and
loquacious parrot! The story begins in the player's London flat, and after
some chilling discoveries, moves to Pirate's Island. Easier than
Adventureland, this one has a keener sense of humour, and reaches a
climax with a gigantic hoax! If you can't take a joke, be prepared to put
your fist through your screen when you get there!

Mission Impossible by Scott Adams
This one is different, set in an automated power plant where a saboteur is
loose with a bomb. A tape recorded message tells you, Mr Phelps, that
your mission, should you decide to accept it, is to prevent the bomb from
detonating. Rather a drab game as far as descriptive content is
concerned, and quite a difficult one. Breakthroughs seem to come rarely
after long periods of frustration, and it is a game that lends itself to
"stop-start" playing! What upset me - when I finally succeeded, I hardly
even got a pat on the back!

11

Deathmaze 5000 by Frank Corr
Deathmaze is displayed graphically as a perspective maze, movement
through which is by depressing the arrow keys, and text con;ima~ds a~d
replies are also featured. Said to have 500 c~lls, but I can _t ~enfy this!
Boxes found in the maze contain a variety of things- a pr~c1s1on crafted
frisbee and mutilated sneakers amongst others! There 1s also THAT
ROOM that seems impossible to exit. A calculator, 317, 317.2, TURN,
TURN, TURN ... A difficult game that could well lead you to:

Asylum by Frank Corr
Bigger, with better graphics, and even harder than deathmaze, As~lum
has been known to send people to the verge of lunacy. Armed with a
hand grenade you must escap~ th_e asylum, def~a~ing some very alert
guards, and escaping from stra1ght1ackets. Very_ difficult, I have heard of
only a few people claiming to have completed this game.

Pyramid of Doom by Scott Adams
Difficult in parts- notably at the beginning and the end, but easy eno~gh
in the middle to give the novice some encouragement. Nervous tension
is created by the appearance of a small nomad, who proceeds to follow
the Adventurer around. There is humour in the throne room, and a
counterfeit object. If you can successfully avoid the rats and the mummy.
you're well on the way to success.

Hellfire Warrior
This is a game more along the lines of Dungeons and Dragons, and one
of the "Dunjonquest" series. After bartering with an Innkeeper to collect
weaponry and armour, you proceed to the D~ngeon, wher~ exploration
is carried out graphically. The monsters therein move ofthe1r o~~ ~ccord
- so the player must be quick with the command codes to avoid iniury or
death. Good of its kind.

Abersoft Adventure
For ZX81 {16k) and Spectrum fans, this game is very similar to Ta~dy's
Pyramid, once you get inside. Both are similar to the Colossal Cave in an
abridged form.

Savage Island by Scott Adams
A two-part Adventure, the first is considered extremely difficult, and even
hardy Adventurers try not to mention part 2! Starting off on a deserted
beach, the chilling discovery of a large stone head in your likeness, lends
to a feeling of unease. Soon forgotten in the exploration of a volcano, lake
and caves, pursued by an over-friendly bear! Beware the hurricane
whilst you struggle over the first hurdle - the bear! Part 1 is a good
game, which may take quite a few months to complete. And as for Part 2
- it's breathtaking!

12

Atom Adventure
A trip down the road from the station and through the forest will lead to the
cavern- somewhat difficult to get in. You will be told it is too obvious to
mention if you ask for help! Eventually of course, you will get in, and
experience the magnificent chambers and rock pools, and encounter a
green frog. Then you can set about rescuing the Princess.

Ghost Town by Scott Adams
As featured in the opening sentences of this book, Ghost Town has all
the feel of a deserted Western town in this game, complete with Saloon,
Barbershop and Jail. Who is ringing the bell, can you ride a horse, and
how do you set about breaking in to a jail, are some of the problems you
will come up against. One of Scott's best - I raise my stetson to it!

Time Machine by Brian Howarth
As a journalist seeking to interview Dr Potter, a famous scientist, you find
he has mysteriously disappeared, leaving only his slightly faulty time
machine behind. Your quest will take you to such diverse places as Troy,
a Black Monolith, and the Marie Celeste.

The Curse of Crowley Manor by Jyym Pearson
A detective story with a difference, you are part compelled to follow the
narrative, until you come across a body. The secret of Crowley Manor will
eventually be revealed if you can break through the inconsistent
commands required.

Lords of Karma
Opening in the city of Golconda, your journey takes you through forests
where sunlight filters softly through the leaves of Aspen, Oak and
Redwood. Pray in the Chapel of Prayer if you must, and beware the jolly
green giant. The object is to collect Karma Points by doing kind and brave
deeds, and fulfilling specific quests. A big game requiring 32k on an
Appel or Pet, 40k on an Atari, and 48k on a TRS-80.

Strange Odyssey by Scott Adams
From a broken-down spaceship, the Adventurer in an alien environment
must collect treausures of alien civilizations - if he can successfully
manipulate the controls of a strange travelling device! Can you mend
your crippled ship, climb slime trees, and tame a dia-ice hound?

Love (for ZX81 with 16k)
Described as an adventure for women, its unusual objective is the
successful seduction of Tom, a character among the house guests at a
party. A range of glamorous dresses, make-up and washing facilities are
all available for the would-be seductress or transvestite.

13

Philosopher's Quest
A ame set in a labyrinth, with many logical p~zzles to solve. Me~t. the
auiomatic solicitor (if you can find him!) and a~o1d the albatr?s.s. A d1ff1cult
but interesting text Adventure for the BBC. Its weakness 1s its slow (for
the Beeb) response time of 5 seconds.

Espionage Island (Spectrum)
You are the pilot of an aircraft, which must be ditched after it is shot down,
then find the secret of the island on which you land. What are the
mysteries of the heavily guarded camp and can you penetrate it? Will you
be able to return to your aircraft carrier base?

Ship of Doom (Spectrum)
Your space ship has been drawn into an alien cruiser by gravitron beam,
and you are about to be turned into an android. The main control button
on the ship's computer must be pressed to free your ship- but although
easily found, cannot easily be touched!

Pi mania
More a series of unconnected puzzles, perhaps Adventure is not the
correct description of this game. Catchy tunes and jokes break the
monotony of trying to solve the difficult puzzles and win the ornament
prize offered by the publishers, Automata.

The Hobbit
An adventure with a difference, this one has pictures with every location,
and follows closely the theme of the book. The creatures of Wilderland go
about their business whilst you are thinking, so that different outcomes
may be reached each time you play the game.

Zork
A game requiring at least one disc drive, this is a really big game, with
screenfuls of text, most of it tongue-in-cheek. The descriptions are
extremely detailed, giving, for instance, whole pages of a guidebook to a
dam, and the wordy satirical advertisement on the back of a book of
matches. The network of locations is seemingly endless. Almost worth
buying a disc drive to play!

Empire of the Overmind
Overmind is a computer on another world controlling Earth's population,
which it has enslaved. It must be found and disabled to free the world. A
Sci-Fi background, but not presented in the space-ship form - other
forces are at work to help (or hinder) you in reaching your objective!

14

Mystery Fun House by Scott Adams
Yet an~ther of Scott's, and another of his better ones! Successfully
rec.reating the atmosphere of a fun-house on a computer, this is a quest
!o. find secret plans. Not an easy one, but so appealing and intriguing, that
1t 1s always fun to come back to in search of a solution.

Xanadu
A large underground network for the player to explore, this game has a
novel two-player option, allowing players to either compete or form a
common alliance against the monsters. In this mode, of course, both
players cannot be holding the same object as the other . . . including
treasures! And fighting has been known to break out between the
adventurers playing on a BBC micro.

Xenos
Another disc-based adventure, this is somewhat reminiscent of Ghost
Town. An air of foreboding hangs over you as you explore a small desert
town that has been hurriedly abandoned by its population. Can you drive
a rusty jeep? Can you survive a meeting with a rattlesnake? And why
have the people fled? Your score here is not in treasures, but percentage
of mission accomplished.

Rescue at Rigel
Me~orable ~nough to f~at~re in "The Worst of Adventures" book. Play
Hellfire Warrior and ~ou II find the same but less in this one. Amazingly
thought worth producing for a range of machines.

Dungeon Adventure
~ne o~ the best Adventures around for the Spectrum. Over 200 locations,
including one on a mudbank by a large packing case, from where you
start. The many problems and traps include a dice game with the
Rakshasa, a strange cubic machine, and a siren! Verbose text
de~criptions and a fast response make this game both interesting and
enjoyable to play.

Temple of Bast
A TRS-80 Adventure in machine code, taking the player (if he is able to
go) from his London house to Egypt. There's some tasks for the D-1-Y
enthusiast to complete before the journey, and a very strange caller at
the front door . . . !

15

Forbidden City
A non-game for the Dragon _a~d mo~e r~ce~t_ly, the Texas. This one co~ld
be unique in its poor description~, its mab1hty to under~tand most of its
own vocabulary, and its totally boring plot. One to be avoided at all costs.

Bedlam
A text Adventure set in an Asylum, this is from Tandy for Tandy. tJ!e~t
Napoleon and picasso, a mad doctor and a vicious dog. What ~here 1s 1s
good - but there is very little of it. The way out changes every time - so
they say. It didn't change once for me.

Ring of Light
Not quite an orthodox Adventure, but involving movement graphically
around a map. The explorer can enter townships, and buy food and other
necessities, doing battle with bandits and others. More strategy than
problem solving in this game for the Dragon.

Franklin's Tomb
You are Dan Diamond, a private detective, although this does not seem
to have much relevance to the scenario of the game. The tomb hol~s a
series of puzzles, requiring the collectio~ of cert~in ite.~s to _use the f~~al
exit. This exit leads to the second game m the trilogy, Lost m Space . A
pleasing Adventure available for Dragon, BBC and Orie.

Circus
One of the Mysterious Adventures available for an ever-growing range of
micros, Circus leaves you stranded without petrol. You wal~ acros_s the
fields to find some, and stumble upon a strangely deserted Circus s1te­
or is it . .. ? Creepy!

Golden Apple
The fifth game in Arctic's series, requiring 13 treasures plus one ap~le to
be collected. A miscellaneous-problem type of Adventure that will no
doubt be popular amongst Spectrum owners, although sometimes the
logic is a bit difficult to swallow.

Groucho
The sequel to pimania, groucho offers a prize. Groucho also offers fat
cigars as currency, which the player uses to buy clues to guess film stars,
to be given clues to guess the 'big' one. Interspersed with 'knock knock'
and 'I say' jokes, and set against a background of superb graphics,
Groucho is a tribute to Hollywood. Groucho is painfully slow, but
extremely addictive.

16

Pettigrew's Diary
One of the most unusual Adventures arund, Pettigrew's Diary consists of
three games (or chapters) in one. The second of the two, a full-length
Adventure in its own right, has a most original display, and wicked sense
of humour. In this chapter, 'London Frolics' you can travel on the tube,
work, gamble, dodge traffic, and many other things. A really worthwhile
Dragon package. ·

Valhalla
Valhalla requires more beating about with sword and axe than puzzle
solving, but in the best possible way. Set against fast-displaying
graphics, all the characters march around the screen doing their own
thing. Tell your little figure to TAKE SWORD, and he will walk up to it and
actually take it in his hand. And a fight is a real one-you can watch them
actually beating the living daylights out of each other! Pity about the bug.

T~ese games represent just a small sample of the many games
available for current micros.

17

I

18

CHAPTER4

Essentials of an Adventure
Program

An Adventure game is, as we have seen, rather like an exciting book.
Perhaps there will not be much opportunity when writing it to make the
text a great work of literature, but the key to an absorbing book is its plot,
and so it is with Adventures.

Ideally, the plot of the game should have a definite theme, or the whole
thing will appear to be a hotch-potch of fragmented puzzles that don't link
together very well.

There are many ideas that can be taken as the basis for a suitable plot.
A popular theme is science fiction - a subject closely related to
computers themselves! Here there is plenty of scope for the Adventure
author to invent strange planets, alien beings, and new modes of travel
through time and space! A science fiction game does not perhaps lend
itself quite so easily to the treasure collecting type of Adventure, although
treasures can be found in any setting given a little ingenuity.

Spy stories make good adventures - keeping the player on the alert
for tell-tale signs that he is about to get caught. These can equally well be
set in war-time Germany, or present day iron curtain countries.

If you are not too adept at creating a whole plot from scratch, then have
a go at converting a book that you found exciting and enjoyable,
preferably a well-known one, into an Adventure game. Here you have the
scope to change the parts of the story you found disappointing into a plot
of your own liking - and keeping the players from becoming too
complacent about the game if they've read the book!

The scope for Adventure plots is almost limitless, and on a more
serious note, the game/program method lends itself well to educational
purposes. Perhaps with research you could recreate a particular period
of history, teach someone how to service a car (Tell me what to do -

19

Remove oil filter!), or if you are a linguist- write a simple adventure in a
foreign language!

An Adventure essentially takes place somewhere, and therefore the
environment, a series of discrete and interconnecting locations, must be
carefully drawn up. This means that not only must the geographical
network in which the action takes place be mapped out, but each location
must be described, and the exits from each together with their respective
destinations must be defined.

Similarly, without treasures or certain tools and objects available to
help the player manipulate his fantasy world, the Adventure will fall flat.
Therefore planning must include not only what those objects and
treasures will be, but in what locations they will be found, and whether
they will be available to the player unconditionally. Will any be hidden and
revealed only after a search? Will some be constructed with orfrom other
objects?

Although an Adventure game consists entirely of text, this doesn't
mean numeric values will not be used. The central feature of any
Adventure program is its ability to interpret the words used by the player,
and the end result of this interpretation is to arrive at a numeric value for
each word. Thus we will develop a routine that will turn those words into
numbers. For simplicity we will be limiting ourselves in this book to replies
consisting of no more than two words, - the simplest sentence that can
be phrased - a verb followed by a noun.

Having established that the verb is a valid one for the oame the
program will establish a numeric code for it, and after doing the same for
the noun, will use the verb number to find the appropriate verb routine.
This part of the program will check to see if the numeric value derived for
the noun is compatible with that for the verb as far as the plot is
concerned. If it is, the program will then check to see if the conditions for
app~ying the verb to that noun are satisifed. Has the player the right
equipment with him? Is the act being performed in a suitable location?
Have other conditions been fulfilled?

Thus the course of the game will turn, for better or for worse as far as
the player is concerned. He may be helped with a clue, or rewarded with
a treasure. Alternatively, he may be killed!

_The computer having evaluated the command given by the player and
privately arrived at its own conclusion as to the present state of play,
must now be persuaded to part with its knowledge by way of presenting it
on th~ screen for the benefit of the player. So now numbers will be turned
back into words and the words will be displayed. The way in which this is
done may make or mar the whole game - to grab the player's attention
~e must ensu~e that information is displayed quickly and attractively, and
in a form that 1s easy on the eye and readily absorbed.

Scree_n presentati~n, is, in fact, our end product, and requires no less
thought in programming than the logic of the game.

20

So with these thoughts in mind, we can start. I hope to be able to talk
Y?U through the elemental parts of Adventure programming, so that,
given a good plot, your Adventure will rank among the best of them. I
would stress that the techniques I am about to describe were those that
struck me personally as the most obvious way to go about writing an
Adventure program when I first went about the task. In computing there
are ~any different ways to achieve the same result, more or less, and my
way 1s probably no better, no worse, than most. To me, it is a logical
method, and it works!

21

22

CHAPTERS

The Plot and Locations

An essential stage in writing an Adventure program is to set out the plot.
This must be fully scripted before the programming can begin. Although
minor deviations from the plot may become necessary due to
programming constraints in the course of writing the actual code, a major
change after a considerable amount of program has been written may
result in so many program alterations as to make it more desirable to start
again from scratch.

Before we can even consider approaching the computer we must
establish the details of the plot. This will involve sitting down and putting
pen to paper, drawing out ideas in the form of a map of the network,
making notes and comments. When the plot is firm, the information on
the map should be written out in tabular form, ready for typing into the
computer.

If writing your own game, then your first task is to devise the plot and
draw up a map of the network, showing details of each location. The
locations should be numbered, and the finished map should end up
looking something like Appendix 7, a map showing the network of a short
Adventure I have written especially to demonstrate how the program is
built up. I will be referring to this game throughout the book, and you will
find a complete listing for it in Appendix 1. In order to follow through the
'tutorial' section that follows, I suggest that you do not enter the listing as
a whole into your computer, but enter it section by section as the program
is explained. These explanations follow the order in which it is most
convenient to build up the program, and this is not in numerical order of
line numbers!

The game we are about to write will break the first rule I mentioned as it
does not have a particularly compelling theme; I have tried to include in it
a variety of situations in the plot that call for a number of different

23

techniques in the program, whilst limiting it in size, t? en~ble all the steps
·nits creation to be fully explained. I would add at this point, that altho~gh
~t · s a 'going concern', the game is not complete in the sense that the final
~p~lishing' up has not been done. This is deliberate, so that later we can
discuss how to discover and overcome any proble~s and weaknesses:

Let us start from the point where the plot is decided, and the map 1s
drawn. This is shown in Appendix 7. . . .

we will shortly be looking at the map of the network_ in detail, but f~rst
we will set up a table to lay out the actual wording we will use to de~cnbe
the locations and any other information that will be needed relating to
them. So dra~ out a blank table of 4 columns. The first column i~ f?r the
element number of the arrays. Column 2 contains the text d_escnpt1on of
the location, and we will call this array L$. In column 3 will be placed
another array, E$, each entry containing a number of code-letters,
denoting exits from the location appearing alongside it i~ the same row.
Before we complete this column we must make an e~try 1~ another table,
Table 2. This table will have one column for the direction words, a~d
another for the code letter of each direction. First of all we can enter in
column 1 of this table the obvious directions, north, south, east, west, up,
down, out. Alongside these, in column 2, enter the initial letter ~f e~ch
word - N,S,E,W etc. Eventually we will have to add some 1mphed
directions. To establish these, we will have to examine the plot, and
make the entries to the table as we encounter them.

Looking again atTable 1, each exit will, of course, lead t? a destinati?n,
so in column 4 will be placed a series of numbers, each being the lo~a!1on
number that will be arrived at by taking the exit whose code letter 1s in a
position corresponding to it in the same row of E$. E~amples of
completed Tables 1 and 2 are in Appendix 11 and 12 respectively.

Although the table entry will consist of numbers, the ~.rray itself_ will be a
string array D$, since we will be using string handling techniques to
isolate an individual location. Since we will need to derive numeric values
from this array, and these values may contain 1 or 2 digits, for single digit
destinations, we will follow that digit by an asterisk. Thus, elements of
array D$ will be double the length of those in E$, and there will be a
simple arithmetic relationship between the relative positions of the exit
codes, and the destinations to which they lead.

We are at last ready to examine the plot in detail.

LocationO
The action starts in location O, a small room without any apparent exits.
Since it is a short game we will make it fairly difficult for the player to
escape. Wallpaper will be visible on the walls but the player will not be
able to take it - yet. The clue to escaping the room will be given if the
player commands "LOOK AROUND", when he will be rewarded with a
suitable phrase informing him that the wallpaper is beginning to peel.

24

This should be enough to get the player trying to peel or pull the paper, in
which case it will fall off the wall and become a T AKEable object. In so
doing, it will also reveal a door, which will be our exit.

We can now begin to fill in the tables we have drawn up. In table 1 we
can fill column 1 with a O; this is element zero in the arrays L$, E$, 0$. It
will describe location 0. In column 2, under L$ we can write "in a small
room". Initially there will be no exits from this location, so column 3 (E$)
will be left blank. However, eventually there will be an exit through the
door, so in Table 2 make another entry; DOOR in column 1 and its code,
say A, since D has already been used for DOWN, in column 2. This exit
will lead to location 1, so while we're at it, we might as well complete
column 4 (D$) in Table 1, and fill it with '1 *'.

Having described and demonstrated the principle by which the exit
codes are arrived at, I have provided a complete list of those we will need
in Appendix 11. Refer to this to see how the E$ strings are arrived at as
we continue to examine the details of each location.

Location 1
The door from location 0 will lead us into a hallway, which will have exits
'south' leading back into the small room, 'west' going into a kitchen, and
'out' leading via the front door to the outside. So enter a '1' in column 1,
the words "in a dimly lit hallway" in column 2, the exit codes "SWO" in
column 3, and the destinations in column 4. The destination reached by
moving south will be 0, so write 'O*'. West will lead to location 2 so add
'2*', and Out will lead to location 3 so add '3*'. Column 4 will now read
"0*2*3*".

Location 2
This is a kitchen off the hallway. It's only purpose is to house a packed
lunch, an object which is really a red-herring. The exit is east, so fill in the
next row with location number 2, "in the kitchen of a cottage", E$ will be
'E', leading to destination D$ '1 *'.

Location3
The player is now outside the cottage in a forest, so fill in the next row for
location 3 with "outside a forest cottage". The exits are north going
deeper into the forest at location 9, east to location 4, and cottage, back
to location 1. So in Table 2 enter COTTAGE and C in the two columns,
whilst the entry for E$ in Table 1 will be NEC, and D$ will be 9*4*1*.

Location 4
This location is "by the moat of a castle". As it stands there is no
immediate way of crossing this moat, and the player can only go back the
way he came. So there is one exit for E$, 'W', and the corresponding
entry for D$ is '3*'.

25

Location 5
This location is one the player is striving to get to, but will find difficult to
reach. Describe it as "in a crumbling castle". The means by which the
player reaches this location will be explained in due course, suffice to say
for the moment that he will not be able to get back easily! There is
therefore one exit, up via the stairs. We will allow two exit codes for this,
UF, allowing the player to use the words 'up' or 'stairs'. Both will lead to
the same destination, so D$ will be '6*6*'.

Location 6
Here, enter "in a tower room" in column 2 for L$, and the two exits, down
the stairs or up the ladder will have four entries, DFUG, down, stairs, up,
ladder. These will lead to two destinations, and D$ will be '5*5*7*7*'. The
tower room holds a secret. On looking around, the player will see a secret
cupboard, which when opened will reveal the one treasure in the game, a
priceless crown. So the player will at last be able to take the treasure, but
must now return it to the room where he first started. How will he get
back?

Location 7
This is "on a parapet at tower top". (This not very clever abbreviated
description is used to accomodate the smaller screens). The only exit
initially is down, so enter 'D' for exits. There will eventually be another exit
to location 8. Location 8 doesn't really exist as we shall see. However,
enter '6*8*' for D$. If the player becomes desperate in trying to solve how
to move from this location, should he decide to jump he wil meet a sticky
end in the moat. However, the way out from here will be to 'TIE ROPE'.
This will let him 'go rope'. This assumes, of course, that the player has
been prudent enough to bring the rope along with him.

Location 8
Enter the description for this location as "hanging on a rope above moat".
The only obvious way out here is 'UP', so E$ will be 'U', and D$, '7*'. The
player will, however, be able to jump, in which case he will end up dead in
the moat again. Unless, that'is, he decides to "swing" first, and a suitable
message will hint that it's safe to jump. He will then land on firm ground in
location4.

Location9
This is in the depths of the forest, so L$ will be "in the forest". Let us fool
the player into thinking he is moving in the forest, and give him 3 exits that
appear to move him, but really leave him in the same location. He will, at
first, think he has got lost. This is easily done by writing in 'NESW' for
exits, and '9*9*3*9*' for destinations. This way, any direction taken
except south, which leads back to outside the cottage, will take the player
to the same place. In the forest will be a tree, which can't be taken unless

26

it is chopped down with the axe. Even then it can't be taken- it would be
absurd to allow our player to stagger around carrying a tree trunk. We will
arrang.e for the tree to follow the player to the next location, providing that
each time, before he moves, he types "PULL TREE". If and when he
reaches location 4 with the tree, if he types "PULL TREE" once more the
tre_e will slide in position over the moat and form a bridge, opening up an
e~1t t_o the castle. When h~ cros~es the tree, we will arrange for the tree to
shp into the moat, effectively isolating him in the castle until he has
c~ught on at:><>ut the r<;>pe. We won't be so unkind, though, as to prevent
him from going back into the castle, we will replant the tree back in its
forest location, and allow the procedure to be repeated.

Location 10
Final!Y· we must have _a locatio.n for "dead", and that is exactly how this
location can be described. Being nasty, we will allow no escape from
dead, but letthe player suffer a bit before he discovers this. Therefore we
will !oc~ him in by allowing four exits 'NESW' and making all the
d~stmat1ons the same '10101010'. Note that the asterisks have now
disappeared as we need both digit positions to contain the destination
number, which in all directions is 10. This avoids the player being told he
c~nnot go north, south, east or west, but at the same time it doesn't move
him anywhere.

At last we can turn the computer on! We are not going to actually write
the p~ogram, _but can at least get some of the groundwork done.

~sing two Imes, 50000 and 50010, we can type in the contents of Table
1 , in the form of DAT A statements. Ignoring column 1, the array element
number'. ty~ in the description, the entry in the exit column, and entry in
the destination column for each location in turn in the table. Each piece of
data should be separated by a comma, and the DAT A statements when
complete, should look similar to those in the program listing. Fo~ good
measure add line:

49999 REM **** DAT A ****

~efore you do all this, a word of warning about screen width. I have
deliberately abbreviated the text so that it will fit in one line across all
screens of 32 columns width and greater. If your screen width is less than
32 columns then you will have to abbreviate it even further, or convert it
along the li~es described in chapter 8. On the other hand, if you have
plenty of width, then pad the text out with more details to add more
interest and character to the game.

Finally note that some computers require string data to be enclosed in
quotes.

27

28

CHAPTERS

Objects, fixed and
moveable

In a similar way to our treatment of locations, we will now draw up a table
of objects, Table 3. An example of the completed table is found in
Appendix 13. This will again be a table of four columns, where the first
column will contain the array element numbers. Column 2 will have the
text description of the object, and be array 0$. Next, we will have a
column with an array telling us in which location that object is present.
Since the locations are numbered by virtue of their positions in the
location array L$, this array will only contain whole numbers, and can
therefore be numeric with integer precision. As it describes the Position
of an object, we will call it P%. If your computer cannot specificially define
a variable as integer, don't worry, just omit the'%' sign.

Finally, we will require another array which can also be integer
numeric. We will call this C%, and it will be used as a series of 'flags' to
signify different conditions applying to the objects from time to time.
These flags will include information about whether or not their respective
objects can be TAKEn. If an object is TAKEable we will assign to it a
positive value in array C%, if not, negative. We will go further than that,
and say if it is permanently unTAKEable, the value in C% will be - 2 or
less, but if we want a message like "I can't take it yet", implying that there
is work to be done before it can be taken, we will assign its value in C% to
be - 1. For consistency then, if it can be taken unconditionally, it will have
a value of +2 or greater in C%. The values in the flags C% will be further
manipulated as we progress through the program, but we will discuss
this in a later chapter.

ObjectO
First there is the axe, so in table 2, column ·1, enter 0, and in column 2
enter "axe". Where shall we hide this? What better than the obvious, in
the player's own hands. Who knows, it may be ages before he thinks of

29

looking there! We will assign a non-existent location for th~ player's
inventory, so that it doesn't get displayed unless requested .. so in colum.n
po;. enter '55' which will be the number we use for held obiects. We will
all~w him to d;op and take the axe at will, so for C%, enter '2' in column 4.

Object 1 ..
Next we have "wallpaper". This is found in location O, so ent~r th1~ in
column 3 under P%. It can 't be taken until it is peeled off, so we will assign
it a value of -1 in column 4 under C%.

Object2
The red-herring "packed lunch" can be listed next with a location P% of
2, and a "T AKEability factor", C%, 2.

Object3
The tree is in location 9, so write 'tree', '9', and · -1' for L$, P%, and C%
respectively.

Object4
Next, a non-object, the entrance to the castle, seen from the inside, but
unattainable in practice. As it must be displayed to frustrate the player,
we will display it as an object. So write, 'Entrance', '5', '-2'.

Objects
The rope comes next, in location 0, with TAKEability factor of 2.

Object6
Now for the treasure. Priceless Crown will be the description, and while
we're about it, let's write an asterisk each side of it to mark it as a
treasure. Since it is hidden in the cupboard initially, and must not be
displayed, we will put it in another non-existent locati~~ 99. This loc~tion
number we will use for objects yet to appear. TAKEab1hty can be 2, since
we will be writing the code for taking objects so as to require. that it is in th~
same location as the player. It will thus not be capable of being taken until
it is revealed.

Object7
This is a "rolled umbrella". It is situated in the hallway, location 1, and can
be taken, C% is 2. We will use this to create another problem for the
player. Outside, the player will find it is raining. If he continues outside, a
message will warn him that he might catch a cold, and if this is ignored, he
will die. To overcome this, he will have to open the umbrella.

Objects
A door will be the next object, again one that can never be taken, but must
be displayed when the wallpaper is off. So type 'door', '99', and - 2.

30

Object9
Stairs similarly denote another exit, and will be in location 5, with C% of
-2.

Object 10
Finally, another 'exit' object, 'iron ladder' used to go up from the tower
room. Location 6, TAKEability-2.

Now you are ready to add the objects to the DAT A statements already
written. This will list an object followed by its entry in the P% column of
Table 3, and then its C% column entry. Continue until the data has all
been entered. (see page xx for table 3)

We have now covered the details of the plot, and listed all the locations
and objects, together with the values of the variables which will be used
to control them. You should now have three tables corresponding to
tables 1, 2, and 3 shown. Keep them by you, together with the plan of the
network, for reference whilst we write the program.

31

32

CHAPTER7

Space, time and structure

Having written data statements for the arrays which will describe the
locations and their relationship with each other, plus the arrays for the
objects together with their dispositions around the network, we are surely
ready to start writing the actual program!

Not quite! We must pause here for a moment to reflect upon the
irrevocable course upon which we are to embark. Once we start writing
the program in earnest, in no time it will be too late to turn back.

Consider the following questions, and imagine you are setting out, as
hopefully you soon will, to write your own Adventure:

1 . With the plot in mind is there any danger of running out of
memory before it's complete?

2. What-can be done to minimise the response time?

Having spent some weeks or months writing your great work, you will
want to ensure that it can be played on as many machines as possible.
So consider the most popular size of the micro on which you are writing
the program and set that as your limit even if your own model has more
memory than the popular version. That way, you will stand a better
chance of selling it commercially should it turn out to be the most
fascinating game since Ludo was invented. (And why should it not? You
might well strike lucky and have a best seller on your hands!)
Alternatively, if you cannot, or do not wish to market the game, do not
preclude your friends who are not blessed with so much RAM as yourself
from playing it. They at least will be more interested than most in the
game, knowing the author! They will be keen to solve it quickly to tell you
how easy it was!

33

Let us assume then, even though the program we are goi.ng. to ~se
here for demonstration purposes is small, that the m~~o~ hm~t might
prove to be a problem. What steps can be tak~n to m1rnm1se. this? The
answer is very much dependent upon the machine you are using.

If you are able to specify a variable as integer, then typing in all those%
signs will save more memory than leaving the computer to defa~lt to
numbers of greater precision. All the numerics we shall use will be
integers. Better still, if you have the facility of the D~FINT statemen~, us.e
this at the beginning of the program, omit the % s~gns, and you will still
have integers precision. Integers as well as occupying less memory, take
less time for the computer to process, so we will have also taken one step
towards speeding up the response time.

Similarly, if your micro has a DEFSTR statement, use this for all stri~~
arrays and variables, and you will save the memory ove:rhead ~f the $
signs - not to mention the effort required to repeatedly hit the shift key to
type them in! . . .

Having decided upon this course of action, how do we interpr~t the
program lines in this book? All the variable names used are consistent
with the use of DEFINT and DEFSTR statements; nevertheless, for
clarity, the% and$ signs are shown. If your computer has no DEFINT,
type in the %'s. If you have no integer precision then leav~ out th~ %
signs and let your machine run as it will. In the same way, omit the$ signs
if you use DEFSTR.

Another space saving device at our disposal is to type.with?ut spaces
between the code. I have deliberately shown spaces in this book for
clarity, but if you can - forget them. Squeeze everything up close
together!

Computers with the optional use of LET need never have the word
displayed on their screen. For 'portability', all the LETs have been shown.
Don't use them if you don't have to.

Some Basics allow a statement like:

IF (condition) THEN 320
The GOTO between THEN and 320 is implied. Here, the GOTO is

always present rather than implied, but omit this, too, if you are. able.
However, don't omit THENs. Although your program may work without
THEN statements a renumber utility may have a nervous breakdown
when used. The logic may go a trifle haywire as well. 'IFA=B320' may be
construed as 'IF A=B3THEN GOTO 20' when you really meantto end up
at line 320 if A=B!

Finally, you will save space by using fewer lines, even though the
length of code may be the same. Each line carries a 'line overhead',
usually about 4 or 5 bytes, depending upon the particular interpreter. If
your Basic supports multi-statement lines use this facility as much as you
can, and cram in every last bit of code possible.

34

We have already speeded things up a bit by using integers! In fact,
most of the steps taken to preserve memory will also make a small
contribution towards reducing the response time. Even spaces and
REMarks take time to execute!

Many of the ways to elicit as quick a response as possible are
embodied in the actual method I have used to structure the program.
Obviously, Basic is not going to be anything like as fast as machine code.
Or is it? Your interpreter and hardware will probably be the deciding
factor here.

Nevertheless, there are a number of ways in which the programmer
has some control over response time. The most frequently used
variables should be the first to be assigned. Similarly, the words likely to
be used most frequently by the player, should be placed as near as
possible to the start of the string containing their keys.

In the first case, Basic will search the look-up table for the variables
and find them in the order in which they have been assigned. In the
second case, our string search subroutine will be satisfied earlier if the
match is found. This does not alter the maximum and minimum search
times, but speeds the game up overall, since the longer delays occur with
words that are seldom used. An optical illusion, if you like!

Another time user is the 'special condition' line. You will meet this in a
later chapter, but suffice to say here, that every such line must be
executed every time the player hits enter. Therefore, the fewer the better.
Here is the paradox. The 'special condition' lines are probably those that
add the most dramatic interest to the game. The time delay due to them
may detract from the pleasure of the player. In practice, you may find,
depending upon your machine, that these must be limited to an absolute
minimum. If this is the case, then you may have to alter your plot fairly
substantially. For it is basically the plot that determines how many of
these lines will be needed. If your response speed is good when all the
necessary special lines are in, then you may even try adding a few more
just for effect. But beware!

Once we get into the detail of programming we may not easily be able
to see the wood for the trees, so let us first have a look at the overall
structure of the program. We can then decide how we are going to assign
the line numbers and where we will put remarks, so that whilst in
progress, we can find our way around it.

There are a number of distinct tasks that the program has to carry out,
and we will refer to the coding for each task as a 'block' of code.

Block 1.
Laying out the ground for the program to operate in:

CLEAR string space. (where required to allow manipulation of
strings)

35

DEFine variable types. (string integer etc. where the particular
micro has the facility.)
DIMension arrays. (telling the computer how many elements there
will be in each array)

Block 2.
READ in DATA statements and/or directly assign variables.

Block3.
This is the start of the main program loop, and communication with the

player:
Check tor special conditions.
Clear Screen.
PRINT screen display.
Reset input/output variables to null.

Await INPUT.

Block4.
Interpret player's communication with the computer:

Decode verb and noun.
IF either are invalid singly or in combination set reply accordingly
and return to block 3.
ELSE GOTO block 5.

Blocks.
Execute the plot:

This block comprises a number of routines, one for each valid verb.
Each routine may alter game variables, and either sets a reply and
returns to block 3, or if the reply is a common one, goes to block 6.

Block 6.
Sets standard replies.

Block7.
DAT A statements for locations and objects.

The deeper you get into writing the program the more difficult it will
become to find/recognise the program lines and the purpose of each.
This will be especially true if you have no printer and must catch the lines
as they scroll up the screen. Another difficulty is that you may eventually
need to renumber the lines to squeeze in a previously unforseen bit of
logic. Then even the line numbers that you remembered will be lost!

Of course, a line printer will make life easier, but is not essential. We
will work on the assumption that one is not available. Here are some
guidelines for line numbering and REMarks that will make life easier.

36

The first rule is to number lines in increments of no less than 1 o. This
will leave plenty of gaps for insertions, reducing the likelihood of having to
renumber.

~ine nur:nbers m~st be planned in advance, and the whole program
sprinkled liberally with REMarks. Having split the proposed program up
into blocks of code, we can now lay down what line numbers will be used
in each block, and this is shown in Appendix 3.

You can see that the bulk of the program is contained in Block 5 where
the routines for each verb reside, whereas Block 1 is very short. Notice
th.at I have ~h_own each b.lo.ck having an upper line number limit ending
with 98. This 1s because 1t 1s a good plan to place REMarks on the line
immediately preceding the start of each block and/or routine. Thus
REMs for Block 5 would appear on lines 999, 1999, 2999 etc. When the
p~~gram has been completed you will want to delete these, both to avoid
giving too many clues to would-be cheats, and to speed execution. When
they're gone, the running of the program will not be affected if the
REMark is on the line PRECEDING the one it refers to and which is
pointed. to by a ~OTO_ or GOSUB statement. As a bonus.' deleting them
itself will be easier, since they will be recognised as having numbers
ending with a 9.

Refer to the full program listing for examples of the way I have
suggested treating REM statements, and notice how they are highlighted
~y .asterisks. ~hether you check your program on screen or hardcopy
listing, they will be much easier to find, and speed your job in correcting
and debugging the program.

37

38

CHAPTERS

Starting the program on any
• micro

Having written the DAT A statements, we can start the program proper,
but first a look at the kind of Basic we'll be using, and the points you may
need to bear in mind when entering the program or one similar into your
machine.

The demonstration game for this book was written on a TRS-80 Model
Ill. Although written in Disk Basic for that machine, no statements
specific to Disk Basic have been used, and so the program is effectively
Level II Basic. A number of statements in the program are redundant as
far as Level II is concerned, but have been included for maximum
compatibility with other machines.

As listed, the program should run without any modification on a TRS-
80 Model I, TRS-80 Model Ill, and Video Genie, with Level II or Model Ill
Basic, including their Disk Basics.

The TRS-80 has a 64-column screen, but providing you change the
number '61' in lines 310 and 4010 to a value equal to the column width of
your screen minus one, then no modifications to the text or displayable
variables will be needed for screens of width 32 columns or greater. If
your screen is narrower than that, then you have a choice of possible
modifications. You can suitably abbreviate the text; create additional
arrays, (e.g. a second line for the location text could be an array L 1 $,
which continues the overflow from array L$); or incorporate special
control characters or 'line feed' characters to force the displayed text to
move to the next line at appropriate positions in the text, to avoid text
overflowing from the end of the screen to the beginning of the next line in
mid-word. An alternative to using control characters is to pad the display
variables and text with blanks to the end of the line and continue the text
at a point where the next display line starts.

39

Below are the features used that may vary between machines, and
you should check these against your manual to . determine th~
conversions necessary. As most of them are used quite frequently, 1t
might pay to make a note of the alternatives. required on your machin~ for
ready reference during the course of following the program explanation.

The Spectrum, however, is a micro with a Basic all of its own. An error
message "Nonsense in Basic" may well occur for statements that work
perfectly well in other Basics! ~h~t is m~ant, of course, is "Nonsense.in
Sinclair Basic", and because this 1s so different, I have devoted a special
section at the end of this chapter to the Spectrum version of the
demonstration game. If you own a Spectrum, then whilst you may find
some of the general comments below are helpful, you should refer to the
Spectrum section before attempting to write the program.

LINE NUMBERS
The main listing uses line numbers in the range 0-65536. This range is
not enjoyed by all micros. For example, the BBC has a maximum line
number of 32767, whilst the Spectrum only allows up to 4 digits, i.e. 9999.
If your line number range is less than those used, I would suggest that in
converting this game, rather than completely renumbering the program,
you stick with the existing line numbers as far as possible, and renumber
the higher ones to fit recognisably below the maximum. That way you will
have fewer changes to make to other parts of the program, and the listing
will be more easily compared with the original. The BBC listing
demonstrates how I suggest tackling this problem.

IF/THEN/ELSE
The logic of the IF /THEN/ELSE construction used in the listing is worthy
of study so that it is understood thoroughly to enable you to convert the
program if the logic used by your Basic differs.

Where the condition following IF is true then subsequent statements
on the same line will be executed until an ELSE is encountered. If the
condition is false, then no more statements will be executed in that line
until after the ELSE statement. Another IF statement may follow an ELSE
or even an IF/THEN, and so on.

Care must be taken if your machine is a BBC micro, as funny things
happen if you try to next IF /THEN/ELSEs. Refer to the BBC listing where
these occur in the main listing, and you will see what must be avoided. If
your machine hasn't an ELSE statement conversion will be a little more
difficult. You will have to separate the ELSEs onto separate lines. For
example, to convert line 3000:

3000 IF K2%> 10 THEN GOTO 40070 ELSE IF P%(K2%)<>55
THEN GOTO 40070 ELSE LET IN%= IN%-1 : IF PN%= 7
THEN LET P%(K2%) = 88 : LET0$(2)="FELL .. MOAT" :
GOTO 100 ELSE LET P%(K2%)=PN% : GOTO 40020

40

Without the use of an ELSE statement, this line would translate into the
following series of lines:

3000 IF K2%> 10 THEN GOTO 40070
3001 IF P%(K2%) <>55 THEN GOTO 40070
3002 LET IN%= 1N%- 1: IF PN%= 7THEN LETP%(K2%)= 88 :

LET 0$(2)="FELL. MOAT'' : GOTO 100
3003 LET P%(K2%) = PN% : GOTO 40020

A situation to be aware of is where the statement before an ELSE does
not pass control to a line with a GOTO. In such cases, you may have to
repeat some of the conditions in the additional lines you write to maintain
the same logic.

STRING HANDLING
Some micros use a variation to the statements used here to manipulate
~tri_ngs. An explanation of how the terms used in the demonstration game
hstmg operate, should enable you to substitute the code applicable to
your particular micro, if different.

LEFT$(A$,B)

RIGHT$(A$,B)

MID$(A$,B,C)

returns a string containing the B leftmost
characters.of string A$.
e.g. If A$="ADVENTURE" and B= 3 then
LEFT$(A$,B) returns ADV
returns a string containing the B rightmost
characters of string A$.
e.g. In the above example
RIGHT$(A$,B) returns URE
returns a string containing C characters starting
from position B in string A$.
e.g. Using the same example where C= 4
MID$(A$,B,C) returns ENT.

The adding together of strings, or 'concatenation', is used frequently
throughout the program. The concatenation operator is '+', and when
this is applied to string variables and/or text, the characters are strung
together.

For example, if
A$="ADV" and B$="ENT" then
A$+ B$ +"URE" = ADVENTURE.

41

ON variable GOTO
The ON-GOTO statement is not enjoyed by all micros.

ON X GOTO 100,200,300
will pass control to line 100 if X= 1, line 200 if X= 2, and line 300 if X= 3
etc. Lack of ON-GOTO can be overcome by a series of IF statements:

IF X = 1 THEN GOTO 100
IF X = 2 THEN GOTO 200
IF X = 3 THEN GOTO 300

but this is not necessarily the most efficient way. If your micro has the
facility of a 'computed' GOTO, (i.e. ON variable GOTO variable/
computation), and the line numbers to be 'g?ne to' are, or can be
arranged in an arithmetic sequence, then use this feature.

PREDEFINED VARIABLES
If you have the benefit of being able to p~e-define variabl~ type.s •• then~~~
this facility, and throughout the following program omit all $ and Yo
signs. The string variables all begin with the lett~rs L, 0, a .. E', D_. V ?r W.
All the others are integer variables which are defined by the % sign in the
listing. Some machines do not provide a special integer pr~cision_. and
therefore do not recognise the % sign. Just leave them out 1f that is the
case.

If you can use the CLEAR and DEFSTR, DEFINT statements, then
your first lines should look like this:

2CLEAR500
4 DEFSTR D,E,L,0,Q,V,W: DEFINT 1-K,C,P,S

ASSIGNING VARIABLES
Some micros insist that a variable is assigned or initialised before it is
otherwise referred to. For example, if the variable C has not been
assigned an initial value, then the first reference to it cannot be in a
condition statement such as IF C = 3 THEN ...

This means that at the beginning of the program, all variables not given
a value either by direct assignment or by READing DATA, must be set.
You can safely do this by giving all such numeric variables a value of 0,
and string variables a null (LET X$=" ")value.

One micro exhibiting this anti-social tendency is the BBC, which will
give the notorious "No such variable" message if you fail to take the
above precautions.

42

ARRAY DIMENSIONS
Most computers allow arrays of up to dimension 1 Oto be used without the
need for a DIM statement. If this is true for your computer, then there is no
need for the arrays to be explicitly dimensioned. However, for the sake of
clarity, if the arrays are dimensioned at the outset, it will be easier later to
recognise which array variables are used.

Note that not all computers have a zero element to an array, in which
case you will have to dimension the arrays to 11. This will also mean that
you must renumber the tables you have drawn up. The row numbers will
now run from 1 to 11. All the numbers contained in the strings in the E$
and D$ columns in Table 1 should be increased by one, and the P%
column in Table 3 will require all numbers from Oto 1 Oto be increased by
one. Then when you encounter a FOR-NEXT loop that scans one of
these arrays, you will have to adjust the 'from' and 'to' values accordingly.
See the special notes on the Spectrum for more details about this.

We can now dimension the arrays we will be using. The location­
associated arrays all have the same number of elements as each other,
by design, as do the object-associated arrays. Purely by coincidence, the
number of objects is the same as the number of locations in the game we
are about to write, and so all arrays will have the same dimensions. There
are 11 elements in each, and not forgetting that the first element number
of an array is 0, all arrays will be dimensioned to 10.

We can write the DIM statements:
10 DIM L$(10), E$(10), D$(10), 0$(10), P%(10), C%(10), 0$(8) ,
V$(8)

and are then ready to read the data:
20 FOR 1%= 0 TO 10 : READ L$(1%),E$(1%),D$(1%) : NEXT 1% :
FOR 1%= 0 TO 10 : READ 0$(1%),P%(1%),C%(1%): NEXT 1%

If your micro is unable to READ DAT A, and you therefore did not enter
the DAT A statements, you can now directly assign the variables instead.
Use the line number range set aside for the DATA, and start thus:

50000 LET L$(0)= " 1N A SMALL ROOM" : LET E$(1)="": .. etc.
When all the array variables have been assigned in this way, at the end

add:
. . . . : RETURN

To assign the variables, line 20 will now read:
20 GOSUB 50000

There are a number of other variables that we will have to initialise at
the start of the game. The plot calls for the game to commence with the
player in location 0. The variable name we wfll give to hold the number of
the player's current location could be LN% for L(ocatio)N but to keep in
line with our convention that variable names beginning with L will be

43

strings, let us instead use PN% for P(ositio)N. By typing R~N to start !he
game, all numeric variables will normally be ~et to O~ so stnctl~ speaking
there is no need to assign PN%. However, since this game will act as a
model for others, and any location number may be chosen to commence,
it will be better not to omit assigning PN%. Start line 50, then with

50 LETPN%= 0

The inventory count IN% must also be initialised, and as we decided to
place the axe in the player's hand without telling him, the number of items
in his inventory at the start of the game will be 1. Add this fact to line 50,
which will now read :

50 LET PN%=0 : LET IN%= 1
Another value we might want to keep track of is a count of the number

of moves the player has made. So now add:
. .. . :LETCT%=0

Somehow we will have to keep a list of the words that the computer will
recognise in the game. In order to simplify word searching, and to reduce
the amount of memory needed to store all the valid words, it is convenient
to use only the first few letters of each word. In this case we will use the
first three letters of each word; had we been using a very large number of
words, then we might have had to extend this to four letters in order to
ensure that each word was uniquely abbreviated.

The valid words can conveniently be classified into two groups, first
words and second words of the player's input. In general, the first group
will consist of verbs, the second, nouns. Considering the verbs that will
be required, there are some that come immediately to mind; TAKE,
DROP, LOOK, to mention a few. Our 'Word- Verb' string can thus be
written :

60 LET WV$=''TAKDROLOO"

Never mind that we haven't determined the full list at this stage, we will
find it quite convenient to add to the list as we go.

The noun recognition string WN$ (Word - Noun), should start off with
the first three letters of all the objects in array 0$ in the order in which they
appear in the array. When I say 'objects' I mean the object noun rather
than its adjective. For example, when referring to the Rolled Umbrella the
player will most likely type "TAKE UMBRELLA" rather than "TAKE
ROLLED" , so in this case the recognition letters will be UMB. There are a
few nouns that are not contained in the object list, the word TRUNK for
example, plus ones that are really directions, direct ones like NORTH,
and implied directions such as FOREST. The 'nouns' can thus be split
into two sub-groups. Similarly with the 'non-direction' second-input
words. LOOK AROUND is a useful response, we will need to recognise
!RUNK when the tree has been chopped down, and CUPBOARD which
is an object that is described in the location description when discovered.

44

Other words which are not objects but are used in the game spring to
mind, such as CASTLE, DOWN (as in LOOK DOWN), and MOAT. There
may be more which we will find are needed later, but let us start off with
the ones that have sprung to mind:

80 LET WN$= "AROTRUCUPCASDOWMOA"
To check the validity of exit words, we can set up a string holding the

first three letters of the response words valid after the word GO. We will
call this string WG$ (Word - Go), and it will contain the first 3 letters of
each exit in column 1 of Table 2:

70 LET WG$="NORSOUEASWESUP DOW
OUTDOOSTALADENTCOTROPTRE"

Note that a blank has been inserted after UP to make up the
recognition length of three.

Next we will set up string of the exit codes, WD$ (Word - Direction),
consisting of the entries in column 2 of table 2:

80 LET WD$="NSEWUDOAFGBCHJ"

I! you now compare the string WG$ and WO$, you will see that there is
a d1re~t relationship betwe~_n th_e start position of any 3-letter recognition
gr~up in WG$ and the pos1!1on its 1-letter code in WO$. We will be using
this fact as the key to changing the player's location. This relationship is:

Code position in WO$ =
(((Substring start position in WG$) - 1) I 3) + 1

SPECIAL FEATURES OF THE SPECTRUM
LINE NUMBERING
The maximum line number available on the Spectrum is 9999. In the
Spectru~ listin~ in Appendi~ 4, the same line numbers (subject to
conversion requir~ments) as 1n th_e basic listing have been used up to
540. From that point, the verb routines start at line 600 in increments of
100 for each routine, instead of 1000 as in the original. '

VARIABLE NAMES
Stri_ng _v~riable names consist of only one character, and so those in the
main listing using more than one character, must be changed. The new
names used in the Spectrum listing are as follows:

Original Spectrum
EX$ G$
OS$ S$
WV$ V$
WG$ F$
WO$ T$
WN$ Z$

45

A1$ H$
A2$ 1$
A3$ J$
A4$ K$

This means that the previously mentioned convention relating t.o
variable names and types, for compatibility ~it~ predefin~g the type~ •. is
broken. This does not matter, since predefining types 1s not a facility
available on the Spectrum.

ARRAY SUBSCRIPTS
Array subscripts start from 1 and not 0. Therefore, all arrays must be
dimensioned to 1 greater than in the main listing. This means that a value
of 1 must be added to variables used as pointers to elements of an ~rray .
In the Spectrum listing, for example, line 290 makes reference to p(1 + 1)
instead of p(i).

STRING ARRA VS
Spectrum string arrays have elements of f~xed length. !he le.ngth is tated
as a second subscript- the array is effectively a two d1mens1onal array.

In dimensioning the aray, then, the second subscript .is t~e len~th of
the string. In line 1 O of the Spectrum listing then, 0$ 1s d1mens1o~ed
0$(11 ,32), giving it elements 1 to 11, all of length 3~._ When the s.tnng
data, which must be enclosed in quotes, is read, trailing blanks will be
added to strings whose text is less than 32, to make up the length.

Therefore the LEN of any string array element will always be the same,
and LEN cannot effectively be used. Since we need to know the length of
the actual text of each object, so that when printed, these trailing blanks
don't leave long gaps between successive words, I have added an e~ra
numeric array n(11), which contains the text leng~hs. of the resp~ct1v_e
elements of 0$. Where, in the program, the description of an obiect is
changed, (e.g. 'Rolled umbrella' to 'Open umbrella'), you will notice that
the value for the same element in array n is also changed, to reflect the
length of the new text.

STRING HANDLING
Once again the Spectrum has its very own methods! There are .no
LEFT$, MID$, and RIGHT$ expressions on the Spectrum. Instead, string
manipulation is done by 'string slicing'.

The part of an element of a string array that is required is given by (a
TO b) where a is the start position of the sub-string, and b is the end
position of the substring. This information is written alongside the
variable name.

Therefore if X$ (3) = "ADVENTURE" , then the three leftmost letters
are returned to Y$ by:

LET Y$ = X$(3) (1 TO 3)

46

The two rightmost letters are returned to Y$ by:
LET Y$ = X$(3) (8 TO 9)

and the letters VENT returned to Y$ by:
LET Y$ = X$(3) (3 TO 7)

Now had the array X$ been of length 15 instead of length 9, element 3
would have been "ADVENTURE ". To get the last three letters of
text, we would have used the same expression as above. However, to
obtain these last three letters for any element, we need to know the text
length. This is where array n comes in! To obtain the three rightmost
letters in Y$ we can now say:

LET Y$ = X$(3) (n(3)-2 TO n(3))
More importantly, when displaying a list of objects along one line of print,
we can obtain the whole word without trailing blanks by:

LET Y$ = X$(3) (1 TO n(3))

FOR/NEXT LOOPS
Note that the loop variable must be stated after NEXT, e.g. FOR I = 1 TO
11 : LET L$(1)=" " :NEXT I

VALUE OF STRINGS
The Spectrum's VAL function will cause execution of the program to
stop, and display the message "Nonsense in Basic" if used for the value
of a string containing a character following a digit. (The message should
read "Nonsense in Sinclair Basic".) This presents a problem in the
destination strings in array D$. All is not lost, as a blank, or space, is
ignored, and will give the required result. So it is necessary to replace the
asterisks in destination strings with blanks.

47

48

CHAPTER9

Interpreting the Player's
Input

INPUT A$. The player is asked for his next command. Difficult for him,
obviously, because we haven't yet given him any display or output on
which he may base a decision. However we must start the programming
somewhere, and before it can display anything, the computer will need to
'understand' what it's been told. So first we will cover the section that
follows INPUT. This section will be common to all games using the
programming method, so when you have understood and entered it into
the computer, it may be worth your while saving the lines described for
later use.

Once we have determined how to simplify what the player is saying
into numeric terms, the rest, hopefully, will fall into place relatively easily.

We have already established that we are going to use the first three
letters only of each word of the player's input. This input may consist of
either one or two words, the one-word response being reserved for a few
special commands- QUIT SCORE HELP INVENTORY. First, then, we
must split A$, the player's whole input, into two words. This can be
achieved in the following way:

410 LET J%=0 FOR 1%= 1 TO LEN(A$) IF
MID$(A$,1%,1)=""
THEN LET J%= 1%

420 NEXT : IF J%= 0 THEN GOTO 40110

This looks for the space between the two words, and if one is not found,
the result will be a value in J% of zero, and control will pass to line 40110.
The latter line can now be written:

40110 LET 0$(2)="HUH?": GOTO 100

49

The valid single word commands, which will be limited in number, can
be picked out before this line, so that anything remaining must contain a
space to be valid. Line 420 will give to J% a value equal to the position of
the space contained in the input string A$. So now we can split A$ into
two complete words using the value in J%:

420 NEXT : LET A1$=LEFT$(A$,J%-1) :
LET A3$=RIGHT$(A$,LEN(A$) - J%)

We now have the two words, A 1 $ is the first word, A3$ is the second.
To arrive at the first three letters of each is now easy using LEFT$. But
where we place this can make a difference to the apparent response
time. Also, we have still to cover the valid single word commands.

Going back a little to explain the use of 0$(2) in line 4011 O, we will use
elements of the array 0$ to contain the reply from the computer to the
player. The reason for doing this will be further explained in the section
on screen presentation. Some of these replies will be individual to a
particular command, but some will be replies that will cover a number of
situations. These, I call "standard replies" and use the line range starting
at 40000. Since we may well have further situations that call for the reply
"HUH?", we will set it up as a standard reply. We can get hold of the first
three letters of the first word without looking for a space. So let us go back
a line or two:

400 LET A2$=LEFT$(A$,3)
will sort that one out. But supposing the player mistypes, or is just plain
awkward, and only types in two letters? We will be staring an illegal
function call error straight in the face, as the program breaks and we go
into the READY mode. We must make this foolproof against idiots and
fiends! So for good measure, let's rewrite line 400 to cater for just that
eventuality:

400 IF LEN(A$) < 3 THEN 40000 ELSE LET
A2$= LEFT$(A$,3)

We have got rid of the problem to line 40000, which can be another
standard reply:

40000 LET 0$(2)="1MPOSSIBLE!": GOTO 100

Now we can sieve out our valid single-word responses. As these are
fairly frequently used commands, we can afford to despatch them
straight away to speed things up:

405 IF A2$="1NV" THEN GOTO 4000 ELSE IF A2$="SCO" THEN
GOTO 5000 ELSE IF A2$="HEL" THEN GOTO 6000 ELSE IF
A2$= "0UI" THEN GOTO 7000 ELSE IF A2$="JUM" THEN
GOTO**** ELSE IF A2$="SWI" THEN GOTO****

50

What we have done here is to cover all the one-word commands,
Inventory, Score, Help, Quit, Jump and Swing. Having laid down our line
numbering plan, we know the verb routines run from lines 1000-29998,
and we shall start the routine for each verb on line numbers in increments
of 1000. The most important and frequently used verbs are GO, TAKE
and DROP, and as such we should place them before other verb
routines, to reduce the time Basic takes to scan the program for the
GOTO line. If we start each routine on line increments of 1000, then our
next available start is 4000. Thus the Inventory routine will start at 4000,
Score at 5000, etc. When we get to the end of the list of 'common'
commands, we come to the verbs JUMP and SWING. These are
intertwined in the depths of the plot, and it will pay us to write those lines
in as we write each verb routine. If this sounds complicated, don't worry
about it for the time being, suffice to say that we won't commit ourselves
to the line number at which each of these routines will commence. To
remind us that they are still to be written, we'll use asterisks in place of
those numbers for now. We will surely not be able to forget about those
words, for we have a syntax error sitting there waiting to remind us!

The next move is to check the verb to see if it is valid. However, since
the most frequently used verb is likely to be GO, to save the scan time of
the verb string, we can make GO a special case and deal with it first.

430 IF A$="GO" THEN GOTO 1000
and of course:

999 REM ***** GO *****

Having thus despatched GO to line 1000, we can conveniently forget
about it for the time being.

The rest of the verbs can take their place in the string search, a
subroutine that is the heart of the whole program. First we must search
the string WV$ to see if it contains the first three letters of the verb
entered by the player, i.e. A2$. Then we will have to search forthe noun.

Let us find a spot to tuck this subroutine away. A look at our line­
number plan suggests that 35000 might be a suitable line number, so we
will start there.

34999 REM ***** STRING SEARCH SUBROUTINE *****

Since we are using a subroutine here we will have to ensure that all
calls to it will have the same variable names for the search string and the
string to be searched. We will call the string to be searched X$, and the
string we are looking for Y$.

35000 FOR 1%= 1 TO LEN(X$) : IF Y$= MID$(X$,1%,LEN(Y$))
THEN LET J%=1% : LET 1%= LEN(X$)

35010 NEXT: RETURN

51

This little subroutine will now start searching string X$, starting at the
first character. (Note that we started the loop ~t 1%= 1 rather than l~o:=O
which would have given us an error as there 1s no character at pos1t1on
zero of a string.) As we are going to use different strings as X$, i.e. the
variables we have already set containing the recognition letters of the
valid words, we have used LEN(X$) for the end of the loop, since its
length will vary. The subroutine goes character by character down th~
string X$, looking for a set of letters of length LEN(Y$) that match Y$. If 1t
finds one, the position of the beginning of the group of letters that mat~h
Y$ in the string X$, is assigned to variable J% and the FOR-NEXT loop 1s
exited legally by equ·ating 1% to its end value. When the search is
complete, the subroutine returns control to the main program which then
uses the numeric information returned in the variable J% to identify the
found word.

This is all very well, but there are three weaknesses. Firstly, we are
checking every set of three letters, so that if the string X$ was ABCDEF,
although we would only be looking to see if either ABC or DEF were
present; in fact we would also be checking BCD and CDE. There is thus
some ambiguity here, and with a bit of bad luck, a verb could be returned
as valid when it should not be. Also, by checking unnecessarily the
intermediate combinations precious time is being wasted. So we can
dispense with these two problems by simply amending the loop:

35000 FOR 1%= 1 TO LEN(X$) STEP LEN(Y$) :
By adding the STEP we have eliminated the difficulties and speeded

things up for every search except an input of the first valid word in the
target string.

The interpretation will rely on J% being returned as O if the verb is not
found. As things stand, it will remain at the value to which it was last set
unless it is initially set to zero. Once again we must modify the line:

35000 LET J%=0 : FOR 1%= 1 TO LEN(... .
and we are there!

A word here about INSTR. This is a feature of some Basics, and
provides a built-in string search facility.

For example, LET J%=1NSTR(1,X$,Y$) would return in J% the start
position of string Y$ in string X$, searching string X$ starting at position
1. J% would have a value of 0 if the substring was not found. If this feature
is available in your Basic, then it could be used in place of the subroutine
developed above, but its use brings with it some complications. A
problem arises if the player types in 'rubbish' which happens to
correspond to a combination of letters across word boundaries, since
INSTR will search from every position, not just in jumps of length Y$. The
only way to ensure the value returned in J% is correct to insert a foreign
character to separate the groups in the string, e.g. :

LETWV$="TAK*DRO*LOO* . . etc

52

A shifted character is ideal as it is less likely to be accidentally keyed by
the player. If you do use this method, you will have to modify the line that
detects the sequence number of the valid word.

Alternatively, you can insist that a valid value in J% is a multiple of the
length of the string being searched for, plus 1

Now we can return to the place at which we left the main program and
call the subroutine. First we need to check the valid verb string WV$ to
see if A2$, the first three letters of the player's verb, is present. So WV$
must be named as X$, the variable searched in the subroutine, and A2$
as Y$, the variable searched for.

440 LET X$=WV$: LET Y$=A2$: GOSUB 35000
If A2$ isn't found in WV$, then J% will be returned from the subroutine

as zero, and this means that the verb isn't 'known'. Therefore we can add
at the end of this line:

440 . . GOSUB 35000 : IF J%=0 THEN LET 0$(2)="1 DON'T
KNOW HOW TO "+A1$: GOTO 100 ELSE LET
K1%=(J%-1)/3+1

If the verb isn't known, the reply variable 0$(2) will say as much, and
execution returns to the start of the main program loop at line 100. Note
that here we are using the • +' sign indicating the concatenation or
stringing together of the text within the quotes plus the whole of the first
word of the player's input, A 1 $. The ELSE will be executed if the IF
statement is false, that is, if J% is not equal to zero, and the verb is a
'known' verb. At this stage, for the benefit of those without an ELSE
statement, let us look at those lines re-written:

440 LET X$=WV$: LET Y$=A2$: GOSUB 35000:
IF J%=0THEN LET0$(2)="1 " + A1$: GOTO 100

445 LET K1%=(J%-1) I 3 + 1
450 as before ...

You will see that it has been necessary to introduce a new line, 445,
which illustrates the advantage of leaving spare numbers between lines!
The statement following ELSE in the original line 440 has simply been
placed on the new line, which will only be executed when the IF test in line
440 fails, causing the rest of that line - now minus an ELSE statement,
to be ignored.

Thus if J% is returned to the program not equal to zero, we will need to
find its position in terms of the word recognition groups from the start of
the string WV$. At present we have only it's actual character position in
the string. With a little arithmetic juggling, we can make K1 % the value we
need, and use J% again in our next . search. The equation
K1%=(J%-1)/3+1 may look strange, but try picking a couple of
positions in the string WV$ which may be returned from the subroutine,
(1, 4, 7 etc.), and you will see that it gives the number we need!

53

Our next task is to find a value for K2%, the number assigned to the
noun or second word. Simple! Just do as we did with the verb. We have
already saved ourselves the trouble of searching for the noun if the verb
isn't valid, by passing back a message to avoid searching further. We
know that the verb is good, so -

450 LET X$=WN$: LET Y$=A4$: GOSUB 35000
and off we go on the search again! As it's a noun, this time if it can't be
found the message will be slightly different:

460 IF J%= 0 THEN LET Q$(2)= "WHAT IS A "+A3$+ "?" :
GOTO 100

and now the player will really begin to think that the machine understands
English, even though it's vocabulary is somewhat limited! Back to our
juggling act, this time using K2% as the noun number:

470 LET K2%=(J%- 1)/3

You will notice that the computations for arriving at values for K 1 % and
K2%are:

K1%=(J%-1)/3+1
K2% = (J% - 1) I 3

K1% has been given a value one greater than K2% relative to the
position of the word it represents in the string searched. You can see that
the range of possible values for K1 % starts from 1 whilst that for K2%
starts from zero. There is a good reason for this.

K2% represents a noun. The first nouns in the string WN$ being
searched represent objects in the object array, which are numbered from
zero according to their subscript numbers in the array 0$. Thus we can
use the value of K2% directly with the object-associated arrays.

K1 % on the other hand, holds a number representing a verb. Verbs are
present only in the string WV$, and so there is no need to associate them
with any array subscript numbers. More importantly we will be writing a
routine specific to each verb, and the value contained in K 1 % will be used
to direct execution of the program to the appropriate routine. We will
achieve this by means of an ON K1 % GOTO ... statement. This
statement will not permit a value of zero in K1%. Therefore we have
increased the value of K1% by 1, ensuring that no zero values appear.

It is worth mentioning that any reader whose computer has array
elements starting from 1 and not zero, would have to add 1 to the value of
K2% as well as to K1%.

Thus we have found two good words. They may be nonsense used
together - that we shall sort out later - but at least we know they are
both valid words.

54

Since the verb is 'known', we now have a limited number of
possibilities to deal with, and can go sailing off to a routine dealing
specifically with the verb entered:

490 ON K1% GOTO 2000,3000, ..
So far we have decoded nouns as distinct from directions. A direction

will only be valid following a verb that requests movement from one
location ~o another, so we will treat directions in a slightly different way,
as you will see shortly.

55

56

CHAPTER10

On the move

The verb GO as used in an Adventure is in a different category from most
of the others. In the example game here, it is unique. This is because GO
alone (in this game) requests movement of the player from one location
to another. The single words SWING and JUMP will do this in certain
circumstances, but they have been isolated as single word commands. It
is only the word GO in combination with a direction, that changes the
value of PN% (the player's current location number).

Of course, it is quite likely that other moving verbs are desirable, such
as SWIM, CLIMB, RUN etc., but for simplicity I have used only GO for our
game; the same principle can easily be expanded to cover other words.

We left the word following GO out of our string search of nouns. This
was done purposely because GO implies that it will be followed by a
direction as distinct from an object-type noun. We thoughtfully placed the
valid directions in a string of their own, separated from the common or
garden nouns. By doing this, we have ended up with two short strings to
search, WG$ and WN$ (see Chapter 8), rather than one long combined
string. Once the verb has been decoded, we can direct the string search
to one or other of these two strings, and will never need to search both,
for if GO is detected we know we must be looking only for an exit, and
must search WG$, not WN$. Thus the maximum length of the string
search is reduced.

As all direction words will follow GO the searching of the 'direction
noun' string can be carried out in the GO verb routine rather than in the
main program. So line 1000 will read:

1000 LET X$=WG$: LET Y$=A4$: GOSUB 35000

57

This time if zero is returned in J%, we will make use of a standard reply
in the 40000 range:

1000 .. . : IF J%= 0 THEN GOTO 40010 ELSE LET
X$=E$(PN%) : LET Y$= MID$(WD$,(J%- 1)/3+ 1,1)
GOSUB35000

40010 LET 0$(2)= "1 CAN'T GO " +A3$: GOTO 100
But what's this second search of E$ all about? If you cast your mind

back, you will remember the exit codes were listed in Table 2. Having
searched and found a valid exit word, we must check to see if it is a legal
exit from the player's current location. We can find the code for the exit in
WD$, in the same relative position as the 3-letter exit word group in WG$.
So using MID$, we now take the exit code character corresponding to the
exit number returned from the search of WG$, and search for its
occurrence in the exit code string for the current location, E$(PN%). That
position is given by (J%- 1)/3+1, (our old friend!) , and hence the
expression following MID$ with which we are endowing our faithful Y$.

The search is now on for a string of length 1, and you can see why the
subroutine was made able to handle a substring of any length. An
all-purpose tool!

Again, if J%=0 the same message applies as it did if the exit wasn't
recognised at all, so off we go to 4001 O (we have used it twice, which was
why we put it there rather than repeat it locally!)

1000 .. IF J%=0 THEN GOTO 40010 ELSE
LET PN%=VAL(MID$(D$(PN%),(J%- 1)*2+1,2): GOTO
40020

40020 LETQ$(2)="0K" : GOTO 100
If the exit found was legal for the current location, then we must take

that exit and place the player in a new location. If you look at the way that
the strings have been structured you can see that the location numbers in
the string D$(PN%) are arranged in positions corresponding to those of
the legal exits in E$. Since location numbers can consist of up to two
digits, (being spaced one position apart for single digits) we must multiply
the relative position of the exit code in its string by 2 to find the
corresponding destination, i.e. the new location. The expression in
Appendix 8 is thus incorporated in line 1000, where J% now represents
the position in E$.

Having found this location number, remember that it is in string
form. The location numbers themselves are held in numeric form,
so we must apply the VAL function to the string found, to obtain a
numeric value. This we can assign as the new value of PN%, the
player's current location after moving. For this reason, the single
digit location numbers were 'padded' with asterisks to the right of
the numbers, as the VAL function will usually return a value of zero
from a string containing a leading non-numeric character. If
unfamiliar with the VAL function, it may be worth checking the way it
operates on your computer to ensure you get the intended result.

58

Thus, the player's location is changed, a standard reply 'OK' is set in
li~e 40020, and when the computer responds to the player's co,;,mand it
will reveal the details of the new location, L$(PN%).

T~at is all there is to interpreting the player's input. The driving force
behind what, to the player, seems like the computer's ability to hold a
conversation our little subroutine at line 35000, and the rest a little
~rit.hmetic juggling with the value returned acting upon the data we typed
1n nght at the start.

59

60

CHAPTER 11

Screen presentation

So far we have been unable to test the programming we have already
completed because we have written nothing that will display any
information. We have now enough material on which to work to enable us
to decide how to lay out the screen, and how we will effect the display.

Let us consider what information the player will need presented to him.
He will need a description of his location, what objects are contained at
that locality, and possibly the exits- or some of them - leading from it.
He will obviously need to know the computer's reply to his most recent
command, and he may quite often become so involved that he forgets
what his last command was. It will therefore be an advantage to ensure
this is also shown on the screen.

The simplest way to achieve this is to use the normal scroll mode of the
screen. The advantage of this method is that quite a number of previous
commands and replies will remain on the screen before disappearing off
the top. A disadvantage is that the details of the location will also
disappear. This can be overcome by a LOOK command, to cause the
redisplay of L$(PN%), but it does require the player to use this command
fairly frequently as an aide-memoire. Since one can normally see one's
surroundings in real life, the player may feel that he is playing 'blind'.

Another method is to use a "whole screen" approach, whereby the
screen is cleared and redisplayed after each command. By this means,
the location can be re-displayed each time around, and the screen can
have a tidier look- the way the information is set out can be controlled to
a greater extent. The disadvantage is the loss of the player's commands,
but this can be alleviated by using the variable A$, and redisplaying it.

A third method is a combination of both - a fixed display at the top of
the screen, and a scrolling section below it, displaying the conversation
between player and computer. This is the well-known split-screen

61

method adopted by Scott Adams, and results in a very clear and
recognisable presentation of information, combining as it does the best
features of the two methods described above. Unfortunately, to perform
this in Basic usually results in a rather slow and jerky display. It is best to
use machine code if attempting this feat!

Since we are restricted to Basic, my own choice of method is the
second one described, and that is the one we will adopt. We must now
examine how we can best produce this display, and see if we can lay it
out in a way approaching that used with a split screen.

The first task will be to clear the screen, and then to display the player's
current location. The location descriptions held in array L$ are phrased in
such a way that they can all be prefaced by the words "I AM" :

330 CLS : PRINT:"I AM ";L$(PN%)
Note the space between the Mand the quotes. By not incorporating "I

AM " in the variable we save space, since it appears only once as a
PRINT statement, instead of in every location description variable.

Next, we will print some exits. We won't print them all, so that the player
has to do a bit of guessing. The ones we will print will just be the
straightforward ones, North, South, East, West, Up, Down and Out. For
the exits we look to the exits string E$(PN%) associated with the location
L$(PN%). We could write the program like this:

340 PRINT "SOME EXITS ARE :";: FOR 1%=1 TO
LEN(E$(PN%))

350 IF MID$(E$(PN%),1%, 1)="N" THEN PRINT "NORTH.";
360 IF MID$(E$(PN%),1%, 1)="S" THEN PRINT "SOUTH.";

etc., but we won't. Before we discuss why, let us go on to consider the
visible objects.

To print a list of the objects that are visible, we need to examine the
value of each element in the array P%, and print only those whose value
is equal to PN%. So we could write the code to do this as follows:

410 PRINT"I CAN SEE:";: FOR 1%=0TO 10
420 IF P%(1%)=PN% THEN PRINT 0$(1%);".";
430 NEXTI%

but we won't do that either!
There are two difficulties that present themselves. Firstly, when

scanning the strings and checking the results with IF tests, those that are
true will occur at random intervals in the search. The information will be
displayed as it is found. Unless the Basic interpreter is particularly fast,
this method of printing will tend to lead to a jerkiness in the display,
particularly if the object list is long. The computer will look as if, having
found one value to print, it is now having to think hard to find the next one.
That is, of course, precisely what it is doing, but it makes the computer
look indecisive, giving the player an uneasy feeling that the program is
about to crash. Far better for the computer to gather all the information it

62

has to display together, and put it out on the screen in one go. It is easier
on both the eyes and the nerves of the player.

The second problem is one of screen width. There is no knowing how
many objects may be present simultaneously in one location. Some silly
fool of a player might decide to collect everything he possibly can, and
dump it all in a central spot. The chances then are that the list of objects
when printed, will exceed the width of the screen - even if 80 columns!
To control the wrap-around, so that the break occurs between whole
words, is extremely cumbersome with the method described above. We
can alleviate it by displaying the message "I CAN SEE :" on a separate
line, giving us 11 more columns for the object list, but that is unlikely to be
a complete cure for the problem. If each object is displayed on a separate
line we will be scrolling the location description off the top pretty soon -
not an answer either!

So the method we will use is to set up variables containing the objects
and exits. We can more easily control their lengths, and can also display
them quickly once they are assigned, eliminating any jerkiness in the
response.

We will go one step further, and gather up all the display information
into variables before we even clear the screen. Thus, the player will not
be staring at a blank screen, and he is less likely to wonder if anything is
ever going to happen. When it does it will be fast and smooth.

Back to the drawing board with the exits then! We will set up a variable
EX$ which will contain all the valid exits strung together:

200 FOR 1%=1 TO LEN(E$(PN%))
210 IF MID$(E$(PN%),1%,1)="N" THEN LET

EX$=EX$+"NORTH. "etc ... (see full listing)
280 NEXTI%

This method is satisfactory in the demonstration game for screens of
32 column width upwards. If your screen is less than 32 columns, then
you can either reduce the number of displayable exits, or adopt a method
similar to the following, used to set the display variables for the visible
objects.

Objects present a more difficult problem, as the number and range
present at any location is determined by the player, who can cart them
about willy nilly. Let us take it line by line:

290 LET 11%=0: FOR 1%=0 TO 10: IF P%(1%)=PN% THEN
LET OS$=0$(1%) ELSE NEXT 1% : GOTO 330

Here, we are scanning the object location array 0$, and if an object is
found in the current location PN%, its description is copied in to variable
OS$ (Object Seen). If that happens, the NEXT 1% and GOTO 330 is
ignored, and control passes to the next line, otherwise the scan is
continued. The variable 11% will be used shortly, and it is initialised before
the FOR-NEXT loop is entered.

63

Having found an object that is present in PN%, we put it into a member
of the array V$ (Visible), whose length we can control :

310 IF LEN(V$(11%)) + LEN(OS$)< 61 THEN
LET V$(11%)= V$(11%)+ 0S$+".": LET OS$="" ELSE
LET 11%= 11%+ 1 : GOTO 310

We are now using the array V$ to build up a series of objects
descriptions. Each element of this array will have a length no greater than
(width of screen - 3) to allow a full stop and space to be tacked on to the
end without scrolling to the next line occurring. In this case the screen is
64 columns, so the figure of 61 has been used. This figure should be
changed to suit the width of your own screen. Every time OS$ is set by an
object present in location PN%, the potential length of V$(0) with the new
OS$ added is tested against (width-3). If it is less than (width-3)then
OS$ is added to the end of V$(0) and a full stop and space added. OS$ is
made null, and then control passes to the next line:

320 NEXTI%
to continue the scan of objects. If the proposed length of V$(0) is too
great, and the test fails, the ELSE part of the line executes and instead of
tacking OS$ to the end of V$(0), 11% is increased by 1, and control sent
back to the beginning of the line. The test is now made against V$(1),
which of course has no length yet, and thus starts to build up a list of more
objects. And so on.

The original FOR-NEXT loop is continued in line 320, repeating the
search until the object array is exhausted, when control passes to line
330 from 290. If the search ends in line 320, then of course, there is no
need for the GOTO 330, as 330 is the next line in sequence.

The dimensioning of the array V$ must be reckoned by calculating how
many objects may possibly be dropped in any one location, and working
out how many elements of V$ these would require. Remember when
making this calculation, that the objects will be added into an element of
V$ in the order in which they appear in the object array 0$. The
dimension of 8 is far greater than the requirements for this game for a 64
column screen, and should be ample for the narrowest screen used.

All these manipulations with strings tend to use up string space, and
the more objects and exits displayed in a given location, the more string
space will be used. When we come to the actual display, we may well find
that string space is so short that there is a hiccup in the display whilst the
computer sorts itself out. Alternatively, we may run out of string space
altogether, with the result that execution stops with an 'out of string
space' error. In either case, more string space will have to be cleared. In a
~arge. game, memory restrictions may make this difficult, in which case a
JUgghng act must be performed to see how much string space can be
cleared without resulting in an 'out of memory' error. The more string
sp~c.e that can be cleared, the faster, on the whole, the program will run,
so it is adviseable to grab hold of as much as you can.

64

The dimensioning of V$ can be reduced below its true requirement by
setting the final element to say "AND MANY OTHER THINGS" if too
many objects to be accomodated are dropped at any given location. This
is most likely to occur at the location designated as the treasure store
(assuming that there are a number of treasures in the game). Since the
objective of the game will be to drop these treasures at the location, the
last thing we really want is for other objects to be dropped here as well . If
this l~ation proves a problem to you, you may like to try preventing
anything except treasures being dropped at the treasure store, and we
will come back to that subject when we cover the verb DROP.

Now for the crunch! We can start to display things:
330 CLS : PRINT" I AM " ;L$(PN%) : PRINT : PRINT"SOME

EXITS ARE :" : PRINT EX$
340 PRINT"I CAN SEE :" : FOR 1%= 0 TO 8 : IF V$(1%)<>""

THEN PRINT V$(1%)
350 NEXTI%

We now have the conversation between the player and the computer
to consider. We have already set some computer replies in elements of
the array 0$. We will treat that array in a similar way to the V$ array, and
print only the non-null elements. First we will display the command to
which 0$ is the response. We have that command in the variable A$
which was set with the player's input, and so we can print the command
and reply, and await input:

360 PRINT A$: FOR 1%= 1 TO 3 : IF 0$(1%)<>"" THEN
PRINT 0$(1%)

370 NEXTI%
380 INPUTA$

This won't do as it stands. We must tell the player what the information
is all about, and set it out on the screen in an attractive way. We could
start off by printing a complete line under the list of objects, to separate
that from the conversation and give the appearance of a split screen. But
let us not try to simulate something that we're not actually doing; instead
we will make it obvious that each display is new, and make it as easy to
follow and as pleasing on the eye as possible.

First we'll provide a degree of separation between the object list and
the conversation by leaving a line blank. All that we need to do here is
insert a straight PRINT statement. Then we will add to that separation by
printing a short line leading to some words explaining to what A$, when
displayed, refers:

360 PRINT : PRINT "~vou SAID ";A$:
FOR 1%= 1 T03 :

etc. The replies will print as shown in the first version of line 360, whilst we
can ask for input in line 380 using another short line, thus providing a
boundary at each end of the conversational part of the text:

65

380 PRINT"~WHAT NOW ";INPUT A$
Depending upon the number of lines displayable on your screen, and the
length and number of the location descriptions, exits and objects that
must be displayed, you may find a more pleasing appearance is obtained
by inserting a few more PRINT statements between lines, to spread it all
out a bit. I have done this, as you can see in the full listing.

A most important point to remember now, is that when we set the
display variables, we assumed they were null to start with - in fact we
relied on this, because if null, they were not printed. So we must at some
stage set these to null, before the next time around as it were. We can
be a little cunning here! Setting all these variables to null will take time­
not really noticeable in isolation, but we still have a lot more to get
through, and it all adds up! The time delay that the player will notice
occurs between his pressing ENTER, and the screen clearing to
redisplay. For at least half a second following the new display, our player
is going to be checking what he now sees before starting to type input.
This is the place to null our variables - after the display and before the
input. Providing it doesn't take so long that he is typing away without any
effect, now having received the prompt, the player will never notice the
short delay! So we will amend line 380 by removing the input request:

380 PRINT''~WHAT NOW";
and do the necessary instead in line 390:

390 FOR 1%=0 TO 8 : LET V$(1%)="" : LET 0$(1%)="" :
NEXT 1%: LET A$="" : LET A1$="": LET A2$="": LET
A3$="" : LET A4$="" : LET EX$="" : INPUT A$

and while he quietly reads the displayed messages, the computer will be
toiling away in the background setting the stage for the next command!

Having finally got it all on the screen, at the start of the game, it should
now look as shown in Appendix 9. This is almost the moment when we
can start testing our progress so far, to see if it works as planned!

66

CHAPTER12

Let's GO!!

Now that we have managed to put something out onto the screen, we can
test our progress so far. Run the program, and you should find that you
can move about, as we have already covered the verb GO. You can't? Of
course not, we have got to pull that damned wallpaper off to get out of the
first room! Well, at least it proved that part of the game works! It's just as
well the attempt at leaving the room was thwarted, as we have not yet
written line 100, the start of the program cycle. As we haven't got to the
stage of deciding exactly what to put in line 100, in order to avoid an
Undefined Line error, we had best insert a REM to keep us going for the
moment:

100 REM***** FIRST LINE OF MAIN LOOP GOES HERE*****
and since this will be replaced eventually by something more useful, a
more permanent REMark should be placed on line 99:

99 REM ***** ST ART OF MAIN PROGRAM LOOP *****

We now have a choice between proceeding with yet more
programming to let us out of the room, and taking a short cut by
temporarily changing our start location. The latter is the safer course, or
we may end up compounding our errors. So let's position ourselves in the
hallway. We can either press BREAK and from the command mode type:

> LET PN%= 1 : GOTO 100

which should take us back into the game at the hallway, or change the
value of PN% in line 50 from Oto 1. Having freed ourselves of Room O, we
can GO about part of the network, so recap on the plot, and try going
places that should be both accessible and inaccessible. It is just as
important to check that invalid exits can't be used as it is to ensure the
player can move where an exit should exist.

67

At this point, you should find that you can't cross the moat, and that
although you can get back into the first room, you still cannot get out! That
is because no attempt can be made to re-enter the room in normal play
until the exit has been cleared from within, so there is no need to restrict
movement in the opposite direction.

A limited amount of exploration can be carried out in the castle, so
having checked out the cottage and forest, press BREAK and type:

>LET PN%=5: GOTO 100
and try going up and down ladders and stairs.

If you end up in the wrong location, or the exits and lack of them don't
work in the correct sense, then there are some variables set that can be
questioned during these tests. Press BREAK, and type:

>PRINT PN%: PRINT E$(PN%): PRINT 0$(PN%) : PRINT WG$:
PRINT WO$

If you were in location 1, then the screen should look something like
Appendix 10, and you can check the values through to see where the
problem is.

Now we can see what is happening, as each section of the program is
written, it should be tested, and if not working correctly the appropriate
variables can be checked from the command mode in this way.

By now, you're getting used to the screen layout, so stop to consider
any improvements that might be made. Spread it out a bit more? Change
the lines of dashes to some other more fancy character at your disposal?
You know exactly where the lines are that set up the screen, so it is an
easy job to experiment until you get the right 'look' for your machine. After
editing, of course, you will need to type RUN rather than GOTO 100,
since the values of the variables will be lost, on most micros. Here the
Spectrum in once again an exception and lines may be edited and the
program resumed at line 100 with the variables intact.

Assuming that all is well with the game thus far, we can continue with
the coding. Each new verb we add will open up parts of the game until the
whole is integrated into an Adventure capable of solution.

68

CHAPTER13
Take it or leave it

The verb GO, we decided, is in a special category because alone it
moves the player around the network. There is yet another special
category, TAKE, DROP, and INVENTORY, which are unique in that they
involve possession, and will, under normal circumstances, only affect or
list the player's inventory. Using these verbs, he can carry objects around
from one location to another where he can put them to good use. Rarely
will the means of carrying out a task be provided at the location in which
the work must be done!

Before an object can be DROPped, it must be T AKEn, so logic dictates
that we cover that verb first. Although there are not too many takeable
objects (i.e. those we defined with a positive value for C%), it would be
unrealistic to assume that the player can go on picking things up ad
infinitum. We can set a limit to the number of items the player is capable
of carrying, but must ensure that this maximum will not prevent the game
from being completed. In this game it would be reasonable to limit the
inventory count to 4.

We set up a count of the player's inventory, IN%, in line 50, and set it to
1, to account for the axe already in the player's hands.

Although we have 11 objects in the game, there are also nouns that are
not objects, and are added on to the end of the object list in the noun
recognition string WN$. We will have to check that an object player seeks
to take is in the same location as the player, i.e. PN%. To do this we will
take the value in the variable 1<2%, (the position of the object found in the
string WN$), and check the value of the K2%th element in the object
location array P%. Thus we will be looking at the value of P%(K2%). If the
noun used is valid but not an object, the position of it in WN$ will be
beyond those of the real objects, and 1<2% will return a value greater than
10. A mention of P%(K2%) when 1<2% is greater than the size of the

69

object list will cause the computer to splutter with an error caused by a
subscript beyond the dimensioned range. Remember, P% was
dimensioned to 10 to include 11 objects. So our first task will be to filter
out values of K2% greater than 10. Since we know that if K2% is greater
than 1 O it can't be taken anyway as it is not a real object, we can send
such occurences off to a standard reply to that effect. So far then, we can
write:

1999 REM **** TAKE ****

2000 IF K2%> 10 THEN GOTO 40030

40030 LET0$(2}="DON'TBEABSURD!" : GOTO 100
Next we should check whether the player is already carrying the object

he has requested to take. If he is, then P%(K2%) will have a value of 55:
2000 .. ELSE IF P%(K2%)=55 THEN GOTO 40040 ...
40040 LET 0$(2)= "1'M ALREADY CARRYING IT!" : GOTO 100

If the object is not present in the location:
2000 . .. ELSE IF P%(K2%)<>PN% THEN GOTO 40050 ..
40050 LET 0$(2)="1 DON'T SEE IT HERE": GOTO 100

Taking a look at the flags that control objects, we decided that if the C%
value was equal to -2, it could never be taken, whilst if it was -1, it could
be taken at some later stage. Therefore continuing the same line:

2000 .. ELSE IF C%(K2%}=-2 THEN GOTO 40000 ELSE IF
C%(K2%}=-1 THEN GOT040060 . .

We have already written 40000 as "IMPOSSIBLE", and the other line
can be:

40060 LET 0$(2)="1 CAN'T-YET!": GOTO 100
giving the player some light at the end of the tunnel. Anything that gets
through these conditions is a prime candidate for being taken, but one
more check to see if the inventory is already full:

2010 IF IN%> 4 THEN LET 0$(2)="1'M OVERLOADED
ALREADY" : GOTO 100 ...

If that succeeds, the object can be taken. We must increment the
inventory count, place the object in the player's hands, and reply that all
is well:

2010 .. ELSE LET IN%=1N%+1 : LET P%(K2%}=55: GOTO
40020

Line 40020, as you will no doubt recall, sets the reply to "OK" and sends
control back to line 100.

Before testing our new-found ability to go around grabbing things, it will
be ~s well to provide the facility for dropping them as well, otherwise
testing TAKE will become very tiresome as the inventory limit is reached.

70

To drop something, we must again check that the noun entered is
within the dimensions of the object array. Other than the obvious - that
the player must be carrying it, there are no further restrictions we need
apply:

2999
3000

40070

REM **** DROP ****
IF K2%> 10 THEN GOT040070 ELSE IF P%(K2%)<>55
THEN GOTO 40070 ...
LET 0$(2}="1'M NOT CARRYING IT!": GOTO 100

Notice here that although both tests, if true, result in a GOTO pointing
at the same line, we cannot OR them. That is to say, we cannot write IF
K2%> 10 OR P%(K2%}<>55, and the reason for this is the same
reason we got rid of anything with a K2% value greater than 1 O in the first
place. If the two conditions were ORed in this way, a subscript error
would still occur. By despatching non-object nouns elsewhere first, there
is no chance of K2% being greaterthan 1 O when applied to P%(K2%}. As
the reply is the same in each case, line 40070 is the target both times.

Continuing with line 3000, we can now decrement the inventory count:
3000 . . ELSE LET IN%=1N%-1 ...

Before wrapping this routine up, let's build a trap for the player, so that if
he drops anything from the top of the castle, it will fall into the moat, never
to be seen again! If dropped elsewhere, the object will land back in the
player's location:

3000 .. : IF PN%=7THEN LETP%(K2%}=88: LET0$(2)= "IT
FELL OFF INTO THE MOAT" : GOTO 100 ELSE LET
P%(K2%}=PN%: GOTO 40020

An object dropped from a great height now goes to a non-existant
location, 88, and, search as he may, the player will not be able to find it!
Eventually he may have to start playing the game again, particularly if he
has lost something important! At any other location the objects are
assigned to the current value of PN%, and line 40020 tells the player
"OK".

If you were writing a game with a large number of objects and
treasures, and, as I suggested earlier, wanted to restrict the objects
dropped at the treasure store location, then you should arrange your
treasures to be the last objects grouped together, in the object array.
After the first two conditions in line 3000, you could then insert the
following:

.. ELSE IF PN%=(n} AND K2%>(m) THEN GOTO xxxxx ..
where n is the location number of the treasure store, m is the highest
object number which is not a treasure, and xxxxx is a line number in the
standard reply range saying:

XXXXX LET 0$(2}="0NLY TREASURES HERE": GOTO 100

71

There is one final point to cover here that is specific to the game under
discussion. The plot calls for a tree to be felled and taken to the moat,
where it will form a bridge into the castle. It would not be realistic to
suppose it could be carried, so we will have to overcome that problem in
another way. The C% flag for the tree is initially set at - 1, providing for
the standard reply "I CAN'T - YET!". When the tree has been felled, we
will change its C% value to 3, and can now tack one final condition onto
the end of line 2000:

2000 .. ELSE IF C%(K2%)= 3 THEN GOTO 40080

and
40080 LET 0$(2)="YOU MUST BE JOKING!" : GOTO 100

Objects can now be taken and dropped! Run the program, and test for
these verbs thoroughly. Check that when the inventory limit is reached
the right reply is received, check than an object can't be taken if it is not in
the right place, check that stairs and ladders and trees cannot be
pocketed, and try the trap built in to location 7.

We now need to be able to list what the player is carrying, to provide a
response to his INVENTORY command:

3999 REM **** INVENTORY****
We will build up the inventory list in a similar manner to the way in which
we built up the visible objects list, since again, this could be quite long.
This time however, we will make use of the reply array 0$ to hold the list.
We will use J% to hold the subscript number of 0$ that we are currently
filling, and then scan the array P$ for values of 55:

4000 LET 0$(2)= "1 AM CARRYING:" : LET J%= 2 : FOR 1%= 1
T010

4010 IF P%(1%)= 55 THEN IF LEN(0$(J%))+ LEN(0$(1%)) >
62 THEN LET J%= J%+ 1 : GOTO 4010 ELSE LET
0$(J%)=0$(J%)+0$(J%)+ ". "

4020 NEXT : GOTO 100
The inventory list is now built up, and the first words in the first element of
0$ to be displayed will say " I AM CARRYING".

By now you are probably wondering why we have avoided using that
first element, 0$(1) for any of the replies we have framed so far. That is
because, as the program progresses, we may want to print a
spontaneous message, generated by a specific combination of
circumstances in the state of play. Since such a message may be
generated irrespective of the particular command from the player,
con!lict between the reply to the command and the message must be
avoided, or one or other message will be overwritten. So 0$(1) has been
reserved for these spontaneous messages, and all replies to commands
start from 0$(2). More on this in a while.

72

CHAPTER14

Some other common
commands

In this game the _scoring is very simple. The object is to find and safely get
the treasure (object no.6) back to location 0, where the player first started
out. The SCORE command routine has only to check if P%(6)=0. If it
does, then the player has succeeded, a suitable message is displayed
and the game ended.

In an Adventure with more than one treasure, things get more
complicated. One way is to arrange, as I suggested when describing how
to limit DROPping non-treasures, tor the treasures to be grouped at one
end of the object array, and to use a FOR-NEXT loop on that section of
the P% array to see how many are in the correct store location.

l_t might b~, ~owever, that you adopt a method of modifying existing
object descriptions. An example in this game is the tree, which when
chopped down carries the same object number, but whose description
changes to "tree trunk". If this sort of modification is used to generate
treasures from objects that were not originally treasures, then the fact
that they are all grouped together at one end of the object array will not
solve the problem, as there will be no check as to whether or not the
conversion has taken place. The non-treasure version might have been
the one that was dropped in the treasure store! But grouping the
treasures will still help by reducing the length of the search.

If the treasures are highlighted by a special character such as an
asterisk to make them recognisable, we can use that asterisk to test for
'treasurability'! The asterisk will be an aid both to the player and
computer in recognising which objects are treasures. Our SCORE
routine might run something like this:

5000 FOR 1%=n TO m : IF P%(1%)=y AND LEFT$(0$,1%)="*"
THEN LETSC%=SC%+1 ·

5010 NEXTI%

73

with a suitable message to display. Here, n is the start element of the
treasures in the object array, and m the last. Y is the location number of
the treasure store. SC% is introduced to hold the score, and would have
to be made zero either at the beginning of the score routine, or after the
score had been displayed.

The detection of the an asterisk in this way is an alt~rnative method
that can be used to prevent non-treasures being dropped in the store.

Another standard command is HELP, the author's way of making
things a little easier for the baffled Adventurer. It is usually possible to
predict most of the problems with which the player will need assistance,
and these will tend to be dependent upon which location he is in.
Therefore, the HELP command can be serviced by a fairly simple routine
giving a set reply for each location:

5999 REM **** HELP****
6000 ON PN%+ 1 GOTO 6010,6040,6040,6040,6020,6030 ...
6010 LET Q$(2)="1SN'T THE WALLPAPER LOVELY?" :

GOTO 100
etc. Line 6010 draws attention to the wallpaper in the hope that this will
help the player overcome his likely problem in location 0, to get out of the
room. In line 6000 it is necessary to add 1 to the location number, since
this series starts at 0, whilst ON (variable) GOTO will not respond to a
value of 0. The popularity in line 6000 of line 6040:

6040 LET Q$(2)="EXAMINE THINGS & LOOK AROUND" :
GOT0100

is because this is a reply which does not really give a special clue, it being
decided that there are likely to be no major problems in the locations
using this line. The complete list of HELP lines is shown in the full listing
of the game.

QUIT is the last resort of the desperate player, and quite simply, ends
the game. As a consolation we can do the decent thing and tell the player
how well or badly he has fared, by displaying the score before we sign off.
It could be, of course, that the player has fulfilled the objective of the
game without realising it, not having thought to type SCORE! In this
game, with only one treasure, we can grade the player's effort by
detecting whether he has found the treasure, even though unable to get it
home:

6999
7000

7010

REM**** QUIT****
CLS : IF P%(6)=0 THEN PRINT ... (success message)
ELSE IF P%(6)<>99 THEN PRINT .. (moderate success)
ELSE PRINT "BETTER LUCK NEXT TIME!"
END

remembering that 99 was the fictitious location assigned to the treasure
to keep it from view until discovered.

74

Another common verb is LOOK. This is usually synonymous with
EXAMINE, except in some scrolling-screen games, where LOOK on its
own will recall the location details. We will make LOOK and EXAMINE
synonymous for this game. The first thing we must do is to add the two
verbs to the string of valid verbs, WV$. Edit line 60, and it should look like
this:

60 LET WV$= "T AKDROLOO"

We anticipated that LOOK would be high on our list, and inserted it in
the string. Now to that list, add EXA:

60 LET WV$= "T AKDROLOOEXA"
When the necessary searches have been made, LOOK will return a

value of 3 to K1 %, and EXAMINE will return 4. Now we must point to the
routine we are about to write, so edit line 490:

490 ON K1% GOTO 2000,3000
We have used lines 4000- 7000 for the verbs already covered, so our

next available line for a verb routine will be 8000. This must be added
twice to line 490 if we are to have one routine for the two new verbs:

490 ON K1% GOTO 2000,3000,8000,8000
and having set things up, we can start on the routine itself:

7999 REM**** LOOK/EXAMINE****
8000 IF K2%<>11 THEN GOTO 8110 ELSE ON PN%+ 1

GOTO 8010,8110,8110,8110,8020,8030 . ..

In 8000 we are taking LOOK AROUND as a separate case from a
command that is to LOOK or EXAMINE a specific object. If AROUND is
used, then K2% will have a value of 11 , and the ON . . GOTO will operate,
based on the location of the player. LOOK AROUND is very similar to
HELP, and hidden things will be revealed in different locations. If K2%
doesn't have a value of 11, then control will pass to line 8110, and in this
game, the only object examined that will elicit further information is the
packed lunch (object no.2). The player doesn't know it, but it's poisoned,
and we will give him a clue, should he be prudent enough to check it out!

8110 IF K2%<>2 THEN LET Q$(2)="1 SEE NOTHING
SPECIAL" : GOTO 100 ELSE LET Q$(2)="LOOKS A BIT
EVIL TO ME!" : GOTO 100

Since line 8110 is the end of the routine for these verbs, we could have
rephrased that to avoid the repetition of the GOTO 100, in this way:

8110 IF K2%<>2 THEN LET Q$(2)= "1 SEE NOTHING
SPECIAL" ELSE LET Q$(2)= "LOOKS A BIT EVIL TO
ME!"

8120 GOTO 100
but the line overhead on memory would be more than the saving in code,
so on balance it's not worth it.

75

The LOOK AROUND replies will be accessed via the ON .. GOTO,
and the first of these is for location 0.

8010 IF C%(1)< 0 THEN LET 0$(2)= "THE WALLPAPER'S
PEELING" : GOTO 100 ELSE GOTO 8110

Notice that all the time we must check the relevant conditions so as to
keep the replies logical. If the wallpaper has been pulled off, then it will
have become T AKEable, but must not be allowed to fall off the wall again.
C%(1) will have a value of 2. In that case, the GOTO 8110 will result in a
reply " I SEE NOTHING SPECIAL", but if the player still hasn't caught on
and pulled the paper, C%(1) will be - 1, and giving the clue.

Turn to lines 8020 to 8060 in the listing. Line 8020 is for a look around
by the moat. First a check is made to see if the tree is there. If it is, it will
form a bridge, and the clue is given, but no tree and a different message
results! At present we have no way of taking the tree to the moat, or even
of chopping it down, but because we have detailed the full plot, we know
we will be having to cater for this occurrence later - a good example of
why the whole plot must be complete to the last detail before the program
is written!

When the player has crossed the bridge, a return across the moat is
made impossible to force him to solve the problem concerning the rope.
How do we account to the player for this? Line 8030 has the LOOK
AROUND answer.

8030 LET 0$(2) = "TREE HAS SLIPPED INTO MOAT' : GOTO
100

And so on. Have a further perusal of these lines, and follow the logic
through before pressing on with the next chapter.

76

CHAPTER 15

Trees and Paper

Having written the program code covering the basic verbs, the
framework for the game is complete, and now it's just a matter of working
steadily through the plot to put the flesh on the bones.

Tackling this in a methodical way, we will put ourselves in the position
of the player, and provide him with the verbs in the order in which he
needs them. The first thing he must do is to get out of the wallpaper room.
He can already LOOK AROUND and get the clue, and cry HELP for
another clue. He can ask for INVENTORY which will tell him he's got an
axe which will hopefully persuade him to try hacking his way out first. The
first verb he will require to proceed from the room is PULL, to get rid of the
wallpaper and uncover the hidden door. Before we rush off into the
coding we must ascertain if there will be any other uses for the verb
PULL. Since we have still to get over the problem of moving the felled
tree from the forest to the moat, which we decided could not be TAKEn,
we had better let our player PULL it along.

Let us get clear in our minds under what conditions we can use PULL
to effect. The only objects that are PULLable are the TREE and the
WALLPAPER, so the value of K2% will have to be either3or1 , the object
numbers of the tree and wallpaper respectively. As we will be moving the
tree around without carrying it, if TREE is PULLED it must be in the same
location as the player. Also, of course, it must first have been chopped
down. When this has been completed we will arrange for its C% flag to
have a value of 3. For the WALLPAPER to be pulled, the player must be
in location 0, and the wallpaper must still be in position on the wall , so it's
C% flag must be - 1. Off we go then:

8999 REM **** PULL ****

77

9000 IF 1<2%= 3 AND C%(3) = 3 AND P%(3) = PN% THEN
GOTO 9010 ELSE IF PN%= 0 AND 1<2%= 1 AND
C%(1)=-1 THEN GOTO 9020 ELSE GOTO 40090

If these tests both prove false, then control passes to a standard reply:
40090 LET Q$(2)="0K - NOTHING HAPPENS" : GOTO 100

but if either test is true, then we go on to line 9010 or 9020.
As far as the wallpaper is concerned, when pulled we must make it

T AKEable by changing the value of its C% flag. This will automatically
render pulling it again ineffective. We must make the door appear, and
provide an exit through it, and then return with a suitable message:

9020 LET C%(1)=2 : LET P%(8)= 0 : LET E$(0)="A" : LET
0$(2) ="IT JUST FELL OFF!" : GOTO 100

and that sorts out the wallpaper!
Concentrating next on the tree, if it is pulled when in the moat location,

we can make it form a bridge, otherwise we can set things up so that
PULL causes it to follow the player if he changes location on his next turn.
We will have to do this by setting a new flag PC%, signifying whether the
tree is to follow the player. It's value will be 1 if the tree is to follow the
player, (because the player has just commanded PULL TREE), and O if it
is to remain in its present locaton (no PULL command immediately prior
to a GO). Once the tree is a bridge, it will be fixed and an exit across the
moat provided:

9010 IF PN%= 4 THEN LET C%(3)= - 2 : LET 0$(3)= ''TREE
TRUNK CROSSING MOAT" : LET E$(4)=E$(4)+"J" :
LET PC%= 0 ELSE LET PC%= 1 : GOTO 40020

The C% flag controlling TAKE ability is set negative and the "follow"
flag is set to zero if the current location is 4. Otherwise the follow flag is
set to 1, and an OK message despatched from line 40020. We can't do
anything in the PULL routine to ensure that the tree follows the player,
because he will have to use GO next, for that to happen. So we must put
in a line that will be checked every time round the main loop, and will
move the tree on if it sees the follow flag set. This is where our dummy
line 100 becomes a real one! Certain events such as this are
independent from any verb routine, and must be actioned after the verb
routine has been executed:

100 IFPC%> 0THENLETPC%= PC%+ 1 :LETP%(3)=PN%
: IF PC%= 3 THEN LET PC%=0

and that is sufficient to do it! The reason for increasing the value of the
PC% flag if it is set, is that this line will be executed directly after the
command PULL has been entered. If this is the case, PC% will already
be set at 1, so it will then be increased to 2. The tree is already in the
player's location, (line 9010 saw to that), so LET P%(3)= PN% will not
have any noticeable effect. If the player next commands GO SOUTH,
then PC% is increased to 3, the tree is assigned to the new location, and

78

the PC% flag reset to zero, forcing the player to use the PULL command
again to get the tree moving!

To access and test the verb, add PULL to the end of WV$ in line 60,
and add ',9000' to the end of the list of ON K1% GOTO in line 490. As
each new verb is added you should extend WV$ and line 490 in this way.
From now on I will not repeat this reminder for each verb, but rely on you
to remember to do it! The building up of these lines is best carried out as
each verb is written, as to complete them at the outset will complicate
things if unforeseen changes to the vocabulary or plot are found
necessary as the programming proceeds.

Enough pulling - on to our next verb. The player, out of the house,
now needs to CHOP the tree down, before he is able to move it by pulling.

For a successful CHOP, the player must first be carrying the axe:
9999 REM **** CHOP ****
10000 IF P%(0)<>55 THEN LET Q$(2)= "NO CHOPPER!"

GOTO 100
That settles that one. Let's now sneak in a guess that the player will try

to hack his way out of the first room- it's nice to keep one ahead:
10010 IF PN%=0 THEN LET Q$(2)="YOU WON'T GET OUT

BY FORCE!" : GOTO 100
and now to deal with the real thing, the object must be TREE, the location
must be where it grows, 9, and it must not be already felled, so C%(3)
must be - 1:

10020 IF 1<2%=3 AND PN%=9 AND C%(3)= - 1 THEN LET
C%(3)=3 : LET 0$(3)="TREE TRUNK": GOTO 40020

which gives the player a new description, confirming something has
happened, as well as an OK. If the tree isn't in the location, we must tell
the player:

10030 IF 1<2%=3 THEN GOTO 40050
We know that the location can't be 9 with the tree growing, or the

previous line would have trapped the command. What shall we do if the
player, axe in hand, decides to chop something different? Well, whatever
he chops, it will be a recognisable object, since otherwise the word would
have been rejected by the string search routines. Let's simply say:

10040 GOTO 40020
giving him an OK which might worry him a bit! When the game is
complete, here is some scope for you to enhance it with a few nasties!

One other thing that should be done here which we decided upon in the
last chapter: having chopped down the tree and pulled it into position, we
must bar the exit from the castle once the tree-bridge has been crossed,
thereby forcing the player to solve the rope problem. As soon as the
player crosses the bridge, we can arrange for the tree to slip into the
moat. If the tree is forming a bridge, its C% flag will be -2; that is one
condition. Another condition is that the player must be in the castle,

79

location 5. We will be kind to the player, and replant the tree in the forest,
enabling him to use it again if he desires. Hopefully he will think it is an
entirely different tree, after all, it is a forest! But really it will be the same
old tree that apparently fell into the moat! This will be achieved with
another special condition line:

11 O IF C%(3)= - 2 AND PN%=5 THEN LET P%(3)=9 :
LET0$(3)="TREE": LETC%(3)=-1:
LET Q$(3)= "00PS! TREE JUST FELL IN MOAT!"

There is no need to change the exit string for location 5 becaus.e it
never existed in the first place! The player is now trapped in the castle,
unaware that the tree is available to be chopped down again.

Although it is hard to envisage any circumstances within the scope of
this plot when the player might need to re-enter the castle, replanting the
tree gives scope for further additions to the game, such as providing a
key to the cupboard, which is hidden somewhere outside the castle, and
perhaps has not been found by the player before his entry there. Then
the new tree will allow him to re-enter with the key, and obtain the
treasure.

80

·.

CHAPTER16

Opening and Closing

The treasure, if you can remember that far back, is secreted in a hidden
cupboard on the first floor room of the castle. The player has to command
LOOK AROUND when there, to reveal the cupboard. (See line 8030 of
main listing). Our next task is to provide him with the means of opening
the cupboard. But wait, there is another trap in store for the Adventurer,
this time involving the umbrella. Famous and intrepid Adventurers never
go around their stories sniffing and blowing their noses do they? An
Adventurer with a common cold? Unheard of! Well, in this game the hero
is going to have to look after his health! It is raining outside (whoever
heard of rain in an Adventure?), and if he remains out of doors too long
without using the umbrella, he will catch, literally, his death of cold! So let
us cater for the opening of the umbrella as well as the cupboard:

10999 REM **** OPEN ****
11000 IF K2%= 7 THEN GOTO 11020 ...

umbrella problem now shelved for a couple of lines. Continuing:
11000 .. ELSE IF K2%<>13 THEN GOT040000 . ..

impossible to open anything else:
11000 .. ELSE IF PN%<>6 THEN GOTO 40050 . .

no cupboard anywhere except room 6 . .
11000 . ELSE IF P%(6)<>99 THEN LET Q$(2)="ALREADY

OPEN" ..
if treasure (object 6) already moved from non-existant location 99 to
room 6, i.e. if cupboard already open, and if none of these are true,
everything points to it being in order to open the cupboard:

11000 . . ELSE LET P%(6) = 6 :
LET 0$(2) ="LOOK WHAT l'VE FOUND!"

81

11010 GOTO 100
and the cupboard is open, the treasure is on display!

Now for the tricky bit with the umbrella. The player must be carrying it:

11020 IF P%(7)<>55 THEN GOTO 40070 ..
and it must not be open already. We will use a C% flag value of 4 to
indicate open. We can't use 3 or it would have to be pulled around
everywhere, rather than carried:

11020 .. ELSE IF C%(7)> 2 THEN GOTO 40090 . .
otherwise there is no reason why it should not be opened:

11020 . . ELSE LET C%(7)= 4 LET 0$(7)="0PEN
UMBRELLA" : GOTO 40020

There is now another obvious trap to build with the umbrella. It is
considered unlucky to open one indoors and in this case it certainly will
be! We will use another 'special condition' line for this one:

120 IF C%(7)=4 . .
if the umbrella is open . .

120 .. AND PN%< 3 . .
and the player's location is inside the cottage ..

120 .. AND P%(7)=55 ..
and the player is carrying it . .

120 . THEN LET PN%=10: LET 0$(2)="0PEN UMBRELLA
INDOORS?": LET 0$(3)="DEAD UNLUCKY!"

and that will permanently put the player in DEAD. By placing this line after
new locations and conditions had been set up via the verb routine last
executed, any alterations to the reply, objects or locations occasioned by
the 'special condition' specified will be altered before the display phase.

Now for the rain! Another special condition line. Let's get clear when
we want it to operate. If the player

(a) isn't holding the umbrella, or the umbrella isn't open
AND
(b) the location is one of 3, 4 or 9

then we will increment a rain flag CR%, but if the player has been a good
boy and used the umbrella, in case the rain flag is set, we will zero it:

130 IF (P%(7)<>55 OR C%(7)=2) AND
(PN%=3 OR PN%=4 OR PN%=9) THEN

LET CR%= CR%+ 1 ELSE LET CR%=0

We now need another line to make use of the information in the CR%
flag. If CR% is set we will send out a message to say it is raining:

140 IFCR%>0THEN LET0$(1)="1T IS RAINING!" : ...

82

Notice that we have used 0$(1), so that this unpredictable message
won't obliterate an inventory list, or any other reply on it's way to the
player. We don't want to kill him off just yet, only to make him worry a little,
and wonder what to do. We can now consider escalating the message if,
say four more moves have been made without the umbrella being
opened:

140 .. IF CR%= 5 THEN LET 0$(3)="1 SHALL CATCH MY
DEATH!"

This time we have used 0$(3), and hopefully the normal reply to the
player will only occupy 0$(2), and he will get a response like:

- YOU SAID GO SOUTH
IT IS RAINING!
OK
I SHALL CATCH MY DEATH!
-WHAT NOW?

Finally we have got to put the player to death if he continues to ignore
good advice for a further 2 moves:

150 IFCR%=7THENLETPN%=10:
LET 0$(2)="1 CAUGHT MY DEATH!"

An open and closed case! At least, it will be when we have covered
CLOSE. This verb is a bit of a luxury, in that solution of the game is
possible without it. If the player needs to return to the cottage he can
always leave the brolly outside, but for the sake of realism, we must allow
him to close it.

The umbrella is the only object capable of being closed as it's not worth
worrying about the cupboard - the player will hopefully lose interest in it
when he has taken possession of the treasure within. So the object must
be UMBRELLA, it must be carried by the player, and it must already be
open:

11999 REM **** CLOSE ****

12000 IF K2%<>7 THEN GOTO 40000 ELSE IF P%(7)<>55
THEN GOTO 40070 ELSE IF C%(7)=2 THEN GOTO
40090 ELSE LET C%(7)=2 : LET 0$(7)= "ROLLED
UMBRELLA" : GOTO 40020

and we have successfully closed and rerolled the umbrella!
That is another section of the plot complete. We can now do everything

except leave the castle precincts to return the treasure to the treasure
store - Location 0.

83

84

CHAPTER17

Escaping from a Great
Height

Having obtained the treasure from the cupboard, the player's next task is
to climb to the top of the castle, and tie the rope down which he will climb
to effect his escape.

The rope (object 5) is the only object that can be tied, and so:
12999 REM ****TIE****
13000 IF K2%<>5 THEN GOTO 40000 . .

and of course, must be in the hands of the player:
13000 .. ELSE IF P%(5)<>55 THEN GOTO 40070 . .

and the only place in which the rope can be tied is location 7:
13000 .. ELSE IF PN%<>7 GOTO 40100 ..

Line 40100 is a standard reply we have not used yet:
40100 LET Q$(2)= "1T SLIPS OFF": GOTO 100

and if all these tests succeed the rope can be tied. It will have to remain
permanently in position, unless we write a routine to UNTIE, and that is
something else you can experiment with later. For our present purposes
we will make the rope unTAKEable:

13000 .. ELSE LETC%(5)=-2 : LET P%(5) = 7: ..
and place it in location 7. We must not forget to decrement the inventory
count:

13000 .. LET IN%= 1N%- 1 .. .
and finally indicate that the rope is providing an exit:

13000 . . LET 0$(5) = 0$(5)+" HANGING OVER PARAPET" :
LET E$(7) = E$(7)+"H": GOTO 40020

We have added the location code 'H' for ROPE to the list of exits
available from location 7, and returned with a reply 'OK'.

85

But what if the player hasn't the rope with him, or can't work out what to
do? Suppose he decides to jump for it? If he tries LOOK AROUND he will
be told that jumping isn't advisable, but he might become desperate or
even think this is a way to get to the bottom of the moat. It is, but not for
any rewards! So we will provide him with the means to commit suicide:

13999 REM ****JUMP ****
14000 IF PN%=7 THEN GOTO 14010 ELSE IF PN%= 8 THEN

GOTO 14020 ELSE LET Q$(3)= "BOUNCE! BOUNCE!":
GOT040020

We have now given him a harmless reply for any location other than 7
and 8. Location 7 is the one from which suicide is committed:

14010 LET PN%=10 : LET Q$(2)="SUCKED INTO THE
MOAT'S EVIL SLIME": GOTO 100

When the player has climbed down the rope, his only apparent exit is
UP, giving him no escape route from the castle. However, he can jump
from the rope. Since the rope is hanging over the moat, it may be
expected that he will succumb to its slime in a similar way if he does this.
But we will introduce a little subtlety here, and allow him to SWING on the
end of the rope. Having swung, he could then be expected to have a
chance of landing on firm ground if he were to jump the rope. Before we
complete the verb JUMP, we had better see how we're going to takle
SWING:

14999 REM **** SWING ****
15000 IF PN%<>8 THEN LET Q$(2)="YEAH MAN!": GOTO

100 ...
a harmless enough reply if not on the rope. If he is, however:

15000 .. ELSE LET C%(5)= - 3 : GOTO 40020
we set the C% flag for the rope to -3. We can now complete the routine
for JUMP, looking at C%(5):

14020 IFC%(5)=-2THEN GOTO 14010 ..
if he doesn't swing, the same fate awaits him as if he had jumped from the
parapet, but:

14020 . . ELSE LET C%(5)=-2 : LET PN%=4 : LET
0$(3)="FAR ENOUGH TO LAND ON SAFE GROUND" :
GOT040020

the swing has been corrected by returning C%(5) to -2, thus, should he
attempt the trip again he must still say SWING before jumping. The
locati?n has been changed to 4, the ground by the moat, and the reply
OK will be followed by the message set in 0$(3).

If we now test the verb SWING we will set a syntax error, since, if you
r~member, because SWING is a single word command it was treated in a
different way to the other verbs and the line number of its routine was left
as a row of asterisks. So edit line 405 and change those asterisks to
"15000".

86

)

The game is now basically complete. Or is it? We placed a packed
lunch on the table, and suggested in the LOOK AROUND reply that it
wasn't altogether wholesome. Let's have one last attempt to kill the hero
off!

15999 REM **** EAT****
16000 IF K2%<>2 THEN GOTO 40030 ELSE IF P%(2)<>55

THEN GOTO 40070 ELSE LET PN%=10 : LET
0$(3)="1T WAS POISONED!": GOTO 40020

and he's a gonner!
Let me remind you once more to test out each verb routine as it is

completed. Also, another reminder that as each verb is added to the
vocabulary, its recognition letters must be added on to the end of the
string WV$ in line 60, and line 490 extended to include the line number of
its routine.

That now completes the programming of the demonstration game. I
hope that if you have followed it through, with 'hands on' your own
computer, you have not only got a working version, but have understood
the method sufficiently to write your own complete Adventure from
scratch. If you propose to do this, do not commence until you have
finished reading this book, for there is one more very important task to do.

The program must now be examined critically to see if any
improvements can be made. And some always can!

87

88

CHAPTER18
The Finished Game

I hope that what you have read has enabled you to put your own ideas for
an Adventure game into practice without having to spend hours devising
a programming method which will work satisfactorily. Using this method,
you should be able to write an Adventure game with quite a complex plot,
having 30 or more locations and about the same number of objects,
using a micro with 16k of RAM. The final size of the game that you can fit
in will depend on which micro you are using. For example, the BBC micro
will use more memory than the TRS-80 because of all those $ and %
signs that can't be pre-defined. The BBC handles its strings in a rather
uneconomical way, duplicating DATA strings in memory. On the other
hand, it will respond so fast that you may consider replacing locations
strings with print statements, each a subroutine accessed by a suitable
"ON PN% GOSUB" statement in the display phase. A VIC-20, without an
ELSE statement, will use more memory due to the line overhead for the
additional lines required to accomodate the same logic. A Spectrum will
use more memory for all those obligatory words like LET, GOTO and the
loop variable after NEXT, optional on most micros.

From experience, using each machine in the way most suitable to its
BASIC and the way it handles its memory, I would say that 32K on a
TRS-80 is about equivalent to 48K in a Spectrum, and about 40K in Mode
7 on a BBC. Since the BBC's memory is stuck at 32K, an Adventure
game of this size would have to be substantially abbreviated.

When you have written your Adventure, what can you do if you have
run so close to the memory limit of your system that you have not left
enough room for the game to RUN? With the plot determined, and the
program code written, you will find it quite difficult to make major
changes. Use as many as you can of the methods I earlier described
under "saving space". Look through the listing and see if you can
eliminate any lines by combining some. When doing this be careful you

89

don't remove a line that has a GOTO pointing towards it, and ensure that
you maintain the logic of IF/THEN tests. Abbreviate the displayable text
down to the absolute minimum. Check carefully to see if you have
repeated any code that could be more economically incorporated into a
subroutine. Cut down the number of standard replies, making some of
them a little more general so one can be used in place of two. Above all ,
eliminate any optional features of your Basic, spaces, LETs etc.

If happily you should find yourself with space to spare, then it will not
take you long in hindsight, to see where a few extra traps or more
humorous replies could be included without restructuring the whole
program.

If you have a micro on which you can program sound, you may find a
sound effect or two, or snatches from a tune that fits the theme of a reply,
are worth adding in. If you decide to incorporate sound in this way, then
the ideal sequence in the listing is between lines 380 and 390. Use a
variable and set it when setting the 0$ reply with a number which can be
used in an ON/GOSUB line between lines 380 and 390 to call an
appropriate sound subroutine. The sound subroutines can directly follow
the DAT A statements starting at line 50030.

If you have colour, and space still permits, add a dash of colour to the
text displayed, to enhance the visual effect.

Having written your masterpiece, the first Adventurer to receive his
cassette from the software house starts to play. Eventually he is
confronted by a problem which you considered to be one of your more
masterly pieces of brilliance! However, it is too subtle for your player, and
until he types in the necessary sequence of commands, he can go no
further. What you assumed to be an obvious solution given some
thought, is too obscure for your player, and he is now hopelessly stuck.

What shall he do? Write to Computer & Video Games for help? He may
do that if the Adventure is so intriguing that it continues to beg a solution,
but his other alternative is to put it to one side, and advise his friends that
it is so hard as to be not worth buying! How can you, the Author, avoid this
situation arising?

When the game is written, you will no doubt have played it yourself,
and given correct commands to prove it was soluble. Perhaps you have
thought to sit down and give it the wrong commands, to check out that all
the traps and replies operate correctly. If not, you certainly should. You
should try anything you can think of, however silly, to try and get the
program to crash or do something that is contrary to the intended logic of
the plot.

All this effort helps, but is not the final proof that the program is perfect.
There never will be that sort of proof - only proof that it isn't perfect!
However, the chances of finding the latter must be reduced as much as
possible. Your own efforts to break the program down are not sufficient.

90

Since you are the author, you are by now so familiar with the plot and the
commands, that you are thinking along fairly set lines with regard to the
game. What you must do is get some fresh minds on to it.

. Get family and friends to try the game- and don't give them any clues!
~1t them down one at a time in front of the computer, and watch and
listen! Make .not~s about their problems, watch to see if they type in a
word that logic dictates should be recognised, but is one which you failed
to spot. Perhaps instead you made do with a synonym, needed anyway
for another part of the game.

As a result of these 'trials', you may decide you will have to add a whole
new verb routine or a couple of extra clues for HELP or LOOK AROUND.
You might very well have to correct a Syntax Error, because there are so
many alternative paths to take through an Adventure program it is very
doubtful whether you will have caused every part of every line to be
executed however thoroughly you test it!

The demonstration game in this book is no different from any others -
except perhaps that it is shorter! The first person to play it, my wife, was
very upset about the wallpaper in the first room. She examined it and was
!old it is beginning to peel so she typed PEEL PAPER. As you now know,
1t has to be PULLed off. PULL seemed quite a logical alternative to me,
and I knew the word was going to be needed for the tree trunk! But she
fel~ that PEEL was the response most people would give, and became
quite baff_le? wh~~ it wouldn't work! I have deliberately left this part of the
program in its original form for two reasons. You may care to test this out
on someone to see if you get the same reaction, or perhaps get some
practice in by adding the verb PEEL to the vocabulary!

Another question in my own mind, is whether the recognition word for
the tree after it has been felled should be changed to TRUNK, ratherthan
left as TREE?

':<. number of other errors in the program have come to light whilst
writing the chapters describing how the program works, when I have had
!O look very closely at the listing. For example, in line 120, I had
inadvertently typed a 3 instead of a 4, in

IF C%(7)=4 AND .. .

. T~is would ~ave meant the "taking the open umbrella indoors" trap
d1dn t work. This error wouldn't have been serious from the point of view
of the player, who would merely have been unaware of the existance of
the trap. But it would have meant one less feature in the plot. The reason I
had not found the problem during testing, was that I was too keen to
prove the whole game worked, forgetting this part was there to check out!

Another point of which to take note when watching other people play, is
any comment they might express such as "I thought I would be able to
!ish in the moat!" A quite innocent comment like this might lead to a major
improvement in the game! Perhaps the axe was too easily available,
placed as it was in the hands of the player- he might have said "CHOP
TREE" without realising he needed an axe, let alone being aware that he

91

was already carrying one! So why not provide him with a fishing rod in the
kitchen, and let him fish the moat and end up catching a slime-covered
axe!

Before any improvments like this are put into effect, give careful
consideration to whether the scale of changes required to the program is
balanced by the degree of resulting improvements to the game. The two
are not necessarily in direct relationship!

You should look critically at the speed of the game, the delay between
pressing ENTER and receiving the prompt for more input. If this is
tiresomely long, then make sure you have used all the devices
suggested in the section on "saving time". Try defini~g ~he most con:i~on
variables first - I haven't deliberately set out to do this m the game hstmg
- experiment to see whether it makes a noticeable difference on yo~r
particular computer. All that you will need to do to change the order m
which the variables are defined, is to insert a line at 15, and in the order of
the frequency of their use, set each variable equal to zero if numeric, null
if string. Move the string search subroutine and any others that are
frequently called up to the beginning of the program, and ~ut in a GOT~
to bypass it into the main program. Again, redundant or optional code will
slow the execution down, however minutely- so zap it!

If you are still not satisfied with the speed, then give consideration to
writing a machine-code subroutine to replace the Basic string search
subroutine. This subroutine can be called up to 3 times for every
command the player gives, so a small saving here would pay dividends.

When you are satisfied that you can improve no more, then is the time
to make a polished version. Keep what you already have in case you
need at any time to go back to it, load it in the machine, and go through
the program deleting all the remarks. Look for line numbers ending with a
9, and zap them! As we pointed to the line numbers immediately after the
remarks, no damage should be done by deleting them. If you have the
facility of a renumber utility now you can renumber the program,
preferably in increments of 1, starting at 10. This in itself will test for
Undefined Line errors and report back to you on where they are. If any
are found, look at the resulting program, decide where the problem lies,
and go back to correct your original version before proceeding further.

Now for the finishing touch - use the spare line numbers up to 10 to
add your own titles and instructions to the game! If you are too short on
memory to do this, then providing you have a DELETE command in your
Basic - all is not lost! The last line of text in the instructions can read:

9 PRINT"TYPE 'RUN' AND PRESS 'ENTER' TO
CONTINUE" : DELETE 1 - 9

effectively clearing the space taken up by the titles!
Another way of providing titles and instructions if memory is short, is to

write these as a short separate program ending with:
.. . PRINT"KEEP CASSETTE ON. TYPE <RUN> AND PRESS
< ENTER> WHEN PROMPT APPEARS" : CLOAD

92

Some micros will do this automatically, so there is no need for the
PRINT statement. If a Spectrum program is saved to LINE nnn, then
LOAD at the end of the instructions will automatically load and execute it.
The BBC "CHAIN" statement will do the same for that micro, without the
need for special saving.

As soon as the instructions have been paged through, the CLOAD (or
whatever keyword your machine uses to load a program from tape) will
automatically start the tape running again, this time loading the main
program, which, of course, you must record directly after the introd~ction
program. Be careful to include a warning, if necessary, for those without
motor control on their cassette recorders.

If you now have a game popular with friends and family, you might
consider the possibility of getting it published. Before you do so, ask for
some really honest opinions about it in comparison with other Adventure
games available commercially. If the answers are encouraging, then
give it a try! Making and distributing your own copies, and th~ necessary
advertising involved will tie you, your computer and your finances up.
Although you will make a greater proportion of the selling price than
through royalties, the easier way to start out is to find a publisher. Pick a
reliable software house that carries games programs for your system
and advertises well, and write off with a brief synopsis of your game,
requesting, if they are interested, details of the percentage of th~ re!ail
price payable as Royalties. (Be sure to subtract VAT from the retail pr!ce
before calculating how much this is worth per copy sold!) Royalt1~s
should be upwards of 10%. If your ambitions don't stretch as far as this,
try submitting a listing of the program for publication in a popular
computing magazine. . . .

I hope that what I have written has given you the programming m~1ght
to enable you to write an Adventure. I hope also you have gamed
sufficient inspiration to go ahead and write your own. I wish you the best
of luck in your efforts, look forward to playing and possibly reviewing your
Adventures in the future!

93

94 I

APPENDIX 1
Demonstration Program Listing

5 CLEAR 500 : REH CLEARS S TRING SPACE. CHECK IF NEEDED.
6 REH DEFSTRDrErLrOrOrVrW : DEFlNTI-KrCrPrS : REM IF USED OMIT z

AND $ SIGNS FROM VARIABLE NAMES
10 OIHL$(10>rE$(10>rD$(10>r0$(10>rPZ<10lrC/.(10),Q$C8>,V$(8)
2 0 FOR IX=O TO 10 : READ L$(IZ>rE$CIZ)r0$CIZ> : NEXT IZ : FOR I/.
=OTO 10 I READ 0$CIX>rPZ<IZ)rCZ< I X> : NEXT I /.
5 0 LET PNX•O I LET INZ• 1 : LET CTZ=O : LET 0$(2) = 'HOW 00 I GET O
UT OF HERE ?' : LET A$='RUN'
60 LET WV$='TAKDROLOOEXAPULCHOOPECLOTIEJUHSWIEAT'
70 LET WG$='NORSOUEASWESUP DOWOUTDOOSTALADENTCOTROPTRE '
80 LET WO$•'NSEWUDOAFGBCHJ'
90 LET WN$='AXEPAPLUNTREENTROPCROUHBDOOSTALADAROCUPCASDOWHOA'
99 REH •••• START OF MAIN PROGRAM LOOP •••••
100 IF PCX> O THEN LET PCZ=PCX+1 : LET PZ<3>=PNZ : IF PC/. =3 THEN
LET PCX=O
110 IF CXC3)=-2 AND PNX=5 AND PZC3>=1 THEN LET PX13>=9 : LET 0$C
3)='TREE' : LET CXC3>= - 1 I LE.T Q$C3> = "00PS! TREE JUST FELL IN MO
AT!'
12 0 IF CZC7>=1 AND PNZ <3 AND PZC7) =55 THEN LET PNZ =10 : LET Q$(1
>= 'OPEN UMBRELLA INDOORS?' : LET Q$(3)='DEAD UNLUCKY!'
130 IF CPX<7> <>55 OR CZC7>=2> AND <PN/.=3 OR PNX=1 OR PNX =9> THEN

LET CRZ=CRX+1 ELSE LET CRX = O
110 IF CRX>O THEN LET Q$(1) = 'IT'S RAINING!' : IF CRZ =S THEN LET
Q$(3) = 'I'LL CATCH HY DEATH!'
150 IF CRZ=7 THEN LET PNZ=10 : LET Q$12>='I CAUGHT HY DEATH'
200 FOR IZ=1 TO LENCE$CPNX>>
210 IF MIDCECPNZ>rIXr1) = 'N' THEN LET EX$ =E X$+'NORTH, '
220 IF HIDtCEtCPNX>rIXrl) • ' S ' THEN LEl fX$ •~X$+'SOUTH, •
230 IF HIDtCEtCPNZ>rIZrl) = 'E' THEN LET EX$ =EX$+'EAST. '
210 IF MIDtCE$CPNZ>rIZr1) = 'W' THEN LET EX$=EX$+'WEST. •
250 IF HI0CECPNZ>rlXrl) = 'U' THEN LET EX$=EX$+'UP. '
260 IF HIOtCE$CPNX>rIZr1) = '0' THEN LET EXt=EX$+'DOWN. '
270 IF HIDCECPNX>rIZr1) = '0' THEN LET EX$=EX$+'0UT . '
280 NEXT IX
2 90 LET IIX=O I FOR IX = O TO 10 : IF PZ<IZ> =PNZ THEN LET OS$ =0$(I
X> ELSE NEXT IX : GOTO 330
310 IF LEN(V$CIIX>>+LENIOS$) (61 THEN LET V$< I IX> =V$(!IZ>+OS$+',
' : LET OS$='' ELSE LET IIX=IIX+1 : GOT0310
320 NEXT IZ
33 0 CLS : PRINTL $ (PNX> : PRINT : PRINT• SOME EXITS ARE I ' : PRINT
EX$: REH IF SCREEN WIDTH > 32 INSERT <"I AM •; > AFTER 1ST PRINT
310 PRINT'I CAN SEE :• : FOR IX=O TO 8 IF V$<IZ> <> "' THEN PRIN
TV$CIZ>
350 NEXT IX
360 PRINT : PRINT'- - - ---> YOU SAIO •;A$ PRINT FOR I Z= l TO 3
IF Q$(IX> <> "' THEN PRINT Q$(IZ>

370 NEXT IX
3 80 PRINT: PRINT"- - --- - -->WHAT Now·;

95

390 FOR IZ=O TO 8 : LET V$<I ::O= " : LET ca<I:o; •. : NEXT rz LE
T A$=•• : LET Al$='' : LET A2$= '' : LET A3$ = '' : LET A'l$ "" '' LE
TEX$='' : INPUT A$
400 IF LENCA$)(3 THEN '10000 ELSE LET A2$=LEFT$CA$r3l
'105 IF A2$= 'INV' THEN GOTO 4000 ELSE IF A2 $= 'SCO' THEN GOTO 5000

ELSE IF A2$ • 'HEL' THEN GOTO 6000 ELSE IF A ~ $ ~ ·aur· THEN GOTO 70
00 ELSE IF A2$='JUM' THEN GOTO 14000 ELSE IF A2$= 'SWI' THEN GOTO

15000
410 LET JZ=O : FOR IZ=l TO LENCA$) : IF MI0$CA$rIZ,1> = ' ' THEN J
Z:=IZ
420 NEXT IZ : IF JZ• O THEN GOTO 10110 ELSE LET Al~=LEFT$ CA$rJZ-1
) : LET A3$=RIGHT$CA$,LENCA$l -JZI : LET A'l$ =LEFT$(A3$r31
430 IF Al$='GO' THEN GOTO 1000
440 LET X$=WV$: LET Y$=A 2 $: GOSU8 350 00 : IF JZ =O THEN LET Q$C
21='I DON'T KNOW HOW TO '+A1$: GOTO 100 ELSE LET f(l Z=C JX-11/3+1
150 LET X$ =WN$: LET Y$ =A4$: GOSUB35000
460 IF JX=O THEN LET Q$(21='WHAT rs A '+A3$+' ?' : GOTO 100
470 LET K2Z=<JZ-ll/3
489 REM •••• FOUND BOTH WORD S - GOTO VERB ROUTINE ****
190 ON KlZ GOTO 2000r3000r8000,8000,9000,10000,11000,1 2 000,13000
,14000.1sooo.16000
999 REM **** GO ••••
1000 LET X$ • WG$: LET Y$=A'l$: GOSUB 35 000 : IF JZ = O THEN GOTO 4
0010 ELSE LET X$=E$CPNX> : LET Y$=MID$(WQ$,(J%-11/3+1,1l : GOSUB

35000 : IF JZ=O THEN GOTO 40010 ELSE LET PNZ =VAL<MI0$(D$(PNX>•<
JZ-1 >•2+1,2> > : GOTO 40020
1999 REM •••• TAKE ****
2000 IF K2Z> 10 THEN GOTO 1oojo ELSE IF PZCK2Z)=55 THEN GOTO 4001
0 ELSE IF PXCK2Zl <> PNZ · THEN GOTO '100 5 0 ELSE IF CZ CK 2Zl=-2 THEN G
OTO 40000 ELSE IF CXCKZZ> =- 1 THEN GOTO 40060 ELSE IF CZCK2Z)=3 T
HEN GOTO 40080
2 010 IF INX >4 THEN LET Q$ C21= 'I'M OVERLOADED ALREADY!' : GOTO 10
0 ELSE LET INZ=INZ+l : LET PX<K2Z>=55 : GOTO 40020
2999 REH **** DROP ****
3000 IF K2X > 10 THEN GOTO 40070 ELSE IF PZ <K2X> <> 55 THEN GOTO '100
70 ELSE LET INZ=INX - 1 : IF PNX =7 THEN LET PZ<f(2/.1 := 88 : LET Q$C2l
='IT FELL OFF INTO THE MOAT' : GOTO 100 ELSE LET PZCKZZ>=PNZ : G
OT040020
3 999 REH •••• INVENTORY ****
4000 LET 0$C21::'I AM CARRYING: ' : LET J% =2 : FORI/. =O TO 10
4010 IF PZ<IZl=55 THEN IF LENCQ$CJX>l+LENCO$CIZll > 61 THEN LET
JX=JX+l : GOTO 4010 ELSE LET Q$CJZ>=Q$(JZ)+0$CIZI+', '
1020 NEXT IX : GOTO 100
4999 REM •••• SCORE ****
5000 IF PXC6l = O THEN CLS : PRINT' CO NGRA TULATIONS! ' : PRINT' YOU

HAVE COMPLETED YOUR QUEST!' : ENO ELSE LET Q$(2) = 'NO SCORE YET!
' : LET Q$(31='RETURN WITH THE TREASURE!' : GOTO 100
5999 REM **** HELP ****
6000 ON PNZ+l GOTO 6010,6040,6040,6040r6020r6030,6040,6050r6060r
6040r6070
6010 LET Q$(2l='ISN'T THE WALLPAPER LOVELY?' : GOTO 100
6020 LET 0$C21='A BRIDGE COULD PROVE USEF UL' : GOTO 100
6030 LET Q$(21='MUST BE ANOTHER WAY BACK , ,• : GOTO 100
6040 LET Q$C2l='EXAMINE THINGS & AND LOOK AROUND' : GOTO 100
6050 LET Q$(2)='THE ONLY WAY SEEMS TO BE DOWN' : GOTO 100
6060 LET Q$C2l="TRICKY ISN'T IT?' : GOTO 100
6070 LET Q$(21 = 'TRY <BREAK > ANO <RUN > !' : GOTO 100
6999 REM **** QUIT ****

96

7000 CLS : IF PZC6l m0 THEN PRINT'YOU HAVE COMPLETED THE GUEST' E
LSE IF PXC6><>99 THEN PRINT'YOU WERE NEARLY THERE!' ELSE PRINT'B
ETTER LUCK NEXT TIME!'
7010 ENO

7999 REM **** LOOK/ EXAMINE ****
8000 IF K2X <> 11 THEN GOTO 8110 ELSE ON PN/.+1 GOTO 8010r8110r8l
10.a110,0020.ao30,0010,ao50,0020.0110,ao60
8010 IF CX<ll < 0 THEN LET Q$(2l='THE WALLPAPER'S PEELING' : GOT
0 100 ELSE GOTO 8110
9020 IF PX<3l <> PNX THEN LET Q$(2l = 'MOAT IS FULL OF POISONOUS S
LIME' ELSE LET 0$(2)='THE TREE MAKES AN IDEAL BRIDGE'
8021 GOTO 100
8030 LET 0$C2l='TREE HAS SLIPPED INTO THE MOAT" : GOTO 100
8010 IF CX<6>=2 THEN GOTO 8110 ELSE LET CXC61=2 : LET L$C6l=L$C6
)+' WITH A CUPBOARD' : LET Q$(2)='I JUST NOTICED SOMETHING' : GO
TO 100
8050 LET Q$C2l•'I DON'T FEEL LIKE JUMPING , ,• : GOTO 100
8060 LET 0$C2l='I'M IN AN INFINITY OF MISERY' : GOTO 100
8110 IF K2X=2 THEN IF PX<2>< >55 THEN GOTO 40070 ELSE LET Q$C2l='
LOOKS A BIT EVIL TO HE' : GOTO 100
8120 IF K2X=13 AND CPNX::6 OR PNZ=4> THEN LET 0•<2l = 'I'D DROWN IN
IT' : GOTO 100

8130 IF K2X=11 AND PNX=6 THEN LET 0$C2> = 'A FALL WOULD BE FATAL'
: GOTO 100
8110 LET Q$(2)='I SEE NOTHING SPECIAL' : GOTO 100
0999 REH **** PULL ****
9000 IF K2%=1 THEN GOTO 902d ELSE IF K2X <> 3 THEN GOTO 40090 ELSE

IF PX<3><>PNX THEN COTO 40050 ELSE IF CX<31=3 THEN GOTO 9010 EL
SE GOTO 40090
9010 IF PNX•1 THEN LET CZC31=-2 : LET 0$C3l = 'TREE TRUNK CROSSING

HOAT' I LET Et<1l•Et<4l+'J' : LET PCZ• O : GOTO 10020 ELSE LET P
CZ=1 : GOTO 10020
9020 IF PNX<>O OR CX<t> <>- 1 THEN GOTO 40090 ELSE LET C/.C1l=2 : L
ET PZ=O : LET E$COl = 'A' : LET Q$(2l = 'IT JUST FELL OFF!' : GOT
0 100
9999 REH **** CHOP ****
10000 IF PX<0> <>55 THEN LET 0$C2>='HAVEN'T GOT A CHOPPER' : GOTO

100
10010 IF PNX=O THEN LE~ Q$(2)='YOU WON'T GET OUT BY FORCE!' : GO
TO 100
10020 IF K2Z=3 THEN IF PNX=9 AND CZ<3>= - 1 THEN LET CZ(31=3 : LET

0$(3)='TREE TRUNK' : LET QSC3>='TIMBER!' : GOTO 40020 ELSE GOTO
10090

10030 IF K2Z=3 THEN GOTO 40050
10040 GOTO 40020
10999 REM •••• OPEN ****
11000 IF K2X=7 THEN GOTO 11020 ELSE IF K2t. <> 12 THEN GOTO 40000 E
LSE IF PNX<>6 THEN GOTO 40050 ELSE IF ~/.C61 <>99 THEN LET 0$<21 • '
ALREADY OPEN' ELSE LET PZC61=6 : LET 0$C21 = 'LOOK WHAT I'VE FOUND
! •

97

1101 0 GOTO 100
11020 IF PXC7><>55 THEN GOTO 40070 ELSE IF CZC7> >2 THEN GOTO 400
90 ELSE LET CXC7l=4 : LET 0$C7l•"OPEN UMBRELLA" : GOTO 40020
11999 REH •••• CLOSE ••••
12000 IF K2Z<>7 THEN GOTO 40000 ELSE IF PZC7> <>55 THEN GOTO 4007
O ELSE IF CZC7l =2 THEN GOTO 40090 ELSE LET CZC7l • 2 : LET 0$C7l="
ROLLED UMBRELLA" : GOTO 40020

12999 REH •••• TIE ••••
13000 IF K2Z()5 THEN GOlO 10000 ELti~ l~ ~%(~) ~; ~~ THEN GOTO 1007
0 ELSE IF PNZ< >7 THEN GOTO 40100 ELSE LET CZC5> =-2 : LET PZC5l =7

: LET INZ=INZ-1 : LET 0$C5l=O$C5l+" HANGING OVER PARAPET " : LET
E$C7l=E$C7l+"H" : GOTO 40020

13999 REM •••• JUMP ••••
11000 IF PNZ•7 THEN GOTO 14010 ELSE IF PNZ • B THEN GOTO 14020 ELS
E LET Q$(3)•"BOUNCE! BOUNCE!" : GOTO 40020
11010 LET PNX=10 : LET 0$C2l="SUCKED INTO MOAT 'S EVIL SLIME " : G
OTO 100
11020 IF CZC5>=-2 THEN GOTO 14010 ELSE LET CZ<S> =-2 : LET PNZ =4
: LET 0$C3l = "OVER SAFE GROUND" : GOTO 10020
11999 REH •••• SWING ••••
15000 IF PNZ <>B THEN LET Q$C2l•"YEAH MAN!" : GOTO 100 ELSE LET C
ZC5l=-3 : GOTO 10020
15999 REH •••• EAT ••••
16000 IF K2Z<>2 THEN GOTO 10030 ELSE IF PZC2> <>55 THEN GOTO 4007
0 ELSE LET PNX=lO : LET Q$C3l="IT WAS POISONED!• ! GOTO 10020
31999 REM •••• INSTRING SUBROUTINE ••••
35000 LET JZ=O : FOR IZ=l TO LENCX$) STEP LENCY$l : IF Y$= MID$CX
$rIZrLENCY$)) THEN JZ=IZ ! LET IZ=LENCX$l
35010 NEXT IZ ! RETURN
39999 REM •••• STANDARD REPLIES •••••
10000 LET Q$C2l="IHPDSSIBLE! • ! GOTO 100
10010 LET Q$C2l="I CAN'T GO '+ A3$: GOTO 100
10020 LET Q$(2)•"0K" : GOTO 100
'10030 LET Q$(2) = "DON'T BE ABSURD!' : GOTO 100
10010 LET 0$C2)="I'M ALREADY CARRYING IT!" : GOTO 100
'10050 LET Q$(2)="I DON'T SEE IT HERE" : GOTO 100
10060 LET Q$(2)="I CAN'T - YET!' ! GOTO 100
'10070 LET Q$C2)="I'M NOT CARRYING IT!• : GOTO 100
10080 LET Q$C2>="YOU MUST BE JOKING!• : GOTO 100
'10090 LET Q$(2)~"0K - NOTHING HAPPENS" : GOTO 100
'10100 LET Q$C2l="IT SLIPS OFF" : GOTO 100
10110 LET 0$C2l="HUH?' : GOTO 100
50000 OATAIN A SMALL ROOKrrl•rIN A DIMLY LIT HALLWAYrSWOr0•2•3•r
IN THE KITCHEN OF A COTTAGErEr1•,0UTSIOE A FOREST COTTAGErNECr9•
1•1•rBY THE MOAT OF A CASTLErWr3•5•
50010 DATAIN A CRUMBLING CASTLErUFr6•6•rIN A TOWER ROOMrDFUGr5•5
•7•7•rON A PARAPET AT TOWER TOPrDr6•8•rHANGING ON ROPE ABOVE MOA
TrUr7•rIN THE FORESTrNESWr9•9•3•9•rDEADrNESWU0,101010101010
50020 DATAAXEr55r2rWALLPAPERr0r - 1rPACKED LUNCHr 2 r2rTR EE r9r - lrENT
RANCErSr-2rROPErOr2r•PRICELESS CROWN•r99r-2rROLLED UMBRELLAr1r2r
DDORr99r-2rSTAIRSr5r-2rIRON LADDERr6r-2

98

APPENDIX2
List of Variables Used in the Listing

Note· Some of the string variable names have been changed for the
Spe~trum version. See Chapter 8 for details. All Spectrum arrays are
dimensional to 1 higher than shown here.

String Variables - Simple
A$ Player's input command
A 1 $ 1st word of player's command
A2$ 1st 3 letters of 1st word of player's command
A3$ 2nd word of player's command
A4$ 1st 3 letters of 2nd word. of playe~·s command
EX$ List of exits from a location, for display .
OS$ Temporary storage of visible object for display
WD$ String of exit codes
WG$ String of 1st 3 letters of valid directions
WN$ String of 1st 3 letters of valid objects and nouns
WV$ String of 1st 3 letters of valid v~rbs
X$ Target string in search subroutine .
Y$ String searched for in search subroutine

String Variables - Arrays (dimensions shown in
brackets)
0$(10)

E$(10)
L$(10)
0$(10)
0$(8)
V$(8)

Location numbers of possible destinations
location, expressed in a string. .
Codes for possible exits from a location
Location descriptions
Object descriptions
Computer replies to play~r
Used to display visible ob1ects

99

from a

Integer Variables - Simple
CT% Count of number of turns
1% Loop counter
11% Temporary use for display of objects
IN% Number of items in player's inventory
Jo/o Returns value from string search subroutine
K1 % Sequence number of valid verb
K2% Sequence number of valid noun
PC% Flag to indicate if PULL TREE has been commanded
PN% Current location number of player

Integer Variables - Arrays
C%(10) Object flag controlling takeability of object
P%(10) Current location of each object
No/o Spectrum only - text length of objects.

100

APPENDIX3
Line Numbers and Blocks

Note: The BBC and Spectrum have maximum line numbers of 32767 and
9999 respectively. See listings for those micros to determine line layout.

Block 1.
Lines 5-10
Laying out the ground for the program to operate in:
CLEAR string space. (on micros requiring space to be cleared)
DEFine variable types. (string, integer etc. where the particular micro

has the facility.)
DIMension arrays. (tell the computer how many elements there will be

in each array)

Block2.
Lines 20-98
READ in DATA statements and/or directly assign variables.

Block3.
Lines 100-399
This is the start of the main program loop, and communication with the
player:
Check for special conditions.
Clear Screen.
PRINT screen display.
Reset input/output variables to null.
Await INPUT.

101

Block4.
Lines 400-998
Interpret player's communication with the computer:
Decode verb and noun.
If either are invalid singly or in combination set reply accordingly and
return to block 3.
ELSE GOTO block 5.

Block 5.
Lines 1000-34998
Execute the plot:
This block comprises a number of routines, one for each valid verb. Each
routine may alter game variables, and either sets a reply and returns to
block 3, or if the reply is a common one, goes to block 6.

Block 6.
Lines 3500-39998
String search subroutine.

Block 7.
Lines 40000-49998
Sets standard replies.

Blocks.
Lines 50000-
DAT A statements for locations and objects.

102

\

APPENDIX4
Spectrum Listing

I BORDER b: PAPER 6: INK 2: CLS : 60 TO 7
7 LET a$= ""
8 LET ac=0

10 DIH Ut11.32l: D!K e$l11.bl: DIM d$(11.12l: OIH o$(11.32l:
DIH o (Ill: DIH c: (1 ll: DI" n (Ill: DIH q$(9 .Ml: DIH vf 19.321

20 FOR i=I TO 11: READ Ulil.e$1il,d$(il: NEXT i: FOR i=I TO I
1: READ 0$ (i) , o (i l , c: Ii l , n (1 l : NEXl i

50 LET on=0: LET in=!: LET c:t=0: LET a$(21= 0 How do I qet out o
f here?' : LET a$="run •

b0 LET uf= "takdrolooexaauic:hoopeclotieju1swieat "
70 LET f$="norsoueaswesup dowoutdoostaiadentc:otroptre"
80 LET tf="nsewudoafabchj"
90 LET z$='axepapluntreentropc:rou1bdoostaladarocupc:asdow1oa•
99 REK ff5tart of 1ain proqra1 loopff

100 IF pc:)0 THEN LET pc:=pc:+I: LET p(4J=pn: IF pc:=3 THEN LET p
c=e

110 IF c(4l=-2 AND on=S AND pi4l=4 THEN LET p(4l=9: LET o$(4l=
"Tree": LET n!4l=4: LET c(4l=-1: LET q$(4i="Oops! Tree just fell
in 1oat! 1

: LET e$15l="w"
120 IF c(8l=4 AND pn(3 AND p(8l=55 THEN LET pn=10: LET q$(2l='

Open u1brella indoors?": LET q$(4l="Dead unluckv!'
130 IF (p(81<>55 OR c!Bl=2l AND !pn=3 OR pn=4 OR pn=9l THEN LE

T cr=cr+I: 60 TO 140
135 LET c:r=e
14i IF cr>i THEN LET q$12l='It ' s rainina!': IF cr=5 THEN LET

q$(4l='I ' ll catch IV death!"
150 IF cr=7 THEN LET pn=ti: LET q$(3l="I cauqht 1v death'
20i FOR i=I TO LEN (e$(pn+lll
210 IF ef(pn+l,il='n' THEN LET q$=q$+ 1 North. 1

22i IF e$(pn+l,il=1 s1 THEN LET g$=g$+"South."
23i IF e$(pn+l,il="e' THEN LET q$=q$+ 1 East.•
240 IF eflpn+l,il=1 w1 THEN LET q$=a$+"West.•
25& IF e$(pn+l,il="u' THEN LET g$=q$+"Up.'
260 IF e$lpn+l,il= 1 d1 THEN LET g$=q$+"Down.•
27& IF e$(pn+l,il= 1 0 1 THEN LET q$=q$+ 1 0ut.•
28& NEXT i

103

199 LET n=9: LET ii=9: FOR i=9 TO 1B: IF p(i+ll=on THEN 60 TO
319
399 NEXT i: LET n=ii+l: 60 TO 339
31B IF n+n(i+ll<29 THEN LET v$(ii+1l=v$(i1+ll i! TO nl+o$(i+1J (

1 TO n(i+l)J+•, ": LET n=n+2+n(i+li: 60 TO 328
315 LET n=9: LET ii=ii+l: 60 ;n 31B
329 NEXT i: LET n=ii •t
339 CLS: PhrNT INK B;l$1pn+1J '' 'So1e exits are:"; INK 2; ' q$
340 PRINT INK 0; ' 'I can see: ' : FOR i=l TO n: PRINT ;v$1il
351J NEXT i
368 PRINT '' INK e;•------ >Vou said '; INK 2;a$' ': FOR i=l TO 3

: IF q$li+lJ() 1
• AND q$(i+l,1J()" 1 THEN PRINT INK 2;q$1i+l)

37B NEXT i
38B PRINT INK B: '' -------->": FLASH l;"Nhat now?";
39B FOR i=l TO 9: LET v$lil=" 1

: LET Qflil=" ' : NEXT i: LET a$= 11

: LET h$= 11
: LET if="': LET j$="": LET k$= 11

: LET q$= 1
': BEEP .2

,2B: INPUT a$: PRINT a$
4BB IF LEN a$(3 THEN 60 TO 4BBB
4BI LET i$=a$(TO 3J
483 IF i$="inv" THEN 60 TO 9BB
4B4 IF i$= 1 sco 1 THEN 60 TO !BBB
4B5 IF if="hel" THEN 60 TO 11BB
496 IF i$='qui" THEN 60 TO 128B
487 IF i$="ju1" THEN 60 TO 2B8B
488 IF i$="swi" THEN 60 TO 2188
418 LET i=9: FOR i=l TO LEN a$: IF a$lil= 1

" THEN LET i=i
420 NEXT i: IF j=B THEN 60 TO 4118
425 LET h$=a$(TO j-1): LET j$=a$(j+1 TO l : IF LEN j$>=3 THEN

LET k$=j$(TO 31
427 IF LEN j$<3 THEN LET k$=j$(TO J
428 IF k$="" THEN 60 TO 4118
439 IF h$="qo• THEN 60 TO bBB
448 LET x$=u$: LET v$=i$: 60 SUB 3588: IF i=B THEN LET b$=q$(3

l: 60 SUB 2: LET b$="1 don ' t know how to "+h$: LET q$13l=b$: 60
TO 188
445 LET kl=(j-ll/3+1
458 LET x$=z$: LET y$=k$: 60 SUB 35BB
46B IF i=B THEN LET q$(3l="Nhat is a "+j$+ 1 ?1 : 60 TO !BB
47B LET k2=!j-1)/3
489 RE" ffFound both words-60TO verb routineff
49& IF kl=l THEN 60 TO 788

104

495 IF k1=2 THEN 60 TO BBB
5BIJ IF k1=3 OR k1=4 THEN 60 TO 13BB
585 IF k1=5 THEN 60 TO 15BB
519 IF k1=6 THEN GO TO 16BB
515 IF k1=7 THEN 60 TO 17BB
52B IF k1=8 THEN 60 TO 18BB
525 IF k1=9 THEN 60 TO 19BB
53B IF k1=1B THEN 60 TO 2BB0
535 IF k1=11 THEN 60 TO 21BB
549 IF k1=12 THEN 60 TO 2200
599 REl1 HqoH
oBB LET x$=f $: LET y$=k$: 60 SUB 35BB: IF j=B THEN 60 TO 401B
blB LET x$=e$(pn+l): LET y$=t$11j-1 J/3+1l: 60 SUB 350B: IF j=B

THEN 60 TO 4B1B

B

615 IF on=lB THEN 60 TO 4920
b2B LET pn=VAL ld$!pn+ll ((j-1Jt2+1 TO !j-llf2+2ll: 60 TO 4B2B
699 RE" tttTaketff
7BB IF k2>1B THEN 60 TO 403B
705 IF plk2+1l=55 THEN 60 TO 4040
718 IF plk2+1J()pn THEN 60 TO 4959
715 IF cfk2+1l=-2 THEN 60 TO 48BB
72B IF clk2+1J=-1 THEN 60 TO 4B6B
725 IF c(k2+1l=3 THEN 60 TO 4BB9
73B IF in>4 THEN LET q$i3l= 1 I '1 overloaded already!': 60 TO 18

735 LET in=in+l: LET p(k2+1l=55: 60 TO 4B2B
799 RE" 11Drop11
BBB IF k2>1B THEN 60 TO 4878
819 IF p(k2+1l<>55 THEN 60 TO 4979
82B LET in=in-1: IF pn=7 THEN LET ptk2+1l=88: LET q$13l="It fe

11 off into the 1oat•: 60 TO tee
838 LET p(k2+ll=pn: 60 TO 4828
899 RE" t•lnventorv•1
9BB LET q$(3l="I at carrvinq: ": LET n=15: LET i=2: FOR i=B TO

1B
919 IF pli+1l<>55 THEN 60 TO 928
915 IF n+n(i+1l<29 THEN LET q$lj+ll=q$(j+ll 11 TO nl+o$1i+ll 11

TO nli+lll+", 1
: LET n=n+2+n(i+ll: 60 TO 928

917 LET j=j+l: LET n=B: 60 TO 915
92& NEXT i: 60 TO lBB
999 RE" ftscoreff

105

1008 IF p(/l =B THEN CLS : PRINT ' Conaratulations 1•·•vou have co
tpleted vour quest 1": STOP
t0t0 LET q$(J)="No score vet! ": LET q$l4l="Return with the treas
ure!': 60 TO tee
t099 REH ttHeJp11
ltt0 IF on+l=l THEN LET q$(3i="Isn ' t the wallpaper lovely?'
tt2B IF (pn+l>=2 AND pn+t <=4l OR pn+1=7 OR pn+1=t0 THEN LET q$(
Jl="Exa1ine thinqs ' look around"
lt30 IF pn+t=5 THEN LET q$(31="A bridoe could prove useful"
tl40 IF pn+l=6 THEN LET q$(3)="Hust be another way back •• "
tl50 IF pn+t=8 THEN LET q$(3)='The only wav seets to be down'
t160 IF pn+l=9 THEN LET q$!3l="Trickv isn ' t it ?"
t170 IF pn+l=ll THEN LET q$!31= 1 Try ~ouit ~ and ~RUN~ !"
1180 60 TO 180
t199 RE" t11Quitt11
1298 CLS : IF p(7l=B THEN PRINT 'You have cotpleted the quest':
60 TO 1259

t219 IF p(7)(}99 THEN PRINT "You were nearly there!": 60 TO 125
ll
1220 PRINT "Better luck next tite!'
1250 STOP
1299 RE" 111Look/exatine111
1300 IF k2 <> 11 THEN 60 TO 1419
1392 IF (pn+t>=2 AND pn+1<=4l OR on+l=tB THEN 60 TO 1418
1384 IF !pn+t)=5 AND pn+l<=81 THEN 60 TO ((pn-2itl01+1390
1396 IF pn+1=9 THEN 60 TO 1329
1398 IF on+1=11 THEN 60 TO t369
t310 IF cl2l<0 THEN LET oSIJ)="The wallpaper ' s peelina •: 60 TO
100
1315 60 TO 14tB
1320 IF pl4l (>pn THEN LET q$(3l='"oat is full of poisonous slit
e ' : 60 TO IHB
t325 LET q$13l="The tree takes an ideal bridae•: 60 TO 108
t330 LET q$(3l="Tree has slipped into the toat': 60 TO 100
t340 IF c(7l=2 THEN 60 TO 14t0
1342 LET c!71=2: LET 1$(7)="ln a tower root with cupboard': LET
q$(3)="I just noticed soaethinq•: 60 TO t08
t350 LET q$(3l="I don't feel like ju1pina .• ": 60 TO 108
t360 LET q$!3l="I ' t in an infinity of 1iserv": 60 TO tee
t4te IF k2=2 THEN IF p(3)(}55 THEN 60 TO 4e1e
t41S IF k2=2 THEN LET q$13l="Looks a bit evil to te": 60 TO 108

106

t420 IF k2=13 AND (pn=6 OR on=4l THEN LET q$(3l="I 'd drown in i
t': 60 TO t00
1430 IF k2=14 AND pn=6 THEN LET q$(3l="A fall would be fatal •:
60 TO t08
t440 LET q$!3l="I see nothinQ special ": GO TO t00
1499 RE" ttoulltt
t500 IF k2=1 THEN 60 TO 1520
t502 IF k2<>3 THEN 60 TO 4090
1504 IF p(4l<>on THEN 60 TO 4050
1506 IF cl4l=3 THEN 60 TO 1510
1508 60 TO 4090
15t0 IF on=4 THEN LET c(4)=-2: LET o$(4)="Tree trunk crossina 1
oat': LET n(4l=24: LET e$ 15l="wj" : LET pc=0: 60 TO 4020
t515 LET pc=l: 60 TO 4020
1520 IF pn()0 OR c(2l<>-1 THEN 60 TO 4090
1530 LET c 121 =2: LET p(9l =0: LET e$lU="a": LET o$ (3l ="lt Just f
ell off!': SO TO 100
t599 REH ttChoptl
1600 IF p(ll<>55 THEN LET a$ (3l=" Haven ' t aot a chopper ' : SO TO
100
!b10 IF on=0 THEN LET q$(3l= 'Vou won ' t aet out bv force!": 60 T
0 100
t620 IF k2=3 THEN IF pn=9 AND cl4l=-I THEN LET cl4l=3: LET 0$(
4l="Tree trunk": LET n!4l=l8: LET o$!4l="Ti1ber!': 60 TO 4020
lb25 IF k2=3 THEN IF pn(}9 AND c(4) (}-I THEN 60 TO 4098
1638 IF k2=3 THEN 60 TO 4050
1640 60 TO 4820
t699 RE" ttopentt
1788 IF k2=7 THEN 60 TO 1720
1702 IF k2<>t2 THEN 60 TO 4808
1704 IF pn()6 THEN 60 TO 4850
1706 IF p(7) ()99 THEN LET q$ (3l ='Alreadv open ' : 60 TO t7t0
1788 LET p(7l=b: LET q$(3l= "Look what I ' ve found 1 "

1710 60 TO U0
1728 IF p(8) (}55 THEN 60 TO 4870
1730 IF c(8l >2 THEN 60 TO 4098
1748 LET c!8l=4: LET o$(8l="Open u1brella ": LET n(8J=13: 60 TO 4
028
t799 REM 1ttClosetti
1800 IF k2<>7 THEN 60 TO 4000
1810 IF ol8l \)55 THEN 60 TO 4870
1820 IF c(8l=2 THEN 60 TO 4090

107

1830 LET c18l=2: LET o$18l="Rolled u1brella": LET n(8l=l5: 60 TO
4020

1899 REH tttTiettt
1900 IF k2<>5 THEN 60 TO 4000
1910 IF p!6)<>55 THEN 60 TO 4070
1920 IF pn<>7 THEN 60 TO 4100
1930 LET clbl=-2: LET p!61=7: LET in=in-1: LET o$161= "Rope hanQi
ng over parapet": LET n(61=25: LET e$(8l="dh": 60 TO 4020
1999 REH tttJu-pttt
2000 IF pn=7 THEN 60 TO 2010
2005 IF pn=B THEN 60 TO 2020
2007 LET Q$(41='Bounce! Bounce!": 60 TO 4020
2010 LET pn=10: LET q$(3l= ' Sucked into 1oat 's evil sli1e•: 60 TO

100
2020 IF clbl=-2 THEN 60 TO 2010
2030 LET c!61=-2: LET pn=4: LET q$(4)='0ver safe Qround": 60 TO
4020
2099 REH tttSwinottt
2100 IF pn< >B THEN LET q$(31="Yeah 1an!": 60 TO 100
2110 LET cl61=-3: 60 TO 4020
2199 REH tttEatttt
2200 IF k2<>2 THEN 60 TO 4030
2210 IF p13l <>55 THEN 60 TO 4070
2220 LET on=l0: LET o$!4l="It was 001soned 1" : SO TO 4020
3499 REH ••Instrino subroutine••
3500 LET j=0: FOR i=I TO LEN x$ STEP LEN vs: IF y$=x$(i TO 1+((L
EN v$1-lll THEN LET j=i: LET i=LEN x$
3510 NEXT i: RETURN
3999 REH •••Standard repliesttt
4000 LET a$(31="11possible ' : 60 TO 100
4010 LET q$ 131="I can ' t qo "+j$: 60 TO 100
4020 LET Q$!31="0K": 60 TO 100
4030 LET a$131="Don ' t be absurd'": 60 TO 100
4040 LET q$!31= 1 ! '1 alreadv carryina it!": 60 TO 100
4050 LET q$(31="I don ·t see it here": 60 TO 100
4060 LET q$!31="1 can ' t - vet!": 60 TO 100
4070 LET q$131="I '1 not carryina it!": 60 TO 100
4080 LET q$131="You 1ust be jokina!": 60 TO 100
4090 LET q$!31="0K - nothina happens": 60 TO 100
4100 LET q$(31="1t slips off": 60 TO 100
4110 LET q$131="Huh?": 60 TO 100

108

9500 DATA 'In a s1all roo1•,••,•1 ',"In a di1ly lit hallway','sw
o",'0 2 3 '."In the kitchen of a cottaqe•,•e•,•1 ",'Outside a fo
rest cottage',"nec",'9 4 I ','By the 1oat of a castle',"w','3 5

9501 DATA "In a cru1blina castle",'uf','6 b ", "In a tower roo1",
'dfuq•,•5 5 7 7 •,•on a parapet at tower top','d",'6 8 ', "Hanqin
Q on rope above 1oat•,•u•,•7 ','In the forest", ' nesw•,•9 9 3 9 •
,'Dead",'neswud",'101010101010"
9502 DATA "Axe',55,5,3,"Wallpaper',8,-1,9,"Packed lunch',2,2,12,
1 Tree",9,-1,4,"Entrance",5,-2,8,'Rope",0,2,4,"tPr1celess crown• '
,99,-2,17,"Rolled u1brella",1,2,15,"Door",99,-2,4,"Stairs".5.-2,
6,'Iron ladder".6,-2,11

109

110

APPENDIXS
BBC Listing

10DIML$(10J,E$Cl0l,D$C10l,0$(10l,P%(10l,C%(1
0) , GI$ < 8 l , V$ C 8 l

20 FOR I%=0 TO 10 : READ
L$CI%l,E$CI%l,D$CI%l : NEXT : FOR I%=0 TO 10

READO$ (I%l, P% <I%), C% < I%l NEXT
50PN%=0 : IN%=1 : CT%=0 : PC%=0 : EX$=un

A$=""
60WV$="TAKDROLOOEXAPULCHOOPECLOTIEJUMSWIEATu

70 WG$=uNORSOUEASWESUP
DOWOUTDOOSTALADENTCOTROPTRE"

80 WD$="NSEWUDOAFGBCHJ"
90WN$="AXEPAPLUNTREENTROPCROUMBDOOSTALADAROC
UPCASDOWMOA"

99 REM **** START OF MAIN PROGRAM LOOP

100 IF PC%>0 THEN PC%=PC%+1 : P%<3l=PN%

IF PC%=3 THEN PC%=0
110 IF C%(3J=-2 AND PN%=5 AND P%<3l=4

THEN P%(3)=9 : 0$(3J~"TREEu : C%(3)=-1 :
G1$(3J="OOPS! TREE JUST FELL IN MOAT!u

120 IF C%(7J=4 AND PN%<3 AND P%<7>=55 THEN
PN%=10 : Gl$(1J="OPEN UMBRELLA INDOORS?u
Gl$(3J="DEAD UNLUCKY!"

130 IF <P%<7><>55 OR C%<7l=2> AND <PN%=3
OR PN%=4 OR PN%=9l THEN CR%=CR%+1 ELSE CR%=0

140 IF CR%>0 THEN Gl$Cll="IT"S RAINING!• :
IF CR%=5 THEN Gl$(3J="I"LL CATCH MY DEATH!"

150 IF CR%=7 THEN LET PN%=10 : LET
Gl$<2l="I CAUGHT MY DEATH"

200 FOR I%=1 TO LENCE$CPN%ll
210 IF MID$(E$CPN%l,I%,1l="N" THEN

EX$=EX$+"NORTH. •
220 IF MID$(E$CPN%l,I%,1J=•s• THEN

EX$=EX$+"SOUTH. "
230 IF MIDCECPN%l,I%,1)=•Eu THEN

111

EX$=EX$+ II EAST. II

240 IF MID$(E$CPN%J,I%,1J="W" THEN
EX$=EX$+"WEST. "

250 IF MID$(E$CPN%l,I%,ll="U" THEN
EX$=EX$+ "UP. "

26.0 IF MID$(E$<PN%>,I%,ll="D" THEN
EX$=EX$+"DOWN. "

270 IF MIDCECPN%l,I%,1J="O" THEN
EX$=EX$+ "OUT. "

280 NEXT
29.0 II%=.0 : FOR I%=.0 TO 1.0 : IF P%CI%J=PN%

THEN OS$=0$CI%J ELSE NEXT : GOTO 330
310 IF LENCV$<II%JJ+LENCOS$l <61 THEN

V$CII%l=V$CII%J+OS$+". " : OS$="" ELSE

II%=II%+1 : GOT0310
32.0 NEXT
33.0 CLS : PRINT"! AM ";L$(PN%J : PRINT :

PRINT "SOME EXITS ARE:" : PRINTEX$: REM IF
SCREEN WIDTH> 32 INSERT <"I AM";> AFTER
!ST PRINT CBBC SCREEN WIDTH=4.0 SO INCLUDE>

34.0 PRINT"! CAN SEE:" : FOR I%=0 TO 8:
IF V$CI%J<>"" THEN PRINT V$CI%J

35.0 NEXT
360 PRINT : PRINT" ______ >YOU SAID ";A$:

PRINT : FOR I%=1 TO 3 : IF Q$ (I%J < >"" THEN
PR INT Q$ < I'Y.>

37.0 NEXT
38.0 PRINT : PRINT" ________ >WHAT NOW ";

390 FOR I%=0 TO 8 : V$CI%>="" : Q$CI%J=""
NEXT : A$="" : Al$="" : A2$="" : A3$="" :

A4$="" : EX$="" : INPUT A$
40.0 IF LENCA$l<3 THEN 4.000 ELSE

A2$=LEFT$CA$,3)
4.05 IF A2$="INV" THEN 4.0.0.0 ELSE IF

A2$="SCO" THEN 50.0.0 ELSE IF A2$="HEL" THEN
6.0.00 ELSE IF A2$="QUI" THEN 7.0.0.0 ELSE IF A2$
="JUM" THEN 140.0.0 ELSE IF A2$="SWI" THEN
15000

41.0 J%=.0 : FOR I%=1 TO LENCA$l : IF
MIDCA,I%,ll=" " THEN J%=I%

428 NEXT : IF J%=.0 THEN 2.01.0.0 ELSE
Al$=LEFT$CA$,J%-ll :

112

A3$=RIGHT$(A$,LENCA$J-J%J : A4$=LEFT$CA3$ 3>
' 43.0 IF Al$="GO" THEN 1.0.0.0

44.0 X$=WV$: Y$=A2$: GOSUB 25.0.0.0 : IF
J%=.0 THEN Q$(2J="I DON'T KNOW HOW TO "+Al$
GOTOl.0.0 ELSE K1%=CJ%-ll/3+1

45.0 X$=WN$: Y$=A4$: GOSUB 25.0.0.0
46.0 IF J%=.0 THEN Q$(2J="WHAT IS A

"+A3$+"?" : GOTOl.0.0
47.0 K2%= C J%-1J / 3
489 REM **** FOUND BOTH WORDS _ GOTO VERB

ROUTINE ****
49.0 ON Kl 'Y. GOTO

2.0.0.0,30.0.0,8.0.0.0,8.0.0.0,9.0.0.0,1.00.0.0,11.0.0.0,12.0.0.0,1
3.0.0.0,140.0.0,15.000,16.0.0.0

999 REM **** GO ****
1.0.0.0 }~$=WG$: Y$=A4$: GOSUB 25.0.0.0 : IF

J%=.0 THEN 20.01.0 ELSE X$=E$CPN%J :
Y$=MID$CWD$, CJ%-1J/3+1,1J : GOSUB 25.0.0.0 : IF
J%=.0 THEN 2.0.01.0 ELSE
PN%=VALCMIDCDCPN%l, CJ%-ll*2+1,2>> : GOTO
2.0.020

199.0 REM **** TAKE ****
2.0.0.0 IF K2%>1.0 THEN 20.03.0 ELSE IF

P%CK2%J=55 THEN 2.0.040 ELSE IF P%CK2%J<>PN%
THEN 20.05.0 ELSE IF C%CK2%>=-1 THEN 2.0.06.0
ELSE IF C% \ K2%J=3 THEN 2.0.08.0

2.01.0 IF IN%>4 THEN Q$(2J="I'M OVERLOADED
~LREADY~" : GOTO 10.0 ELSE IN%=IN%+1 :
P%CK2%l=55 : GOTO 2.0.02.0

2999 REM **** DROP ****
30.0.0 IF K2%) 1.0 THEN 20070 ELSE IF

P%CK2%><>55 THEN 20.07.0 ELSE IN%=IN%-l : IF
PN%=7 THEN P%CK2%9=88 : Q$C2l="IT FELL OFF
INTO THE MOAT" : GOTO 1.0.0 ELSE P%CK2%J=PN%
GOT02.0.02.0

3999 REM **** INVENTORY ****
4.0.0.0 Q$C2l="I AM CARRYING: " : J%=2 :

FORI%=.0' TO 1.0
4.01.0 IF P%CI%J <> 55 THEN 4.02.0 ELSE IF

LENC9$CJ%)J+LENCO$CI%JJ > 61 THEN J%=J%+1
GOTO 4.01.0 ELSE Q$CJ%J=Q$CJ%J+O$CI%J+". "

4.02.0 NEXT : GOTO 1.0.0

113

4999 REM **** SCORE ****
5.0.0.0 IF P%(6) = .0 THEN CLS

PRINT"CONGRATULATIONS!" : PRINT"YOU HAVE
COMPLETED YOUR QUEST!" : END ELSE Q$(2)="NO
SCORE YET!" : Q$(3)="RETURN WITH THE
TREASURE! " : GOTO 1.0.0

5999 REM **** HELP ****
6.0.0.0 ON PN%+1 GOTO

6.01.0,6.04.0,6.04.0,6.04.0,6.02.0,6.03.0,6.04.0,6.05.0,6.06.0
,6.04.0,6.070

6.010 Q$(2)="ISN'T THE WALLPAPER LOVELY?"
GOTO 1.0.0

6.020 Q$(2>="A BRIDGE COULD PROVE USEFUL"
GOTO 100

603.0 Q$(2>="MUST BE ANOTHER WAY BACK •• "
GOTO 1.00

6.040 Q$(2)="EXAMINE THINGS ~ LOOK AROUND"
GOTO 1.00

6.05.0 Q$(2)="THE ONLY WAY SEEMS TO BE DOWN"
: GOTO 1.0.0

6.06.0 Q$(2)="TRY<BREAK> AND <RUN> !" : GOTO
l .0flf
6999 REM **** QUIT ****
7.0.0.0 CLS : IF P%(6)=0 THEN PRINT"YOU HAVE

COMPLETED THE QUEST"ELSE IF P%<6><>99 THEN
PRINT "YOU WERE NEARLY THERE!" ELSE PRINT
"BETTER LUCK NEXT TIME!"

7.01.0 END

7999 REM **** LOOK I EXAMINE ****
8.0.0.0 IF K2% <> 11 THEN "8110 ELSE ON PN%+1

GOTO
8.01.0,811.0,8110,8110,802.0,8.03.0,8.04.0,8.05.0,8.02.0
,811.0,8.060

8.01.0 IF C%<1> < 0 THEN Q$(2>=" THE
WALLPAPER IS PEELING " : GOTO 1.0.0 ELSE 811.0

802.0 IF P%(3) <> PN% THEN Q$(2) = "MOAT IS
FULL OF POISONOUS SLIME" ELSE Q$(2>="THE
TREE MAKES AN IDEAL BRIDGE "

8021 GOTO 10.0
8.03.0 Q$(2)="TREE HAS SLIPPED INTO THE MOAT"

: GOTO 100

114

804.0 IF C%<6l=2 THEN 8110 ELSE C%(6l=2 :
L$C6>=L$(6)+" WITH A CUPBOARD" : Q$C2>="I
JUST NOTICED SOMETHING" : GOTO 1.0.0

8.05.0 Q$12l="I DON'T FEEL LIKE JUMPING •• "
; GOTO 1.0.0

8.06.0 Q$(2l="I'M IN AN INFINITY OF MISERY"
GOTO 1.0.0

811.0 IF K2%<>2 THEN 812.0 ELSE IF P%<2l <>
55 THEN 2.0.07.0 ELSE Q$C2>="LOOKS A BIT EVIL
TO ME" : GOTO 1.0.0

812flf IF K2%=15 AND <PN%=6 OR PN%=4l THEN
Q$12l ="I'D DROWN IN IT" : GOTO 1.00

813.0 IF K2%=14 AND PN%=6 THEN Q$(2l="A FALL
WOULD BE FATAL" : GOTO 10.0

814.0 LET Q$(2J="I SEE NOTHING SPECIAL"
GOTO 10.0

8999 REM **** PULL ****
90.0.0 IF K2%=1 THEN 9.02.0 ELSE IF K2%<> 3

THEN 2.0.090 ELSE IF P%<3><> PN% THEN 2.0.05.0
ELSE IF C%(3l=3 THEN 9.01.0 ELSE 2.0.09.0

9.01.0 IF PN%=4 THEN C%C3l=-2 : 0$(3l="TREE
TRUNK CROSSING MOAT" : E$14l=E$(4l+"J" :
PC%=.0 ; GOTO 2.0.02.0 ELSE PC%=1 : GOTO 2.0.02.0

9.02.0 IF PN%<>.0 OR C%(1l<>-1 THEN 2.0.09.0 ELSE
C%Cll=2 : P%<8l=.0 : E$(.0l="A" : Q$C2l="IT
JUST FELL OFF!" : GOTO 1.0.0

9999 REM **** CHOP ****
1.0.0.0.0 IF P%C.0l<>55 THEN Q$C2l="HAVEN'T GOT A
CHOPPER" : GOTO 1.0.0
1.001.0 IF PN%=.0 THEN Q$(2l="YOU WON'T GET OUT
BY FORCE!" : GOTO 1.0.0
1.0.02.0 IF K2%<>3 THEN 2.0.02.0 ELSEIF PN%=9 AND
C%C3l=-1 THEN C%C3l=3 : 0$C3l="TREE TRUNK"
Q$ (3) =II TIMBER! ! II : GOTO 2.0.02.0 ELSE 2.0.09.0
1.0.03.0 IF K2%=3 THEN 2.0.05.0
10.04.0 GOTO 2.0.02.0

1.0999 REM **** OPEN ****
11~.0.0 IF K2%=7 THEN 11.02.0 ELSE IF K2%<>12
THEN 2.0.0.0.0 ELSE IF PN%<> 6 THEN 2.0.05.0 ELSE
IF P%C6)()99 THEN Q$(2l="ALREADY OPEN 11 ELSE
P%C6J=6: Q$C2l="LOOK WHAT I FOUND!"
11.010 GOTO 1.0.0

115

11.02.0 IF P%<7><> 55 THEN 2.0.07.0 ELSE IF
C%<7>>2 THEN 2.009.0 ELSE C%(7) =4:
0$(7)="0PEN UMBRELLA" : GOTO 2.002.0
11999 REM **** CLOSE ****
12000 IF K2%<>7 THEN 20000 ELSE IF P%<7><>55
THEN 2007.0 ELSE IF C%<7> =2 THEN 20090 ELSE
C%<7>=2 : 0$(7)=•ROLLED UMBRELLA" : GOTO
20020
12999 REM **** TIE ****
13000 IF K2%<>5 THEN 2.000.0 ELSE IF P%<5><>55
THEN 20070 ELSE IF PN%<>7 THEN 20100 ELSE
C%(5)=-2 : P%(5)=7 : IN%=IN%-1 :
0$(5)=0$(5)+" HANGING OVER PARAPET"
E$<7>=E$(7J+"H" : GOTO 20.020
13999 REM **** JUMP ****
14000 IF PN%=7 THEN 14010 ELSE IF PN%=8 THEN
14020 ELSE Gl%(3)="BOUNCE! BOUNCE!" : GOTO
20f120
14010 PN%=10 : Gl$(2)=" SUCKED INTO MOAT'S
EVIL SLIME" : GOTO 100
14.020 IF C%(5J=-2 THEN 14.010 ELSE C%<5>=-2
PN%=4 : Gl$(3)="0VER SAFE GROUND" : GOTO
20020
14999 REM **** SWING ****
150.00 IF PN%<>B THEN Gl$(2)="YEAH MAN!"
GOTO 100 ELSE C%(5J=-3 : GOTO 20.02.0
15999 REM **** EAT ****
16000 IF K2,.<>2 THEN 2003.0 ELSE IF P%<2><>55
THEN 20070 ELSE PN%=10 : Gl$(3J=" IT WAS
POISONED!" : GOTO 2.0020
20.000 Gl$(2)="IMPOSSIBLE! II : GOTOl.00
20010 Gl$(2J="I CAN'T GO"+ A3$ GOTO 10.0
20020 Gl$(2)="0K" : GOTO 100
2.0030 GI$< 2) ="DON'T BE ABSURD! • GOTO 10.0
20040 Gl$(2)="I'M ALREADY CARRYING IT!" :
GOTO 100
20050 Gl$(2)="I DON'T SEE IT HERE" : GOTO 10.0
20060 Gl$(2)="I CAN'T - YET" : GOTO 100
2.0070 GI$ (2) =II I, M NOT CARRY ING IT! II : GOTO
100

20080 Gl$(2)="YOU MUST BE JOKING!" : GOTO 1.00
20090 GI$ (2) ="OK - NOTH I NG HAPPENS" : GOTO 10.0

116

2.0100 Q$(2l="IT SLIPS OFF" : GOTO 100
20110 Gl$(2l="HUH?" : GOTO 100
24999 REM *** INSTRING SUBROUTINE ***
25000J%=0 : FOR I%=1 TO LEN<X$l STEP LENCY$l
: IF Y$=MID$(X$,I%,LENCY$ll THEN J%=I%:
I%:.:LENCX$l
25010 NEXT : RETURN
30000DATAIN A SMALL ROOM,,1*,IN A DIMLY LIT
HALLWAY,SW0,0*2*3*,IN THE KITCHEN OF A
COTTAGE,E,1*,0UTSIDE A FOREST
COTTAGE,NEC,9*4*1*,BY THE MOAT OF A
CASTLE,W,3*5*
30010DATAIN A CRUMBLING CASTLE,UF,6*6*,IN A
TOWER ROOM,DFUG,5*5*7*7*,0N A PARAPET AT
TOWER TOP,D,6*8*,HANGING ON A ROPE ABOVE
MOAT,U,7*,IN THE
FOREST,NESW,9*9*3*9*,DEAD,NESWUD,10101010101
0
30020DATAAXE,55,2,WALLPAPER,0,-l,PACKED
LUNCH,2,2,TREE,9,-1,ENTRANCE,5,-2,ROPE,0,2,*
PRICELESS CROWN*,99,-2,ROLLED
UMBRELLA,1,2,DOOR,99,-2,STAIRS,5,-2,IRON
LADDER,6,-2

117

118

APPENDIX6
Commodore Listing

10 OIM L$(10),E$<10),0$(10),0$(10) , P<10) , C(10), Q$ (10) , V$ (10)
20 FOR 1=0 TO 101REAO L$(I),Et<I>,Ot<I >:NEXT I
21 FOR I=0 TO 10:REAO Ot<I>,P<I >,C <I>:NEXT I
50 LET PN=0 : LET IH•l 1 LET CT•0 : LET Q$ (2)="Hm~ (JO ;

GET OLIT OF HERE? "
51 LET A$="RUN"
60 LET WV$.. "TAKOROLOOEXAPULCHOOPECLOTIEJLIMSWIEAT"
70 LET WG$,."NORSOUEASWESUP OOWOUTOOOSTALAOENTCOTROPTRE"
80 LET WO$,.HNSEWUOOAFGBCHU"
90 LET WN$="AXEPAPLUHTREENTROPCROUMBOOOSTALAOAROCUPCASOOWMOA"
99 REM **** START OF MAIN PROGRAM LOOP $$$$
100 IF PC)0 THEN LET PC-PC+lrOOTO 103
101 GOTO 110
103 LET P<3>=PN
105 IF PC•3 THEN LET PC•0
110 IF C(3)•-2 AHO PN•5 AHO P(3)•4 THEN LET P<3>•91GOTO 112
111 GOTO 120
112 LET 0$(3)•"TREE"
113 LET C<3>=-1
114 LET Qf(3)="00PSI TREE JUST FELL IN MOAT! "
120 IF C<7>=4 ANO PN<3 AHO P<?>•SS THEN LET PN=10:GOTO 122
121 GOTO 130
122 LET Qf(1 >="OPEN UMBRELLA INDOORS?" ·: LET

Q$(3) "'"0EAD UNLUCKY!"
130 IF <P<?><>SS OR CC7)•2) At«:> <PN•3 OR PN•4 OR PN=9>THEN

CR=CR+ 1 1 GOTO 140
139 LET CR=0
140 IF CR)0 THEN LET Qf(1 >="IT'S RAINING!" :
141 IF CR=S THEN LET Qf(3)="I'LL CATCH MY DEATH!"
150 IF CR=? THEN LET PN•10 1 LET Q$(2)="I CAUGHT MY DEATH"
200 FOR I=l TO LEN <Et<PN))
210 IF MIDt<Et<PN>,I,l>•"N"
220 IF MIDf<Et<PN),I,l)•"S"
230 IF MIDf<Et<PN>,I,l)•"E"
240 IF MIDfCEf<PN),I,l)•"W"
250 IF MIDfCE$CPN>,I,1)•"U"
260 IF MIDt<EtCPN>,I,1)•"0"
270 IF MIDCE(PN),I,1)•NO"
280 NEXT I
290 LET II•0

THEN LET
THEN LET
THEN LET
THEN LET
THEN LET
THEN LET
THEN L8°

EX$=EX$+"NORTH. "
EX$•EX$+"SOUTH. "
EX$•EX$+"EAST. "
EX$•EX$+" WEST. "
EX$•EX$+" UP. "
EX$•EX$+"00WN. "
EXf•EXf+ "OUT. "

292 FOR I•0 TO 101IF P<I>•PN THEN LET OS$•0$(l):GOTO 3 10
293 NEXT I
294 GOTO 330
310 IF LENCVtCII)>+LEN<OSt><37 THEN LET

V$(II>•V$(lI>+OS$+".":OS$=""1GOT0320
311 LET II•II+l : GOTO 310
320 NEXT I

119

330 PRINT";:J" 1PRIHT L:$(PH) 1PRIHT :PRIHT"SOME EXITS ARE
: "1PRitH EX$

331 REM IF SCREEN WIDTH> 32 INSERT ("I At1 ";)AFTER lST PRINT
340 PR I NT" I CAH SEE 111

1 FOR I .. 0 TO 8 1 IF V:$ < J) 0 '"' THEN PR Hff
V$< J)

350 NEXT I
360 PRINT 1 PRIHT"------>YOU SAID ";A$ 1PRitH
361 FOR I=l TO 3: IF Q$(J)()"" THEN PR I HT Q$(J) :NEXT
370 REM
380 PRINT : PRIHT"------->WHAT NOW"'
390 FOR I=0 TO 8:LET V$<D="" :LET Q$(D="" :HEXT I :LET

A$="":LET Al$=""
391 LET A2$=" 11 1LET A3$=""1LET A4$'""u1LET EX$=""
392 INPUT A$
400 IF LEN(A$)(3 THEN OOTO 40000
401 LET A2$=LEFT$(A$,3)
402 IF A2$="1NV" THEN GOTO 4000
403 IF A2$="SCO" THEN GOTO 5000
404 IF A2$:"HEL" THEN GOTO 6000
405 IF A2$•"QUI" THEH OOTO 7000
406 IF A2$="JUM" THEH OOTO 14000
407 IF A2$="SWI" THEN GOTO 15000
410 LET J=0:FOR I=1 TO LEH (A$):IF t1ID$CA$,l,1>=" "THEN J=I
411 NEXT I
420 IF J=0 THEN GOTO 40110
421 LET Alf•LEFT$(A$,J-1)
425 LET A3$=RIGHT$(A$,LEH<A$)-J)1LET A4$=LEFT$<A3$,3)
430 IF A1$="GO" THEN GOTO 1000
440 LET X$=WV$:LET Y$aA2$1GOSUB 35000
441 IF Ja0 THEN Qf(2)•"I DON'T KNOW HOW TO "+AU : GOTO 100
442 LET Kl=INT<<J-1)/3)+1
450 LET X$=WN$ 1 LET Y$•A4:$ 1 GOSUS 35000
460 IF J"'0 THEN LET Q$(2)•"WHAT IS A "+A3$+" ?" : GOTO 100
470 LET K2=IHT((J-1)/3)
489 REM **** FOUND BOTH WORDS - GOTO VERB ROUTINE ****
490 ONK1GOT02000,3000,8000,8000,9000,10000,11000,12000,13000,

14000,15000,16000
491 REM
999 REM **** GO ****
1000 LET X$=WG$: LET Y$=A4$: GOSUB 35000 : IF J=0 THEH GOTO

40010
1001 LET X$=E$(PH>:LET Y$=MID$(WD$,IHT<<<J-1)/3)+1),1)

GOSUB 35000
1002 IF J=0 THEH GOTO 40010
1003 LET PN=VAL<MID$<Df<PN),INT<J-1>$2+1;2)):GOTO 40020
1004 REM
1999 REM **** TAKE ****
2000 IF K2>10 THEN GOTO 40030
2001 IF P<K2)s55 THEN GOTO 40040
2002 IF P<K2><>PN THEN GOTO 40050
2003 IF C<K2>=-2 THE~l GOTO 40000
2005 IF C<K2>•-1 THEN GOTO 40060
2006 IF C<K2>•3 THEH OOTO 40080
2010 IF IH>4 THEN LET Q$(2)•"I'M OVERLOADED ALREAD'r'! ":GOTO 100
2011 LET IN=IN+l 1LET P<K2)•55:GOTO 40020

120

2999 REM **** DROP ****
3000 IF K2>10 THEN GOTO 40070
3001 IF P<K2)()55 THEN GOTO 40070
3010 LET IN=IN-1 :IF PH,.7 THEN LET P<K2)=88 1GOTO 3015
3011 GOTO 3016
3015 LET Q$(2)="IT FELL OFF INTO THE MOAT" 1 GOTO 100
3016 LET P<K2)=PN :GOTO 40020
3020 REM
3999 REM **** INVENTORY 111*111111
4000 LET Q$(2)="I AM CARRYING: ":LET J=2
4001 FORI=0 TO 10
4010 IF P<I)•55 THEN GOTO 4012
4011 GOTO 4019
4012 IF P< D=55 THEN IF LEN<Qf.(J))+LEH<0$(J))) 37 THEN LET

J:J+l:GOTO 4010
4019 LET Q$(J)•Q:$(J)+0$(I)+", "
4020 HEXT I 1 GOTO 100
4999 REM lllllfllfllf SCORE CLOSE****
5000 IF P(6):0 THEN PRIHT";:J": PRIHT"COl~GRATULATIONS ! "

:GOTO 5002
5001 GOTO 5003
5002 PRINT"YOU HAVE COMPLETED YOUR QUEST" 1ENO
5003 LET Q:$(2)="HO SCORE YET I"
5010 LET Q$(3)•"RETURN WITH THE TREASURE!" 1 GOTO 100
5999 REM lll$llfllf HELP CLOSEllfllfllfllf
6000 OH PN+1 GOTO 6010,6040,6040,6040,6020,6030,6040,6050,

6060,6040,6070
6010 LET Q$(2)•'' ISN'T THE WALLPAPER LOVELY ?" 1 GOTO 100
6020 LET Qf(2)•"A BRIDGE COULD PROVE USEFUL " : GOTO 100
6030 LET Q$(2)•"MUST BE AHOT~ER WAY BACK •• " 1 OOTO 100
6040 LET Q$(2)•"EXAMIHE THIHOS & LOOK AROUND": GOTO 100
6050 LET Q$(2)•"THE ONLY WAY SEEMS TO BE DOWN": GOTO 100
6060 LET Q$(2)•"TRICKY ISN'T IT ?" 1 GOTO 100
6070 LET Q$C2>•"TRY <BREAK> AHO <RUH) I" 1 GOTO 100
6999 REM **** QUIT 111$111111
7000 PRINT";:J" : IF P(6)•0 THEH PRIHT"YOU HAVE COMPLETED THE QUEST

":GOTO 7010
7001 IF P<6)099 THEN PRIHT"YOU WERE NEARLY THERE!" 1GOTO 7010
7002 fRIHT"BETTER LUCK NEXT TIME!"
7010 tHD
7999 REM llfllfllflli LOOK/EXAMIIE $11illllll
8000 IF K2<>11 THEN GOTO 8110
8001 REM
8002 ON PN+l GOTO 8010,8110,8110,8110,8020,8030,8040,8050,

8020,8110,8060
8003 REM
8010 IF C < 1) (0 THEN LET Q$ < 2) = 11 THE WALLPAPER'S PE ELI NG " : GOTO

100
8011 GOTO 8110
8020 IF P<3)() PH THEN LET Q:$(2)="t10AT IS FULL OF

PO I sot~OUS SLIME " : GOTO 100
8021 LET Q:$(2)="THE TREE MAKES AH IDEAL BRIDGE"
8022 GOTO 100
8030 LET Q:$(2)="TREE HAS SLIPPED INTO THE t10RT" GOTO 100
8040 IF C(6)=2 THEN GOTO 8110
8041 LET C(6)•2
8042 REM

121

8043 LET L$(6)•L$(6)+"WITH A CUPBOARD":LET Q$(2)="I JUST
~IOTICED SOMETHING "

8045 GOTO 100
8050 LET Q$(2)="l DON'T FEEL LIKE JUMPING .. " : GOTO 10~
8060 LET Q$(2)="I'M IH AH IHFIHIT'r' OF MISER'r'" 1 GOTO 100
8110 IF K2=2 THEN GOTO 8112
8111 LET Q$(2)="LOOKS A BIT EVIL TO ME" 1 GOTO 100
8112 IF P<2><>55 THEN GOTO 40070
8115 LET Q$(2)•"LOOl<S A BIT EVIL TO ME" 1 GOTO 100
8l28 IF K2•13 Tl£H OOTO 8123
8121 GOTO 8130
8123 IF <PN•6 OR PN-4> THEN LET Q$(2)•" I'D DROWN IH IT"

:GOTO 100
8130 IF K2=14 THEN GOTO 8133
8131 GOTO 8140
8133 IF PN=6 THEN LET Q$(2)="A FALL WOULD BE FATAL" GOTO 100
8140 LET Q$(2)•"I SEE NOTHING SPECIAL" 1 GOTO 100
8999 REM **** PULLCLOSE$$$$
9000 IF K2=1 THEN GOTO 9020
9001 IF K2<>3 THEN GOTO 40090
9005 IF P<3><>PN THEN OOTO 40050
9006 IF C(3)•3 THEH GOTO 9010
9007 GOTO 40090
9010 IF PN=4 THEN LET C<3>•-21LET Of<3):s"TREE TRUNK CROSSING

110AT ":GOTO 9013
9011 REM
9012 GOTO 9015
9013 LET E$(4)=E$(4)+"J" : LET PC=0 1 GOTO 40020
9015 LET PCzl 1 GOTO 40020
9020 IF PN<>0 OR C<l><>-1 THEN GOTO 40090
9021 LET C<1>=2 1 LET P<8>•0
9025 LET Q$(2)•"IT JUST FELL OFF!" 1 GOTO 100
9999 REM **** CHOP ****
10000 IF P<0><>55 THEN LET Q$(2).,"HAVEN'T GOT A CHOPPER" :

GOTO 100
10010 IF PN•0 THEN LET Q$(2)="'r'OU WON'T GET OUT 8'r' FORCE!"

GOTO 100
10020 IF K2=3 THEN GOTO 10023
10021 GOTO 10025
10022
10023
10024
10025
10028
10030
10040
10999
11000
11001
11002
11003
11009
11010
11020
11021
11025

REM
IF PN=9 AND C(3)•-1 THEN LET C<3>=3
LET 0$(3)="TREE TRUNK"1LET Q$(3).,"TIMBER!"1GOTO 40020
GOTO 40090
REM
IF K2•3 THEN GOTO 40050
GOT0 40020
REM **** OPEN ***~
IF K2•7 THEN GOTO 11020
IF K2()12 THEN GOTO 40000
IF PN<>6 THEN GOTO 40050
IF P<6><>99 THEN LET Q$(2)="ALREAD'r' OPEN":GOTO 100
LET P<6>•6 1 LET Q$(2) .. "LOOK WHAT I'VE FOUND•"
GOTO 100 .
IF P<7><>5S THEN GOTO 40070
IF C<7>>2 THEN GOTO 40090
LET C<7>=4 : LET 0$(7)="0PEN UMBRELLA" GOTO 40020

122

11999 REM **** CLOSE ****
12000 IF K2<>7 THEN GOTO 40000
12001 IF P<7><>55 THEN GOTO 40070
12003 IF C<7>•2 THEN GOTO 40090
12005 LET C<7>•21LET 0$(7)•"ROLLED UMBRELLA" 1 GOTO 40020
12999 REM **** TIE ****
13000 IF K2<>5 THEN GOTO 40000
13001 IF P<5><>55 THEN GOTO 40070
13005 IF PN()7 THEN GOTO 40100
13006 LET C<5>=-2 1 LET P<5>=7
13007 LET IH=IH-1 1 LET 0$(5)=0$(5)+" HAl~GING OVER PARAPET "
13008 LET E$<7>.,E$<7>+"H" 1 GOTO 40020
13999 REM **** JUMP ****
14000 IF PN•7 THEN GOTO 14010
14001 IF PH=8 THEN GOTO 14020
14005 LET Q$(3)•"80t.INCEI BOUNCE!" 1 GOTO 40020
14010 LET PN•10 1 LET Q$(2)•"SUCKED INTO MOAT'S EVIL SLIME "

: GOTO 100
14020 IF C(5)•-2 THEN GOTO 14010
14021 LET C<5>=-2 : LET PH=4
14022 LET Q$(3)="0VER SAFE GROUND'' : GOTO 40020
14999 REl1 **** SWIHGCLOSE****
15000 IF PH<>S THEN LET Q$(2):s"'r'EAH MAH!" :GOTO 100
15001 LET C<5>•-3 1GOTO 40020
15999 REM **** EAT ****
16000 IF K2<>2 THEN GOTO 40030
16001 IF P<2><>55 THEN GOTO 40070
16002 LET PN•10 1 LET Q$(3).,"IT WAS POISONED!" GOTO 40020
34999 REM **** INSTRING SUBROUTINE ****
35000 LET J=0
35001 FOR I=1 TO LEH<XS> STEP LEH('r'$)
35005 IF 'r'$•11ID$(X$, I,LEH(Y$)) THEN J•I 1 LET I•LEH< X$)
35010 HEXT I : RETURN
39999 REM **** STANDARD REPLIES ****
40000 LET Q$(2)•"IMPOSSIBLE!" 1 GOTO 100
40010 LET Q$(2)•"I CAN'T GO "+ A3$ 1 GOTO 100
40020 LET Q$(2)•"0K" 1 GOTO 100
40030 LET Q$(2) .. "00N'T BE ABSURD! II : GOTO 100
40040 LET Q$ < 2) •" I 'M ALREAD'r' CARR'r' IHG IT ! " : GOTO 100
40050 LET Q$(2)=" I DON'T SEE IT HERE" : GOTO 100
40060 LET Q$(2)•" I CAN'T - 'r'ET ! " 1 GOTO 100
40070 LET Q$(2)="I'M HOT CARR'r'IHG IT!" : GOTO 100
40080 LET Q$(2)•"'r'OU MUST BE JOKING!" : GOTO 100
40090 LET Q$(2)•"0K - NOTHING HAPPENS" 1 GOTO 100
40100 LET Q$(2>=" IT SLIPS OFF" : GOTO 100
40110 LET QS<2>="HUH ?" 1 GOTO 100
50000 DATA IN A SMALL ROOM,"", 1$, IH A DIML'r' LIT

HALLWA'r',SW0,0*2*3*
50001 DATA IH THE KITCHEN OF A COTTAOE,E,1$,0UTSIDE A FOREST

COTTAGE,HEC
~0002 DATA 9$4$1$,BY THE MOAT OF A CASTLE,W,3$5$
50010 DATA IHA CRUttBLIHG CASTLE,UF,6$6$,IH A TOWER

ROOM,OFUG,5$5$7$7$
50011 DATA OH A PARAPET AT TOWER TOP, D, 6$8$, HAtiD rnG O~l ROPE

ABOVE MOAT,U,7$
50012 DATA 1H THE FOREST , HESW,9*911E31119• , DEAD , HESl~UD:, 101 0 10101010
50020 DATA AXE,55,2,WALLPAPER,0,-1,PACKED LUHCH , 2,,,TREE , 9 , -1.

EHTRAHCE

123

N

~

.....
.

N

01

2

N

0

-

4
-
-

IN
 T

H
E

 K
IT

C
H

E
N

 O
F

A

 CO
T

T
A

G
E

(P
A

C
K

E
D

 L
U

N
C

H
)

9 3 1 I

7

'

;i
:i

~

0
\

0
\

O
H

7H
1\

 U
I

IT1

(J
I

:D

:D
 (

!)
 C

SI
CS

I
CS

!
CS

I
IS

i
CS

)
0

O
(l

)'
l>

C
S

IC
S

IC
S

IQ

Q

<

<
W

N
-C

S
IC

S
ll
l.

)
ro

&
G

:>
<

S
>

-C
S

ll
\l

Z
1

';
i:

J
"
l1

0
0

e

n

l'
l;

i:
J
l'
T

lO
,.

..
:D

::

;:
j)

x

...
.

:D
::

i:
i:

:>
:-

t
l!

J
-i

-4

Z
O

:D

:;J

JJ
:•

-4

....
.

:D

IT1

:
D
:
D
M
*
~
r
U
I

**

"
r

...
"
"
..

.,
..

.,
.

~
I

~
~

 i-
-

:.
!"

..

.
Q

v
l
4

)
,
;
Q

:
14

)
I\
)~

...
'

CS
1

I
=

~

'
...

'
(S

)
...

(/
)

'
-4

~
J

:D

'
.....

•

;Q

,,
(/

)
;Q

'

.....

(J
I

0
'

"'
I

r
l'J

"'
'

(/
)

.....

(/
)

;Q

0
0

z
;i

:i

r
0 E

:D

z

0
•

0
'

IT1

ID

;Q

ID

'
'

(I
\

I
'

I\
)

I
'

I\
)

;i
:i

0 r r "' 0

g>
)>

O

N
 A

 P
A

R
A

P
E

T
 A

T

':::
J'

"'C

~
"'C

T

O
W

E
R

 T
O

P

uP
 e

m

c;
·
z

s::
c

Il
l

-

IN
 T

H
E

 F
O

R
E

S
T

8

H
A

N
G

IN
G

 O
N

A

6
IN

 A
 T

O
W

E
R

 R
O

O
M

~
 >

< -_.
.,

R
O

P
E

 A
B

O
V

E
 M

O
A

T

(T
R

E
E

)
--

.
S

W
IN

G

J
U
~

~
'
"
"

O
U

T
S

ID
E

 A
 F

O
R

E
S

T

4
B

Y
 T

H
E

 M
O

A
T

 O
F

 A
;

5
C

O
T

T
A

G
E

C

A
S

T
L

E

i (TR
E

E
 T

R
U

N
K

 C
R

O
S

S
IN

G
) l

f
""

°A
T

 -
N

O
T

 A
 L

O
C

A
T

IO
N

I

IN
 A

 D
IM

L
Y

 L
IT

K

E
Y

:

H
A

L
L

W
A

Y

"'
""

""
"-

N
O

 E
X

IT

1
'"

""
 S

O
L

V
E

 P
R

O
B

LE
M

 F
O

R
 E

X
IT

B

R
A

C
K

E
T

S
 D

E
N

O
T

E
 O

B
JE

C
T

 S
T

A
R

T
S

 H
E

R
E

A

R
R

O
W

S
 P

O
IN

T
IN

G
 T

O
 N

O
T

H
IN

G
 S

H
O

W
 E

X
IT

 L
E

A
D

IN
G

 T
O

S

A
M

E
 L

O
C

A
T

IO
N

,
,
,
/
,
 ,

,
,
.
,
,
,
,
~
,

10

4
-

S
C

H
E

M
A

T
IC

 M
A

P
 O

F
 L

O
C

A
T

IO
N

S
 &

 O
B

JE
C

T
S

(L
A

D
D

E
R

)

IN
 A

 C
R

U
M

B
L

IN
G

C

A
S

T
L

E

(S
T

A
IR

S
) '

~

D
E

A
D

K
O

C

g g· =
i

(/
) !20

0 E
 ro
· ~

126

APPENDIX&
Method of Searching String X$ for String Y$

STRINGY$
SEARCH X$ FOR Y$ WITH LOOP:
FOR 1%= 1 TO LEN (X$) STEP Y$

WORD NUMBER

IN STRING 1 2 3

STRINGX$ T AK D RO LOO

CHARACTER 1 4 7

POSITION

IN STRING

MID$(X$,1%,LEN(Y$)

1%=1 TAK

1%=4 DR

1%=7

1%=10

4

E

10

EXA
: MATCH
I FOUND

i El xi Ai El xi Ai~ xi Ai E Ix I Al

127

5

13

6

LEN (X$}-=18

1%= 10

IF J%= 1% WHEN
MATCH FOUND, THEN
WORD NO GIVEN BY:
(Jo/o-1)/3+1

128

APPENDIX9
Screen Display

IN A SMALL ROOM

SOME EXITS ARE :

I CAN SEE:
WALLPAPER. ROPE.

----> YOU SAID RUN

HOW DO I GET OUT OF HERE?

~~~~~>WHAT NOW? 

129 



130 

APPENDIX 10 
Screen Display 

Break in390 
READY 
> PRINT PN% : PRINT E$(PN%) : PRINT 0$ (PN%) : PRINT WG$ : 

PRINTWD$ 
0 

1* 
NORSOUEASWESUP 
NSEWUDOAFGBCHJ 
READY 
> 

DOWOUTDOOSTAL.ADENTCOTROPTRE 

131 



APPENDIX 11 
Location-Association Arrays 

z ARRAY ARRAY Oa: -w ARRAY LOCATION Es Ds ~CD 
o:::E Ls DESCRIPTION EXIT DESTINATION 
o=> CODES NUMBERS ..JZ 

0 IN A SMALL ROOM - 1* 

1 IN A DIMLY LIT HALLWAY swo 0*2*3* 

2 IN THE KITCHEN OF A COTTAGE E 1* 

3 OUTSIDE A FOREST COTT AGE NEC 9*4*1* 

4 BY THE MOAT OF A CASTLE w 3*5* 

5 IN A CRUMBLING CASTLE UF 6*6* 

6 IN A TOWER ROOM DFUG 5*5*7*7* 

7 ON A PARAPET AT TOWER TOP D 6*8* 

8 HANGING ON ROPE ABOVE MOAT u 7* 

9 IN THE FOREST NESW 9*9*3*9* 

I 
10 DEAD NESWUD 1010101010101 

132 133 



APPENDIX 12 
Exit Codes 

EXIT 
RECOGNITION EXIT 
WORD CODE 

NORTH N 

SOUTH s 

EAST E 

WEST w 

UP u 

DOWN D 

OUT 0 

DOOR A 

ENTRANCE B 

COTTAGE c 

STAIRS F 

LADDER G 

ROPE H 

TREE J 

KOC 

134 
135 



APPENDIX 13 
Object-Associated Arrays 

.... a: ARRAY OBJECT ARRAY ARRAY 
(.) w 

0$ DESCRIPTION P% C% wm 
ii! ~ OBJECT OBJECT 
oz LOCATION FLAG 

0 AXE 55 2 

1 WALLPAPER 0 -2 

2 PACKED LUNCH 2 2 

3 TREE 9 -1 

4 ENTRANCE 5 -2 

5 ROPE 0 2 

6 *PRICELESS CROWN* 99 -2 

7 ROLLED UMBRELLA 1 2 

8 DOOR 99 -2 

9 STAIRS 5 -2 

10 IRON LADDER 6 -2 

KOC 

136 137 



138 

-I 
I 
I 
I 
I 
I 
I 
I 
I 

COMPUTER & VIDEO GAMES 
BOOK OF ADVENTURE 

REGISTRATION CARD 

I I Please fill out this page and return it promptly in order that we may keep 
I you informed of new software and special offers that arise. Simply cut 

I along the dotted line and return it to the correct address selected from 
I those overleaf. 
I Which computer do you own? ......... ... ....... . . .. ..... . . . .. . . . 
I Where did you learn of this product? 

I D Magazine. If so, which one? . .. .. .. ..... .. ... ... . ... .... . .. .. . 
I D Through a friend. I D Saw it in a Retail Store. 
I D Other. Please specify ... . .... . ........ .. .. ... . . ... . ... . ..... . 
I Which Magazines do you purchase? 
I Regularly: . ........ . . ........ . .... .. . ... .. .. ... .. ........ . .. . . 
I Occassionally: .. . . ... ..... .. . . .. .... ... . ... .. ... . ... . .... . ... . . 
I What age are you? 

I D 10-1s D 16-19 D 20-24 D Over 25 
1
1 

We are continually writing new material and would appreciate receiving 
I your comments on our product. 

I How would you rate this book? 

I D Excellent D Value for money 
I D Good D Priced right 
I D Poor D Overpriced I Please tell us what software you would like to see produced for your 

I computer. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Name -------------------~ 
Address -------------------



P
U

T
 T

H
IS

 IN
 A

 S
T

A
M

P
E

D
 E

N
V

E
LO

P
E

 A
N

D
 S

E
N

D
 T

O
: 

In
 th

e
 U

n
ite

d
 S

ta
te

s 
o

f A
m

e
ri

ca
 r

e
tu

rn
 p

ag
e 

to
: 

M
e

lb
o

u
rn

e
 H

o
u

se
 S

o
ft

w
a

re
 In

c.
, 3

4
7

 R
ee

dw
oo

d 
D

riv
e

, 
N

a
sh

vi
lle

 T
N

 3
7

2
1

7
. 

In
 th

e
 U

n
ite

d
 K

in
g

d
o

m
 r

e
tu

rn
 p

ag
e 

to
: 

M
e

lb
o

u
rn

e
 H

o
u

se
 (

P
ub

lis
he

rs
) 

Lt
d

., 
C

hu
rc

h 
Y

ar
d

, T
ri

ng
, 

H
e

rt
fo

rd
sh

ir
e

, 
H

P
2

3
 5

LU
. 

In
 A

u
st

ra
lia

 &
 N

ew
 Z

ea
la

nd
 r

e
tu

rn
 p

ag
e 

to
: 

M
e

lb
o

u
rn

e
 H

o
u

se
 (A

us
tr

al
ia

) 
P

ty
. L

td
.,

 S
u

it
e

4
, 7

5 
P

al
m

er
st

on
 C

re
sc

en
t,

 
S

o
u

th
 M

e
lb

o
u

rn
e

, V
ic

to
ri

a
, 3

2
0

5
. 



In this unique book, Keith Campbell will lead you 
through various facets of adventure games, including 
the history of adventure games, how to play them and 
a hall of fame. 

He then presents a complete program listing, and 
explains an adventure game, including devising a 
plot, creating the environment and screen 
presentation. 

Add to all of this, a clear explanation of programming 
techniques which will show you how to introduce 
objects, control space and time, interpret English 
input, move your player from one location to another 
and many more exciting skills. 

Suitable for all microcomputers with specific listings 
for BBC, Spectrum, and Commodore 64. 

ISBN 0-86161-143-8 
MELBOURNE HOUSE 




