

1he GN!phi~ llmgician
The enclosed software is supplied on a disk that is NOT copy-protected. It is our intent

to make this software as useful as possible, and we feel that with applications software
the ability to make your own backup copies is a great asset. We ask that you not abuse
our intentions by making copies for others, and by not copying this manual. The result of
such activity only helps promote the unfortunate existing situation of most software
being protected, and in our opinions, less usable. We hope that the commercial success
of unprotected software such as this will show that copy-protection is not necessary for a
product's survival and help reverse the trend in protected applications software. At
Penguin , through policies such as this, our pricing and our regard for quality, we are
trying to look out for your best interests. Please help us.

62063
Sincerely,

t//t~llJ/l~~AL_,
Mark Pelczarski
President, Penguin Software

P.O. Box 311 , Geneva, IL 60134 (312) 232-1984

Standard Hi-Res Picture Painter by Mark Pelczarski. Animator by Mark Pelczarski , David
Lubar, and Chris Jochumson. Double-Res Picture Painter by Steven Meuse and Mark
Pelczarski.

The Graphics Magician software and manual is copyrighted 1983. 1984 by Penguin Software Inc All rig hts
reserved The Graphics Magician is a registered trademark of Penguin Software. Inc Use of routines from The
Graphics Magician in other products for sale must be licensed by Penguin Software There 1s no fee Apple is a
trademark of Apple Computer. Inc. We also have to legally say the following The Graphics Magician is sold entirely ""as
is" The buyer assumes the nsk as to quality and performance Penguin Software warrants to the original purchaser
that the disk on which this software is recorded is free from defects in materials and workmanship under normal use.
for a period of 60 days from the date of purchase. If a defect should occur wtth1n this penod. Penguin will replace the
disk at no charge After 60 days. there is a $5 replacement fee when the original disk is returned Manuals will NOT be
replaced, so don't lose it or let your dog eat it. At no time will Penguin Software or anyone else who has been involved in
the creation. production. or distribution of this software be liable for indirect. special. or conseQuent1al damages
resulting from use of this program. such as. but not limited to. humcanes. fires. minor head colds. divorce. or beady
eyes.

Table of Contents

Chapter 1 - Introduction
Input Devices
Backup Copies
Licensing
Getting Started

Part One-The Animation System

Chapter 2 - A Quick Tutorial
Creating an Animation File
A Simple Shape
Now, A Path
On to the Animation
Putting it in a Program

Chapter 3 - The Animation Routines

-2-

Technical Background uf Hi-Res Graphics
Animation Types
Block
Xdraw
Block with Background
Block with Background Xdraw
Other Things Affecting Speed

Chapter 4 - The Shape Editor
Background Color
Load Previous Shape?
Standard Border?
Width , Height, Shape Size
Shape Editor Commands
Cursor Movement
Plotting and Erasing
Test Animate
Disk Options
Color
Borders and Boundaries
Flipping and Rotating
Shifting
Exchanging Colors
Internal Animation
Disk Options

Chapter 5 - The Path Editor
Background Screen
Starting Point
Movement
Other Path Editor Commands

7

10

13

18

23

Chapter 6 - The Animation Editor 25
Loading
Creating and Object
Shape Number
Coordinates
Path Assignment
Location in Path
Test Animation
Edit Object
Page 2 Flag
Changing Animation Types
Other Options

Chapter 7 - The Animation Documenter 29
Animat ion Report
Deleting Shapes and Paths
Saving the Modified Animation File

Chapter 8 - Animation from your Programs: Necessities 30
Set-Up
Animation Calls - Block and Block with Background
Animation Calls - Xdraw and Block with Background Xdraw

Chapter 9 - Animation from your Programs: Options and Tables 32
Hi and Lo Addressing
Shape Index
Object List
Page 2 Flags
Path Locations
Object Locations
Path Lists
Path Index
Collision Table
Path Format
Shape Format
The Nitty-Gritty Plot Routines
Calling Erase Routines
Erasing on Page 2

Chapter 10 - Animation from your Programs: Samples and Tricks 40
Controlling Paths with Joystick or Keyboard
Joystick Example
Keyboard Example
Collisions
Using the Object List
Deactivating Objects
Switching Shapes Midstream
Still and Vertical Animation

-3-

Part Two-The Picture System

Chapter 11 - Drawing Pictures
Using the Picture Editor
Joystick Version Cursor Control
Line Mode
How Long is your Picture?
Deleting Steps
Fine Cursor Control
Selection Page
Fill Mode
Brushes
Other Quick and Easy Options, including Saving your Picture
Adding Text
Edit Mode
Graphics Resolution Modes - Thick and Thin Lines
Graphics Resolution Modes - 280 vs. 560 Mode
Changing between 280-mode and 560-mode
Drawing for Use in Double-Res and Standard-Res
A "Fill " Anomaly

Chapter 12 - Tricks with Pictures
Objects
Creating your Object over a Background
Animation with Pictures

Chapter 13 - Using Standard-Res Pictures in your Programs
Put the PICDRAW Routine on your Disk
Using PICDRAW
Putting an Object over a Picture
Changing Graphics Pages
Technical Trivia
Loading Groups of Pictures into One File
Using a Group of Sequential Pictures
Single-Stepping
Memory Usage and Different Versions of PICDRAW
Removing the Character Table
Changing the Character Table

Chapter 14 - Using Double-Res Pictures in your Programs
Put the DPICDRAW routine on your disk

-4-

Using DPICDRAW
Putting an Object over a Picture
Note about Graphics Pages
Technical Trivia
Loading Groups of Pictures into One File
Using a Group of Sequential Pictures
Memory Usage
Adding a Character Table
Changing the Character Table

48

56

58

68

Graphics Resolution Modes - Thick and Thin Lines
Graphics Resolution Modes - 280 vs. 560 Mode
Changing between 280-mode and 560-mode
Drawing for Use in Double-Res and Standard-Res

Chapter 15 - The Picture Lister
Simple Options
Reading and Interpreting Transfer Files
Color Table
Customizing the 280/ 560 Mode Color Conversions

Chapter 16 - Extras
The Binary Transfer Utility
Standard-res Text Generator
Double-res Text Generator
Capturing Shapes and Extra Editing

Appendix A - Double-Res Colors and Blended Colors

Appendix B - Standard-Res Colors and Blended Colors

Appendix C - Filename Suffixes

Appendix D - Notes for Users of the Original Version
of Graphics Magician

Appendix E - Reference Card for Shape Editor, Path Editor,
and Picture Painters

76

79

83

85

88

89

90

-5-

-6-

Chapter 1 - Introduction
The Graphics Magician is a set of graphics editors and machine language routines that

help you easily put professional, state-of-the-art graphics and an imation in your own
programs. Included are routines that help you design and control fast animation of many
independent objects (as in most arcade games) , draw and recreate very compact,
multicolored pictures (great for use in adventure games and educational software) , and
easily put text on the graphics screen. To fully use these routines, you will have to do some
programming: This may be as little as a 3-line program in Basic, and examples are given
throughout this manual. The Graphics Magician is meant to be a programmers' tool. It's
designed to be easy to use for the beginning Basic programmer, yet it has a vast amount of
flexibility built in for even the most advanced machine language programmers. The
Graphics Magician routines included in this package are being used in dozens of
commercially marketed software packages, produced by many of the most well-known
publishers in the industry. And with The Graphics Magician available on several leading
microcomputers, designers will find that most of the graphics work done on one machine
can be easily transferred to several others, saving long hours of duplicated work , and in
some cases making software portable in ways never before possible.

While the animation portion of The Graphics Magician is designed for use with standard
high-resolution graphics (available on all Apple ll 's) , there are two versions of the Picture
Painter in this package. One works with the standard high-resolution graphics available on
all Apple ll's (280 by 192 dot resolution, six base colors, and 108 blended colors). The other
version is designed especially for double-resolution graphics available with newer Apple ll's
that have 128K of RAM (such as the Apple //c). With "double-res," you have 560 by 192
resolution, 16 base colors, and 256 blended colors. Furthermore, with the Double-Res
Picture Painter you can create pictures that can be displayed in either standard hi-res or
double-res! That means that the same picture file can be used in a program that will , for
example, display a blended-yellow color if used on an Apple that only displays standard hi
res, or display a pure yellow (not available in standard hi- res) if double-res is available.

When learning to use The Graphics Magician, start simply. First of all , sit down with your
manual AND your computer. This is computer software, not a book. You'll learn it best by
using it while reading about it . Since Graphics Magician has a lot of features included, it is
tempting to want to understand them all immediately. For animation, we recommend that
you first create a simple, black and white shape with the shape editor, a simple path with the
path editor, then put them together in the animation editor and test the animation to see what
happens. Then , if you want, save the animation file and try asimple3 or4 line Basic program
to see how your programs will control the animation. Chapter 2 has a tutorial for doing
precisely those steps. For the picture system, just try some scribbling with lines and fills .
Test the "redraw" command to see how your picture is recreated. Then save it, and again
write a 3 or 4 line Basic program to see how you load and draw the picture yourself. Only
then should you go on and start playing with the other features and functions available. As
with any programming, experiment and practice ...

·1f your needs are more for designing static computer graphics or art, 3-D design, slide
creation, title pages, and other such applications, we recommend our Complete Graphics
System, which does not require programming background, and provides a lot more
flexibility for the above needs.

-7-

-8-

Other graphics programs from Penguin Software include Paper Graphics, which lets you
print your screen graphics to your printer, Transitions, which lets you create and edit
presentations and "slide shows" with your graphics screens, and Cat Graphics, which
extends the graphics capabilities of Applesoft with 55 new commands, for both standard hi
res and double-res.

Input Devices
The Graphics Magician Animator uses keyboard for accurate cursor control in drawing

shapes and paths. The Graphics Magician Picture Painter can use joystick , paddles, touch
tablets, the Apple Mouse, Apple Graphics Tablet, or Houston Instruments HiPad (model
DT11A or DT11 with DT11-128 parallel interface card) .

For devices with two buttons, we'll refer to button o and button 1. For single-button
devices, such as the mouse or tablet, button O is the one on the device and button 1 is the
RETURN key on the keyboard.

The Graphics Magician comes configured for mouse or tablet in slot or port 4. To change
the slot number, run MOUSE.SLOT.INIT, TABLET.SLOT.INIT, or HIPAD.SLOT.INIT,
whichever applies to you . With the HiPad, also run HIPAD CALIBRATE before use. To
calibrate, the HiPad must be in Stream mode.

Backup Copies
The Graphics Magician is provided on a copyable disk, and all the routines are accessible

by your own programs. We strongly recommend that the first thing you do is make a backup
copy or two and store the original in a safe place.

A registration number is written on your Graphics Magician disk and stamped on the
inside cover of your manual. If you call with questions regarding use of this product, please
be prepared to provide this number. Also remember to send in your registration card so that
we may notify you of any new versions or updates.

Licensing
Any of the routines enclosed may be freely used in your own programs. If the routines or

facsimiles appear in another product for sale, there is no fee, but we do require that a license
be obtained from Penguin Software stating that you have permission to use the copyrighted
routines . Note that The Graphics Magician is or will be available for several different
microcomputers. In writing the different versions , the routines were made as compatible as
possible, so much of the work you do on one computer could be easily transferred to
another, if you desire. Some of the basic transfer routir .es are included in this package. Also,
please consider Penguin Software as a possible publisher for your works.

Getting Started
First, using any copy program, (such as the one provided on your Apple Master Diskette) ,

make one or two copies of each side of your Graphics Magician master clisk. The Graphics
Magician is on DOS 3.3. Your finished graphics and the machine languag'e routines needed
to run them can be transferred to ProDOS later, if you wish .
Next, initialize a blank disk or two with DOS 3.3 format for use as data disks.

Now you are ready to use The Graphics Magician. Side one contains both versions of the
Picture Painter, and side two contains the Animator. When you boot the copy of either side,
you will be presented with a list of choices in parentheses. This is the "menu" screen . When
done using any of the programs on the disk you will be returned here. Note that throughout
this manual , for ease of reading and understanding, single-key choices will be listed with
their meanings. Most of the choices in The Graphics Magician require only a single
keypress, but expressing them in the form "(S)hape Editor" instead of "S" helps you follow
the meaning of each a little more easily.

One option that is on the menu for both the Animator and Picture Painter is "(M)odify Disk
Access". The Graphics Magician comes ready to use on an Apple with only one disk drive.
This means that you will have to swap your Graphics Magician and data disks when you save
picture and animation files, and when you return to the menu to use other programs. If you
have more than one drive, you can set The Graphics Magician so that it knows where the
master and data disks are located. Normally, you should put the master in drive 1 and the
data disk in drive 2. To set this, choose " (M)odify disk access" from the menu . You will be
asked for the locations of the master disk and data disk. Type "D1 " and "D2". Make sure the
"D" is included, or you r computer will get confused . You may also configure for multiple
slots or multiple volumes (on a hard disk) with specifications such as "SS" or "V21 ". Check
with your dealer if you have questions about use of other such devices.

Now you're ready to go. Decide if you 'd rather start with the animation editors or the
picture editor, and skip to the appropriate section of this manual. Remember, don 't try too
much too fast . Try simple pictures and shapes, then experiment with the options in each
editor, one at a time.

-9-

Part One - The Animation System

Chapter 2 - A Quick Tutorial
The Animator is made up of three editors: the shape editor, the path editor, and the

animation editor, and a documentation utility that lets you print all the important addresses
and information about finished animation files. The general procedure for creating
animation is to create the shapes you need in the shape editor, draw paths that they will
move in with the path editor, then assign shapes to paths and starting locations in the
animation editor. The animation editor will save a complete animation file consisting of the
machine language animation routines , shapes, paths, and associated tables. From your own
program, you then load the animation file and call it each time you wantto advance one step
in the animation. Your program can check the tables after each animation call for any
interaction between objects, or can change paths or shapes. and so on.

Creating an Animation File
Let's start from the beginning with a simple shape and path, and see how it's done. First,

from the menu, choose "(S)hape editor".

A Simple Shape
When the shape editor is loaded, it first asks a few quick questions. For now, press Return

for each to get the standard settings. When it asks for WIDTH and HEIGHT, type 10, then
Return, for each.

The screen will then show 7 identical sections, each bordered by 4 dots and topped with
an orange bar. A blinking cursor appears in each. At the bottom is a list of single letter
commands that can be used, and other status indicators, including the x,y cursor
positioning. The back pages of this manual contain a reference sheet for all the commands,
but the ones you should first be concerned with are I, J, K, and M. Press each a few times and
watch the flashing cursors and the x,y positioning. I is up, J is left, K is right , and Mis down.
Next, press "Q". "Q" locks the plotting of the cursors on. Move the cursor around now and
notice that it leaves an identical path in each of the sections.

Scribble for a little while, then press "(A)nimate". This does a quick animation of your
shape across the bottom of the screen. If you have a joystick or paddles connected, play with
the settings ... they control the speed. Pressing any key gets you back to edit mode.

We'll keep this shape for now. You'll learn the other options later. Press "(O)ptions", which
gives you the disk options. If you are using only one drive, put in your data disk. Press
"(S)ave", and when you are asked for a name, type in the name BLOB, which is probably
close to what the first try looks like, then press Return. After the disk stops, put your master
back in and press " (Q)uit". It will ask if you want to lose the current shape. Since you've
already saved it on disk, press "(Y)es." The menu screen will appear in a few seconds.

-10-

Now, A Path
From the menu, choose "(P)ath editor." You'll be asked if you want to load a background

screen. Since you don't even have one, type "(N)o."
Now you see a dot in the middle of the screen, and a list of choices at the bottom, similar to

those in the shape editor. A message says to move the cursor to the start. Its present location
is as good as anywhere for now, so just type "(S)tart." Now play with the keys U, I, 0, J, K, N,
M, and ",". They work similarly to the IJKM keys in the shape editor, except now you have the
diagonals, too. (Note that the keys move in the direction of their arrangement on the
keyboard). You are drawing a path foryourshape to follow. Draw for a while, and then try to
bring the last point somewhere near the first. Then type "(S)ave" and name your path
SCRIBBLE. If you are using one drive, make sure your data disk is in. When it's done, replace
your master disk, then type "(Q)uit" and "Y" (yes, the path can now be lost since it's on disk) .
Back to the menu!

On to the Animation
Now press "(A)nimation editor". In the editor, you are given a text screen with the options

listed. Insert your data disk, and press "(L)oad". The program will ask what you want to load.
Press "(S)hape''. then type in the name of your shape, BLOB. After it loads, press "(L)oad"
again, and "(P)ath" to load your path, SCRIBBLE.

Now that everything's loaded, you can create an object. (For definition's sake, an "object"
is the thing that animates. It has a shape, a path to follow, and a starting location. Several
objects can have the same shape or path, and likewise, they can change shapes or paths
while animating.) Press "(O)bject create".

A quick note here about numbering: everything starts with number 0, so the BLOB is
shapeO, and SCRIBBLE is path 0, and likewise, the first object you create is object O. ltwould
have been just as easy to start with 1, but later the O turns out to be more convenient for
programming.

Now just fill in the blanks. Use shape #0. (If you just press Return, you'll find that shape 0 is
"BLO", the first 3 letters of the actual name). For starting coordinates, give 100 for both x and
y. Then, for path A, type O (SCRIBBLE). For path B, you can press "R" to repeat the previous
path (setting up a loop). Then you are asked which step of the path to start in . Type 0,
although you can actually start your object anywhere in the path.

You're done. Press "(H)i-res clear" to clear the graphics screen, then press "(A)nimate".
The paddle or joystick will once again control the speed of your object, moving in the path
you drew. Any key will return to the options.

For kicks, create another object, using "(O)bject create" again . Give it shapeO and path 0,
with "(R)epeat", again. Except start this one at coordinate 50,70. When you get back to the
options, try "(A)nimate" to see what happens.

Finally, "(S)ave" your animation file with the name FIRST. The last thing we'll try is to load
and run the animation from a Basic program, then we'll take a detailed look at the options
available in each of the editors, and how and why the animation works. But first, type "(Q)uit"
from the animation choices, put your master disk back in, and verify with a " (Y)es" to get
back to the menu.

-11-

-12-

Putting it in a Program
From the menu, type " (Q)uit", and it will put you back in Applesoft, with the square bracket

(]) prompt at the bottom of the screen. You're now ready to type in a Basic program that will
use the animation file you just created. Type in the 4-line program in listing 2.1.

10 HGR : POKE - 16302 10
20 PRINT CHR$ <4l;"BLOAD FIRST.ANM"
30 CALL 36864
40 GOTO 30

Listing 2.1 - Simple Animation from Basic

The first statement sets the high resolution graphics display. The POKE also clears the
bottom text lines that normally appear (try it without using the POKE to see what happens).
The second statement does a binary load (BLOAD) of your animation file, FIRST.ANM.
Note that the suffix ".ANM" was added by Graphics Magician when it was saved, telling you
that this is an animation file. The third line, 30, is a CALL to the animation routine. Each time
this CALL is executed, the animation advances one step . Line 40 loops back to line 30, so
that the animation just cycles through its steps indefinitely.

RUN the program. You'll see your animation again, just as it looked when you tested it in
the animation editor, except now it's from your own program! The exciting part is that by
adding extra steps between what are now lines 30 and 40, you can exercise any kind of
control over the animation that you want. .. joystick control of objects, random changes in
paths, activating and deactivating objects , and on and on ... !

Examples of those controls and lists of all the information available are given in chapters 9
and 10. First there are chapters on the animation types available and why they work, and on
each of the three editors you've just used. You don't have to master any one of chapters 3-10
before moving to another. We recommend that you skim them and pick up and try parts of
interest before trying to understand all the options available. There's plenty of room to
experiment and lots of time in which to learn.

Chapter 3 - The Animation Routines

Technical Background of Hi-res Graphics
The design of the animation system is based on a special type of shape called a "pre

shifted" shape, which is actually a descendent of character graphics. The graphics screen is
a display of an area of approximately 8,000 bytes of the computer's memory. Each byte is 8
bits, or ON or OFF's, of which 7 of those dots are displayed. The bytes are arranged so that
there are 40 across the screen, arranged horizontally, so there are 280 (40 times 7) dots
across the screen left to right. Vertically, there are 192 bytes "stacked" on top of one another,
so the screen is 192 dots tall. See figure 3.1 for a cutaway portion of what this looks like.

• •
• •
• •
• •
• •

a byte. Each partition is
Each dot is a sc
and is stored as

reen dot
a bit.

•
•
•
•
•

• • • •
• • • •
• • • •
• • • •
• • • •

Figure 3.1 - A Portion of the Graphics Screen

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

Character graphics involve storing a certain bit pattern in a set of bytes, so that when those
bytes are stored in screen memory, a shape is displayed. That is how text appears on the
screen. Each normal sized character is 7 dots wide (1 byte) and 8 dots tall. So a set of 8 bytes
defines each character. When those 8 bytes are stored in the proper secuence on the screen,
a letter, such as the letter "A", appears.

The problem with using character graphics for animation is that the fastest way to move
things around is by bytes, not bits. Vertically, it 's easy to move a shape up or down one dot
because you can just move it down one byte. Horizontally, though, if you move it one byte
over, the shape moves 7 dots! That doesn't allow much control over smooth animation. To
move in smaller increments , the bits that define the shape actually have to be shifted over
within the bytes, which is both time-consuming and messy.

The solution is "pre-shifted" shapes (which have no relation at all to regular Applesoft
shapes). For every shape created, seven facsimiles are actually stored as bit patterns in
memory. The bit patterns are the same, except each is moved over one dot with respect to
the byte boundaries. That way fast character graphics can be performed with totally flexible
horizontal movement. The animation routine simply checks the x-coordinate, then selects

-13-

the bit pattern that fits the proper byte boundary. This is the basis for the fast animation you
see in virtually all of the good, professional arcade games.

Animation Types
The animation routines in Graphics Magician are all based around this concept of pre

shifted shapes. The most basic PLOT routine does the necessary lookup that selects the
proper bit pattern to put on the screen. One level up is the ANIMATION routine that reads
paths for each of the objects you've defined, determines where shapes move to, then calls
the PLOT routine. Your program only has to call the ANIMATION routine.

There are four animation types included in Graphics Magician. When you start out, you
should only concern yourself with BL.OCK mode. it's the simplest and fastest, and it's the
type that you get automatically when you use the animation editor. The other types offer
variations on speed, smoothness, collision detection, and use of backgrounds. Until you
need changes in these, design your animations using BLOCK. You can always change later,
very easily.

The four animation types are BLOCK, XDRAW, BLOCK with BACKGROUND, and
BLOCK with BACKGROUND XDRAW. To understand some of the basic differences, you
should understand basic animation cycles. Normally, to animate an object you draw it,
update its coordinates, erase the old one, then draw the new, and repeat the sequence. In
short, draw-update-erase-draw-update-, etc. The erase cycle takes just as long as the draw
cycle in most instances, and it causes a moment when your shape is off the screen, causing
some flicker in the animation.

-14-

The three BLOCK modes eliminate this erase cycle, only using draw-update-draw
update, and so on. The way this is done is that the shape erases itself when it's moved. First,
you need to determine the maximum size move a shape will make (one dot , two dots, . ..).
Then when the shape is created a border the size of this maximum move is left around the
shape. The border is always the background color, usually black. Now, if a shape moves at
most two dots, it has a 2-dot border as part of the shape. When it animates, this border, which
is the color of the background, is plotted directly over any remnants of the shape from its
previous position, effectively erasing itself! The shape remains on the screen (less flicker) .
and the erase cycle is eliminated (more speed) .

Most things that come easily have some drawbacks, and BLOCK animation is no
exception. First, if the shape is animating over a multicolored background, the border erases
the background also. The solution turns out to be just as fast and rather easy at the expense
of using 2 pages of hi-res memory, or 8,000 extra bytes. Both BLOCK with BACKGROUND
modes preserve backgrounds, with additional options for helping with another problem.

This other problem is that collision detection is difficult with BLOCK mode, since the
object is always colliding with itself (since it's never erased before the next plot, the new plot
collides with the old) . The only way to detect collisions is through the objects' coordinates,
which in some cases can take time. The only surefire solution to this is XDRAW, which solves
both the background and collision problems. Of course, it has its drawback: it requires the
erase cycle all the time.

You should select the type of animation that best suits your needs. For most applications,
if two hi-res pages are available for use, BLOCK with BACKGROUND should be the first
choice, and BLOCK with BACKGROUND XDRAW an occasionally needed second choice.
See the animation chart for a comparison of advantages and disadvantages.

BLOCK
Besides what's already been said about BLOCK animation , here are a few notes in

summary :
BLOCK uses only one page of hi-res graphics, and that can be either page 1 or page 2.
BLOCK animation does not detect collisions and does not affect the collision table . It's

fast and compact, but for many uses and requirements you will want to select BLOCK with
BACKGROUND, which is just as fast , but gives more flexibility while also requiring more
space.

XDRAW
XDRAW puts a shape on the screen by reversing whatever background is on the screen.

The erase cycle simply re-reverses it, effectively restoring what was there before. Because it
has an erase cycle, shapes that are going to animate using XDRAW do not need any border
around them, hence can be stored a little more compactly.

When an XDRAW shape is put on a black background, it will appear just as it did in the
shape editor. If it's put on a white background, it will appear in negative form. On any other
color, some detail will be lost, but both shape and background will be preserved.

With XDRAW, all collisions register, since the objects never collide with themselves. The
collision table will mark all collisions of objects with other objects AND with the background.

XDRAW only requires one page of hi-res, and that can be either page 1 or page 2.
The disadvantages of XDRAW are its slower speed and slight flicker because of the erase

cycle.

BLOCK with BACKGROUND
Generally, BLOCK with BACKGROUND works the same as BLOCK. The difference is

that it restores the background when a shape is moved. It does this by drawing only on page
1, while the background is stored on page 1 AND page 2. Before putting theshapeon page 1,
the shape is OR'd with page 2, so an imprint of the background is made on its border. Note
that the border must be black, and that any black in the shape (or dots that are off) will also
pick up the background.

BLOCK with BACKGROUND does pick up collisions of an object with the background,
but not with other objects. It always draws on page 1, and always requires page 2 as an extra
background screen. (Note that the page 2 background does not have to be the same as page
1. If it's different, the differences only appear when an object moves overt hem. This can be a
tricky way to hide secret objects, or reveal a screen as it is moved over.)

There is an extra trick built in'o BLOCK with BACKGROUND that takes care of certain
shortcomings of the BLOCK modes. One of these shortcomings not yet mentioned is that
when BLOCK shapes overlap they tend to block each other out and flicker between the two
shapes for the period that they are overlaid . The extra mode takes care of this in critical areas
and helps with collision detection.

A table of flags is set in the two BLOCK with BACKGROUND modes that tell the animator
that an object should be drawn normally, or that it should be animated on page 2! If it is also
animated on the undisplayed page 2, it becomes a moving part of the background! What
does this all mean? First, since it becomes part of the background, collisions between it and
other objects can be detected, since the other objects will show that the "background" was
hit. Second. when it overlaps another shape, the other shape will preserve it as part of the
background and reduce the flickering . -15-

A few hints and cautions:

(1 l use only one or a few shapes on both pages. One key shape on page 2 will usually
allow all important collisions to be detected.

(2) To maximize the correspondence between visual effect and what actually happens,
your first object or objects (#0, 1) should be the ones moving on both pages. The
animator moves the objects in numeric sequence, so the smallest delay is from objects Oto N
(where N is the last in the list), and the longest is usually from N to O (since other things go on
in the program between calls to the animator). If the last object is the one to be drawn on
both pages, collisions won't be picked up on its new position until the next call to the
animator, at which point that object will move again. Visually, this could give the appearance
of a delayed "hit", or of actually missing or picking up extra collisions.

(3) The object(s) drawn on page 2 are drawn using BLOCK mode. That means that they
don't have any background to restore, and will wipe out any background they move over on
page 2. BLOCK with BACKGROUND XDRAW solves this problem, albeit atthe expense of a
little speed.

BLOCK with BACKGROUND XDRAW

This mode is identical to BLOCK with BACKGROUND with the only exception being with
objects drawn to page 2. In note (3) just above, the regular BLOCK with BACKGROUND
uses BLOCK moves on page 2 and will wipe out any background that's there. BLOCK with
BACKGROUND XDRAW uses XDRAW on page 2 and preserves the background. The
expense at which this is gotten is that only the object(s) drawn on page 2 require an erase
cycle, which won't add flicker, but will take a slight increase in time.

Other Things Affecting Speed
The three biggest factors in speed are the size of your shapes, the number of objects, and

the code you use in between calls to the animator. Each time you move a shape, you are
moving a block of memory. The more memory you move, the longer it takes, which explains .
the first two factors. The program code you use causes delays between animation calls. The
example given in chapter 2 is about the fastest you can go from a Basic program. When you
start adding a lot of code in between calls, your speed will be affected, so you want that code
to be as fast and efficient as possible. Using machine language is one way to avoid excessive
delays between calls, and there really is no substitute for machine language if you are
writing something that's very involved with a lot of shapes, calculations, and comparisons
and requires extremely fast speed. If you are using Basic, avoid large numbers of shapes,
long calculations, IF statements, loops (other than the one to repeat the animation calls),
and paddle reads as much as possible.

-16-

z
0
::J
CD

mm
111-n o
~n

IQ ~ ... :e o_
c
:::1 ~
a.

z
0
::J
CD

>< a.
;
:e

~
CD
a.
c
3

(/')
0
3
CD

a.
CD en
~z
c 0 u
O'
::J

z
0
O"
0
a.
CD
::J
CD
(')
CD en en
Ill

-<

m
0
n
~

z
0
::J
CD

z
0
::J
CD

Cl> c;) _ ...
0 Ill
... "O
Ill~

IQ -CD n
Ill

!!

~ ...
om
CD Ill
111 n
-~ ... ca c ...
no :=c
0 :I
:I a.

Cl>
~
Ill

1
Ill

-;
O'
iD
0 ->
:I

3
!!.
0
:I
-I
'<
"O :

-17-

Chapter 4 - The Shape Editor
Background Color

The first things you see when you use the shape editor are a few questions that allow you
to set some general information about your shape. First you are asked if you want to use the
standard black background. If you will be using either version of BLOCK with BACK
GROUND animation, always press Return for the default, yes. The only time you would
choose "(N)o" is if you are using BLOCK or XDRAW and the background color for animation
will be all one color, but not black. In other words, 99% of the time, take the standard.

If you do choose a ba..:kground color, choose one of the standard Apple colors, 0-7. See
Appendix A for information about colors on the Apple.

Load Previous Shape?
The second question is whether you want to load a previous shape. Choose "(Y)es" only if

you have a shape that you've saved on disk and now want to modify, otherwise press
RETURN.

Standard Border?
The third question is whether you want to use the standard border, which is 2. Usually

press Return for yes and go on.

If you will be using XDRAW animation for this shape, you can use a border ofO, but if you
later want to use that shape with another type of animation, you will have to come back to the
shape editor and modify it to put on a border.

The default of 2 assumes a maximum move of 2 dots at a time in any direction (moves like
"2 up and 2 to the right" qualify) . A shape can move up to 7 dots in any direction in a single
move, so the maximum border is 7. Color is preserved only on horizontal moves that are
multiples of 2, however (0,2,4, and 6) . You can give your shapes extra bursts of speed if you
choose a larger border and use the longer movements, but the expense may be extra space
taken by your shape (to accommodate the larger border) .

You may also want to choose a border of zero and leave the border yourself (by not
drawing in the left and right columns and top and bottom rows). Use this trick for shapes that
will only move horizontally or only vertically. Leave the border where it's needed for erasing
itself, but if a shape will only move horizontally, for example, the borders on the top and
bottom are unneeded.

Width, Height, Shape, Size
The last two questions asked before you get into the editor are the width and height of

your shape (excluding borders) . There is both a practical maximum and a real maximum.
The practical maximum depends on the speed you desire, number of shapes, and storage
space you have for your shape. The larger your shape, the slower it will be , and the more
room it will take. The real maximum is 256 bytes , which roughly translates to a shape of
about 36 by 42 dots, including borders, although various rectangles taller and narrower, or

-18- wider and shorter, can be used.

A way to compute the maximum, although the computer does it automatically and tells
you if the shape is too large, is to first figure that your actual height in bytes , HB, is 2times the
border plus the shape height .. or

HB = 2 • B + H

The width in bytes is a little more tricky. Given the border size, B, and the width in dots, W, the
width in bytes, WB is:

WB = INT((W + 2 • B + 12) I 7)

This accommodates the extra byte taken by the shifting of the shapes horizontally. The
result is that HB • WB must be 256 or less. Again, all these computations are done for you,
but at some point you may want to know how to compute your own maximums.

One thing to note is that the formula for WB also tells you that certain increases in the total
width don 't affect the number of bytes used. If you consider the total width in dots as the
shape width plus twice the border, table 4.1 shows the widths that fit into each number of
bytes.

Table 4.1 - Byte width vs. Dot width

Bytes Wide #Dots

1 1
2 2-8
3 9-15
4 16-22
5 23-29
6 30-36
7 37-43
8 44-50

Shape Editor Commands
When you get into the editor section, the commands listed in figure 4.1 should appear on

the bottom of the screen.

Figure 4.1 - Shape Commands

I J KM Z X Q W C B F R S E A 1-7 0 (H)ELP
WIDTH: HEIGHT: BORDER:

COLOR: WHITE HBIT OFF ALL SET

In the first row are the command letters you may use. The second row tells the width,
height, and border that you selected, and the fourth row tells you the plotting color and some
information about how it is formed. The third row will tell you the cursor's x,y coordinate in
the shape.

Since you have already used the shape editor in the tutorial frqm chapter 2, here's a
summary of the commands you've tried, along with a few that are similar:

-19-

-20-

Cursor Movement
l,J,K,M - cursor movement commands, up, left, right , and down, respectively, as they appear
on the keyboard. Note that the cursor wraps around, so for example if you move your cursor
off the top, it reappears on the bottom.

Plotting and Erasing
Z - plot one point in the current color.

Q - lock plotting on, so each time you move the cursor the new point is automatically plotted
in the current color.

X - erase one point (turn the dot off).

W - lock erasing on, so that any point you move your cursor over is turned off.

Test Animate
(A) nimate lets you test animate your shape on the bottom of the screen. Speed is controlled
by paddle or joystick. Return to editing mode by pressing any key.

Disk Options
(O)ptions selects disk options , for saving , loading, cataloging , clearing the shape and
starting over. or returning to the menu .

Color
(C)olor selects a new plotting color. Your choices are 0-7, with O=black , 1=green , 2=violet,
3=white, 4=black , 5=orange, 6=blue, and ?=white. Note that when selecting a new color the
fourth line tells you the color and how the color is made, as described in appendix A.

An important note should be made about color. When you plot a dot "in the current color",
you will have situations when a dot is not turned on at all. Either of the two whites will plot at
any position. Orange and green plot only in odd columns of the screen (which may not
necessarily be odd columns with respect to your shape), and blue and violet only plot in even
screen columns . The effective screen resolut ion when working with blue. orange, green, or
violet is 140 dots. With black and white it is 280 dots. That 's why most programs that use
graphics use a black background. Furthermore, of the four colors (excluding black and
white), only orange and blue, or violet and green. can appear on the same horizontal line
within a byte. Green cannot appear next to orange or blue, for example. Neither can violet.
Vertically, however, you can have each line using any different color. For a full discussion of
Apple colors, see append ix B.

Borders and Boundaries
(B)orders allows you to select new borders (the edge around your shape that lets it erase
itself) and boundaries (the area in which you can draw your shape) , either extending them to
fit a larger shape than you expected , or bringing them in closer to save storage space for a
smaller shape.

Flipping and Rotating
(F)lip allows you to flip your shape over left/ right or up/ down. This is handy if you have a
shape that you want to be able to turn around and face a new direction, but don't want to
redraw the whole thing by hand.

(R)otate lets you rotate your shape 90 degrees. Rotating four times brings it back to its
original position. Rotating also exchanges the width and height of the boundaries.

Shifting
(S)hift lets you move your shapes up, down, left, or right within their boundaries. This is
handy (1) if you underestimate or overestimate the size of your figure and need a little extra
or less room, (2) if you decide you need a bigger or smaller border and need to move the
shape a little to accommodate it, or (3) for a couple of tricks for still and vertical animation,
discussed later.

Exchanging Colors
(E)xchange lets you try any combination of four color swaps (appropriately numbered 1-4).
This won't let you make any one particular exchange of colors, but it will give a few options.

Internal Animation
Internal animation is when a figure not only moves around the screen, but it has features

within the shape that move, such as legs moving in a walking motion, wings flapping,
propellers rotating, eyes blinking , and so on. Pre-shifted shapes lend themselves easily to
internal animation , since in reality for each shape you are creating seven frames. Those
seven frames are what you see being drawn on the screen. By pressing any of the number
keys 1-7, you' ll see that the orange bar over a frame is erased or redrawn. When.the orange
bar is on, that frame is being plotted on. When it's off, most commands you use will not affect
that frame. By turning on and off the plotting on each of the individual frames, you can
modify each slightly to create seven sequenced frames for internal animation.

The sequence of the frames depends on the number of dots the shape will move
horizontally in each step. Th is will usually correspond to your border size, which will usually
be two. The frame sequence for moves of two is shown below:

1 2 3 4
5 6 7

This corresponds to the 1-7 on the keyboard for turning the plotting on and. off. Usi.ng the
above numbers, the table below shows the sequencing for the various possible horizontal

moves.

-21-

-22-

Horizontal Step
0
1
2
3
4
5
6
7

Frame Sequence
No internal animation

1,5,2,6,3, 7,4
1,2,3,4,5,6, 7
1,6,4,2,7,5,3
1,3,5,7,2,4,6
1,7,6,5,4,3,2
1,4,7,3,6,2,5

No internal animation

Note that with horizontal moves of O or 7, since the shape will always be in the same place
with respect to byte boundaries, the same frame will be plotted and no internal animation will
be seen. There are a couple tricks that can be used to overcome this, which will be discussed
in the "Animation from your programs" section. Note also that 1 and 6, 2 and 5, and 3 and 4
are simply reverse patterns, so, for example, a shape created with frames that are sequenced
for moves of 2 will also work with moves of 5 in many cases.

The best way to create a shape that animates internally is to first create the basic shape
with all seven frames turned on. Then, once you are satisfied with the shape and colors, turn
on and off frames so that you can alter each separately for the detail in the animation.

Disk Options
From the editor, if you press (O)ptions, you may then choose one of the following:

(E)ditor returns to the editor.

(S)ave the shape to disk.

(L)oad a previously saved shape from disk into the editor.

(D) isk catalog .

(C)lear the shape and start over.

(Q)uit the shape editor and return to the menu.

Chapter 5 - The Path Editor
The path editor lets you draw preset paths for your shapes. You can also program your

objects to animate in paths controlled by a joystick or other means, but this is a way to make
objects loop, or travel from one fixed point to another.

The paths you create are relative; that is, you define the shape of the path by drawing it,
and no matter where your object starts it will follow that path. For example, one object can
animate in a circle path at the upper left corner of the screen. Another object can animate in
that same circle path , but at the lower right corner of the screen. The path is just a pre
defined set of moves, such as "up 2, right 4", relative to the current location of an object.

Remember that if your shape uses color other than black and white, you must use
horizontal moves that are multiples of two for the color to remain correct. You can always
move your shape vertically any number of units and retain the proper colors.

Background Screen
When you select "(P)ath editor" from the menu, you will first be asked if you want to load a

background screen. If you have a screen picture that you want to animate over, and if it's
saved in standard screen format (33 or 34 sector, with ''.PIG" as a suffix; see appendix B for
specifics) , you can load it now and draw your path over the picture. Press " (Y)es" to load a
screen, "(N)o" to skip, or "(D)isk catalog" to see what's on your data disk. If you choose to
load a picture, just type the picture name, not the ".PIG". The suffix is added automatically by
the program.

Starting Point
You will next be asked to move the flashing dot cursor to where you want to start your

path. Usually the starting point isn't too important; since the path is relative, one starting
point is as good as the next. However, if you are tracing over a background screen, or if your
path is large, you may want to move to a corner of the screen so you have room to draw.

To move the cursor, use the keys shown below:

U I 0
't-1'

J - -+ K ;(t ~
N M

Notice that they are the same four keys for up, down, left , and right that are used in the shape
editor, with four extra keys added for the diagonals. The directions correspond to their
orientation on the keyboard.

When the cursor is where you want it, press "(S)tart". Now you are ready to actually draw
the path.

-23-

-24-

Movement
The same eight keys us.ed for positioning the cursor are used for drawing the path. The

default step is 2 dots, so using "K" moves 2 dots to the right. Using "N" moves diagonally 2
dots down and 2 to the left. These eight keys all move AND register the move as part of the
path.

There are also four extra cursor movement keys for fine tuning. On Apple II aFld II Plus, use
RETURN , - - .- - , and "/" for up, left, right , and down (as they appear on the keyboard). On
Apple lie, use the four arrow keys at the bottom right corner of the keyboard. These
movement keys move in one dot increments in their directions, but do not register the moves
until you press "Z" (the same key used for "plot" in the shape editor) . Pressing any of the
standard eight movement keys instead will move and register the standard movement.

You may also press ''Z" before making any move to register a "no move", or pause.
The default standard move of 2 dots up/ down and lefVright can be easily changed by

using the ''X" and "Y" keys. "X" allows you to change the standard left/right move to 1-7 dots,
and 'Y " lets you change the standard up/ down move to 1-7 dots.

Other Path Editor Commands
"(D)elete", or the DELETE key on theApple / /e, lets you delete the last move you made. You
may use it repeatedly to delete several moves.

ESC allows you to toggle between full-screen graphics and graphics with text at the bottom.
This is handy if your path goes down to the very bottom of the screen behind where the text
lines are.

"(S)ave" lets you save your path to disk.

"(C)lear" lets you clear the path shown on the screen and start over. You are then given the
chance to load a new background and start from the beginning.

"(Q)uit" lets you quit the path editor and go back to the menu. You are asked if you are sure
that you are ready to quit, just in case you didn't save your path to disk.

Chapter 6 - The Animation Editor
The animation editor is where you assemble all the parts of your animation by loading the

shapes and paths that you plan to use, and assigning shapes, paths, and starting locations to
the objects that will perform the final animation. You can create up to 32 different objects.
Each can have a different shape and path, or you can have several using the same shape
and/ or the same path.

When you choose " (A)nimation editor" from the menu, you are given the choices of things
you can do from that editor, as shown below:

(L)oad
(O)bject Create
(E)dit Object
(A)nimate

(S)ave
(D)isk catalog
(N)ames
(H)i-res clear

(nype of animation
(C)lear
(Q)uit

You are also given the number of shapes and paths that have been loaded, the number of
objects you 've created, the animation type and page , and a "bottom address". Your
animation file starts building in the top area of memory, just under Apple DOS, and works its
way down (see figure 6.1). When you start, the bottom address is always 36608, but each
time you load a shape or path, this number is moved down enough to make room. If you are
using a large number of shapes and paths, you should watch the bottom address to see how
much you are cutting into your program space, and more importantly, to see if you get close
to overlapping a graphics page that you are using.

DOS

Animation routines

Shapes and Paths

Free Space

Page 2 graphics

Page 1 graphics

Basic program

Text page and misc. pointers

Normal HIMEM

$8FOO

Bottom Address

$6000 or 24576

$4000 or 16384

$2000 or 8192

$800 or 2048

Figure 6.1 - Apple Memory Chart for Programs Using Animation

Loading
The first thing you should do is load at least one shape and one path. You can load as

many as you want, but before you can create an object, you' ll need at least one of each.
When you press "(L)oad", you'll then be asked whether you want a (S)hape, (P)ath, (H)i

res Screen, or previously-defined (A) nimation tables for editing or testing. You'll first want to
load shapes and paths created with the shape and path editors. Press either "(S)hape" or

-25-

-26-

" (P)ath", then the name of the shape or path that you used when you saved it. Note that if you
cataloged the disk, your shapes have the suffix ".SSH" and the paths have the suffix ".PTH".
You never have to type the suffix; it 's just a way of preventing accidental loading of a shape
named "CIRCLE", for example, as a path, which would have weird results. Note that when
you load shapes and paths, the program numbers them in the order that you load them,
starting at O. Therefore, the first path you load is path #0, the second path you load is path #1,
and so on. The numbering works the same for the shapes, so the first shape loaded is shape
#0, the second is shape #1 , etc.

You can also load a background screen that has been saved in standard 33 or 34 sector
".PIC" format (see Appendix C) for your animation to be drawn over. You should load the hi
res screen as the last step before testing your animation. The hi-res locations are used as a
temporary loading area for shapes and paths, and as a result loading of shapes and paths
leaves some garbage on the screen.

An existing animation file that has been saved with the animation editor can also be
reloaded at this point for editing and testing. Any shapes or paths that you may have just
loaded will be overwritten.

Creating an Object
Shape Number

To create an object for animation, press "(O)bject create". Just like the shape and path
numbering, the first object is object #0. You will be prompted for a series of information,
starting with shape number. Type in the number of the shape that you want this object to
have. If you don't remember the numbers of the shapes, just press Return , and a list of the
shape names and numbers will be given. Because of space constraints, only the first three
letters of shape and path names are listed, so shapes like MOON and MOOSE will both
be shown as "MOO".

Coordinates
Step 2 is to give a starting coordinate for your object . X=O at the left edge of the screen, and

increases to the right. The right edge of the screen is X=279, but you can enter a number for
X anywhere in the range 0-1791 . The actual "animation playfield" is 6.4 screens wide . It also
"wraps around", meaning an object can animate in a straight line to the right , go off the
screen, and it would eventually return on the left side.

The y-coordinate has Y=O at the top of the screen, and increases as it moved down to
Y= 191 at the bottom. Y can have any value in the range 0-255, so the playfield is actually 1.3
screens tall. Combined, the entire playfield has over eight and a half screens for animation.

If your shape is in color, you should position it on an odd x-coordinate for it to have the
same color as in the shape editor. Shifting it over one dot into an even coordinate will
complement all the colors.

Path Assignment
Each object can have one to three paths in which to move. After moving in those paths,

you can either repeat the sequence, stop the object and leave it on the screen, or stop the
object and erase it.

Suppose you have three paths, one called CIRCLE, one called SQUARE, and one called
TRIANGLE. You can do things like have an object move in a CIRCLE and keep repeating
that circle. You can have another object move in a TRIANGLE, then disappear. Another
can move in a SQUARE, then stop on the screen. Yet another can move in a SQUARE, then a
CIRCLE, then a TRIANGLE, then repeat the sequence starting with the SQUARE again.

If a path isn't "closed" (that is, if the ending point isn't the same as the starting point) you
can repeat the path right off the screen. The simplest case is a path that is a single move to
the right . If that path is repeated , the object will just move until it goes off the right edge of the
screen, later reappearing from the left edge (6.4 screens later) . A circle that isn't complete,
say nine-tenths of the arc, if repeated would cause the object to move in a spiral path until it
goes off the screen ... to reappear eventually from the other side.

To select the path or paths for an object, you will first be asked for PATH A. Type in the
number of the path you want for the first in the sequence, or press Return to get a list of the
paths and their numbers. After selecting PATH A, you' ll be asked for PATH B, with the
additional choices of "(R)epeat, (D)rawn at end, or (E)rased at end". Type the number of the
path if you wish to select a second in the sequence, or press R, D, or E to end the sequence
the way you want. If you selected a second path, you'll be asked for PATH C, with the same
ending choices. If you select the third path, you'll then only be asked fort he ending choice of
R, D, or E.

Location in Path
The fourth step is to select the "path location". You do not have to start with the first move

in a path; you may start at any step. Typically you' ll typeO fort he first step. If you want to start
an object 10 moves into the path , you can type 10. This allows you to set several objects on
the same path, but out of sync with one another.

If you selected more than one path, you also have the choice of starting in path A, B, or C.

Test Animation
Now that you've got at least one object. you can see what your animation looks like.

Usually you 'll want to press "(H}1-res clear" first to clear any leftover garbage off the screen.
In some instances you'll want to load a background screen instead. To try the animation,
press "(A)nimate". The animation you defined will be shown on the screen. You can control
the speed with a paddle or joystick , and when you're done watching, press any key to go
back to the options . If you want to see it again from the start , just repeat the " (H)i-res

clear/(A) nimate" sequence.

Edit Object
If. after testing your animation. you decide that an object needs something char.ged such

as the starting location or a path. press ··(E}d1t object" Choose the number of the object that
you wish to review or edit. All the information that you've given for that object will be then be
displayed on the screen. and you will be given the choice of changing the shape. the
coordinates. the paths, or the starting path locations By pressing the appropriate letter
prompt, you are allowed to reenter any of that 1nformat1on. When done. press "(R}eturn to

options".

-27-

Page 2 Flag - For Block with Background Only
If you had chosen one of the two "Block with Background" animation types (the default

when you run the editor is "Block"), the edit options will display one more piece of
informat1~.n and an .additional choice. A "Page2 Flag " will be listed as having a value of o or 1.
Wit~ the Block with Background" animation types. remember. you have the option of
having an Object drawn on both page 1 AND page 2, thus becoming a temporary part of the
background .. If .the "page 2 flag" is equal to 0, that means that the object will NOT be drawn
on page 2 (this is the default) . If the "page 2 flag " has a value of 1, that object will be drawn on
page 2. During editing , pressing " (F)lag" will reverse the value of the "page 2 flag ''.

Changing Animation Types
You may change the type of animation from the default of "Block" to any of the other three

types by pressing " (T)~pe of animation ", then selecting the animation type you desire. If you
are using ?ne d1~k drive, your master disk should be inserted before selecting (if it isn't
already). since a file must be loaded from it. If you choose "Block" or "Xdraw", you also have
a c.ho1ce of animating .on graphics page 1 or page 2. You may use this option at any time to
switch an animation file to any other animation type.

Other Options

" (S)ave" saves all the information you used in creating your animation , along with the
machine language routines necessary to perform it, into a pair of files on your data disk. The
actual machine language file is given the suffix ''.ANM''. A text file which contains
1nform.at1on necessary for re-editing and documenting your animation , but not for running
1t, 1s given the suffix ''.ATX''.

"(N)ames" lists the names of all the shapes and paths you've loaded, along with their
numbers.

" (D)isk catalog" catalogs your data disk.

"(C)lear" allows you to clear your entire animation and start over.

"(Q)uit" returns to the menu , after checking if you really want to quit in case you haven 't
saved your anim&tion.

-28-

Chapter 7 - The Animation Documenter
Pressing "(D)ocument animation" from the menu gets you to a utility that is not necessary

to use, but sometimes comes in handy. The animation documenter will first of all allow you
to print on the screen or a printer all the information about an animation file you 've created .
The information included will be useful when trying some of the tricks listed in chapters 9
and 10. (All of this information you could also get by yourself through other means, but this
speeds up the process.) The documenter also has the feature of allowing you to delete
unused shapes and paths from an animation file, thus freeing up extra space for your
programs. Occasionally you will find that you 've loaded a shape or path. only to realize later
that it wasn't really needed tor your animation. The delete feature in the documenter
provides an easy way to free that wasted space.

In the documenter, after loading your animation file , you are given the choices of printing
an animation report , deleting unused shapes or paths, saving a modified tile (one that's been
changed by deleting a shape or path), or quitting and going back to the menu .

Animation Report
When you choose "(R)eport", you are asked if you want it printed to the screen or a printer.

and it a printer, in what slot# is the printer card (usually the printer card is put in slot 1). The
generated report will then list the animation file name, the animation type and page, the
bottom address of the animation file , the number of objects, paths, and shapes, the names
and addresses of all the shapes and paths, and then all the information you entered tor each
object, including addresses at which your programs can access and modify that information.
All addresses are given in decimal , following by hexadecimal in parentheses. When the
shape and path names and addresses are listed, the report will print "UNUSED" next to any
that are not used by any of your objects.

A printer is recommended for this report , and you will find the report useful to have on
hand when you start trying some of the programming tricks in the following chapters.

Deleting Shapes and Paths
If any of the shapes or paths are flagged as unused in the animation report. you may delete

them by pressing " (D)elete shapes or paths''. You will be prompted to choose a shape or
path and its number. If that one is indeed unused, it will be deleted. You will not be allowed to
delete shapes or paths that are used in the animation. It you are deleting more than one
shape or path, be aware that each time you delete, the numbers are shifted down. For
example, if you delete shape 2, shapes O and 1 retain their numbers, but shape 3 now
becomes 2, shape 4 becomes 3, and so on. To overcome contusion and speed up the
process, delete the highest numbered shape or path first , then to/low in reverse sequence.
Deleting a shape with a high number does not affect the numbering of those below it.

Saving the Modified Animation File
Remember that it you delete any shapes or paths you will have to save the changed

animation tile, or next time you load it they will still be there.

-29-

-30-

Chapter 8 - Animation from your
Programs: Necessities

Once your animation file is saved to a data disk, you can write your own programs to
access and control the animation. The way the machine language animation routine works
is that each time you call the routine it performs one step in the animation: that is, each
object is moved one step along its path .

The simplest program for running an animation is given in listing 8.1. Line 10 sets the hi
res graphics mode to page 1: the poke clears the bottom four text lines. Line 20 loads the
animation routines from disk. Line 30 calls the animation routine to perform one step of the
animation, and line 40 loops back up to 30 so that the program repeatedly performs single
steps of animation.

10 HGR : POKE - 16302 10
20 PRINT CHR$ (4l;"BLOAD FIRST.ANM"
30 CALL 36864
40 GOTO 30

Listing 8.1 - Simple Animation from Basic

Between what occurs in lines 30 and 40 is where you have control over what happens to
the animation. Each time the animation routine is called and a step is performed, all the
animation tables are checked and updated. Before the routine is called again you can
change shapes and paths. activate and deactivate objects, check for collisions, and anything
else you may want to do in your program.

The general program design for using an imation will be:

1) Set-up and in itialize all variables, graphics screens, load the animation file, etc.

2) Call the animation routine.

3) Check and change parameters.

4) Go back to step 2.

In listing 8.1, step 3 is bypassed. For most programs, though , this step will be the most
critical. The commands that are put in step 3 are executed between calls to the animation , so
the longer they take, the slower the animation will be. If there is a lot to do here, there may be
good reason to use mach ine language for this step. No matter what appears at step 3, it
should be written as efficiently as possible.

As you can see in listing 8.1, there are few commands needed to run your animation. In
describing the ones that are necessary, though , it is important to first know which type of
animation you are using: Block, Xdraw, Block with Background, or Block with Background
Xdraw. The most frequently used are Block and Block with Background, and unless you
changed types in the animation editor yourself, your file is set up to use Block.

Set-up
First, you want to set the hi-res display, as in line 10 of listing 8.1, and load your animation

file, as in line 20. If you use any string variables, you should also use a statement such as:

25 HIMEM: (bottom address)

where "(bottom address) " should be given as the number that is the bottom address listed in
the animation editor (and documenter) for your animation file. This protects the area of
memory in which the animation routines are located. Using this command will never hurt,
so it's recommended whenever in doubt.

Animation Calls - Block and Block with Background
For Block, or Block with Background, each time you want one step of the animation

performed , use CALL 36864 (or JSR $9000 in machine language) . This calls the main
animation routine. It will perform one animation step, update the tables, and return to your
program.

Animation Calls - Xdraw and Block with Background
Xdraw

For Xdraw, or Block with Background Xdraw, it is necessary to call a "Firstdraw" routine
before the loop. (In listing 8.1, we'd put it at line 28 or thereabouts) . Since Xdraw actually
does an erase-draw cycle, it is necessary to have the objects on the screen to erase the first
time. "Firstdraw" simply does a draw cycle, so that the normal Xdraw routine can be used
after it. (fhe astute will note that with Xdraw, an erase is a repeated draw; i.e. of two Xdraw
operations, the first will draw and the second will erase. The Firstdraw routine does one
Xdraw operation to put the object on the screen. The normal Xdraw routine does one Xdraw
operation to erase the object, gets the new coordinates, then does another Xdraw operation
to draw the object again.)

When using the Xdraw routine, Firstdraw is called using CALL 37073 (or JSR $9001 from
machine language).

When using Block with Background Xdraw, use CALL 37117 (or JSR $90FD) for the
Firstdraw routine.

For either, use the same animation call as with the regular Block modes: CALL 36864 (or
JSR $9000).

-31-

-32-

Chapter 9 - Animation from your
Programs: Options and Tables

Following is a list of all the animation tables that are used and kept by the animation
routines. Most are not used frequently , and it 's recommended that you skim them briefly and
go on to the next chapter, which gives examples of using most of them and will allow you to
refer back . This is one of those technical sections that has some information that one may
never use, but is handy to have around anyway.

Each table is listed with its addresses in hexadecimal and decimal. Quick calculations are
shown for finding exact locations for any object, and the value N is used in those
calculations to designate object number (possible values 0-31 }.

Hi and Lo addressing
In the tables, references are made to the Hi and Lo bytes of an address. An address in the

computer takes two bytes of storage, and since each byte can hold values ranging from Oto
255, the addresses are split modulo 256. It's not necessary to understand if you simply use
the Basic commands:

Hi = INT(A/256)
Lo = A - Hi.256

where A is the address.

Now if this two-byte address is stored for reference in two consecutive locations, there are
two orders in which to put them: Lo, Hi or Hi, Lo. Oddly enough, most addresses are stored in
Lo.Hi format in machine language. Graphics Magician also usually uses Lo.Hi format ,
except where noted otherwise.

Shape Index $9380-$93FF
(decimal 37760-37887)

This table contains the actual memory addresses of each of the shapes. Each address is
two bytes long, in Lo.Hi format. There is room for 64 addresses, hence the shapes may be
numbered 0-63. If S is the shape number, its address may be found as:

Lo = PEEK (37760+2·si

Hi = PEEK (37761 +2•S)

Address =Hi ·256+Lo

You may change this address anytime during animation to change the shape of an object
being animated (see Object List. also} or to allow more than 64 different shapes to be used in
a program.

Object List $9400-$941 F
(decimal 37888-37919)
This is a list of shape numbers for objects 0-31 . Each entry is one byte long, so to find the
shape number for object N, look in location 37888+N. This number may be changed with
Block and Block with Background to allow an object to change shape in mid-animation.
(The new shape should be close to the same size, or larger, so that the old shape is fully

erased.}
More importantly, this list is the one to which the animation is keyed . This list gives the
sequence of movements of the objects for each animation step (object O goes first, then 1,
and so on}. and flags the last object to animate. When the animator finds a shape number255
($FF} , it assumes that the last object has been moved. so it stops and returns to your
program. Example: if object o has shape #5 , object 1 has shape #2, and object 2 has shape
#255, the animator concludes that only two objects are being animated. The 255 flags the
end of the list.
Also. objects may be temporarily deactivated using this list. If the shape number is greater
than 127, but less than 255, the animator skips that object and continues with the next one in
the list. So if you want object N to "sit still " for a moment, you can take the current shape
number, add 128 to it, and store it in the object list, deactivating the object (if you don't want
to take the computer time to do the calculation , you can just put a 128 there}. To reactivate
an object , just subtract 128 from the number in the object list to get the original shape
number back. In machine language, this operation is equivalent to setting and clearing the
high-bit.

Page 2 Flags $9420-$943F
(decimal 37920-37951)

Used in Block with Background and Block with Background Xdraw, these locations hold
values that tell whether an object will appear on page 1 only, or animate on both page 1 and
page 2. For object N, the location of its Page 2 Flag is 37920+N. If an object is to be drawn on
page 1 only, this location holds the number 17 (hexadecimal $11 }. Objects drawn on page 1
and page 2 will have the number 145 (hex $91} in this location. Any other numbers will give
strange results. The reason: for speed, these numbers correspond to actual instruction
codes that are inserted into the machine language routines.

Path Locations
The path location is described in three sub-tables: the current path (a number 0, 1, or 2 -
corresponding to path letter A, B, or C in the Path List} , and the actual address of the next
step in the object's path , split into Hi and Lo address form in two tables for speed.

-33-

-34-

Path Letter $9440-$945F
(decimal 37952-37983)

The path letter corresponds to the Path List table, described later, and simply tells if the
object is on its first , second, or third path (A,B,or C, given by 0,1, or 2) . When the path
sequence is finished and there is no repeat used, this value is set greater than 127 (negative
in machine language) , thus deactivating the object. You may use this location as an alternate
to the Object List for deactivating objects. Object N's current path number is at 37952+N.

Path Address Lo $9460-$947F
(decimal 37984-38015)

and

Path Address Hi $9480-$949F
(decimal 38016-38047)

This is the pointer to where the next path value for this object is stored in memory. Upon start
of the animation, the two-byte address pointer usually points to the start of the first path
being used. After each animation call , this pointer is incremented to the next address, until a
zero (end-of-path) value is found, at which point the Path List is checked for the next action.
You may use this pointer to trick the animator into thinking a path is done by pointing this
location to any byte that has a value of zero. To compute the address, A, of the next path
value for object N, use:

PEEK(38016+N) • 256 + PEEK(37984+N)

Object Locations
This is also a 3-part list that contains three values for each object that give its current x,y
coordinate. The coordinate refers to the upper-left corner of the shape. The first two bytes
for each give the x, and the third byte gives they. They location is a value 0-255, with 0-191
on the screen, and 192-255 as a wraparound area. For speed, the x location is stored in
byte/ bit format . The first location tells in which horizontal byte the object is located, and the
second tells the bit, 0-6. Although only 40 bytes across are displayed on the screen, the byte
number may range from 0 to 255, with 0-39 displayed, and 40-255 as a wraparound area.
The object location may be changed directly by your program, but if it is not currently in a
wraparound area (i. e., if it is vis ible) you must also use an erase routine to remove the object
at the old location.
The bit number is also the number that tells the PLOT routine which frame of the shape
to use.

X-Byte $94A0-$94BF
(decimal 38048-38079)

and
X-Bit $94C0-$94DF
(decimal 38080-38111)

To find the x location of object N, use:

X=PEEK(38048+N)'7+PEEK (38080+N)

Y-Locatlon $94E0-$94FF
(decimal 38112-38143)

Find they location of object N using PEEK (38112+N).

Path Lists $9500-$957F
(decimal 38144-38271)
The Path List is four bytes long for each object. It contains the numbers in the Path Index of
each object's three paths (A. B, and C from the animation editor), and a repeat flag . The first
byte of this information for object N may be found at 38144+W4.
The first byte (byteO) is the number of path A; its address may be found in the Path Index. If
there is no path B, byte 1 is the repeat flag . If there is a path B. byte 1 contains its number
corresponding to the Path Index. Then, if there is no path C, byte2 contains the repeat flag . If
there is a path C, byte 2 holds its number, and byte 3 holds the repeat flag .
The repeat flag has a value of 255 ($FF) if the sequence is to be repeated . Its value is 254
($FE) if the sequence should end without erasing the shape. Or, if the value is 253 ($FD) , the
sequence ends with the shape erased.
The path numbers in the Path List are only used when the Path Location list hits the end of
a path. When that occurs, the animator then looks to the Path List to see what to do next. It
will either go on to the next path or follow the instructions of the repeat flag .

LOCATING AN
OBJEcrs SHAPE

Find Shape
Number

Then Find
Shape Address

LOCATING AN
OBJEcrs PATH

!
(.::\
~

!

At end of path,
find number of
next path

Then find
its address

-35-

-36-

Path Index $9580-$95DF
(decimal 38272-38367)

Like the Shape Index, this table gives a two-byte address in lo, hi format for each path. There
is room for 48 paths, numbered 0-47. The Path List refers here for finding the address of a
new path to put into the Path Locations table. To find the address of path number P, use:

Hi=PEEK (38273+2.P)

Lo=PEEK (38272+2.P)

Address =Hi.256+Lo

Collision Table $95E0-$95FF
(decimal 38368-38399)

The collision table contains one byte for each object. This byte contains a zero unless the
corresponding object incurred a collision during the previous animation step, in which case
it is set to any non-zero value. The collision flag for object N is found at 38368+N .

The collision flag is used as follows for each animation type:

Block - unused

Xdraw - detects all collisions with other objects and the background.

Block with Background- page 1 objects pick up all collisions with the background and page
2 objects. Page 2 objects do not detect collisions .

Block with Background Xdraw - Page 1 objects pick up all collisions with the background
and page 2 objects. Page 2 objects pick up collisions with the background and other page 2
objects.

A collision is detected when an "on" dot in a shape is put in a screen position where an "on"
dot already exists, either from another shape or from the background. Note that because of
the way Apple colors are made, some colored shapes will never collide with one another. A
blue shape will never collide with an orange shape, for example, since blue is made up of
even dots, and orange is made of odd dots. See appendix A for color details.

Path Format
When controlling the movement of an object with a joystick , keyboard, or even some

formula, it becomes necessary to know how each move is described to the animator. The
next chapter will contain some examples of controlling animation through input devices.
This section will describe the actual format of the path.

Each move in a path takes one byte. A path with 100 moves in it will take 101 bytes of
storage. The last byte contains the value zero, which flags the end of a path. Whenever a zero
value is reached in a path, the animator looks atthe Path Liststoseewhatto do next, whether
to go to another path, repeat the path sequence, or stop.

The eight bits in each path byte are divided into two sets of four (see figure 9.1). The first
four bits give the horizontal x movement and the second four bits give the vertical Y
movement. Each group of four bits can contain the values -7 to +7. The leftmost bit in each
group is a sign bit. If it 's set (1), the value is negative, if it 's off (0) , the value is positive .. The
remaining three bits give the binary values for Oto 7. See figure 9.2 for the b1nary/ dec1mal
equivalences. The following formula in Basic will give you the proper path value for a move
of DX, DY, where DX is the x-move and DY is they-move:

PV = 128 • (DX< O) + 16 • ABS(DX) + 8" (DY< O) + ABS(DY) : IF PV =O THEN PV=8

Note that in Basic you can use expressions like (DX< O) that give a value of 1 if true and a

value of 0 if false.

Another way to figure the path value is to look at the chart in figure 9.2, find the actual
values for the moves you want for DX or DY, and use 16"DX+DY.

A positive value for DX will move the object to the right: a negative value for DX will move it
to the left. A positive value for DY will move the object downward; a negative value will move

it up. . d . t ,, "
Note that since a zero flags the end of a path, we cannot use 1t to es1gna e no move .

Instead, as shown in figure 9.2, you can use any combination that gives you a negative zero,
which is still no move. The path values 8, 128, and 136 all give a "no move", or pause, since
they are all combinations of zeroes and negative zeroes.

Figure 9.1 - How a Path Value Appears in a Byte

sign bits
~ ~
0 0 0 0 0 0 0 0

--.,....; --.,....;

x y

Figure 9.2 - Path Values in Binary

Binary Move Actual Value
Described To Use

0 0 0 0 0 0

0 0 0 1
0 0 1 0 2 2

0 0 1 1 3 3

0 1 0 0 4 4

0 1 0 1 5 5

0 1 1 0 6 6
0 1 1 1 7 7
1 0 0 0 -0 8
1 0 0 1 -1 9
1 0 1 0 -2 10

0 1 1 -3 11
1 1 0 0 -4 12

1 1 0 1 -5 13
1 1 1 0 -6 14

1 1 1 -7 15 -37-

-38-

Shape Fonnat
Each shape contains 16 bytes of leading information, followed by the actual bit maps of

the seven frames . The first 14 bytes are two-byte offset pointers to the individual frames. The
offset to frame O is in bytes O and 1, the offset to frame 1 is in bytes 2 and 3, and so on. The
offsets are stored in Hi.Lo format. To find the start of the actual bit map for a frame. you
would add the starting address of the shape to the offset for that frame.

Bytes 14 and 15 are the width and height of the shape, in bytes. These numbers tell how to
interpret the bit map. If Wis the width and H is the height, the first W bytes of the bit map give
the top horizontal line of the frame. The next W bytes give the second line. and so on for H
lines.

The Nitty-Gritty Plot Routines
The animator is actually two routines. A main routine cycles through all the objects,

computing new locations by the information in the object location and path tables, and calls
the plot routine to put each object on the screen (or to erase it) . The plot routine simply puts
an object on the screen or takes it off. Given the shape number, it knows which frame to put
in the location sent by the animator by the bit number it is given for the location.

It is possible, and in special circumstances useful, to use the plot routine without going
through the animator. To plot. not animate, a single shape at a given x,y coordinate. you
must do the following for any of the four animation/ plot types:

1) Put the x coordinate in locations O and 1: the x-byte in 0, and the x-bit in 1.
(e.g. POKE 0, byte: POKE 1, bit)

2) Put they coordinate in location 2.

3) Put the shape number (not object number) in location 3.

4) CALL 36608 or JSR $8FOO

The Block routine does not return a collision value. Xdraw returns a collision value in
location 11 ($B). and Block with Background and Block with Background Xdraw return
collision values in location 254 ($FE) .

Calling Erase Routines
You may also call erase routines, which are part of the plot routines. For all types repeat

steps 1-3 above. For Xdraw, repeat step 4 also, since the draw and erase functions are the
same. For the other three types, use CALL 36751, or JSR $8F8F. The Block erase will put a
black background over the shape. The Block with Background erase routines will erase
page 1 shapes by placing the background over them. Shapes on page 2 will not be affected.

Erasing on Page 2
To erase a page 2 shape in regular Block with Background. you can just plot a blank shape

over the one you want erased. To erase a page 2 shape in Block with Background Xdraw
requires a little programming patchwork . In the Blockback/Xdraw code. locations $9031-
$9049 contain a code swapping routine that temporarily changes the Block back plot routine
to an Xdraw plot routine, calls it, then changes it back . By setting up bytes 0-3, then
extracting that code and putting it into your own, you can erase an Xdrawn shape on page 2.
If you want that shape redrawn at some point without calling Firstdraw. you 'll have to repeat
the procedure. If you simply want to swap shapes. use the same steps, except after the JSR
$8FOO in the extracted code insert the set-up of locations 0-3 again for the new shape and
another JSR $8FOO.

[Full-page memory usage and call chart for animation types; maxfiles note]

Machine Language Memory and JSR Chart for Animation Routines

Memory Usage

Call Location

FirstDraw Call

Plot Routine

Erase Routine

Block Xdraw Block with Back. Block with Xdraw

$0-$A $0-$B $0-$C, $FE $0-$C, $FE
$8F00-$8FDE $8F00-8F80 $8F00-8FE7 $8F00-$8FFB
$9000-90C9 $9000-90E8 $9000-90EO $9000-9114
$9180-95DF $9180-95FF $9180-95FF $9180-95FF

$9000 $9000 $9000 $9000

none $9001 none $90FD

$8FOO $8FOO $8FOO $8FOO

$8F8F $8FOO $8FBF $8FBF

Note: Normally tile space from $9600 and up is taken by DOS and its buffers. Using a
MAXFILES 1 command will free two buffers and let you use the space $9600-$9AA5.

-39-

-40-

Chapter 10 - Animation from your
Programs: Samples and Tricks

This chapter has several examples of how to use the various controls over the animation.
There are always other ways, and of course there are tricks and techniques that we haven't
even discovered yet. but the examples in th is chapter should answer a lot of basic questions
about how some of the tables can be used . All the sample programs are in Basic, but the
same techniques can also be used from machine language.

Controlling Paths with Joystick or Keyboard
The first trick in having an object controlled by a joyst ick is to create a path that is a single

move, we'll call it ONE MOVE. The move can be in any direction, since we'll constantly alter it
from our program. In the animation editor, when creating the object that you want to control
independently. assign it the path ONE MOVE, followed by a repeat. (If you will want more
than one object controlled by a player. and each to move independently - for example with
a two-player game with each person holding one game paddle - you will have to load in
ONE MOVE twice as two different paths and assign one to each of the independent objects.)
Note which object number is the one you will control. then save the animation file. There is a
sample of this type of animation file called "JOYSTICK.ANM " on your Graphics Magician
disk.

Joystick Example
Listing 10.1 shows a sample program for controlling an object with a joystick. In this case

we used our sample JOYSTICK.ANM file , which has the controllable object as #0. Line 10
loads the animation file, and line 20 sets the hi-res graphics mode. (Line 20 also clears page
2, since the animation type of JOYSTICK.ANM is Block with Background. Though we don't
use the background in this example, we will with the same animation file in listing 10.4.) Line
30 just says that the object number that we'll control is #0. Line 40 looks in the Path List and
Path Index tables to find the address of the first path for object #0. This will be the starting
address of our ONE MOVE path in memory.

Now is where the loop begins. First, line 50 reads the two paddles (a joystick is 'equivalent
to two paddles, one for the vertical and one for the horizontal) . Line 60 then does a
computation to find a path value for the paddle readings we found. Note again the
computations using something like (X < 80) as a value. A comparison expression like that
has a value of 1 if true. 0 if false. Of the two expressions (Y < 80) and (Y > 160), only one can
be true, so the "Y" part of the computation. (Y < 80)"10+(Y > 160)'2. will result in a value of
either 0, 2. or 10, the path equivalences of 0. +2, or - 2 for they change (see figure 9.2 again) .
Similarly, the "X" part of the computation gives either a +2, 0, or - 2 for the x change. Lastly, if
1t turns out to be a zero move, the path value is changed to 8, which is a negative zero and
won't flag the end of the path. Line 70 pokes the path value into the actual path address that
we found and calls the animate routine. Line 80 loops back up to start the paddle-read
process all over.

10 PRINT CHR$ (4l;" BLOAD JOYSTICK.ANH "
20 HGR2 : HGR : POKE - 16302,0
30 N = 0
40 T = PEE K (38 144 + N * 4l:P = PEEK (3:::2 72 + T *

2> + PEEK !38273 + T * 2> * 256
50 X = PDL (0l :Y = PDL (1l
60 M = !X < 80l * 160 + !X > 160l * 32 + !Y < B0l *

10 + !Y > 160l * 2: IF M = 0 THEN M = 8
70 POKE P,M : CALL 36864
30 GOTO 50

Listing 10.1 - Joystick Control of Animation

Keyboard Example
Listing 10.2 shows a similar example using keyboard for input instead of a joystick. Lines

1-40 are the same, except for the HIMEM command, which has been added since we're
using a string variable here. We'll set the controls so that the space bar is stop, the A and Z
keys are up and down. and the right and left arrow keys (ASCII character values 21 and 8,
respectively} are right and left.

Line 45 sets the initial move to "stop". Line 50 checks for a keypress. The PEEK used can
be found in your Applesoft manual. If the value returned is greater than 127. a key has been
pressed. Otherwise one hasn't. and the program skips the key read and path change. All we
do differently now is check which key has been pressed, and if it's one that gives us a new
direction. we assign that direction value to the path .

5 HIMEM : 36055
10 PRINT CHR$!4l;" BLOAD JOYSTICK.ANH "
20 HGR2 : HGR : POKE - 16302,0
30 N = 0
40 T = PEEK (3~: 144 + N * 4l:P = PEEK !38272 + T *

2l + PEEK !38273 + T * 2l * 256
45 POKE P,8
50 IF PEEK (- 16384) < 128 THEN 120
60 GE:T A$: I F A$= II II THEN M = 8: GOTO 110
70 IF A$= "A" THEN M = 10 : GOTO 110
80 IF A$= " Z" THEN M = 2: GOTO 110
90 IF A$= CHR$!8l THEN M = 160 : GOTO 110
100 IF A$= CHR$ (21) THEN M = 32 : GOTO 110
110 POKE P,M
120 CALL 36864: GOTO 50

Listing 10.2 - Animation Control from Keyboard

-41-

-42-

Collisions
Listing 10.3 is an example of how to check the collision table. Our sample, COLLIDE.ANM,

uses Xdraw animation, so any collision between the two objects should be detected. Object
O has a path of ONE MOVE, and we'll control it with a joystick . Object 1 has a path we chose
at random, and we'll let it go its own merry way .

Lines 10-70 are exactly the same as list ing 10.1 for joystick control , except (1) we are
loading a different animation file in line 10, (2) the POKE that clears the text lines has been
omitted in line 20, and (3) there is a call to the Firstdraw routine in line 45 , since we're using
Xdraw animation now. The collision table starts at location 38368, so the collision flag for
object O is at 38368 and the collision flag for object 1 is at 38369. Lines 80 and 90 have been
added, which print the values of the collision flags each time through the loop. and beep and
stop if a collision occurs . Any keypress resumes the animation.

When running this example, note that sequence determines if one or both collision flags
are turned on. One object may move with no collision , then the other object may move on
top of it, causing a collision to register with the second. Likewise, one object may move on
top of the other, flagging a collision , but in its turn the second may move away enough so
that in its new position there is no collision .

10 PRINT CHR$ C4l;"BLOAD COLLIDE.ANM"
20 HGR2 : HGR
30 N = 0
40 T = PEEK (38144 + N * 4l:P = PEEK (38272 + T *

2l + PEEK (38273 + T * 2l * 256
45 CALL 37073
50 X = POL (0l:Y = PDL (1)

60 M = CX < 80l * 160 + (X \ 160l * 32 + CY < 80l *
10 + (Y > 160) * 2: IF M = 0 THEN M = 8

70 POKE P,M: CALL 36864
80 PRINT PEEK (38368l, PEEK (38369)
90 IF PE:EK (38368) OR PEEK (3:::369) THEN PRINT

CHRS (7): GET A$
100 GOTO 59

Listing 10.3 - Checking the Collision Table

Listing 10.4 shows an example of collision detection with a background. We're using the
JOYSTICK.ANM file again, since it is done in Block with Background mode. Again , lines 10-
70 are the same as in listing 10.1 , with the addition of two lines that load a background
picture, MAZE.PIC, on page 1 (line 22) and page 2 of graphics (line 24) . This time lines 80
and 90 only check for collisions of object O with the background.

10 PRINT CHR$ C4l;"BLOAD JOYSTICK.ANH"
20 HGR2: HGR
22 PRINT CHRS C4l;"BLOAD MAZE.PIC,A$2000"
24 PRINT CHRS (4);"BLOAD MAZE.PIC,A$4000"
30 N = 0
40 T = PEEK C3E:144 + N * 4l:P = PEEK (38272 + T *

2l + PEEK (38273 + T * 2l * 256
50 X = PDL (0):Y = PDL (1)

60 M = <X < 80) * 160 + <X > 160) * 32 + (Y < 80) *
10 +CY > 160) * 2: IF M = 0 THEN M = 8

70 POKE P,M: CALL 36864
80 PRINT PEEK (38368)
90 IF PEEK (38368) THEN PRINT CHRS (7): GET AS
100 GOTO 50

Listing 10.4 - Collisions with Background

Using the Object List
The next example uses one of the demo files on your disk, LETTERS.ANM. This animation

file contains 27 shapes: the letters of the alphabet plus a space. Each of 28 objects is
assigned to the same rectangular path, although each has a different starting point in that
path. The result is that the letters will move in single file, since each is slightly ahead of the
last in the path. The starting step in the path and the x,y coordinates had to be computed in
advance by giving each object a starting location and counting the path moves between
each. (This animation file , as weiT as all the others in this chapter, can be loaded into the
Animation Editor or Animation Documenter and examined closely, or even be changed .)

This example lets the user type in a message, then takes each letter of that message and
assigns the shape of that letter to the next object in sequence using the Object List. The
important new lines are those from 60 to 90. Line65, in particular, takes the ASCII code of the
next letter in sequence and subtracts 65. The ASCII code for the letter A is 65, with each of
the other alphabetic characters following in order. so the letter A returns a value of 0, B
becomes 1, and so on, which are the equivalents of their shape numbers in LETTERS.ANM.
Lines 70 and 75 poke the shape number into the object list. If the character is not a letter, it
pokes a 26, which is the shape number for a space (in this particular file) . Line 90 fills up all
the remaining 28 objects with spaces.

-43-

5 HIMEM : 26336
10 PRINT CHR$ (4);"BLOAD LETTERS.ANM"
15 HGR2
20 TEXT: HOME
30 PRINT "TYPE SOMETHING 2C: CHARACTERS OR LESS.":

INPUT A$
40 IF LEN (A$l > 28 THEN 30
50 HGR : POKE - 16302 t0
60 FOR I= 1 TO LEN (A$l
65 A = ASC (MID$ (A$,I,1ll - 65
70 IF A < 0 OR A > 25 THEN POKE 37888 +I - 1126

: GOTO 80
75 POKE 37888 + I - 1,A
80 NEXT I
90 FOR J =I TO 28: POKE 37888 + J - 1126: NEXT:

POI<E 37916,255
100 CALL 36:::64: IF PEEK (- 16384) < 127 THEN 100

110 WT A$: GOTO 20

Listing 10.5 - Putting Shapes in the Object List

Of note here is that when the letters are moving vertically, they are put in columns that are
multiples of seven (0,7.14,21 ...). This is because the letters were designed with frame 1 as the
full letter, with frames 2-7 being the various animated stages. Frame 1 only appears in
columns that are multiples of 7. Figure 10.1 is a table showing the columns in which each
frame appears.

-44-

Figure 10.1 - Frame/Column Chart

Frame

2
3
4
5
6
7

Column

Multiples of 7
Multiples of 7 plus 2
Multiples of 7 plus 4
Multiples of 7 plus 6
Multiples of 7 plus 1
Multiples of 7 plus 3
Multiples of 7 plus 5

Deactivating Objects
The Object list can also be used for activating and deactivating objects. Listing 10.6 is a

crude game of sorts, in which you control one object with a joystick while the others move
around randomly until you collide with them, at which time they freeze. The animation file
COLLGAME.ANM used Xdraw animation with six objects. Object O is controlled with the
joystick, and objects 1-5 move in random paths. Each object was given a path of ONE MOVE,
although ONE MOVE was loaded six times, as paths 0-5, so that each object could have an
independent path. Object O has path 0, object 1 has path 1, object 2 has path 2, and so on.

The program sets HIMEM to the bottom address of the animation file, then loads the
animation file COLLGAME. Another file , COLLISION DETECT, is then loaded. This is an
extra little machine language routine that scans the collision table quickly and tells you
whether something has collided . It's very short (15 bytes) and resides in a low part of
memory (768. or hex $300) . When you call the routine at 769, it scans the collision table until
it finds a non-zero value, then puts that object number in 768, and returns. If there was no
collision, the number 255 is put in location 768. As is, the routine scans through all 32 objects
in reverse order (31 to 0) . If you have fewer objects. you can poke the number of the last
object in location 770. In our case, with objects 0-5, we'll poke 770 with a 5 (see line 50) .

To find the locations of each object's path, we used an array, P, and assigned P(O) the
location of the path for object O, P(1) the location of the path for object 1, etc. The
computation is the same as the one we used before, in line 40. Line 50 sets the number of
objects for the collision detect routine and calls Firstdraw for the Xdraw animation.

Lines 60-75 select random paths for each of the objects 1-5. The statement INT(RND(1)
*255)+1 gives a random number from 1 to 255 ... all valid path moves.

Lines 80-150 loop 15 times before selecting new random paths for each object; otherwise
if the path were selected at random for each move they'd look like they were doing the
jitterbug. The paddle read and joystick move commands from lines 90 to 110 should look
familiar by now. Line 120 checks the collision detect routine. If the collision registered on
your object (#0) , or if there was no collision (C =255). the loop continues at line 150. lfthere
was a collision with an object 1-5, line 130 deactivates that object by poking 128 into the
object list, and line 135 clears the collision flag for that object. The coll ision detect routine is
then checked again , in case you collided with two objects at once.

5 HIMEM: 36018
10 PRINT CHR$ (4l;"BLOAD COLLGAME.ANM"
15 PRINT CHR$ (4l;"BLOAD COLLISION DETECT"
20 HGR : POKE - 16302,0
30 FOR N = 0 TO 5
40 T = PEEK (38144 + N * 4J:P(N> = PEEi< (38272 +

T * 2l + PEEK (38273 + T * 2J * 256
45 NEXT
50 POKE 770 15: CALL 37073
60 FOR I = 1 TO 5
70 POKE Pm, INT (RND !1l * 255l + 1 -45-

75 NEXT I
:?.0 FOR I= 1 TO 15
90 X = PDL C0l:Y = PDL C1l
100 M = CY < 80) * 14 +CY > 160) * 6 + ex< 80) *

224 +ex > 150) * 96: IF M = 0 THEN M = 8
110 POKE PC0J,M: CALL 36864
120 CALL 769:C = PEEK C768) : IF C = 0 OR C = 255

THEN 150
130 POKE 37:?.8t: + C ,128
135 POKE 38368 + C,0 : PRINT CHR$ (7)

140 GOTO 120
150 NEXT I
160 GOTO 60

Listing 10.6 - Deactivating Objects

It's not much of a "game". Frequently the objects will scatter off screen and you' ll have to
wait for them to wander back onto the visible part of the playfield. They can also collide with
themselves and put themselves out of commission. It should give you a starting point for
playing with the various options you can use with the information tables, though .

Switching Shapes Midstream
You can also use the object list to change the shape of an object during animation. The

only cautions are that if you are using one of the three Block modes, the new shape should
be the same size or larger than the old shape, and if you are using an Xdraw mode, you must
call the erase routine separately first.

Listing 10. 7 has a short example using the LETTERS .ANM file. After each fifty moves, the
letter is changed by poking the next shape number into the object list. Note that all objects
after #0 are deactivated by poking object #1 with a 255.

10 HIMEM: 26336
20 PRINT CHR$ (4l;"BLOAD LETTERS.ANM"
30 HGR2
40 POKE 37889,255
50 HGR : POKE - 16302,0
60 FOR L = 0 TO 25
70 POKE 37888,L
80 FOR I = 1 TO 50
90 CALL 36864
100 NEXT I: NEXT L
110 GOTO 60

Listing 10.7 - Changing Shapes

-46-

Still and Vertical Animation
One limitation you may discover occasionally is that internal animation only occurs when

an object is moving horizontally. There is a trick to getting around that if you design a special
shape and a special path . When your object moves vertically or stops in one place, you 'll
want to put that shape number into the object list and use your special path.

Step 1 - Design your shape in the shape editor. You don't need any borders on the left or
right , but if you will be moving vertically, leave borders at the top and bottom. Create the
internal animation in the sequence A) 1,2,3.4,5,6,7 or in the sequence B) 1.5,2,6,3,7,4. Which
you choose doesn't matter, as long as your path corresponds later.

Step 2 - Don't save your shape yet. Using (Control-S)hift, a special variation of the shift
option that shifts over borders, and turning the frames on and off appropriately, do the
following:

Move frame 4 six dots to the left.
Move frame 7 five dots to the left.
Move frame 3 four dots to the left.
Move frame 6 three dots to the left.
Move frame 2 two dots to the left.
Move frame 5 one dot to the left.

Some of your frames will be outside the boundaries. That's okay.

Step 3 - Use the " (B)orders" option and decrease the width by subtracting 6. This may save
some space by eliminating one byte in width.

Step 4 - Save the shape.

Step 5 - In the path editor. create a path with one of the following sequences for x moves,
depending on whether you chose sequence A or B for internal animation of your shape:

Sequence A

Right 2
Right 2
Right 2
Left 5
Right 2
Right 2
Left 5

Sequence B

Right 1
Right 1
Right 1
Right 1
Right 1
Right 1
Left 6

Along with these moves for x, you can mix them with any moves you want with y for vertical
animation (i.e., "Right 2" could just as well be "Right 2 and Up 4" in one move) .

Step 6 - In the animation editor, or whenever you want to put this in effect, use the shape and
path you just created in a column that is a multiple of seven and you'll get static or vertical
animation.

-47-

Part Two - The Picture Painter
Chapter 11 - Drawing Pictures

The Picture Painter is designed to let you create screen pictures that take a minimal
amount of storage space. Standard hi-res pictures always take over 8,000 bytes of storage to
display, and double-res pictures take over 16,000 bytes. About 12 standard-res or 6 double
res pictures will normally fit on one side of a disk. The Graphics Magician, however, gives
you a way to easily fit fifty to over one hundred of either type of picture on a disk.

Pictures are usually stored as the values contained in the 8,000or16,000 bytes that make
up the graphics screen. With The Graphics Magician however, the picture isn't saved at all;
the moves the artist makes while drawing the picture are saved! The moves for most
drawings can be saved in hundreds of bytes instead of thousands. We call these "sequential
pictures," because the sequence of moves is remembered instead of the actual picture.
Double-res sequential pictures take no more room than standard-res sequential pictures,
and with The Graphics Magician you can easily go back and forth between the two types.
Furthermore, standard-res sequential pictures can easily be displayed in double-res, and
they automatically take advantage of the purer colors available.

As you use either version of the Picture Painter, the computer simply "remembers" what
you do as you draw. Later, when you want to view that picture again, the computer simply
reconstructs your moves, very quickly. If you 've played any graphic adventure games, you
probably will recognize what this looks like; the picture redraws very rapidly before your
eyes. What you see recreated are the moves that the artist made while drawing the picture
the first time. Most adventure games use this technique (many of them done with The
Graphics Magician) , since they demand that large numbers of pictures fit on a disk. There
are also many educational products that use Graphics Magician this way, since they also
require a large number of graphic images.

There are four types of "moves" that you, the artist, can make. You may draw a line, fill an
enclosed area with color, plot a computer "brush", or type a letter over your picture. In
addition, you may choose from a palette of over 100 color mixes, and select one of eight
different brushes, ranging from a small, precision size to a large airbrush effect.

-48-

Using the Picture Editor
From the menu, select the version of the Picture Painter that you want to use. If you do not

have a 128K Apple that has double-res capabilities, you must use the Standard-Res Picture
Painter. Then select the input device that you will be using. For joysticks, paddles, trackball ,
or touch tablet (Koala Pad) , select the "joystick version".

You'll first be asked if you want to "(L)oad a previous picture" for further editing, start a
" (N)ew picture", load a " (B)ackground" so that you may make an overlay, or see a "(D)isk
catalog". The first time through, choose " (N)ew picture".

Now you'll see a white screen, with a few text lines on the bottom, as in figure 11.1 . If you
move your input device around, for discussion's sake we'll assume with a joystick, you 'll see
a small cursor in the shape of a crosshair move around the picture. (You may also see a
second stationary cross hair) . This is what you control for drawing your picture. (If the cursor
does not seem to correspond at all to your joystick movement, you may have a non-standard
joystick in which the axes are reversed. Pressing "J" will switch them for you .)

Joystick Version Cursor Control
The Apple screen has a resolution of 280by192 dots. A joystick has a resolution of 256 by

256. To compensate for the lower horizontal resolution . the screen actually has two zones.
Most of the screen lies in both. Position your cursor at the left edge. Now move it slowly to
the right. It will move smoothly until you get very near the right edge of the screen, where it
will jump all the way to the right edge. Move it back, and you ' ll see that it moves smoothly
over that area now, until you get very close to the left edge, at which point it will jump back to
the left edge. Generally, the joystick positions you on eitherthe left 900/o of the screen or the
right 90% of the screen. The only time you see that jump is if you move all the way from one
edge to the other; hence you don't see it when doing detail work, only when moving a long
range across the screen.

(T)EXT
LINE

(Z)ERO SP ESC R D E S
FCOLOR: 0 LCOLOR: 0

picture instructions listed here
BYTES USED: 1 X:__ Y: __

Q

Figure 11.1A - Picture Painter Command Lines, Standard-Res

M N T Z SP ESC R DEL E S I C Q (H)ELP (560)
LINE (560) FCOLOR:O LCOLOR:O
picture instructions listed here
BYTES USED: 1 SECTORS =2 X: __ Y: __

Figure 11.18 - Picture Painter Command Lines, Double-Res

Line Mode
When you first start, you are in line mode. Pressing button 1 on your joystick (or the

RETURN key for versions with only one switch on the input device, such as an Apple
Graphics Tablet) will move the stationary cursor to the current location of your moving
cursor. This is a "Start Line" command. The stationary cursor is the starting point of the next
line. Pressing button 0 on the joystick (or pressing down the pen on an Apple Graphics
Tablet) draws a line from the stationary cursor (Start Point) to the movable cursor (Ending
Point) . Theending point also becomes the new starting point. Move your cursor around and
try the effects of buttons O and 1.

How Long is Your Picture?
When playing with line mode, note that three things happen on the bottom of the screen.

The x,y position keeps changing as you move the cursor, and each time you press a button ,
the second to last line tells you what you just did ("Start Line at--", or "Draw Line to---").
and the bottom line tells you how many bytes you 've used for your picture. Each "start line"
or "draw line" command takes 3 bytes.

-49-

Deleting Steps
The first nice thing to learn is that pressing " (D)elete", or the DELETE key will delete the

last step. If you make a mistake, it's easy to back up as many steps as you want and try again .
Note that each time you delete a step, you see how the redraw option works. The program
remembers what you've done to that point and recreates everything except the step you
deleted.

If you have a lot of steps to delete, you can also press Control-D (hold down the
CONTROL key and press D) . You' ll be asked how many steps you want to delete. The
program still deletes the steps one at a time, but it cycles through automatically the number
of times you specify.

Fine Cursor Control
"(Z)ero" toggles the joystick input so the cursor moves only in a small range on the screen,

allowing you to zero in on a specific point more easily. Pressing " (Z)ero" again puts you back
into normal mode.

For even finer control, pressing "(Control-Z)ero" controls how tight of an area the
controller will cover in "zeroed" mode. Press "(Z)ero" to zero in on an area, then try the
effects of "(Control-Z)ero" while you are zeroed in .

Selection Page
Okay, now for some fun . Press the SPACE BAR. A graphic screen appears that shows

your choices for modes across the top (line, fill. or brushes) and pictures of the eight
brushes, a strip on the left that shows the possible line colors, and a palette showing the
possible fill and brush colors. Your joystick controls an arrow cursor that moves around the
screen.

-50-

An arrow near the top should point to the line option, meaning that you are in line mode.
Moving your cursor to the point at the fill option or one of the eight brushes and pressing the
button on your controller will select that option and put you in a different mode.

A second arrow points to the current color on the left, black. This means that all your lines
will be drawn in black. Other colors are selected by pointing at them and pressing the
controller button.

The third arrow points to the current color, at the upper left corner of the palette. (This
color is color #0. The palette colors are numbered from top to bottom in each column,
starting with 0.) This is the current color used for filling and for brushes. Moving your cursor
to any other color and pressing the controller button selects that color for future fills and
brushes.

Select fill mode and a fill color other than white, then press the SPACE BAR. The SPACE
BAR switches between the drawing screen and the selection screen. While viewing the
selection screen, you may change any of the options that you want, or you may just check
the options and colors and press SPACE BAR again to get back to the drawing screen.

Fill Mode
When in fill mode, you can fill any enclosed white area with the current fill color by

positioning your cursor inside the area you want to fill and pressing your controller button.
The area should be all white, with borders in black or the edge of the screen.

The fill routine is designed to be as fast as possible, so that pictures that are reconstructed
in a finished program will appear very quickly. Most irregular areas will require two or three
fill commands to fill the entire area, since with speed comes some compromise with
completeness of fill. The fill routine used works the following way.

1) Scan directly up from the selected point until a border is found .

2) Move down one line, filling to the left and right borders.

3) Average the left and right borders to find the midpoint, and move down one line from
there.

4) Check to see if the point moved down to is a border. If not. go back to step 2.

The basic thing to remember is step 1. It means that the best place to position your
cursor is anywhere directly below the uppermost point in the area to fill. Using this one
trick will minimize the number of fill commands necessary for filling any area.

Brushes
From the selection page, choose any of the eight brushes by pointing to it and pressing

your controller button. Go back to the drawing page and you' ll see that your cursor is
now in the shape of the brush that you selected. Each time you press the controller
button, the brush will be plotted with the color you selected.

The brushes give you a very large amount of control over detail , shading , and effects
that cannot be achieved with "line and fill " coloring-book graphics. You will probably
want to start most pictures by lay ing down a background with lines, then adding most of
the colors with fills . and finally adding the detail touches with brushes.

There is no "brush up/ brush down" selection that lets you cover a wide area. Each time
you press the button the brush plots just once. If you want to move across an area. you have
to keep pressing and releasing the button. While strange-seeming at first , rememberthat the
computer is remembering your moves. If the brush were constantly down, it would have to
remember each and every point that you move over, wasting a lot of memory very quickly.

Other Quick and Easy Options,
Including Saving your Picture

While drawing, you have these following other choices available at all times. The letter
commands are listed at the bottom of the screen.

ESC - the ESCape key switches between graphics and text display (the normal mode, with
the four text lines at the bottom of the screen) . and full-screen graphics mode. It has no
effect on the picture itself, since the graphics area under the text is always available and is
not overwritten by the text.

"(R)edraw" will reconstruct the picture as it would be seen from a program . This is handy if
you are try ing for some animation (explained later) , and most people admit that it's fun just
to see what you have drawn redone at blinding speed by the computer.

" (S)ave" allows you to save your picture in the special compact format created by Graphics
Magician. To view this picture later, you will have to load it back into the picture editor, or
follow the instructions for using the PICDRAW routine in chapter 13 or 14. -51-

The " (S)ave" command only saves the displayed portion of the picture, which should be
remembered when in edit mode, described below. This allows a way to extract parts of
pictures, if desired.

" (l)mage" saves a memory image of the picture displayed on the screen. In standard-res, this
is saved as a standard 34-sector ". PIC" file . This should be used if you want to save a
background for use with the Animator. In double-res, the image is saved as a pair of
34-sector files, using the suffix ".DPM" for the main memory portion of the picture, and
" .DPA" for the auxiliary memory portion . In double-res, it is normal for the displayed picture
to look funny during an " image" save, since memory is being moved around by the computer
during the save.

Note that their is NO way to go back and edit a picture previously saved as a memory
image with this Picture Painter. Pictures created with other graphics editors, such as The
Complete Graphics System, cannot be converted to the special compact format of The
Graphics Magician. Since it is the moves that are saved, pictures must be created with The
Graphics Magician to have this compact format.

" (Q)uit" lets you return to the menu, or to " (S)tart over" with a new picture. You will be
asked if you really want to quit, since unsaved pictures will be lost.

Adding Text
You can add text to your picture at any time by positioning your cursor where you want the

text to start and pressing " (T)ext" . Whatever you type now will be overlaid onto your picture
at that point. The text mode takes control of the cursor, and you have the following options,
which are listed in the text area at the bottom of the screen:

Apple II or II Plus

Control-L allows you to modify the keyboard input of an Apple II or Apple II plus to give
lower case letters. Notice that the second text line on the screen says "KEYBOARD:
STANDARD". Each time you press Control-L (by holding down the CONTROL key while
pressing L), you switch between "standard" and "lower" keyboard. When in "lower", all the
letter keys give lower case letters. Other keys get slightly confused. Pressing Control-L
again gives the standard keyboard back.

With an Apple lie or lie, when you enter text mode you can just release the "CAPS LOCK"
key for upper and lower case input. When leaving text mode, you should re-engage the caps
lock.

Control-A and Control-N let you choose between reversed letters and normal letters in
color. Reversed letters flip whatever colors are on the screen. Normal letters plot in the
current brush/ fill color. The current type used is given on the second text line at the bottom
of the screen. Which type is better depends on the background color and letter color
desired. Some combinations are not feasible on the Apple, and experimentation is the best
way to judge. The sharpest resolution comes with a combination black and white for the
letters and background . Also in the standard-res version , the first black and first white on the
palette are a little more fuzzy than the other two due to the makeup of Apple colors.

ESC - Escape toggles to full-screen mode and back, just as before.

_
52

_ Control-D, Back arrow, or DELETE, allow you to backspace and delete the last character.

RETURN, or reaching the end of a line, returns you to normal drawing with joystick control
and in line mode. If you reach the end of a line, you 'll hear a beep.

You may also reenter text mode at the last text cursor position by pressing Control-Twhile
in normal drawing mode. Pressing " (T)ext" by itself always puts you in text mode at the
position of the joystick cursor.

Edit Mode
Since the picture editor saves pictures as a set of moves, it is possible to go back and edit

those moves, much like a computer program itself. An edit mode allows you to single-step
forward and backward through a set of picture commands, displaying what the picture looks
like at each point, and allowing you to delete or add moves at any time. If you decide later
that you don't like a color, find where you set that color and set a different one. If a house
needs a few extra lines before the color is filled in, backstep to before the color was added
and put in the lines. Easy!

Pressing " (E)dit" while in normal drawing mode will clear the screen to white and position
you in your "picture program" at the first move. Each time you press the right arrow, the next
move in sequence will be displayed in words at the bottom of the screen and performed to
the picture. Pressing the backarrow will back up one step. Your entire picture is still stored
in memory, and pressing " (R)edraw" will bring it all back, but the edit mode allows you to add
to or delete things that you did early in drawing your picture and see, step-by-step, how it
was constructed .

In the edit mode, all drawing commands remain useable, and anything you draw while in
edit mode will be inserted into your picture. You can also use the "D" or DELETE keys just as
before to remove commands.

It is also possible to "back into" edit mode from the end of a picture by using the back
arrow. Stepping forward through a picture is faster, but if you have a long picture and want to
edit one of the last moves, this makes it easier.

" (R)edraw" will always let you out of edit mode by redrawing the entire picture stored in
memory. You will also get out of edit mode if you single-step through the entire picture and
reach the end.

" (S)ave", when used in edit mode, will only save the part of the picture that is displayed.
This is a convenient way to save only the first half of a picture, for instance. If you want to
save the whole picture, you should use " (R)edraw" to get out of edit mode.

While single-stepping in edit mode, you can speed up by using either ">" (a greater-than
sign , which looks a little like a right arrow) , or TAB (on the Apple /le) to tab forward 10 steps
ata time.

Extra Options and Modes for Double-Res
Graphics Resolution Modes - Thick and Thin Lines

When you start the Double-Res Picture Painter, you are put in "560-mode", which means
you are using the full capabilities of the double-res 560-dot resolution , including all 256
blended colors. The "560" in parentheses in the first command line tells you that you are in
this mode. There are other options.

First, when using 560-mode, you 've got two choices for line width. Thin lines use the full
560-dot resolution, but any point on the line is only considered "on" or "off", meaning a
lighted dot, or black. Thick lines can truly be drawn in any of the 16 line colors. The lines are

-53-

actually four dots wide. Why? Because in the color mode. there are only 140 color-dots
across the screen, each defined by four screen dots. Use of the thick lines or thin lines
depends only on how fine you want your lines, and if you want them in color. Use " (C)hange
Line Mode" to toggle back and forth between the thin lines and the thick colored lines.

Graphics Resolution Modes - 280 vs. 560 Mode

Second, there is also a 280-mode in the double-res picture painter. This 280-mode
corresponds to the resolution and colors of an Apple without double-res features. Use
" (M)ode" to toggle between 280-mode and 560-mode.

In 280-mode, the color palette is trimmed to 108 colors, matching those from the standard
hi-res Graphics Magician. The colors are not the same. however. the simulated yellow that
you would see in standard hi-res is replaced with the pure yellow in double-res. The same
with brown, magenta, pink, and light and dark shades of green and blue. We set up a color
map that would interpret the blended 108 colors from standard hi-res as much purer
double-res colors. The result is that you can take any picture created with the standard
hi-res version of The Graphics Magician, read it into the 280-mode double-res Graphics
Magician, and seethe same picture redrawn automatically in the purer colors. Similarly, you
can take pictures drawn in the 280-mode double-res Graphics Magician, and display them
with the standard hi-res Graphics Magician on Apples that do not support double-res.

Changing between 280-mode and 560-mode

As stated, " (M)ode" toggles between 280 and 560-mode.
If you want to load a picture done with the standard hi-res Graphics Magician, or it you

want to create a picture that can be used with the standard hi-res Graphics Magician, go to
280-mode. The files read and created in 280-mode have the suffix " .SPC" appended to their
names. (SPC for Sequential PiCture) .

If you want to take a picture created with the standard hi-res Graphics Magician and
convert it to 560-mode to take advantage of the higher resolution and all 256 colors, you
should load the picture, then switch to 560-mode. All the calculations and color-mapping to
change the coordinates and color numbers are done for you. When you save the picture
now, it will have the suffix " .DPC", (for Double-res sequential PiCture) . .

You may also take pictures created in 560-mode and convert to 280-mode, by loading,
then changing modes, but the conversion isn't as flawless. Any of the colors from the
256-color palette that are not mapped to the 108-color palette are assigned a color number
ofO. Because this can affect the picture, when switching to 280-mode you are always asked
to verify the choice.

Drawing for Use In Double-res and Standard Hi-res

The editor has features that make it easy to create picture files that can be interpreted by
the double-res DPICDRAW and by the standard hi-res PICDRAW. This makes it possible to
have one program and one set of picture files operate on any Apple, using the double-res
features only if available on the particular computer. These pictures should always be
created in 280-mode. While in 280-mode, you can look at how the picture would appear in
standard hi-res by pressing "(N)ormal". This interprets and displays the picture using the
standard PICDRAW routine in the standard hi-res mode. Any key returns you to 280-mode
double-res.

-54-

Note that when creating pictures for'use on both standard hi-res and double-res, you will
have to deal with some of the limitations of standard hi-res. Because of color blendings,
some fills will act differently in standard hi-res, and you may also have to contend with
color-bleeding (see Appendix B on color) . This is why the " (N)ormal display" feature is
included: to help see these problems immediately while you are working on the picture.

A "Fill" Anomaly
There is a seldom-occurring instance where the fill routine may seem to refuse to fill an

area. Here are the circumstances, and the solution to the situation.
Figure 11 .2 shows part of a drawing where the top and left side have been filled by a color.

Since this is printed matter the lines appear in inverse, but assume that the solid fill lines are
white. A few colors in the palette are blended so that alternate lines are solid white, and those
are the ones that can cause this occurrence.

Now suppose you try to fill the area on the right. The fill routine will search upward and
find the bottom white line of thearea already filled , assume it is also to be filled, and proceed.
Since that line stretches much further to the left, when the routine averages the endpoints
and attempts to step down to the next line to fill, it will step down on the left side, which
already is filled!

The solution is to break the white line extending across the top of the fill area by placing a
single black dot atop the triangle in that line. The fill routine will now average endpoints that
fall into the area that really needs to be filled, and it will work properly.

(Such are the prices one pays for speed and compactness of code. In fairness to the truths
of programming which say that anything can be done better, if anyone devises a more
complete fill routine that is as fast and space efficient, let us know. Our routine is 286 bytes
long. It also shares y-lookup and color tables, and 82 bytes of common code for setting initial
x,y address position and color registers, with the rest of the routines. Speed comparisons
can easily be made by timing against the existing code.)

1. Alternate • • • • • • • • • •
lines of • • • • • • •
fill color

3. This white line are
extends across white. • • •

~
• • •

• • •

• •

Figure 11 .2 - Fili Anomaly

• • • •
• •
•

4. Should set black dot to
cut line fo r proper fit.

the screen.

2. You want to fill
this area.

-55-

-56-

Chapter 12 - Tricks with Pictures

Objects
One of the features of many programs that require compact pictures is the ability to move

objects from picture to picture, or to draw a picture with an object sometimes appearing,
sometimes not. The obvious example is an adventure game, where something will appear in
a picture, you take it with you , and thus it should no longer appear in the picture. We'll call
this type of thing an "object". (No relation to animation objects in Part One of this manual) .

Objects with The Graphics Magician picture system are actually the same as pictures. You
create them in generally the same way as you would any other picture. However, in your own
program, when you use the picture-reconstructing "PICDRAW" routine, you tell it to draw
that "picture" as an overlay at a certain coordinate. The picture thus becomes an object in
the picture previously displayed.

The only requirement for objects that is not necessary for pictures is that the first
command is a "Start Line" command. This is really a dummy "Start Line" command and will
later be interpreted as a "Start Object at" command for object positioning. If you actually
need a "Start Line" command , you must use a second one.

STANDARD RES NOTE

Since objects are usually drawn over other pictures. you should be careful about what
types of commands and colors you use. Try to avoid colors and lines that would cause a
"bleeding" effect when you place the object over the picture. Refer back to appendix B for a
discussion of how this effect occurs and how to avoid it.

With objects you should also be careful about when you use a fill command , if it is used at
all. Since the fill command requires a white background. you must be sure a white
background is in place before you can fill. When you cannot be sure that the background
picture will provide a white fill area, if you use a fill command you shou Id first "white out" the
area with one of the larger brushes.

For detail, most objects are done primarily with brushes and some careful use of lines.
Some prefer to set down a white background with brushes first, no matter what. so that all
the drawing commands can be used freely . It's usually a matter of style.

Creating your Object over a Background
To make it easier to choose colors and see how your object will look, you can draw it

directly over a background picture. The first choice when running the picture editor was
whether to start a new picture, edit an existing one, or load a background. If you load a
background, you may draw your object directly on top of it. The background does not
become part of your object, nor does it affect it in any way . Each time the screen is cleared,
the background is displayed in place of the white screen that normally is shown.

Animation with Pictures
One of the effects discovered after The Graphics Magician was completed was that of

animation created with the picture editor. Suppose you draw an entire picture, and in the
picture is a man. Your commands in creating that picture are saved, so each time you view

the picture, you'll see it redrawn . Now, suppose that once the picture is complete, you draw
more right on top of what you finished . For example, draw the man 's eyes closed , then go
back and draw them open again. When you press "(R)edraw", you ' ll see the man being
drawn to completion. then his eyes will blink! You can extend it out further and keep drawing
over and over the original picture and make all kinds of things in the room "animate".

This effect can be accomplished by drawing continuously on top of a picture, or it can be
done by drawing a sequence of objects over your picture. The latter method has the
advantage of allowing more control in timing , even tying it to user responses in your
program. To do it with objects , you might load in the background of the man, then draw one
object of his closed eyes. and another of his eyes open again . Or you might make one object
his closed eyes quickly overlaid by his open eyes, since it 's an immediate progression. In
your program you'd draw the background picture. then whenever you wanted his eyes to
blink , you would draw your blinking eye object{s) . You could have it controlled by time , or
have it happen every time someone touched a key. The flexibility is yours'

-57-

Chapter 13 - Using Standard-Res
Pictures in your Programs

When you created your pictures in the picture editor. what was saved was your moves in
drawing the picture. To display it. you need some way to tell the computer to recreate those
moves The machine language routine called PICORAW does just that.

Put the PICDRAW routine on your disk
First . you must move the PICORAW routine from the Graphics Magician disk to your

program and data disk. To do so, quit the Graphics Magician program so that you get the "]"
prompt. then use the following steps:

1) Type MAXFILES 1, then press RETURN.

2) Put 1n your Graphics Magician disk. type BLOAO PICORAWH, and press RETURN.
PICORAWH is a version of PICORAW located high up in memory. The other version,
PICORAWL. is located toward the bottom.

3) Put 1n your disk and type:

BSAVE PICORAWH, A$8000. L$COO

then press RETURN.

Using PICDRAW
After the PICORAW routine and your picture are on the same disk, you can write a

program like the one in listing 13.1.

1 PRINT CHR$ (4l; "MAXFILES1"
5 HIMEM : 3276:::
10 PRINT CHR$ (4l:" BLO.A.D PICDRAWH"
20 PRINT CHR$ (4l;" BLOAD PNAME.SPC.A3276t:"
30 HGR
40 POKE 0,0: POKE 1+12:::
50 CALL 36096

Listing 13.1 - using PICDRAW from Basic

The HIMEM command makes sure that the PJCORAW routine and the area in which you
loaded your picture will not be disturbed. The PICORAW routine starts at location 36096
($8000) . and we'll load the picture commands at 32768 ($8000) . Line 10 loads the
PICORAWH routine that you put on your disk. and line 20 loads in your picture. Note that
".SPC" was automatically added to the name when saved by the picture editor, and that the
" ,A32768" tells the program tp load the picture commands starting at location 32768.

-58-

Line 30 sets the high-resolution graphics display, then line 40 pokes the starting address
of the picture commands into locations O and 1. The address is poked in Lo/Hi format, which
is computed as follows:

Hi= address divided by 256, with remainder left off.

Lo = remainder after address is divided by 256.

or mathematically, as:

HI = INT(A/ 256)

LO= A - Hl.256

where A is the address. For listing 13.1 , 32768 is the value we used for the address, and the
numbers poked in line 40 were computed using that value with the above formulas. Listing
13.2 shows how we could have alternately used "A" and the formulas to have the program do
the computation.

Line 50 contains the call to the PICORAW routine at 36096 (or from machine language use
JSR $8000) that will cause the picture to be redrawn.

1 PRINT CHR$ (4J;"MAXFILES1"
5 HIMEM : 32768
10 PRINT CHR$ (4l;"BLOAD PICDRAWH"
20 PRINT CHR$ (4l;"BLOAD PNAME.SPC.A32768"
30 HGR
40 A = 3276f: :HI = INT (A I 256l:LO = A - HI * 256: POKE 0,LO:

POKE 1,HI
50 CALL 36096

Listing 13.2 - Using PICDRAW and Computing "Pokes"

To summarize what's necessary, all you have to do is load the PICORAW routine once,
then for each picture you want to display, load that picture file and use 2 pokes and a call.

Putting an Object over a Picture
The same technique used for redrawing a picture is used to redraw an object. Once

the background picture is shown. load the object picture, and use the same two pokes to tell
the location of the object commands. Then you have a choice between 2 calls.

CALL 36099 (or JSR $8003) will draw the object over the picture at the same location in
which the object was originally created . It is the same as drawing a picture, except the screen
is not cleared beforehand.

CALL 36102 (or JSR $8006) will allow you to specify an x,y coordinate at which to have
the object drawn. The x,y coordinate should first be put in locations 36105-36107 as follows:

POKE 36105, X-(X> 255)'256

POKE 36106. X> 255

POKE 36107, Y -59-

Technically, "xlo" is put in 36105 ($8009}, "xhi " is put in 36106 ($8DOA} , and "y" is put in
36107 ($8DOB).

If the second call is used. the x,y coordinate must be such that the entire object will be
shown on the picture. If any part of the object goes off the edges, it will not work properly.

Listing 13.3 can be used as a continuation of listing 13.1 , and shows an example of
drawing an object over a picture using alternate coordinates. If it should be drawn in its
original location, line 90 could be omitted and the call in line 100 could be changed to CALL
36099.

1 PRINT CHR$ (4);"MAXFILES1"
5 HIMEM: 3276:::
10 PRINT CHR$ (4);"BLOAD PICDRAWH"
20 PRINT CHR$ (4);"BLOAD PNAMILSPC,A32768"
30 HGR
40 POKE 0,0 : POKE 1.12f:
50 CALL 36096
60 PRINT CHR$ (4l;"BLOAD ONAME.SPC,A3276:::"
70 POKE 0,0: POKE 1.12:::
:::0 X = 200:Y = 53
90 POKE 36105,X - (X > 255l * 256 : POKE 36106,X > 255 :

POKE 36107,Y
100 CALL 36102

Listing 13.3 - Adding an Object

Changing Graphics Pages
PICDRAW will put the picture on wh ichever graphics page is currently being drawn to,

depending on whether you used an HGR or HGR2. To make PICDRAW put the picture on
the page that is not being seen, you can poke a value into location 230 ($E6} . If it is a 32 , the
drawing will go to page 1 of graphics, if the value is 64, the drawing will go to page 2.
Changing th is location affects all drawing of graphics, even those using Applesoft
commands from your program.

Technical Trivia
Before a picture is drawn, you must put the starting address of the picture file into locations

O and 1, in Lo/Hi format. After the picture is drawn. locations 0and1 contain the first address
after the picture commands.

Loading Groups of Pictures into One File

-60-

You can put several pictures in one long file using the following techn ique. This was used
in the demo program in Graphics Magician so that all the pictures would load at once and
the disk would not have to be accessed between each picture.

First, you must find the length of each picture you plan to use. This can be done by noting
the "BYTES USED" in the picture editor for that picture, or by using the binary transfer utility
described in chapter 15. Suppose the results were as in figure 13.1.

Figure 13.1 - Sample Picture Lengths

Name

House.SPC
Tree.SPC
Moose.SPC

Length

1254
879

2318

Load At

16384
17638
18517

You next need to choose a starting location for your group of pictures. For maximum use,
start just at the end of the first hi-res graphics page, at location 16384 ($4000) . This leaves
room for 19,712 bytes of pictures. Now, load each of your pictures sequentially in memory.
For the first , you 'd use:

BLOAD HOUSE.SPC,A 16384

which loads the picture at 16384. For the second, add the length of "House" to 16384 to find
the next available space. 16384+1254= 17638, so we load the second picture, in this example,
at 17638:

BLOAD TREE.SPC,A 17638

Remember the location at which you load each picture, since that's the address you must
poke into locations O and 1 before redrawing the picture.

The third file is loaded at 17638+879= 18517:

BLOAD MOOSE.SPC.A18517

Now, compute the total length by adding the lengths of all the pictures together
(1254+879+2318 =4451} , and save the entire file with:

BSAVE PICTURE GROUP,A16384,L4451

substituting the name you want for PICTURE GROUP, and the appropriate starting address
and length for your pictures .

Using a Group of Sequential Pictures
Listings 13.4 and 13.5 give examples of using picture groups in your programs. Listing

13.4 cycles through the pictures in order, waiting for a keypress between changes. Listing
13.5 uses the addresses we noted to allow you to select which picture is shown, and when .
Pressing 1. 2, or 3 draws the appropriate picture. The programs in 13.4 and 13.5 should have
the names and addresses changed to match the ones you used before you try them (the
ones used are okay for the sample file already on disk) , and lines 40 in listing 13.4 and 25, 30,
and 40 in listing 13.5 should have the "3" changed to the number of pictures you use.

-61-

1 PRINT CHR$!4l;"MAXFILES1"
S HIMEM: 8192
10 PRINT CHR$!4l;"ELOAD PICDRAWH"
1S HGR
20 PRINT CHR$!4l;"ELOAD PICTURE GROUP.A163E:4"
2S REM LINE 2S CONTAINS 16384 PRE-COMPUTED

IN LO-HI FORMAT
30 POKE 0,0: POKE 1.64
40 FOR I = 1 TO 3
S0 CALL 36096: GET A$
60 NEXT

Listing 13.4 - Cycling through a Group of Sequential Pictures

1 PRINT CHR$!4l;"MAXFILES1"
S HIMEM: 8192
10 PRINT CHR$!4l;"ELOAD PICDRAWH"
15 HGR
20 PRINT CHR$!4l;"ELOAD PICTURE GROUP.A16384"
2S DIM L!3l : REM L CONTAINS THE LOCATIONS OF EACH PICTURE
30 FOR I= 1 TO 3: READ L(I): NEXT: DATA 16384.1676S.16983
40 GET A$: IF A$ < II 1" OR A$ > "3" THEN 40
4S V = L! VAL !A$ll
50 POKE 0, V - INT !V I 2S6l * 2S6: POKE 1. INT !V I 2S6i
SS CALL 36096
60 GOTO 40

Listing 13.5 - Choosing from a Group of Sequential Pictures

Interesting to note in listing 13.4 is that the starting addresses do not have to be poked in
each time if the pictures are shown sequentially. Since after each picture is drawn locations
O and 1 point to the next location after the picture, they already point to the next picture in the

list!

-62-

SINGLE STEPPING
If you need to slow down the PICDRAW routine, or if you want to draw a picture in parts,

there is a way to make the routine single-step through the picture, returning to your program
after each instruction is completed. By poking a certain location before calling the
PICDRAW routine, you can put it in a single-step mode. You must use the normal PICDRAW
call the first time, which will clear the screen and set the single-step mode, and use a second
call to execute a step in the picture file . Repeated calls to this second location will eventually
draw the entire picture. You can use this in a delay loop to slow the routine down. to vary the
speed at different points, or whatever you like. The following are the pokes and calls
necessary for each version of PICDRAW. Of course, you must poke in the starting address of
your picture file as always. and the necessary X. Y location if needed for drawing an object
over the picture.

For PICDRAWH use: POKE 36124,1 to set single step
CALL 36096 to clear the screen
CALL 36210 to execute one step in the picture

.. Executing POKE 36124,0 will return you to normal , full speed drawing.

For PICDRAWL use: POKE 2076.1 set single step
CALL 2048 clear screen
CALL 2162 execute one step in the picture

.. Executing POKE 2076,0 will return to full speed drawing again .

Memory Usage and Different Versions of
PICDRAW
PICDRAWH

PICDRAWH takes 3K bytes and resides in locations 36096 to 39167 ($8000 to $98FF) .
Figure 13.2 shows a memory map of where everything is located when using PICDRAWH.
Your picture buffer (where the picture commands get loaded) may be placed anywhere
where there is room, but the usual place is directly below the PICDRAWH routine. To find
the highest location you may use for the buffer, find the length of your longest picture (from
the picture editor or the binary transfer utility) and subtract it from 36096 (the starting
location of PICDRAWH) . Sometimes it is useful to actually use two picture buffers. You may
want one for "room", or background, pictures, and another separate buffer for objects.

PICDRAWH requires that a MAXFILES 1 command be issued before it is loaded. This
frees 1190 extra bytes, of which 768 are used by the text character table. To set MAXFILES 1
from a program. the following should be your first command:

1 PRINT CHR$ (4) "MAXFILES 1"

You should also use a HIMEM command to protect the PICDRAW routine and your picture
buffer from your program. The command looks like:

2 HIMEM: a

where "a" is the address of your picture buffer , above which everything should be protected.

-63-

-64-

DOS

Free Space

PICDAAW
Character Table

PICDAAW Brushes

PICDRAWH

free space available
for picture buffers

and variables

Page 2 graphics

Page 1 graphics

Basic program

$9AA6 (39590) lowest DOS
~ buffer location set by

MAXFILES 1

~ $98FF (39167)

~ $9600 (38400)

~ $9500 (38144)

~ $8DOO (36096)

~ $6000 (24576)

L__ $4000 (16384) use either
~ page 1 or page 2, not both

~ $2000 (8192)

~ $800 (2048)

PICDRAWH also uses zero-page locations $0-$C, $FC-$FF (0-12, 252-255)

Figure 13.2 - PICDRAWH Memory Map

DOS

Basic Program

Page 1 Graphics

free space for
picture buffers

PICDAAW
Character Table

PICDRAW Brushes

PICDRAWL

$9600 (3800) normal
bottom location, can
be changed with
MAXFILES 1

~ $4000 (16384)

~ $2000 (8192)

~ $1400 (5120)

+- $1100 (4352)

+- $1000 (4096)

~ $800 (2048)

PICDRAWL also uses zero-page locations $0-$C, $FC-$FF (0-12, 252-255).

Figure 13.3 - PICDRAWL Memory Map

PICDRAWL
PICDRAWL is located at the bottom of memory. where Applesoft programs usually start.

Since there is a lot more memory above the hi-res pages than below, sometimes it's useful to
rearrange memory so that the PICDRAW routine and picture buffers are below graphics
page 1 and a long program starts after graphics page 1. Figure 13.3 shows the resulting
memory usage.

PICDRAWL starts at location 2048 ($800) and goes up to location 5119 {$13FF). That
means 3072 bytes are free for buffers starting at location 5120. If the text table is removed , as
described in the next section, you can start your buffers at 4352.

The CALL and POKE locations for PICDRAWL are all 34048 less than those for
PICDRAWH (it's been moved down 34 ,048 bytes for the lower location) . The only
exceptions are locations 0 and 1, which are still used for the starting address of the picture
buffer.

-65-

If you use PICDRAWL with a Basic program, you must use a trick to get the Basic program
to load above hi-res screen 1 in memory. To locate a program starting at 16384 ($4000) , the
first location above graphics page 1, you must write another program that will do a couple
pokes, then run your program. This "loader" program is shown in listing 13.6. Substitute the
name of your program for "name".

10 REM * O.K. TO LOAD COVER PICTURE HERE *
20 POKE 103,1: POKE 104,64: POKE 163:::4.0
30 PRINT CHRS (4);"RUN NAME"

Listing 13.6 - Loading a Basic Program above Graphics Page 1

Removing the Character Table
If you do not use the text option in any of your pictures, you can remove the text character

table from PICDRAW and save 768 bytes. For PICDRAWH that means that you would not
need a MAX FILES 1, or that you could use that space for something else. For Pl CDRAWL, it
means that you could move your buffer down 768 bytes or again use that area for some other
purpose.

To make a version of PICDRAW without the text table, use one of the following:

MAXFILES 1

BLOAD PICDRAWH

BSAVE PICDRAWH.NT,A$8DOO,L$900

or:

BLOAD PICDRAWL

BSAVE PICDRAWLNT,A$800,L$900

The ".NT" means "no text", and will help you remember that it is not a complete version.

If all your pictures use neither text nor brushes, you can eliminate another 256 bytes for
the brush table. In the above, change "L$900" to L$800" to take 256 bytes off the top. Also
change the ".NT" to ".NB", or something appropriate.

Changing the Character Table
The character table may be changed if you have a small font editor such as that avai lable

with The Complete Graphics System from Penguin Software or The Applesoft Tookit from
Apple Computer. Several alternate text fonts are also available in Additional Typesets from
Penguin Software.

To load an alternate text set use the following steps:

1) Type MAXFILES 1

-66-

2) BLOAD PICDRAWH

or BLOAD PICDRAWL

3) If using PICDRAWH, type

BLOAD textset,A$9600

where "textset" is the name of the replacement character set . If using PICDRAWL. replace
"$9600" with "$1100".

4) BSAVE PICDRAWH, A$8DOO,L$COO

or BSAVE PICDRAWL,A$800,L$COO

In step 4, you may want to use an alternate name so that you recognize it as one with a
modified character set.

-67-

-68-

Chapter 14 - Using Double-Res
Pictures in your Programs

When you created your pictures in the pictu re editor, what was saved was your moves in
drawing the picture. To display it, you need some way to tell the computer to recreate those
moves. The machine language routines called PICDRAW and DPICDRAW do just that.
DPICDRAW is the double-res version.

Put the DPICDRAW routine on your disk
First, you must move the DPICDRAW routines (they are split into two parts) from The

Graphics Magician disk to your program and data disk. To do so, quit The Graphics
Magician so that you get the "]" prompt, then use the following steps:

1) Put in your Graphics Magician disk, type

BLOAD DPICDRAWH,A$2000

and press RETURN . Then type

BLOAD DPICDRAWL

and press RETURN.

2) Put in your disk and type

BSAVE DPICDRAWH,A$2000,L$FOO

and press RETURN. Then type

BSAVE DPICDRAWL,A$9500,L$62

and press RETURN .

Using DPICDRAW
After DPICDRAWL and DPICDRAWH are moved to the same disk as your picture files,

you can write a short BASIC program to display the pictures, such as that in listing 14.1.

5 HIMEM : 3276E:
10 X = PEEK (- 16254) + PEEK (- 16255) + PEEK (- 16255)
15 REM WRITE-ENABLE LANGUAGE CARD
20 PRINT CHR$ (4l;"BLOAD DPICDRAWL"
30 PRINT CHR$ (4l;"BLOAD DPICDRAWH,A$D000"
40 X = PEEK (- 16254): REM WRITE-PROTECT CARD
50 PRINT CHR$ (4l;"PR#3": PRINT
60 HGR : CALL 38202

65 REM MOVE BLANK MAIN MEM TO AUX MEM
70 PRINT CHR$ (4);"BLOAD PNAME.SPC,A3276:?."
80 POKE 0,0: POKE 1,128
90 CALL 38144

Listing 14.1 - Using DPICDRAW from BASIC In 280-mode

This example shows how to display a 280-mode (.SPC) picture in double-res. To display a
560-mode picture, change line 70 to use ".DPC" instead of ".SPC", and add:

85 POKE 38175,255

which tells the DPICDRAW routine that the color conversion routines for 280-mode pictures
need not be used.

To go back to displaying 280-mode pictures, use

POKE 38175,0

The HIMEM command makes sure that the DPICDRAW routine and the area in which you
loaded your picture will not be disturbed. The DPICDRAW rout ine starts at location 38144
($9500) , and we'll load the picture commands at 32768 ($8000) . Line 10 sets the language
area (the top 16K of main memory) to receive information. Lines 20 and 30 load in the two
DPICDRAW files. Line 40 protects the language area from being written over. Line 50
activates the auxiliary 64K memory and 80-column display. Line 60 sets the standard hi-res
mode, and then moves the contents of hi-res graphics page 1 into the hi-res data area in the
auxiliary memory, using a transfer routine in DPICDRAW. Line 70 loads in the picture
information. Note that the ".SPC" or ".DPC" was added to the name automatically by the
picture editor, and that the ",A32768" tells the program to load the picture commands at
location 32768.

Line 80 pokes the starting address of the picture commands into locations O and 1. The
address is poked in Lo/Hi format, which is computed as follows:

Hi=INT(A/ 256)
Lo=A-H1 ·255

where A is the address. Listing 14.2 shows how we could have used this formula in line 80.
Line 90 contains the call to the DPICDRAW routine at 38144 (or from machine language, use
JSR $9500) that will cause the picture to be redrawn.

5 HIMEM: 32768
10 X = PEEK (- 16254) + PEEK (- 16255) + PEEK (- 16255)
15 REM WRITE-ENABLE LANGUAGE CARD
20 PRINT CHR$ (4);"BLOAD DPICDRAWL"
30 PRINT CHR$ (4l;"BLOAD DPICDRAWH.A$D000"
40 X = PEEK (- 16254): REM WRITE-PROTECT CARD
50 PRINT CHR$ (4l;"PR#3": PRINT
60 HGR : CALL 38202

-69-

65 REM MOVE BLANK MAIN HEM TO AUX MEM
70 PRINT CHR$ (4l;"BLOAD PNAME .SPC,A32768"
80 A= 32768:HI = INT (A I 256l:LO = A - HI * 256 : POKE 0,LO:

POKE 1,HI
90 CALL 38144

Listing 14.2- Computing the POKES

Putting an Object over a Picture
The same technique used for redrawing a picture is used to redraw an object. Once the

background picture is shown, load the object picture, and use the same two pokes to tell the
location of the object commands. Then you have a choice between two calls.

CALL 3B147 (or JSR $9503) will draw the object over the picture at the same location in
which the object was originally created . It is the same as drawing a picture, except the screen
is not cleared beforehand.

CALL 3B150 (or JSR $9506) will allow you to specify an x,y coordinate at which to have the
object drawn. The x,y coordinate should first be put in locations 38153-38155 as follows:

POKE 3B153,X-INT(X/256)*256
POKE 3B154,INT(X/256)
POKE 3B155,Y

Technically, "xlo" is put in 3B153 ($9509) , "xhi" is put in 3B154 ($950A), and "y" is put in 3B155
($9508) . IMPORTANT: for compatibility with programs written for the standard hi-res
screen, the x,y coordinate is given based on a 2BO by 192 screen when in 2BO-mode. If you
are using 560- mode, the x-coordinate can be from O to 559.

If the second call is used, the x,y coordinate must be such that the entire object will be
shown on the picture. If any part of the object goes off the edges, it will not work properly.

Listing 14.3 can be used as a continuation of listing 14.1, and shows an example of
drawing an object over a picture using alternate coordinates. If it should be drawn in its
original location, line 130 could be omitted and the call in line 140 could be changed to CALL

38147.

5 HIMEM: 32768
10 X = PEEK (- 16254) + PEEK (- 16255> + PEEK (- 16255>
15 REM WRITE-ENABLE LANGUAGE CARD
20 PRINT CHR$ (4);"BLOAD DPICDRAWL"

-70-

30 PRINT CHR$ (4);"BLOAD DPICDRAWH,A$D000"
40 X = PEEK (- 16254): REM WRITE-PROTECT CARD
50 PRINT CHR$ (4);"PR#3": PRINT
60 HGR : CALL 38202
65 REM MOVE BLANK MAIN MEM TO AUX MEM

70 PRINT CHR$ <4l;"BLOAD PNAME.SPC,A32768"
80 POKE 0,0: POKE 1,128
90 CALL 38144
100 PRINT CHR$ <4l;"BLOAD ONAME.SPC,A32768"
110 POKE 0,0: POKE 1,128
120 X = 200:Y = 53
130 POKE 38153,X - INT <XI 256l * 256: POKE 38154,X I 256:

POKE 3:3155,Y
140 CALL 38150

Listing 14.3 - Adding an Object

Note that there is no restriction on mixing 560-mode and 2BO-mode picture files here,
provided you let DPICDRAW know what you are doing. Just remember to POKE 3B175,255
for ''.DPC" (560-mode) files , and to POKE 38175,0 for ".SPC" (2BO-mode) files before you
make the call to DPICDRAW.

Note about Graphics Pages
There is only one double-res graphics page. It consists of an BK block of main memory

from $2000 to $3FFF, and an BK block of auxiliary memory, also mapped into $2000 to
$3FFF. The standard hi-res Graphics Magician lets you switch between displaying your
pictures on standard hi-res page 1 or standard hi-res page 2. DPICDRAW ignores this, since
there is only one double-res page.

Technical Trivia
Before a picture is drawn, you must put the starting address of the picture file into

locations O and 1, in Lo/ Hi format. After the picture is drawn, locations O and 1 contain the
first address after the picture commands.

Loading Groups of Pictures into One File
You can put several pictures in one long file, so that you only load one time, but can

display several different pictures without going back to disk. See this section in Chapter 13
for how to set up a Picture Group.

Using a Group of Sequential Pictures
Listings 14.4 and 14.5 give examples of using picture groups in your programs. Listing

14.4 cycles through the pictures in order, waiting for a keypress between changes. Listing
14.5 uses the addresses we noted to allow you to select which picture is shown, and when.
Pressing 1, 2, or 3 draws the appropriate picture. The programs should have names and
addresses changed to match the ones you used before you try them, and lines 100 in listing
14.4 and BO, 90, and 100 in listing 14.5 should have the "3" changed to the number of pictures
yol:l used.

-71-

5 HIMEM:8192
10 X = PEEK (- 16254) + PEEK (- 16255) + PEEK .(- 16255)
20 PRINT CHR$ (4l;"BLOAD DPICDRAWL"
30 PRINT CHR$!4);"BLOAD DPICDRAWH,A$D000"
40 X = PEEK (- 16254): REM WRITE-PROTECT CARD
50 PRINT CHR$ (4);"PR#3": PRINT
60 HGR : CALL 38202
70 PRINT CHR$ (4);"BLOAD PICTURE GROUP,A16384"
80 POKE 0,0 : POKE 1,64
85 REM LINE :::0 CONTAINS 16384

PRE-COMPUTED IN LO-HI FORMAT
90 POKE 38175,255
95 REM LINE 90 IS FOR 560-MODE PICTURES
100 FOR X = 1 TO 3
110 CALL 3:::144: GET A$
120 NEXT

Listing 14.4 - Cycling through a Group of Sequential Pictures

5 HIMEM: 8192
10 X = PEEK (- 16254) + PEEK (- 16255) + PEEK (- 16255)
20 PRINT CHR$!4);"BLOAD DPICDRAWL"
30 PRINT CHR$ (4);"BLOAD DPICDRAWH,A$D000"
40 X = PEEK (- 16254)
50 PRINT CHR$ (4l;"PR#3" : PRINT
60 HGR : CALL 38202: POKE 38175 ,255
65 REM CLEAR SCREEN AND SET "560" MODE
70 PRINT CHR$ (4);"BLOAD PICTURE GROUP,A16384"
:30 DIM U3l : REM L CONTAINS THE LOCATION OF EACH PICTURE
90 FOR X = 1 TO 3: READ UXJ: NEXT : DATA 16384,18425,20655
100 GET A$: IF A$< "1" OR A$ > "3" THEN 100
110 V = U VAL (A$ll
120 POKE 0.V - INT !VI 256l * 256: POKE 1.V I 256
130 CALL 38144
140 GOTO 100

Listing 14.5 - Choosing from a Group of Sequential Pictures

Memory Usage
DPICDRAWL takes 98 bytes, and resides in locations 38144-38241 ($9500-$9561) .

DPICDRAWL serves as a scratchpad area for DPICDRAWH, and a place where your
programs can pass values to DPICDRAWH. Also, DPICDRAWL switches the 16K language

-72-

area in and out each time you call it, because DPICDRAWH is placed thereto leave more free
space for your programs.

DPICDRAWH is where all of the main routines are. It is 3840 bytes long, and resides at
53248-57087 ($DOOO-$DEFF) . Figure 14.2 shows a memory map of where everything is
located when using DPICDRAW.

Your picture buffer (where the picture commands get loaded) may be placed anywhere
where there is room, but the usual place is directly below the DPICDRAW routine. To find
the hi~hest location you may use for the buffer, find the length of your longest picture (from
the picture editor) and subtract it from 38144, the starting location of DPICDAAWL.
Sometimes it i~ useful to actually use two picture buffers. You may want one for "room", or
background, pictures, and another separate buffer for objects.

Motherboard ROM Language Area RAM

Applesoft Character Set

(Optional)

DPICDRAWH

Bank 1 Bank 2

Hardware, 1/0 Locations

DOS

DPICDRAWL

free space available
for picture buffers

and variables

Page 1 Graphics

BASIC Program

$E200

$EOOO

$DFOO

$0000 (53248)

$COOO (49152)

$9600 (38400)

$9500 (38144)

$4000 (16384)

$2000 (8192)

$800 (2048)

DPICDRAW also uses zero-page locations $0-$C,$F9,$FB-$FF (0-12.249,251-255) .

DPICDRAW uses $2000-$3FFF, the double-res display area, in the auxiliary 64K of memory.

Figure 14.2 - DPICDRAW Main Memory Map -73-

There is a second version of DPICDRAW available in case you do not want it to use the
language area (for example, if you will be using ProDOS, which resides in the same area).
The alternate version is called DPICDRAW.AL T , and it starts at $800 (2048) and is exactly 4K
long to $17FF, or 6143). not including the character table.

Listing 14.6 shows an example of using DPICDRAW.AL T from Basic. It is virtually the
same as listing 14.1, except for the code in lines 10 and 20, and the CALL address is moved
down to 2106. Lines 10 and 20 cause the Basic code to relocate itself to $4000, or 16384. The
CALL, and all other access points in DPICDRAW.AL T, are 36096 ($8000) less than those for
the standard version of DPICDRAW, described earlier.

5 HIMEM: 3276:::
1€l IF PEEK (104) = 64 THEN 40
20 POKE 104,64: POKE 163~:4,0: PRINT CHR$ <4J;"RUN LISTING 14.6"
30 REM MOVE PROGRAM OUT OF DPICDRAW.ALT'S SPACE
40 PRINT CHR$ <4J;"BLOAD DPICDRAW.ALT"
50 PRINT CHR$ (4J;"PR#3": PRINT
60 HGR: CALL 2106
65 REM MOVE BLANK MAIN MEM TO AUX HEM
70 PRINT CHR$ <4J;"BLOAD PN.A.ME .SPC,A32768"
80 POKE 0,0: POKE 1 t128
90 CALL 204E:

Listing 14.6- Using DPICDRAW.ALT

Adding a Character Table
As it comes, DPICDRAW and its character set are in separate files. If your application

requires text on the graphics screen, there are two ways to install DPICDRAW's character
table:

When loading the DPICDRAW files, add:

25 PRINT CHR$(4) "BLOAD SYS.STS,A$DFOO"

or add the table to the end of DPICDRAWH:

BLOAD DPICDRAWH,A$2000

BLOAD SYS.STS,A$2FOO

BSAVE DPICDRAWH.WT,A$2000,L$1200

The ".WT" means "with text", and will help you remember that this version has a character
table added.

To use text with DPICDRAW.AL T, you would use the following with listing 5.3:

45 PRINT CHR$(4) "BLOAD SYS.STS,A$1800"

-74-

or add the table to the end of DPICDRAW. ALT with:

BLOAD OPICDRAW.AL T
BLOAD SYS.STS,A$1800
BSAVE DPICDRAW.AL T.WT,A$800,L$1300

Changing the Character Table
The character table may be changed if you have a small font editor such as that available

with The Complete Graphics System from Pengu in Software or The Applesoft Tooklt from
Apple Computer. Several alternate text fonts are also available in Additional Typesets from
Penguin Software.

To use an alternate text set, simply use the name of the character set you want in place of
SYS.STS in the previous section , "Adding a Character Table". To change the character set
on your editor disk, on a copy of the disk replace SYS.STS with your character set. Its name
must be changed to SYS.STS for the editor disk.

-75-

Chapter 15 - The Picture Lister
Pressing "(L)ist picture" from the menu gets you to a picture listing util.ity. Normally, this

will be of little use, but it does have a few interesting applications. You will have to choose

between the standard and double-res versions.

First, you can print out on your printer a list of commands that verbally describe a pictu~e.
These are the same commands that are listed individually at the bottom of the screen while

you are editing a picture.

More importantly, the Lister lets you list your picture commands to a transfer file.
Normally a picture's commands are stored in binary format for speed. When_ the commands
are taken apart and listed to a transfer file , a few things can happen. First '. 1t becomes
possible to transfer your pictures to other types of computers, and for them to interpret the
pictures in a way best suited for display on that system. Second.' 1t becomes ~oss1ble to
reload the picture on your own Apple, altering various parameters in the translation back to

sequential format .

Simple Options
Briefly going through the options, "(L)oad" and "(S)ave" let you load and save sequential

pictures from The Graphics Magician to and from disk. "(P)rint pi~ture com'.11and~" ~.ets you
print the instructions that make up a picture to your printer. (V)1ew picture , (D)raw
picture", "(C)atalog", and "(Q)uit" do just as they say.

"(W)rite transfer file" takes the current picture loaded in memory and_ puts its commands
into a Graphics Magician picture transfer format. The commands are written out so that they
can be interpreted by other Apples, and by other computers such as those from Atari ,

Commodore, and IBM.

Reading and Interpreting Transfer Files
"(R)ead transfer file" lets you read and interpret a picture transfer formatted file. This file

can be created with an Apple, as in above, or it could be a graphics file created with an_other
computer. In either case, you are first asked to enter a scaling factor. Standard Apple p_1cture
files are written out with a scaling factor of 100; that is, all x,y coordinates are mult1pl1ed by
100 before being written to the transfer formatted file. To read a standard Apple picture back
in, you would want to divide each coordinate by 100, therefore enter 100 for the scale factor.
This should be done with any 280-mode " .SPC" picture.

In a Double-Res picture, the x-coordinate can be from O to 559. The x-coordi~ate
multiplier, then, is 50. The y-coordinate multiplier (100) stays the same. To read in a
Double-Res picture, you would divide the x-coordinates by 50, and the y-coordintaes by
100. This should be used with all 560-mode " .DPC" pictures.

Other computers do not necessarily have the same 280 or 560 dot by 192 dot resolution.of
an Apple. Files written out by other computers may use different scaling factors, or req~1re
that different scaling factors be used for interpreting their files so that the end result is a
picture that is proportional to a full screen on an Apple.

-76-

You may also use the scaling factor to play tricks with the physical size of pictures created
with an Apple, making them larger or smaller. One thing to remember is that the brush and
text sizes do not change, so whereas the line and fill commands will actually condense or
expand properly in size, brushes and text will be the same size, but move apart or scrunch
together.

For those interested in playing around with the actual code for interpreting the pictures,
the instructions for reading and interpreting a picture file are in lines 500-600 of the
programs PICDOC and DPICDOC, with the specific commands for interpreting the
coordinates at line 525. You can do some pretty wierd and interesting things by playing with
that part of the code.

Color Table
The other interpretation that occurs when reading a file is that of color. Different types of

computers differ greatly when it comes to color availability, so a method is provided to
interpret colors as best as possible across systems. When the interpreter reads a color from
the color table, instead of automatically assigning that color number, it looks in a color table
to find the equivalent that should be used.

The existing color table uses 256 color equivalences, with each number equivalent to itself
(in other words, color 12 is interpreted as a 12). Colors 108 to 255 are not used with
standard-res, but are with double-res and with som~ other computers, so the capability is
included for interpreting them as best as possible.

The existing color table uses 16 line color equivalences, and 256 brush/ fill color
equivalences, with each number equivalent to itself (in other words, color 12 is interpreted as
a 12).

Pressing "(E)dit color table" will give you a set of choices that allows you to load or save a
color table of your choice, print the current color table equivalences to a printer, load the
Double-Res Apple equivalence color table (named AP560.CL T, which is loaded in
automatically when the program is run), change any one of the color equivalences, or return
to the main options.

!f you choose to change a color equivalence, you'll be asked which number you want to
change, and what you want it to be . If you choose to change fill color 5 to 17, whenever a
picture transfer file is read in and interpeted, any fill color 5 will be interpreted as a 17.
Besides being irreplaceable as a tool for transferring colored pictures between two different
types of computers, this will also allow a quick way to change colors in any picture created in
an Apple. It lets you bypass the need for going into the picture editor and single-stepping to
find all the color commands that you want changed. The whole step is done automatically
when you write a picture transfer file, change the color equivalences, then read and interpret
the same file with the new colors. In fact it's so quick that it allows you to easily test several
diffferent color combinations for the same picture very painlessly.

-n-

Double-Res Only
Customizing the 280/560 Mode Color Conversions

There is one other use to which the color table editor can be put. DPICDRAW uses a color
lookup table to convert picture commands from 280 data mode to 560 data mode, and vice
versa. The default color table for 280 mode to 560 mode conversion is AP280.CL T.
DPICDRAWH contains a copy of th is table, as does SYS.CL T. Everytime you enter the main
menu, however, the contents of SYS.CL Tare overlaid onto DPICDRAWH. Using DPICDOC,
you can get, edit, and save SYS.CL T, and that way change how DPICDRAW interprets 280-
mode files.

Here's an example: In the 280-mode palette, color number 2 (remember to start counting
at color number zero) is defined as solid yellow, which is color 112 in the 560-mode palette.
You decide that you'd prefer to have DPICDRAW interpret color #2 as a lighter yellow, and
you pick color #126 (yellow and white) from the 560-mode palette as a substitute. From
DPICDOC, you would load SYS.CL T, and choose "(E)dit color table". (Note that all ".CL T"
files are kept on the master disk, usually in drive 1.) Then choose "(C)hange fill color table".
DPICDOC will ask you which color to change. Enter a 2. Then DPICDOC will ask what the
new value should be. Enter 126. That's it! To make these changes permanent, "(S)ave color
table", and enter "SYS" as the name. This will save your new table as SYS.CL T. It's advised
that you always do this onto a COPY of the master, so that your real master disk still has the
original SYS.CL T.

If you want to make a lot of changes to the 280-mode palette, you may want to load the
palette, and redraw it occasionally to be able to see what you're doing. The name of the
palette is PAL280.SPC. Just select "(L)oad picture", " (2)80 mode", then enter "PAL280''. If
you have changed the lookup table, you will see the difference when the palette is drawn.
You may make more changes with DPICDOC, then " (D)raw" the palette again to see the
changes as often as you like.

If you ever want to restore SYS.CL T to its original state, " (L)oad color table" AP280 , and
"(S)ave" it as SYS. AP280.CL Tis the backup copy of the standard table, so it's probably best
not to change it or save over it.

-78-

Finally if you want to create a custom DPICDRAW with your color lookup table, from
Applesoft type:

BLOAD DPICDRAWH,A$2000
BLOAD your table .CL T,A$2CFO
BSAVE DPICDRAWH.MC,A$2000,L$FOO

The ''.MC" stands for "modified colors", and tells you that this DPICDRAWwill interpret 280-
mode pictures in a non-standard way.

Chapter 16 - Extras

The Binary Transfer Utility
Choosing "(B)inary transfer" from the menu lets you use the binary transfer utility. On the

Apple, there are four types of storage files, designated by a letter in front of the name when
you do a disk catalog . "A" files are Applesoft Basic files. " I" files are Integer Basic files (not
used much anymore) . "T" stands for text file, and "B" is a binary file.

BASIC files are easy to move around; you just LOAD them and SAVE them. The computer
does all the work with location and length. All the files you create with The Graphics
Magician, though, .are binary files. They either contain binary data or machine language
c?de. To move a .b.rnary frle , you must know its starting address and length (in bytes) . The
~rnary transfer.utrlrty lets you easily find these. It will also let you automatically load a binary
frle from one drsk and save it to another disk.

.. The ~ptions from the binary transfer utility are to " (L)oad", " (S)ave", " (D)isk catalog", or
(Q)urt . Each trr:ie you load a binary file, its starting address and length are automatically

displayed, both rn decrmal and hexadecimal. Once you load a file, you don't necessarily
have to save rt. You would do so only if you want to put it onto another disk.

With a couple co~mands from Applesoft it is possible to change the starting location (and
thus, loadrng location) of a binary file. Generally you should not do this with machine
language program files, since. these are usually dependent on location. You may easily make
the change wrth brnary data fries, such as pictures, shapes, and paths, though. If you have a
sequent.ial picture called HOUSE, for example, that was 387 bytes long and you want to
change rts loadrng address to 24800, you would use the following from the Applesoft prompt
(]) :

BLOAD HOUSE.SPC,A24800

BSAVE HOUSE.SPC,A24800,L387

Standard-Res Text Generator
.A small character generator has been included that will let you print text on the hi-res

graphics screen from your programs. It is located at the very top of memory and requires a
MAXFILES 1 command to be issued before the routine can be loaded and used. There are
four versions on disk:

HPRINT ANIM for use with the animator (starts at $9700, or 38656)

HPRINT PH for use with PICDRAWH (starts at $9AOO, or 39424)
HPRINT PL for use with PICDRAWL (starts at $9AOO, or 39424)

HPRINT ALONE for use with none of the above (starts at $9580, or 38272)

The routine itself will simply plot an ASCII character in the range 32-127 at a specified x,y
coordinate. Y may be anywhere in the range 0-184, X must be 0-39. To use the routine first
load it, then, given an x,y coordinate and an ASCII value A, put the ASCII value in 39424, put

-79-

X in 39425, put Y in 39426, and CALL 39427. (Hexadecimal addresses $9A00-$9A03) . A
sample is shown in listing 16.1, and an ASCII table can be found in your Applesoft manual.
The numerals 0-9 have ASCII values of 48-57, and the letters A-Z have values 65-90.

5 HOME
10 PRINT CHR$ (4l;"MAXFILES1"
15 HIMEM : 38272
20 HGR
30 PRINT CHR$ (4);"BLOAD HPRINT ALONE"
40 GET A$
50 A = ASC (A$l
60 IF A = 13 THEN y = y + 1 :X = 0: IF y > 19 THEN y = 0: GOTO 40
65 IF A = 8 THEN X = X - 1: IF X < 0 THEN X = 0
70 IF A= 27 THEN END
75 IF A < 32 OR A > 127 THEN 40
80 X = X + 1: IF X > 39 THEN X = 1 :Y = Y + 1: IF Y > 19 THEN Y = 0
90 POKE 39424,A: POKE 39425,X: POKE 39426,(Y * 8l
100 CALL 39427
110 GOTO 40

Listing 16.1 - Using HPRINT

The versions of the text generator that work with PICDRAW use the same character set
used by PICDRAW. The character set for the other two versions is located from 38656-39423
($9700-$99FF) , and can be replaced with any other standard small character set created in
The Complete Graphics System, The Applesoft Tool kit, or from Additional Typesets. When
using HPRINT ALONE, you should also use the command HIMEM:38272.

Double-res Text Generator
A small character generator has been included that will let you print text on the double-res

graph ics screen from your programs. It is called DHPRINT, and it loads just above
DPICDRAWL.

The routine itself will simply plot an ASCII character in the range32-127 at a specified x.y
coord inate. Y may be anywhere in the range 0-184, X must be 0-39. To use the routine, first
load it, then, given x,y coordinate and an ASCII value A, put the ASCII value in 38242, put X in
38243, put Yin 38244, and CALL 38245. (Hexadecimal addresses $9562-$9565). A sample is
shown in listing 16.2, and an ASCII table can be found in your Applesoft manual. The
numerals 0-9 have ASCII values of 48-57, and the letters A-Z have values 65-90.

5 HOME
10 REM ASSUMES DPICDRAW AND A CHARACTER TABLB: ARE

LOADED AND READY
20 HGR : CALL 38202
30 PRINT CHRS (4l;"BLOAD DHPRINT"

-ao-

40 GET As ·
50 A= ASC (A$l
60 IF A= 13 THEN y = y + 1 :X = 0: IF y > 19 THEN y = 0
65 IF A= 8 THEN X = X - 1: IF X < 0 THEN X = 0
70 IF A= 3 THEN END: REM CONTROL-C QUITS
75 IF A < 32 OR A > 127 THEN 40
80 X = X + 1: IF X > 39 THEN X = 1 :Y = Y + 1: IF Y > 19 THEN Y = 0
90 POKE 38242,A: POKE 38243,X: POKE 38244,Y * 8
100 CALL 38245
110 GOTO 40

Listing 16.2 - Using DHPRINT

Note that DH PRINT uses the same character set and lookup tables used by DPICDRAWH.
DPICDRAWH and a character set should be in memory before using DHPRINT.

DPICDRAW.AL T already has a version of DH PRINT built in . To use it, just subtract 36096
($8000) from the addresses given above.

Capturing Shapes and Extra Editing
Pre-shifted shapes have their own special format and must be created with The Graphics

Magician shape editor. There are ways, however, to convert standard Applesoft shapes or
parts of a hi-res screen to pre-shifted shapes. The trick is to put those shapes on the screen
in the editing area used by the shape editor, then jump into the shape editor and convince it
that the shapes belong there.

There are three extra programs on your Graphics Magician disk that let you do this.
SHAPE START lets you convert Applesoft shapes to pre-shifted shapes. SHAPE CAPTURE
allows you to convert any part of a hi-res graphics screen into a shape. And with SHAPE
SCREEN START you can edit pre-shifted shapes with any other graphics utility, then return
to the shape editor.

To use SHAPE START, quit The Graphics Magician and type "RUN SHAPE START"
(without the quotes). You will be asked for the name of your Applesoft shape table (give the
entire name as it appears in the disk catalog) , and it will be loaded from your data disk. You'll
then be asked for the number of the shape that you want converted, and the border size that
you want around your pre-shifted shape. The borders will be drawn. and you can position
your shape within them by using the IJKM keys. " (N)ew" lets you choose a different shape in
the same table. When the shape is positioned in the boxes, press " (S)hape editor" to jump
into the editor. You 'll have to tell it the border and shape size, as if you were starting new. but
your shape will already be on the screen.

SHAPE CAPTURE works similarly. Quit The Graphics Magician and type "RUN SHAPE
CAPTURE". You will be asked for a picture name. The picture must be stored in standard
".PIC" format. Type its name (without the ".PIC") and it will be loaded from your data disk.
When the picture appears, use the IJKM keys to move the cursor around. When you reach
the upper left corner of the area you want captured , press "1". Then move to the lower right
corner and press "2". The bordered area will now be transferred seven times to an editing
screen, and the shape editor will be run . As with SHAPESTART, you'll have to give border,
shape size, etc., as if you started new, but the shape will already be on the screen.

-81-

SHAPE SCREEN START lets you jump out of the shape editor, edit the "edit screen" with
another graphics utility, then reenter the shape editor. It is a three-step process. First, when
you have a shape on the shape editor "edit screen" (seven shapes, with border dots, etc.), go
to the " (O}ptions" and press Control-$ (an unlisted option ; hold down the CONTROL key
and press "S"). This saves the edit screen intact as a standard 34-sector ".PIC" file on your
data disk, with the name you give it. Step two is to edit this picture file however you want with
the graphics utility you desire. The only important part of this step is to erase the border dots
that were left by the shape editor before you are done and proceed to step three. The last
step is to "RUN SHAPE SCREEN START", give the name of the edited picture file, and you'll
be put back into the editor, just as with the two previous programs.

-B2-

Appendix A - Apple Double-Res Colors
• • •
• • •
• • •
• • •
• • •
~
yte. Each partition is a b

Each dot is a screen
and is stored as a bi

dot
t.

• • • •
• • • •
• • • •
• • . .
• •• •

Figure A.1 - Section of Apple Graphics Screen

• • • • • • • . . • • • • •
• • • • • ••
• • • • • • •
• • • • • • •

/

To fully take advantage of the double-res color graphics ability, it helps to know just how
those colors are stored on the double-res screen. Figure A.1 shows a magnified portion of
the graphics screen. Each dot corresponds to a dot that may be on or off and each is
technically stored as a bit. The lines divide the basic storage units on the Apple. bytes. Each
byte consists of seven bits displayed horizontally on the screen. The eighth bit in each byte,
used as a color-select bit in standard hi-res, is ignored in double-res. When the BK main
memory is displayed simultaneously with the BK auxiliary memory, we get a screen that is BO
bytes, or 560 dots, wide. As with standard hi-res, the screen is 192 bytes, and dots, tall.

Each dot may only be on or off. An "on" dot may be one of four colors, depending on its
horizontal position on the graphics screen. For color purposes, the 560 dots going across
the double-res screen are divided into groups of four dots. This unit of four dots, or "color
group", is capable of 16 combinations, or 16 colors. See figure A.2.

Color Group
Black 0 0 0 0
Magenta 0 0 0 x
Brown 0 0 x 0
Orange 0 0 xx
Dark Green 0 x 0 0
Grey 1 0 x 0 x
Light Green 0 x x 0
Yellow 0 xx x
Dark Blue x 0 0 0
Violet XOOX
Grey 2 x 0 x 0
Pink x 0 xx
Blue xx 0 0
Light Blue x x 0 x
Aqua x x x 0
White xx xx
X = on o = off

Figure A-2 - Double-Res Colors -83-

-84-

This new color layout has a few interesting results. First, black and white mode is basically
dot on and dot off. "White" means a dot is on, without regard to actual color, and "black"
means a dot is off, and will always be black. The actual resolution of this mode is 560 by 192.

The second result is that, like standard hi-res, the color mode resolution is really only 140
by 192. There are 560/4, or 140 color groups across the screen, and each color group can
only produce one color at a time. This is not as severe as it sounds, because most graphics
you produce will be some mixture of the "black and white" 560-dot resolution and the color
140-dot resolution . Most computers require that you choose either one or the other display
mode, with very limited mixture, if any.

Thethird result is that there is no such thing as color bleed in double-res. The color-select
bit is not used, so you may freely place any color next to any other color without fear of
affecting other colors within the byte boundaries.

The final result is that, unlike the standard hi-res version ofThe Graphics Magician, there
are no "group A, B, and C" colors on the two color palettes. You may mix color fills any way
you want. Of course, if you create a picture in 280-mode, and wish to use it with the standard
hi-res PICDRAW, you should observe the limitations of standard hi-res, as described in
Appendix B.

Appendix B - Apple Standard
Hi-Res Colors

The diagram in Figure A.1 also corresponds to the standard hi-res graphics screen. Each
dot corresponds to a dot that may be on or off on the screen, and each is technically stored
as a bit (on or off) . The lines divide the basic storage units on the Apple, bytes. Each byte
consists of seven bits displayed horizontally on the screen. An eighth bit is used as a color
flag, or switch , which we will find is the key to most color anomalies on the Apple. The screen
is 40 bytes, or 280 dots wide. It is 192 bytes, and dots, tall.

Each dot may only be on or off. If a dot is off, it is black. An "on" dot can be one of four
colors, depending on two conditions. "On" dots in even columns will be either blue or violet.
"On" dots in odd columns will be either orange or green. If the color flag for that byte is on,
the dots will beorangeand blue, and if the flag is off, the dots will be green and violet. Got all
that? Okay, now if two dots are "on" horizontally next to each other, they both become white.
This gives the "eight" Apple colors, even though there are two versions of white, and two
versions of black. See figure B.1 .

Group 1 Group 2
Color Flag Off Color Flag On

Dots Off Black #0 Black #4
Odd Dots On Green #1 Orange #5
Even Dots On Violet #2 Blue #6
All Dots On White #3 White #7

Figure B.1 - Color Construction

The color layout has a few interesting results. First, black and white mode is basically dot
on or dot off, without regard to color flag or position. "White" means a dot is on , and it can
actually be displayed as white, blue, violet, green, or orange. "Black" means the dot is off,
and will always be displayed as black. The actual resolution in this mode is 280by192. (Note:
the color flag also slightly affects the position of a dot, shifting it left or right a half position.
By using this shift, it is possible in some instances to make the horizontal resolution appear
to be 560 since there are 560 positions in which dots can appear. It is not a true resolution ,
however, since no matter what you do there are only seven dots per byte.)

The second result of the color layout is that in color mode, the resolution is really only 140
dots wide. An orange line across the screen has only the odd dots set; the even dots must be
off. It only uses 140 dots and restricts the use of the others. This is part of the reason why
most uses of color have a black background. Any color may be used against a black
background, although in limited positions. Against any other background, even white, you
are restricted to a much lower apparent resolution .

The third result is that some colors are difficult to use next to others because of the color
flag. Orange and green dots, for example, cannot appear in the same byte, so it's usually
impossible to use them next to each other horizontally. Looking at figure B.1, the colors in
group 1 generallrcannot be used horizontally next to the colors in group 2.

-85-

-86-

Blended Colors and the Color Palette

There are ways to combine colors so that you perceive different shades and textures, and
even get fooled into thinking there are a few new colors. Part of it is just creating different
color patterns horizontally. The other part is that colors that cannot be placed horizontally
next to each other can be placed in alternate rows vertically. Green and orange, for example,
when placed in alternate rows give a yellow color.

The 280-mode color palette available in the picture editor, when displayed in standard
hi-res, actually has three groups of colors. Group A, the first and largest set, consists of
blended colors such that alternate rows use group 1 and group 2 standard Apple colors (as
in figure B.1). Group A is the first 5 columns of the palette and the top two colors from the
sixth column, or colors Oto 51 . (The first color in each group is white) .

Group B consists of blends of colors made only with the Apple colors 4-7, and is colors52
to 76 on the palette. Group C is made of Apple colors 0-3, and is colors 77 to 107 on the
palette. Lines from the matching set of line colors can be used over group B or C, but lines
should not be drawn over group A colors. Instead, the lines should be drawn first , then
colors added.

"Color bleed" is when color flags change around the border of two colors and cause the
first color to change at the border. In the picture editor, color bleed may be minimized by
avoiding putting two colors from different groups next to each other horizontally. Instead,
work in horizontal zones that keep the conflicting colors apart horizontally, but allow them to
share vertical borders (see figure B.2) . Note also that several colors appear in two orthreeof
the groups. They are constructed differently, but appear the same. There are three different
whites, for example. You can use these different colors across the zones to make it appear
that one color spans them (see figure B.3 for an example) .

GROUP A COLORS

GROUP C COLORS

GROUP B COLORS

Figure B.2 - Color Zone Example

GROUP A White #0

GROUP B White #52

GROUP C White #77

Figure B.3 - Traversing Zones

~ --- By being made of three
different whites, this
vertical rectangle traverses
the three zones and does
not adversely affect other
colors.

-87-

Appendix C - Filename Suffixes
Since there are so many types of graphics files that can be created with our various

graphics products, we've added an identifying suffix to each one so that when a disk is
cataloged the file type may be easily known. Here's a list of the types of data files that can be
created with The Graphics Magician:

.ANM binary animation and machine language file created with the animation editor.

. ATX animation text file saved with the animation editor; not necessary for running the
animation, but needed for re-ed iting the animation file or documenting it with the animation
documenter.

.PIC standard format 33 or 34 sector screen picture image, loads on graphics page 1, and
saved with the " (l)mage" command in the picture editor or with any of our other graphics
software.

.PTH binary path table, created with the path editor.

.PTX picture text file: a transfer formatted sequential picture saved with the Picture Lister.

. SSH binary pre-shifted shape file created with The Graphics Magician shape editor.

. CL T color table; a line and fill color lookup table used by DPICDOC and DPICDRAW for
translating colors.

.DPA double-res picture/auxil iary memory; half of a double-res picture saved with the
"{l)mage" save in the picture painter. This is an BK exact memory copy of half the picture.
The other BK is in the corresponding ".DPM" file .

.DPM double-res picture/main memory; the other half of the ".DPA" file.

.DPC double-res sequential picture, created with the picture painter in 560-mode.

.SPC sequential picture file created with The Graphics Magician or with the Double-Res
Graphics Magician Picture Painter in 2BO-mode.

.STS small typeset, created with The Complete Graphics System or from Additional Type
Sets , which can be used with the DPICDRAW, DHPRINT, PICDRAW, and HPRINT.

-88-

Appendix D - Notes for users of the
original version of Graphics Magician

Most of the mach ine language routines have been changed to add new features or further
optimize previous ones. Some of the data file structures have also been modified to allow
extra features or save space. You should carefully read and note all the new entry points and
tables for the machine language routines, and check the new features available; they may
save you some time and code .

Animation System
The shape format has been shortened slightly (12 bytes per shape) . Old shapes can be

converted to the new format using the SHAPE CONVERTER program provided.
The path format has also been changed to allow for moves of +- 7 instead of +- 3. If you

enter any values directly into your path from a progam, you should find where that is done
and compute new values. The old path values are changed. You may convert old paths to the
new format with the PATH CONVERTER program provided.

The animation editor puts out a differently formatted file with some new, added
information besides having the new format shapes and paths, so any animation files created
with the original version will have to be recreated with the new .

The CALL locations have changed for the animation machine language routines. Tables .
while holding mostly the same information, have been moved around and spl it to save
computation time in the animator and in your program. Check chapters Band 9 carefully, if
you are modifying a program that already uses the old animator to use the new. Also note the
new animation types available.

Picture Painter
The sequential picture files are in the same format as the original files, and may still be

used. The text commands are new commands and do not affect readability of the older files .
The fill routine has had a slight correction made in the averaging routine and some older
pictures actually rely on the original version to fill a section properly. You should check older
pictures to see if they fill totally with the change made. If they don't, you may have to go into
the editor and add an extra fill command or two.

The POKE and CALL locations for the PICDRAW routines have changed. The routines in
this version are 256 bytes shorter and faster than PICDRAWF in the original vers ion. They
are also 256 bytes longer than the original , much slower PICDRAW. On top of that, however,
the 768 optional bytes of character tables for the text routine have been added.

-B9-

Appendix E - Reference Card for
Shape Editor, Path Editor, and
Picture Painters
Shape Editor
l,J,K,M cursor movement up, left, right , and down

z plot one point
x erase one point
a lock plotting
w lock erasing

c set color
B reset borders and boundaries
F flip shape
R rotate shape
s shift shape
Control- s shift shape outside boundaries
E exchange colors
A animate
1-7 turn on and off frames 1-7

0 options to disk:

E go back to edit mode
s save shape

Control- s save shape editor screen
L load shape
D disk catalog
c clear shape
a quit

Path Editor
U,1,0 ,J,K,N ,M,"," cursor "move and plot" keys

RETURN,-,-,/
or cursor move keys, one dot each

lie arrow keys

z
Dor DELETE
X,Y
ESC
s
c
a

-90-

plot move
delete the last step
change standard x,y moves
show full screen
save path
clear path
quit

Standard-Res Picture Painter
T
Control-T
z
Control-Z
SPACE BAR
ESC
R
Dor DELETE
Control-D
E

s
I
a

enter text mode at cursor position
enter text mode at last text position
zero in on area
control how tight "Zero mode" is
go to selection page, or back to picture page
full screen switch
redraw picture, or leave edit mode
delete the last step
delete multiple steps
enter edit mode at beginning of picture
enter edit mode from end of picture
save sequential picture
save screen image
quit

Text Mode Commands

Control-L
Control-A
Control-N
ESC
Control-D,
DELETE
or
RETURN

normal/ lower keyboard toggle
reverse type
normal colored type
full screen switch

delete last letter

leave text mode

Edit Mode Commands

Same as normal commands, with these added:

> or TAB

advance one step
go back one step
tab forward 10 steps

Unlisted Commands

J
L
F
1-8

reverse joystick orientation
line mode, without going to selection page
fill mode, without going to selection page
brush selection, without going to selection page

-91-

Double-Res Picture Painter
M
N
T
Control-T
z
Control-Z
SPACE BAR
ESC
R
DELETE
Control-D
E

c
s
I
Q
H

Text Mode Commands

Control-A
Control-N
ESC
DELETE or
RETURN

Edit Mode Commands

mode switch (280 <-> 560)
normal hi-res display (from 280-mode)
enter text mode at cursor position
enter text mode at last text position
zero in on area
control how tight "Zero mode" is
go to selection page, or back to picture page
full screen switch
redraw picture, or leave edit mode
delete the last step
delete multiple steps
enter edit mode at beginning of picture
enter edit mode from end of picture
change line mode thick/ thin (560-mode only)
save sequential picture
save screen image
quit
help

reverse type
normal colored type
fu ll screen switch
delete last letter
leave text mode

Same as normal commands, with these added:

advance one step
go back one step

TAB tab forward 10 steps
Other Unllsted Commands

J
L
F
1-8

-92-

reverse joystick orientat ion
line mode, without going to selection page
fill mode, without going to selection page
brush selection, without going to selection page

..

•

8501 KI

