


-
-



Aegis Visionary 

The Aegis Interactive Gaming Language 

Developed by Kevin Kelm 
Published by Oxxi, Inc. 



Copyright © 1991 , Oxxl, Inc. 
All Rights Reserved Worldwide 

Manual by Jim Curlee, with contributions 
by Patricia Cummings and JoAnn Houston 

Printed In the USA 
First Edition, September, 1991 

ISBN 0-938385-21-6 
UPC No. 0-10225-91145 

The Aegis program described in this user's manual Is Copyright© 1991 Kevin 
Kelm . WorkBench and associated systems and software libraries Copyright© 
1985, 1988, 1991 , Commodore-Amiga, Inc. All Rights Reserved Worldwide. 
You may not use, copy, modify, or transfer these programs or their documen­
tation, or any copy thereof, except as expressly provided in the license agree­
ment. 

Oxxl, Inc. 
P 0 Box 90309 
Long Beach, CA 90809-0309 
USA 

Phone (213) 427-1227 FAX (213) 427-0971 



OXXI, INC. PROGRAM LICENSE AGREEMENT 
Carefully read all the terms and conditions of this agreement. If you do not 
agree to these terms and conditions, promptly return this package and the 
other components of this product to the Commodore dealer where the pur­
chase was made. 

LICENSE: 

You have the non-exclusive right to use the enclosed programs only on a 
single computer. You may physically transfer the programs from one com­
puter to another provided that the programs are used on only one com­
puter at a time. You may not electronically transfer the programs from one 
computer to another over a network. You may not distribute copies of the 
programs or accompanying documentation to others. You may not modify 
or translate the programs or their documentation. 

BACKUP AND TRANSFER: 

You may duplicate the programs solely for backup purposes. You must 
reproduce and include the copyright notice on any backup copy. You may 
transfer and license the product to another party only if the other party 
agrees to the terms and conditions of this agreement and completes and 
returns a registration form to Oxxi, Inc.. If you transfer the programs you 
must at the same time transfer the documentation and the backup copy or 
copies, or transfer the documentation and destroy the backup copy or 
copies. 

TERMS: 

This license is effective until terminated. You may terminate it by destroy­
ing the programs and documentation and all copies thereof. This license 
will also terminate if you fail to comply with any term or condition of this 
agreement. You agree upon such termination to destroy all copies of the 
programs and documentation. 

PROGRAM DISCLAIMER: 

Oxxi, Inc., Aegis Development and Kevin Kelm make no warranties, either 
expressed or implied, with respect to the programs described herein, their 
quality, performance, merchantability, or fitness for any particular pur­
pose. These programs are sold "as is". The entire risk as to their quality 
and performance is with the buyer (and not the creators of these 
programs; Kevin Kelm, Oxxi, Inc. and its division, Aegis Development; 
their distributors and their retailers), who assumes the entire cost of all 
damages. In no event will Kevin Kelm, Aegis Development or Oxxi, Inc. be 
liable for direct, indirect, incidental, or consequential damages. Some 
States or Countries do not allow the exclusion of limitation of implied 
warranties or liabilities for incidental or consequential damages, so the 
above limitation or exclusion may not apply. Further, Oxxi, Inc. reserves 
the right to make changes from time to time in the content hereof without 

iii 



Aegis Visionary 

iv 

obligation or Kevin Kelm, Aegis Development and Oxxi, Inc. to notify any 
person or such revision or changes. 

DISKETIE LIMITED WARRAN1Y: 

Oxxi, Inc. warrants to the original licensee that the diskette on which the 
programs are recorded shall be free from defects in material and workman­
ship only for a period of ninety (90) days from the date of original pur­
chase. If a defect covered by this warranty occurs during this 90-day 
warranty period, and it is returned to the dealer from whom it was pur­
chased not later than five (5) days after the end of such 90-day period, the 
dealer shall, at the dealer's option, either repair or replace the diskette. 

This warranty is in lieu of all other express or statutory warranties, and the 
duration of any implied warranty, including but not limited to the implied 
warranties, of merchantability and fitness for a particular purpose, is hereby 
limited to said ninety (90) day period. Oxxi, Inc.'s liability is limited solely 
to the repair or replacement of the defective product, in its sole discretion, 
and shall not in any event include damages for loss of use or loss of an- · 
ticipated costs, expenses or damages, including without limitation any data 
or information which may be lost or rendered inaccurate, even if Oxxi, Inc. 
has been advised of the possibility of such damages. 

Some states do not allow a limitation on how long an implied warranty 
lasts, so the above limitation may not apply to you. Some states do not 
allow the exclusion or limitation of incidental or consequential damages, so 
the above limitation or exclusion may not apply to you. This warranty gives 
you specific legal rights, and you may also have other rights which vary 
from state to state. 

Further, Oxxi, Inc. reserves the right to make changes from time to time in 
the content hereof without obligation of Oxxi, Inc. to notify any person of 
such revision or changes. 

TRADEMARKS: 

Amiga, AmigaDOS and Amiga Workbench are trademarks of Commodore­
Amiga, Inc. 

Deluxe Paint and Deluxe Paint III are trademarks of Electronic Arts. 

Aegis, Aegis SpectraColor, Visionary, SoundMagic, AudioMaster, Turbo­
Tuxt and Aegis Visionary are trademarks of Oxxi, Inc. 



Acknowledgements 

I would like to thank Kevin Kelm for his ideas, creativity and perseverance 
to see this project through to completion. Much gratitude is also due John 
Olsen, the VJSionary Guru-without his many hours of beta-testing VJSion­
ary, it would not be a product today. My sincere appreciation goes to 
Patricia Cummings and Joann Houston for their contribution to this 
manual. 

Jim Curlee 
Product Manager 
September 1991 

I would like to dedicate Visionary to my family for their support through 
the years. 

Kevin Kelm 
September 1991 

v 



Aegis Vision~ry 

vi 



Table of Contents 
OXXI, INC. PROGRAM LICENSE AGREEMENT •••••••••••.••••••••••••••••••••••••• Ill 
Acknowledgements ....................................................................................... v 
Keys, Commands and Source Code ........................................................ vii 

Chapter 1: Introduction 
What You Can Do with Vlalonary .............................................................. 1 - 1 
fNture Overview ........................................................................................... 1 - 1 
Vlaionary Compiler and Utllltlea .................................................................. 1 - 2 

Visionary Language ....... ............. ...................... .. ... .......... ...... .. ... ...... .... ..... . 1 - 2 
Visionary Compiler .......... ...... .... .... .. ..... .. .. ...... ... ........ .. ...... .. ........ .... .... ...... .. 1 - 2 
Visionary Debugger .......... .... .. ........................................ ..... ....... ......... ..... ... 1 - 2 
Visionary Linker .................................................... ........................ .. ... .. ...... .. 1 - 3 
VCode Utility ..... ..... .. .... .. .. .. .. .. .. .. .. .. .. .. ..... .. ...... ........ ... .. ..... .......... .. ..... .. .... .. .. 1 - 3 
Load Screen Utility .... ... .. .. ...... ............ ...... ......................................... .. ......... 1 - 3 
CloseScreen Utility .. ...... .......... .. ........ ........ ... ...... ... ...................................... 1 - 3 
VCoord Utility ......................................................... ........... ..... ..... ... ...... ....... 1 - 3 
VIE-the Visionary Interactive Editor .................. ....................................... 1 - 3 

System Requlrementa ..•••••....••.•••••••.•.•••••••.••......•..•••••••••...•.•••••••..••••••••••••.••••• 1 - 4 
About This Manual .....••........•........•..••.•••••••..•........•••••••••••...•••••••.••••••••••••••.•••• 1 - 4 
What's In the Box ..••••....•..•.•..............•••••••••••••..•......••••••••....•••••••.•.•••••••••••••••• 1 - 4 

Warranty Registration ......... ............... .. ......... ...... ........................................ 1 - 5 
Making Backups ........................................................................................... 1 - 5 
lnatallatlon ....................................................................................................... 1 - 5 
Selllng Your Adventures .............................................................................. 1 - 6 

Chapter 2: Off to a Running Start 
Source Code .....••......••..........................•••••••..•••..••....•.••..••••...•••.•••....•••..•.•...... 2 - 1 
Setting the Scene ............•....................•.••....•••••...•....•....•..............................• 2 - 2 

Rooms ..... ....... ..... ...... .. .. ....... ........ .... .... ........ ... .. .. ...... ...... ... .......... ................ 2 - 2 
Room Attributes ............................................ ... .. ........ .... .. ... ...... .... ......... ... .. . 2 - 3 

Objects ••••••••••••••••••••••••••••••••••••..••.••••.••.•••...••.•••••••••.•....•••••••••••••••••••••..••••••••.•••• 2 - 4 
Nonmovable Objects .. .. ..... ...... .... .. ...... ..... ...... ........ .. ... ........ ............ .... .... ... 2 - 5 
Adjectives ..... ............................... ..... .. ....... .... .. .... ..... .. .. .... .. ... ..... .. .. ... .. ....... .. 2 - 6 

Obiect Action• ................................................................................................ 2 - 7 
The Initial Location .... ..................................................... .. .... ....... .. ..... .. .... ... 2 - 9 
The Code Section ...... .. .. ..................................... ..... .... ... .. .. ... ..... ....... ... ...... 2 - 9 
Expected Actions ... ..... ..... .. ..... ............ ........... .. ... ..... .... ..... ... ................... .... 2 - 10 

Movable Objects ............................................................................................ 2 - 11 
Object Attributes .... .... .... ....... ... .......... .. ............................... .................. ... .... 2 - 12 
Inventory .... ....... .. ....... ... .. ..... .... ... ..... ........ ...... .... ...... .. ......... .. ....... .... ............ 2 - 13 
The IF Command ............................. .... .......... .. .......... .... .. .... .. .... ......... ........ 2 - 13 
Set and Unset Flags ................................................. ....... ... ... .... ..... ...... ...... 2 - 15 
The GO Command .......... .. ...... .. .. ........... .. .. .. .. ... ... .. ... .. .. ...... ........ .. .............. 2 - 17 
Object Nouns ......... ........ ..... .. .. ...... ... ..... ..... .. ....... .. ...... ... .............. .. .... .. ....... 2 - 17 

The Vocabulary Fiie ....................................................................................... 2 - 19 
The GHOST Command ...... ... .... ....... ...... ........ .... .... ...... .. ..... .. .. ...... .. ..... .. .... 2 - 19 

Subroutines ••.••••..••••••••...••••••••••••••••••••••••••••••••••••....•••••.•••••..•.••.•••...•••••••••.••••••• 2 - 20 
Nested Subroutines .... .. ..... ... ....... ........... .. ...... ........... ... ..... ... .. ..... .. ...... .... .... 2 - 21 
The Startup.SUB file .. .... ... ...................... ... .................. ................... ..... ..... .. 2 - 21 
Load Files .. ... .. ....... ... ...... .......................................... ................ ................. .. 2 - 22 

vii 



Aegis Visionary 

viii 

Graphic Adventures ..•.•..•.......•...•.•...............•..••.••••••••••.••••..•••••••••••••••••••••.••••. 2 • 23 
Screen Buffers ............ .. .. ...................... ..... ....... ..................... .. .. .. .. .............. 2 - 23 
Load ing a Screen ................................ .. .. ........... ....... ... ..... ....... ....... ... .... ..... 2 • 23 
Visionary Coordinates ...................................................... ......... .. .. ........ .. .... 2 - 24 
Applying Visionary Graphics Commands ..................... ..... .. .. ....... ..... .. ..... 2 - 26 

The Game Definition Fiie ..........................•.........•...•••••••••••••••••••••••••••••••••••.••. 2 • 27 
The .ADV File ........ .... ..... .......... ... ................................... .... ..... .. ...... .... ......... 2 - 28 

Complllng a Game ••••••••••••••••••••.....••.......•....•.•.........•.•..••.•.•••....••.•••••••••••••••••• 2 • 30 
The Visionary Debugger ..•••••...........................•...•...•..•••.••••.••••••.••••••.•..••••••••• 2 • 31 
The Visionary Unker ••••••.••••.•••••.•..•••.•.•.•....••.....•.••••••••••••••••••••••••••••••••..•••..•••• 2 • 33 
Your Own Game ••••••••••••••••••••••••••.•.•.••...•...•..•.•.••.......•.•.•..•••••••••••.••••••••••.•..••.. 2 - 34 

Credits .. ........ ... .. .. ....... ........................................................ .... .... .. .. .. ..... .. ..... 2 - 35 
Resources ................... .. .... ........ .......... ......... ... ..... .. ... ... ............ ........... ......... 2 - 35 
The Spark ....................... ..... ... .................. .. ..... .... .. ... ........ .. ......................... 2 - 35 

Chapter 3: Conventions and File Formats 
Adhering to Standards •••••••••.•• .•••••••••••.•....................•.......•...•..••••••••••••.••.•••.• 2 • 1 
Order of Operator Precedence ••••.•••.••...••..•....................•••••••••..••••••••.••.•••••. 2 • 1 
Description Notation .•...•.•.........•...••..•..••.••••.•....•.•••...•.•••••...•...•••••••••••••...••..•.. 2 • 1 
Capitalization .....•..••......•.....••......•••...••••....•...•••••............•..••••••••••••••••.•••...•••••.• 2 • 2 
Indentation ••.•.•...••••••••••..•..•..........••.••••••••.••.•••••................•..•..••••••.•••••••••.••••••••• 2 • 2 
Comments .........•...•...•...............•....•.•••.•••....•..........•..••.••.....•••.••••.•.••...•....••••• 2 • 2 
Visionary Nomenclature .............•..••..••..•••••••••••.•...•.•..•.••....••••••••••••...•......•••.• 2 • 2 
Visionary Sentence Structure: .....••••.•....•••.••.••.•..................•...••.••.•••••••••••••••. 2 - 3 

Definitions of Components .. .. .... .. ...... ..... ....... .. .... .. .. ....................... .. .... .. .. .. 2 • 4 
Standard Sentence Structures ..... .. ....... .... ... .... ......... .......... .. ... .. ................. 2 • 4 
Typical Special Case Sentences ............. .. ... ... ... .. .... .. ...... .. ...... .......... ....... . 2 - 5 

Explanation of the Visionary Flies .••...•..•.•••••..••...•..............•......•.••..••.•.••••••. 2 • 5 
Formal Description of Visionary File Layouts .. ... .... ..... .. ...................... .. .... 2 - 6 
The Adventure File ....................................... .... ..... .................................. .... 2 - 6 
The Room File ............................ .. .. .. ... .. ... ..... ...... .. .. ... ..... ... ... .. .............. .. .. .. 2 - 7 
The Object File .................... .. .......... ............................................... ............. 2 - 8 
The Subroutine File ............................... .. ............................... .. ......... .... ...... 2 - 8 
The Vocabulary File .. .. .... .. ....... .............................. .. ..... .. ...... .... ..... .... ... ....... 2 - 8 

Chapter 4: How to Use the Visionary Compiler 
The Visionary Compiler ....•...........•....•...•.••.•.••••••••••..•..............•....•...•..••.•.•••.• 4 • 1 
The Visionary Debugger .•••.••••.••.••.••••.•••••.•.••••......••...••........••.••••••..•.........•..•• 4 • 2 
The Visionary Unker •..••..•••••••.•••.••.••••••••.••••.••..••................•........•••••••••••••••••• 4 • 5 

Chapter 5: Variables and Flow Control 
Variables ............••.••..•••••...••..•.•.•.•••..••••••..•••••••..••...•...........••...•....••••.••..•.••••••••. 5 • 1 
System Variables ..•••.•••.••••.•.••.•••••.•.•••...•.••••••.••..•.•.................•..•.•.•..•••••..•••••••• 5 - 1 
String Variables .....•.....•••••.•..•...•.•.......•.•.•.•.•••.•••••..•.•..........•.......•.•••••••••••••••••• 5 • 3 

Use of String Variables .. ........... .. .. .... ................. ........ ... .. .... ...... ......... ......... 5 - 3 
String Commands ............................................................................. ... .... ... 5 - 4 
In-Line Formatting .... .... ......... ....... .. ....... ................................ ...................... 5 - 6 

System String Variables ................•...•.••••.........•...•....•...........••.••••••••••••••••••••• 5 • 7 
System Error String Variables ..........................••••••••••••••...•••.••••••••.••••••.••••••• 5 • 8 
Flow Control Commands ........•..•...•.....•..•..••••••••••••••••••...............•....••••••••••••. 5 • 8 

IF ............. ..................... ....... ..... ..... ..... .................... ... ......... ........... ...... ......... 5 - 9 
IF ...... ......... ... ..... ........ .. ........... ..... ... ... ... ....... .... ............... .... .... ...................... 5 - 9 
ELSIF .. ...... ... ... .............. ... ... .. ....... ..................................... .. ... .... ................... 5-11 
ELSE ... ...... ..... .. ....... .... ........... .... .. ... ............................... ...... ....... .. .. ... .......... 5 - 11 
A'ND ...... ...... .... .. .. ... ..... ........... ...... .......... ... .. .... ...... ................. ....................... 5 - 12 



OR ................................................................................................................ 5-12 
END .............................................................................................................. 5-12 
WHILE .......................................................................................................... 5 - 13 

Chapter 6: Graphics Handling 
Whllt Gr•phlcs Can Do ................................................................................. I - 1 
Setup Comm.nda .............................•....•••••••••••..••.•..•••••••....•.•••.•.•..••••.......•.•.. I - 2 

LOAD SCREEN ........................................................................................... 6 - 2 
CREATE SCREEN .............. ......................................................................... 6 - 2 
SHOW SCREEN .......................................................................................... 6 - 3 
SCROLLBAR (ON I OFF) ............................................................................ 6 - 3 
MENUS ......................... .. .. ................................... ................. ...... .... ............. 6 - 4 
UNLOAD SCREEN ................ ...................................................................... 6 - 4 

Dr•wlng Comm.nda •.•..••••....•.•........••.................••••••••••••...••......•.•••••••••••••..••• I - 4 
PALETTE ..... ...................................... .. .... .............................. .............. ......... 6 - 5 
COLOR .................... ................. ............... ........ ................... .......................... 6 - 5 
MODE .................. ................ .................... ............... ...................................... 6 - 6 
LINE .............................................................................................................. 6 - 7 
RECT ............................................................................................................ 6 - 7 
TEXT ..... .............. .. .......... .......... ......... .. ...... ................................................... 6-7 
PIXEL. ........................................................................................ .. ................. 6 - 7 

Block Tr•nafer Comm•nd• ........................................................................... 6 - 7 
COPY ........................................................................................................... 6 - 7 
MASK ........... ..................... .... .......... ... .. ........................................................ 6 - 8 

Video Effects Comm•nda .............................................•.•.........•.•••••.....•.......• 6 - 8 
CYCLE ...... ........................................................ ....... ..................................... 6 - 8 
DISSOLVE ................ ..... .. ............................................................................. 6 - 9 
FADES and SCROLLS ................................................................................ 6 - 10 
SCROLLTO .................................................................................................. 6 - 10 

Gr•phlc lnter•ctlon Comm•nda .•••.•••••••••............•••••••......••••••••.••..••••...••••••.• 6 - 11 
CLICK ........................................................................................................... 6 - 11 
READBUTTONS .......................................................................................... 6 - 12 
REMOVE ...................................................................................................... 6 - 12 

Gr•phlcs-Related V•rl•blea ...................................................•.••..........•.•.•.••• I - 12 

Chapter 7: Audio Commands 
Introducing Audio .•.••.......................................•.••••••..•..•.............••••••...•••••....•• 7 - 1 
Audio Comm.nd Summ.ry ...........................•••••••..•.....••••••••...••••••••...•••.••..•.• 7 - 1 

LOAD SOUND ....... ............................ ..... ............ ................. .... ............... ..... 7 - 1 
PLAY SOUND ......................................... ..................................................... 7 - 2 
STOP SOUND .............................. ... .... ................................ .. ................... ... 7 - 2 
UNLOAD SOUND ................ ...... ........................................... .. .... ....... ......... . 7 - 2 

Audio Hints a. Techniques ............................................................................ 7 - 3 
Music ............................................................................................................ 7 - 3 

Chapter 8: Music Commands 
Adding Music ............................................•....•.........•••..•......•.•••••..•••••.•....••••... 8 - 1 

Finding MEO .... ..... ................... .................................... ........................ ........ 8 - 1 
Using MED ................... ........ ....... ................................................................. 8 - 1 
Making Beautiful Music Together ............................................................... 8 - 1 

Chapter 9: General Commands 
CALL ..... .... ... .......................... .. .. .................................. ................................ 9 - 1 
DIRECTIONS ............................................................................................... 9 - 2 
DOS ................................. .. ..... ...................................................................... 9 - 2 

ix 



Aegis Visionary 

DROP .... ....... .. .................. .. .................................. .. .. .... ....... ... ..... .... .. .. .... .. ... 9 - 2 
G0 .. .. ... ....... ...... ...... ........ ....... .. ........ ... .............................. .......... ................. . 9 - 2 
GRAB ...................... ....... ... .. ..... .. ..... .. .. .. .. .. ............... .. .. ...... .. .. .... ... .... .... ....... 9 - 2 
LINK ....... ...... .. ..... ... ....... .... ............ .......... .. .... .. ............ .................................. 9 - 2 
LOAD .................. ... .. ... ... ..... ... .... ..... .. ... .. ... .... ... ..... ...... .. .. ...... .. .......... ....... .... . 9 - 2 
MOVE .. ....................... .......... ..... ..................... .......... .. ......... ..... ................. .. . 9 - 3 
MOVEOBJ ......... ... .... .... ....... ........ .. .... ..... ........... ........ ........ ........... ... ........ .. ... 9 - 3 
PAUSE ... ...... ..... .. ........... .... ...... ... .... .. ... .... ........ ... ... ....... .......... .. .................... 9 - 3 
PLACEOBJ ...................................... .. .. ...... .. ...... ......... ... ... ......... .. .... .......... .. 9 - 3 
QUIT ............................................... .. .... ... .... ....... ... .... .... .. .... ....... .... .. ...... .. .... 9 - 3 
SET .... .......... .. .. ..... .... .. ..... ... .. ................... .. .. ... ........ .... .. .. .. .... .. .. .... ........ ... ..... 9-4 
SPEECH .... ................................................................ ........... ........................ 9 - 4 
T .. ... ... ..... ...... ...... ....... .... ... .. ... ............ ......... ......... .......... ................. ...... ..... ... 9 - 4 
UNLOAD .. .... .... .... .. ...... ... .. .......... .. ...................... .. ... ... ....... .. ... .. .......... ... .... .. 9 • 4 
UNSET .. .... ... .................................................................... ... ... .. ........... .. ....... 9 - 4 

Chapter 10: Advanced Topics 
Optimizing Vlslon•ry Code ......................................................................... 1 O - 1 

Statement Concatenation ... .. .................................................................... 1 O - 1 
Assignment Expressions ......... ...... ............ ... ................... ...... ... ..... ........... 10 - 2 
A Lot More ......................... .. ................. .... .. .. .. .. .. .. ........ .... ......... ......... ....... 10 - 2 

Arr•y• In Vlslon•ry ....................................................................................... 1 O - 2 
Storage Array Implementation ............. .. ... ...... .. .. .. .... .. ........ ...... ......... .... .. . 10 - 2 
Storing Negative Numbers ...................................... .. ........ .. ...... ....... ........ 1 O - 4 
Resetting a Range within an Array ........... .... ...................... .. .................... 1 O - 5 

H•ndllng Multiple Screens ......................................................................... 10 - 5 
Screen Transitions .. .. .. .. ..................................................... ........................ 10 - 5 
Multiple Images Per Screen ........................ .. .. .... ....... .. .. .. .. .. .. .. .... ........ ..... 10 - 6 

Anlm•tlon ....................................................................................................... 1 O - 7 
Double Buffering ...... .... ............................. ..... ........... ... ............ .. .... ............ 10 - 9 
Image Cycling .. ....... ... .............................. .. ................................................ 10 - 10 

lncorpor•tlng Player Input In • G•me ...................................................... 1 o - 11 

Chapter 11: Command Reference 

Appendix A: Error Codes 
VCOMP Errors .......................................................................................... A - 1 
DBUG Errors ........................................................................................... A - 11 

Appendix B: Visionary Utility Programs 
LosdScreen ............................................................................................... B - 1 
Close Screen .............................................................................................. B - 1 
VCODE ....................................................................................................... B - 2 
VCOORD .................................................................................................... B - 2 
PrepG•meDlsk .......................................................................................... B - 2 

Appendix C: The Tutorial Game Source Files 
The Potion.ADY Fiie ................................................................................. C - 1 
The Potion.ROOMS Fiie .......................................................................... C - 3 
The Mov•ble.OBJ Fiie ............................................................................. C - 8 
The NonMov•ble.OBJ Flle .................................................................... c - 14 
The Startup.SUB Flle ............................................................................. c - 25 
The M•lnLoop.SUB Flle ......................................................................... c - 28 
The Potion.SUB Flle ............................................................................... C - 33 
The Potlon.VOC Flle ............................................................................... C - 47 

x 



Appendix D: ASCII Codes for Visionary 

Appendix E: Technical Support 
Resources •••••••••••••••••...•..••••....•.•...•.•.•.••••••••••••••••••••••••••••••••••••••••••......••••••• E - 2 

Keys, Commands and Source Code 

I have attempted to present information in a consistent manner throughout 
the manual. Certain type faces are reserved for specific kinds of inf orma­
tion. This is designed to help you quickly decide which material is impor­
tant to you. 

Keys 
Where single keys on the keyboard have names longer than one character, 
the name is enclosed in square brackets: [Esc]. This means press the [Esc] 
key. Multiple-keypress sequences are presented with a hyphen between 
each key and the next: [Ctrl]-C. This means "hold down either of the 
[Ctrl] keys and press the [CJ key before releasing the [Ctrl] key." 

Styles 
Below is a guide to the style standards in the manual 

General Information and Hints 

» General information is presented in boxed format. The » 

character means you can skip this discussion without 
seriously affecting your use of the program. 

Commands and Other User-Entered Text 

If you enter text from a line formatted like this: 
Text in this format is to be entered as shown 

you should type it character-for-character, including all spaces and 
punctuation. 

xi 



Aegis Visionary 

Source Code Listings 

Lines in the source code listings in Appendix C are displayed with an • 
before the start of each new line. These asterisk characters do not appear 
in the actual source code, but are shown with the source listing for your 
reference only. 

* This line of source runs over the end of the printed page 
line, but the overlapping portion is not numbered 

* while this begins the actual next line of the source 
* and the line following this one is blank 

* 
* etc. 

xii 



Chapter 1: Introduction 

What You Can Do with Visionary 

Welcome to Aegis VISionary "The Aegis Interactive Gaming Language", 
the most advanced Adventure Writing Language available for the Com­
modore-Amiga computers. VISionary has been designed to provide you with 
necessary tools to easily produce a commercial quality adventure game. 

Your adventures can take on many styles, including text-only, graphic-only, 
text-graphic hybrids-you can even create dungeon-style games. Whether 
Visionary is used for professional, recreational, or educational purposes, it 
offers Amiga users the highest level of performance and ease-of -use avail­
able. 

Feature Overview 

VISionary offers these powerful features: 
• 65,000 rooms with 32 attributes per room 
• 65,000 objects including non-playing characters who can 

interact with players 32 attributes per object 
• 65,000 subroutines 
• 65,000 action blocks 
• 128,000 variables 
• 4,294,967,295 characters of text 

Plus 
• Stereo sound 
• 25 IFF graphic screen buffers in memory 
• 25 IFF sound buffers In memory 
• 50 prepositions (user declared) 
• 1 O articles (user declared) 
• 70 powerful programming commands 
• 19 mathematical operations 
• Re-definable function keys 
• Larger-than-page scrolling 
• Instant image blitting 
• Speech output 



Aegis Visionary 

1-2 

Visionary supports 
• Total mouse-driven adventure games 
• HAM (Aegis SpectraColor) 
• Standard IFF images 
• Amiga IFF-ANIM format from DOS command 
• Aegis AudioMaster Ill sequenced sounds 
• MEO/MIDI music 
• NTSC and PAL 

Visionary Compiler and Utilities 

Aegis VtSionary is really eight products in one: 
• Visionary Language 
• Visionary Compiler 
• Visionary Debugger 
• Visionary Linker 
• VCode Utility 
• LoadScreen Utility 
• CloseScreen Utility 
• VCoord Utility 

Visionary Language 
The VtSionary language provides 70 extremely powerful commands tailored 
for the creation of adventure games. Each command replaces the multiple 
lines of code it would take to create the same result in ordinary computer 
languages. The language is very "English" like- even to the extent of 
having pronouns, modifiers, and so forth, which have function similar to the 
"parts of speech" of normal English grammar. 

Visionary Compiler 
Once code is created with the VtSionary Language, it is compiled into ex­
ecutable code, which can be processed by the Amiga computer. This is 
done with the aid of the VtSionary compiler, VCOMP. VCOMP is a two­
pass compiler to help optimize your code. 

Visionary Debugger 
You can debug your code after compiling with the Visionary debugging 
utility, DBUG. The debugger allows you to execute the game step-by-step 
without "dying", so you can explore all of the facets of your game to test for 
inconsistencies or other problems. 



Chapter 1: Introduction 

Visionary Linker 
With the Visionary Linker, called VLINK, you can convert your game into a 
"run-time" version, which can be played without having to run it through a 
copy of Visionary. The linked version of your program can be distributed 
without requiring your game users to purchase a copy of Visionary. 

VCode Utility 
VCode allows the Visionary programmer to encrypt the IFF images and 
sound samples used in the game to prevent them from being modified in 
any way. VCode also allows files to be decoded- but only by the author. 

LoadScreen Utility 
LoadScreen lets the Visionary programmer display an unencrypted IFF 
image while the game loads, usually at the time of boot-up. LoadScreen 
also performs some "housekeeping" tasks like running timers and color cy­
cling. 

CloseScreen Utility 
CloseScreeo gives you a way to halt the display of the title screen, even if 
the game allowed the player to close it with some other command such as a 
mouse click. 

VCoord Utility 
The VCoord utility allows the graphic screen designer to easily "count 
pixels", to determine the Visionary coordinates of a desired zone or screen 
area. These coordinates are used in defining click zones, specifying areas 
for graphic commands, copying images from one buffer to another, and a 
number of other places where a precise screen location is specified. 

VIE-the Visionary Interactive Editor 
Source code can be entered via any Amiga editor such as Oxxi's Turbo­
Tuxt"'. A graphical editor called VIE (Visionary Interactive Editor) for 
Visionary, with many built-in features to assist with the creation of code, is 
available as a separate product from Oxxi. The VIE program will allow you 
to select graphic elements using the mouse, rapidly define your adventure 
"map" in an environment much like an ordinary paint program, and use 
point-and-click simple commands to develop your game's player interface. 
Code developed using the VIE will automatically be compatible with the 
Visionary system. 

1-3 



Aegis Visionary 

1-4 

System Requirements 

VtSionary has been thoroughly tested to insure it works correctly and reliab­
ly. The software was run for several months on a wide range of hardware 
configurations with various peripherals. A strict quality-assurance process 
has been applied throughout the development stage to test all levels of 
software operation. 

Visionary requires Amiga KickStart version 1.2 or later, and Amiga 
Workbench version 1.3 or later for correct operation. Visionary works 
equally well under AmigaDOS 1.3 and AmigaDos 2.0. 

VtSionary requires a minimum of 1 Mbyte of memory and one disk drive, 
but you also have to keep in mind the memory requirements of your game. 
The more extensive your program, the more memory you will need to run 
it. 

About This Manual 

This manual is intended to explain the tools used to create an adventure 
game using Visionary. In addition, it outlines the general procedures to use 
these tools to create a game and provides a reference for the Visionary 
Language. It is not intended to be a tutorial for programming in Visionary. 
Detailed tutorials with examples, including source code for a sample game, 
are available in The Visionary Programmer's Handbook, by John Olsen. 
John Olsen's book addresses the needs of the beginner programmer, as well 
as those of the expert programmer who wishes to develop commercial game 
software with the VtSionary program. 

Last-minute information on changes, additions, and enhancements made to 
VtSionary after the this manual was printed, can be found in a ReadMe file 
located on the distribution disk. If present, this file can be viewed by simp­
ly double-clicking its icon from Workbench. Please take the time to read 
this file - it may save you trouble by pointing out changes in the way the 
software operates. 

What's In the Box 

Pleas check the contents of the Visionary package to insure that all 
documentation, the program disk, and supplementary information material 
have been included and are in proper working condition. The package 
should include: 

• This Manual 
• Two 3.5-inch floppy disks 
• A warranty registration card, bound at the front of this manual 



Chapter 1: Introduction 

If any of the above items are missing, please contact Oxxi Customer Service 
for an immediate replacement. You will find technical support information 
in Appendix E, Technical Support. 

Warranty Registration 
We are committed to give you the best after-sales support possible. How­
ever, we can only help you if we know who you are. Before proceeding any 
further, remove the warranty registration card bound in this manual, fill in 
the necessary information, and mail it to us. When we receive your 
registration card, you will be entitled to: 

• Technical Support 
• Updates to Visionary when they are produced, at a nominal 

cost 
• Substantial discounts on all Oxxi/Aegis software products 
• Periodic newsletter to all Oxxi/Aegis software users 

Please complete the warranty registration card and mail it today. 

Making Backups 

It is essential that a working copy of the Visionary master disk be made 
immediately. The data stored on computer disks is susceptible to electrical 
and magnetic fields, and can be damaged by physical contact with dust, 
fingerprints or moisture. 

By creating a backup, or working copy, the master disk can be kept safe 
from any harm that might otherwise come to it during day to day use. 
Before making a backup, please insure that the master disk is write­
protected. If the write-protect hole is closed, the disk is write-enabled-in 
other words, you can write to it. If the write-protect bole is open, the disk 
is write-protected. Insure that the hole is open on the master disk at all 
times. 

Installation 

While Visionary will work on a floppy system, you will find several ad­
vantages to work on a hard disk drive. To install Visionary to a bard drive, 
run the installation program from the CLl/Shell with the following com­
mand: 

execute HD_Install {pathname} 

where {pathname} is the drive and directory location where you want to 
install VISionary. 

1-5 



Aegis Visionary 

1-6 

To create your games, you will need access to a text editor such as Oxxi's 
TurboTuxt..... Follow the installation instructions for your particular editor 
to install your editor on your hard disk drive. 

Selling Your Adventures 

You can sell the adventure games you develop using Visionary, and we ask 
no licensing fee or royalty payments. However, the adventure must display 
the following credit at the start of the adventure: 

DEVELOPED USING AEGIS VISIONARY, 
PUBLISHED BY OXXI, INC 1991 

(213) 427-1227 



Chapter 2: Off to a Running Start 

Most of the discussion in this chapter is geared to the first-time game 
programmer. It should help you get started with Visionary, and give you a 
quick look at how the Visionary commands are used to make your game 
come to life. 

The tutorial assumes you know a little about programming. Perhaps you've 
written a program in BASIC, or a script file to be executed with 
AmigaDOS IconX. Maybe you've even written programs in a compiled lan­
guage before, but want some guidance with the commands specific to 
Visionary. 

This tutorial does not attempt to teach you programming, or game design. 
1\vo example Visionary games are provided in the Visionary package. In 
addition to working through the tutorial, you should examine the way these 
programs accomplish the game action and handle potential game problems. 
John Olsen's excellent book, The Visionary Programmer's Handbook, 
provides many more-extensive examples, game design tips, and techniques 
for problem-solving and handling graphics. Many libraries also carry 
textbooks and other general references for the first-time programmer. 

Source Code 

Unless a program is written in machine language, it exists in two stages. 
The files containing the commands which will be interpreted by the Vision­
ary program, the files you write to create your game, are called source 
code. Your source code is then compiled, debugged and linked to produce 
the executable file, the stand-alone game program. 

To produce the source code files for your game, you will need a text editor. 
The Amiga comes with a usable text editor called ED -your AmigaDOS 
Manual contains instructions for starting and using the ED text editor. You 
may prefer to use a commercial text editor such as the Oxxi program 
TurboText ... , or you can use a word-processor like WordPerfect ... that al­
lows text to be saved in ASCII format. 

In the text editor, press the [Return] key at the start of a line to make a 
blank line. Blank lines in source code are ignored by the Visionary com­
piler, so they take up no room in the compiled code. In the source code 
file, they serve to "open out" the lines of code, making them easier for you 
to read. 

Press the [SemiColon] key at the start of a new line. The semi-colon char­
acter indicates that nothing following on the line will be read or noticed by 



Aegis Visionary 

2-2 

the computer. In programming, this is called a comment. Comments are 
intended for the human readers of the code - leaving them out will not af­
fect the way the program handles the code, but may make your source code 
more difficult to read later. 

; The semi-colon marks this line as a comment 

The [Space] character at the start of a line is also ignored by the compiler. 
Commonly, related sections of code such as loops and multiple-line defini­
tions are indented using a space at the beginning of each line. This serves 
to help the human reader of the source code spot the lines that go together. 
The Visionary compiler ignores these leading spaces. 

DEFAULT 
e East Room 
w West-Room 
n North Room 
u upstaTrs 

END DEFAULT 

comments after code 
are also ignored 

Like blank lines and comments, these line indentions can be left out. Their 
main purpose is to help you navigate through your own code. Often, you 
will come back to re-work your code several times during the course of 
developing a game program. Your choice to omit these programming aids 
now may mean extra hours spent trying to decipher your own program 
later. 

Setting the Scene 

The game we will develop during this tutorial was written by John Olsen. 
His game, The Magic Potion, uses a simplified version of the plot, source 
code and graphics John used in developing his Visionary game I Was a 
Cannibal for the FBI. 

Rooms 
The Potion game borrows the setting from Cannibal - a deserted tropical 
island-but its map shows only four locations or rooms where the player 
can be after a move. Play starts at a deserted beach by a palm tree. A 
second location has an abandoned shack whose roof the player can climb 
to, providing the third location. The palm tree can also be climbed, for the 
fourth location. 

So we'll start with the file that describes the rooms and their relationships 
to each other. This file can have any name, but it must end with the exten­
sion .ROOMS. 

In your text editor, start a new file which we'll call Potion.ROOMS. Each 
file will start with a blank line, followed by a comment line containing the 



Chapter 2: Off to a Running Start 

name of the file, and a second blank line on the third line of the source 
code listing: 

;~ Potion.rooms ~ 

In a .ROOMS file, the next line names the room. We'll first name each of 
the rooms, separating one room from the next in the source code for our 
human eyes with a blank line, a comment line with dashes, and another 
blank line. 

room ByTree 
endroom 

room Byshac k 
endroom 

room InTreeTop 
endroom 

room ShackRoof 
endroom 

This ROOM/ENDROOM pair of commands will "bracket" the other code 
we add later to describe and define each room. 

Room Attributes 
Once we have decided on our game locations, we next have to define the 
most basic attribute of those locations. What directions can the player 
move? After a command to move east, what room will the player be in? 
Can the player even move east from this location? 

The DEFAULT command sets the possible directions allowed at the loca­
tion. At the start of the game, by the palm tree, the player needs to be able 
to move west to the shack. At the shack, for example, we'll give the player 
the ability to move both west (back to the palm tree) and up, to climb to 
the top of the shack. Once in the room which defines the top of the shack, 
the player needs to be able to move down, back to the location by the 
shack. Also, since we decided the player could climb the tree, a command 
for getting down again needs to be provided in the room lnTreeTop. 

2-3 



Aegis Visionary 

2-4 

These codes are added to the .ROOMS file after each ROOM command, 
before the ENDROOM command. Notice that a blank line on either end 
of the DEFAULT section serves to set it off from the rest of the file, and 
the direction lines are indented to further emphasize their inclusion in the 
group. 

room ByTree 

default 
w Byshack 
u InTreeTop 

enddefault 
endroom 

room Byshack 

default 
e ByTree 
u shackRoof 

enddefault 
endroom 

room InTreeTop 

default 
d ByTree 

enddefault 
endroom 

room ShackRoof 

default 
d Byshack 

enddefault 
endroom 

Save the Potion.ROOMS file. You'll be coming back to it again as your 
game takes on form. 

Objects 

We have the "scenery" in place for our game - now, what about props? 
Most adventure games provide objects which the player must collect, move, 
drop, and otherwise handle to solve the puzzle posed by the game. Our 
simple Potion game provides several movable objects which the player can 
manipulate, as well as nonmovable objects, which contribute to the atmos­
phere, but which the player cannot pick up and carry from place to place. 



Chapter 2: Off to a Running Start 

Nonmovable Objects 
We have already mentioned several objects in passing, in describing the 
scenery of the rooms. A palm tree by a beach implies sand, for example, 
and palm fronds at the top of the tree. The beach also implies ocean, sky, 
perhaps some clouds or the sun. The palm tree itself is an object, as are 
any other plants you include in this picture. At the shack, you have the 
shack itself. 

These are all nonmovable objects, which must be defined in file with the 
extension .OBJ. We will create a file for these objects, and another just for 
movable objects. 

Start a new file which will be named NonMovable.OBJ. Notice that it, like 
the .ROOMS file, starts with a blank line, followed by a comment line con­
taining the name of the file. Then each code section will be set up like we 
did for the rooms. However, instead of a ROOM/ENDROOM command 
pair, the OBJECT and ENDOBJECT commands will bracket the sections 
of code that describe each object. 

A line between the OBJECT and ENDOBJECT commands will give the 
synonyms which the player will be allowed to use as names for this object 
in commands. Sand, for example, might also be referred to in the context 
of this game as dirt, the ground, or the Door, as well as by its object name, 
sand. The player is less likely to use a synonym for objects like sun and 
sky, so no synonyms need to be provided for these objects. 

;~ NonMovable.obj ~ 

object sand 
name ground, floor, sand, dirt 
endobject 

object TreeTop 
name boughs, fronds, greenery, top 
endobject 

object sky 
name sky 
endobject 

object sun 
name sun 
endobject 

2-5 



Aegis Visionary 

2-6 

object island 
name island, rock 
endobject 

object ocean 
name ocean, water, sea 
endobject 

object plant 
name plant, plants, grass 
endobject 

object dunes 
name dunes, sanddunes 
endobject 

;-------
object roof 
name roof 
endobject 

object tree 
name tree, palm 
endobject 

object shack 
name shack 
endobject 

Notice that we have put some other objects in this file - island, for example, 
was added because your player may try to use the word in a command. By 
defining it in the object file, we prevent your game from stupidly saying "I 
see no island here" in response to such a command. 

Adjectives 
Some object's names may be used with adjectives in a command-the palm 
tree, for example. To climb the palm tree, you may want to allow the player 
to say "Climb tree" or "Climb palm tree" or even "Climb tall tree". The 



Chapter 2: Off to a Running Start 

ADJ command allows you to define word that may be used as adjectives in 
a command involving the object. 

The object code for the palm tree, for example, would be edited to include 
the two adjectives palm and tall by adding an ADJ command line: 

object tree 
name tree, palm 
adj palm, tall 
endobject 

Object Actions 

If the only actions the player can take are movements from one room to 
another, the game is going to be very boring. In addition to describing 
objects, we need to provide some way for the player to interact with them. 
Since these are nonmovable objects, we don't expect the player to be able 
to take them along from room to room - but expect the player to try. 

1\vo actions will be common for every object you describe or display in your 
game. The player will try to examine or take each object you include in the 
game setting. If for no other reason, this will be attempted because other 
adventure games have used seemingly harmless objects as "killers", and 
made an otherwise useless-looking object the key to solving the game. 

So next we should plan what the game will respond when the player tries to 
examine, and to take, each non-movable object. A brief description is all 
that's needed for each item. For sand, for example, we might want to 
respond "It's just normal beach sand" to a command to look at or examine 
the sand. If the player asks to examine the sun, you might respond "It's so 
bright that you hesitate to look into it. But you can feel the warmth." 

For the line about the sand, you should have no problems. But how will 
you print the line about the sun? Since it is longer than the width of your 
Amiga line, you need to provide some way to show the rest of the line. For 
now, we'll assume that no line will be longer than 40 characters. We'll 
place the first 40 characters of a line to be printed out for the player in a 
string variable. We'll call the string variable $tx- the $ character at the 
start of the variable name indicates that it will be a string variable. The 
value of the variable, in this case a text string, will be defined using the 
Visionary "equals" sign : = to make the variable name, on the colon side, 
equal to the value, the text in quotes, on the right side. 

Then we'll pass the string variable to a subroutine which will print it out on 
the screen, and also keep track of whether the screen is already full, and 
some other house-keeping chores. We'll discuss creating the actual sub-

2-7 



Aegis Visionary 

2-8 

routine later on, but for now, we'll use the name print to call the sub­
routine. 

By calling the subroutine after each string variable, we can use the same 
variable over and over. In one line of code, $tx is set equal to "It's so 
bright that you hesitate to look", this text line is printed by the subroutine, 
then the variable $tx is set equal to a new value, "into it. But you can feel 
the warmth." 

So the section for the sun would now appear like this: 
;---

object sun 
name sun 

action look 
$tx := "It's 

to look" 
call print 
$tx := "into 

warmth." 
call print 

endact 

endobject 

;---

so bright that you hesitate 

it. But you can feel the 

What happens if the player command is not "Look at the sun" but is "Ex­
amine sun" instead? As this action is currently coded, the VISionary game 
would respond "I don't understand the word 'examine"'. You can add ac­
tion synonyms, just as you added object synonyms. Three action synonyms 
would change the action look line in the sun object description to 

action look, examine, search 

You might wish to write a similar response if the player attempts to take a 
nonmovable object such as the sand. Consider what happens when this 
action is not handled in your code. Instead of a "natural" response, the 
game simply tells the player "You can't do that". The response is the same 
whether the player tries to take the sun, or a drink of water. 

You can use the same subroutine, print, to send the string variable $tx to 
the user so that your game appears to respond to the player's command. 
On a command to take the sun, for example, a "natural" response would be 
"Careful!, you'll burn yourself. You decide the sun is out of reach." This 
gives your game a much more intelligent feel than the simple "You can't do 
that", repeated each time the player tries to take (or get or grab) a non­
movable object. 



·, 

Chapter 2: Off to a Running Start 

The Initial Location 
Each object has an initial location, the initroom, where it is "stored" until 
the player acts on it. Since these are nonmovable objects, the player can't 
carry them to another room and drop them there, so the initroom will be 
the location where the object will always be located during the game. For 
an item like the palm tree, which is only "visible" in one room, By'Iree, the 
initroom will be By'Iree. But how will we handle objects like the sun, sand, 
and plants which are visible in each room? 

The solution is a "hidden" room, which the player can never visit, but which 
will hold all the objects that need to be accessible from each room. For this 
game, the hidden room is named unused, but it might also be called hid· 
den, invisible or any other name that helps you remember the player will 
never be able to get there. 

The MoveObj command is used to move the object from the hidden room 
into the room where the player first encounter it, and then to move it into 
the next room so that it appears to be in both places. 

The Code Section 
Each object description also contains a code section, bracketed by the 
CODE and ENDCODE commands. Objects may have no commands in 
the code section, and the whole code section may be left out. 

So the completed object code for the sun might look like: 

object sun 
name sun 

initroom unused 

code 
endcode 

action look, examine, search 
$tx := "It's so bright that you hesitate 

to look" 
call print 

$tx := "into it. But you can feel the 
warmth." 

call print 
endact 

action get, take, grab 
$tx := "Carefull, you'll burn yourself. 

You" 
call print 

2-9 



Aegis Visionary 

2 -10 

$tx := "decide that the sun is out of 
reach." 

call print 
endact 

endobject 

Expected Actions 
In addition to the typical actions take and examine, some objects will invite 
special actions. By including a tree, you set the player up to try climbing it. 
When water is present, most players will try to drink it. Your game needs a 
way to handle these actions with game objects. 

For the tree, you might want to have the game respond "You try, but you 
slide back down" when the player tries to climb. For drinking the ocean, 
we'll just have the game tell the player "you get a small amount in your 
hands, but all it does is get your hands wet." This may be enough to com­
municate that it is pointless to try drinking the ocean. 

These actions are handled in exactly the same way as the take and examine 
actions. First the action and its synonyms are defined, then the game 
response is set as the string variable $tx, and finally the string is printed by 
calling the subroutine print. 

So the tree object code might now look like: 

object tree 
name tree, palm 
adj palm, tall 

ini troom ByTree 

code 
endcode 

action look, examine, search 
$tx := "It's slick brown bark leads upward 

to" 
call print 
$tx : = "the green fronds at the top." 
call print 

endact 

action get, take, grab 
$tx := "Sure, I suppose you intend to pull 

it up" 
call print 
$tx : = "by the roots? No way I" 



Chapter 2: Off to a Running Start 

call print 
endact 

action climb 
$tx:="You try, but you slide back down." 
call print 

endact 

endobject 

» To see the entire NonMovable.OBJ source code, refer to 
Appendix C, The Tutorial Game Files. We will not look 
any more at this file. If you will be compiling the Potion 
game for yourself, you will want to enter the code listed in 
this Appendix, line for line, save it as a file called 
NonMovable.OBJ and use it in compiling the complete 
game. This tutorial will cover the process of compilation 
later. 

Movable Objects 

In addition to the nonmovable objects, which are essentially part of the 
scenery, V1Sionary lets you add movable objects to your game. These can 
be picked up by the player, moved from room to room, dropped in other 
locations than they were in initially, used on other objects, even combined 
with other objects to make a whole new object. Most of these actions are 
beyond the scope of this tutorial. 

But we've set up two rooms that are "at the top of" of objects described in 
the other two rooms- the top of the shack roof, and the top of the tree­
and now we need to provide some plausible way for the player to climb up 
to these locations. An object like a ladder could be provided in one room, 
and the game can let the player move it to the other location to use there, 
as well. 

To start the movable object file, a new file which will be named Mov­
able.OBJ will have the standard information in the first three lines: 

~ Movable.OBJ ~ 

Like nonmovable objects, each movable object description will start with 
the command OBJECT and the name for the object, and end with the com­
mand ENDOBJECT. NAME, ADJ, ACTION/ENDACTION, 

2 -11 



Aegis Visionary 

2 -12 

CODE/ENDCODE, and INITROOM commands will also be included. 
Let's start defining the ladder by setting up a template for the object, which 
will include each command or command pair we expect for an object file: 

; --
object 

name 

adj 

attrib 
endattrib 

initroom 

code 
endcode 

action 
endaction 

endobject 

; --

Object Attributes 
Movable objects are a lot more likely to need some additional information 
than initial location and allowed actions - for example, since the ladder can 
be moved, it might be placed against the shack or against the tree, to allow 
the player to climb. Your game needs to keep track of what object the 
ladder is leaning against, or if it is not leaning against anything. 

Potion keeps track of these position attributes with two Dag variables, 
AgainstShack and Against'Iree. The initial values of these variables are set 
between the ATTRIB/ENDATTRIB command pair, right after the NAME 
and any ADJ command. For the ladder, which starts out placed against the 
shack, the initial values of these attributes are Y for AgainstShack and N 
for Against'Iree. We'll plug these variable names and values in the lines 
between ATTRIB and ENDATTRIB, and add the names and adjectives 
we'll use for the ladder at the same time. 

; --

object ladder 

name ladder 

adj wood, wooden 



attrib 
Againstshack Y 
AgainstTree N 

endattrib 

initroom Byshack 

code 
endcode 

action 
endaction 

endobject 

; --

Inventory 

Chapter 2: Off to • Running Start 

When the player takes an object, it is said to be in the player's inventory. 
The objects in the inventory move with the player from room to room. 
Generally, adventure games only allow objects in inventory to be manipu­
lated in other ways than the take and examine actions we've already dis­
cussed. Movable objects in the same room with the player must be moved 
into the inventory in order to be used or "carried" to the next room. 

So the take action for a movable object is different than that for a nonmov­
able object. When the player couldn't carry the object to the next room, 
you didn't need anything more than a printed comment to tell the player 
why. For the ladder, however, you need commands to place the ladder 
object into the player's inventory when the take command is given. 

The player can see a printed list of objects that have been taken by giving 
the command INVENTORY. This command is handled automatically by 
Visionary-you don't have to write code to allow this to happen. 

The IF Command 
You also need to know if the player already has picked up the ladder, 
whether it is leaning against the shack or the tree, or lying on the ground. 
Obviously, if the player is "holding" the ladder, it can't be climbed. 
Likewise, if it is lying on the ground under the tree, the player can't use it 
to climb. 

The command that handles this test is the IF command, and its "ac­
complices", ELSIF, THEN, ELSE and ENDIF. Visionary allows the very 
English sentence "If the player has the ladder, then {take some action}" to 
be coded: 

2 .13 



Aegis Visionary 

2 -14 

if player has ladder then 
{take action} 

endif 

The IF ... THEN/ENDIF command set brackets the actions that will be taken 
if the first test is "passed." You can test for more than one condition with 
the ELSIF ... THEN command, and provide for a different action if all the 
preceding tests fail with the ELSE ... THEN command. ELSIF and ELSE 
commands always occur between the IF ... THEN/ENDIF command set. 

To see how these commands are used in a VtSionary game, let's look at how 
the CODE section of the ladder object will be handled. This section con­
tains the descriptions of the object that will be printed out by your VtSion­
ary game when the INVENTORY command is given, and lines that will be 
added to the room description if the objects are present in the room when 
the player asks to examine it. When the player has the ladder, the response 
to the INVENTORY command is a brief line about the object, "a wooden 
ladder". If the ladder is leaning against the shack, the line ·~ ladder is 
propped against the shack" will be printed after the general room descrip­
tion. ·~ ladder is propped against the tree" is part of the room description 
if that ladder has been moved to that room and placed against the tree. 
Finally, since the ladder can be lying on the ground, a line ·~ wooden lad­
der lies here" is needed to complete the room description for that situation. 

First we'll test the simple case, when the player holds the ladder in inven­
tory: 

if player has ladder then 
$tx := •a wooden ladder" 

Notice that we're using the "generic" string variable $tx, which we can pass 
to the subroutine print. Next, we'll test for the case where the ladder is 
leaning against something: 

ELSIF ladder is Againstshack then 
$tx := "A ladder is propped against the 

shack." 
ELSIF ladder is AgainstTree then 
$tx := "A ladder is propped against the 

tree." 

The phrase "if ladder is AgainstTree" is shorthand for the test that deter­
mines if the AgainstTree variable is set to Y. So these two ELSIF com­
mands test the case where the player does not have the ladder, to see which 
of the two flags set in the ATTRIB section of this object is currently set to 
Y. 
Finally, if all three of these tests fail, we'll print the fourth line. When the 
ladder is in the same room as the player, and is not in the inventory, or 
propped against either the shack or the tree, it must be lying on the ground. 
The ELSE line defines the action that will be take in this case-the string 
variable will be set to the phrase ·~ wooden ladder lies here." 



lken 
with 
the 

:..SE 

lOW 

:an­
on-
be 

1en 
nse 
len 
. is 
ip­
on 
ee. 
td-

n-

SS 

IS 

Chapter 2: Off to a Running Start 

ELSE 
$tx : = "A wooden ladder lies here." 

Since the four possible conditions have been covered, we close the IF test­
ing with the ENDIF command, and send the string variable to the sub­
routine for printing. The completed CODE section looks like this: 

code 

if player has ladder then 
$tx := "a wooden ladder" 

ELSIF ladder is Againstshack then 
$tx := "A ladder is propped against the 

shack." 
ELSIF ladder is AgainstTree then 
$tx := "A ladder is propped against the 

tree." 
else 
$tx := "A wooden ladder lies here." 

endif 
call print 

endcode 

Set and Unset Flags 
When the player tries to take a movable object, you need a way to place it 
in the player's inventory. If the ladder was against the shack, the value in 
the flag AgainstShack must also be changed from Y to N, since it is no 
longer against the shack. Generally, when a flag or two-value variable has 
the value Y, it is said to be set. When its value is N, it is unset . . The 
Visionary command to change a Y value to N is UNSET, and changing it 
back to Y again is done with the SET command. 

Also, since the player no longer has the option to climb the ladder once it 
has been taken, the direction up must be removed from the direction op­
tions which were initially set for this room in the .ROOMS file. This is 
accomplished with the DIRECTIONS command. Allowable directions are 
siniply listed after the command, along with the room to which the direction 
command moves the player. 

The Visionary command that adds the object to the player's inventory is 
GRAB. After the object is added to the inventory, you will also want to 
send the player a message that the take command worked. This is done by 
setting the string "OK" and sending the variable to the print subroutine. 

In the case where the player already holds the ladder, you might use the 
print subroutine to send the message "You already have it." However, you 
can expect to have to send this identical message for any case where the 
player tries to take an object already in the inventory. Code that will be 
repeated over and over is better off in a subroutine. We'll call this one 

2 -15 



Aegis Visionary 

2 -16 

Havelt, and make a mental note to add the subroutine to the code when we 
are writing these subroutines. 

For now, we have really begun to flesh out the ladder description. At this 
point, it looks like this: 

object ladder 

name ladder 

adj wood, wooden 

attrib 
Againstshack Y 
AgainstTree N 

endattrib 

initroom Byshack 

code 

if player has ladder then 
$tx:=" a wooden ladder" 

ELSIF ladder is Againstshack then 
$tx:="A ladder is propped against the 

shack." 
ELSIF ladder is AgainstTree then 

$tx:="A ladder is propped against the tree." 
else 

$tx:="A wooden ladder lies here." 
end if 
call print 

endcode 

action get, take, grab 
if player has ladder then 
call Haveit 

else 
directions ByTree, w 
directions Byshack, e 
unset ladder, Againstshack 
unset ladder, AgainstTree 
grab ladder 
$tx:="OK." 
call print 

endif 
endact 



owe 

this 

" 

Chapter 2: Off to a Running Start 

The GO Command 
Another action that needs to be added to the ladder object file is climb. 
First we need to test if the ladder is leaning against something in the 
"room". We can do that easily with one IF and one ELSIF command set, 
to see if either of the attribute flags for the ladder is set. If neither is set, 
we can tell the player who asks to climb the ladder "You can't. I'ts not 
leaning against anything." 

In the case where the ladder is leaning against the tree - the variable 
Against'Ifee is set -we want the player to move to the room In Tree Top. 
The command which accomplishes this is GO InTreeTop. The whole action 
block for the climb action thus looks like this: 

action climb 
if ladder is Againstshack then 

go ShackRoof 
ELSIF ladder is AgainstTree then 

go InTreeTop 
else 

$tx:="You can't. It's not leaning against" 
call print 
$tx := "anything." 
call print 

endif 
endact 

Object Nouns 
In order to allow the player to drop the ladder, or put it on the ground, we 
can add the action command set: 

action put, set, lay, lean, prop 
if player has ladder then 
drop ladder 
$tx:="OK." 
call print 

endif 

endact 

However, what happens when the player tries to lean the ladder against the 
tree? In this case, tree is the object of the preposition against. Visionary 
handles a case like this with the OBJNOUN statement. You can test any 
command to see what OBJNUON was used with a preposition. 

In "lean ladder against {object}", we want to know if the OBJNOUN was 
tree or shack so we can handle the cases where the player can now climb 
the ladder to a new room. In other situations, such as the command "lean 
the ladder against the sanddunes", you need to tell the player that the com­
mand did not succeed. 

2 -17 



Aegis Visionary 

2 -18 

For the tree, this section of the action code would follow the ENDIF state­
ment for the lean action, and come before the ENDACT statement. The 
following code shows how this is done. 

action put, set, lay, lean, prop 
if player has ladder then 
drop ladder 
$tx:="OK." 
call print 

endif 

if objnoun is tree then 
if ladder is AgainstTree then 
call Alreadyis 

else 
set ladder, AgainstTree 
directions ByTree, w u 
$tx:="It leans against the tree and leads 

into" 
call print 
$tx:="the branches." 
call print 

end if 
ELSIF objnoun is shack then 
if ladder is Againstshack then 
call Alreadyis 

else 
set ladder, Againstshack 
directions Byshack, e u 
$tx:="It leans against the shack." 
call print 

endif 
ELSIF objnoun is sand then 
else 

$tx:="You can't do that." 
call print 

endif 

endact 

» To see the entire Movable.OBJ source code, refer to 
Appendix C, The Tutorial Game Files. We will not look 
any more at this file. If you will be compiling the Potion 
game for yourself, you will want to enter the code listed in 
this Appendix, line for line, save it as a file called 
Movable.OBJ and use it in compiling the complete game. 



tate­
The 

Chapter 2: Off to a Running Start 

The Vocabulary File 

We've been talking about actions that are pretty straight-forward. Thke. 
Drop. Lean. Examine. Even when the commands included prepositional 
phrases, like "lean the ladder against the shack", they were still pretty 
simple. 

But how will your game handle a command like "save" or "quit"? The 
Visionary program automatically provides menus for standard actions like 
these, but you can also allow the player to continue typing program com­
mands from the keyboard. The file that handles these commands is the 
.VOC file. We'll call ours Potion.VOC, and start it like all the other files: 

; ~ Potion.VOC ~ 

After the starting lines, each action is coded in its own section. Some of 
these actions are included in the vocabulary file to let the player have lots 
of different ways to express a command. for example, in asking for help or 
a clue in the middle of a game, your player might try any one of the follow­
ing: 

• help 
• hint 
• clue 
• give me a hint 
• give me a clue 
• help me 
• give me help 

To any one of these, you may want to print a standard response- this is 
what the tutorial game does. More likely, you would want to give context­
sensitive help, a different clue depending on where the player was in the 
game, what was in inventory, or some other condition you might set. This is 
easy enough to do by establishing variables that hold a value you can set 
and unset, and test to determine their condition. The tutorial game uses a 
simple phrase to guide the player back to using the commands provided in 
the game code. The code to do this looks like this: 

action help, hint, clue, give me clue, give 
me help, heip me, give me hint 

$tx := "Type sentences, or use buttons 
instead." 

call print 
endact 

The GHOST Command 
When you compile a game in VISionary, the compiler automatically adds 
standard menus to the game. You can override these so that they don't 

2 -19 



Aegis Visionary 

2 -20 

show up, but the game will have commands like LOAD, SAVE, QUIT and 
NEW accessible anyway. You can make them available for use in the com­
mands typed by the player with the GHOS'f command. 

This command causes the text in the string that follows it to be interpreted 
as one of the player's commands. It is useful for other purposes, too - sup­
pose you wanted the player to "fall down" a hidden trapdoor whenever the 
direction West was used in a particular room. The direction would never 
appear in any indicator, but when the player gave the command ''west", it 
would be interpreted as "down" instead. 

First the action is named. For save, which allows the player to save the 
current position and status in the game, you would ghost the save command 
as itself. Adding a default name for the saved file will prevent a file re­
quester from appearing. This might be useful in developing a graphics 
game where the player could only save the game by clicking a button. Since 
there is no way for the filename to be typed in such a game, the filename 
would have to be provided. 

For the save action, then, the action block in the .VOC file looks like this: 

action save, save game, save position, 
store, store game 

ghost "save SaveGame" 
$tx := "OK. saved." 
call print 

endact 

» To see the entire Potion.VOC file, refer to Appendix C. 
The Tutorial Game Files. We will not look any more at 
this file. If you will be compiling the Potion game for 
yourself, you will want to enter the code listed in the 
Appendix, save it as a file called Potion.VOC, and use it in 
compiling the complete game. 

Subroutines 

A subroutine is a small program within a program, which is usually written 
to handle commands or command sets that will be required over and over 
again in the program. So far we have set up our code to call two different 
subroutines to perform repeated actions. Now we'll talk about how these 
subroutines are defined using the commands available from the Visionary 
program. 



'and 
corn-

reted 
sup­
r the 
1ever 
t", it 

: the 
11and 
~ re-
>hies 
:ince 
1ame 

is: 

tten 
iv er 
:ent 
1ese 
1ary 

Chapter 2: Off to a Running Start 

VISionary subroutines are all contained in files with the extension .SUB at 
the end of the filename. Each subroutine starts with the command SUB 
and ends with the command ENDSUB. The actions performed whenever 
the subroutine is called are listed between these two commands. 

For example, we made a mental reminder to write the subroutine Havelt at 
this point. This routine would "automate" the printing of the line "You 
already have it" whenever the player asked to take something that was al­
ready in the inventory. Since printing a string should be a familiar action by 
now, we'll simply list the subroutine: 

sub Havert 
$tx:="You already have it." 
call print 

end sub 

This code would go in a file called Potion.SUB, which would start with the 
standard line-comment-line pattern we have used with the other files. 

Nested Subroutines 
The print subroutine is a little more complex. You need a way to tell when 
the end of the print line has been reached. At the end of the line, you have 
to scroll the display up one line, to get ready for the next line to be printed. 
You might need to provide for more lines to be printed than there is room 
for on the screen. This will not be a problem in a pure-text adventure, 
where you are using the entire screen for text, but in a game that includes 
both text and graphic interaction, your "window'' for text may be much 
smaller. 

So the print subroutine will actually call two other subroutines. This is 
called nesting subroutines, because the other subroutines are executed 
before the ENDSUB command of the first has been executed. Visionary 
allows multiple nesting of subroutines. 

We'll call the subroutine that handles the end of print lines LineFeed, and 
the one that checks for enough room in the text window PrintTuxt. For 
now, it's enough to sinllply set up these calls: 

sub print 
call LineFeed 
call PrintText 

endsub 

The Startup.SUB file 
Subroutines can be very short, or they can be large files with their own 
separate names. One large subroutine needed for almost every game is the 

2 - 21 



Aegis Visionary 

2 - 22 

one which handles conditions at the start of the game. This subroutine is 
only executed once, but having it in its own file allows you to quickly alter 
the startup conditions. 

The TEXTPALETTE Command 

The colors used in writing text to the Visionary text screen can be defined 
using the TEXTPALETTE command. A "pen" number between 0 and 3 
can be defined as a Red, Green, Blue color value to set the four text pen 
colors. These would be defined once at the start of the game, so they are a 
natural addition to the StartUp.SUB file. 

If you plan to have a graphic interface overlaying the Visionary-produced 
text screen, you would also tum off the text screen's scrollbar and menu 
bar. So the StartUp.SUB file would start like this: 

;- Startup. SUB 

sub Startup 

TextPalette O,O,O,O 
TextPalette 1,0,0,0 
TextPalette 2,0,0,0 
TextPalette 3,0,0,0 

set all pens to black 

scrollbar off ; also prevents front/back 
gadgets from being seen 

menus off ; prevents right mouse button from 
switching to text screen 

Load Files 
Visionary allows you to load digitized sound files, sequenced music files 
from AudioMaster,..., or music created with the MED Music Editor pro­
gram. These files can be stored in memory until you are ready to play them 
with the PLAY command. When you want to play the sounds or songs with 
no delay for loading, they should be loaded into memory at the start of the 
game. 

For the Potion game, we might want to load sound files that will produce 
ocean wave noise, and perhaps some birds chirping. We'll also plan to 
write a subroutine, LoadiogError, to handle the case where the game 
doesn't find the files on startup. For our game, then, we'd add the follow­
ing commands to the StartUp.SUB file: 

$filename := "ocean.sod" 
load sound 1, $filename 
call LoadingError 



ne is 
alter 

ined 
nd 3 
pen 

tre a 

iced 
1enu 

iles 
>ro-
1em 
vith 
the 

uce 
to 

me 
)W-

Chapter 2: Off to a Running Start 

$filename := "birds.end" 
load sound 2, $filename 
call LoadingError 

We've set up the sound of the ocean as sound 1, and the birds as sound 2. 
Music and sound handling is covered in greater detail in Chapters 7 and 8. 

» The rest of the file Startup.SUB, will be left for you to 
examine on your own. It should be entered exactly as It 
appears in Appendix C if you will be compiling the Potion 
game. 

Graphic Adventures 

Originally, all adventure games were text only. You started that game, and 
all your interaction with it passed through the keyboard. You typed "W" 
and the description of the new location informed you that you had moved 
west. To "see" what you carried, you commanded "INVENTORY'' and the 
program listed everything you have picked up. 

All-graphic adventure games, on the other hand, have no way for the player 
to type commands- the game programmer provides active click zones on 
the graphic screen which perform actions when they are clicked. The 
graphic image that underlies a zone defined as the SA VE button, for 
eaxmple, might carry a picture of a button with the word SAVE on it. 

Screen Buffers 
When you look at a game screen for a graphic adventure, you see only one 
image, which changes in response to your commands. But this image is 
often built up from several screens of information, with portions of the hid­
den screens swapped to the front screen, the game screen, as the player 
commands are processed. 

All these screens reside in memory, in an area referred to as the screen 
buffer. Visionary allows up to 25 screens to be held in memory. Each of 
the screens used in Visionary games is given a number, from 0 through 24. 
The Visionary graphics screen is always created as a full, undraggable 
screen with no title bar. The screens can be created in either of two ways: 
they can be loaded from disk, or opened by the program. 

Loading a Screen 
Visionary supports IFF image files, including those generated by HAM 
paint programs such as Aegis SpectraColor .... If the system has sufficient 
memory, new images can be brought in at any point by using the LOAD 

2 -23 



Aegis Visionary 

2. 24 

SCREEN command. The command specifies the screen buffer number, 
and a path and file name for the file to be loaded. 

Visionary Coordinates 
Let's say we have loaded to screen buffer 0, the image seen by the player, a 
graphic which includes a SA VE button. To allow the button to be clicked 
to provoke the SA VE action, the programmer needs to define where the 
click zone is, what action is performed when the zone is selected, whether 
the zone changes in appearance after the action is performed and how the 
zone changes. 

The upper left comer of the screen is a pixel at coordinates (0,0). The first 
number of the coordinate pair is the X or horizontal position. The second 
is the Y or vertical position. By starting at the upper left corner and defin­
ing down as positive, right as positive, Visionary avoids negative coordinates 
in the main screen. 

The Visionary coordinate screen looks like this: 

(0,0) x (m,O) 

y 

(O,n) (m,n) 

The Visionary Coordinate System 

In LoRes, m is 319 because low resolution screens provide 319 horizontal 
pixels. In HiRes, m is 639. For an NTSC system, n can be 199 in standard 
display, or 399 in Interlace. A PAL system will have n = 255 in standard 
display, 511 in Interlace. 

The Visionary utility VCOORD is provided to make locating coordinates in 
your graphics screens much easier. VCOORD is covered in detail in Ap­
pendix B, Vtsionary Utilities. 

Click Zone Location 

You can point at any location on the screen by giving its (X,Y) coordinates. 
A rectangle can be defined by giving its upper left and lower right corner's 



Imber, 

tyer, a 
licked 
re the 
aether 
IW the 

e first 
~cond 

defin­
inates 

iontal 
1dard 
1dard 

tes in 
1Ap-

!ates. 
ner's 

Chapter 2: Off to • Running Start 

coordinates. A rectangle (0,0) by (100,100) would be 100 pixels across, 100 
pixels high, and its upper left corner would be in the upper left corner of 
the screen. If you had a scenery picture with this rectangle defined as a 
click zone right where the yellow of the sun was displayed on the screen, 
you could use the zone as a place to allow the player to give click com­
mands involving the sun. 

A simple button to allow the player to SA VE the current game position 
might be defined as a zone within a rectangle defined by the VISionary 
screen coordinates (259,13) and (319,25). This zone would be in the upper 
right-hand comer of the screen for a lo-res graphic, or just to the left of the 
middle near the top edge of the screen for a high-res graphic. 

When the button is clicked, it might change color to show it has been 
selected. Visionary also allows you to swap images within defined zones on 
the screen - this capability would allow you to swap an image of a pressed­
in button for the original graphic showing it popped up, whenever the 
player clicked on the button. 

The COLOR Command 

To change screen colors over the entire screen, you would use the Visionary 
command PALETTE. To change the current pen color, however, we can 
use the COLOR command. Visionary refers to individual colors in the 
palette by pen number or color number. These phrases are used interchan­
geably to specify a position in the palette. 

The number of colors available in your palette depends in part on the 
choices you make about resolution in your graphic screens. For example, a 
HIRES screen on the Amiga can only have 16 colors. A LORES screen, 
on the other hand, can have 64. Since color numbers start at 0, this means 
that a game with HIRES graphic screens and the maximum number of 
colors will have a maximum color number or pen number of 15. 

You can also define the number of bit planes for your graphics. This refers 
to the number of bits that will be available for binary coding of the Red, 
Green and Blue color values. Each bit plane increases the number of avail­
able colors by a power of 2-a 2-BitPlane image, for example, has a maxi­
mum number of colors of 4, while a 3-BitPlane image has 8 colors available. 
Visionary allows you to directly set the current drawing color to any of the 
palette colors up to a maximum of 32 colors with the COLOR command. 

The RECT Command 

But let's say we want to produce a text window for our game, in which the 
player will enter all commands. We'll make this area smaller than the en­
tire screen, to allow us some room for showing some graphic gadgets and a 
game scene in a graphic window. 

2 -25 



Aegis Visionary 

2 -26 

We will want to draw a rectangle in the chosen color, without changing the 
rest of the screen colors. We want this rectangular area to be a different 
color than the rest of the graphic interface we provide for the player of our 
game. We'll also use this capability to further develop the PrintText sub­
routine we planned for in the print subroutine, so it will correctly refresh 
the text window, scrolling old text out of sight instead of up into the game 
graphics. 

This would be done with the RECT command. This command also 
specifies the screen buffer in which drawing is to be done, then gives coor­
dinates for the upper left and lower right comers of the rectangle. By 
changing the pen color, drawing the rectangle, and changing the pen color 
back again, we can produce a rectangle of the desired color. 

The COPY Command 

We also want to scroll the text up as new lines are added to the window­
essentially copying the image in the window in a higher position. This is 
accomplished with the Visionary COPY command. With COPY, you can 
move images into memory and swap them into other screen buffers quickly 
and easily. 

The COPY command specifies a rectangle on the source buffer, using 
Visionary coordinates, then points to the upper left corner of the 
rectangle's location of the destination buffer. The images in the two buf­
fers need to have the same number of bit planes. 

You can use the COPY command in one of three modes, DRAW, OVER­
LAY, or XOR. For this simple subroutine, we'll use the draw mode, which 
replaces anything under the copied rectangle with the contents of the rec­
tangle. This will have the effect of "wiping out" the text that already exists 
in the window under the lines we copy. 

Applying Visionary Graphics Commands 
Let's look at how these concepts-screen buffer, rectangle draw, copy and 
color change - are used to print text in a small text window on top of the 
graphic screen. 

We'll set our text window to allow no more than 6 lines of text to be dis­
played. As each line is printed to the window, we'll need to do several 
housekeeping chores. The cursor has to be moved down until the maxi­
mum number of lines are in the window. When the seventh line is to be 
printed in the window, the previous lines have to be scrolled up to make 
room for it. The top line has to be removed, otherwise it will be printed 
outside the area we have decided is to be the text window. 



: the 
1rent 
!our 
sub­
resh 
;aine 

also 
oor­

By 
olor 

w-
is is 
can 
ckly 

sing 
the 
buf-

ER­
ilich 
rec­
tlsts 

and 
the 

dis-
~ral 

axi­
be 

alee 
ted 

Chapter 2: Off to a Running Start 

The subroutine LineFeed will handle the scrolling of lines of text. It copies 
the contents of each line into a position one line up, creating a blank line 
for the new text to be printed into. 

sub LineFeed 
mode 0, draw 
copy 0 I 7 I 14 9 I 2 4 7 I 19 3 I 0 I 7 I 14 0 ; move 5 

lines up 
color O, 0 
rect O, 7,185, 247,192 blank 6th line 
color O, Textcolor 

endsub 

The third line in this subroutine copies the contents of a rectangle in screen 
buffer 0, the screen seen by the player, to a rectangle one line space higher 
on the same screen. Then, since the copy statement left a "remnant" of the 
previous lines in line 6, we use the COWR command to change the draw­
ing color to color number 0, and draw a rectangle of that color over the 
remnant of the copied text. What the player sees happens so fast, it looks 
like a smooth upward scroll of the text each time the [Return] key is 
pressed. 

The Graphics commands are covered in much greater detail in the Com­
mand Reference chapter, and described in an orderly way in Chapter 6. 
Some advanced techniques for using the Visionary graphics commands are 
detailed in Chapter 10. 

The Game Definition File 

Programming uses a lot of variables. The more like a "natural" human lan­
guage the programming language comes, the easier it is to use. Visionary 
puts these two facts together to allow you to define an amazing number of 
variables which can be used to make your work easier. 

These variables can be defined "on the fly'' as you write code, of course. If 
you need a variable in one room of your game to test how many times an 
object has been in the player's inventory, you might define a variable 
TAKEN and use the program commands to increment it each time the ob­
ject is grabbed by the player. That kind of variable can be in the object file, 
and it will always be "seen" by the program, becaµse it applies to that ob­
ject. 

What about a variable which might be used in any of the rooms, for any of 
the objects, or at any point in the game? For example, let's say you want to 
define 16 variables to be used in specifying colors. Now, in the COLOR 
command, instead of using the value 0, you could just say white instead. If 
you later change your palette so that color 0 isn't white any more, you 
would only need to change the color numbr in one place, where you 
defined the variable white as being equal to 0. 

2 -27 



Aegis Visionary 

2 - 28 

The .ADV File 
The place where these general variables are defined is the game adventure 
file, which has the extension .ADV. In the lines between the command pair 
VAR/ENDVAR, you can define system-wide variables for use in your other 
program files. To set up our color numbers, for example, we would start 
the .ADV file like this: 

;- Potion.ADV 

ADVENTURE 

PASSWORD jro 

VAR 
MaxLines 5 maximum lines in 

text window before pause 
countLines ; counter for lines 

displayed in text-window 
Defeat 0 set to 1 to defeat 

text window pause 
white 27 palette color for 

white 
blue 8 palette color for 

blue 
green 

green 
brown 

brown 
ENDVAR 

4 palette color for 

23 palette color for 

Notice that the .ADV file starts like all the others, with some information to 
be read by humans, then states ADVENTURE and sets the game 
PASSWORD. The password is very important, and it will be discussed 
later. For now, enter it as shown. 

We have also defined two other variables. CountLines and MaxLlnes will 
be used to list messages in the text window that are more than six lines 
long. If we used the LineFeed subroutine to show them, the message would 
scroll out of the window faster than the player could read it. Setting a 
maximum number of lines as a variable in the .ADV file lets us simply use 
the variable name when we write this subroutine. If we decide later to 
allow seven lines instead of six, we only have to change the value in one 
place-here in the .ADV file. 

The CountLines variable has no value set for it. When no value is "plugged 
into" a variable, it is set at 0 by default. So when the .ADV file is compiled 
by Visionary, CountLines is set equal to 0 at the start of the program. 



1ture 
pair 
1ther 
start 

to 
ne 
ed 

fill 
les 
lld 
a 

se 
to 
!le 

:d 

Chapter 2: Off to a Running Start 

File Pointers 

Also in the .ADV file are the pointers to the other files needed to create a 
Visionary game. Between the ROOM/ENDROOM command pair, each 
.ROOMS file will be listed. The .OBJ files used for the game are listed 
between the OBJECT/ENDOBJECT command pair. Files containing sub­
routines are listed between the commands SUB and ENDSUB, and finally, 
the .VOC filename is listed between a VOCAB/ENDVOCAB set. 

For our Potion game, this section of the .ADV file looks like this: 
ROOM 
Potion.rooms 
END ROOM 

OBJECT 
NonMovable.obj 
Movable.obj 
ENDOBJECT 

SUB 
Potion.SUB 
MainLoop.SUB 
Startup.SUB 
ENDSUB 

VOCAB 
Potion.voc 
ENDVOCAB 

The Initial Room 

The final command of the adventure file specifies the room in which the 
player is located when game play starts. This INITROOM command is 
very sinllilar to the ones we've already used for defining the room in which a 
movable objects is first located. 

The final command in the adventure file, ENDADVENTURE, simply 
closes the command "bracket" opened by the ADVENTURE command. 

We've completed our overview of the source code files for the tutorial 
game. Chapters 3 and 4 cover the creation of these files in much more 
detail, and discuss how the compiler uses the source code files to produce 
the compiled game files. 

2 -29 



Aegis Visionary 

2 -30 

» We won't be coming back to this filein the tutorial. If you 
will be compiling the Potion game, be sure to enter the 
Potion.ADV file exactly as it is shown in Appendix C. 

Compiling a Game 

Once you have created the program files, you are ready to compile your 
program. The process of compiling translates the Visionary command lan­
guage to machine-readable code. In the process, the source code files will 
be encoded using the password from the adventure file. 

The Visionary Compiler, VCOMP, is the utility which turns your Visionary 
source code into its binary, encoded format. The VCOMP command is 
given in the CLl/Shell-it essentially calls the VCOMP program, then pas­
ses it the name of your adventure file containing the pointers to all the 
other files for your game. 

» The Potion game files as listed in this tutorial are 
incomplete. Before compiling, you can enter the versions 
of these files from Appendix C, and save them with the 
filenames shown in the second line of each source code 
listing. You can also load them from the Catacoombs 
disk. There are eight files, named Potion.ADV, 
Potion.ROOMS, NonMovable.OBJ, Movable.OBJ, 
Potion.SUB, MainLoop.SUB, StartUp.SUB and 
Potion.VOC. These names are not case-sensitive, that is, 
they can be all capitals or all lower-case letters- Visionary 
will ignore the letter case. 

For our tutorial adventure, the CLI command to start the compiling process 
would be: 

VCOMP Potion.ADV 

If the adventure file is complete, and the VCOMP command is entered 
properly, the VISionary compilation process will start. The compiler is ex­
tremely fast, so it takes only a short time to compile even complex 
programs. 

The file which is produced when you compile will be named .GAM and 
.WRD. This can then be used by the Debugger and finally the Linker to 
create a stand-alone version of the game. 



your 
lan­
will 

nary 
d is 
pas-
the 

ess 

·ed 
ex­
lex 

nd 
to 

Chapter 2: Off to a Running Start 

Cross-Referencing Your Code 

Even when the adventure file is complete, you may have some variables you 
left undefined, subroutines you called but forgot to write, or other program­
ming errors that will cause your compiled program to crash or misbehave. 
A useful VCOMP command switch turns on cross-referencing, which will 
generate a file with the same name as the game but with an ".XRF" suffix. 

VCOMP Potion.ADV -x 

The -x option turns on the cross-reference generator. Use of "-X" by itself 
in the VCOMP command will generate all sections of the cross reference 
file, but you can cross-reference any section on its own by giving its section 
letter after the -x switch. 

If you specify any of the following letters, all cross-reference sections except 
the ones you specify after -x in the command line will be omitted; that is, 
only the sections you specify will appear. The single exception is the "F' 
option. Option "F" forces a form feed to be inserted between each of the 
selected cross reference sections. Unlike the other letters, using ''-XF" in 
the command does not turn off any of the other sections. 

Letter Cross-Reference Section 
A Articles (of speech) 
C Code (program) 
0 Objects 
P Prepositions 
R Rooms 
V Variables 
F Form Feeds 

So if, for example, we give the command 
VCOMP Potion.ADV -xr 

the Potion.XRF file that will be generated will contain only the names of 
the five rooms defined in the single .ROOMS file, Potion.ROOMS. 

The Visionary utilities DBUG and VLINK are discussed in more detail in 
Chapter 4 of this manual. 

The Visionary Debugger 

Debugging is the process of having the computer help you search for errors 
in your source code. The Visionary debugger utility, DBUG, allows you to 
develop, play, and root out the bugs and errors in new games. 

While you are running the DBUG program, you will actually be playing 
your compiled game. Instead of crashing, halting, or otherwise misbehav­
ing, however, when the DBUG play runs across a problem or bug in your 
code, it allows you to look at the source of the trouble, and even provides 
some additional information to help you correct the error. 

2 -31 



Aegis Visionary 

2 - 32 

To run DBUG, you would use the CLI to set the stack to 20,000 and call 
the DBUG program and pass it the name of your compiled game file. For 
our tutorial game, these commands would be: 

stack 20000 
DBUG Potion.GAM 

The ".GAM" suffix is optional, but we'll include it here. 

The DBUG utility will automatically generate a list of DBUG errors, which 
will be saved to a file {gamename}.ERR. An explanation of each error 
that can result from DBUG is shown in Appendix A. 

DBUG Commands 

While in the DBUG program, you can send commands to the program for 
greater control of the debugging process. DBUG commands interrupt the 
game play, and perform the specified command. They are entered in the 
text interface of the game, just as game text commands would be. 

The DBUG command JUMP ByShack in the Potion game, for example, 
would cause the play to move to the room ByShack, without requiring you 
to give the correct direction command to move to that room as you play the 
game. 

JUMP {room name} 

This command sends the debugger/player to the specified room. 

SET {room I object} {attrib#} [YIN] 

The SET command in DBUG prints the status of the given attribute num­
ber for the given room or object. Optionally, you can set the attribute to Y 
or N by supplying the value at the end of the command. 

This could be used to check your room descriptions for a room which has 
been visited, for example, since we know that the VISITED attribute is 
always attribute 1, by giving the command 

SET ByTree 1 y 

and then asking the game to look. The game finds the room has already 
been visited, since the VISITED variable is set, so the brief description is 
printed. 

EQU {variable} [value] 

EQU prints the current value of the given variable. If the optional [value] 
is supplied, the variable will be set to that new value. 

String variables can also be used in the EQU debugging command. The 
format is the same as above, but because this is a string variable, a dollar 



t:aU 
For 

ich 
iOr 

'or 
he 
he 

le, 
)U 

~e 

l­

y 

IS 

IS 

y 
s 

J 

Chapter 2: Off to a Running Start 

sign must precede the variable's name. U a string in single or double 
quotes follows the variable's name, the variable will be set to that value. 

So to test a string variable that contains the player's name, for example, you 
might enter the DBUG command 

EQU $playerName "V. I. Sionary" 

From that point, each time the game printed the playerName variable, the 
string "V. I. Sionary" would be used. It is not possible to use Visionary's 
formatted variables and codes in strings entered via the debugger. 

PLACE {object} [{room name}) 

The PLACE command prints the name of the room where the given object 
can be found. The optional [ {room name}] command moves the object to 
that room. In the tutorial game, entering the DBUG command 

PLACE corkscrew InTreeTop 

will cause the corkscrew to be moved to the room InTreeTop. 

ROOM [{room name}) 

When the ROOM command is given by itself, the complete status of the 
current room is given. With the optional room name, the complete status 
of the specified room will be printed. 

OBJECT {object name} 

The OBJECT command prints the complete status of the specified object. 

Break Execution 

A Break Execution menu item has been added to DBUG. Selecting this 
menu option will stop execution of all programs for the remainder of the 
turn. The prompt will be given back, and normal processing then resumes 
as DBUG waits for an input. 

Break Execution is useful for breaking out of a runaway loop. Selecting 
this may leave resources allocated that would otherwise be closed by the 
programmer's software, but as always, they will be freed at the end of the 
session. 

The Visionary Linker 

After the compiler creates the .GAM and .WRD files which the debugger 
can use, they must be linked to create the final, executable, distributable 
program. This is done with the V1Sionary Linker, VLINK. The VLINK 
command allows you to create a final game program with its word-file 

2 -33 



Aegis Visionary 

2 -34 

linked to it or separate, and you can generate an icon for the game and 
create it to start in either text or graphics mode. 

You may chose not to incorporate the .WRD file, stores all of the text in 
the game, with the executable file. An advantage of linking it with the ex­
ecutable is that text output during game play will be radically faster. An 
advantage of not linking it comes when the .WRD file is so large that the 
final program would be inconveniently large. Extra-large .WRD files some­
times are a product of a large text adventure, where text output speed may 
not be a major contributor to the quality of the game. 

When a game starts up in Graphics Mode, it is very much like performing a 
SCREENMODE GRAPIBCS command as the first statement in your pro­
gram, except that as the game loads and starts up, the text screen will open 
up in the BACKGROUND, so that the first screen the player sees is 
whatever graphics screen you care to show. This can be handy for a nice 
clean startup effect in an all-graphic game. 

To create a final game file for the Potion game, have it start up in graphics 
mode, and link the word file with the game file, the command would be: 

VLINK Potion.GAM -ig 

The ".GAM" extension is optiona~ and so are the options. The allowable 
VLINK options do the following. 

i does not generate an icon for this game 
w does not link the word file with the game (keep It separate) 
g causes game to start up in Graphics Mode 

When you will link the two files, the .WRD file must be in the same direc­
tory as the .GAM file. The executable game file will be saved in the same 
directory. 

The output of VLINK will be a large file- the base size of your game pro­
gram will be approximately 200K, plus the size of your .GAM file, plus the 
size of the .WRD file (if desired). For example, a 30K .GAM file and a 
lOK .WRD file will link to form a final game executable file of 
200 + 30 + 10, or approximately 240K. Be sure before linking that you have 
enough disk space for the output file in addition to the .GAM and .WRD 
files. 

Your Own Game 

Now that you have been through the four steps of creating a Visionary 
game-writing source code, compiling, debugging and linking-you're 
ready to step out on your own. The next chapters will discuss how to use 
individual commands for text, music, graphics, and program controls, and 
give short examples for each command. An advanced programming section 
includes another tutorial which covers some very sophisticated program­
ming techniques which are possible with the Visionary commands, and a 



md 

ID 

ex­
<\n 
he 
1e-
1ay 

;a 
'0-

en 
is 
ce 

CS 

le 

:-
e 

... 
e 
a 
f 

Chapter 2: Off to a Running Start 

command reference section lists commands in alphabetical order with com­
mand syntax and usage. 

Credits 
The Visionary language provides you with a powerful set of tools for 
developing your own game programs. Once you have a stand-alone, ex­
ecutable file, it can be distributed free as a public-domain game, or publish­
ed either as shareware or as a commercial program. The choice is up to 
you. 

Remember that even though we do not ask for a licensing fee or royalty 
payments, if you publish an adventure developed or compiled using Vision­
ary, it must display a credit at the start of the adventure that reads: 

DEVELOPED USING AEGIS VISIONARY 
PUBLISHED BY OXXI, INC 1991 

(213) 427-1227 

Resources 
While this tutorial has provided a quick look at the possibilities of Vision­
ary, there are many other sources of information about adventure games 
and programming. A full list of resource books is provided at the end of 
Appendix E, Tuchnical Support. This reference list was taken with permis­
sion from The Visionary Programmer's Handbook by John Olsen. 

The Spark 
Visionary provides you with some excellent tools, but in the end, the crea­
tion of your game is up to you. Use your imagination. Don't be afraid to 
try something you've never seen before- it might be the gimmick that sells 
your game. 

Good adventure games all start with a spark, an idea in someone's mind. 
With Visionary, you've got a way to fan that spark into a roaring fire. Go 
ahead. Fan the flame. Build the hottest adventure game you ever dreamed 
about! 

2 -35 



Aegis Visionary 

2 - 36 



Chapter 3: Conventions and File 
Formats 

Adhering to Standards 

While Aegis V1Sionary is one of the easiest-to-learn computer languages 
available on any computer, there are some rules you should keep in mind 
while creating your adventures. This chapter explains some of these trivial 
details required to enter code correctly. 

As you are creating your adventures, you will be creating at least five 
separate files which will be linked together to create the actual run-time 
game. 

Order of Operator Precedence 

Aegis Visionary operators are largely algebraic. As the program statements 
are executed, there is a specific order of precedence which dictates which 
operator/function is processed before other operators/functions. The Aegis 
V1Sionary statements are processed from left to right following the Order of 
Precedence shown below: 

Operator precedence in descending order: 
1 *, I 
2 MOD 
3 +, -
4 <, < =, =, > =, >,#,IN, HAS, IS, NOT 
5 AND,OR 
6 := 

So a statement which included both the MOD operator and the AND 
operator would process the MOD operator first. In a statement with the 
MOD operator and multiplication, however, the • operator would be 
processed first, then the MOD operator. 

Description Notation 

In the next section, we will describe Visionary formally. To do so we will 
use a formal description standard similar to Backus-Naur Form (BNF) 
Statement notation. Statement names that are to be used directly will be 
printed in uppercase, while the parameters and arguments to the com­
mands will be printed in between curly brackets. For example, 



Aegis Visionary 

3-2 

PLACEOBJ {object_name} {room_name} 

means that PLACEOBJ is the command, the phrase {object_name} should 
be replaced with the name of a specific object in your adventure, and that 
{room_ name} should be replaced with the name of a specific room in your 
adventure. The brackets indicate that whatever lies between them should 
not be taken literally, but can assume the name of any valid identifier of the 
same class. This is called a variable. 

Throughout the manual we use the curly brackets by way of illustration -
you should never literally type them into your program statements. 
Another illustration symbol we use throughout the manual is (" I"). This is 
used as an OR indicator, to show that a choice is available. Either one or 
the other of the items listed may be used, but not both. Like the brackets, 
the OR symbol is not to be typed into your programs; it is printed here by 
way of illustration to help you understand VISionary's format. 

Capitalization 

Visionary is case-insensitive, but it is wise to adopt some scheme of 
capitalization and stick with it throughout your project. One that works 
very well is to write all the system words in all capitals, then capitalize only 
appropriate letters in your own identifiers. This method allows you to scan 
your program and quickly tell the difference between your words and 
Visionary's words. 

Indentation 

It is a good habit to indent one or two columns each time you enter another 
level of IF statements and when you first enter a new block. This also 
makes the program more readable. Indenting too much can make your 
program difficult to read when lines of text run off the edge of the screen. 

Comments 

Another good practice is to comment the more complex sections of your 
program, or at any point where the function of your code is not blatantly 
obvious. You won't need a comment for every line, but a comment here 
and there will clear things up nicely. Comments start with a semi-colon";", 
and all characters in the line after the semi-colon are ignored by Visionary. 

Visionary Nomenclature 

We will be using a set of words to describe specific items associated with 
the Visionary adventure game construction system. The following is the list 



Jd 
at 
Ill" 

Id 
1e 

Chapter 3: Conventions and File Formats 

of terms we will frequently use and their definition within the context of 
V1Sionary. 

{text} 
{word} 
{variable_ name} 

{file_name} 

{room_ name} 
{object_ name} 
{subroutine_ name} 
{attribute_ name} 
{adjective} 

{noun} 
{verb} 
{direction} 

{direction#} 

{expression} 
{string variable} 
{literal string} 

any line of text 
any word containing no spaces 
the name of an integer variable, from 1 to 19 
characters) 
a standard AmigaDos filename, can Include 
the path name as well 
the name of a room (1 to 39 characters) 
the name of object or NPC 1 to 19 characters 
the name of a subroutine 1 to 19 characters 
the name of attribute, 1 to 19 characters 
any word describing an object, 1 to 19 
characters) 
any noun, 1 to 19 characters 
any single-word verb 
One of the allowed directions: 
NI s I EI w I NE I NW I SE I SW I u ID 
The number, O through 9, refers to one of the 
allowed directions 
what is acted upon by a command 
text string used as a variable 
a text string inside single or double quotes 

Visionary Sentence Structure: 

One of the most important parts of an adventure game is the command 
parser. A parser examines the program statements and parses it, analyzing 
the individual components of the statement and placing them into such 
categories as verb, noun, adjective, and so on. Once the elements of the 
line have been categorized, the program can make the correct response to 
the component. 

V1Sionary sentences are generally structured to start out with a verb. The 
program then looks for a noun, any adjectives associated with the noun, and 
then for prepositions and objects of the prepositions. 

The V1Sionary author must first define the vocabulary used by the program. 
If a program sentence uses a word that is not defined, an error is returned 
when the program is compiled. Your program should watch for this error, 
and when it occurs, tell your player to "Try again." 

The following sentence structures are standard, and should serve for almost 
all situations. Other sentence structures can be built in through your pro­
gram, using vocabulary blocks you create in the Vocabulary File. 

3-3 



Aegis Visionary 

3-4 

Definitions of Components 
The following types of sentence components -you may remember them as 
"parts of speech" from grammar class in school- are recognized by V1Sion­
ary. They are defined as: 

ATIRIBUTE 
PREPOSITION 

PRONOUN 
NOUN 
VERB 
ADJECTIVE 

MODI FER 

ARTICLES 

An inherent characteristic 
A word that combines with a Noun or 
Pronoun to form a phrase. 
A word used as a substitute for a Noun. 
Person, place, thing. 
Action 
A word that typically serves as a modifier 
of a Noun. 
To limit the meaning of, especially in a 
grammatical construction. 
Short modifiers like "a", "an", "the", and 
"that" placed in front of a noun _or an 

adjective modifying the noun 

Standard Sentence Structures 
In the following generic sentences, articles are omitted, even when the ex­
ample statements include them. This is standard notation. The examples 
are shown in all caps, but this is not necessary in your code. 

{verb} {noun} 
GRAB DAGGER 

{verb} {adjective} {noun} 
GRAB the MAGIC POTION 

{verb} {noun} {preposition} {noun} 
KILL the MONSTER WITH the DAGGER 

{verb} {adjective} {noun} {preposition} {noun} 
STEAL the SECRET SCROLL FROM the MONSTER 

{verb} {adjective} {noun} {preposition} {adjective} {noun} 
DECODE SECRET SCROLL WITH the DECODER RING 

{verb} {preposition} {noun} 
LOOK UNDER the ROCK 

{verb} {preposition} {adjective} {noun} 
SEARCH THROUGH the METAL CHEST 



IS 

I-

Chapter 3: Conventions and File Formats 

Typical Special Case Sentences 
The following sentence structures must be specifically implemented by the 
adventure writer in the Vocabulary file. They are not handled automatically 
by the Visionary parser. 

{verb} {preposition} 
LAY DOWN 
STAND UP 

{verb} 
YELL 
SLEEP 

A well-written adventure will include a witty, or at least appropriate, 
responses to some of the more common player requests. For example, if 
the player typed "STAND UP" when the game character was already stand­
ing, the program could reply, "You make a fool of yourself trying to stand 
up before you discover that you already are." 

Explanation of the Visionary Files 

Visionary uses a system of files to keep all source code organized, and to 
keep individual files from becoming too large. There are five classes of 
source files. 

The first classification or main file, known as the adventure or .ADY file, is 
the most important and the easiest to write. This file basically provides the 
system with key information such as the names of the other files, the 
password, variable names, and which room the player will begin the adven­
ture in. There can only be one adventure file per game. The other four 

. classes may have any number of files per adventure. The other four classes 
are: room, object, subroutine, and vocabulary. 

The room files contain all the code describing the rooms in the adventure. 
Each file may contain multiple rooms. There may also be any number of 
files, and you may name them whatever you like (although it is often helpful 
to use a "Room" or ".ROOM" extension to keep your files straight). The 
first two attributes of a Room File are defined automatically, but objects 
have no predefined attributes. The "zero" attribute for all rooms is the 
DARK attribute which is pre-defined for your convenience. The VISITED 
attribute is also set and reset automatically. 

The object files are similar to the room files, only they defme each object 
used in the adventure. Like the room files, it is a good idea to use an 
"Objects" or ".OBJ" extension for these files. 

The subroutine files are special sections of the code that preform specific 
functions, and can be called from anywhere else in the adventure. This 

3-5 



Aegis Visionary 

3-6 

makes it easy to perform a particular function repeatedly. It is recom­
mended to use the ".SUB" extension for these files. 

The vocabulary files define all nonstandard phrases, words, and special 
functions. It is recommended to use the ".VOC" extension for these files. 

Formal Description of Visionary File Layouts 
While reviewing the formal description for the file layouts, we have used 
the following symbols to assist with the illustration of the file layout. 

• All optional blocks are surrounded by a pair of square brackets 
"[ )". 

• Editorial comments appear as standard Visionary comments, 
beginning with a semicolon";". 

• Options appear as two or more identifiers surrounded by 
parenthesis"()" and separated by the OR symbol, "I". 

• Blank lines and line indention are optional 

The Adventure File 
ADVENTURE {adventure name} 
PASSWORD {game password} 
[ -
ARTICLE 
{list of valid articles, separated by 

spaces or lines} 
ENDARTICLE 

] 
[ 
PREP 
{list of valid prepositions, separated by 

spaces or lines} 
END PREP 
] 
[ 
VAR 
{int variable name} (value] 

${strTng_ variable_name} ["value"] 

ENDVAR 
] 
ROOM 

{room_filename} 

END ROOM 
[ 



Chapter 3: Conventions and File Formats 

OBJECT 
{object_filename} 

ENDOBJECT 
] 
[ 
SUB 

{subroutine_filename} 

ENDSUB 
] 
[ 
VOCAB 

{vocabulary_filename} 

ENDVOCAB 
INITROOM {room name} 
ENDADVENTURE -

The Room File 
All room file names must appear in the adventure file. 

ROOM {room_name} 
[ 
ATTRIB 
{attribute name} [ (Y I N)] 

ENDATTRIB 
l 
[ 
DEFAULT 
{direction abbreviation} {room_name} 

ENDDEFAULT 
l 
[ 
CODE 

{program statements} 
ENDCODE 
l 
[ 
ACTION {list of actions, separated by commas} 

3-7 



Aegis Visionary 

3-8 

{program statements} 
ENDACT 
] 
; You may follow ENDACT with another ACTION 

declaration 
END ROOM 

you may follow ENDROOM with another ROOM 
declaration 

The Object File 
The object file name must appear in the adventure file. 

(OBJECT I NPC) {object name} 
[ -
NAME {list of synonyms, separated by commas} 
] 
[ 
ADJ {list of adjectives, separated by commas} 
] 
INITROOM {room_name} 
[ 
CODE 

{program statements} 
ENDCODE 
] 
[ 
ACTION {list of verbs, separated by commas} 

{program statements} 
ENDACT 
] 
; you may follow ENDACT with another ACTION 

declaration 
(ENDOBJECT I ENDNPC) 

you may follow ENDOBJECT or ENDNPC with 
another OBJECT or NPC declaration. 

The Subroutine File 
The name of the subroutine file must appear in the adventure file. 

SUBROUTINE {subroutine name} 
{program statements} -

ENDSUB 
you may follow ENDSUB with another 

SUBROUTINE declaration 

The Vocabulary File 
The name of the vocabulary file must appear in the adventure file. 

VOCAB 
ACTION {list of actions, separated by commas} 

{program statements} 



Chapter 3: Conventions and Fiie Formats 

ENDACT 
; you may follow ENDACT with another ACTION 

declaration 
ENDVOCAB 

3.9 



Aegis Visionary 



Chapter 4: How to Use the 
Visionary Compiler 

The Visionary Compiler 

Once you have entered your program statements with your editor, you are 
ready to compile your program to create machine readable code. VCOMP 
is the Visionary Compiler, which turns your Visionary source code (pro­
gram) into a binary, encoded format. 

Command line format for VCOMP is: 
VCOMP {game name} [ .ADV] [-x[ ••••••• ]] 

where {game name} is the filename of the main adventure file, possibly 
followed by its ".ADV" suffix. The "-x" option turns on the Cross-Refer­
ence generator, creating a file with the same name as the game but with a 
".XRF" suffix. Entering the above command properly, will turn on the 
Visionary compiler. The compiler is extremely fast, and it will take only a 
short period of time to compile even complex programs. 

The file which is produced when you compile will be named .GAM and 
.WRD. This can then be used by the Debugger and finally the Linker to 
create a stand-alone version of the game. 

Use of "-X" by itself in the VCOMP command will generate all of the 
sections of the cross reference file. If you specify any set of the following 
letters, all cross-reference sections except the ones you specify will be 
squelched; that is, only the sections you specify will appear. 

The Visionary compiler will automatically generate a list of compiler errors, 
which will be saved to a file {gamename} .ERR. 

Letter Cross-Reference section 
A Articles (of speech) 
C Ccx:te (program) 
0 Objects 
P Prepositions 
R Rooms 
V Variables 
F Form Feeds 

Option "F" forces a form feed (clear screen) to be inserted between each 
of the selected cross reference sections. Unlike the other letters, using 
"-XF" does not turn off any sections. 



Aegis Visionary 

4-2 

EXAMPLES: 
VCOMP MyGame 
VCOMP MyGame.GAM 
VCOMP MyGame -x 
VCOMP Mygame.GAM -xapcrovf 

The Visionary Debugger 

The Visionary Debugger, DBUG, allows you to develop, play, and root out 
the bugs and errors in new games. DBUG requires more stack space than 
most programs, so you will need to reset the stack to 20,000 before starting. 

Command line format for DBUG is: 
stack 20000 
DBUG {game name} [ .GAM] 

where {game name} is the filename of the game file generated by the com­
piler, VCOMP, and is optionally followed by its ".GAM" suffix. 

EXAMPLES: 
DBUG MyGame 
DBUG MyGame.GAM 

Execution of DBUG automatically generates a list of errors in the file 
{gamename}.ERR. The line numbers in this {gamename}.ERR file refer 
approximately to the line numbers given in the .XRF file generated by the 
compiler, helping you to pinpoint where the error occurred. An explana­
tion of errors that can be reported from DBUG are shown in Appendix A. 

Command Shortcuts During DBUG "Play" 

The command shorthand provided for the player will also be very useful as 
you "play" the game during the DBUG process. Rather than typing GO 
NORTH or MOVE NORTH, you can simply type NORTH, or even 
shorter, N. These direction abbreviations are: 

Command Allowed Abbreviations 
Move North North, N 
Move South South, S 
Move East East, E 
Move West West, W 
Move Northwest Northwest, NW 
Move Northeast Northeast, NE 
Move Southwest Southwest, SW 
Move Southeast Southeast, SE 
Move Up Up, U 
Move Down Down, D 

Other commands provide additional information. SCORE, for example, 
will show the value stored in the system-assigned variable Score. INVEN-



Chapter 4: How to Use the Visionary Compiler 

TORY or its abbreviation I will list all the objects for which the (Player 
HAS {object}) expression is true, in other words, all the objects in the 
inventory. 

QUIT will quit the game. You can add the Yes response to the original 
QUIT command line to pass it to the command, forcing the game to quit 
without confirming, with the command 

QUIT, Y 

LOOK or L will cause the current room's CODE block to be executed. 
PRINTER (ONIOFF) will toggle printer output. SPEECH (ONIOFF) tog­
gles the Amiga voice. 

You can also save and load games. The command 
SAVE [filename] 

saves the.oeurrent game to a file. The filename is optional, and can include 
the full path. Either of the two commands 

LOAD [filename] 
RESTORE [ f ilename] 

will load the specified game file. In both SAVE and LOAD, the filename is 
optional-when no filename is given, a file requester appears so you can 
select a file. 

Visionary automatically links some functions to keys on the keyboard, al­
lowing a single keypress to execute a function or command. The default 
"key bindings" are: 

Key 
[F1] 
[F2] 
[F3] 
[F4) 
[F5] 
[F6) 
[F7) 
(F8] 
[F9] 
[F10) 

Function or Command 
North 
South 
East 
West 
Up 
Down 
SAVE 
LOAD 
LOOK 
INVENTORY 

These commands can be given during DBUG "play'' by a single keypress of 
the appropriate function key. If you have used the DEFINE command to 
change the defaults in your game, these keys may not have the same func­
tions stored in them. The command DEFINE, without any parameters after 
it, will display the current functions defined in the function keys. 

To re-define the functions stored in the function keys, you can enter the 
DEFINE statement with parameters during DBUG "play": 

DEFINE [ {FKey number} "text"] 

4-3 



Aegis Visionary 

4-4 

where "text" is the command string inside double quotes which will be as­
signed to the function key. If you were going to specifically define function 
key 1 to move north, for example, you would use the following DEFINE 
statement: 

DEFINE 1 "MOVE NORTH" 

Additional debugger commands in "play" while DBUG is running are: 

JUMP {room name} 

JUMP moves the debugger/player to the specified room exactly as if the 
player had moved there with the direction commands as in the normal 
course of play. 

SET {room I object} {attrib#} [YIN] 

The SET command prints the status of the given attribute number for the 
given room or object. If a Y or N is supplied, the variable is set to this 
value. 

EQU {variable} [value] 

The EQU command prints the current value of the specified variable. If a 
value is supplied, the variable is set to the new value. 

DBUG debugger can accept string variables as an argument to the EQU 
debugging command. The format is the same as above; a dollar sign must 
precede the variable's name. If a string in single or double quotes follows 
the variable name, the variable will be set to that value. It is not possible to 
use Visionary's formatted variables and codes in strings entered via the 
debugger. 

PLACE {object} [{room}] 

PLACE prints the name of the room where the specified object can be 
found. If a room name is supplied, the object will be moved to that room. 

ROOM [{room}] 

ROOM prints the complete status of the given room, or the current room if 
no room name is specified. 

OBJECT {object name} 

This command prints the complete status of the specified object. 

Break Execution 

The Break Execution menu item will stop execution of all programs for the 
remainder of the turn. The prompt will be given back, and normal process-



Chapter 4: How to Use the Visionary Compiler 

ing will resume as DBUG waits for input. Selecting this may leave resour­
ces allocated that would otherwise be closed by the programmer's software, 
but as always, they will be freed at the end of the session. Break Execution 
is used to halt runaway loops and other program bugs where the text inter­
face would otherwise be unavailable. 

The Visionary Linker 

VLINK is the Visionary Linker, which turns games that have been compiled 
and debugged into the final, executable, (and distributable) format, combin­
ing the ".GAM" file with the ".WRD" file into one program file. 

The command line format for VLINK is as follows: 
VLINK {gamename[.GAM]} [-iwg) 

The .GAM extension is optional, since Visionary links a file with this exten­
sion, and the three options are also optional. The {gamename} is the name 
of the game you wish to link. 

The VLINK command options do the following: 
do not generate an icon for this game 

w do not link the word file with the game, keep it separate 
g cause game to start up in Graphics Mode 

When linking, the .WRD file must be in the same directory as the .GAM 
file, and the executable game will be put into the same directory. You may 
chose not to incorporate the .WRD file (which stores all of the text in the 
game) with the executable. An advantage of linking it with the executable 
is that text word output will be radically faster. One advantage of not link­
ing it would be if the .WRD file is so large that the final program would be 
inconveniently large (something that might happen in a large text adven­
ture). 

Causing the game to start up in Graphics Mode is very much like perform­
ing a SCREENMODE GRAPHICS command as the first statement in your 
program, except that as the game loads and starts up, the text screen will 
open up in the background, so that the first screen the player sees is 
whatever graphics screen you care to show. This can be handy for a nice 
clean startup effect in an all-graphic game. 

Finally the output of Vlink will be a large file; the base size of your game 
program will be approximately 2001<, plus the size of your .GAM file, plus 
the size of the .WRD file, if it will be linked to the .GAM file. 

4-5 



Aegis Visionary 

4-6 

! Be sure before linking that you have enough disk 
space for the output file in addition to the .GAM and 
.WAD files. 



Chapter 5: Variables and Flow 
Control 

Flow control deals with how to change the flow of execution of the program 
as the game progresses. The game progress should change as the player 
enters actions and responses. When creating your adventure program, you 
should anticipate the range of actions the player will try and and responses 
those actions will invoke at different points in the game, and build your 
game accordingly. 

Variables 

One of the critical elements you can use to exert control over the flow of 
the game is the use of variables. A variable is a word used as a name for a 
value which have change as the program is running- a variable value, in 
other words. For example, we might have a numeric variable named 
SCORE. SCORE, which initially starts at zero, is incremented by one each 
time a "hit" is made in the game. 

Variables can also be used to store text strings. A string variable named 
TEMPERATURE, might start with a value - the text stored in it - of 
"cold", then be changed to "hot" in the course of play, then later to "boil­
ing" as the program continues. 

These two variable types, string and numeric, provide the "hooks" on which 
you can hang the changing play of your game. You can test a numeric 
variable such as SCORE, perhaps to see if the player's score is large 
enough to end the game with a win. You can also compare a string variable 
with a text string, perhaps to see if the TEMPERATURE has changed to 
"boiling" yet. 

System Variables 

Certain variables are automatically declared and maintained by the system. 
The following variables are built into Visionary. You can use them as vari­
ables in your own programs without defining them - Visionary automatically 
defines them. 

Numeric System Variables 
SCORE Success rate of the player 
ITEMS The number of items in the player's Inventory 
MOVES Incremented by the system every turn. 
RAND Random number always returns value from O to 9999 



Aegis Visionary 

5-2 

MAXOBJ 
MAXROOM 
LASTMOVE 

CHI PM EM 

FASTMEM 

MO US EX 

MOUSEY 

LEFTBUTTON 

BUTTONPRESSED 

TIME 

ERROR 

VIDEOMODE 

objPOS 

Number of objects in adventure. 
Number of rooms In adventure. 
Values 0 .. 9, the player last moved 
N,S,E,W,NW,NE,SW,SE,U,D. 
The amount of available chip memory read 
out in "K". 

The amount of available fast memory read 
out in "K". 

The value will always reflect the current position 
of the of the mouse pointer. If a graphics 
screen is open, the coordinates will reflect the 
mouse position within it, otherwise It will 

reflect the mouse position within the text screen. 
The value will always reflect the current position 
of the of the mouse pointer. If a graphics screen 
Is open, the coordinates will reflect the mouse 
position within it, otherwise it will reflect the 
mouse position within the text screen. 
This variable will contain a 1 if the left mouse 
button is pressed, or a 0 if it is not. 
This variable reflects the number of the last 
CLICK button that the player pressed, or 
1 OOO if none. 
HH.MM, represent the current time hour 
with hour values O to 23 and minutes O to 59 
Is settable by the programmer, and will 
normally be 0. If some operation, like a disk 
load of an Image or sound, opening the 
speech device, or creating a screen, FAILS 
somehow, whether due to lack of memory 
or it couldn't find the file, the file was an 
incorrect format, or the player types unknown 
command, this variable will be set to 1. 
ANY statement that can generate an error 
during runtime debugging will cause the 
ERROR variable to be set to 1. Its value is 
returned to o after every successful turn. 
Assumes at the beginning of run, either a 
"O" for NTSC or a "1" for PAL. The variable 

can be written to as any other variable 
thereafter. 
The room number the object Is In. Each object 
declared has a POS variable assigned to It with 
the variable name "objnamePOS". In other words, 
the room number where the object ladder Is 
located is stored In the variable ladderPOS. 



11tion 

he 

reen. 
It ion 
~reen 

se 

e 

'" 

ect 
tlth 
Nords, 

Chapter 5: Variables and Flow Control 

All other variables used by the adventure must be defined by you. Basically 
there are two classes of variables, numeric and string. Numeric variables 
are defined by mathematical formulas using operators following the Order 
of Precedence. String variable.s are text strings that are altered by the 
progress of the game. 

String Variables 

The format for defining variables in the VAR block in the main .ADV file is 
as follows: 

${name} 

In all references, a string variable will be preceded by the standard dollar 
sign "$". The initial value of this variable will be either be set to an empty 
or null string, or to the text string in single or double quotes following it. 
The maximum length of a string variable is 79 characters. 

No "interpreting" of the string content is done in the VAR block of the 
.ADV file. The string will be just as you typed it. You will not be able to 
include in-line variable and screen code formatting, it won't work. This 
is done so you won't have to wade through the interpreted "garbage" in the 
string to find the actual text when you're looking at the cross-reference file. 

Use of String Variables 
Any text string displayed on the screen can have a string variable em­
bedded in it - this process displays the content of the string variable as part 
of the text string. 

At the place in the displayed text string where you want the string variable 
included, you would enter the at-symbol "@" first, followed by the dollar 
sign to indicate that this is a string variable, and then the variable name. 
The "@" indicator can also be used to embed numeric variables as well. 

For example, at some point in the program you may display the text string 
"The water is ." In the blank you want to display the current 
setting of the string variable TEMPERATURE mentioned above. You 
would code the statement to display the text string as follows: 

T The water is @$TEMPERATURE • 

If the current setting of the string variable TEMPERATURE was hot, the 
string would be displayed on screen as: 

The water is hot. 

Note the trailing space between the embedded string variable and any text 
which follows it. This space is very important. Without it, the Visionary 
compiler can't separate the variable name from the text string it is em­
bedded in. If the trailing space was left out of the string above, your 
debugger wouldn't be able to find the variable "$TEMPERATURE." 

5-3 



Aegis Visionary 

5-4 

anywhere in the code. The trailing space is stripped out when the variable 
is embedded in the text string. 

String Commands 
You can change the contents of a string variable with the Visionary string 
commands. These commands are: 

• LET 
• COMPARE 
• ROOMNAME 
• OBJNAME 
• GETSTRING 
• GETCHAR 
• GETNUM 
• GHOST 

LET 

The LET command allows you to set the contents of a string variable, too. 
It takes the following format: 

(LET] ${name} := (${stringvar} I "text") 

The actual word LET in the command is optional. The text may be any 
standard text string, including formatted variables. 

For example, in BASIC, given the variable A$ which contains "Hello", the 
following command: 

LET A$ = A$ + ", II + A$ 

would change the value stored in A$ to "Hello, Hello". In Visionary, the 
following statement does the same thing: 

$A := "@$A , @$A" 

Again, note the trailing space after @$A, before the comma. Since the 
second @$A has no portion of text string following it - the double-quote is 
the end-of-string indicator - it does not require a trailing space. 

The equate operator is also legal in a LET command: 
LET $A := $8 

COMPARE 

COMPARE (${stringvar}l{literal}), 
(${string}l{literal}), {int var} 

Compare will give the integer variable at the end of the command one of 
three values, depending on the relationship of the first string variable or 
literal, quoted text string and the second. If the string on the left evaluates 
to be less than the second, according to the ASCII value of its contents, -1 



Chapter 5: Variables and Row Control 

is returned. If it is greater, 1 is returned, and if the two strings are equal, 0 
is returned. 

Whether the letters in the string are upper or lower case is not important­
like most V1Sionary commands, COMPARE is case-insensitive. Internally, 
the program converts all text in the string to one case before malcing a 
comparison. So comparing "HELW" to "hello" would return the value 0, 
becasue the program sees these two strings as equal. 

ROOM NAME 

ROOMNAME ({roorn}l{expression}ITHISROOM), 
${stringvar} 

Puts the name of the specified room, or the current room if "TIDSROOM" 
is true, into the string variable given. The room number can also be 
derived by evaluating an expression, and its name stored in the string vari­
able. 

Examples: 
ROOMNAME Haunted Library, $ARoorn ;this 

one, 9 kinda silly. 
ROOMNAME 7 , $AnotherRoorn 
ROOMNAME THISROOM, $MyRoorn 
ROOMNAME (Tirnesvisited * 2), $AnotherRoorn 

OBJNAME 

OBJNAME ({object}l{expression}), ${stringvar} 

Substitutes the name if the given object or object number into the given 
string variable. What really happens, is that the first name given to that 
object is returned. If the object doesn't have any names, then the object's 
system name is returned. 

GETSTRING 

GETSTRING ${stringvar} 

Accepts input from the player through the keyboard and sends the text into 
the string variable given. Up to 77 characters may be input. The prompt 
"-"is printed at the beginning of the input line. 

GETCHAR 

GETCHAR ${stringvar} 

Accepts one alphanumeric keypress and sends it to the text string variable 
given. Any ASCII value may be sent, and the statement will wait until the 
player does press a key. 

5-5 



Aegis Visionary 

5-6 

GETNUM 
GETNUM {int var} 

Accepts a number from the player, in the range of -32768 and 32767, and 
puts it in the integer variable given. The prompt"-" is printed at the begin­
ning of the line. 

GHOST 
GHOST (${stringvar}l"text") [, TURN) 

Causes the argument, whether a string variable or a literal text string, to be 
passed to the Visionary player command interpretter as if the player had 
really typed it. The command is then executed (if no errors) and control 
returns. 

In-Line Formatting 
All strings and text statements allow in-line formatting of ASCII codes. 
This is done by inserting a backslash"\", followed by any one of the follow-
ing: 

nnn a 3-digit DECIMAL number from Oto 255. This creates one 
character of that ASCII code number 

N 
R 

F 

T 
B 
v 
G 
\ 

\N in a text string causes a carriage return and line feed 
\R causes a carriage return only. The cursor goes back to 

the beginning of the line 
\F causes a form feed, or CLEAR SCREEN to be generated. 

If the printer is on, a new page will roll in. 
\ T will cause a tab of 8 characters to appear 
\B will generate a backspace 
\ V will generate a vertical tab, or 8 \N's 
\G will generate a screen "beep", or bell 
to print a backslash, simply type \ \, which will print one 

backslash 

LENGTH 
LENGTH (${stringvar}l"text"), {intvar} 

Puts into the specified integer variable the number of characters in the 
string variable or literal text string. 

LEFT 
LEFT (${stringvar}l"text"), {number}, 

${stringvar} 



Chapter 5: Variables and Aow Control 

Moves the left-hand portion of the first string expression to the string vari­
able on the right. The middle numeric expression specifies how many of 
the characters to copy. 

MID 

MID (${stringvar}l"text"), {start}, {number,} 
${stringvar} 

Moves the middle of the first string to the string variable on the right. 
Copying starts at the character indicated by the value of the expression 
{start}, and moves {number} characters. 

RIGHT 

RIGHT (${stringvar}l"text"), {number}, 
${stringvar} 

Moves the right-hand portion of the first string expression to the string vari­
able on the right. The middle numeric expression specifies how many of 
the characters to copy. 

VALUE 
VALUE ( ${stringvar} I "text"), {intvar} 

If the string holds an integer number, its numeric value is stored in the 
given integer variable. If an error occurs (the string was not really a valid 
integer), the ASCTI value of that character will be stored in the given in­
teger variable. 

UPCASE 
UPCASE ${stringvar} 

Sends all alphabetic characters in the string variable into upper case. 

DOWN CASE 
DOWNCASE ${stringvar} 

Sends all alphabetic characters in the string variable into lower case. 

System String Variables 

The system sets and maintains a set of string variables that are reset auto­
matically as the game is played. These are: 

$LastLine The player's last text command, verbatim. 
$LastDlr Contains, at all times, the name of the last direction 

player moved. 

5-7 



Aegis Visionary 

5-8 

$SubjNoun The subject noun in the last sentence, or "" 
$0bjNoun The object noun in the last sentence, or"" 
$SubjAdj The subj. noun's adjective in the last sentence, or "" 
$0bjAdj The obj. noun's adjective in the last sentence, or"" 
$Verb The verb in the last sentence, or "". 

The last five variables, $SubjNoun, $0bjNoun, $SubjAdj, $0bjAdj and 
$Verb, are non-null only if the sentence was interpreted as a non­
vocabulary action, that is, if the player's command applied to one of an 
object's ACTION blocks. Their values will be unpredictable if there is an 
error in the command line. 

System Error String Variables 

Nine additional error-related string variables are declared automatically by 
the compiler. These variables are for dealing with error conditions when 
the player types a command that is not understood by the command line 
parser. Each is suited only for specific situations, but can be customized by 
the game designer, say, for languages other than English. Error number 2 
is actually a report on the player's current score. In order, they are: 

$Error1 "You can't go @$LastDir from here." 
$Error2 "Your current score is @Score . " 
$Error3 "You can't see a @$SubjAdj @$SubjNoun here." 
$Error4 "I don't understand." 
$Error5 "You can't see a @$SubjNoun or a @$0bjNoun here." 
$Error6 "Specify which @$SubjNoun you mean next time." 
$Error7 "Specify which @$0bjNoun you mean next time." 
$Errors "You can't see a @$0bjAdj @$0bjNoun here." 
$Error9 "You can't do that to a @$SubjNoun . " 

Flow Control Commands 

Another mechanism the Visionary Language provides for altering the pro­
gram interatction with the player depending upon the actions and input of 
the player is a set of commands which serve as flow control commands. 
Flow control commands follow the basic tenet of logic: "IF A is true 
THEN B occurs ELSE C occurs." 

The Flow Commands catagory consists of seven commands: 
• IF 
• ELSIF 
• ELSE 
• AND 
• OR 
• WHILE 
• END 



... 

d 
I­

n 
n 

y 
ii 

Chapter 5: Variables and Row Control 

The IF and WHILE commands utilire the other Flow Control commands. 
Each of these powerful commands is described in turn below . 

IF 
The IF command is an extremely powerful Flow Control command. The 
execution of the program will branch dependent upon the meeting of cer­
tain conditions you define. A series conditions can be strung together using 
the ELSIF command in conjuction with the IF command, or multiple 
simulataneous conditions can be required using the AND command with 
the IF command. 

In the IF command sytax always contains a THEN after the condition. 
Statements after THEN will be executed if the condition is met. Where the 
condition is not met, the program drops down to look for either an ELSIF 
command, an ELSE command or and END command. The Flow Control 
Commands AND and OR are used with the condition expression of the IF 
command. 

IF 
SYNTAX: 

IF {condition} THEN 

(ELSIF {condition} THEN] 

END IF 

COMMENTS: 

The IF statement allows a program to decide which sections of code it will 
execute. The {condition} can be any legal Visionary expression. Legal ex-
pressions are: 

{const} 
{var} 
{expression} * {expression} 
{expression} I {expression} 
{expression} MOD {expression} 
{expression} + {expression} 
{expression} - {expression} 
{expression} < {expression} 
{expression} < = {expression} 

{expression} = {expression} 
{expression} > = {expression} 
{expression} > {expression} 
{expression} # {expression} 

(simple constant) 
(simple variable) 
(multiplication) 
(division) 
(modulus) 
(addition) 
(subtraction) 
(less than comparison) 
(less than or equal 
comparison) 
(equal to comparison) 
(greater than or equal " ) 
(greater than comparison) 
(not equal to comparison) 

5-9 



Aegis Visionary 

5 -10 

{object I PLAYER I expression IN THISROOM I expression} 
(Is object In room) 

PLAYER HAS {object I expression} (player has object (or 
object#) comparison) 

PLAYER CANGO {expression} (can the player go a 
direction # comparison) 

{PREP I OBJNOUN I object I room} IS 
{"preposition" I object I attribute} (attribute comparison 

{PREP I OBJNOUN I object I room} NOT 
{PREPOSITION I object I attribute} (inverse attribute comparison) 

{expression} AND {expression} (conjugate two simple 
expressions) 

{expression} OR {expression} (conjugate two simple 
expressions) 

{int variable} : = {expression} (equate) 

NOTES: 

• THISROOM, as used with the "IN" operator, implies whatever 
room the player is currently in. 

• PLAYER IN THISROOM will always return true, or 1. 
• PREP IS I NOT "preposition": see if player's last line contained 

the given preposition, from the list of valid prepositions. Note: 
the preposition must appear in quotes! 

• OBJNOUN IS I NOT {object}: see if the object noun from the 
player's last line was the given object. 

• PLAYER CANGO {expression}: the expression is expected to 
be a value between o and 9, inclusive, representing N, S, E, W, 
NE, NW, SE, SW, U, D. 

The default order of precedence for the operators, from highest to lowest 
by line, is: 

PRECEDENCE OPERATOR(S) 
1 *,I 
2 MOD 
3 +, -
4 < , < =, =, > =, >,#,IN, HAS, IS, NOT, CANGO 
5 AND,OR 
6 

The order of precedence may be changed with the use of paretheses, "(" 
and ")". To negate a mathematical expression, subtract it from 0. To 
negate a boolean or logical expression, subtract it from 1. 

An IF statement may also be followed by one or more ELSIF clauses, and 
then may be followed by a single ELSE clause, if needed. 



>n) 

Chapter 5: Variables and Row Control 

EXAMPLES: 

ELSIF 
SYNTAX: 

if (health / 2 > 67) AND (PLAYER HAS 
Golden_sword) THEN 

ELSIF 1-(Chamber IS DARK) OR (PLAYER HAS 
Lamp) OR (PLAYER CANGO 0 ) THEN 

ELSIF ((value > -5) AND (value < 16)) OR 
(value = 22) THEN 

ELSE 

ENDIF 

ELSIF {condition} THEN 

COMMENTS: 

Like IF, ELSIF can accept any legal VISionary expression as a condition. 
AND and OR commands can also be used with the condition expressions 
and the ELSIF statement always ends with THEN. 

EXAMPLES: 
ELSIF (Magic sword in INVENTORY) THEN 
T You can slay dragon. 
ENDIF 

ELSE 
SYNTAX: 

ELSE 

COMMENTS: 

When previous conditions in an IF or ELSIF command fail, then what fol­
lows the ELSE command prevails. 

EXAMPLES: 
IF (Chamber is DARK) THEN 
T Turn on light switch. 
ELSE 
GO closet 
ENDIF 

5 -11 



Aegis Visionary 

5 -12 

AND 
SYNTAX: 

IF {condition} AND {condition} AND {condition} THEN 

COMMENTS: 

The AND command is used when multiple conditions must be met. 

EXAMPLES: 
IF (Chamber is DARK) AND (Player HAS Lamp) 

AND (Player HAS Matches) THEN 
T Light Lamp 

ENDIF 

OR 
SYNTAX: 

OR 

COMMENTS: 

The OR command is used when any one of several conditions of an IF 
command can be met in order for the program to execute code following 
the THEN. 

EXAMPLES: 
IF (Player HAS Gun) OR (Player HAS Knife) 

THEN 
T Slay Dragon 

END IF 

END 
SYNTAX: 

ENDIF 

COMMENTS: 

When an END command is used, the program stops executing the current 
section of code and returns to the main program. END can be used with 
many other commands including IF and WHILE. 

EXAMPLES: 
IF (chamber is DARK) THEN 

T Strike a Match 
ENDIF 



F 
g 

Chapter 5: Variables and Flow Control 

WHILE 
A second powerful Flow Control command is the WHILE command. It 
makes the program do something as it is executing a certain section of code 
found in the expression for the WHILE command. The program will con­
tinue to "do" what is has been instructed by the expression of the WHILE 
command fail or evaluates to "O". The WHILE command can utilize the 
commands AND, OR and END in the same manner as the IF command. 

SYNTAX: 

WHILE {expression} DO 

END WHILE 

COMMENTS: 

WHILE allows the code that follows it to be executed a number of times, 
repeating indefinitely until the expression in the WHILE statement is 
evaluated as "O" or "false". Like the IF command, it has a special syntax 
which includes a special associate command DO. Every WHILE command 
is followed by the word DO after the expression of the WHILE command. 

EXAMPLES: 
count := 1; 
WHILE count < 100 DO 

T This is a test! 
count := count + 1 

ENDWHILE 

s" 13 



Aegis Visionary 

5 -14 



Chapter 6: Graphics Handling 

What Graphics Can Do 

In this chapter, we will discuss the commands and techniques associated 
with using graphics in Visionary games. Your adventures will be more vivid 
with the use of graphics. Not only can you use graphics as the background 
for your adventures as various rooms, you can graphically show objects for 
use by the player. Players can interact with objects depicted in the graphics 
by clicking on a defined "hot spot" to cause certain events to unfold. 

Graphical commands are divided into four different types - setup, drawing, 
effects and interaction - according to their uses in Visionary programs. 
These commands are listed below. 

• Command 
• CREATE SCREEN 
• LOAD SCREEN 
• SHOW SCREEN 
• UNLOAD SCREEN 
• SCROLLBAR 
• MENUS 
• COLOR 
•COPY 
• LINE 
• MASK 
• MODE 
• PALETTE 
• RECT 
• TEXT 
• CYCLE 
• DISSOLVE 
• FADEFROM 
• FADETO 
• SCROLLTO 
• CLICK 
• READBUTTONS 
• REMOVE 

Topic 
Set up 
Setup 
Setup 
Setup 
Setup 
Setup 
Drawing 
Drawing 
Drawing 
Drawing 

. Drawing 
Drawing 
Drawing 
Drawing 
Effects 
Effects 
Effects 
Effects 
Effects 
Interaction 
Interaction 
Interaction 



Aegis Visionary 

6-2 

Setup Commands 

Visionary allows the programmer to have up to 25 graphics screens, num­
bered 0 through 24, in memory simultaneously. These screen buffers can 
be declared and used in any numerical order you like; you may use screen 
24 without first defining screens 0 through 23. 

The Visionary graphics screen is always an non-draggable screen with no 
title bar, therefore it will always start at the upper left comer of the physi­
cal display, at the position you set in the Amiga Preferences program for 
your system. 

These screens can be created in two ways, by loading a graphics file into 
memory or by creating the screen with program commands. 

LOAD SCREEN 
Visionary supports IFF image files, including HAM images generated by 
Aegis SpectraColor.,. and others. Within RAM limits, these images can be 
imported from disk at any point during the game using the command 

LOAD SCREEN {buffer number}, 
(${stringvar}l"filename") 

The buffer number specified must be in the range 0 to 24, inclusive, and the 
name of the file to be loaded must be given in terms of a literal text string 
or the name of a string variable which contains the filename. For instance: 

LOAD SCREEN 0, "PICS :Rooms/Dungeon" 
LOAD SCREEN count, $PicName 

If everything is OK-the file is present and there is sufficient CHIP RAM 
to hold the image- the IFF image will be loaded into memory and that 
buffer number will thereafter be associated with that image, at least until it 
is reassigned by loading another image over it or by unloading it. 

CREATE SCREEN 
Visionary also allows you to open graphic screens that start out blank 
rather than forcing you to load an image from disk. This is accomplished 
with the command 

CREATE SCREEN {buffer number}, {X}, {Y}, 
{depth}, (HIRESILORESILAcEINOLACEIHAMI 
HALFBRITE) 

Once again, as in all graphics commands, the buffer number must be in the 
range of 0 through 24. X is the width in pixels of the screen. Valid choices 
for the X expression are 320 in lo-res and 640 for hi-res images. Y is the 
height of the image in pixels. Under NTSC, the screen standard used in 
the USA, Canada, and parts of Australia, the valid choices are 200 or 400 
with Interlace. Under the PAL screen system which is standard in Europe, 
the valid choices for {Y} are 256 or 512 in Interlace. 



Chapter 6: Graphics Handling 

The screen's depth is the number of bitplanes the image uses, which is 
determined by the number of colors in the image. Valid choices for depth 
are 1 through 6. The following is a table of the valid choices for depth and 
their associated meaning. 

Bitplanes Colors Resolution Modes 
1 2 Lores, Hires 
2 4 Lores, Hires 
3 8 Lores, Hires 
4 16 Lores, Hires 
5 32 Lores 
6 64/4096 Lores 

Video Modes 
Color 
Color 
Col or 
Col or 
Color 
HAM/Extra Halfbrite 

Although the screen's video modes will to some degree be automatically set 
by the X and Y values specified, you can provide a series of words 
separated by spaces to explicitly set the video modes. Any combination can 
be used, though in the event of conflicting words, only the last will be used, 
and certain modes are not available in all resolutions. If no modes are 
specified, LORES and NOLACE are automatically assumed. 

SHOW SCREEN 
Simply loading a screen into memory does NOT mean it is immediately 
displayed. To cause an already-defined screen to be displayed, the 

SHOW SCREEN {buffer number} 

command is used. The image is displayed in a screen immediately behind 
the standard text screen, which is not affected by this command. No more 
than one graphic screen will be displayed at a time; any currently-displayed 
image will be superceded. 

To remove a graphic screen from the display without removing it from 
memory, the SHOW SCREEN command may be given any buffer number 
larger than 25. Visionary will attempt to show a screen buffer that does not 
exist, which will cause the previously-displayed screen to go away. 

SCROLLBAR(ONIOF~ 
This command allows you to explicitly permit or forbid the player to drag 
the text screen up and down. SCROLLBAR ON is the default setting. 

This is one of two commands which are commonly left out of a program 
until after the debugging process is complete. If SCROLLBAR OFF is 
active during debugging, you will not be able to drag the graphic screen out 
of the way to enter DBUG commands in the text interface-unless you 
have provided a text window in your adventure, you will not be able to 
debug your program. 

6-3 



Aegis Visionary 

6-4 

MENUS 
This command dictates whether the Menu bar is available to the player. 
MENUS ON is the default. 

MENUS (ONjOFF) 

The MENUS OFF command is one of two commands usually disabled until 
after the debugging process is complete. When MENUS and 
SCROLLBAR are both OFF, access to the back screen, which may have 
the text interface, is disabled. 

UNLOAD SCREEN 
If you have run out of screen buffers because you already have 25 loaded, 
or perhaps because you want more memory for, say, sound samples, you 
can use the 

UNLOAD SCREEN {buffer number} 

command to de-allocate all memory associated with a given screen buffer. 
If this buffer is currently being displayed, the displayed screen will go away 
and the V1Sionary text screen will move to the front, the top of the display. 

Drawing Commands 

Now that you know the commands used to setup and maintain graphic 
screens, we can discuss rendering images in them. V1Sionary allows you to 
modify the contents of any graphic buffer whether it is currently displayed 
or not, and cut and paste images between them. 

Areas of any graphic screen are referred to using a system of X and Y 
coordinates with the zero point at the upper left corner of the screen. The 
coordinate system in Visionary screens works as follows: 

(0,0) x (m,O) 

v 

(O,n) (m,n) 

The Visionary Coordinate System 



Chapter 6: Graphics Handling 

The m value can be either 319 in low resolution, or 639 in hi-res. 

The n value for an NTSC system can be 199 for the standard display or 399 
for Interlace. 

The n value for a PAL system can be 255 for the standard display or 511 for 
Interlace. 

PALETTE 
It is possible to define and redefine the color palette within each screen you 
have open with the 

PALETTE {buffer number}, {pen number}, {R}, 
{G}, {B} 

command. This sets the Red, Green and Blue (RGB) values for the given 
pen number in the screen buffer you specify. The RGB values can take on 
any value between 0 and 15, inclusive. 

Some sample values: 
Col or R G B 
Black 0 0 0 
White 15 15 15 
Red 15 0 0 
Orange 15 8 0 
Yellow 15 15 0 
Green 0 15 0 
Blue 0 0 15 
Violet 15 0 15 
Lt. Grey 12 12 12 
Dk. Grey 5 5 5 

CO LOR 
COLOR {buffer number}, {pen number} 

command, which sets the color of all following line and rectangle opera­
tions in the given buffer to the pen number you supply. This pen number 
has 0 as a lower bound, and an upper bound that is based on the depth 
(number of bitplanes) in that screen: 

BitPlanes (Depth) Maximum pen number 
1 1 
2 3 
3 7 
4 15 
5 31 
6 15(HAM)/63(Extra Halfbrite) 

Although extra halfbrite mode displays 64 colors, only 32 of those are 
directly settable; the upper 32 are half as bright as the lower 32. 

6-5 



Aegis Visionary 

6-6 

Be warned that HAM mode is NOT easy to draw in. Read the Amiga 
Hardware Manual for more information. 

The default color in any newly-opened screen buffer is 1. 

MODE 
There are three drawing modes in Visionary graphics. They are DRAW, 
XOR, and OVERLAY. Only the first two apply to lines, rectangles and 
text. 

The format of the MODE command is: 
MODE {buffer number}, (DRAWIXORIOVERLAY) 

The DRAW mode causes all drawing operations to entirely replace the 
background, only the area behind the entity being drawn, with the new 
color or image. TEXT will be rendered with an opaque block behind the 
letters, wiping out anything they are on top of. The default drawing mode 
in all new buffers is DRAW. 

XOR, short for "Exclusive Or", mode causes the result to be a combination 
of the source and the destination. See table below. 

OVERLAY mode is used only for COPY operations, and causes any holes 
( color 0) in the source image to be transparent to the background in the 
destination image. For the LINE and RECT commands, it behaves exactly 
like DRAW mode, and for the TEXT command, it causes the text to be 
overlayed onto the background, with the background color transparent. 
See COPY. 

The following table shows the resultant image values based on the original 
destination values and the source values for each of the three drawing 
modes. 

SQurce value 
Q 1 

DRAW dest o 0 1 
value 1 0 1 

XOR dest o 0 1 
value 1 1 0 

OVERLAY dest o 0 1 
value 1 1 1 



Chapter 6: Graphics Handling 

LINE 
The simplest draw operation is the 

LINE {buffer number}, {Xl}, {Yl}, {X2}, {Y2} 

command. It causes a line to be drawn in the specified screen buffer be­
tween the endpoints (Xl, Yl} and (X2, Y2}. Single pixel POINTS can be 
drawn by supplying the same (X, Y} coordinates for both endpoints. 

RECT 
The next draw operation is 

RECT {buffer number}, {Xl}, {Yl}, {X2}, {Y2} 

which draws a rectangle in the given screen buffer between the upper left 
comer (Xl, Yl} and the lower right comer (X2, Y2}. 

TEXT 
Tuxt may also be rendered into the graphics screens with the 

TEXT {buffer number}, {X}, {Y}, 
(${stringvar}l"text") 

command. (X, Y} specifies the screen coordinates of the left side of the 
baseline of the text, which is the bottom of the normal characters, excluding 
characters with descenders, like j's and g's. The text string may contain the 
same inline-formatted variable values as for the text screen command "T", 
but ANSI codes for text style changes will not work. 

PIXEL 
This command reads the pen color of the indicated graphics buffer at the 
designated x,y position and stores it in the integer variable given. 

PIXEL {buffer#} {x}, {y}, {int_variable} 

Block Transfer Commands 

We have covered all of the rendering operations except those used in copy­
ing image blocks between screen buffers. 

COPY 
Visionary allows you to move whole images about in memory easily and 
quickly. This is done with the command 

COPY {source buffer}, {Xl}, {Yl}, {X2}, 
{Y2}, {dest. buffer}, {X}, {Y} 

which frames a block with the upper left corner at (Xl,Yl}, the lower right 
corner at (X2,Y2} in the source buffer, and then copies that whole image to 
the coordinates (X,Y} in the destination buffer. If the values specified 

6-7 



Aegis Visionary 

6-8 

would cause the box to overlap the edges of the screens, the block's size is 
automatically cut down. 

! This operation will fail if the source buffer and the 
destination buffer do not have the same number of 
bitplanes (depth). Usually the source and destination 
buffers will have the same video modes, though this 
is not required. 

DRAW and XOR modes are very straight-forward-just give the command. 
If you have the memory, the screens will be handled as you direct. For 
OVERLAY mode, however, you will first have to execute a MASK com­
mand. 

MASK 
This Mask is used by the system to decide how to make color 0 transparent. 
What really happens during an OVERLAY COPY is that the source image 
block is manipulated in a hidden buffer to produce a Mask which specifies 
each pixel that contains color 0. 

Since only you know how big your COPY operations will be, it is left up to 
you to perform at some point in the setup of your game the 

MASK {buffer number} 

command, which tells the system to build this mask image in the pre-allo­
cated buffer you specify. This buffer must be at least as large as the largest 
block you wish to COPY. It must not only have the same X and Y extent, 
but it must also have the same number of bitplanes. It may have the same 
resolution, although this is not required. 

Video Effects Commands 

Visionary also provides a number of facilities for color-cycling and for 
making nice transitions from screen to screen. 

CYCLE 
Many paint programs such as Aegis SpectraColor and Deluxe Paint allow 
the artist to specify color ranges that will be "color cycled" to create some 
effect. Visionary reads the color-cycling information from the IFF image 
file and puts it under the programmer's control with the command 

CYCLE (ONIOFFIONCEIRESTORE) 



Chapter 6: Graphics Handling 

CYCLE is a command that operates globally- any currently displayed 
screen will be affected if it has active color ranges. If no graphic screen is 
being displayed, no effect will be seen. 

Setting Description 
ON Activates color cycling 
OFF Deactivates color cycling 
ONCE Causes one "tick" of the clock which counts down 

toward the next color cycle. Slower cycle ranges 
may not move Immediately. 

RESTORE Returns the original color palette to the current 
image, including any changes made with the 
PALETTE command. 

DISSOLVE 
One of the most flexible transitions is the 

DISSOLVE {from buffer}, {to buffer}, {type} 

command, which causes a form of pixel dissolve between two graphic buf­
fers, actually changing the contents of the "to" buffer, which should be the 
one currently being displayed. 

' • The two buffers MUST be of the same depth and 
dimensions, though they needn't have the same video 
modes or color palettes. The "from" buffer's palette 
will be copied to the "to" buffer when the operation 
finishes. 

With {type}, you can specify a particular dissolve type. This must be a 
value between 1 and the number of bytes in a single bitplane of the image, 
minus one: 

Resolution Bytes per bitplane Maximum Type value 
NTSC 

320 x 200 8000 7999 
320 x 400 16000 15999 
640 x 200 16000 15999 
640 x 400 32000 31999 

PAL 
320 x 256 10240 10239 
320 x 512 20480 20479 
640 x 256 20480 20479 
640 x 512 40960 40959 

The general formula for the maximum type value is (X I 8) "' Y - 1. 

6-9 



Aegis Visionary 

6 -10 

The dissolve type specifies the order in which the bytes in the "from" image 
are to be moved. Because of the way this works, no even values or multi­
ples of 5 are allowed; they will not transfer the entire image. 

A value of 1 will cause a top-to-bottom wipe. If the maximum type value is 
used, a bottom-to-top wipe will occur. Other values to try include 3, 7, 11 
and Maximum 'fype value divided by 2 and rounded up to be odd, although 
any odd value not divisible by 5 will work. 

FADES and SCROLLS 
Color fades are also possible with VtSionary. The 

and 

FADETO {buffer number}, {R}, {G}, {B}, 
{delay} 

FADEFROM {buffer number}, {R}, {G}, {B}, 
{delay} 

commands allow you to send the entire color palette of any screen, dis­
played or hidden, to and from the Red, Green and Blue values specified­
see the color table in the description of the PALETTE command. Between 
each of the 15 color changes comprising the fade, the computer will pause 
for the number of vertical blanks indicated by {delay}. A vertical blank is 
1/60th of a second for NTSC machines and 1/50th of a second for PAL 
machines. A value of 0 for delay will make the change happen instan­
taneously. 

SCROLLTO 
The 

SCROLLTO {buffer number}, {X}, {Y} 

command allows Visionary to perform larger-than-page scrolling. Given a 
low-resolution, non-Interlaced screen is larger than 320 x 200, SCROLLTO 
allows you to specify the coordinates within the screen that are to be dis­
played at the upper left corner of the display. If values given would put the 
lower right corner of the screen too far into the center of the screen, they 
are cut down so that the screen never scrolls off the display. This can be 
done to hidden buffers as well as the one currently displayed. 



Chapter 6: Graphics Handling 

Graphic Interaction Commands 

What would all of these great commands be worth if the player could not 
communicate with the game graphically? 

CLICK 
Visionary supports mouse interactions by allowing the programmer to 
specify that up to 50 regions on the screen are buttons to be pressed by the 
player clicking on them with the left mouse button. 

CLICK {button number}, {Xl}, {Yl}, {X2}, 
{Y2}, (subroutinelobjectlroorn) 

allows you to set, as a button number specified by a value between 0 and 
49, a rectangular region defined by the upper-left corner {Xl,Yl) and the 
lower-right corner {X2, Y2) which will react in a defined way to a mouse 
click. Following that can be the name of a Visionary Subroutine, an Object 
or a Room. 

When the player clicks in this zone, whatever code or subroutine block 
name you specified will be executed. The graphical region will not auto­
matically change visibly when the player clicks the button. 

Buttons remain active until they are removed or redefined. Buttons are 
also prioritized; that is, they can overlap each other and create more-com­
plex interactions. For example, suppose you want several buttons on the 
screen, so that the player can click on these for actions. Suppose also that 
you want the entire screen to be considered a button. Visionary graphic 
buttons are numbered 0 through 49. In the same order, the system checks 
each button's bounds when a mouse-click occurs. With the following 
CLICK definitions: 

CLICK 0, 10, 11, 70,20, ActionHit 
CLICK 1, 10,30, 70,40, ActlonEat 
CLICK 2, 10,50, 70,60, ActlonGrab 
CLICK 3, 0,0, 319, 199, ScreenPressed 

the first three CLICK commands define the action buttons, and the fourth 
sets up a lower priority, higher number button that treats the entire screen 
as a click zone, calling the subroutine, ScreenPressed, when the player 
clicks on any region within the screen but not within one of the action but­
tons. 

There are many possible uses for screen buttons. Following the lead of 
loom Simulations"' games like ShadowGate"' and Uninvited"', there could 
be a small box with the current scene in it, with the scene clickable and 
objects within the scene clickable. We could also have an on-screen com­
pass with the current valid directions highlighted and clickable. 

6 -11 



Aegis Visionary 

6 -12 

Except for considerations of priority, buttons do not have to be defined in 
any particular order. If you like, you can define button number 49 without 
first defining buttons 0 through 48, for example. 

READBUTTONS 
The READBUTTONS command checks for mouse clicks and executes 
them. During a WHILE execution, buttons are not read. Use of EMPTY 
after the Readbuttons command empties the mouse-click input queue. 

READBUTTONS [EMPTY] 

REMOVE 
The command 

REMOVE {button number} 

will deactivate the given button. 

Graphics-Related Variables 

Visionary automatically declares some graphics-related variables for your 
use. They are READ-ONLY variables (their values may not be set by you, 
only read) that deal with the player's input. 

Button Pressed 

This variable contains the value 0 .. .49, the number of the graphics button 
most recently pressed by the player. It will contain a value of 1000 until the 
player first a button. 

LeftButton 

This variable will always contain a 1 or a 0, depending on the state of the 
left mouse button. If the player is currently holding it down, LeftButton 
will be a 1. Otherwise, LeftButton will contain a 0. 

MouseX 

This variable will always reflect the mouse pointer's X position on the 
screen. This value is relative to the upper-left comer of the graphics screen 
if there is one open, or the text screen of there is NOT a graphics screen 
open. The value will be in the range of 0 to whatever the maximum X value 
is for the type of graphics screen you are displaying, or 639 for the text 
screen (See the figure in section III, "Visionary Graphics: Drawing Com­
mands"). If there is only the text screen open, and the player pulls the 
screen down, weird values may result if this variable is referenced when the 
player moves the mouse above the text screen. 



Chapter 6: Graphic• Handling 

MouseY 
This variable always reflects the mouse pointer's Y position on the screen, 
using the same criteria as MouseX, above. 

6 -13 



Aegis Visionary 

6 -14 



Chapter 7: Audio Commands 

Introducing Audio 

Sound is another important element in games. It can be used to establish 
mood, to introduce clues to the player, and to surprise the player. 

Internally, Visionary supports playback of sampled or digitized sounds 
using the Amiga's stereo sound output. You have a channel for playback to 
the left speaker and one for playback to the right speaker. 

Many products are available to sample sound and edit the resulting sound 
file on the Amiga Computer. One such product is the Aegis Audio­
Master"' series sound-editing software. With AudioMaster you can repli­
cate length sound samples using the looping feature, and save disk space. 
If you need digitizing hardware, the Aegis SoundMagic"' product will give 
you outstanding quality sound and it includes AudioMaster as well. 

The Visionary audio commands are: 
• Load Sound 
• Play Sound 
• Stop Sound 
• Unload Sound 

Audio Command Summary 

Visionary gives you a maximum of 25 sound buffers. You can load a maxi­
mum of 25 sound samples into memory at any given time. The sound buf­
fers are numbered 0 through 24. 

Visionary supports four commands for handling sound samples. They work 
with any IFF-SSVX sampled sound file smaller than 128K. 

LOAD SOUND 
The LOAD SOUND command causes the system to load into the given 
sound buffer number the specified IFF-SSVX file. The sound file can be 
named either explicitly or in a string variable. 

LOAD SOUND {buffer t}, 
(${stringvar}l"filename") 

Examples: 
LOAD SOUND O, $AudFile ;loads buffer 0 with 

the filename in the string variable 
LOAD SOUND AudBuf, 
"SOUNDS:Thuds/Scream.SND" 



Aegis Visionary 

7-2 

If there is an error, as when the file is not being accessible or there is not 
enough memory, the command will abort and the sound will not be loaded. 

PLAY SOUND 
Once a sampled sound has been loaded into memory, it can be played. 
This is accomplished with the PLAY SOUND command. 

PLAY SOUND {buffer t}, {channel t}, 
{iterations}, {volume}, {period} 

The channel number is expected to be either 0 or 1. The 0 is the left 
speaker, 1 indicates the right speaker. 

The {iterations} value specifies the number of times you want the sound to 
be repeated. If you supply a value of 0, the sound will be repeated forever, 
or until it is halted with the STOP command. 

The {volume} can be set to any value between 0 and 64. A value of 0 is 
"volume off'', while 64 is full volume. 

PLAY SOUND expects you to supply a {period} setting. Indirectly, this is 
a value that determines the frequency, or pitch, of the sound. Technically, 
considered at the hardware leve~ it is a measure of the number of "bus 
cycles" to wait between pumping out a new sample - so the smaller the 
value, the higher the pitch will be. 

The system imposes a lower limit for the {period} of 124. The sound will 
be reduced to little more than rumbles and clicks with any value over 1500, 
so any value in this range U4 to 1500 is probably desirable. A period of 0 
will use the sound's natural pitch. For more information on the correlation 
between sampling period and sampling frequency, see the Amigo Hardware 
Manual. 

If a sample is already playing on the selected channel when this command 
is issued, the old sound will stop playing and the new sound will start. 

STOP SOUND 
Once a sound has started playing on some channel, it is possible to shut it 
off in mid-stream. This is done with the 

STOP SOUND {channel t} 

command, which stops any sound currently playing on the channel number 
specified. The channel number can be either 0 or 1. 

UNLOAD SOUND 
When you are finished with a particular sound, you should remove it from 
memory to make room for other data. This is accomplished with the com­
mand 

UNLOAD SOUND {buffer t} 



Chapter 7: Audio Commands 

This will free all Chip memory associated with the sample and make space 
for other data. Once this command is run on a sound buffer, the sound 
that was in it is lost and unplayable. The buff er is then ready to hold some 
new audio sample. 

Audio Hints & Techniques 

Sound effects can help to build atmosphere in a game. Doors slamming, 
ghoulish laughter, distant screams, even the monotonous hum of computers 
or a ship's engines can all heighten the player's appreciation of the game. 

You should probably decide early in the development process just how 
many samples you are willing to deal with, since this is an issue that helps 
determine how many disks your game is going to occupy. Keep in mind 
that incessant disk access will bother the player, but that it may not be 
feasible to load all of the samples into memory at once. 

Music 
You might find that you want some music to play in the background while 
the game progresses. This might be done in two ways. 

First, you could load a looping sequence, sound sample or a snippet of 
music, and play it with an iteration count of 0. The music would then loop 
continuously in the background. 

Another option would be to get hold of a SMUS sound player and call it 
through Visionary's DOS command. Other players, like the public domain 
SoundTracker/NoiseTracker might work well, too. 

The creation of music for your game is covered in the next chapter. 

7-3 



Aegis Visionary 

7-4 



Chapter 8: Music Commands 

Adding Music 

Visionary contains some very powerful features allowing you to integrate 
music into your programs. Visionary supports MED (Music EDitor) 
MMDO song files, which are very flexible and powerful. Following is a brief 
explanation on how to set up such music. 

Finding MEO 
MED is a shareware music creation system written by Teijo Kinnunen 
which is well worth its shareware price. It should be available through the 
Fred Fish collection and many other outlets. 

Using MEO 
Though it can be a little technical, MED is an excellent tool. Not only does 
it allow the composer to play music on a MIDI keyboard and enter notes 
into the song without too many mouse and Amiga-keyboard interactions, 
but it can also play music through the MIDI port. 

MED can generate a number of different music file formats, including what 
is called the "MMDO" format, which is the one Visionary reads. We won't 
get into the details of actually creating music with MED - see the MED 
documentation for that- but we will help you save your score in the correct 
format for Visionary. 

Once your song is finished, select the FILES button in the MED window, 
and enter, in the text boxes provided, the path and filename of the new 
save-file, then select the small "SAVE" button near the top. A selection of 
file types should appear. Select "MODULE". That's all there is to it. The 
file will be saved in the Visionary-compatible "MMDO" format. 

Making Beautiful Music Together 
In your Visionary program, you must also do a few things to make the 
music happen. First you must load the song. Do this with the WAD 
SONG command. When you are ready to actually play the song, you must 
first execute a ENABLEMUSIC command. 

ENABLEMUSIC 

When the ENABLEMUSIC command is executed, any sound samples that 
are currently playing will cease. If the song contains external MIDI tracks, 



Aegis Visionary 

8-2 

you should use the ENABLEMUSIC MIDI command, otherwise you 
should use ENABLEMUSIC NOMIDI. 

Now you can execute the PLAY SONG command. When you do, the song 
will begin to play in the background. The PLAY SONG command will exit 
immediately after executing. 

When you decide you want the music to stop, simply call the STOP MUSIC 
command. The system will remember its state, and later you may call the 
CONTINUE SONG command to resume play where it left off. This will 
work even after executing a DISABLEMUSIC, followed by an 
ENABLEMUSIC command. 

When you are through with the music or want to run some sound effects, 
you must execute the DISABLEMUSIC command 

DISABLEMUSIC 

which will stop playing any song in progress and return the system to 
sampled sound mode. 

PLAY 

If you PLAY another song while a song in progress has the obvious result; 
the new song simply starts playing. 

As with sounds, it is possible to load and unload songs without being in the 
right mode (ENABLEMUSIC vs. DISABLEMUSIC). 



Chapter 9: General Commands 

General programming commands are the guts of the program. They make 
things happen. With general commands, objects are added to inventory, 
picked up and moved, rooms are linked and allowable movements to and 
from rooms are defined. 

In this chapter we will not list specific examples for each of these com­
mands. Specific examples can be in the Command Reference in Chapter 11 
under each command listing. We will give a brief description of each com­
mand in turn. 

The General Commands are: 

• CALL 
• DIRECTIONS 
• DOS 
• DROP 
• GO 
• GRAB 
• LINK 
• LOAD 
• MOVE 
• MOVEOBJ 
• PAUSE 
• PLACEOBJ 
• QUIT 
• SET 
• SPEECH 
• STOP 
• T 
• UNLOAD 
• UNSET 

CALL 
The CALL command allows Visionary to execute sub-programs or sub­
routines within the program. Sub-programs can be in the subroutine file, 
an object's code block or a room's code block. 

CALL {subroutinelobjectroom} 



Aegis Visionary 

9-2 

DIRECTIONS 
This command dictates the allowable exit directions from a room. 

DOS 
The DOS command allows Visionary to execute programs external to the 
main program. Anything typed in the DOS command expression is handled 
just as if you were entering it as a command line in the CLI or Shell. Note 
the usage of quotation marks. 

DOS (${stringvar}l"dosconunand") 

DROP 
The DROP command removes an object from the player's inventory. 

DROP {objectlexpression} 

GO 
After the Player's current turn, the player's location is changed to the given 
room or room number. 

GO {roomlexpression} 

The {expression} can be evaluated to give a result that is then used to point 
to a room by its number. 

GRAB 
GRAB adds an object to the player's inventory. 

GRAB {objectlexpression} 

LINK 
LINK causes the first room listed to be linked to the second room by the 
specified direction. If THISROOM is used, the current room will be part 
of the link command. 

LINK {roomnameiexpression}, 
{NlslEIWINEINWlsElswlulolexpression}, 
{roomnameiexpression} 

Rooms can be specified by room number, supplied as the value of an ex­
pression. 

LOAD 
LOAD enables the program to load screens, sounds, or fonts into one of 
the 25 screen buffers, 25 sound buffers, or 10 font buffers. The type of load 
to be performed must be specified. Load type defines the file type that can 



Chapter 9: General Commands 

be accepted by the LOAD command. For example, LOAD SOUND ex­
pects an IFF-8SVX file rather than an IFF-ILBM picture. 

LOAD SCREEN {expression for buffert}, 
(${stringvar}l"filename") 

LOAD SOUND {expression for buffert}, 
(${stringvar}l"filename") 

LOAD FONT {expression for buffert}, 
(${stringvar}l"filename"), {height} 

LOAD SONG {expression for buffert}, 
(${stringvar}l"filename") 

MOVE 
MOVE allows program control of the player's next move. By specifying 
one of the direction abbreviations or the number of a direction, the player 
will be moved in that direction after the current turn is over. Another turn 
will be taken to process the player's new location. 

MOVE ({NlslEIWINEINWlsElswlulolexpression}) 

MOVEOBJ 
With this command, you can let the player move objects to other rooms. If 
it is not a legal move (the current room does not have an exit in that direc­
tion) a run-time error will be displayed. The object's new position will be 
reflected by its {object} POS variable, which will be the new room number. 

MOVEOBJ {objectlexpression} 

PAUSE 
The PAUSE command will delay the execution of the next program state­
ment by the number of 1/SO's of a second specified. 

PAUSE {expression} 

PLACEOBJ 
With this command you can direct the placement of an object in a par­
ticular room. If the expression THISROOM is used, the object will appear 
in the current room. 

QUIT 

PLACEOBJ {objectlexpression}, 
{roomlTHISROOMlexpression} 

Use of the QUIT command causes the game to end after the current turn. 
QUIT [GAME) 

If the word GAME is omitted, the QUIT command also ends the whole 
session and quits the program. 

9-3 



Aegis Visionary 

9-4 

SET 
With this command, a given attribute for a room or object is set to "Y" or 
"l". For rooms, there are two system-declared attributes, DARK and 
VISITED. The SET and UNSET commands do not allow a numeric ex­
pression to be used for the room or object number. 

SET {roomlobject}, {attribute} 

SPEECH 
The speech command dictates whether entered text will be output by the 
Amiga's voice via the narrator device. The default option is OFF. 

SPEECH (ON!OFF) 

T 
The T command prints the text string which follows the T command to the 
screen. 

T {text string} 

UNLOAD 
The UNLOAD command removes an audio file, image file or font file from 
a specific buffer number. As with LOAD, you must specify which type of 
file is being removed as well as the buffer number. 

UNLOAD SCREEN {buffer#} 
UNLOAD SOUND {buffer#} 
UNLOAD FONT {buffer#} 
UNLOAD SONG {buffer#} 

UNSET 
UNSET gives a room or object attribute the value of "N" or "O". As with 
SET, the object or room number must be specifically defined, and cannot 
be given by evaluating an expression. 

UNSET {roomlobject}, {attribute} 



Chapter 10: Advanced Topics 

Advanced topics are exactly as they are described, advanced. The coding 
tricks presented here are not for the beginner. When you are starting your 
first game, you should concentrate on getting the basic down, making your 
Visionary game do what you want. Then, as you get more accustomed to 
the abilities and strengths of the VISionary language, you can add some of 
these techniques to your repertoire. 

Optimizing Visionary Code 

There are several steps that you can take to ensure that your VISionary 
program is as fast as it can possibly be. Often, there are many was to get 
something done in VISionary. Only some are better than others. 

Statement Concatenation 
Consider the following code fragments, and assume that everything else has 
been taken care of. 

IF PLAYER HAS Magic sword THEN 
COLOR mybuf, 9 -

ELSE 
COLOR mybuf, 0 

END IF 

These lines of code could be completely replaced with the following faster, 
smaller, easier-to-write statement: 

COLOR mybuf, 9 * (PLAYER HAS Magic_sword) 

Do you see why this code has the same effect? Visionary comparisons, like 
the "PLAYER HAS ... " operation, all evaluate to either 1or0. That is, the 
player either has or doesn't have the Magic_ Sword. 

The standard in programming is that "true" expressions evaluate to 1, while 
"false" expressions evaluate to 0. So the "PLAYER HAS Magic_Sword" 
expression has a value of 0 if the player doesn't have the sword, and 1 if the 
sword is currently in the player's inventory. When the expression has a 
value of 1, 9 times that expression is 9. When it equals 0, 9 times the ex­
pression is 0. 

The shorter statement allows us to set COLOR to either 9 or 0 in a single 
statement, depending on whether or not the player has the sword. If you 
are crafty enough, far more can be done with this concept. 



10 -2 

Assignment Expressions 
Assignment operators also return a value, though they do so under slightly 
different conventions. Instead of just 0 or 1, an assignment operator will 
return whatever value was stored in the integer variable on the left. For 
instance, if you were to say 

count := 5 

the whole expression "count : = 5" would return the value 5. This 

can be quite useful. For instance: 
i := j := k := 1 := 10; 

would summarily set the values of all four integer variables to 10. 

A Lot More 
Optimization of code is a practice and a puzzle in itself. There are many 
more clever ways to optimize Visionary programs through crafty program­
ming, but these are the basics. 

When you are just starting to learn the language, don't be too concerned 
with optimization - concentrate on making your program do what you want. 
As you come to be a stronger Visionary programmer, you will start to see 
ways to accomplish the same program tasks more efficiently. 

Arrays in Visionary 

An array is a contiguous list of variables under the same name. Although 
Visionary is not designed to support such a feature, storage arrays can be 
implemented. The technique used in Visionary relies on the fact that you 
can create, read to, and write from screen buffers. 

Storage Array Implementation 
Any given pixel location within a screen can hold a value from 0 to 63. 
Several pixels may be necessary to store your data, depending on the range 
of values you want to store. If you only want to store 0 and 1 (binary) 
values, 1-bitplane screen will be adequate. To store data with a maximum 
value of 12, on the other hand, you would need a 4-bitplane screen, whose 
maximum value is 15. 

The following examples demonstrate two different ways to create a storage 
array in Visionary, one using a simple one pixeVone datum arrangement, 
and a second example showing how larger data values can be stored using 
more than one pixel for each value. 



One Pixel, One Value 

Suppose we want to store 10,000 values that range from 0 to 9. A 2-
bitplane screen will only allow a maximum value of 7 to be stored, so we 
will need a screen 4 planes deep. Each index or value location in the array 
will be composed of 1 pixel. 

A low-resolution NTSC screen is 320 pixels across, and 200 pixels high. 
Since that screen provides 64,000 pixels, we know this lores screen will be 
sufficient. Each row will hold 320 values, so we will need 32 lines to hold 
all 10,000 values. 

The code details are as follows: 
SETUP: 

CREATE SCREEN {buf}, 320, 200, 4, LORES 
WRITE: (given: VALUE to store at INDEX 

position in the array) 
row := index I 320 ;get row 

address 
col := index MOD 320 ; get 

column address 
COLOR {buf}, value ;store 

value 
LINE {buf}, col,row,col,row 

READ: (given INDEX position in array, 
find VALUE at position) 

row := index I 320 ;get row 
address 

col := (index MOD 320) * 2 ; get 
column address 

PIXEL {buf},col,row,value ;get value 
SHUTDOWN: 

UNLOAD SCREEN {buf} 

Arrays with Values > 64 

Next, suppose we want to store 10,000 values with values between 0 and 
999. A 6-bitplane screen store a maximum value of 64 in a single pixel. So 
each index in the array will be stored in 2 pixels. Since 64x64 gives us a 
maximum value of 4,0% for our 2-pixel-per-datum array, we'll have plenty 
of room to store a value of 999. 

As before, we can use a 320x200 lores screen. Each row will hold 160 
values, so we will need 63 lines to store all 10,000 values. 

The code details are as follows: 
SETUP: 

CREATE SCREEN {buf}, 320, 200, 6, LORES 
WRITE: (given: VALUE to store at INDEX 

position in the array) 

10-3 



10 - 4 

row := index I 160 ;get row 
address 

col := (index MOD 160) * 2 ;get 
column address 

COLOR {buf}, value I 64 ;store 
high 6 bits of value 

LINE {buf}, col,row,col,row 
COLOR {buf}, value MOD 64 ;store 

low 6 bits of value 
LINE {buf}, col+l,row,col+l,row 

READ: (given: INDEX position in array. 
output: VALUE at pos) 

row := index I 160 ;get row 
address 

col := (index MOD 160) * 2 ;get 
column address 

PIXEL {buf},col,row,temp ;get high 
6 bits 

PIXEL {buf},col+l,row,value ;get low 
6 bits 

value := value + 64 * temp ;calculate 
final value 

SHUTDOWN: 
UNLOAD SCREEN {buf} 

READ and WRITE can be set up as subroutines so they can be accessed 
from any point in your Visionary program. 

In the multi-pixel array situation, in order to store values greater than 63 we 
can "chain" pixels together so that collectively, they represent a value. 
Since Visionary's allowed range of integers values is -32768 to 32767, it will 
never be necessary to use more than 3 pixels for a single value. Such a 
large value as the maximum allowed in Visionary could be represented as 

PIX(col,row)*4096 + PIX(col+l) * 64 + 
PIX(col+2). 

Storing Negative Numbers 
Negative number storage complicates the issue a bit. One way would be to 
say that the high-order pixel can represent a value of up to 32, with one bit 
free for the sign. So for a READ, the code would now look like this: 

PIXEL {buf},col,row,temp 
IF temp > 32 then 

temp := 32 - temp 
ENDIF 

The rest of the pixels, if any, are read as normal. WRITE for negative 
numbers could be handled like this: 

temp := value ; (/ 32)? ; add bit selection 
if necessary for > 1 pixel! 

IF value < 0 THEN 



temp := 32-temp 
END IF 
COLOR {buf}, temp 

Resetting a Range within an Array 
By drawing a rectangle with the RECT function, it is possible to initialize or 
reset the values of a whole range within the array to a certain value all at 
once. If more than 1 pixel is used to represent a value, we can use the 
LINE function to set all of the values at once. This requires that pixels of 
the same order are arranged in columns, so drawing a vertical line can set 
all of the values in that column at the same time. 

From here you can consider setting up more complex structures. VISionary 
allows you to simulate 2 or more dimensional arrays, even complex data 
structures. It's up to you. 

Handling Multiple Screens 

If you seriously intend to use graphics in your Visionary program, you will 
likely end up using multiple graphics screen, whether you use them for dif­
ferent displays, scratch or work buffers, or a combination of purposes. 

Screen Transitions 
Transitions between two static screens can be accomplished in several ways. 
If the screens you are moving between are of the same display resolution 
and depth, and have the same color palette-not necessary, but helpful­
you might want to use a dissolve. The DISSOLVE command is covered in 
the basic command discussions in earlier chapters. 

For screens that are of different resolutions or use different color palettes, 
you need a different way to transition. You could use what in video is 
called a "jump cut", an instantaneous switch to the new display. 

You might also use a color fade out/fade in combination. This might be 
accomplished with the following sequence, switching from screen buffer 0 
to screen buffer 1: 

SHOW SCREEN 0 ; displays screen 0 
SCREENMODE GRAPHICS moves the text 

screen out of the way 

FADETO 0, 15, 8, O, 5 ; visibly fades 
screen 0 to orange slowly 

FADETO 1, 15, 8, 0, 0 ; fades hidden screen 
1 to orange quickly 

SHOW SCREEN 1 ; swap in the 
completely-orange screen 1 

10 - 5 



10 - 6 

FADEFROM 1, 15,8,0, 5 ; visibly fades screen 
1 from orange slowly 

FADEFROM O, 15,8,0, 0 ; restores the palette 
from the original screen 

Another transition technique would be a flicker fade. This rapidly alter­
nates the display between the source screen and the destination screen. 
Example switching from screen 5 to screen 8: 

source := 5 
dest := 8 

i := 1 
current := source 
swapper := dest - source 
count := 31 

number MUST be odd! 
WHILE i count DO 
SHOW SCREEN current 
current := current + swapper 
swapper := 0 - swapper 

do 31 swaps-this 

; you can insert a PAUSE here if you want 
it slower 

ENDWHILE 

Multiple Images Per Screen 
When you are dealing with graphics, you might have a need for a set of 
smaller images that get swapped in and out of the display screen. You 
could perform an IFF load of each screen as the need arises, or you 
could try putting a number of such templates in a single work screen. 

This work screen could be loaded once and never displayed, and it would 
contain some set of smaller graphic blocks, like scenes or objects, or per­
haps people or frames of animation. This work screen buffer can be of 
immense proportions-just watch your Chip memory consumption. Large 
screens can be designed in programs such as Aegis SpectraColor or any 
other paint program that produces IFF images. 

When you need to access one of these blocks, use the COPY command to 
place the desired portion of the work buffer into any buffer you want. This 
technique greatly reduces disk-access time, and greatly increases the 
player's enjoyment of the game. You could extend the technique, loading in 
a large buffer of templates when the player enters a new section of the 
game, so that memory demands can be kept to a minimum. 



» As you design a work screen, be certain to write down 
the X,Y coordinates of the corners of the blocks so that 
you can COPY to the correct rectangle later. If you have 
an Image, you can load that Image Into the VCOORD 
utility and find the coordinates. 

Animation 

Animation covers not only the use of A.NIM-format animations generated 
by paint programs and rendering software, but algorithmic animation as 
well. This complex-sounding term simply means the displaying of a se­
quence of images to cause the illusion of motion. And, of course, as a 
Visionary programmer, you also have to ability to make animated graphics. 

For completely non-interactive, "canned" animation, you can use the DOS 
command to call an A.NIM player, which will play any standard IFF anima­
tion. When you need interactive animation, you must explicitly program it 
to happen. To adequately generate the illusion of motion, the "frame rate'', 
the number of images rendered per second, should be in the range of 8 to 
20. 

First, you need to decide exactly what will happen in the animation. For 
our examples, we will animate a blimp flying across the screen. You will 
find the IFF image of the blimp and all the following examples in the 
Animation_ Demo drawer on the Visionary disk. 

Blank Background 

Is the background where the animation is to happen blank, or does it con­
tain imagery? If the background is blank, the animation job is much easier. 
We need only to draw the blimp at position { objectX}, wait for some brief 
time period of time, erase the blimp's image, add some value to { objectX}, 
and repeat this process until the blimp image has reached its destination. If 
the blimp resides at (0,0) in buffer 7, and we render to buffer 0, a LORES 
screen, at Y position 30, we can do this as follows: 

background 
MODE 0, DRAW 
COLOR O, 0 

simple blit with simple 

WHILE 1-LeftButton DO 
objectx := O 
WHILE objectx < 319 AND 1-LeftButton DO 

COPY 7, o,o, 49,24, o, ObjectX,30 
draw blimp 

PAUSE 5 

10. 7 



RECT o, ObjectX,30, ObjectX+20,54 
erase blimp 

Objectx := objectx + 10 
ENDWHILE 

ENDWHILE 

This process can be made even faster, By using a self-erasing blit. This 
eliminates the need to draw a rectangle behind the blimp to erase it. The 
new program would be: 

self-erasing blit with simple 
background 

MODE O, DRAW 
WHILE 1-LeftButton DO 
objectx := O 
WHILE Objectx < 319 AND 1-LeftButton DO 

COPY 7, 0,26, 69,48, o, ObjectX,30 ;draw 
blimp 

PAUSE 5 
objectx := objectx + 10 

ENDWHILE 
ENDWHILE 

The PAUSE 5 operation in both of these programs is used so that the 
blimp's image is displayed longer than it is blank, so that flickering is 
reduced. Unfortunately, it also "chops up" the animation. For an explana­
tion of how to eliminate this problem, see double buffering, below. 

Blitter on Complex Background 

What if the background is not blank? In this case, it is necessary to 
preserve the background so that trails are not left behind the moving ob­
ject. In Visionary, this is handled with a COPY in OVERLAY mode. 

An example follows, using the same blimp flying above, except that now it is 
flying in front of "scenery''. The same buffer, 7, is also used now as a tem­
porary holding area for the image behind the blimp. Since we are render­
ing in OVERLAY mode, we need a MASK buffer, for which we will use 
buffer 6. 

~~~~~--uverlay blit with complex 
background 

CREATE SCREEN 6, 60,50,1,LORES NOLACE 
MASK 6 
MODE O,DRAW 
COPY 7, 0,152, 319,195, 0,0,18 

copy in the background 
WHILE 1-LeftButton DOl 
objectx := O 
WHILE Objectx < 319 AND 1-LeftButton DO 



COPY o, ObjectX,30, ObjectX+49,54, 7, 94, 
52 ;save background 

MODE 0, OVERLAY 
COPY 7, 0,0, 49,24, o, objectX,30 

draw blimp 
PAUSE 5 
MODE O, DRAW 
COPY 7, 94,52, 143,76, o, ObjectX,30 

restore background 
objectx := objectx + 10 

ENDWHILE 
ENDWHILE 

OVERLAY copy mode is somewhat slower than DRAW mode, but it is 
necessary in this case to get the proper merging of images. 

Double Buffering 
There is something fundamentally wrong with the sample program seg­
ments above. The problem lies in the fact that they do all of their render­
ing directly in the buffer being displayed, which can generate a great deal 
of flicker, making the animation unclean. You can get away with this in 
some situations, but how do we do flicker-free animation? 

The technique is called Double Buffering-we render to a hidden buffer 
while displaying a finished one. We then swap the freshly-rendered buffer 
into the display and modify the one we swapped out. The keeps the display 
crisp and clean, and eliminates the need for lengthy PAUSE commands that 
destroy our frame rates. 

Double buffering does have its costs, however. In order to use it, we need 
to maintain two separate sets of SA VE buffers if we animate in front of 
imagery, and two separate SA VE positions. 

The following example shows our flying blimp again, in front of a blank 
screen, modified to make use of double buffering. The two display buffers 
we will be using are buffers number 0 and 1, and the blimp still comes from 
(0,0) in buffer 7. 

MODE 0, DRAW 
COLOR 0, 0 

double buffering 

CREATE SCREEN 1,320,100,1, LORES NOLACE 
MODE 1, DRAW 
COLOR 1, 1 
TEXT 1, 0,10,"Click the left mouse button to 

exit I" 
COLOR 1, 0 
WHILE 1-LeftButton DO 
oldxl := O; 
oldx2 := O; 

10 - 9 



10-10 

objectx := o 
Step := 2 
WHILE Objectx < 319 AND 1-LeftButton DO 

SHOW SCREEN 1 ; show buffer 1 
RECT O, oldxl,30, oldx1+50,54 ; erase 

from hidden buff er 0 

objectx := objectx + step 
COPY 7, o,o, 49,24, o, ObjectX,30 

to hidden buffer 0 
oldxl := objectx; 

draw 

SHOW SCREEN 0 ; show buff er 0 
RECT 1, oldx2,30, oldx2+50,54 ; erase 

from hidden buffer 1 

objectx := objectx + step 
COPY 7, o,o, 49,24, 1, objectX,30 ; draw 

to hidden buff er 1 
oldx2 := objectx; 

ENDWHILE 
RECT O, oldxl,30, oldx1+50,54 ; 

erase from hidden 

RECT 1, oldx2,30, 

ENDWHILE 

buffer 0 
oldx2+50,54 

erase from 
buffer 1 

. , 
hidden 

This example is highly customized for this specific situation. When generat­
ing your own animation sequences, you will need to take care to have it all 
right. If you do not, you will see flickering remnants of the old images. 
The double-buffering technique is used on the Catacomb demo game in­
cluded with VISionary. Examine the source code included on that disk to 
get another example of double-buffering at work. 

Image Cycling 
Let's really get fancy- suppose we wanted to have our blimp flash the word 
"Visionary'' as it flew across the screen. This is simply a matter of changing 
which buffer-7 image we render to the display screens. The following is a 
non-double-buffered example of how that might be displayed on a screen 
with no background: 

MODE O, DRAW 
COLOR O, 0 

image cycling 

WHILE 1-LeftButton DO 
objectx := o 
Image := 0 



e 

e 
1 

·-

i. 

J 

i 
~ 
l 

l 

WHILE Objectx < 319 AND 1-LeftButton DO 
COPY 7, O,SO+Image*23, 49,72+(Image*23), 

O, objectX,30 
draw blimp 
Image := (Image + 1) MOD 4 ; set image to 

next in sequence 
PAUSE 5 
RECT O, objectX,30, ObjectX+l0,54 erase 

back end of blimp 
objectx := objectx + 5 

ENDWHILE 
ENDWHILE 

It is left to you as an exercise to modify this routine to work with double­
buffering on a screen with a background. 

These advanced graphic techniques can be combined to produced anima­
tion of anything you can conceive, and possibly some you can't imagine 
right now! 

Incorporating Player Input In a Game 

One way to make your game program appear more "friendly" is to ask the 
player's name, and then use it in the course of the game, so the program 
appears to be addressing the player directly. 

This ability to pass input from the player into a variable in the game, rather 
than simply having the game action respond to it, can be used in a variety 
of ways. For example, suppose you have a game where the wording of 
some responses during play depends on the player's gender. Perhaps you 
want the program to say "Most women wouldn't want to!" if the female 
player tries to eat a moose, but "Most men wouldn't want to!" if the player 
is male. 

The following example shows how to ask the player's name, gender, and 
age, storing these values in variables that can be used later in your program. 

;~~~~~~~~~~--

SUBROUTINE Askstats 
; following asks player's name, puts it into 

string variable $PName 
T Brave warrior, enter your name: 
GETSTRING $PName 

; following asks player's gender, puts it 
into integer 

variable Gender 
; Gender = 0 means Male, Gender = 1 means 

female 
Done = 0 
WHILE Done = 0 DO 

T Are you Male, or Female? (M/F) 

10 -11 



GETCHAR $Temp ; get the character 
UPCASE $Temp makes sure it's a capital 

letter 
COMPARE $Temp, "M", tempint 
COMPARE $Temp, "F", Gender 
IF tempint = 1 OR Gender = 1 THEN 

Done = 1 
ELSE 

T I rather doubt your gender is @$Temp • 
Try again. 

ENDIF 
ENDWHILE 

; following asks player's age, puts it into 
the integer variable PAge: 

PAge = 0 
WHILE PAge > 0 AND PAge < 112 DO 

T Brave warrior, enter your age: 
GETNUM PAge 
IF Page < 1 OR PAge > 111 DO 

T That just doesn't seem right. Try again. 
ENDIF 

ENDWHILE 

ENDSUBROUTINE 

Keep in mind that these examples are just one way to get player input- one 
rather clever adventure game started by presenting the choice of two doors 
to go through- into the gents' or the ladies' toilet. The program proceeded 
after that point on the assumption that your gender had been revealed by 
the restroom you chose! 



Chapter 11: Command Reference 

AND 
SYNTAX: 

IF {condition} AND {condition} AND {condition} THEN 

COMMENTS: 

The AND command is used when multiple conditions must be met. 

EXAMPLES: 
IF (Chamber is DARK) AND (Player HAS Lamp) 

AND (Player HAS Matches) THEN 
T Light Lamp 

END IF 

CALL 
SYNTAX: 

CALL {subroutine I object I room} 

COMMENTS: 

CALL allows the VISionary program to execute sub-programs. The name of 
the program to call can be a subroutine, object's CODE block, or a room's 
CODE block. 

EXAMPLES: 
CALL CheckifDead 
CALL Ray Gun 
CALL Hall_ Of - Magic 

CLICK 
SYNTAX: 

CLICK {button#}, {xl},{yl},{x2},{y2}, {subroutinelobjectlroom} 

COMMENTS: 

CLICK allows a new form of interaction with a Visionary program; it sets 
up a region of the graphic screen to be sensitive to mouse clicks so that 
when the player clicks in the given rectangular region, a subroutine, object 
CODE block, or room CODE block is executed. 



11- 2 

A button number must be specified, between 0 and 49, inclusive. A coor­
dinate of (xl,yl) represents the upper-left comer of the box, and (x2,y2) 
represents the lower-right corner. 

CLICK regions can be layered and prioritiz.ed. For instance, if you want 
the whole screen to be sensitive to a click, but also want smaller buttons 
elsewhere on the screen, you can declare the smaller buttons first, with 
lower button numbers, and then the whole screen as a higher button num­
ber. Since the list of regions is searched from 0 to 49 for matching regions, 
the smaller buttons will be checked first. If these tests fail- for example, 
the player wasn't clicking in the defined regions-then it will get to the full 
screen button and execute its program. 

! Each time the CLICK command Is Issued, any 
previous user-clicks In the graphics screen are 
discarded and Ignored. 

EXAMPLES: 
CLICK o, 5, 10, 100, 150, ActionHit 
CLICK 1, 52, 82, 238,182, Magic sword 
CLICK 2, 285,123, 432,192, Library 

CO LOR 
SYNTAX: 

COLOR {buffer#}, {color} 

COMMENTS: 

COLOR sets the current drawing color in the given buffer to the given 
color. The valid buffer range is 0 to 49, and the valid color range depends 
on the number of colors in the image, starting at 0 and ending at 31 at the 
MOST. 

EXAMPLES: 
COLOR O, 7 
COLOR i, linecolor 



lr-
2) 

nt 
llS 

th 

s, 
e, 
tll 

CONTINUE 
SYNTAX: 

CONTINUE SONG 

COMMENTS: 

This command causes the last MEO song to continue playing where it left 
off if the song was stopped previously. (See STOP SONG.) This command 
will work ONLY in ENABLEMUSIC mode. 

EXAMPLES: 
CONTINUE SONG 

COMPARE 
SYNTAX: 

COMPARE (${ stringvar} I "text"), (${ stringvar} I "text"), {int var} 

COMMENTS: 

This command COMPAREs the text string or string variable on the left 
with that on the right. If the first is less than the second, the integer vari­
able assumes the value of -1. If the first is larger than the second, the 
integer variable is set to 1. If the strings are equal, the variable is set to 0. 

EXAMPLES: 
COMPARE $MyName, $YourName, result 
COMPARE "Bosco Brainly", $YourName, result 
COMPARE $YourName, "Bosco Brainly", result 

COPY 
SYNTAX: 

COPY {src buf#}, {xl},{yl}, {x2},{y2}, {dest buf#}, {x},{y} 

COMMENTS: 

COPY allows the Visionary programmer to move rectangular blocks of 
graphic images around within a buffer, or from buffer to buffer. Given the 
buffer number that will be the source of the block, the rectangular coor­
dinates (xl,yl) = upper left, (x2,y2) = lower right, and the destination 
buffer number plus the offset (x,y) into that buffer, COPY will cut out the 
block of size (x2-xl + 1) wide and (y2-yl + 1) tall, clip it if necessary to fit 
into the destination buffer, and then perform the move. Here the drawing 
mode becomes very important. If it is XOR for the destination buffer, the 

11-3 



11 - 4 

block will be exclusively-ORed with the destination on a plane-by-plane 
basis. If the drawing mode is DRAW, the block will be copied verbatim. 

If, however, the mode is OVERLAY and a MASK command has been per­
formed, the source rectangle is filtered so that color 0 is transparent, so 
that when merged with the destination buffer, whatever image was in the 
destination location will show through color 0 of the copy block. This is 
especially useful for, say, drawing objects into a room. If the destination 
buffer has fewer bitplanes, only that number will be transferred. This can 
result in weird-looking images, but sometimes such an operation may be 
wanted. Please see MASK. 

EXAMPLES: 
COPY O, 100,50, 125,100, O, 200,150 
would copy a region 26 by 51 to the same 

buffer, 0. 
COPY 3, 0, 0, 10 0, 10 0, 3, 0, 0 
would copy a region 101 by 101 from buffer 

0 to buffer 3. 

CREATE SCREEN 
SYNTAX: 

CREATE SCREEN {buf#}, {x}, {y}, {d}, (HIRESjLORESjLACEI 
NO LACE I HAM I HALFBRITE) 

COMMENTS: 

CREATE SCREEN lets the programmer create a graphic screen without 
having to load an IFF image. Give it the buffer number to put the empty 
screen into, x,y represent the dimensions of the screen, choices for X are 
320 or 640, choices for Y are 200 or 400 for NTSC, 256 or 512 for PAL. D 
represents the depth of the image, 1 to 6. 6 only applies for HALFBRITE 
and HAM, and 4 is the maximum for a HIRES screen. You may use ANY 
combination of the mode words, but if contradicting ones, such as WRES 
and HIRES, are used together, only the last one will be used. The screen 
defaults to LORES NOLACE. 

If there is not enough memory available, the Error variable will be set to a 
NON-ZERO value. 

NOTE: The X and Y sizes of screens are only suggestions; you may use a 
screen of any dimensions you like. 

EXAMPLES: 
CREATE SCREEN 0, 320,200, 6, HAM 
CREATE SCREEN 1, 640,400, 3, HIRES LACE 
CREATE SCREEN i+2, 34, 119, 6, LORES NOLACE 

HALFBRITE 



CYCLE 
SYNTAX: 

CYCLE (ON I OFF I ONCE I RESTORE) 

COMMENTS: 

This command determines the state of color cycling as defined by the paint 
program in which the image was originally rendered. If ON is used, up to 8 
active color cycling ranges, if there are any, will cycle at their intended 
speed. If OFF is used, any current color cycling will cease, and the colors 
will stay where they are. If ONCE is used, the cycling clock will "tick" 
once. This means that if the color ranges have the maximum speed, the 
colors will move once, but if the range is slower, the tick will count toward 
making the next color switch. If RESTORE is used, the palette will return 
to the default colors, useful after finished cycling. The cycling takes place 
only for the currently displayed buffer, if any. 

EXAMPLES: 
CYCLE ON 
CYCLE OFF 
CYCLE ONCE 
CYCLE RESTORE 

DIRECTIONS 
SYNTAX: 

DIRECTIONS {room I expression}, (NI SI EI WI NE I NW I SE I SW I 
U ID I {expression}) 

COMMENTS: 

This command causes the exits from the given room or room number to be 
only those listed after. If no direction abbreviations are given or the ex­
pression evaluates to 0, the room will have no exits. Any number of exits 
may be specified with this command, and in any order. If a numeric ex­
pression is used for the directions list, the bear in mind that N represents 
bit 0 and D represents bit 9, so the range of values is 0 through 1023. 

To include a direction, include the value in the bit set. 

EXAMPLES: 
DIRECTIONS Hall Of Magic, N u D SW 
DIRECTIONS Gun Turret, D 
DIRECTIONS Locked Cell 
DIRECTIONS GunTurret, 89 
DIRECTIONS 12, N U D SW 
DIRECTIONS i, j 

11-S 



11 - 6 

DISABLEMUSIC 
SYNTAX: 

DISABLEMUSIC 

COMMENTS: 

Turns off access to the MEO Music system, and reactivates the sampled 
sound system. This command and ENABLEMUSIC are necessary because 
the MEO Music system and the sampled sound system compete for resour­
ces, namely hardware audio channels. Therefore, it becomes impossible to 
allow both to be active at once. 

At system startup, MEO Music is OFF and sampled sounds are ON -this 
assumes Visionary could access the audio channels and no other process is 
using them. 

EXAMPLES: 
DISABLEMUSIC 

DISSOLVE 
SYNTAX: 

DISSOLVE {source buf}, {dest buf}, {add} 

COMMENTS: 

DISSOLVE does a byte or pseudo-pixel dissolve between two buffers. The 
source buff er is the one from which data is to be copied, destination buff er 
is of course the one to which the data are to be copied, and "add" is the 
dissolve type; it must assume an odd value that is not a multiple of 5. 
There is a good reason for this-just follow the rules and be happy. Also, 
the two screens must be of the same dimensions and view modes. It would 
also help for their palettes to be the same, but this is not a strict require­
ment. 

The add value represents the value that is added to the screen pointer at 
each iteration. The whole screen just won't be reached if it is even or a 
multiple of 5. The reason is that most screens are of even length. A lores 
screen is 8000 bytes (base size), a 640 x 200 screen is 16000 bytes, and a 
hires, interlace screen is 32000 bytes. 

EXAMPLES: 
DISSOLVE O, 1, 1 ; top-to-bottom wipe from 

buf 0 to 1 in lores 
DISSOLVE O, 1, 7999; bottom-to-top wipe from 

0 to 1 in lores 
DISSOLVE O, 1, 1999 ; a neat effect 
DISSOLVE O, 1, 3 an even neater effect 



DOS 
SYNTAX: 

DOS (${ stringvar} I "doscommand") 

COMMENTS: 

DOS allows the Visionary program to execute programs external to the 
main game player. This can be very useful in setting up the environment 
for the game. 

If the DOS call fails, the Error variable will be set to a non-:r.ero value. 

EXAMPLES: 
DOS "Assign PICS: mygame:pics" 
DOS "dir dhO: opt a" 

DOWN CASE 
SYNTAX: 

DOWNCASE ${ stringvar} 

COMMENTS: 

DOWNCASE shifts all alphabetic characters in the string to lower case. 

EXAMPLES: 
DOWNCASE $MyName 

DROP 
SYNTAX: 

DROP {object I expression} 

COMMENTS: 

This causes the listed object to be removed from the player's inventory. 
After that, its position variable will hold the number of the room in which 
the object was dropped. A mathematical expression may be substituted to 
represent an object number. 

EXAMPLES: 
DROP Magic sword 
DROP (i+l)-

11-7 



11 - 8 

ELSE 
SYNTAX: 

ELSE 
see also IF 

COMMENTS: 

When previous conditions in an IF or ELSIF command fail, then the com­
mands following the ELSE command are executed. 

EXAMPLES: 
IF (Chamber is DARK) THEN 
T Turn on light switch. 
ELSE 
GO closet 

ELSIF 
SYNTAX: 

ELSIF {condition} THEN 
see also IF 

COMMENTS: 

Like IF, ELSIF can accept any legal Visionary expression as a condition. 
AND and OR commands can also be used with the condition expressions. 
The ELSIF statement always ends with THEN. 

EXAMPLES: 
ELSIF (Magic sword IN INVENTORY) THEN 
T You can slay dragon. 

ENABLEMUSIC 
SYNTAX: 

ENABLEMUSIC (MIDI I NO MIDI) 

COMMENTS: 

ENABLEMUSIC turns on the MEO Music system and deactivates the 
sampled sound system. See OISABLEMUSIC for details about why MEO 
is disabled. The only parameter, MIDI or NOMIDI, selects whether the 
system should seize access to the serial MIDI device and play instruments 
through the keyboard(s) or sequencer(s) present. That is, some MEO 
songs have built-in MIDI information, allowing them to play up to 20 chan­
nels simultaneously, including the Amiga's 4 internal voices. 



It is generally best not to use MIDI, unless you are certain that the song 
you want to play uses it. If it doesn't, nothing will happen outside the 
Amiga's voices. 

NOMIDI is the default; if this parameter is left blank, NOMIDI will be 
assumed. 

EXAMPLES: 
ENABLEMUSIC 
ENABLEMUSIC NOMIDI 
ENABLEMUSIC MIDI 

END 
SYNTAX: 

END 

COMMENTS: 

When an END command is used, the program stops executing the current 
section of code and returns to the main program. END can be used with 
many other commands including IF and WHILE. 

EXAMPLES: 
IF (chamber is DARK) THEN 

T strike a Match 
ENDIF 

FADEFROM 
SYNTAX: 

FADEFROM {buffer}, {r}, {g}, {b}, {delay} 

COMMENTS: 

FADEFROM is to be used after a FADETO. It restores the color palette 
to the values that existed before a FADETO over 15 iterations and waits 
the specified amount of time in jiffies between iterations. A delay of 0 will 
make the whole thing happen almost instantaneously. 

One of these must be performed for every FADETO if you want to get 
your original color palette back. See FADETO for more info. 

EXAMPLES: 
FADEFROM mybuf, 0,0,0,20 ;returns the 

palette from black in 5 seconds. 

11-9 



11-10 

FADETO 
SYNTAX: 

FADETO {buffer}, {r}, {g}, {b}, {delay} 

COMMENTS: 

FADETO sends all of the colors of the given buffer to the specified R, G, B 
(red, green, blue) values over 15 iterations. It also waits the specified time 
in jiffies between iterations. 

This should not be done more than once before a FADEFROM operation 
is performed; the system memorizes the color palette at the beginning of 
this operation as the colors to return the display to during a FADEFROM. 
If you fade to black twice, you will lose the color palette until you do a 
CYCLE RESTORE when that screen is active. 

If this sounds convoluted, it really isn't. Fades can happen in buffers that 
are not visible-this makes the fade transition possible. 

EXAMPLES: 

FONT 
SYNTAX: 

FADETO O, 15, 15, 6, 4 ; sends colors to 
light yellow in 1 second. 

FONT {screen buffer}, {font number} 

COMMENTS: 

FONT allows you to set the text font in the specified graphics buffer to be 
set to the font number specified. The screen buffer must be in the range of 
0 to 24, and the font buffer must be in the range of 0 to 9. Font buffer 0 
always starts out with the default Topaz 8 font, and font buffer 1 always 
starts out with the default Topaz 9 font. 

EXAMPLES: 
FONT myscreen, 2 
FONT O, 0 



GETCHAR 
SYNTAX: 

GETCHAR ${stringvar}[, WAIT) 

COMMENTS: 

GETCHAR stops program execution to let the player enter a single 
keypress. That key is then stored in the given string variable, and program 
execution resumes. No characters are echoed to the display. 

If the word WAIT follows the command, Visionary will pause until the user 
presses a key. If the word WAIT is not present, Visionary will simply test 
for a key being pressed. If a key was pressed, its value will be passed out as 
normal, but if a key was not pressed, GETCHAR will return a value of 0 , 
since an empty string has a length equal to 0. 

Special keys, like the functions keys Fl through FlO, the arrow keys and the 
HELP key are mapped to special values, as follows: 

KEY NAME ASCII VALUE 
Up Arrow 128 
Down Arrow 129 
Left Arrow 131 
Right Arrow 132 
HELP 130 
F1 133 

F10 

EXAMPLES: 
GETCHAR $AChar 

142 

GETCHAR $Myinput, WAIT 

GETPALETTE 
SYNTAX: 

GETPALETIE {buffer}, {color}, red_var, green_var, blue_var 

COMMENTS: 

GETPALETIE allows a Visionary program to find out what red, green, 
and blue color values are currently in a given color or pen number in a 
given buffer. Buffer values range from 0 to 24, the valid color range is 0 to 
31, regardless of the number used in the buffer, and the red, green, and 
blue components of that color, having a value from 0 to 15, will be stored in 
the given integer variables. 

11-11 



11-12 

! You must supply three integer variables in which the 
Red, Green and Blue color values will be stored. 

EXAMPLES: 
GETPALETTE 0, 5, r,g,b 
GETPALETTE mybuf, colornum, red, green, blue 
GETPALETTE i, j, k, 1, m 

GETNUM 
SYNTAX: 

GETNUM {int var} 

COMMENTS: 

GETNUM stops program execution to let the player enter an integer num­
ber on the command line. The value is then put into the given integer 
variable, and execution resumes. The number is echoed to the display as it 
is typed. 

EXAMPLES: 
GETNUM AValue 

GETSTRING 
SYNTAX: 

GETSTRING ${ stringvar} 

COMMENTS: 

GETSTRING stops program execution to let the player enter a text string 
on the command line. The string is then put into the given string variable, 
and execution resumes. The string is echoed to the display as it is typed. 

EXAMPLES: 
GETSTRING $PlayerName 



D-

it 

GHOST 
SYNTAX: 

GHOST (${ stringvar} I "text")[, TURN] 

COMMENTS: 

GHOST causes the text of the given string variable or the given literal 
string to be interpreted by the command line interface as one of the 
player's commands. This can be very useful. 

If the command is not recognized, the Error variable will be set to a non­
uro value. 

If the word TURN follows the command string or variable, then Visionary 
will immediately execute all relevant programs, including the current room, 
all objects in the current room, and all NPCs. This allows games to fetch 
keyboard input in, say, a graphics screen, skipping the normal input 
facilities, and still be able to "take a turn" like the standard facilities. The 
"Moves" variable will not be incremented. Also, if the command string is 
null, i.e. its length is 0, GHOST will not do anything, whether TURN is 
specified or not. 

EXAMPLES: 
GHOST $Command 
GHOST "QUIT Y" 
GHOST "SAVE DHO:games/@$PlayerName " 
GHOST "INVENTORY" 
GHOST $Command, TURN 

GO 
SYNTAX: 

GO {room I expression} 

COMMENTS: 

GO causes the player's location to change to that of the given room or 
room number after the current turn. Another turn will take place to 
process the player's new location. 

EXAMPLES: 
GO Hall Of Magic 
Go Elevator 

11-13 



11 -14 

GRAB 
SYNTAX: 

GRAB {object I expression} 

COMMENTS: 

This causes the listed object to be placed in the player's inventory. Its POS 
variable will thereafter hold the value of -1. A mathematical expression 
may be substituted to represent an object number. 

EXAMPLES: 
GRAB Magic sword 
GRAB 7 -

IF 
SYNTAX: 

IF {condition} THEN 

[ELSIF {condition} THEN] 

END IF 

COMMENTS: 

The IF statement allows a program to decide which sections of code it will 
execute. The {condition} can be any legal VtSionary expression. Legal ex-
pressions are: 

{const} 
{var} 
{expression} * {expression} 
{expression} I {expression} 
{expression} MOD {expression} 
{expression} + {expression} 
{expression} - {expression} 
{expression} < {expression} 
{expression} < = {expression} 
{expression} = {expression} 
{expression} > = {expression} 

(simple constant) 
(simple variable) 
(multiplication) 
(division) 
(modulus) 
(addition) 
(subtraction) 
~ess than comparison) 
(less than or equal comparison) 
(equal to comparison) 
(greater than or equal 
comparison) 

{expression} > {expression} (greater than comparison) 
{expression} # {expression} (not equal to comparison) 
{object I PLAYER I expression IN THISROOM I expression} 

(is object in room comparison) 
PLAYER HAS {object I expression} (player has object (or object 
#) comparison) 



>n) 

'l) 

PLAYER CANGO {expression} 

{PREP I OBJNOUN I object I room} 
IS {"preposition" I object I attribute} 

{PREP I OBJNOUN I object I room} 

(can the player go a direction # 
comparison) 

(attribute comparison) 

NOT {PREPOSITION I object I attribute} (Inverse attribute 
comparison) 

(conjugate two simple 
expressions) 

{expression} AND {expression} 

{expression} OR {expression} 

{int variable} : = {expression} 

NOTES: 

(conjugate two simple 
expressions) 
(set equal to, equate) 

Some special information about these operators: 
• THISROOM, as used with the "IN" operator, implies whatever 

room the player is currently in. 
• PLAYER IN THISROOM will always return true, or 1. 
• PREP IS I NOT "preposition" will see if the player's last line 

contained the given preposition, from the list of valid 
prepositions. Note: the preposition must appear in quotes! 

• OBJNOUN IS I NOT {object}: see if the object noun from the 
player's last line was the given object. 

• PLAYER CANGO {expression}: the expression is expected to 
be a value between O and 9, inclusive, representing N, S, E, W, 
NE, NW, SE, SW, U, and D, respectively. 

Precedence 

The default order of precedence for the operators, from highest to lowest 
by line, is: 

PRECEDENCE 
1 

2 
3 
4 

5 
6 

OPERATOR($) 
*,I 
MOD 
+ -. 
<, < =, =, > =, >,#,IN, HAS, 
IS, NOT, CANGO 

AND, OR 
·­.-

As with standard math formula statements, the order of precedence may be 
changed with the use of parentheses, "(" and ")". The expression inside 
the deepest set of nested parentheses will be evaluated first. 

To negate a mathematical expression, subtract it from 0. To negate a 
boolean or logical expression, subtract it from 1. 

An IF statement may also be followed by one or more ELSIF clauses, and 
then may be followed by a single ELSE clause, if needed. 

11-15 



11-16 

EXAMPLES: 

LEFT 
SYNTAX: 

IF (health I 2 > 67) AND (PLAYER HAS 
Golden_sword) THEN 

ELSIF !-(Chamber IS DARK) OR (PLAYER HAS 
Lamp) OR (PLAYER CANGO 0) THEN 

ELSIF ((value > -5) AND (value < 16)) OR 
(value = 22) THEN 

ELSE 

ENDIF 

LEFf (${ stringvar} I "text"), {expression}, ${ stringvar} 

COMMENTS: 

LEFT, given the first text string and a count of the number of characters 
desired, moves that number of characters, up to the maximum of 79, into 
the given string variable, the last parameter. 

EXAMPLES: 
LEFT $MyName, 5, $FirstName 
LEFT "Mary had a little lamb", 10, $AString 

LENGTH 
SYNTAX: 

LENGTH (${ stringvar} I "text"), {intvar} 

COMMENTS: 

LENGTH puts the length, in characters, of the given text string into the 
given string variable. 

EXAMPLES: 
LENGTH $MyName, len 
LENGTH "Warrior", count 



LET 
SYNTAX: 

LET {variable} : = {expression} 

LET ${ stringvar} : = (${ stringvar} I "text") 

COMMENTS: 

LET allows the program to set a variable to the value of the expression 
following it, or to set the contents of a string variable. As in BASIC syntax, 
the word "LET" is optional. The same expression syntax as the IF state­
ment is used. In text strings, if a literal string is used, any of the standard 
in-line variables or codes may be used. 

EXAMPLES: 
LET count :=count I ((67 * value) MOD 16) 
LET count := result + (PLAYER IN Gun_Turret) 

* intelligence 
count := count + 10; 

LET $MyName : = "Kevin Kelm" 

LINE 
SYNTAX: 

$Title := "Hacker with a Plan" 
$PlayerName := "Bosco Brainly is the 

@$Title" 

LINE {buffer#}, {xl}, {yl}, {x2}, {y2} 

COMMENTS: 

Line draws a line in the given buffer, between the 2D points (xl,yl) and 
(x2,y2) in the current color for that buffer. 

EXAMPLES: 
LINE 0, 0,0, 319,199 
LINE i, x, y, x2, y2 

11-17 



11-18 

LINK 
SYNTAX: 

(all on the same line) 
LINK {room I TIIlSROOM I expression}, ((NI SI EI WI NE I NW I SE I SW I 
U ID) I {expression}), {room I THISROOM I expression} 

COMMENTS: 

LINK causes the first room listed to be linked in the specified direction to 
the second room listed. Room links survive whether the specified direction 
is enabled or not, and remains linked to the same room until deliberately 
changed. At game startup, if a direction was not included in the 
DEFAULT block, the direction will be linked to no room. 

EXAMPLES: 
LINK Hall Of Magic, D, Pit of Terrors 
LINK Gun Turret, o, Ammunition chamber 
LINK 17,-5, 12 

LOAD 
SYNTAX: 

LOAD SCREEN {expression}, (${ stringvar} I "filename") 
WAD SOUND {expression}, (${ stringvar} I "filename") 
LOAD FONT {expression}, (${ stringvar} I "filename"), {height} 
LOAD SONG {expression}, (${ stringvar} I "filename") 

COMMENTS: 

WAD allows the program to load screens, sounds and fonts into one of 
the 25 screen buffers, 25 sound buffers and 10 font buffers in the 
computer's memory, assuming there is enough free memory to do so. Buffer 
numbering starts at 0. 

LOAD SCREEN expects the file to be an IFF-ILBM picture of any resolu­
tion up to 640x400 and any legal Amiga display mode. 

LOAD SOUND expects the file to be an IFF-8SVX sampled sound file. 

WAD FONT expects the file to be found in the current fonts: directory. 
You must include the ".font" suffix in the filename. Only disk-based 
fonts-those that appear in the FONTS: directory-may be used. 

WAD SONG expects the file to be an MMDO-MED Music file, in which 
the first 4 bytes in file are "MMDO", and it expects a value from 0 through 9 
to be the buffer number. 

If there is any kind of error loading the entity, the Error variable will be set 
to a non-zero value. 



EXAMPLES: 
LOAD SCREEN 
LOAD SOUND 
LOAD FONT 
LOAD SONG 

MASK 
SYNTAX: 

MASK {buffer#} 

COMMENTS: 

O, up1cs:scenel" 
j+2, $EffectName 
3, uEmerald.fontw, 20 
9, uGameSongw 

MASK lets the programmer specify which graphic buffer is to be used by 
the system as a work area for generating OVERLAY COPY operations. 
The buffer specified might not exist at the time this command is issued, but 
it had better exist by the time the COPY command is issued. The MASK 
buffer must be at least as deep as the destination buffer, and it must be at 
least as large (x,y) as the block that is being moved. 

EXAMPLES: 
MASK 0 
MASK MyMaskBuf 

MENUS 
SYNTAX: 

MENUS (ON I OFF) 

COMMENTS: 

This command lets the program control whether or not the player is al­
lowed to deal with menu selections. MENUS ON is the default, but if 
MENUS OFF is used, no menus will appear in the text screen's menu bar. 
This also disables [Amiga)-0 and other keyboard combinations. 

' • Like SCROLLBAR OFF, MENUS OFF should not be 
inserted until the program Is debugged and ready to 
go. If the menus are turned off and the keyboard 
command "QUIT" is overridden, there will be no way 
to exit the program without a reboot unless the 
program makes deliberate allowance for It. 

11 -19 



11-20 

EXAMPLES: 
MENUS OFF 
MENUS ON 

MID 
SYNTAX: 

MID (${ stringvar} I "text"), {start expr}, {number expr}, ${ stringvar} 

COMMENTS: 

MID, given the source text string on the left, the starting position (in char­
acters) and the number to move, sends that portion of the string the to 
destination string variable on the right. 

EXAMPLES: 
MID $MyName, 5,5, $AString 
MID "Mary had a little lamb", 11, 6, $Word 

; word then = "little" 

MODE 
SYNTAX: 

MODE {buffer#}, (XORjDRAWjOVERLAY) 

COMMENTS: 

MODE allows the programmer to specify what drawing mode to use for 
rendering in the given buffer. XOR will cause an Exclusive-OR operation 
with the following logical function: 

XOR 
dest O 
value 1 

source 
0 
0 
1 

value 
1 
1 

0 

on a bit-by-bit, plane-by-plane basis. DRAW will cause the current color to 
be put into effect, and the drawn image will be solid. COPY commands 
will also be solid. OVERLAY acts just like DRAW in all operations except 
COPY, which then uses the MASK buffer to generate a "Blit-Mask", so 
that wherever there is color 0 in the source image, the destination image 
will show through. Please also see MASK 

EXAMPLES: 
MODE 0, XOR 
MODE 7 I DRAW 
MODE i 1 OVERLAY 



MOVE 
SYNTAX: 

MOVE ((NI SI EI WI NE I NW I SE I SW I U ID) I {expression}) 

COMMENTS: 

MOVE allows program control of the player's next move. By specifying 
one of the direction abbreviations or the number of such an abbreviation, 
the player will be moved in that direction after this turn is over, and 
another turn will be talcen to process the player's new location. If a direc­
tion that the player cannot go (because the room hasn't an exit in that 
direction), a run-time error will be generated. 

Directions can also be given as a direction number. North corresponds to 
0, South to 1, and so forth through 9, which is the same as the Down com­
mand. These move numbers are automatically mapped into the first nine 
function keys, as well. 

Move Number Function Key 
North 0 
South 1 
East 2 
West 3 
NE 4 
NW 5 
SE 6 
SW 7 
UP 8 
DOWN 9 

EXAMPLES: 
MOVE N 
MOVE SE 
MOVE D 
MOVE 3 
MOVE (j+l) / 2 

MOVEOBJ 
SYNTAX: 

MOVEOBJ {object I expression}, ((NI SI EI WI NE I NW I SE I SW I 
U ID) I {expression}) 

COMMENTS: 

This command attempts to move the given object or object number in the 
given direction or direction number from whatever room it is currently in. 
If this is not possible, as when the current room has no exit in that direc-

11- 21 



11-22 

tion, a run-time error will occur. The object's new position will be reflected 
by its position variable, which will be the new room's number. 

EXAMPLES: 
MOVEOBJ Hagic_sword, N 
MOVEOBJ Lamp, SW 
MOVEOBJ ( i+l) 1 N 
MOVEOBJ Lamp, 7 

OBJNAME 
SYNTAX: 

OBJNAME ( {room} I {expression}), ${ stringvar} 

COMMENTS: 

OBJNAME takes the name of the given object or object number, and 
pumps it into the given string variable. 

EXAMPLES: 
OBJNAHE AnObjNum, $Thatobject 

OR 
SYNTAX: 

OR 

COMMENTS: 

The OR command is used when any one of several conditions of an IF 
command can be met in order for the program to execute code following 
the THEN. 

EXAMPLES: 
IF (Player HAS Gun) OR (Player HAS Knife) 

THEN 
T slay Dragon 

END IF 



PALETTE 
SYNTAX: 

PALEITE {buffer#}, {color}, {r}, {g}, {b} 

COMMENTS: 

PALEITE allows the programmer to change the settin~ of colors in the 
active buffers, like changing a red to a cyan. The R,G,B setting must be in 
the range of 0 to 15, inclusive. 

EXAMPLES: 
PALETTE 1, O, O, 15, 15 
would set color 0 in buffer 1 to a bright 

cyan or greenish-blue. 

PAUSE 
SYNTAX: 

PAUSE {expression} 

COMMENTS: 

PAUSE will delay execution of the next statement for the number of 1/50's 
of a second specified by the expression. 

EXAMPLES: 
PAUSE 9 
PAUSE seconds * 50 

PIXEL 
SYNTAX: 

PIXEL {buffer}, {x}, {y}, {int_variable} 

COMMENTS: 

PIXEL reads the pen number or color of the indicated graphics buffer at 
the position x,y and stores it in the integer variable given. 

EXAMPLES: 
PIXEL o, 50,100, color 
PIXEL i, j,58, pen_num 

11-23 



11-24 

PLACEOBJ 
SYNTAX: 

PLACEOBJ {object I expression}, {room I THISROOM I expression} 

COMMENTS: 

This command sends the given object or object number directly to the given 
room, room number, or the player's current room if THISROOM. The 
position variable will reflect the object's new position. 

EXAMPLES: 
PLACEOBJ Magic sword, Torture chamber 
PLACEOBJ Ray Gun, Engine Room­
PLACEOBJ 17,-THISROOM -
PLACEOBJ (j-1), Library 
PLACEOBJ 12, 9 

PLAY 
SYNTAX: 

PLAY SOUND {buffer#}, {channel#}, {iterations}, {vol}, {period} 
PLAY SONG {buffer#} 

COMMENTS: 

PLAY SOUND sends the sound in the given buffer, if loaded, to the given 
channel number, 0 to 3, and plays it for the given number of iterations. If 0 
is given for iterations, the sound will repeat indefinitely. Channel 0 is for 
the left speaker, and channel 1 is for the right speaker. Volume is in the 
range 0 to 64 with 64 being loud- a value of 0 will use the sound's natural 
volume. 

Period is essentially a pitch setting; 124 is the highest possible pitch, while a 
value of 800, for example, would be really low-pitched. In theory, any value 
as high as 32767 could be used, but the sound will be mush, with lots of 
clicks and pops. In addition, a period value of 0 will use the sound's natural 
pitch. This command will work only in DISABLEMUSIC mode. 

PLAY SONG causes Visionary to play the given song, which is sequenced 
independently of the main program and therefore plays while the program 
goes on to do other things. This command will work only in 
ENABLEMUSIC mode. 

EXAMPLES: 
PLAY SOUND O, 3, 5, 1, 64, 144 
PLAY SONG songnum 



QUIT 
SYNTAX: 

QUIT[GAME) 

COMMENTS: 

If you use the command QUIT GAME, the game will come to an end after 
the current turn. 

If you simply use the command QUIT, not only will the game come to a 
halt, but the entire program will exit back to the CLI or WorkBench, 
whichever it was started from. 

EXAMPLES: 
QUIT 
QUIT GAME 

READBUTTONS 
SYNTAX: 

READBUTTONS [EMPTY] 

COMMENTS: 

If a V1Sionary program is working in a totally graphic environment, it will 
probably be necessary to continue processing the mouse interactions, that 
is, any CLICK buttons clicked on by the player. This is not done within a 
WIIlLE loop, though menus are still processed. When you want to allow 
these buttons to execute their programs, use the READBUTTONS com­
mand. It will check for clicks and execute the correct program if a click 
was in the right zone. 

If the word EMPTY follows this command, the input queue is not 
processed. Instead, the queue is emptied; any clicks the user queued up 
before the execution of this command are eliminated. This can be used 
after performing some lengthy operation so that the buttons the user idly 
pressed will not be processed. 

EXAMPLES: 
READ BUTTONS 
READBUTTONS EMPTY 

11-25 



11- 26 

RECT 
SYNTAX: 

RECT {buffer#}, {xl}, {yl}, {x2}, {y2} 

COMMENTS: 

RECT draws a solid rectangle in the given buffer number between the 
upper-left corner (xl,yl) and the lower right corner (x2,y2). 

EXAMPLES: 
RECT 12 , 10 0 , 5 0 , 2 0 0 , 7 5 

would make a rectangle in the current color, in screen buffer 12, starting at 
the location 100, 50 and which is 101 wide and 26 tall. 

REMOVE 
SYNTAX: 

REMOVE {button#} 

COMMENTS: 

REMOVE deactivates a screen CLICK button. Valid numbers for this but­
ton range from 0 to 49. 

EXAMPLES: 
REMOVE 0 
REMOVE count 

RIGHT 
SYNTAX: 

RIGHT (${ stringvar} I "text"), {expression}, ${ stringvar} 

COMMENTS: 

RIGHT takes the given number of characters from the end if the given 
source string and plugs it into the destination string on the right. 

EXAMPLES: 
RIGHT $MyName, s, $LastName 
RIGHT "Mary had a little lamb", 4, $Sheep 



ROOM NAME 
SYNTAX: 

ROOMNAME ( {room} I {expression} I THISROOM), ${ stringvar} 

COMMENTS: 

ROOMNAME talces the name of the given room, room number, or the 
player's current room if THISROOM is used, and pumps it into the given 
string variable. 

EXAMPLES: 
ROOMNAME ARoomNum, $CurrentRoom 
ROOMNAME THISROOM, $ARoom 

SCREEN MODE 
SYNTAX: 

SCREENMODE (TEXT I GRAPHICS) 

COMMENTS: 

This command allows your V1Sionary program to switch between TEXT 
display mode, in which the standard Visionary text screen is visible, or 
GRAPHICS display mode, in which whatever screen buffer was last shown 
will be visible. If no screen buffer has been shown, then this command will 
cause no visible effect until a screen buffer is shown with the SHOW com­
mand, which displays the screen buffer. 

SCREENMODE TEXT will not close a currently-displayed graphics 
screen; it will only move it behind the standard V1Sionary text screen. 

While the system normally starts up under SCREENMODE TEXT, it is 
possible to force a game into SCREENMODE GRAPHICS at the begin­
ning, after it has been linked, by linking with the -g linker option. See 
VLINK. 

EXAMPLES: 
SCREENMODE TEXT 
SCREENMODE GRAPHICS 

11-27 



11- 28 

SCROLLBAR 
SYNTAX: 

SCROLLBAR (ON I OFF) 

COMMENTS: 

SCROLLBAR gives the program control over whether or not the player 
can drag the text screen around. SCROLLBAR OFF turns off this ability, 
SCROLLBAR ON enables it. At startup, the default is SCROLLBAR 
ON. 

' • Like MENUS OFF, SCROLLBAR OFF should not be 
Inserted until the program Is debugged and ready to 
go. If the scrollbar Is turned off, you will not be able 
to drag down the game screen to acceH Workbench. 

EXAMPLES: 
SCROLLBAR ON 
SCROLLBAR OFF 

SCROLLTO 
SYNTAX: 

SCROLLTO {buffer}, {x}, {y} 

COMMENTS: 

SCROLLTO allows you to move the x,y offset into a very large screen so 
that the Amiga displays that portion of the image. For instance if you had a 
640x200 screen displayed in 320x200 resolution, the player would see the 
left haH of the whole image. By moving the upper right corner of the image 
from the default of 0,0 to 320,0, you will see the right half of the image. 
This operation can be done even on screens that are not currently visible­
when displayed they will assume the most recently-set position. Though 
you can specify an offset as large as you like, the system will not allow you 
to move the x,y position PAST the point where you would see garbage on 
the right or bottom edges of the screen. That is, in a 320x200 video mode, 
when you SCROLLTO a 640x400 image, the highest values you can specify 
for the x,y offset are 320,200. 

EXAMPLES: 
SCROLLTO 0, 320,0 
SCROLLTO i, Mousex, MouseY 



SET 
SYNTAX: 

SET {room I object}, {attribute} 

COMMENTS: 

SET causes the given attribute for the given room, or for an object which is 
present in the current room, to be SET to "Y'', or 1. For rooms, the two 
system-declared attributes, DARK and VISITED, may also be SET with 
this command. SET and UNSET are the only two program statements that 
do not allow a numeric expression to replace the room or object number. 
This is because V1Sionary has no way of knowing if an expression is in­
tended as a room or object. 

EXAMPLES: 
SET Ray Gun Broken 
SET Gun-Turret Working 
SET HalI_of_Magic DARK 

SHOW 
SYNTAX: 

SHOW SCREEN {buffer#} 

COMMENTS: 

If in SCREENMODE GRAPHICS, SHOW SCREEN causes the given 
screen buffer, if loaded, to be displayed. If an invalid buffer number, such 
as 50, is used, the display will return to text only. 

EXAMPLES: 
SHOW SCREEN 0 
SHOW SCREEN (cbuf * 2) 

SPEECH 
SYNTAX: 

SPEECH (ON I OFF} 

COMMENTS: 

SPEECH gives the program control over whether or not the Amiga's nar­
rator device is delivering speech output for all of the text printed to the text 
screen with the "T" command. At startup, the default is SPEECH OFF. 

EXAMPLES: 
SPEECH ON 
SPEECH OFF 

11-29 



11 -30 

STOP 
SYNTAX: 

STOP SOUND {channel#} 

STOP SONG 

COMMENTS: 

STOP SOUND causes any sound output on the given channel, from 0 to 3, 
to cease playback. This command will work only in DISABLEMUSIC 
mode. 

STOP SONG causes the MED song currently playing, if any, to stop. This 
command will work only in ENABLEMUSIC mode. 

EXAMPLES: 

T 
SYNTAX: 

STOP SOUND 0 
STOP SONG 

T {text string} 

COMMENTS: 

T prints the given text string to the text interface where the game player can 
see it. To modify the text's style, the following commands can be embedded 
in the text string: 

-B 
-r 
-N 
-R 
-u 

make 
make 
make 
make 
make 

following 
following 
following 
following 
following 

text bold 
text italic 
text normal 
text reversed 
text underlined 

When a - N command is issued, all the other modes are turned off. 

It is also possible to print the values of variables within the text line. To do 
so, precede the variable name with the "at" symbol "@", and follow the 
variable's name with the space character. The space following the @vari­
able will not be printed. 

EXAMPLES: 
T This is a testl 
T -uThis is an underlined (-Rand 

REVERSEDl-N-U) test11-N 
T Intelligence = @intell , constitution = 

@const , Hitpoints = @hp • 



TEXT 
SYNTAX: 

TEXT {buffer#}, {x}, {y}, "text" 

COMMENTS: 

TEXT is very similar to the "T" command, except that extra parameters are 
provided to let the programmer specify where the text is to be drawn, that 

is, which screen buff er to put it in, and where in that screen buff er the 

baseline of text is to be. The X value specifies the left-most edge of the 

text, and the Y value specifies the baseline; this is the bottom of the normal 
text, while characters with descenders like 'Y' and "~' have tails that ap­
pear below the baseline. 

The TEXT is rendered in the current font for that buffer. Each buffer 
defaults to font 0. 

EXAMPLES: 
TEXT 1,113, 40, "@$PlayerName , you have @HP 

Hit Points left." 

TEXTPALETTE 
SYNTAX: 

TEXTPALETTE {color}, {r}, {g}, {b} 

COMMENTS: 

TEXTPALETTE allows the programmer to change the settings of colors in 
the standard text screen, like changing a red to a cyan. The R,G,B setting 
must be in the range of 0 to 15, inclusive, and the color number is in the 
range 0 to 3, inclusive. 

The default text screen colors are: 
color number red 

0 8 
1 0 
2 15 
3 8 

EXAMPLES: 

green 
8 
0 
15 
0 

TEXTPALETTE 0, 0, 15, 15 

blue 
8 
0 
15 
0 

would set color 0 to a bright cyan or 
greenish-blue. 

11. 31 



11-32 

UNLOAD 
SYNTAX: 

UNLOAD SCREEN {buffer#} 
UNLOAD SOUND {buffer#} 
UNLOAD FONT {buffer#} 
UNLOAD SONG {buffer#} 

COMMENTS: 

UNLOAD causes whatever audio, image, font or song data loaded into the 
specified buff er to be de-allocated and deactivated. Valid buff er values for 
screens and sounds are from 0 to 24. Valid buffer values for fonts and 
songs are 0 to 9. 

If the currently open SCREEN is unloaded, it is removed from the display, 
which enters SCREENMODE TEXT. 

If a currently playing SONG or SOUND is unloaded, playback is stopped 
before it is removed from the system. 

EXAMPLES: 
UNLOAD SCREEN 0 
UNLOAD SOUND (count DIV 9) 
UNLOAD FONT rnyfont 
UNLOAD SONG songnurn-1 

UNSET 
SYNTAX: 

UNSET {room I object}, {attribute} 

COMMENTS: 

UNSET causes the given attribute for the given room, or for an object 
which is present in the room, to be SET to "N", or 0. For rooms, the two 
system-declared attributes, DARK and VISITED, may also be UNSET 
with this command. SET and UNSET are the only two program statements 
that do not allow a numeric expression to replace the room or object nwn­
ber. This is because Visionary has no way of knowing if an expression is 
intended as a room or object. 

EXAMPLES: 
UNSET Ray Gun Broken 
UNSET Gun-Turret Working 
UNSET HalI_of_Magic DARX 



e 
r 
:I 

:I 

UPCASE 
SYNTAX: 

UPCASE ${ stringvar} 

COMMENTS: 

UPCASE shifts all of the alphabetic characters in the string to upper case. 

EXAMPLES: 
UPCASE $MyNarne 

VALUE 
SYNTAX: 

VALUE (${ stringvar} I "text"), { intvar} 

COMMENTS: 

if the string holds an integer number, its numeric value is stored in the 
given integer variable. If an error occurs, as when the character was not 
really a valid integer, the ASCII value of the first character will be stored in 
the integer variable instead. 

EXAMPLES: 
VALUE Count, $AString 
VALUE Number, "-137" 
VALUE asciival, "hello!" 

WHILE 
SYNTAX: 

WHILE {expression} DO 

END WHILE 

COMMENTS: 

WHILE allows the code that follows it to be executed a number of times, 
repeating indefinitely until the expression in the WHILE statement is 
evaluated as "O" or "false". Every WHILE command is followed by the 
word DO after the expression of the WHILE command. 

EXAMPLES: 
count := 1; 
WHILE count < 100 DO 

T This is a test! 
count := count + 1 

ENDWHILE 

11-33 



11- 34 



Appendix A: Error Codes 

VCOMP Errors 

Probable cause and possible solution is provided for each of the following 
compiler errors. Some errors are internal errors, that is, something your 
program code is doing is inherently incompatible with the VtSionary com­
piler, even though it appears to be okay on the surface. These errors 
should seldom occur. 

Most errors have a simple solution, however, even when the probable cause 
sounds simple, finding the source may not be. Use the tools provided to 
help you find the cause- for example, a spelling error may be found by 
searching the .WRD and .XRF files. 

0: CANNOT RE-OPEN FILE. 

Probable Cause: AmigaDOS was unable to open the file for Pass 2 

Solution: This error may occur when the compiler was interrupted or when 
a file was changed after compiling. Don't use the .GAM and .WRD files, 
except with the DBUG and VLINK utilities. 

1: Undefined room. 

Probable Cause: Room not yet created or name misspelled 

Solution: Check spelling or create the room 

2: Undefined object. 

Probable Cause: Object not yet created or name misspelled 

Solution: Check spelling or create the object 

4: Undefined attribute. 

Probable Cause: Attribute not yet created or name misspelled 

Solution: Check spelling or create the atttribute 

6: Division by Zero. 

Probable Cause: An expression is divided by the constant 0 

Solution: Rework the expression 



A-2 

7: Illegal operation. 

Probable Cause: An operator in an expression was invalid 

Solution: Rework the expression 

1 o: Undefined object or room. 

Probable Cause: The room or object was misspelled or not defined 

Solution: Check spelling or define the room or object 

11: Unknown direction. 

Probable Cause: A direction was given that was not valid 

Solution: Use only the valid directions, which are N, S, E, W, Nw, NE, SW, 
SE,U,D 

12: Illegal statement. 

Probable Cause: A statement was misspelled or invalid 

Solution: Check spelling and usage, refer to manual 

13: Object name already used. 

Probable Cause: More than one instance of an object was attempted 

Solution: Rename one of the objects 

14: Object name already used as room name. 

Probable Cause: The given name was already used for a room 

Solution: Rename one of them 

15: "OBJECT' or "NPC" expected. 

Probable Cause: The first word of an object definition must be OBJECT or 
NPC 

Solution: Use the appropriate word, check spelling 

16: Attribute declared twice. 

Probable Cause: More than one instance of an attribute was attempted 

Solution: Rename one of the attributes 

17: Too many attributes. 

Probable Cause: More than 31 total attributes declared 



Solution: Reduce the number of attributes 

18: .. INITROOM" expected. 

Probable Cause: The word INITROOM was not found 

Solution: Insert it 

20: Verb llst expected. 

Probable Cause: A list of verbs was expected 

Solution: Supply them 

21: Room declared twice. 

Probable Cause: More than one instance of a room was attempted 

Solution: Rename one of the rooms 

22: "ROOM" expected. 

Probable Cause: The first word of a room def. must be ROOM 

Solution: Supply the word 

23: Cannot re-define room. 

Probable Cause: This is an internal VISionary error 

Solution: Contact Tuchnical Support 

25: Cannot open VOCAB file. 

Probable Cause: The patb/filename provided was not valid 

Solution: Check spellings 

26: ''VOCAB" expected. 

Probable Cause: The first word of a vocab file must be VOCAB 

Solution: Insert it, check spelling 

27: ·~cTION" or "ENDVOCAB" expected. 

Probable Cause: The word ACTION or ENDVOCAB was expected next 

Solution: Insert the appropriate word, check spelling 

28: ·~oVENTURE" expected. 

Probable Cause: The first word of a ADV file must be ADVENTURE 

A-3 



A· 4 

Solution: Insert it, check spelling 

29: "PASSWORD" expected. 

Probable Cause: The second line of a .ADV must be PASSWORD 

Solution: Insert it, check spelling 

30: Password string expected. 

Probable Cause: The word PASSWORD must be followed by the game 
password 

Solution: Insert one 

31: Illegal password. Try another. 

Probable Cause: The password given was not sufficient to protect the 
game- usually it is too short 

Solution: Use another, longer password 

32: Variable already declared. 

Probable Cause: More than one instance of a variable was attempted 

Solution: Rename one of the variables 

33: Cannot open file. 

Probable Cause: The path/filename given was invalid 

Solution: Check spelling and validity 

34: "ENDADVENTURE" expected. 

Probable Cause: The last word in the .ADV file must be ENDADVEN­
TURE 
Solution: Insert it 

35: Cannot open master file. 

Probable Cause: The path/filename.ADV given was invalid 

Solution: Check spelling and validity 

36: OUT OF MEMORY. 

Probable Cause: The system is out of RAM 

Solution: If multitasking, shut down some programs 



me 

:he 

N-

38: THISROOM attrlbs MUST be system attrlbs "DARK" 
or "VISITED". 

Probable Cause: DARK and VISITED are the only attribs that work with 
THISROOM 

Solution: Use only DARK and VISITED 

40: Block not ended properly. 

Probable Cause: The appropriate END for a block was not found 

Solution: Insert the appropriate ENDxxxx 

41: SYSTEM ERROR: Cannot track object Into Inven­
tory. 

Probable Cause: Internal error 

Solution: Contact Technical Support 

42: Text line is too long. 

Probable Cause: Line length may not exceed 127 characters 

Solution: Shorten the line 

43: Subroutine name already used. 

Probable Cause: More than one instance of a subroutine was attempted 

Solution: Rename one of the subroutines 

44: "SUB" or "SUBROUTINE" expected. 

Probable Cause: The first word of a subroutine def. must be SUB­
ROUTINE 

Solution: Insert it 

45: Unable to re-define subroutine. 

Probable Cause: Internal error 

Solution: Contact Technical Support 

46: Undefined code block. 

Probable Cause: 

Solution: 

A-5 



A-6 

47: Cannot open .WRD file. 

Probable Cause: An AmigaDOS error prevented access to the file 

Solution: Shut down other programs or reboot and try again 

54: ACTION list too long. 

Probable Cause: A list of verbs mey be UP TO 79 characters in length 

Solution: Shorten the line 

55: Expression too complex. 

Probable Cause: More than 50 operators or 50 operands were used 

Solution: Shorten the expression 

56: Mismatched parenthesis. 

Probable Cause: Too many "(" or ")" 

Solution: Rework expression 

57: Unknown operand. 

Probable Cause: An operand in the expression was not valid 

Solution: Check spelling and validity 

58: ")"expected. 

Probable Cause: ")" was expected 

Solution: Rework expression 

59: Expression contains incompatible operation(s). 

Probable Cause: An operator was incompatible with one of its operands 

Solution: Rework expression 

60: EQUATE expression expected. 

Probable Cause: "var : = " was expected 

Solution: Rework expression 

61: Missing operand(s). 

Probable Cause: An operator must had two operands 

Solution: Rework expression 



62: ATTRIBUTES already declared. 

Probable Cause: More than one ATTRIB block was found in the same 
room or object 

Solution: Join the two or delete one 

63: DEFAULT block already declared. 

Probable Cause: More than one DEFAULT block was found in the same 
room 

Solution: Join the two or delete one 

64: CODE already declared. 

Probable Cause: More than one CODE block was found in the same room 
or object 

Solution: Join the two or delete one 

65: Name already used as variable name. 

Probable Cause: The name used is already a declared variable 

Solution: Rename one of them 

66: NAME block already declared. 

Probable Cause: More than one NAME block was found in the same ob­
ject 

Solution: Join the two or delete one 

67: ADJ block already declared. 

Probable Cause: More than one ADJ block was found in the same object 

Solution: Join the two or delete one 

68: INITROOM already declared. 

Probable Cause: More than one INITROOM was found in the same object 

Solution: Discard one 

69: Quotation mark expected. 

Probable Cause: Either a " or a ' was expected 

Solution: Insert one 

A-7 



A· 8 

70: "SOUND"' "SCREEN"' "SONG" or "FONT' expected. 

Probable Cause: One of these four words was expected 

Solution: Check spelling 

71: Expression expected. 

Probable Cause: A numerical expression was expected but not found 

Solution: Insert one 

72: Fllename expected. 

Probable Cause: A filename was expected but not found 

Solution: Insert one 

73: "SCREEN" expected. 

Probable Cause: The word SCREEN was expected but not found 

Solution: Insert it 

74: "ON", "OFF", "ONCE" or "RESTORE" expected. 

Probable Cause: One of these four words was expected 

Solution: Check spelling 

75: "XOR", "DRAW", or "OVERLAY" expected. 

Probable Cause: One of these three words was expected 

Solution: Check spelling 

76: Screen type expected. 

Probable Cause: No screen types were found 

Solution: Add screen types 

77: "SCREEN" expected. 

Probable Cause: The word SCREEN was expected 

Solution: Insert it 

78: ENDxxx expected. 

Probable Cause: A specific END was expected but not found 

Solution: Check spelling and block structure 



:ed. 79: "ON" or "OFF" expected. 

Probable Cause: One of these two words was expected 

Solution: Check spelling 

80: Variable name expected. 

Probable Cause: The name of a variable was expected 

Solution: Check spelling 

81: String variable expected. 

Probable Cause: The name of a string variable was expected 

Solution: Check spelling 

82: Undefined variable. 

Probable Cause: An invalid variable name was used 

Solution: Check spelling and validity 

83: ": =" Expected. 

Probable Cause: The equate symbo~ ": =" was expected 

Solution: Rework expression 

84: Text literal or string variable expected. 

Probable Cause: One of these was expected 

Solution: Insert it 

85: Too many articles. 

Probable Cause: Too many articles were declared 

Solution: No more than 10 are allowed 

86: Too many prepositions. 

Probable Cause: Too many prepositions were declared 

Solution: No more than 50 are allowed 

87: Premature end of line. 

Probable Cause: More was expected on the line, but it ended 

Solution: Insert the missing stuff 

A-9 



A-10 

89: Name cannot be a keyword. 

Probable Cause: Entity names may not be the names of VISionary keywords 

Solution: Rename the entity 

90: "SONG" expected. 

Probable Cause: The word SONG was expected 

Solution: Insert it 

91: "MIDI'' or "NOMIDI" expected. 

Probable Cause: One of these two words was expected 

Solution: Use one of them 

92: uTEXT' or "GRAPHICS" expected. 

Probable Cause: One of these two words was expected 

Solution: Use one of them 

93: Unrecognized parameter. 

Probable Cause: A parameter supplied to a statement made no sense 

Solution: Check spelling and validity 

94: Literal string expected. 

Probable Cause: A quoted text string was expected 

Solution: Supply one 

1000: INTERNAL ERROR REDEFINING OBJPOS VAR. 

Probable Cause: All errors > = 1000 are internal errors 

Solution: Contact Tuchnical Support 

101 O: Precedence evaluator problem. 

1011: Illegal operation sub-type. 



ds 

DBUG Errors 

Like the VCOMP errors, finding the source of DBUG errors may be 
simple, or it may involve some real searching. The probable cause and a 
brief solution is given for each error. 

1 : Division by Zero. 

Probable Cause: The divisor evaluated to 0. 

Solution: Rework the expression or add a zero check 

2: Unable to execute DOS function. 

Probable Cause: An AmigaDOS error prevented the call of a DOS com­
mand 

Solution: Check spelling, make sure the file is present 

3: Object not in player's Inventory. 

Probable Cause: This is not necessarily an error 

Solution: Depends what you are doing 

4: Requested direction has no room linked to It. 

Probable Cause: No room was LINKed in the direction of motion 

Solution: Add a LINK statement, or amend a DIRECTIONS statement 

6: SYSTEM ERROR In Variable Formatting. 

Probable Cause: Internal error 

Solutfon: Contact Technical Support 

8: Object can't move that direction In Its current room. 

Probable Cause: No room was LINKed in the direction of motion - this is 
not necessarily an error 

Solution: Add a LINK statement, or amend a DIRECTIONS statement 

9: ELSE not found in IF block. 

Probable Cause: An ELSE was found where it didn't belong 

Solution: Remove it 

A-11 



A -12 

1 o: Illegal Statement. 

Probable Cause: Internal error or file corrupt 

Solution: 'fry a backup copy, recompile, or call Tuchnical Support 

11: Linked direction not enabled. 

Probable Cause: A LINK was made for a disabled direction 

Solution: This is not necessarily an error, but the information is included so 
you can decide if this is what you wanted to do 

12: Position variable set to Invalid room number. 

Probable Cause: An object's namePOS variable was set to a number not 
representing a valid room number 

Solution: Rework the expression 

13: Sound buffer index out of range. 

Probable Cause: Valid sound buffer range is 0 to 24 

Solution: Use a valid number 

14: Error loading sound sample. 

Probable Cause: The file could not be loaded from disk 

Solution: Check filename, also make sure it's an IFF 8SVX file 

15: Sound channel number out of range. 

Probable Cause: Valid channel number range is 0 to 1 

Solution: Use a valid number 

16: No sample in sound buffer. 

Probable Cause: No sample is loaded into that buffer 

Solution: Use a different buffer or find out why 

17: Screen buffer Index out of range. 

Probable Cause: Valid screen buffer number range is 0 to 24 

Solution: Use a valid number 

19: Buff er not active. 

Probable Cause: No screen is loaded into that buffer 



0 

Solution: Use a different buffer or find ~ut why 

20: Color number out of range. 

Probable Cause: The given screen buffer cannot support that pen number 

Solution: Use a different number, or rework expression 

21: Color setting out of range. 

Probable Cause: The given screen buffer cannot support that pen number 

Solution: Use a different number, or rework expression 

22: Click region number out of range. 

Probable Cause: Valid click region number range is 0 to 49 

Solution: Use a valid number 

23: Mask buffer not deep enough for this OVERLAY 
COPY. 

Probable Cause: Mask buffer must be as deep as SOURCE buffer 

Solution: Make mask buffer deeper 

24: Mask buffer not large enough for this OVERLAY 
COPY. 

Probable Cause: Mask buffer x,y must be as large as COPY's x,y size 

Solution: Make mask buffer larger 

25: Direction number out of range. 

Probable Cause: Valid direction number range is 0 to 9 

Solutfon: Use a valid number 

26: Dissolve screens not alike. 

Probable Cause: Screens used in a DISSOLVE must have same x,y,depth 

Solution: Modify one or both buffer dimensions 

30: Font buffer Index out of range. 

Probable Cause: Valid font buffer number range is 0 to 9 

Solution: Use a valid number 

A-13 



A· 14 

31: Could not access font. 

Probable Cause: Font could not be found in the current FONTS: directory 
or no CHIP memory 

Solution: Check filename, spelling, and size of font 

33: Error loadlng song. 

Probable Cause: A MED song could not be loaded or no memory 

Solution: Check patb/filename and spelling 

34: Song buffer not active. 

Probable Cause: No song is loaded into the given buffer number 

Solution: Use a different number of find out why 

35: Error opening MEO Music player. 

Probable Cause: The file MEDPlayer.library was not in LIBS: or another 
program is already using it 

Solution: Make sure the file is present or shut down other programs 

37: Sampled-Sound system not active. 

Probable Cause: The music system is now running; no sampled sounds may 
be played 

Solution: Use DISABLEMUSIC to allow sampled sounds to play 

38: MEO Music system not active. 

Probable Cause: The sampled-sound system is running; no songs may be 
played 

Solution: Use ENABLEMUSIC to allow songs to play 

39: No song to continue. 

Probable Cause: In a CONTINUE SONG, no song had been playing 
before 

Solution: This is not necessarily an error 

40: Font not valid. 

Probable Cause: Not font was loaded into the current font buffer 

Solution: Use a different font number or find out why 



41: Error loading screen. 

Probable Cause: The path/filename was not an IFF ILBM or no memory or 
not enough CHIP memory 

Solution: Check filename and check available memory 

42: SUBROUTINE CALL-STACK OVERFLOW. 

Probable Cause: More than 128 levels of code-block execution was at­
tempted. Should not happen without recursion 

Solution: Avoid recursion 

97: Bad Command. 

Probable Cause: The command sent to the command interpreter was in­
valid 

Solution: Check spelling 

98: Could not open Narrator device! 

Probable Cause: The file Narrator.device was not in DEVS:, or something 
already has exclusive access to the sound channels 

Solution: Check for the file, or shut down other programs 

99: OUT OF MEMORY. 

Probable Cause: No memory left 

Solution: Shut down other programs or reduce number of buffers loaded at 
the same time 

1 OOO: INTERNAL ERROR: BAD CYCLE INFO. 

Probable Cause: All errors > = 1000 are internal errors 

Solution: Call Technical Support. 

A-15 



A-16 

1001: SYSTEM ERROR: String lookup out of range. 

1002: SYSTEM ERROR: Alias lookup out of range. 

1003: SYSTEM ERROR: Object lookup out of range. 

1004: SYSTEM ERROR: Room lookup out of range. 

1005: SYSTEM ERROR: Variable lookup out of range. 

1006: SYSTEM ERROR: Adjective lookup out of range. 

1007: SYSTEM ERROR: Subroutine lookup out of 
range. 

1008: SYSTEM ERROR: String variable lookup out of 
range. 

1009: SYSTEM ERROR: in String Variable Formatting. 

101 O: SYSTEM ERROR: Vocab lookup out of range. 



Appendix B: Visionary Utility 
Programs 

LoadScreen 

LoadScreen allows the VtSionary programmer to let the player view an IFF 
image while the game loads, usually at the time of boot-up. The opening 
screen or title screen image must not be encoded. 

The command line format for LoadScreen is: 
RUN Loadscreen {filename} [-CMTxxx] 
WAIT {some number of seconds} 

The reason for two commands is that LoadScreen does not terminate after 
loading the image; it sticks around to run timers and color cycling. 

The switches are: 
c 
M 
TJOOC' 

Cycle colors 
Left mouse button exits- this is not a default! 
Timer waits JOOC' seconds and exit. 

These options may be used in any combination with each other. Note that 
there seems to be no defau1t way to exit. This is because LoadScreen will, 
by defau1t, wait for a message from the DOS command "CloseScreen", 
usually called from within the VtSionary program. In a bootable game disk, 
LoadScreen must be in the C: directory. 

CloseScreen 

CloseScreen is a DOS command that the VtSionary programmer needs to 
shut down a title screen loaded in the startup script when a game is booted. 

Its command line format is: 
closescreen {filename} 

The filename used must exactly match the filename supplied to Load­
Screen, or it will not work. 

The CloseScreen command will still work even if switches were used with 
LoadScreen to allow the user other methods of terminating the display. If 
the screen has already been closed, no action will be taken. CloseScreen is 
used as a VtSionary command, to let you close a screen that was opened 
with the LoadScreen utility. In a bootable game disk, CloseScreen must be 
in the C: directory. 



B-2 

VCODE 
VCode allows the VISionary programmer to protect his IFF images and 
sound samples from prying eyes and ears by encrypting the contents of 
those files. The program does not need to be modified in any way. VISion­
ary detects the encryption and decodes the files as needed. VCode also 
allows files to be decoded- but only by the author. 

The command line format for VCode is: 

or 

vcode {input filename} {game password} 
[{output filename}] 

vcode {input filename} -c 

In the first case, VCode will load the input file and automatically determine 
if the file needs to be encoded or decoded. The {game password} must be 
the same password found in the .ADY file for the game. If you specify the 
optional {output filename}, the processed data will be written to that file. 
Otherwise, it will be written directly over the old data in the input file. 

The second case above allows the user to supply the switch "-C" instead of 
a password. This will make VCode check to see whether the file has been 
encoded or not. No output will be generated. 

Both IFF-ILBM (image) files and IFF-8SVX sampled sound files may be 
encoded. 

VCOORD 
The VCOORD utility is run from the CU/Shell. It returns to the CLI the X 
and Y screen coordinates of the mouse pointer when you clicked the mouse 
button. These coordinates can then be used in defining click zones, 
specifying areas for graphic commands, copying images from one buffer to 
another, and any other place where a precise screen location is required. 

The command to run VCOORD is: 
VCOORD<filename>[-p] 

When the option -p is given, VCOORD will print the coordinates of the 
mouse click to the CLI window as well as displaying them on the screen. 
This gives you a separate record, since with each subsequent mouse click, 
VCOORD replaces the coordinates from the previous click in your graphic 
window. 

PrepGameDisk 

The PrepGameDisk utility formats a blank disk in dID: and installs it so that 
it will be a bootable disk, makes the directories needed for a bootable disk, 
copies the files from your system which are necessary to make a bootable 



d 
1f 
l· 

0 

> 

" 

f 

disk and then copies the files needed for every Visionary game, such as 
LoadScreen and CloseScreen, and the MED player library to the disk. 

The command to run PrepGameDisk is: 
execute PrepGameDisk 

After the utility is run, you'll want to rename the prepared disk and create 
the startup-sequence as directed in the prompts from the PrepGameDisk 
utility. You should copy the executable game file, and any commands from 
the c: directory that your game or the startup-sequence will use. Be sure to 
copy to the disk fonts: directory any special fonts your game uses as well. 

B-3 



B • 4 



* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Appendix C: The Tutorial Game 
Source Files 

The source code listings are provided for your convenience in exploring 
one solution to the tutorial game. Entering the source code line by line into 
a text editor will help you get a good feeling for how the code is developed. 
The asterisk * at the start of each new line of code is there to indicate 
which lines are new lines, and which are overlapping text from the prveious 
line. Do not enter the asterisk as part of the code. 

If you prefer, you can simply load the source code files from the 
Catacoombs disk into your text editor. The graphics and sound files for the 
tutorial game are stored on the Visionary disk. 

The Potion.ADY File 

ADVENTURE 

PASSWORD jro 

VAR 
RoomNwnber 
$f ilename 
screenx 
ScreenY 
$tx 
temp 
$temp 
$letter 
$sentence 
sentence 
TextPosition 
MaxLines 5 
countLines 
Defeat 0 
$return 

1 

0 

Potion.ADV 

room nwnber 1,2,3,4 
filename variable for loading files 
x position of current location screen 
y position of current location screen 
text string to be printed 
temporary variable for various uses 
temporary string for various uses 
single character for getstring 

; built up sentence of input 
length of the $sentence 

; position text on graphic screen 
; maximum lines in text window before pause 
; counter for lines displayed in text window 
set to 1 to defeat text window pause 
RETURN cannot be defined here 



* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

return 
$backspace 
backspace 
MainLoop 
Textcolor 
white 27 
blue 8 
green 4 
brown 23 
dummy 
val 
Buttonused 
xl ; \ 
yl 
x2 
y2 
x 
y ;/ 
GoN 13 
GoS 13 
GOE 13 
GOW 13 
GOU 13 
GOD 13 
offset -13 

* ENDVAR 

* 
* ROOM 

\ 

I 

* Potion.rooms 
* END ROOM 

* 
* OBJECT 

; BACKSPACE cannot be defined here 

main loop while variable 
8 ; default text color 

\ 
I 

palette color for white 
palette color for blue 
; palette color for green 
; palette color for brown 
dummy variable for load/save check 
value of the input character 

variables for block copies 
showing buttons depressed 

offset to add to N button, if lighted 
off set to add to s button, if lighted 
offset to add to E button, if lighted 
offset to add to w button, if lighted 
offset to add to u button, if lighted 
offset to add to D button, if lighted . offset to pop button up 
' 

* NonMovable.obj 
* Movable.obj 
* ENDOBJECT 

* 
* SUB 
* Potion.SUB 
* MainLoop.SUB 
* Startup.SUB 
* ENDSUB 

* 
* VOCAB 

C-2 



* Potion.voc 

* ENDVOCAB 

* 
* INITROOM ByTree 

* 
* ENDADVENTURE 

* 
* 
* 
* 

The Potion.ROOMS Fiie 

* 
* 
* 
* room unused 

* 
* code 
* endcode 

* 
* endroom 

* 
* 
* 
* room ByTree 

* 
* attrib 
* started N 
* endattrib 

* 
* default 
* w ByShack 
* u InTreeTop 
* enddefault 

* 
* code 

* 

Potion.rooms 

* If ByTree not started then 
* call Startup 
* endif 

* 
* RoomNumber := 1 

C-3 



* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

screenx := 0 
ScreenY := 0 
Call ReDrawscreen 
play sound 1, 0,0,40,0 
stop sound 1 

call ClearButtons 

click 34, 16,5, 40,20, 
click 35, 116,13, 186,42, 
click 36, 116,37, 147,105, 
click 37, 237,46, 247,53, 
click 38, 5,46, 249,89, 
click 39, 5,91, 249,131, 
click 40, 5,5, 249,45, 

* placeobj treetop, thisroom 
* placeobj ocean, thisroom 
* placeobj sand, thisroom 
* placeobj sun, thisroom 
* placeobj sky, thisroom 

* 

ocean 
birds 

See sun 
SeeTreeTop 
seeTreeTrunk 
seeisland 
seeocean 
sees and 
seesky 

* if thisroom not visited then 
* $tx:="You stand by a single tall palm tree." 
* call print 
* else 
* $tx:="You•re back by the tree." 
* call print 
* endif 

* 
* if ByTree not started then 
* call startUp2 
* endif 

* 
* endcode 

* 
* endroom 

* 
* 
* 
* room ByShack 

* 
* default 
* e ByTree 
* u shackRoof 

C-4 



* enddefault 

* 
* code 

* 
* RoomNumber := 2 
* screenx := 245 
* screenY := 0 
* call ReDrawscreen 
* play sound 1, 0,0,20,0 
* play sound 2, l,0,20,0 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

call ClearButtons 

click 33, 193,94, 219,110, 
click 34, 119,73, 135,86, 
click 35, 72,62, 79,71, 
click 36, 59,51, 70,65, 
click 37, 119,39, 163,69, 
click 38, 5,27, 33, 110, 
click 39, 31,35, 249,75, 
click 40, 5,73, 249,131, 
click 41, 23,5, 248,37, 
click 42, 64,37, 118, 52, 

placeobj plant, thisroom 
placeobj treetop, thisroom 
placeobj sand, this room 
placeobj sky, thisroom 

seePlant 
SeePlant 
seePlant 
seePlant 
SeeTreeTop 
seeshack 
see Dunes 
sees and 
seeSky 
seesky 

* if thisroom not visited then 
* $tx:="You are by an old run down shack." 
* call print 
* else 
* $tx:="Back by the shack." 
* call print 
* endif 

* 
* endcode 

* 
* endroomR* 

* 
* 
* room InTreeTop 

* 
* default 

C-5 



* d ByTree 
* enddefault 

* 
* code 

* 
* RoomNumber := 3 
* screenx := O 
* ScreenY := 127 
* call ReDrawscreen 

* 
* call ClearButtons 

* 
click 36, 163,98, 182,131, 
click 37, 102,95, 127,131, 
click 38, 93,58, 119,83, 
click 39, 5,86, 249,131, 
click 40, 5,5, 249,84, 

* 
* 
* 
* 
* 
* 
* 
* 

placeobj sky, this room 

* 
* 
* 

placeobj 
placeobj 
placeobj 

sun, this room 
ladderl, this room 
treetop, this room 

seeLadder 
seeLadder 
seesun 
seeTreeTop 
seesky 

* if thisroom not visited then 
* $tx:="You are sitting in the palm branches." 
* call print 
* else 
* $tx:="In the tree top." 
* call print 
* endif 

* 
* endcode 

* 
* endroomR* 

* 
* 
* room ShackRoof 

* 
* default 
* d Byshack 
* enddefault 

* 
* code 

* 
* RoomNumber := 4 

C-6 



* screenX := 245 
* screenY := 127 
* call ReDrawscreen 

* 
* 
* 
* 
* 
* 
* 
* 

call 

click 
click 
click 
click 
click 
click 
click 
click 

ClearButtons 

33, 42,15, 
34, 61,105, 
35, 179,47, 
36, 210,80, 
37, 231,86, 
38, 11,79, 
39, 50,54, 
40, 5,5, 

59,51, 
78,126, 
195,63, 
220,97, 
241,112, 
238,131, 
163,79, 
250,82, 

* 
* 
* 
* 
* 
* 

placeobj plant, thisroorn 
placeobj ladderl, this room 

* placeobj sand, thisroorn 

seeoriftwood 
SeeHole 
seePlant 
seeLadder 
seeLadder 
see Roof 
seeRoof 
see Sand 

* 
* if thisroorn not visited then 
* $tx:="You are sitting on the shack's roof." 
* call print 
* else 
* $tx:="On the roof." 
* call print 
* endif 

* 
* endcode 

* 
* endroornR* 

* 
* 

C-7 



The Movable.OBJ File 

* 
* 
* 
* object ladder 

* 
* name ladder 

* 

Movable.obj 

* adj wood, wooden 

* 
* attrib 
* Againstshack Y 
* AgainstTree N 
* endattrib 

* 
* initroom ByShack 

* 
* code 

* 
* if player has ladder then 
* $tx:=" a wooden ladder" 
* elsif ladder is Againstshack then 
* $tx:="A ladder is propped against the shack." 
* elsif ladder is AgainstTree then 
* $tx:="A ladder is propped against the tree." 
* else 
* $tx:="A wooden ladder lies here." 
* endif 
* call print 

* 
* endcode 

* 
* action get, take, grab 
* if player has ladder then 
* call Haveit 
* else 
* directions ByTree, w 
* directions ByShack, e 
* unset ladder, Againstshack 
* unset ladder, AgainstTree 
* grab ladder 
* call ReDrawscreen 
* $tx:="OK." 

C-8 



* call print 
* endif 
* endact 

* 
* action look, examine 
* $tx:="It looks old and weather-beaten. But it" 
* call print 
* $tx:="should hold you." 
* call print 
* endact 

* 
* action drop 
* if player has ladder then 
* drop ladder 
* $tx:="OK." 
* call print 
* call ReDrawscreen 
* else 
* call NoHave 
* endif 
* endact 

* 
* action put, set, lay, lean, prop 
* if player has ladder then 
* drop ladder 
* $tx:="OK." 
* call print 
* endif 

* 
* if objnoun is tree then 
* if ladder is AgainstTree then 
* call Alreadyis 
* else 
* set ladder, AgainstTree 
* ;link ByTree, u, InTreeTop 
* directions ByTree, w u 
* $tx:="It leans against the tree and leads into" 
* call print 
* $tx:="the branches." 
* call print 
* endif 
* elsif objnoun is shack then 
* if ladder is Againstshack then 
* call Alreadyis 
* else 

C-9 



* set ladder, Againstshack 
* :link Byshack, u, Shack.Roof 
* directions ByShack, e u 
* $tx:="It leans against the shack." 
* call print 
* endif 
* elsif objnoun is sand then 
* else 
* $tx:="You can't do that." 
* call print 
* endif 
* call ReDrawscreen 
* endact 

* 
* action climb 
* if ladder is Againstshack then 
* go shack.Roof 
* elsif ladder is AgainstTree then 
* go InTreeTop 
* else 
* $tx:="You can't. It's not leaning against" 
* call print 
* $tx := "anything.w 
* call print 
* endif 
* endact 

* 
* endobject 

* 
* 
* 
* object bottle 

* 
* name bottle, potion, liquid 

* 
* adj glass, magic 

* 
* attrib 
* sealed Y 
* endattrib 

* 
* initroorn InTreeTop 

* 
* code 
* placeobj cork, thisroorn 

C-10 



* if player has bottle then 
* $tx:=" a glass bottle" 
* call print 
* else 
* $tx:="A glass bottle is here." 
* call print 
* endif 
* endcode 

* 
* action look, examine, search, view 
* $tx:="You can see some liquid inside." 
* call print 
* endact 

* 
* action get, take, grab 
* if player has bottle then 
* call Haveit 
* else 
* grab bottle 
* call ReDrawscreen 
* $tx:="OK." 
* call print 
* endif 
* endact 
* 
* action drop, throw 
* if player has bottle then 
* drop bottle 
* $tx:="OK." 
* call print 
* call ReDrawscreen 
* else 
* call NoHave 
* endif 
* endact 

* 
* action open, unseal, uncork 
* if player has bottle then 
* if bottle is sealed then 
* if player has corkscrew then 
* $tx := "The cork pulls out of the bottle, and" 
* call print 
* $tx := •falls to brittle bits. A sweet aroma" 
* call print 
* $tx := •eminates from the bottle opening." 

c -11 



* call print 
* unset bottle, sealed 
* else 
* $tx := uThe cork won't come out. Maybe if youw 
* call print 
* $tx := uhad a COrkscrew?N 
* call print 
* endif 
* else 
* call Alreadyis 
* endif 
* else 
* call NoHave 
* endif 
* endact 

* 
* action drink, swallow, embibe, taste 
* call DrinkBottle 
* endact 

* 
* action break, smash, hit 
* $tx:="It won't break." 
* call print 
* endact 

* 
* 
* endobject 

* 
* 
* 
* 
* object corkscrew 

* 
* name corkscrew, screw 

* 
* adj cork 

* 
* initroom ShackRoof 

* 
* code 
* if player has corkscrew then 
* $tx:=" a corkscrew" 
* call print 
* else 
* $tx:="A corkscrew is here." 

C-12 



* call print 
* endif 
* endcode 

* 
* action look, examine, search, view 
* $tx:="The corkscrew has a blue plastic handle" 
* call print 
* $tx:="and a spiral stainless steel shaft." 
* call print 
* endact 

* 
* action get, take, grab 
* if player has corkscrew then 
* call Haveit 
* else 
* grab corkscrew 
* call ReDrawscreen 
* $tx:="OK." 
* call print 
* endif 
* endact 

* 
* action drop, throw 
* if player has corkscrew then 
* drop corkscrew 
* $tx:="OK." 
* call print 
* call ReDrawscreen 
* else 
* call NoHave 
* endif 
* endact 
* 
* endobject 

* 
* 
* 
* 

c .13 



The NonMovable.OBJ File 

* 
* 
* 
* object !nothing 

* 
* name nothing 

* 
* ini troom unused 

* 
* code 

* 

NonMovable.obj 

* if items = 1 then 
* $tx:="You have nothing in your inventory." 
* call print 
* else 
* $tx:="You carry the following items:" 
* call print 
* endif 

* 
* endcode 

* 
* endobject 

* 

* 
* object sand 

* 
* name ground, floor, sand, dirt 

* 
* initroom unused 

* 
* code 
* endcode 

* 
* action look, examine, search 
* $tx := "It's just normal beach sand." 
* call print 
* endact 

* 
* action get, take, grab 
* $tx : = "Leave the sand alone I The next thing, " 

C-14 



* call print 
* $tx := #you'll try getting the sun1• 
* call print 
* endact 

* 
* endobject 

* 
* 
* 
* object TreeTop 

* 
* name boughs, fronds, greenery, top 

* 
* adj tree 

* 
* initroom unused 

* 
* code 
* endcode 

* 
* action look, examine, search 
* $tx := nThe wide green fronds look smooth and# 
* call print 
* $tx := #feathery. Quite comfy!# 
* call print 
* endact 

* 
* action get, take, grab 
* $tx := nLeave the greenery alone.# 
* call print 
* endact 

* 
* endobject 

* 
* 
* 
* object sky 

* 
* name sky 

* 
* ini troom unused 

* 
* code 
* endcode 

c -15 



* 
* action look, examine, search 
* $tx := "The sky is clear and blue, with only a" 
* call print 
* $tx := "few white puffy clouds floating about.,. 
* call print 
* end act 

* 
* action get, take, grab 
* $tx := "It's too high. 
* call print 
* $tx := "hands up?w 
* call print 
* end act 

* 
* endobject 

* 
* 
* 
* object sun 

* 
* name sun 

* 
* initroom unused 

* 
* code 
* endcode 

* 

Why are you holding your" 

* action look, examine, search 
* $tx := "It's so bright that you hesitate to look" 
* call print 
* $tx : = "into it. But you can feel the warmth." 
* call print 
* endact 

* 
* action get, take, grab 
* $tx := "Careful!, you'll burn yourself. You" 
* call print 
* $tx : = "decide that the sun is out of reach. n 

* call print 
* endact 

* 
* endobject 

* 

c -16 



* 
* 
* object island 

* 
* name island, rock 

* 
* initroorn ByTree 

* 
* code 
* endcode 

* * action look, examine, search 
* $tx := "This appears to be a small rock island" 
* call print 
* $tx := "out beyond the surf." 
* call print 
* endact 

* 
* action get, take, grab 
* $tx : = "It's way off in the distance, out to" 
* call print 
* $tx := "sea. 
* call print 
* endact 

* 
* endobject 

* 
* 
* 
* object ocean 

* 

There's no way you can get it." 

* name ocean, water, sea 

* 
* initroorn unused 

* 
* code 
* endcode 

* 
* action look, examine, search 
* $tx := "The bright sun reflects off the clear" 
* call print 
* $tx := "blue surface of the salty waters.• 
* call print 
* endact 

* 

C-17 



* action get, take, grab 
* $tx := "You get a small amount in your hands,,. 
* call print 
* $tx := "but all it does is get your hands wet." 
* call print 
* endact 

* 
* endobject 

* 
* 
* 
* object plant 

* 
* name plant, plants, grass 

* 
* initroom unused 

* 
* code 
* endcode 

* 
* action look, examine, search 
* $tx := "The thin green beach grass waves about" 
* call print 
* $tx := •in the slight breeze." 
* call print 
* endact 

* 
* action get, take, grab 
* $tx := "It is strongly rooted, and won't come" 
* call print 
* $tx : = "up. You decide to leave it alone." 
* call print 
* endact 

* 
* endobject 

* 
* 
* 
* object dunes 

* 
* name dunes, sanddunes 

* 
* initroom Byshack 

* 

C-18 



* code 
* endcode 

* 
* action look, examine, search 
* $tx := "The sand dunes are tall and rounded." 
* call print 
* $tx := HThey look like they would be fun." 
* call print 
* endact 

* 
* action get, take, grab 
* $tx : = "You' re here, and they are over there." 
* call print 
* $tx : = "Now, how do you expect to get them?" 
* call print 
* endact 

* 
* endobject 

* 
* 
* 
* object hole 

* 
* name hole, opening 

* 
* initroom shackRoof 

* 
* code 
* endcode 

* 
* action look, examine, search 
* $tx := "You can't see anything through the" 
* call print 
* $tx : = "small weather-beaten opening." 
* call print 
* endact 

* 
* action get, take, grab 
* $tx : = "That's like trying to eat the hole out" 
* call print 
* $tx := "of a donutl Forget itl" 
* call print 
* endact 

* 

C-19 



* endobject 

* 
* 
* 
* object roof 

* 
* name roof 

* 
* initroom shackRoof 

* 
* code 
* endcode 

* 
* action look, examine, search 
* $tx := "Nothing special about this roof. Seeman 
* call print 
* $tx := "pretty secure, except for that hole.n 
* call print 
* endact 

* 
* action get, take, grab 
* $tx := "It's a bit too big to get, and besides,n 
* call print 
* $tx : = "everything' s nailed down 1 n 

* call print 
* endact 

* 
* endobject 

* 
* 
* 
* object driftwood 

* 
* name driftwood, wood 

* 
* adj drift 

* 
* ini troom shackRoof 

* 
* code 
* endcode 

* 
* action look, examine, search 
* $tx := "It's nothing special, just some oldn 

c -20 



* call print 
* $tx := "driftwood lying below." 
* call print 
* endact 

* 
* 
* 
* 

action get, take, grab 
$tx := "Leave the driftwood alone! 
call print 

Remember, " 

* $tx := "you are trying to find the magic potion I" 
* call print 
* endact 

* 
* endobject 

* 
* 
* 
* object cork 

* 
* name cork, seal, stopper 

* 
* initroom unused 

* 
* code 
* endcode 

* 
* action get, take, grab, remove, pull 
* if player has bottle then 
* if bottle not sealed then 
* $tx := "The bottle is openl" 
* call print 
* elsif player has corkscrew then 
* $tx := "The cork pulls out of the bottle, and" 
* call print 
* $tx := "falls to brittle bits. A sweet aroma" 
* call print 
* $tx := "eminates from the bottle opening." 
* call print 
* unset bottle, sealed 
* else 
* $tx : = "The cork won't come out." 
* call print 
* endif 
* else 
* $tx := "Get the bottle, first." 
* call print 

C-21 



* endif 
* endact 

* 
* endobject 

* 
* 
* 
* object tree 

* 
* name tree, palm 

* 
* adj palm, tall 

* 
* ini troom ByTree 

* 
* code 
* endcode 

* 
* action look, examine, search 
* $tx : = "It's slick brown bark leads upward to" 
* call print 
* $tx : = "the green fronds at the top." 
* call print 
* endact 

* 
* action get, take, grab 
* $tx := "Sure, I suppose you intend to pull it up" 
* call print 
* $tx : = "by the roots? No way 1 " 
* call print 
* endact 

* 
* action climb 
* $tx:="You try, but you slide back down." 
* call print 
* endact 

* 
* action chop, cut 
~ $tx:="You'll need something sharp to do that." 
* call print 
* endact 

* 
* endobject 

* 

C-22 



* 
* 
* object shack 

* 
* name shack 

* 
* ini troom Byshack 

* 
* code 
* endcode 

* 
* action look, examine 
* $tx:="It is a strange old rundown shack. It" 
* call print 
* $tx := "has no doors or windows t" 
* call print 
* endact 

* 
* action get, take, grab 
* $tx := "Since when are you strong enough to pick" 
* call print 
* $tx := "up an old shack? Don't be silly!" 
* call print 
* endact 

* 
* endobject 

* 
* 
* 
* object ladderl 

* 
* name ladder 

* 
* ini troom unused 

* 
* code 
* endcode 

* 
* action look, examine 
* $tx:="It looks old and weather-beaten. 
* call print 
* $tx:="should hold you." 
* call print 
* endact 

* 

But it" 

c -23 



* action get, take, grab 
* $tx := #Leave it there, so you can climb backw 
* call print 
* $tx := udown it. No sense bringing it up here.w 
* call print 
* endact 

* 
* endobject 

* 
* 
* 
* 
* 

C-24 



The Startup.SUB File 

* 
* 
* 

Startup.SUB 

* sub Startup 

* 
* TextPalette O,O,O,O 
* TextPalette 1,0,0,0 
* TextPalette 2,0,0,0 
* TextPalette 3,0,0,0 

* 

set all pens to black 

* scrollbar off ; also prevents front/back gadgets from being 
seen 
* menus off ; prevents right mouse button from switching to 
text screen 

* 
* $filename := "buttons .pie" 
* load screen 2, $filename 
* call LoadingError 

* * $filename := "scenes .pie" 
* load screen 1, $filename 
* call LoadingError 

* 
* $filename := "opening. end" 
* load sound O, $filename 
* call LoadingError 

* 
* $filename := "window.pie" 
* load screen O, $filename 
* call LoadingError 

* 
* $filename := "artesian.font" 
* load font O, "artesian.font",8 
* call LoadingError 
* font 0,0 ; use font 0 on screen 0 

* 
* $filename := "ocean. snd" 
* load sound 1, $filename 
* call LoadingError 

* 
* $filename := "birds.sod" 
* load sound 2, $filename 

C-25 



* call LoadingError 

* 
* color O,blue 
* $tx := " Copyright @1991 by John olsenw 
* call print 
* call BlankLine 

* 
* 
* 
* 
* 
* 

$tx := " 
call print 
$tx := " 
call print 
call BlankLine 

THE MAGIC POTION# 

by John olsenw 

* click 0,270,10,283,22,GoNorth 
* click 1,270,37,283,49,Gosouth 
* click 2,285,24,298,36,GoEast 
* click 3,255,24,268,36,GoWest 
* click 4,302,3,315,15,GoUp 
* click 5,302,45,315,57,GoDown 
* click 6,255,68,315,80,Inv 
* click 7,255,86,315,98,Get 
* click 8,255,103,315,115,Help 
* click 9,255,135,315,147,Load 
* click 10,255,152,315,164,save 
* click 11,255,169,315,181,Quit 

* 
* placeobj lnothing, thisroom 
* grab lnothing 
* directions ByTree, w 

* 
* play sound O, 0,1,64,0 
* pause 50 
* DOS "Closescreen title.pie" 

* 
* show screen 0 
* screenMode graphics 

* 
* 
* 
* 

create screen 24, 100, 100, 5, lores 
mask 24 

* end sub 

* 
* 
* 
* sub startUp2 

* 

C-26 

for overlays 



* set ByTree, started 
* set ByTree, visited 
* $tx := "A glowing green scorpion stings you on" 
* call print 
* $tx := "the ankle, and then skitters off. You" 
* call print 
* $tx := •bear it's tiny voice laughing, \34 Drink" 
* call print 
* $tx := "the magic potion before it's too late.\34" 
* call print 
* unload sound O 
* call MainLoop 

* 
* endaub 

* 
* 
* 
* sub LoadingError 

* 
* if error > 0 then 
* t \027[32m ; select pen 2 
* TextPalette 2,15,15,15 ; set pen 2 to white 
* t \f 
* t 
* t 
* t 
* t 
* t 
* t 
* t 
* t 
* t 

* t ERROR: can't load file "@$filename "l Presa RETURN 
to abort. 
* t \027[3lm ; switch back to pen 1 
* screenMode text 
* getstring $temp 
* quit 
* endif 

* 
* endsub 

* 
* 
* 
* 

c -27 



The Mainloop.SUB File 

* 
* 

MainLoop.SUB 

* to enable LOAD and SAVE, see lines 153, 161, 170, 171 

* 
* sub MainLoop 

* 
* 
;================================================================= 

* 
* WHILE MainLoop = 0 DO 

* 
* call LineFeed 

* 
* return := 1 
* TextPosi tion : = 7 
* $sentence := "" 
* $return := "\r" 
* $backspace := "\b" 

* 
* color 0, green 
* text 0 , 7 , 19 2 , " - " 

* 
* 
* 

character modified to 'be cursor 

* while return t 0 do 

* 
* getchar $letter 
* length $letter, temp temp = 0 if NO letter pressed, 
temp = 1 if letter 
* value $letter, val 
* temp := temp * (val < 127) 
* compare $letter, $return, return 
* compare $letter, $backspace, backspace 

* 
* if Buttonused > O and Buttonused # 3 then ; make sure GET 
pops up if 
* mode O, draw it had been 
previously 
* copy 2, 137,26, 197,38, O, 255, 87 ; selected 
before this button 

c -28 



* endif 

* 
* if Buttonused = 1 or ButtonUsed > 3 then 
* return := 0 ; set to zero so as to erase cursor and exit 
loop 
* copy 2, xl,yl,x2,y2, O, x,y ; draw button in down position 
* pause 5 ; to prevent occasional pointer freezes 
* while leftbutton = 1 do ; wait till button released 
* endwhile 
* yl := yl + offset 
* y2 := y2 + offset 
* offset := -13 ; necessary in case player pressed ghosted 
direction 
* endif 

* 
* if Buttonused = 1 then 
* copy 2, xl, yl, x2, y2, 0, x, y 
* endif 

draw button popping up 

* 
* if return = 0 then return was pressed, so erase cursor 
* color O,white 
* mode O, draw 
* rect O, TextPosition,184, TextPosition + 5,192 erase 
cursor 
* mode 0, overlay 
* elsif backspace = 0 then ; backspace was pressed 
* length $sentence, sentence 
* if sentence = 0 then ; The sentence has length zero, so 
do nothingl 
* else 
* sentence := sentence - 1 
* TextPosition := TextPosition - 6 
* left $sentence, sentence, $sentence 
* color o,white 
* mode 0, draw 
* rect O, TextPosition,184, TextPosition + 11,192 
letter & cursor 

* 
* 
* 
* 

mode O,overlay 
color 0, green 
text O,TextPosition,192,"-" 

endif 
type cursor 

* elsif TextPosition > 240 then outside text window 
* elsif temp > 0 then ; accept the keypress 
* $sentence := "@$sentence @$letter" ; add letter to 
sentence 

erase 

C-29 



* 
* 
* 

color 0, white 
mode O, draw 
rect O, TextPosition,184, TextPosition + 5,192 

cursor 
* color O,green 
* mode 0, overlay 

erase 

* text O,TextPosition,192,"@$letter -" 
cursor 

type letter and 

* TextPosition := TextPosition + 6 
* endif 

* 
* if Buttonused > 0 and Buttonused t 3 then 
* ; blank any previous input typed before typing button 
contents 
* mode 0, draw 
* color O,white 
* rect O, 7, 185, 247, 192 
* color O,green 
* call PrintText ; echo the button name to the text window 
* $sentence := $tx 
* return := 0 
* endif 

* 
* readbuttons 

* 
check for mouse button presses between letters 

* countLines := O 

* 
* endwhile 
return = O 

* 
* 
* 

end of input loop, RETURN has been pressed, ie. 

* compare $sentence, u1oad", dummy 
* if dummy = O then 
* Buttonused := 4 ; so that player can click or type LOAD 
* t \027 ( 32m ; switch to pen 2 
* TextPalette 2,15,15,15 ; set pen 2 to white 
* t \f 
* t 
* t 
* t 
* t 
* t 
* t 
* t 

c. 30 



* t 
* t 

* 
* 
* 
* 
* 
* 
* 

t 
t \027 [ 3lm 
xl := 198 
yl := 26 
x2 := 258 
y2 := 38 
x := 255 

* y := 136 
* endif 

* 

Please Wait for Loading 
switch back to pen 1 

* compare $sentence, usavew, dummy 
* if dwmny = 0 then 
* Buttonused := 5 ; so that player can click or type SAVE 
* t \027[32m ; switch to pen 2 
* TextPalette 2,15,15,15 ; set pen 2 to white 
* t \f 
* t 
* t 
* t 
* t 
* t 
* t 
* t 
* t 

t 
t 

* 
* 
* 
* 
* 
* 
* 

t \027[3lm 
xl := 259 
yl := 0 

* 
* 

x2 := 319 
y2 := 12 
x 
y 

:= 255 
:= 153 

Please wait for Saving 
switch back to pen 1 

* unload screen 24 
* ; screenrnode text 
writing 

switch to black text screen with white 

* endif 

* 
* color O,blue 

* 
* compare $sentence, uquitw, temp 
* if temp = 0 then 
* quit 

c -31 



* elsif Buttonused < 4 then if enabling LOAD/SAVE, change 
line to: else 
* ghost "@$sentence" turn 
* if error I 0 then 
* $tx := $lasterror 
* call print 
* endif 
* endif 

* 
* if Buttonused > 3 then 
* $tx : = "this feature is disabled in the demo" ; remove to 
enable LOAD/SAVE 
* call print remove to 
enable LOAD/SAVE 

* 
* 

show screen 0 
ScreenMode graphics 

* 
* 

create screen 24, 100, 100, 5, lores 
mask 24 

* mode 0, draw 
* copy 2, xl, yl, x2, y2, 
button popping up 
* endif 

* 
* mode O, draw 
* Buttonused : = O 

* 
* ENDWHILE ; end of main loop 

* 
* 

O, x, y 

for overlays 

draw SAVE/LOAD 

;================================================================= 

* 
* quit 

* 
* endsub 

* 
* 
* 

C-32 



The Potion.SUB File 

* 
* 
* 
* sub print 
* call LineFeed 

Potion.SUB 

* 
* 

call PrintText 
ReadButtons empty empties click queue to ignore clicks 

during a print 
* end sub 

* 
* 
* 
* sub LineFeed 
* mode O,draw 
* copy O, 7,149, 247,193, O, 7,140 ; move 5 lines up 
* color O,white 
* rect O, 7,185, 247,192 blank 6th line 
* color O, Textcolor 
* endsub 

* 
* 
* 
* sub PrintText 

* 
* countLines := CountLines + 1 

* 
* if countLines > MaXLines and defeat = 0 then 
* mode O, overlay 
* color O, brown 
* text 0,7,192," - press mouse button for more -" 
* while leftbutton = 0 do 

* 
* 
* 
* 

endwhile 
color 0, white 
rect O, 7,185, 247,192 
color 0, blue 

blank 6th line 

* CountLines := 1 ; count 1 because this line is blanked and 
used 
* endif 

* 
* mode O, overlay 
* text 0,7,192,"@$tx" 

C-33 



* 
* endsub 

* 
* 
* 
* sub BlankLine 
* $tx := '"' 
* call print 
* end sub 

* 
* 
* 
* sub clearButtons 
* temp := 33 ; clear the buttons for non-movable objects 
* while temp < 43 do 
* remove temp 
* temp := temp + 1 
* endwhile 
* end sub 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

sub GoNorth 
offset := 
xl := 53 
yl := 13 
x2 := 66 
y2 := 25 
x := 270 
y := 11 
$tx := "n" 
ButtonUsed 

endsub 

sub Gosouth 
offset := 
xl := 67 
yl := 13 
x2 := 80 
y2 := 25 

* x := 270 
* y := 38 

C-34 

GoN 

:= 1 

GoS 



* $tx := Ha" 

* Buttonused := 1 

* endsub 

* 
* 
* 
* sub GoEast 

* off set := GoE 

* xl := 81 

* yl := 13 

* x2 := 94 

* y2 := 25 

* x := 285 

* y := 25 

* $tx := "e" 

* Buttonused := 1 

* end sub 

* 
* 
* 
* sub GoWest 

* offset := GOW 

* xl := 95 

* yl := 13 

* x2 := 108 

* y2 := 25 

* x := 255 

* y := 25 

* $tx := "W" 

* Buttonused := 1 

* end sub 

* 
* 
* 
* sub Go Up 

* offset := GOU 

* xl := 109 

* yl := 13 

* x2 := 122 

* y2 := 25 

* x := 302 

* y := 4 

* $tx := "U" 

* Buttonused := 1 

C-35 



* end sub 

* 
* 
* 
* 
* 
* 
* 
* 

sub Go Down 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

off set := 
xl := 123 
yl := 13 
x2 := 136 
y2 := 25 
x := 302 
y := 46 
$tx := Hdll 

Buttonused 
end sub 

sub Inv 
xl := 137 
yl := 13 
x2 := 197 
y2 := 25 
x := 255 
y := 69 
$tx := '' i,, 
ButtonUsed 

endsub 

* sub Get 

GoD 

:= 1 

:= 1 

mode O,draw ; or overlay 
color 0, white 

* 
* 

rect O, 7,185, 247,192 

51 
255 
87 

erase any previous text input on 

* 
* 2, xl,yl,x2,y2, O, x,y draw button in down position 

c -36 



* $tx := "get -,, 
* TextPosition := 31 
* $sentence := "get " 
* call PrintText 
* Buttonused := 3 
* endsub 

* 
* 
* 
* 
* 
* 

sub Help 
xl := 198 
yl := 13 
x2 := 258 
y2 := 25 
x := 255 
y := 104 

* 
* 
* 
* 
* 
* 
* 
* 

$tx := "help" 

* 
* 

Buttonused 
end sub 

:= 1 

* to enable LOAD and SAVE, see the file MainLoop. sub 

* 
* 
* 
* 
* 
* 
* 

sub 
xl 
yl 
x2 
y2 
x 

Load 
:= 198 
:= 39 
:= 258 
:= 51 
:= 255 

* y := 136 
* $tx := #load" 
* ButtonUsed := 4 
* end sub 

* 
* 
* * to enable LOAD and SAVE, see the file MainLoop.sub 

* 
* 
* 
* 
* 
* 

sub 
xl 
yl 
x2 
y2 

save 
:= 259 
:= 13 
:= 319 
:= 25 

c .37 



* x := 255 
* y := 153 
* $tx := usave" 
* Buttonused := 5 
* end sub 

* 
* 
* 
* 
* 
* 

sub Quit 
xl := 259 
yl := 39 

* x2 := 319 
y2 := 51 
x := 255 
y := 170 

* 
* 
* 
* $tx := "quit" 

* 
* 
* 
* 
* 

Buttonused := 
endsub 

1 

* sub Reorawscreen 

* 
* if player cango 0 then 
* GoN := -13 
* else 
* GON := 13 
* endif 

* 
* if player cango 1 then 
* GoS := -13 
* else 
* GoS := 13 
* endif 

* 
* if player cango 2 then 
* GoE := -13 
* else 
* GoE := 13 
* end if 

* 
* if player cango 3 then 
* GOW := -13 
* else 

c -38 



* GoW := 13 
* endif 

* 
* if player cango 8 then 
* GoU := -13 
* else 
* Gou := 13 
* endif 

* 
* if player cango 9 then 
* Goo := -13 
* else 
* Goo := 13 
* endif 

* 
* mode 2, draw 
* copy 1, screenx,screenY, screenx + 244, screenY + 127, 2, 
75,73 
* mode 2, overlay 

* 
* remove 12 ; remove click zone for ladder 

* 
* if ladder in thisroom then 
* if ladder is AgainstTree then 
* copy 2, 0, 91, 2 8, 19 0, 2, 14 8 + 7 5, 1 O + 7 3; was 7 2, 19 9 
* click 12, 148 + 5, 10 + 5, 176 + 5,104 + 5, ClickLadder 
* elsif ladder is Againstshack then 
* copy 2, 0,91, 28,190, 2, 12 + 75, 26 + 73; was 72,199 
* click 12, 14 + 5, 26 + 5, 36 + 5, 120 + 5, ClickLadder 
* elsif RoomNumber = 1 then ; ladder on ground by tree 
* copy 2, 0,45, 99, 72, 2, 140 + 75, 93 + 73 
* click 12, 140 + 5, 93 + 5, 239 + 5, 120 + 5, ClickLadder 
* else : if RoomNumber = 2 then ; ladder on ground by shack 
* copy 2 , 0, 4 5, 9 9, 7 2, 2, 5 9 + 7 5, 9 4 + 7 3 
* click 12, 59 + 5, 94 + 5, 158 + 5, 121 +5, ClickLadder 
* endif 
* else 
* endif 

* 
* remove 13 ; remove click zone for bottle 

* 
* if bottle in thisroom then 
* if RoomNumber = 1 then ; by tree, use small bottle 
* copy 2, 138,54, 148,69, 2, 96 + 75, 97 + 73 
* click 13, 96 + 5, 97 + 5, 106 + 5, 112 + 5, clickBottle 

c .39 



* elsif RoomNumber = 2 then ; by shack, use small bottle 
* copy 2, 138,54, 148,69, 2, 167 + 75, 107 + 73 
* click 13, 167 + 5, 107 + 5, 177 + 5, 122 + 5, ClickBottle 
* elsif RoomNumber = 3 then ; in tree, use big bottle 
* copy 2, O,O, 23,39, 2, 116 + 75, 52 + 73 
* click 13, 116 + 5, 52 + 5, 139 + 5, 91 + 5, ClickBottle 
* else ; if RoomNumber = 4 then ; shack roof, use little 
bottle 
* copy 2, 138,54, 148,69, 2, 143 + 75, 50 + 73 
* click 13, 143 + 5, 50 + 5, 153 + 5, 65 + 5, clickBottle 
* endif 
* endif 

* 
* remove 14 ; remove click zone for corkscrew 

* 
* if corkscrew in thisroom then 
* if RoomNumber = 1 then ; by tree, so use small corkscrew 
* copy 2, 151,57, 164,68, 2, 80 + 75, 112 + 73 
* click 14, 80 + 5, 112 + 5, 93 + 5,123 + 5, Clickcorkscrew 
* elsif RoomNumber = 2 then ; by shack, so use small corkscrew 
* copy 2, 151,57, 164,68, 2, 190 + 75, 114 + 73 
* click 14, 190 + 5, 114 + 5, 203 + 5, 125 + 5, 
clickcorkscrew 
* elsif RoomNumber = 3 then ; in treetop, so use large 
corkscrew 
* copy 2, 25,0, 50,23, 2, 190 + 75, 93 + 73 
* click 14, 190 + 5, 93 + 5, 216 + 5, 116 + 5, 
clickcorkscrew 
* else ; if RoomNumber = 4 then ; on roof, so use small 
corkscrew 
* copy 2, 151,57, 164,68, 2, 77 + 75, 82 + 73 
* click 14, 77 + 5, 82 + 5, 90 + 5, 93 +5, clickcorkscrew 
* endif 
* endif 

* 
* mode o, draw 

* copy 2, 75,73, 319,199, o, 5,5 draw scenery in window 

* copy 2, 53, 13 + GoN, 66, 25 + GoN, o, 270,11 draw N 
button 

* copy 2, 67, 13 + GoS, 80, 25 + Gos, O, 270,38 draw s 
button 

* copy 2, 81, 13 + GOE, 94, 25 + GoE, o, 285,25 draw E 
button 

* copy 2, 95, 13 + Gow, 108, 25 + GoW, o, 255,25 draw w 
button 

C-40 



* copy 2, 109, 13 + Gou, 122, 25 + GoU, O, 302, 4 
button 
* copy 2, 123, 13 + GoD, 136, 25 + GoD, O, 302,46 
button 

* 
* 
* end sub 

* 
* 
* 
* sub ClickLadder 
* if Buttonused = 3 then 
* $tx := "get the ladder" 
* Buttonused := 1 
* else 
* $tx := "examine the ladder" 
* Buttonused := 2 
* endif 
* endsub 

* 
* 
* 
* sub clickBottle 
* if Buttonused = 3 then 
* $tx := "get the bottle" 
* Buttonused := 1 
* else 
* $tx := "examine the bottle" 
* Buttonused := 2 
* endif 
* end sub 

* 
* 
* 
* sub clickcorkScrew 
* if Buttonused = 3 then 
* $tx := "get the corkscrew" 
* Buttonused := 1 
* else 
* $tx := "examine the corkscrew" 
* Buttonused := 2 
* endif 
* endsub 

* 

draw u 

draw D 

C-41 



* 
* 
* sub Alreadyis 
* $tx:="It already isl" 
* call print 
* endsub 

* 
* 
* 
* sub NoHave 
* $tx:="You don't have it." 
* call print 
* end sub 

* 
* 
* 
* sub Havert 
* $tx:="You already have it." 
* call print 
* endsub 

* 
* 
* 
* sub seeTreeTop 
* if Buttonused = 3 then 
* $tx := "get the boughs" 
* Buttonused := 1 
* else 
* $tx := "examine the boughs" 
* Buttonused := 2 
* endif 
* endsub 

* 
* 
* 
* sub seeTreeTrunk 
* if Buttonused = 3 then 
* $tx := "get the tree" 
* Buttonused := 1 
* else 
* $tx := "examine the tree" 
* Buttonused := 2 
* end if 
* end sub 

c -42 



* 
* 
* 
* sub seeisland 
* if Buttonused = 3 then 
* $tx := "get the island" 
* Buttonused := 1 
* else 
* $tx := "look at the island" 
* Buttonused := 2 
* endif 
* endsub 

* 
* 
* 
* sub seeocean 
* if Buttonused = 3 then 
* $tx := "get the ocean" 
* ButtonUsed := 1 
* else 
* $tx := "look at the ocean" 
* Buttonused := 2 
* endif 
* endsub 

* 
* 
* 
* sub Seesand 
* if ButtonUsed = 3 then 
* $tx := "get the sand" 
* Buttonused := 1 
* else 
* $tx := "examine the sand" 
* Buttonused := 2 
* endif 
* endsub 

* 
* 
* 
* sub seePlant 
* if Buttonused = 3 then 
* $tx := "get the plant" 
* ButtonUsed := 1 
* else 
* $tx := "examine the plant" 

c. 43 



* Buttonused := 2 
* endif 
* end sub 

* ... 

* 
* sub seeounes 
* if ButtonUsed = 3 then 
* $tx := •get the dunes• 
* Buttonused := 1 
* else 
* $tx := •examine the dunes" 
* Buttonused := 2 
* endif 
* endsub 

* 
* 
* 
* sub seeshack 
* if Buttonused = 3 then 
* $tx := uget the shack# 
* Buttonused := 1 
* else 
* $tx := uexamine the shack" 
* Buttonused := 2 
* endif 
* endsub 

* 
* 
* 
* sub seesky 
* if Buttonused = 3 then 
* $tx := uget the sky" 
* Buttonused := 1 
* else 
* $tx := uexamine the sky" 
* Buttonused := 2 
* endif 
* endsub 

* 
* 
* 
* sub seesun 
* if Buttonused = 3 then 
* $tx := uget the sun" 

C-44 



* ButtonUsed := 1 
* else 
* $tx := Hlook into the sun" 
* Buttonused := 2 
* endif 
* end sub 

* 
* 
* 
* sub SeeLadder 
* if Buttonused = 3 then 
* $tx := Hget the ladder" 
* Buttonused := 1 
* else 
* $tx := "examine the ladder" 
* Buttonused := 2 
* endif 
* endsub 

* 
* 
* 
* sub seeHole 
* if Buttonused = 3 then 
* $tx := "get the hole" 
* Buttonused := 1 
* else 
* $tx := "look into the hole" 
* ButtonUsed := 2 
* endif 
* endsub 

* 
* 
* 
* sub seeRoof 
* if Buttonused = 3 then 
* $tx := "get the roof" 
* Buttonused := 1 
* else 
* $tx := "examine the roof" 
* Buttonused := 2 
* endif 
* endsub 

* 
* 
* 

c. 45 



* sub seeDriftwood 
* if ButtonUsed = 3 then 
* $tx := "get the driftwood# 
* Buttonused := 1 
* else 
* $tx := u1ook at the driftwood" 
* ButtonUsed := 2 
* endif 
* end sub 

* 
* 
* 
* sub DrinkBottle 
* if bottle is sealed then 
* $tx := uThe liquid is corked securely inside# 
* call print 
* $tx : = "the bottle." 
* call print 
* else 
* defeat := 1 
* $tx := "The thick sweet liquid burns your throat# 
* call print 
* $tx : = "but quickly takes effect. You feel# 
* call print 
* $tx := uwonderfull The magic potion has worked!# 
* call print 
* call Blank.Line 
* $tx := u congratulations on finishing this demo!" 
* call print 
* Textcolor := brown 
* $tx := u Press mouse button to exit." 
* call print 
* while leftbutton = 0 do 
* endwhile 
* MainLoop := 1 
* endif 

* 
* end sub 

* 
* 
* 

c -46 



The Potion. VOC Fiie 

* 
* 
* 
* VOCAB 

* 
* 
* 

Potion.voc 

* action FastMem, FastRam, chipMem, ChipRam, FreeMem, Avail, 
Mem, Memory 
* $tx := "@FastMem Kbytes FastMem @ChipMem Kbytes ChipMem" 
* call print 
* endact 

* 
* 
* 
* action Cycle 
* Show Screen 1 ; location scenery 
* While LeftButton = 1 do : waits to make sure mouse button 
is down 

* 
* 

endwhile 
While Lef tButton = 0 do 

is released 
* endwhile 
* Show Screen 2 : button.pie 

waits to make sure mouse button 

* While LeftButton = 1 do : waits to make sure mouse button 
is down 
* endwhile 
* While LeftButton = 0 do waits to make sure mouse button 
is released 
* endwhile 
* Show Screen 24 ; overlay buffer 
* While LeftButton = 1 do : waits to make sure mouse button 
is down 

* endwhile 

* While LeftButton = 0 do waits to make sure mouse button 
is released 
* endwhile 
* show screen 0 
* endact 

* 
* 
* 

c. 47 



* action help, hint, clue, give me clue, give me help, give me 
hint 

* 
* $tx := "Type sentences, or use buttons instead.• 
* call print 
* $tx := "Examples: to examine the tree, either" 
* call print 
* $tx := "type LOOK AT THE TREE or just click on" 
* call print 
* $tx := "the picture of the tree. To pick up the" 
* call print 
* $tx := "ladder, either type TAKE THE LADDER or" 
* call print 
* $tx := "click on the GET button and then click" 
* call print 
* $tx := "on the picture of the ladder. To drop" 
* call print 
* $tx := "the ladder, do not use the buttons." 
* call print 
* $tx := "You must type DROP THE LADDER. You may" 
* call print 
* $tx := "also PUT THE LADDER AGAINST THE SHACK,,, 
* call print 
* $tx := "etc. You can go west by typing GO WEST" 
* call print 
* $tx := "or by clicking on the W button on the" 
* call print 
* $tx := "compass. To save a game in progress," 
* call print 
* $tx := "type SAVE or click on the SAVE button." 
* call print 
* $tx := "To start a game that was saved, type" 
* call print 
* $tx := "LOAD or click on the LOAD button." 
* call print 
* $tx := "Remember, the buttons are only a very" 
* call print 
* $tx := "few things that this adventure allows." 
* call print 
* $tx := "Use your imagination, and type anything" 
* call print 
* $tx := "you want to do, and the computer will" 
* call print 
* $tx := "respond. Enjoy the adventure, and buy" 
* call print 

c -48 



* $tx ::::: "Visionary from OXXI/Aegis so you can" 
* call print 
* $tx := "write your own adventures. They can be" 
* call print 
* $tx := "pure text, pure graphics, or (like this)" 
* call print 
* $tx := "a hybrid combination." 
* call print 
* endact 

* 
* 
* 
* action drink, drink out of bottle 

* 
* if player has bottle then 
* call DrinkBottle 
* else 
* call NoHave 
* endif 

* 
* end act 

* 
* 
* 
* action author author, author 
* $tx:="written 5/5/91 by John Olsen" 
* call print 
* $tx:="P.O. Box 181, Newberg, OR 97132" 
* call print 
* endact 

* 
* 
* 
* action quit 
* $tx := "quit" 
* call print 
* endact 

* 
* 
* 
* action save, 

ghost "save 
$tx := "OK. 
call print 

save game, 
saveGame" 
saved." 

save position, store, store game 

* 
* 
* 
* endact 

C-49 



1t 

1t 

1t 

* action load, load game, restore, restore game, restore 
position 
* ghost "load saveGame" 
* endact 
1t 

1t 

1t 

* ENDVOCAB 
1t 

1t 

c. 50 



Appendix D: ASCII Codes for 
Visionary 

Dec Oct Hex Character Dec Oct Hex Character 

0 0 0 "@ NUL 40 50 28 ( 
1 1 1 "A SOH 41 51 29 ) 
2 2 2 "B STX 42 52 2A * 
3 3 3 "C ETX 43 53 2B + 
4 4 4 "D EOT 44 54 2C 
5 5 5 "E ENO 45 55 2D 
6 6 6 "F ACK 46 56 2E 
7 7 7 "G BEL 47 57 2F I 
8 10 8 "H BS 48 60 30 0 
9 11 9 "I HT 49 61 31 1 

10 12 A "J LF 50 62 32 2 
11 13 B "K VT 51 63 33 3 
12 14 c "L FF 52 64 34 4 
13 15 D "M CR 53 65 35 5 
14 16 E "N so 54 66 36 6 
15 17 F "0 SIR 55 67 37 7 
16 20 10 "P DLE 56 70 38 8 
17 21 11 "Q DC1 57 71 39 9 
18 22 12 "R DC2 58 72 3A 
19 23 13 "S DC3 59 73 38 
20 24 14 "T DC4 60 74 3C < 
21 25 15 "U NAK 61 75 3D 
22 26 16 "V SYN 62 76 3E > 
23 27 17 "W ETB 63 77 3F ? 
24 30 18 "X CAN 64 100 40 @ 
25 31 19 "Y EM 65 101 41 A 
26 32 1A "Z SUB 66 102 42 B 
27 33 1B " [ ESC 67 103 43 c 
28 34 1C "\ FS 68 104 44 D 
29 35 1D "1 GS 69 105 45 E 
30 36 1E "" AS 70 106 46 F 
31 37 1F " us 71 107 47 G 
32 40 20 Space 72 110 48 H 
33 41 21 I 73 111 49 +I 
34 42 22 74 112 4A J 
35 43 23 II 75 113 48 K 
36 44 24 $ 76 114 4C L 
37 45 25 % 77 115 4D M 
38 46 26 & 78 116 4E N 
39 47 27 79 117 4F 0 



Dec Oct Hex Character Dec Oct Hex Character 

80 120 50 p 112 160 70 p 
81 121 S1 a 113 161 71 q 
82 122 S2 R 114 162 72 r 
83 123 53 s 11S 163 73 s 
84 124 54 T 116 164 74 t 
85 12S 55 u 117 165 7S u 
86 126 56 v 118 166 76 v 
87 127 S7 w 119 167 n w 
88 130 SS x 120 170 78 x 
89 131 S9 y 121 171 79 y 
90 132 SA z 122 172 7A z 
91 133 SB [ 123 173 78 { 
92 134 SC \ 124 174 7C I 
93 135 5D ] 125 175 7D } 
94 136 SE " 126 176 7E 
95 137 5F 127 1n 7F DEL 
96 140 60 ' 128 200 80 [CursorUp] 
97 141 61 a 129 201 81 [CursorDown] 
98 142 62 b 130 202 82 [Help] 
99 143 63 c 131 203 83 [CursorLeft] 

100 144 64 d 132 204 84 [CursorRlght] 
101 145 65 e 133 205 85 [F1] 
102 146 66 f 134 206 86 [F2] 
103 147 67 g 135 207 87 [F3] 
104 150 68 h 136 210 88 [F4) 
10S 151 69 I 137 211 89 [F5) 
106 152 6A J 138 212 8A [F6) 
107 153 68 k 139 213 88 [F7] 
108 154 6C I 140 214 ac [F8) 
109 155 6D m 141 215 8D [F9] 
110 156 6E n 142 216 SE [F10) 
111 157 6F 0 

D • 2 



Appendix E: Technical Support 

1 Before you call for technical support for VlslonafY, first try to 
resolve the problem on your own. Decide exactly what the 
problem ls-does It arise in compiling, loading graphics or 
sound/song files, or are you simply having problems getting 
your game to do some particular task? Check the solutions 
given In Appendix A if you have a VCOMP or DBUG error. 

2 Okay, you're at the end of your rope, and nothing you try 
seems to solve your problem.. Time to call for some technical 
support. Get your pen and paper handy, look up your serial 
number and get clear in your mind a brief description of the 
problem. IF YOU HAVE NOT REGISTERED YOUR 
PROGRAM, YOU WILL NOT BE ELIGIBLE FOR TECHNICAL 
SUPPORT. 
You may want to write 'your serial number here In the manual 
for reference: 

Serial Number: 

3 IF YOU ARE CALLING FROM THE U.S.: 
In order to efficiently provide technical support to you when 
you need It, without increasing the cost of Aegis software, we 
have contracted with Computer Technical Support Services 
to answer your technical support questions. 

I t-900-77 6-6994 I 
The call costs $1.00 for the first minute, and $2.00 for each 
additional minute. 

Be prepared to briefly state your technical support problem, 
and note the answer or solution the technician gives you. 

Programming problems often require some research or 
testing- instead of asking you to wait on line, you may be 
asked to call back for the answer or solution to your problem. 

If you do not have access to 900 lines, you can still use mail or 
FAX to get technical support. 



E • 2 

4 IF YOU ARE CAWNG FROM OUTSIDE THE U.S.: 
Please call Oxxi Customer Service for technical support If you 
are calling from outside the U.S. The phone number Is: 

I 213-427-1227 I 
Be prepared to briefly state your technical support problem, 
and note the answer or solution the technician gives you. 

5 TECHNICAL SUPPORT BY FAX: 
To receive technical support by FAX, you can FAX or mall us a 
brief description of your technical support problem. Include at 
least the following Information: 

Your program serial number 
Your FAX or phone number 
The problem listing or section of code 

You can mail this information to the address below, or FAX It to: 

I 213-427-0971 I 
6 All correspondence regarding Visionary should be addressed: 

Oxxl, Inc. 
Visionary Support 
PO Box 90309 
Long Beach, CA 90808-0309 
USA 

Resources 

Book of Adventure Games, The, 2 volumes, Kim Schuette, Arrays Inc., 1984. 

Compute!'s Guide to Adventure Games, Gary McGath, Compute! Books, 
1984. 

Computer Adventures- The Secret Art, Gil Williamson, Amazon Systems, 
1990. 

Golden Flutes & Great Escapes- How to Wite Adventure Games for the Com­
modore 64, Delton T. Hom, Dilithium Press, 1984. 

Quest for aues, 3 volumes, Shay Adamms, Origin Systems Inc., 1988. 

Visionary Programmer's Handbook, The, John Olsen, Oxxi, Inc, 1991. 

MAGAZINES: 

Enchanted Realms, Digital Expressions, P.O. Box 33656, Cleveland, OH 
44133. 

Questbusters, P.O. Box 5845, Tucson, AZ 85703. 



Index 

A GRAB 9-2 
Actions 2-7 IF 5-9 

Save 2-20 LEFT 5-6 
Synonyms 2-a LENGTH 5-6 

Adjective 2-4 LET 5-4 
Adjectives 2~ LINE 6-7 
Adventure File 2-28, 3-6 LINK 9-2 
AND 5-12, 11-1 LOAD 9-2 
Animation 1~7 LOAD SCREEN 6-2 
Arrays 1~2 LOAD SOUND 7-1 
Article 2-4 MASK 6-8 
Assigns 1~2 MENUS 6-4 
Attribute 2-4 MID 5-7 

name 2-3 MODE 6-6 
Audio 7-1 MOVE 9-3 

B Bitplanes 6-3 MOVEOBJ 9-3 
Block Transfers 6-7 OBJNAME 5-5 
Buffer 2-23, 1~9 OR 5-12, 11-22 
Button pressed 5-2, 6-12 PALETTE 6-5 

PAUSE 9-3 c CALL 9-1 PIXEL 6-7 
Capitalization 3-2 PLACEOBJ 9-3 
Chlpmem 5-2 PLAY 8-2 
CLICK 6-11 PLAY SOUND 7-2 
Close Screen B-1 QUIT 9-3 
Code, optimize 1~1 READBUTTONS 6-12 
COL OR 2-25, 6-5 RECT 2-25, 6-7 
Command format 5-x REMOVE 6-12 
Commands RIGHT 5-7 

AND 5-12, 11-1 ROOMNAME 5-5 
CALL 9-1 SCROLLBAR 6-3 
CLICK 6-11 SCROLL TO 6-10 
COL OR 2-25, 6-5 SET 9-4 
COMPARE 5-4 SHOW SCREEN 6-3 
COPY 2-26, 6-7 STOP SOUND 7-2 
CREATE SCREEN 6-2 T 9-4 
DIRECTIONS 9-2 TEXT 6-7 
DISABLEMUSIC 8-2 TEXTPALETTE 2-22 
DISSOLVE 6-9 UNLOAD 9-4 
DOS 9-2 UNLOAD SCREEN 6-4 
DOWNCASE 5-7 UNLOAD SOUND 7-2 
DROP 9-2 UNSET 9-4 
ELSE 5-11, 11-a UPCASE 5-7 
ELSIF 5-11, 11-a VALUE 5-7 
ENABLESOUND 8-1 WHILE 5-13 
END 5-12, 11-9 Comments 3-2 
FADEFROM 6-10 COMPARE 5-4 
FADETO 6-10 Compiler 2-30, 4-1 
FLOW CONTROL 5-6 Computer Technical 
GET CHAR 5-5 Support Services E-1 
GETNUM 5-6 Coordinates 2-24 
GETSTRING 5-5 COPY 2-26, 6-7 
GHOST 2-19, 5-6 CREATE SCREEN 6-2 
GO 9-2 

1 



Aegis Visionary 

D DBUG 2-32, 4-2 
Load Files 2-22 
LOAD SCREEN 6-2 

Debugger 2-31, 4-2 LOAD SOUND 7-1 
Direction 2-3 load Screen B-1 
DIRECTIONS 9-2 
DISABLEMUSIC S-2 M MASK 6-8 
DISSOLVE 6-9 MaxObj !>-2 
DOS 9-2 Max Room !>-2 
DOWN CASE !>-7 MEO S-1 
DROP 9-2 MENUS 6-4 

E ELSE !>-11, 11-8 
MID !>-7 
MODE 6-6 

ELSIF !>-11, 11-8 Modifier 2-4 
ENABLEMUSIC S-1 Mouse buttons 6-11 
END !>-12, 11-9 Mouse Clicks 2-24 
ENDIF !>-12, 11-9 MouseX !>-2, 6-12 
Error !>-2 MouseY !>-2 
Error Codes A-1 MOVE 9-3 
Expression 2-3 Moveable Objects 2-11 

F FADEFROM 6-10 MOVEOBJ 9-3 
Fades 6-10 Moves !>-1 

FADETO 6-10 Music S-1 

Fastmem !>-2 N Non Moveable Objects 2-5 
File Format 2-5 NonMovable.OHJ File 2-5, 2-11 

adventure 2-6 Nonmoveable Objects 2-5 
object 2-8 Notation 3-1 
room 2-7 Noun 2-3 - 2-4, 5-8 
subroutine 2-8 Nouns 2-17 

File name 2-3 
Flow Control Commands 5-8 0 ObjAdj 5-8 

G GETCHAR !>-5 
Object File 2-4,3-8 
Object name 2-3 

GETNUM 5-6 Objects 
GETSTRING !>-5 actions 2-7 
GHOST 2-19, 5-6 actions.expected 2-10 
GO 2-17, 9-2 adjectives 2-6 
GRAB 2-15, 9-2 attributes 2-12 
Graphics 6-1, 6-3, 6-5, 6-7, code block 2-9 

6-9, 6-11, 6-13 initial location 2-9 

H Hot Spot 2-24, 6-11, 6-12 inventory 2-13 
moveable 2-11 

I ldentation 3-2 nonmoveable 2-5 
IF 2-13, !>-9 nouns 2-17 
Image Cycling 10-10 synonyms 2-5 
INVENTORY 2-13 ObjName !>-5 
lstallation 1-5 ObjPOS !>-2 

ITEMS !>-1 Operators, order of preoedence 3-1 

L OR !>-12, 11-22 
LASTDIR !>-7 Oxxl E-2 
LASTLINE !>-7 p LAST MOVE !>-2 PALETTE 6-5 
LEFT 5-6 PAUSE 9-3 
LEFTBUTTON !>-2, 6-12 PIXEL 6-7 
LENGTH 5-6 PLACEOBJ 9-3 
LET 5-4 PLAY S-2 
LINE 6-7 PLAY SOUND 7-2 

LINK 9-2 Preposition 2-4 
Linker 2-33,4-5 PrepGameDisk B-2 
LOAD 9-2 Programm Comments 2-2 

Pronoun 2-4 

2 



Q QUIT 9-3 
SubjAclj 5-8 
SubjNoun 5-8 

R RAND &-1 
Verb 5-8 

Random Number Generation &-1 T Tcommand 9-4 
READBUTTONS 6-12 Technical Support 1-5, E-1 
RECT 2-25, 6-7 Text 2-3, 6-7 
REMOVE 6-12 TEXTPALETTE 2-22 
Requirements 1-4 Time &-2 
RIGHT &-7 Tutorial 2-1, 2-3, 2-5, 2-7, 2-9, 
Room Attributes 2-3 2-11, 2-13, 2-15, 2-17, 2-19, 
Room File 2-2, 2-7 2-21, 2-23, 2-25, 2-27, 2-29, 
Room name 2-3,&-5 2-31, 2-33, 2-35 
Runtime Copies 1~ u s UNLOAD 9-4 
Save Files 2-4 UNLOAD SCREEN 6-4 
Scores &-1 UNLOAD SOUND 7-2 
Screen UNSET 9-4 

buffers 2-23 UPCASE &-7 
coordinates 2-24 v Screens VALUE &-7 
multiple 10-5 Variable 2-2 

multiple images 10-6 name 2-3 

transitions 10-5 numeric &-1 

Scrollbar 6-3 string &-1 

Scrolls 6-10 Variables &-1 

SCROLL TO 6-10 graphics related 6-12 

Selling Your Adventures 1~ numeric 5-3 
Sentence structure 2-3 string 5-3 
SET 9-4 system &-1 

SHOW SCREEN 6-3 Variables, Graphic 

Source Code 2-1 Button Pressed 6-12 

Statement structure 3-3 LeftButton 6-12 

STOP SOUND 7-2 MouseX 6-12 

String Variable 2-3, 2-7 VCOOE B-2 

SubjAdj 5-8 VCOMP 2-30, 4-1 

SubNoun 5-8 cross-references 2-31,4-1 

Subroutine File 3-8 VCOORD B-2 

Subroutine name 2-3 Verb 2-3. 2-4, 5-8 

Subroutines 2-20 Video Effects 6-8 

Synonyms 2-8, 2-19 fades 6-10 

for objects 2-5 scroll 6-10 

Syntax 2-1 Video Modes 6-3 

System Variables Videomode &-2 

Error-related 5-8 Visual Effects 

LastDir &-7 DISSOLVE 6-9 

LastUne &-7 page SCfolling 6-10 

Noun 5-8 Vocabulary File 3-19 

Numeric &-1 w WHILE &-13 
ObjAdj 5-8 Word 2-3 
String &-7 

3 



Aegis Visionary 

4 
























