
Tl1.e.t.

Bring Your Adventures To Life

Introduction 0-1

'! ietiolfl · MADV (Make ADVenture) 1-1

VGED (Vector Graphics EDitor)2-1

PADV (Play ADVenture) 3-1

T.A.C.L.: The Language 4-1

MADV Compile~ Errors A-1

PADV Compiler Errors B-1
~: ...

C-1

D-1

G-1

© 1989MicroMomentum, Inc. &AltemateRealities

ii

l1&el'l(ate Realfw~ al(rl ;!{;01'0 ;tfo/f(el(twtr /
I I 1(0,

. TA .C.L. was conceived and written by Alternate R]' .
TA .C.L. is produced by Micro Momentum, Inc. ea ltles.

We are always looking for ways to make our d
~~~er. Ifby~u have a suggestion, please write us a Jette:'~~ tl~~ts 
can resstifye ow. Rfemember to send in your registration card so we 

no you o upgrades to T .A .C.L. 

Please send us your adventures or any ot11er Am ' 
products you have written if you would like us to c 'd igtha 
publication. onsi er em for 

Micro Momentum, Inc. 
P.O. Box 372 

Washington Depot, er 06794 

T.A.C.L. PADV MADV and VGED d ' ' ' . . are tra emarks of Alternate 
Realities. 

Amiga is a registered trademark of Commodore-Ami In ga, c. 

AmigaDOS, Workbench, and Ki'*start, are trademarks of 
Commodore-Am1ga, Inc. 

CBM is a registered trademark of Commodore Electronics, Ltd. 

Macintosh is a trademark of Apple Computer, Inc. 

Zork and Hitchhiker's Guide to the Galaxy are trademarks of 
Infocom. 

The Pawn is a trademark of RainBird Software. 

IBM is a registered trade~ark of International Business 
Machines, Inc. 

T .A.C.L. User's Manual- jump Table 

PADV (the adventure player) is also copyrighted, but may be 
distributed freely. This allows you to distribute PADV along with your 
latest, greatest adventure. Keep developers developing: Spread the 
WORD (and your adventures if you wish), not the DISK! Thank you for 
your cooperation and support. 

HOW TO USE THIS MANUAL 
This manual is organized into six main sections. Section 0 contains 

the Introduction, Copyright Notices, Special Thanks, and Gelling 
Started. 

Section I describes MADV, t11e adventure maker, covering in detail 
the basics of how to write your adventures, how to display graphics from 
your adventure, and how to find errors in your source code. 

The Vector Graphics EDitor, VGED, is covered in Section II, with 
instructions on how to use VGED to draw and add graphics to your 
adventure. Section II also includes a short description of how t11e 
graphics are handled, and how to use standard Amiga IFF graphics in 
your adventure. 

Section III contains a detailed description of P ADV, t11e adventure 
player. This section explains all options available while playing a game, 
and how to use them. Also, t11e last part of Section III covers t11e 
debugging features of PADV, which will become invaluable while 
developing your own adventure. 

Section IV contains a formal description of EVERY command in the 
T .A.C.L Language, as well as reference file structures, and tips and tricks 
for better adventure writing. 

The final section is composed of appendices that include .MADV's 
Error Codes, PADV's Run-Time Errors that may be encountered, and a 
short reference for the included text editor. Finally, the manual also 
contains a comprehensive glossary. 

SPECIAL THANKS 
From Kevin Kelm: Thanks to Rhett Rodewald for finding more 

bugs than·-1 care to admit ever existed. Thanks to his continual 
"constructive criticism" several accidental "features" have been- cor­
rected. If you find any bugs remaining, it is entirely his fau lt. Also, most 
of the sample adventures and t11e manual were written by Rhett. His 
ability to create such complex character interactions, environmental 
control, and a good storyline still amazes me. He has done things with 
T .A.C.L. that I didn't even know were possible. 

0-2 T .A.C.L. User's Manual- Section 0 



Manual, Tutorial, and Language Reference. 

INTRODUCTION 

Welcome to "The Adventure Construction Language" develop­
ment system. T.A.C.L. is a programming language specially designed to 
allow almost anyone, with or without programming experience, to 
construct their own text/graphic adventure games. With sufficient time 
and energy, you can create games as complex as the "Zork" series by 
Wocom. Graphic scenes may be imported or drawn for inclusion in 
your adventures, allowing you to produce adventures similar to "The 
Pawn" by Rainbird. And T A .C.L. provides even more flexibility by 
allowing pictures for each object and specific event.-; to be included, in 
addition to scenes for each room or location. 

T A.C.L. is also machine-independent which means that, after 
writing an adventure on the Amiga, you can play that same adventure 
on any other computer that T A .C.L. is implemented on. (IBM and 
Macintosh versions are currently under development.) 

COPYRIGHT NOTICES 

Please read this carefully! (It won't take long.) The entire T A .C.L. 
package, MADY (Make ADVenture), VGED (Vector Graphics EDitor), 
PADV(Play ADVenture), the T.A.C.L.Manual, and the syntax, look, and 
feel of The Adventure Construction Language are Copyright (c) 1988, 
1989 by Kevin S. Kelm and Alternate Realities. The disks are not copy­
protected. However, MADY and VGED do have a serial nllmber 
encoded into the programs. Distribution of either of these progr:ims will 
likely bring legal action back on you. Be smart: Don't take the chance. 

© 1989 Micro Moment11111, Inc. & Altemate Realities 0-1 

From Kevin Kelm, Rhett Rodewald, and Alternate Realities: A 
special thanks to Leon Frenkel and Avant Garde Software for the 
amazing Benchmark Modula-2 development system, without which we 
would still be working on this project. Leon is also to be commended 
for his continually helpful and friendly customer support. 

Finally, heartfelt thanks to anyone and everyone who has had to 
put up with either of us and our eccentricities during the development 
of this system, especially our families and friends. 

GETfING STARTED 
First we'll show you how to get the Play ADVentllre (PADV) 

section of the T.A.C.L. system up and running so yoll can begin playing 
some of the included sample adventures immediately. 

The easiest way to play an adventure is to click on the icon of the 
Game you want to play from Workbench. To do this, turn on y~ur 
computer, and put the " T.A.C.L. Play Disk" in tl1e internal di.sk dnve 
when tI1e compllter asks for Workbench. \Xfhen Workbench is ready, 
double-click on the" T.A .C.L. Disk" icon to get the game icons. After the 
window opens and the icons fill in, double-click on the "Game P:irt I" 
icon to start the game. The game will load PADV (the adventure player) 
and then load the game you have selected. Note: the same can be 
accomplished by typing "PADV <GameName>" from the CLI. (Remem­
ber to .:>ubstitute the actual name of the game that you want to play for 
<GameName>.) 

© 1989 Micro Momentum, Inc. & Altemate Realities 0-3 



0-1 T .A .C.L. User's Manual- SeClion O 

tECTIO!V I 
MADV (Make ADVenture) Adventure Compiler 

MADY is the adventure-building section of T .A.C.L., and is to be 
used in conjunction with the text editor and YGED to create your 
adventure. MADY is similar to any other language compiler (like C or 
Modula-2), so those of you who have worked with a compiler before 
may wish to skip the first part of this section which describes the Edir/ 
Compile/Run Cycle in detail. (If you didn't understand this last sentence, 
then be sure to read the first part of this section carefully.) Above all, 
remember: the most important thing when programming is PA TIEN CE!!! 
Relax and enjoy yourself while writing your adventure. Don't try to write 
within a deadline; it is not nearly as enjoyable, and you may end up 
skimping on details. 

TIIE EDIT/COMPILE/RUN CYCLE 
Now what? Well, we won't actually start writing an adventure until 

the next part, so relax. We will begin, however, by recommending a 
familiarity with the Command Line Interface (CU). lf you have never 
used the CU, we recommend Amiga For Beginners (Abacus, 1988) or 
The AmigaDOS Manual (Bantam, 1986). 
The three basic concepts needed to write an adventure are separate and 
distinct in and of themselves, but an understanding of how they work 
together is vital. 

First is the editor. T .A.C.L doesn't care if you use AmigaDOS's ED 
or your own favorite editor. If you wish to use ED, spend some time 
reading Appendix Din the back of this manual, or look to the AmigaDOS 
Manual for a complete description. There are also several excellent 
public domain and shareware editors available. Check with your local 
computer club or order some disks from the Fred Fish collection. 

© 1989 Micro Momentum, Inc. & Altemate Realities 1-1 



Use the editor to create your source code files. If you are familiar 
w'.th Amiga~ASIC, then you are used to an edit window and a display 
window. Think of your editor as your edit window, and P ADV as the 
display window, with an extra step through MADY. After you have 
created the various source files (described later in this section) that 
compose your adventure, and have saved them to disk, exit your editor 
(or if you have enough memory, switch to another CLI to compile). 

The compiler, known as MADY, must be run from the CLI. To do 
so, simply type "MADY AdvName" to compile your adventure. (Read on 
for other MADY options.) This will run MADY and tell it the DOS name 
of your adventure. MADY will read all your files and attempt to compile 
your adventure. If successful, it will create a .GAM and a .\VRD file, as 
well as an .XRF file if you so choose. If it encounters errors, it will display 
them on the screen as it encounters them, and list the errors in a file 
named "AdvName.ERR". Should you encounter any errors, you must go 
back and fix the problems with your editor before you can do anything 
else. Look at each error, which file it was in, which line it occurred on, 
and what the error was. Fix your source files, and recompile. Continue 
until MADY finds no errors and your adventure compiles successfully. 

When it compiles correctly, run PADV, load your adventure (the 
-E debug option is recommended), and try to play your adventure. If 
something isn't working the way you want it to, go back to your editor, 
look to see what you are currently telling the game to do, then make the 
appropriate changes to make it work as you want it to. 

Keep this general model of developmental flow in mind as you 
work on your adventure. Compile often so that you know where your 
new sections are, and you will be able to locate any errors in them more 
easily. 

RUNNING MADV 

~V must be run from the CLI, and needs a reasonably large 
stack size set. (We recommend a stack size of 20 ,000 bytes. See the p ADV 
Section for details on setting up your stack.) 

To run MADY, type "MADY", a space, the name of your adventure 
(e.g., "Spy.ADV", or just "Spy"), then follow that with any cross­
reference. options you want. Note that the -x must be used before any 
otl1er option, as the rest of the options are modifiers for the -x option. 
The options are as follows: 

-x Generate a cross reference with everything, except 
the " f" option. 

1-2 T .A.C.L. User's Manual- Section 1 

Adding any other options will disable all other options not specifically 
selected. The options are: 

v List all variables and initial values. 
r List all rooms in the adventure. 
o List all objects in the adventure. 
c List all CODE blocks. 
g List all Graphics files included. 
f Add form-feeds after each section of the cross-reference 

listing. 

Here's the concise format: 

MADV <Adventure Name> [-x[v] [r] [o] [c] (g] [f]J 

where each option in square brackets is optional. Except for the "x", the 
options do not have to be in any particular order. 

MADY always tries to generate the two main files that are needed 
to play the adventure. These are the .GAM and the .WRD files. The .GAM 
file is the main file, while the .WRD file contains encoded text. Also, if 
you want to see the images in an adventure, all the included graphic files 
are needed. 

When the-x option is selected, MADY will generate one additional 
file with an .XRF extension. This is a helpful cross-reference listing for 
all the requested information about your adventure. 

WHAT ARE ALL THESE FILES FOR? 
TA.CL uses a system of files to keep all source code nicely 

divided and to keep individual files from becoming too large. There are 
six classes of SOURCE files. The main file, known as the ADVENTURE 
or .ADV file, is the most important and the easiest to write . This file 
basically provides the system with key information like the names of the 
other files, the password, variable names, and which room the player 
will begin the adventure in. There must be exactly one ADVENTURE file 
per adventure. However, all other file classes may have any number of 
files per adventure. The other five file classes are: IMAGE, ROOM, 
OBJECT, SUBROUTINE, and VOCABULARY. There are file templates on 
the TA .CL disk in directory "blank". 

IMAGE files are simply the file names of any pictures used in the 
adventure. For VGED files, the password for that file must also be 
included on the same line, following the filename. This allows you to 
distribute your adventure and, at the same time, keep others from using 

© 1989 Micro Momentum, Inc. & Altemate Realities 1-3 



your .gr~phics in their adventures, or even viewing them without 
perm1ss1on. Of coarse, if you do want other T A.C.L. users to be able to 
view your grapbics, you may use tbe standard password· "PUBLIC". 

The ROOM files contain all the code describing the rooms in the 
adventure. Each file may contain multiple rooms. There may also be any 
number of files, and you may name them whatever you wish (although 
it is often helpful to use a "Room" or ".ROOM" postfix to keep your files 
straight). 

n:e OBJEC: files are similar to the room files, only they define 
each obiect used m the adventure. Like the room files, it is a good idea 
to use an "Objects" or ".OBJ" postfix for these files. 

The SUBROUTINE files are special sections of code that perform 
specific functions, and can be called from anywhere else in the 
adventure. This makes it easy to perform a particular function repeat­
edly. 

Th~ VOCABUIARY files define all nonstandard phrases, words, 
and special functions. This will be described in more detail later. 

To play your adventure you will need only the graphic fi les, and 
the .GAM and .WRD files. You will notice that these are specially 
encoded and cannot be read by others examining the adventure files. 

Now that we have a basic understanding of what to edit and 
com~ile, and :What the different file types are, we are ready to begin 
bu1ldmg our first adventure. So be brave, and continue reading. 

MAKING YOUR FIRST ADVENTURE 

Let's see ... trick cigarettes, concealed automatic handgun, wire­
taps, bugs, secret plans, coding/decoding telephone, invisible ink for 
writing adventures .. . 

We are now ready to begin building our first adventure. Take this 
at your own pace, and back up if you get lost. The following are "step­
by-step" and "file-by-file" instructions for building a simple, but playable 
sample adventure. This adventure will take a while, so plan to spend 
several hours creating it. 

THE ADVENTURE FILE 

This is the best place to start your adventure. Using your favorite 
editor, create a file called "Spy.ADV". Remember that your own 
adventures must end with the same ".ADV". 

The first line of this file should read, "ADVENTURE", followed by 
the name of the adventure, like "Short Spy Adventure" or anything else 
you would like to call your game (except for the word, ADVENTURE, 
which is used by MADY). Feel free to use the whole initial line for the 

1-4 T A .C.L. User's Manual - Section 1 

name of your adventure. However, pick something that makes sense, 
as this name will be displayed at the beginning of the game. 

On the next line (or a few lines down if you wish), must appear 
"PASSWORD", followed by a SINGLE WORD that you have chosen as 
this adventure's password. Do not pick easily identified, or topical 
passwords. Something completely off-topic is usually best, such as the 
name of your favorite hockey team. 

Now is our chance to define any and all variables that we want to 
use in the adventure. We can always come back later and add more, but 
here are a few to give us a good start. The variable block is optional, so 
if you do not need any variables in your adventure, just skip this block 
entirely. Start the variable block with a line containing the keyword 
"VAR", then on the following lines we will list all our variables and their 
starting values. If you leave off the starting value, MADV will assume it 
to be 0. 

Let's define seven variables right now, and call them FLOOR, 
PLANSFLOOR, MEMOFLOOR, DISKFLOOR, AGENTFLOOR, TIME, and 
BULLETS. For now, we will not bother with any of the -FLOOR variables. 
However, we do want the player to start with 6 bullets in his gun, the 
time to start at 0, and we want the first floor to be the ground floor. To 
do this, we make the ne:i.."t five lines "Floor 1 ", "PlansFloor", "Memo Floor", 
"DiskFloor", "AgentFloor", "Time O", and "Bullets 6", respectively. Note 
the "1" after the Floor variable, the "O" after the Tin1e variable, and the 
"6" after the Bullets variable. End the variable block by putting 
"ENDV AR" on the ne:i.."t line, and maybe add an extra blank line before 
the next block. 

There are also several variables that are defined by the system. 
These are SCORE, ITEMS, and MOVES. In addition, MADV creates a 
variable for the position of every object in the adventure, the name of 
which is derived by adding "POS" to th~ end of the object's name. For 
example, an object called Agent would have a con-esponding variable 
AgentPOS, which will always contain the number of the room the Agent 
is in. The SCORE variable is automatically displayed by the system when 
the player types the "SCORE" command in PADV, unless the adventure 
redefines the "SCORE" command. Add or subtract from this variable to 
keep track of the player's score. ITEMS and MOVES are automatically 
updated by the system to reflect the number of items the player currently 
has in his inventory, and the number of moves he has made since t11e 
start of the game. __ 

All variables in PADVare integers, and must be between -32768 
and 32767, inclusive. The reasons for these numbers are hardware 
specific, so don't worry about them, just make sure not to exceed them. 

© 1989 Micro Momentum, Inc. & Alternate Realities 1-5 



The IMAGE block is next but, like the variable block, it is optional 
and should be skipped if you do not plan to add any graphics to your 
adventure. Start the IMAGE block with a line stating "IMAGE'', followed 
by one or more lines with the file names of your images, one or more 
spaces and, if it is a VGED file, the password for that image file. (For IFF 
and ILBM files, skip the password.) End the block with an "END IMAGE" 
command. Skip this block for now; you can return later to put it in should 
you want to draw any images as discussed in Section II. 

Next is the ROOM block which, like the image block, defines the 
files that contain the room descriptions. "ROOM" applies to all locations 
within the adventure, not just indoor locations. Whether a givrn 
"ROOM" is indoors or out depends on the description you provide to 
the player. Start the ROOM block with "ROOM", follow it with one Room 
file name per line, and end it with an "ENDROOM" line. For this 
adventure, define the room file "Spy.ROOM". 

The OBJECT block follows the ROOM block, and is of the same 
format except it is optional, begins with "OBJECT'', ends with "E DOB­
JECT", and defines the filenames for object code instead of room code. 
Define the object file "Spy.OBJ" for this adventure. 

The SUBROUTINE block is also optional, and basically the same 
as the OBJECT block, but begin it with "SUB" and end it with "ENDSUB". 
Define the subroutine file "Spy.SUB" for this adventure. 

The VOCABUIARY block is last, and also optional. Begin the 
block with "VOCAB", and end it with an "ENDVOCAB" statement. For 
this adventure, define the vocabulary file "Spy.VOC". 

The next line is an "INITROOM" statement, followed by a space 
and the name of the room you will begin the adventurer in. For this 
adventure, the starting room will be "Embassy". 

Finally, end this file with an "ENDADVENTURE" statement and 
close the file. Check your file against the entire file listing below'. 

Here is the whole file we have just created, as it should look from your 
editor (blank lines are omitted to save space): 

* FILE SPY.ADV~---
ADVENTURE Short Spy Adventure 
PASSWORD Capitals 
VAR 
Floor 1 
PlansFloor 
MemoFloor 
DiskFloor 
AgentFloor 

1-6 T .A. C.L. User's Manual - Section 1 

Time 0 
Bullets 6 
ENDVAR 
ROOM 
Spy .ROOM 
END ROOM 
OBJECT 
Spy.OBJ 
ENOOBJECT 
SUB 
Spy . SUB 
ENDSUB 
VOCAB 
spy.voe 
ENOVOCAB 
INITROOM Embassy 
ENOAOVENTURE 
* ---- ENO OF FILE ----

THE ROOM FILE 
Although this adventure will have only one room file, remember 

that you may have any number of files for rooms, each containing any 
number of rooms, with the obvious minimum of one room per file. To 
keep our adventure simple, we will use only one file with seven rooms 
in it. First, we need to draw our map. Ours will appear to have fifteen 
rooms, but we will only define seven - one special room will act :is ten 
different rooms, and one will not normally be used. 

Our map will look like this: 

E I Russian Secret State Tunnel cg] House 
\ ' ' 

.. 
I I 
I I 
I I 

Street I I 
I I 
I I 
I I 
I I 
I I 

United I I 
I I 

C8J I I Trap Door States I I 
I I 

Embassy' ' 
~ 

E=Elevator 

© 1989 Micro Momentum, Inc. & Alternate Realities 1- 7 



The Embassy will be the first room, the Secret Tunnel will be the 
next two rooms, the street and elevator will be the founh and fifth rooms, 
the State House will be our special sixth room, and the seventh room 
will be our spare room. 

The mission will be to find and steal back the stolen plans to the 
Stealth Bomber. The Russian State House will be ten stories high, and 
we will randomly hide the document somewhere in it. This will keep 
the game interesting, even after playing it a few times, as the document 
will not always be in the same place. We will make the single room 
appear to be ten rooms (accessed by the elevator) through the use of 
room links and changing descriptions. 

But before we begin with the ROOM file, we need to understand 
some of the T.A .C.L. language statements. We will introduce a few 
statements in each section, with the remaining statements appearing at 
the end of this section. For a complete reference, refer to Section IV: The 
T .A.CL Language. 

First, we introduce the comment line. Use a comment line 
whenever you !Vant to make a note to yourself about something you 
have written in the code. People playing your adventure will never see 
your comments; they exist only in your source files, for your benefit 
only, and are not even written into the adventure. Make a comment by 
placing an asterisk ("•") on the line, then typing in the comment. A 
comment can appear on any line except for the ADVEN11JRE line, a line 
with a Text ("T') statement, or a DIRECTIONS statement. Remember, 
EVERYTIIlNG on that line after the asterisk is ignored, so do not put any 
other program instructions on that line; they will also be ignored by 
MADV. 

Next is the Text statement. This is the command that you will use 
to display everything the player will ever see while playing your 
adventure. It is always referred to as "T" for brevity and to save space 
on each line. When executed, the T statement will print everything after 
it to the screen, except some special codes that affect the manner in 
which it prints. The special codes all begin with a tilde ("-": the key in 
the upper left corner, when shifted), and will let you print in bold, italics, 
underline, and reverse video (or any combination of these). Here is a 
quick list: 

TEXT CONTROL CODES 
-B = Bold ON 
-I = Italics ON 
-R = Reverse Video ON 
-U = Underline ON 
-N - Tum ALL attributes OFF 

1-8 TA.CL. User's Manuql- Section 1 

These attributes will remain set until you turn them off with the 
"-N" option. You should always turn any attributes off before ending a 
block of text. Use the attributes somewhat conservatively, an!=) alternate 
often. If they are used constantly, they lose their uniqueness. 

The T command also allows you to print the values of your 
variables. To print the value of a variable, put an "AT" symbol ("@") at 
the location in the T statement where you want the value to print, and 
follow it immediately (no spaces) with the name of the variable and then 
a space (which will not be printed but is used to separate the variable's 
name from any following text). For example, 

T -IYou have @Bullets Bullets in your Gun.-N 

would display: 

You bave 6 Bullets in your Gun. 

(This whole line will print in italics, and assumes that the player has six 
bullets.) 

Each Room in the Room file contains the following in its code: 
Header, Attributes (optional), DEFAULT room links (optional), a CODE 
block, and an "ENDROOM" statement. 

The Header starts with the keyword "ROOM", and is followed by 
a space and the room name. (See above, or Section IV for the rules on 
making a legal identifier.) 

Optionally, each room can have a set of attributes. In T .A.C.L., an 
attribute is some detail that is specific to a room or object, and it can have 
only positive and negative values. For instance, a Gun can eithe.r be 
Loaded or not, a Lamp can either be On or not, or a Room can either 
be Dark or not. 

To create attributes for a room, start an attribute block with an 
"ATTRIB" line, and follow it with each attribute (also standard identifi­
ers). You may also follow any attributes with a space and a "Y" or "N" 
to set or unset that attribute at the start of the adventure. MADV assumes 
a default ofN for each attribute. You may have up to sixteen attributes 
per room, but since DARK and VISITED are already used by the 
compiler, you may add only fourteen more. 

Next are the default links for the rooms. Each room is completely 
independent of all others, and P ADV therefore needs to be told which 
room to go to when the player tries to travel in any particular direction. 
Links can be changed throughout the course of the game, new passages 
can be opened and old ones closed, but the links described in the 

© 1989 Micro Momentum, Inc. & Altemate Realities 1-9 



DEFAULT block are the starting links that will remain in place until they 
are specifically changed. Start the default block with "DEFAULT', and 
end it with "ENDDEFAULT". A direction abbreviation, a space, and the 
room name that the player will reach ifhe moves in that direction should 
appear in-between each line. Any unused directions should not be 
included; PADV will automatically tell the player that he cannot move 
in any unused directions. 

The final block before the "ENDROOM" statement starts with 
"CODE" and ends with "ENDCODE". Between these lies all the code (T 
statements, etc.) that describes the setting to the player. This is especially 
complex for the Russian State House Room. We will resume describing 
all the commands used here later in this section. You may also refer to 
Section IV if you have any questions regarding the commands. 

* FILE SPY.ROOM 
ROOM Embassy * This is where the player starts 

* the adventure from. 
DEFAULT 
N Street 
ENDDEFAULT 
CODE 
IF PLAYER HAS Plans THEN * 0

Player has won 
T Congratulations Mr. Super Agent! 
T You have saved the day, prevented the 
T compromising of national security, and 
T stopped the Russians cold. 
T Thank You! 
WIN 

* Startup Code ELSIF Embassy NOT Visited THEN 
CALL Randomize * Setup the game. 

the United States Embassy 
The Russians have stolen 
F-19 Stealth Bomber. 

T You are currently in 
T in Moscow, U.S.S.R. 
T the plans to our new 
T -B YOUR MISSION: -N 
T Recover the stolen plans from the Russian 
T State House where they currently are hidden. 
T Good Luck from all of us! 
T 
T You see a trapdoor in the floor. 

ELSIF Trapdoor IS Open THEN 
T You are in the Embassy, a trapdoor in the 
T floor is open, and stairs lead down into a 
T dark passage. 

ELSE 
T You are in the United States Embassy. 
T There is a trapdoor here. 

ENDIF 

1-10 T A.C.L. User's Mc111ual- Section 1 

ENDCODE 
END ROOM 

ROOM Street 
* Since we don't feel like building the rest 
* of Moscow right now, it is deadly to enter 
* this room; we don't even bother making exits. 

CODE 
T You walk confidently out the door into 
T the streets of Moscow. However, you are a 
T spy, not a diplomat, and just notice a large, 
T black van speeding by and shooting at you 
T before you die. 
CALL KillPlayer 
ENDCODE 
END ROOM 

ROOM SecretTunnelSouth 
DEFAULT 

N SecretTunnelNorth 
U Embassy 

ENDDEFAULT 
CODE 
T You are in a narrow dark passage that runs 
T to the north and up . You notice a sign on 
T the wall that says, 
T "-BSECRET PASSAGE-N" 
T Authorized Personnel Only 
ENDCODE 
END ROOM 

ROOM SecretTunnelNorth 
DEFAULT 

U StateHouse 
s SecretTunnelSouth 

ENDDEFAULT 
CODE 
T You are in a narrow dark passage that runs 
T south behind you. There is also an opening 

T above you. 
ENDCODE 
ENDROOM 

ROOM Elevator 
DEFAULT 

S StateHouse 
ENDDEFAULT 
CODE 
T You see a panel with ten buttons labelled, 

© 1989 Micm Momentum, 11lc. & Altemate Realities 1-11 



T "l" thru "10", beckoning to you to press them. 
T An indicator says you are on Floor @Floor . 
ENDCODE 
END ROOM 

ROOM StateHouse 
DEFAULT 

N Elevator 
S St r eet 
D SecretTunnelNorth 

ENDDEFAULT 
CODE 
IF DiskFloor # 0 THEN 

PLACEOBJ Disk NoWhere 
ENDIF 

* player doesn ' t have disk 

IF MemoFloor f 0 THEN * player doesn ' t have memo 
PLACEOBJ Memo NoWhere 

ENDIF 
IF PlansFl oor f 0 THEN * player doesn't have plans 

PLACEOBJ Plans NoWhere 
ENDIF 
IF Floor = 1 THEN 

T You are on t he ground floor of the Russian 
T State House. There is an elevator to the 
T North, doors to the south, and a hole in the 
T floor leading down. 
DIRECTIONS StateHouse N S D 

ELSE 
T You are on Floor @Floor of the Russian 
T State House. It looks pretty bare. 
T There is an elevator in the north wall. 
DIRECTIONS StateHouse N 
IF Floor = DiskFloor THEN * place special objects in the 

PLACEOBJ Disk StateHouse 
ENDIF 
IF Floor = MemoFloor THEN 

PLACEOBJ Memo StateHouse 
ENDIF 
IF Floor = PlansFloor THEN 

PLACEOBJ Plans StateHouse 
ENDIF 

ENDIF 
END CODE 
END ROOM 

ROOM NoWhere 
CODE 

* A s pare room to store objects 

T If you aren't in debug mode, you can't get here! 
EN DC ODE 
ENDROOM 
* END OF FILE 

1-12 T A.C.L. User's Manual- Section 1 

THE OBJECT FILE 
The OBJECT file defines all objects used in the adventure. For our 

adventure we will initially define only six objects: the player's Gun, a 
Trapdoor, a Memo, the secret Plans, a Computer Disk, and a KGB Agent. 
The KGB Agent will be a special type of Object called a Non-Player 
Character, or NPC. The difference between an NPC and a regular object 
is that a regular object's program is executed only when the object is in 
the same room as the player or in the player's inventory when he docs 
an INVENTORY command, whereas an NPC is executed before eve1y 
turn. This allows you to have characters who move around in their 
"universe" and do things when the player is not in the same room. Note 
that an NPC does not have to be a character, an animal, or ANYTHING. 
It is simply a generic term for an object, the program of which is executed 
at every tum. 

Alternately, regular Objects can and should be characters, so long 
as they don't need to move or do anything else when the player is in a 
different room. Sometimes, it may be easier to describe a person in the 
room code, have him do or say something, and then leave the room. To 
do this, you needn't declare any objects or NPC's; you only need to 
"fake" the character's existence in the room's program. TI1is presents a 
drawback however, as no actions can be added to this character since 
he does not really exist as a separate object. 

The OBJECT block is similar to the ROOM block, but includes 
several additional sections. Start with either the "OBJECT" or the "NPC" 

. keyword, follow it with a space, and the object's name. Note that this 
name is the name YOU will use in your program to refer to this object. 
This name must be unique. That is, if your have several keys in your 
adventure, you must name them differently (e.g., Keyl, Key2, GoldKey, 
etc.). 

Next is the NAME line. This line contains "NAME", followed by a 
space and the name(s) by which the player will refer to this object 
(separated by commas if there are more than one). Think of every 
possible synonym for the obiect and use as many as possible. 

Following the NAME line is the ADJ line, which is the same as the 
NAME line only we substitute "ADJ" for "NAME" and, in place of the 
names for the object, list adjectives describing that object. Several objects 
can have the same "name" listed, but each should have different 
adjectives so they can be told apart by the player. When two objects that 
are called the same thing by the player are in the same room, PADV will 
require the player to specify an adjective to tell them apart, so be sure 
to describe them differently to the player. 

<O 1989 Micro Momentum, Inc. & Allemate Realilfes 1-13 



Next, insert an ATfRIB block if you wish. Follow the same pro­
cedure we used for the room, only now you may have up to sixteen 
attributes per object. 

After the ADJ line or ATfRIB block is "INITROOM", followed by 
a space and the name of the room where that object will be at the start 
of the adventure. It is usually a good idea to declare a spare room, not 
accessible to the rest of the adventure, in which you may store objects 
not currently in use. This is the purpose of the room "NoWhere" in our 
short adventure, and we will specify most of our objects to start there. 

The CODE block follows the INITROOM line, and should contain 
statements dictating everything that object should do when the player 
is in the room, when it is in the player's inventory and he performs an 
INVENTORY command, or for every tum if the object is an NPC. Start 
this block with a "CODE" line, and end it with an "ENDCODE" line. 

Next will follow any number of ACTION blocks. Here we define 
EVERY action that should be allowed to be done to this object, and any 
actions that the player is likely to try. For example, almost every object 
should be able to be examined by the player. Start each block with 
"ACTION", a space, and every synonym for the verb this ACTION 
represents (separated by commas if there are more than one). Fill this 
block with normal T .A.C.L. commands, and end it with "ENDACT". After 
all actions for this object are defined, end the object with "ENDOBJECT" 
or "ENDNPC". 

Now we will cover the IF, WIN, and DIE statements. The IF 
statement is used to control how things happen and is probably the most 
useful command in the T..A.C.L. language. The IF statement consists of 
a line starting with "IF", followed by some condition that must be met 
for the enclosed statements to be executed, and optionally followed by 
a "THEN" statement. (See below or Section IV for a list of all the forms 
that the condition may take.) Immediately following the IF statement are 
all the statements that you want to be executed if the condition is met. 
Optionally, if you want to check multiple conditions, you may use one 
or more ELSIF statements after an IF statement, but before the ELSE or 
ENDIF statement. 

The ELSIF (note how it is spelled) statement has the same form as 
the IF statement, but will only be executed if the last IF or ELSIF 
statements are not met. If the EI.SEIF condition is met, then the code 
following it will be executed. Otherwise it will execute the code after 
the ELSE statement (if there is one). 

IF statements may be nested to create more complex logical 
sequences. Carefully look at how the IF statement is used in some of the 
included sample adventures. If you want something else to be done only 

1-14 T .A.C.L. User's Manual- Section 1 

when the condition(s) is/are false, then put "ELSE" on a line all by itself. 
(It doesn't check anything; rather it uses the results of the previou~ IF's 

d ELSIF's and only executes its block of code if all those comparisons 
an • fi · h d "th fail.) Always make sure to tell the computer that you are 101s e w1 
everything that belongs in that IF block by putting in an END IF statement 
(simply "ENDIF" on a line by itself) at the end of the I~'s code. 

For example, if we want to see if the player has killed the Agent 
and, if not, check to see if he has any bullets left, we would use: 

IF Agent IS Dead THEN 
T The Agent is dead. 

ELSIF Bullets = 0 THEN 
T Be careful! You don't have any bullets, 
T and there is an enemy agent after you. 

ELSE* Agent is alive and Player has bullets. 
T Be on the lookout for the enemy agent. 

END IF 

This allows you to control many different things (directions, doors, 
objects, etc.) based on what the player may do at any point in the 
adventure. Here is a list of all the forms of the IF statement. You should 
try to remember all of them, although you can always refer to either this 
section or to Section IV should you need to look up the form of an IF 
statement. 

FORMS OF THE "IF" STATEMENT 

IF PLAYER IN <room_name> THEN 

Will execute the following block of code if the player is in the listed 

room. 

IF PLAYER HAS <object_name> THEN 

will execute the following block of code ifthe player has the listed object 

in his inventory. 

IF <object_name> IS <attrib_name> THEN 

Will execute the following block of code if the listed object's listed 
attribute is SET, or "Y". 

© 1989MfcroMomentum, Inc. &Alternate Realities 1-15 



IF <object_name> NOT <attrib_name> THEN 

Will execule the following block of code if the listed object's listed 
attribute is UNSET, or "N". 

IF <object_name> IN <room_name> THEN 

Will execute the following block of code if the listed object is currently 
in the listed room. 

IF <room_name> IS <attrib_name> THEN 

Will execute the following block of code if the listed room's listed 
attribute is SET, or "Y". 

IF <room_name> NOT <attrib_name> THEN 

Will execute the following block of code if the listed room's listed 
attribute is UNSET, or "N". 

IF THISROOM IS VISITED THEN 

_wm execute the following block of code if the player has already 
been m whatever room he is currently in. 

IF THISROOM IS DARK THEN 

:Vill execute the following block of code if the player's current 
room is dark. Note tl1at when used in objects' programs, "THISROOM" 
IF statements give tl1e expected result only for objects in the player's 
current room. (Normal objects are only executed when the player is in 
the room, but NPC's always execute.) THISROOM always refers to the 
PLA YER's current room, not the object's current room. Therefore, be 
extremely cautious when using this statement in an NPC's code. 

IF <variable~name> =<>t 

<constant or variable_name> 

1-16 T .A.C.L. User's Manual- Section 1 

Will execute the following block of code if the listed variable's 
value has the listed relationship to the listed constant or variable. 111e 
accepted relations are "=" (equal to), "<" Oess than), ">" (greater than), 
"<=" or "~<" Oess than or equal to), ">-" or "=>" (greater than or equal 
to), and"<>" or"#" (not equal to). MADV will accept other comparisons, 
but P ADV will complain about them in the debugger and they will 
ALWAYS evaluate to TRUE (the condition was met). Remember that a 
constant is just a number, like "15" or "-999", that never changes. 

IF PREPOSITION IS <preposition name> THEN 

Will execute the following block of code if the preposition that the 
player last used (if any) is the same as lhe one listed. This statement 
should be used in the ACTION blocks to determine how the player is 
attempting to use an object. PADV has a set list of words that are 
recognized as prepositions. Some are not real preposilions, but have 
been included because of tl1eir usefulness in certain contexts. Here are 
all thirty-two "prepositions" that T A.C.L. will recognize: 

ABOUT ABOVE ACROSS AGAINST 
ALONG AMONG AROUND AT 
BEFORE BESIDE BE"IWEEN BEHIND 
BELOW BY FOR FROM 
IN INSIDE INTO OF 
OFF - ON ONTO OUT 
OUTSIDE OVER PAST TO .. -
TOWARD UNDER UPON WITH 

IF USING <object_name> THEN 

Will execute the following block of code if the OBJECT noun of 
the player's last command sentence is equal to one of the names of that 
object listed. This picks the object noun out of a sentence, or out of a 
prepositional phrase. For example, "Shoot the Agent with the Gun", will 
try to execute the action SHOOT against the object AGENT, with tl1e 
PREPOSITION being "with" and USING tl1e GUN. 

The WIN and DIE statements are essentially tl1e same. Use eit11er 
statement to end tl1e current game. Each statement consists of eitl1er 
"WIN" or "DIE" on a line, witl1out any parameters. There is no real 
functional difference; t11at is, t11ey will botl1 end tl1e game, but it is helpful 
to you as t11e adventure writer to know whetl1er t11e player has won t11e 
adventure, or has once again failed! 

© 1989MtcroMomentum, Inc. &AltemateRea/tties 1-17 



* FILE SPY.OBJ~~~~ 
NP C Agent 
NAME KGB, Agent, Man, Dude 
ADJ KGB, Secret, Mean 
ATTRIB 

Dead N 
ENDATTRIB 
INITROOM Nowhere 
CODE 
IF Agent NOT Dead THEN 

DROP Gun * Player always has this object. 
* The following gives us his position. 

IF GunPOS = AgentPOS THEN 
IF Time = 0 THEN 

T You see a Russian agent behind you. 
EQU Time l 

ELSE 

T The Russian Agent Shoots You. 
CALL KillPlayer 

ENDIF 

ELSE * Player NOT in the same room. 
EQU Time 0 

RANDOM AgentFloor 9 * determine a random floor for agent 
ADD AgentFloor l * to go to! 
IF Floor = AgentFloor THEN 

PLACEOBJ Agent StateHouse 
ELSE 

PLACEOBJ Agent Nowhere 
ENDIF 

ENDIF 
GRAB Gun 

ENDIF 
ENDCODE 

* very important to put gun back in inventory! 

ACTION Shoot, Kill, Destroy 
IF Bullets > 0 THEN 

T You shoot the agent with precise aim. 
T He staggers and falls out the window. 
SUB Bullets l 
SET Agent Dead 
PLACEOBJ Agent NoWhere * hide the agent from view 

ELSE 

T But you've already used all your bullets! 
ENDIF 
END ACT 
ENDOBJECT 

OBJECT Gun 
NAME Gun, Cannon, Beretta 

1-18 T .A.C.L. User's Manual- Section 1 

ADJ Small, Black, Sleek 
INITROOM PLAYER 
CODE 

T A small 6 shot Beretta. 
ENDCODE 

ACTION Look, Examine, Scope, View, See 
T A very nice, sleek, black automatic Beretta 
T that contains @Bullets hollow point bullets. 

END ACT 

ACTION Shoot 
T SHOOT YOUR GUN??? How? You might try 
T shooting the guard, but can't shoot your gun 
T unless you have another gun to shoot it with! 

ENDACT 

ACTION Fire 
IF PLAYER HAS Gun THEN 

IF USING Agent THEN 
IF Bullets > 0 THEN 

T You shoot the Agent, he staggers with 
T the blow, and falls out of the window. 
SET Agent Dead 
SUB Bullets l 
PLACEOBJ Agent NoWhere 

ELSE 
T Sorry, you're out of bullets. 

ENDIF 
ELSE 

IF Bullets > 0 THEN 
T You enjoy shooting a hole in the wall. 
SUB Bullets l 

ELSE 
T You've used all your bullets - You're out! 

ENDIF 
ENDIF 

ELSE 
T But you don't have the gun. 

ENDIF 
ENDACT 
ENDOBJECT 

OBJECT Trapdoor 
NAME Door, TrapDoor, Panel 
ADJ Trap, Secret 
ATTRIB 

Open N 
ENDATTRIB 

© 1989 Micro Momentum, Inc. & Altemate Realities 1-19 



INITROOM Embassy 
CODE 
ENDCODE 

ACTION Look, Examine, Scope, View, See 
T It looks like a dusty door. 
IF Trapdoor IS Open THEN 

T It is open. 
ELSE 

T It's tightly closed. 
ENDIF 

ENDACT 

ACTION Open, Lift 
IF Trapdoor IS Open THEN 

T But it's already open! 
ELSE 

T You pull the trapdoor open. 
SET Trapdoor Open 
DIRECTIONS Embassy N D 
LINK Embassy D SecretTunnelSouth 

ENDIF 
ENDACT 

ACTION Close, Shut 
IF Trapdoor IS Open THEN 

T You close the trapdoor. 
UNSET Trapdoor Open 
DIRECTIONS Embassy N 

ELSE 
T It already is. 

ENDIF 
ENDACT 
ENDOBJECT 

OBJECT Memo 
NAME Memo, Note, Paper 
ADJ Secret, Small 
INITROOM Nowhere 
CODE 
IF PLAYER HAS Memo THEN 

T A Secret Memo 
ELSE 

T There is a small memo on the floor here . 
ENDIF 
ENDCODE 

ACTION Look, Examine , Scope , View, See, Read 
T It is a secret memo . It says that the plans 

1-20 T.A.C.L. User's Manual-Section 1 

T were given to Dr. Soifer on floor @PlansFloor . 
ENDACT 

ACTION Get, Grab, Take, Swipe, Cop, Steal 
IF PLAYER HAS Memo THEN 

T You already have it. 
ELSE 

T You grab the memo. 
GRAB Memo 
EQU MemoFloor 0 

ENDIF 
ENDACT 

ACTION Drop, Lose, Rid 
IF PLAYER HAS Memo THEN 

T You drop the offending Memo. 
DROP Memo 
EQU MemoFloor Floor 

ELSE 
T You don't have a Memo. 

ENDIF 
ENDACT 
ENDOBJECT 

OBJECT Plans 
NAME Plan, Plans, Tube , Paper 
ADJ Secret , Stealth , Bomber, Rolled, 
INITROOM NoWhere 
CODE 
IF PLAYER HAS Plans THEN 

T Top Secret Plans 
ELSE 

T There is a tightly rolled tube of paper here. 
ENDIF 
ENDCODE 

ACTION Look, Examine , Scope, View , See, Read 
T It is a set of top secret stealth bomber plans! 
ENDACT 

ACTION Get, Grab, Take, Swipe, Cop, Steal 
IF PLAYER HAS Plans THEN 

T You already have them. 
ELSE 

T You grab the set of plans. 
GRAB Plans 
EQU PlansFloor 0 

ENDIF 
ENDACT 

© 1989 Micro Momentum, Inc. & Alternate Realities 1-21 



ACTION Drop, Lose, Rid 
IF PLAYER HAS Plans THEN 

T You drop the secret plans. 
DROP Plans 
EQU PlansFloor Floor 

ELSE 
T You don't have the plans . 

END IF 
ENDACT 
ENDOBJECT 

OBJECT Disk 
NAME Disk 

ADJ Floppy, Computer, Secret, Stolen 
INITROOM NoWhere 
CODE 
IF PLAYER HAS Disk THEN 

T A stolen computer disk. 
ELSE 

T An innocent-looking computer disk is he re. 
ENDIF 
ENDCODE 

ACTION Look, Examine, Scope, View, See 
T It is a computer disk. Its label says 
T "TOP SECRET INFORMATION" 
ENDACT 

ACTION Get, Grab, Take, Swipe, Cop, Steal 
IF PLAYER HAS Disk THEN 

T You already have it. 
ELSE 

T You grab the computer disk. 
GRAB Disk 
EQU DiskFloor O 

ENDIF 
ENDACT 

ACTION Drop, · Lose, Rid 
IF PLAYER HAS Disk THEN 

T You drop the computer disk. 
DROP Disk 
EQU DiskFloor Floor 

ELSE 

T You don't have the disk. 
END IF 

ENDACT 
ENDOBJECT 

" END OF FILE 

1-22 T .A.C.L. User's Manual- Section 1 

THE SUBROurINE FILE 
The subroutine file contains special programs that can be called 

by any other program in the adventure. These can be short functions that 
display random messages when the player does something crazy like 
pick up something he already has, or they can compute numeric 
functions, end the player's life, generate musical sequences, or anything 
else you may need to do at more than one place in the adventure. 

We will define three short subroutines for the sample adventure. 
One will initialize the variables, one will be a sub-subroutine used only 
by the first subroutine, and the third will be used when the player dies. 
The third will make it easy to add graphics later also. Since eve1y time 
the player dies it will call this subroutine, we need only add one line to 
have it display an R.I.P . message or a skull and crossbones image. 

To define a subroutine, start with the keyword "SUBROUTINE" or 
"SUB", followed by space and the name of the subroutine. Follow this 
with a program to perform whatever function you want it to, and end 
the block with a "ENDSUB" line. 

To our current knowledge of T .A.C.L., we now add the CALL, 
GRAB, DROP, GO and MOVE statements. The CALL statement is simple, 
powerful, and easy to use. A CALL statement consists of "CALL", 
followed by the name of a subroutine. When this statement is executed, 
it will be just as though the whole subroutine code were in the same 
place as the CALL statement. When everything in the subroutine that was 
called has been done, then execution continues on the next line after 
the CALL statement. P ADV will allow CALLs to be nested up to 128 deep. 
After that, it will ignore further call statements and continue execution. 

The GRAB statement is used to move an object into the player's 
current inventory. Its format is "GRAB", followed by the name of the 
object to GRAB. Note that this must be done specifically in your code, 
usually when the player tries to get, take, or grab that object, but you 
may prevent this from happening if you do not want them to be able to 
grab it. (If it's too large or heavy, or if they have too many objects in their 
inventory, or for any other reason you may decide.) 

Likewise, the DROP statement is used to move an object from the 
player's inventory to the player's current room. Like the GRAB state­
ment, you must specifically program this to occur. For instance, this 
allows for cursed rings that cannot be removed until some condition is 
met. Its format is like the GRAB statement. Type "DROP", following it 
with the name of the object you wish to remove from the player's 
inventory. 

© 1989 Micro Momentum, Inc. & Alternate Realities 1-23 



Th~ GO statement is used to force the player into another room 
When this occurs, the current room's program will finish executin and 
the program for the player's new room will then be executed Tg 
ti · . . . o use 

11s statement, create a !me starting with "GO" and fi II h · o ow t at with the 
name of the room you wish to send the player to Th' II · is a ows you to 
cause the player to fall through trapdoors be transported or oth . 

d f • , erw1se move rom one room to another. 

. The MOVE statement also forces the player into another roo b 
instead of specifying the name of the room the DIRECTION fi m, ut 

I · · · . ' to orce the 
P_ aye'. m is given. Th1s command is similar to the player moving in the 
direct10n you specify, except here the player doesn't have any contr 1 
over what is happening. Follow "MOVE" with the abbreviated directio~ 
name to push the player in, if that is possible. If that direction is not 
all.owed, then the player will simply remain in the current room. This 
might be used to simulate a player's drunkenness by forcing him to 
stagger from room to room for several turns. 

* ~~~~FILE SPY.SUB~~~-
SUBROUTINE Randomize * set d ran om floors for the objects 

CALL RSub 
EQU MemoFloor Time 
CALL RSub 
EQU DiskFloor Time 
CALL RSub 
EQU PlansFloor Time 
EQU Time 0 

ENO SUB 

SUB RSub * gene t ra es a random number between 2 and 9 
RANDOM Time 8 
ADO Time 2 

ENO SUB 

SUBROUTINE KillPlayer 

T Too Bad, but it appears that you have DIED!!! 
T 

: ... Please don't let it ruin your day . 
you could display an image here! 

DIE 
ENO SUB 

SUBROUTINE Elevator 
IF PLAYER IN Elevator THEN 

T The elevator doors closes, you wait a moment, 
T and the doors open again. The indicator says 
T you are on floor @Floor . 

1-24 T .A.C.L. User's Manual- Section 1 

ELSE 
T What??? Where? What are you talking about? 

ENO IF 
END SUB 

* ENO OF FILE ~~~~ 

THE VOCABULARY FILE 
The vocabulary file allows you to define new words and phrases 

that do not directly correspond to objects. Any actions perfom1ed 
directly with or on objects should be defined in the OBJECT itself as an 
ACTION. Use vocab blocks for phrases and directions like "SLEEP", 
"HEALTH", "CREDITS", etc. that do not have a specific object they 
function on. Start this file with a "VOCAB" line, and define ACTION 
blocks just like in the OBJECTs file. The only difference is that these 
blocks do not correspond to any objects in particular, and they may be 
as many words long as you like. You need not include the articles "a", 
"an", "the'', and "that" because they will be filtered by PADV anyway. 
End the file with an "ENDVOCAB" line. 

Before we finish the test adventure, we will introduce the 
PLACEOBJ, MOVEOBJ, RANDOM, and SCORE statements. 

PLACEOBJ is used to move an object to an absolute location. 
Specify "PLACEOBJ", the name of the object to be moved, and the name 
of the room you wish to put it in, and the object will instantly move to 
that room. "THISROOM" can be substituted for the room's name, 
causing the object to be sent to the player's current room. 

MOVEOBJ is like PLACEOBJ, but instead of telling an object which 
room to go to, we tell it which direction to go in. The format is 
"MOVEOBJ", the object's name, and the abbreviated direction to move 
in. (You must use "N", "S", "NW", "U", etc. You may NOT use "North", 
"South", etc.) This will attempt to move the indicated object to the room 
that is linked to the direction indicated. 

The RANDOM statement is very useful for making events differ 
from game to game, or even within a single game. You must decide 
whether you want random events to occur in your game. The format of 
the RANDOM statement starts with the "RANDOM" keyword, followed 
by the name of the variable to put the random number in, and then the 
maximum value to generate PLUS ONE. The maximum value can be 
either a constant or a variable, and if it is negative, RANDOM will 
generate a negative number. All numbers generated are between (and 
including) zero and the maximum value minus one. 

The SCORE command is just a convenient way of manipulating the 
SCORE variable'. Use "SCORE", followed by a variable or a constant, and 
that value will be added to the player's current score. (If the value is 

(!:) 1989 Micro Momentum, Inc. & Alternate Realities 1-25 



negative, the player's score w ill be decreased.) Remember that the limit 
on all variables is between -32768 and 32767. Do not exceed these limits 
or else the score will wrap around to the opposite end of the sca le. ' 

. The rest of TA .CL 's commands are described at the end of this 
section. Be sure to read over them carefully before beginning your own 
adventure. 

* FILE SPY.voe 
VOCAB 

ACTION Sleep, Rest, Snooze 
T Zzzzzzzzzzzzzzzzzzzzzzzzzzz. <YAWN> Happy? 

ENDACT 

ACTION Wait, Pause 
GO THISROOM * Do Nothing, then re-execute room 

ENDACT 

ACTION CREDIT, CREDITS 
T I Don't get enough! 
T .. Respect either! 
T . . or Money! 

ENDACT 

ACTION Push 1, Push One, Press 1, Press One 
EQU Floor 1 
CALL Elevator 

ENDACT 

ACTION Push 2, Push Two, Press 2, Press Two 
EQU Floor 2 
CALL Elevator 

ENDACT 

ACTION Push 3, Push Three, Press 3, Press Three 
EQU Floor 3 
CALL Elevator 

ENDACT 

ACTION Push 4, Push Four, Press 4, Press Four 
EQU Floor 4 
CALL Elevator 

ENDACT 

ACTION Push 5, Push Five, Press 5, Press Five 
EQU Floor 5 
CALL Elevator 

ENDACT 

1-26 T .A.C.L. User's Manual- Section 1 

ACTION Push 6, Push Six, Press 6, Press Six 
EQU Floor 6 
CALL Elevator 

ENDACT 

ACTION Push 7, Push Seven, Press 7, Press Seven 
EQU Floor 7 
CALL Elevator 

ENDACT 

ACTION Push 8, Push Eight, Press 8, Press Eight 
EQU Floor 8 
CALL Elevator 

END ACT 

ACTION Push 9, Push Nine, Press 9, Press Nine 
EQU Floor 9 
CALL Elevator 

ENDACT 

ACTION Push 10, Push Ten, Press 10, Press Ten 
EQU Floor 10 
CALL Elevator 

ENDACT 

ENDVOCAB 

* END OF FILE 

COMPILING AND DEALING WITH COMPILER ERRORS 
To compile this adventure, first type all five of the files presented 

into the computer with your text editor, and save them to disk. It is 
usually a good idea to keep all your files in the same directory, but if you 
acquire a large number of files, you can place most files in subdirecto­
ries, with the ADVENTURE file in the parent directory of all other 
directories. DO NOT specify the whole path for other files in the 
ADVENTURE file, just the subdirectory name, a slash, and a ft.lename. 
This is acceptable practice for most files. However, IMAGE files should 
always remain in the current directory because their pathnames are 
memorized so that P ADV can find them later. If you don't keep them in 
the current directory, P ADV will expect to find them in the same sub­
directories, which can be very inconvenient if you decide to distribute 
your adventure (over a BBS or otherwise). 

After all files have been entered and saved, type "MADY Spy". Sit 
back and watch as MADY zips through your files. Generally, each period 
(".")printed represents one object, one room, or whatever for that file, 

© 1989 Micro Momentum, Inc. & Allemate Realities 1-27 



so you can monitor MADV's progress through your adventure. If any 
problems arise (typos, misplaced statements, or other problems), just 
wait for the compile to finish . (If necessary, MADY can be halted using 
the Control-C key combination.) All errors printed are duplicated in a 
file called "Spy.ERR" for your convenience. Display the file by typing 
"TYPE Spy.ERR". Refer to Appendix A: MADY Errors for a quick 
description of each error and its probable cause, and refer to the 
remainder of this section for more specific information on finding errors. 

First, find which file(s) the error(s) is/are in, and load the first file 
into your editor. Then note the line number of the error (at the beginning 
of the line). Fire up your editor and load in the file in which the problem 
was found. Move to the line number where MADY found the error and 
try to locate the problem. If you cannot find anything wrong, check the 
order of the different code blocks used. If you really get stuck, try 

looking at the source code for some of the included sample adventures 
to see how we made it work. Try breaking complex problems down into 
small discrete steps that can be written more easily. 

If you still can't find anything wrong, check the exact syntax (or 
"format") of the command with the full-reference listing in Section N : 
The T .A.C.L. Language. If it matches properly, check the same for the 
line or two before it. Keep in mind that one error can sometimes make 
MADY think the following lines are wrong, too. Recompile and see if it 
is still rejected by MADY. If you are still having problems, try making the 
problem line into a comment (so MADVwill ignore it), and see ifthe rest 
of your code compiles. Be creative - finding and eliminating bugs is the 
most difficult aspect of programming. That is what many programmers 
get paid for - debugging, not programming. 

If you follow all the rules and think you have found a bug in 
T .A.CL, isolate it by making as short an adventure as possible that still 
causes the bug. If you can isolate and reproduce the error, we would 
like to hear about it. Please fill out the enclosed bug report form, and 
mail it in so we can fix the problem before the next version of T .A.CL 
is released. If possible, please include a listing of the test adventure. 
Thank you in advance for helping to make T.A .CL a bug-free system! 

OTHERT.A.CL COMMANDS 

Now we will explain the function and use of every T.A.C.L. 
statement that has not yet been covered. 

The remaining commands are: DIRECTIONS, LINK, SET, UNSET, 
SHOW, IMAGE, NOTE, and the mathematical functions EQU, ADD, 
SUB, MULT, and DN. 

1-28 T .A.C.L. User's Manual- Section 1 

The DIRECTIONS statement determines which directions the 
player is allowed to travel from a room. Follow the "DIRECTIONS" 
keyword with the name of the room to set the directions for, and follow 
that with all the abbreviated direction names that are available from that 
room, separated from each other by spaces, and in any order you like. 

The LINK command is used with the DIRECTIONS statement to tell 
PADV which room to go to for each available direction. Note that the 
previous room links (if any) remain in effect unless re-LINKed. The 
direction command does not remove links when you remove a direction 
from the available list, it just will not allow the player or objects to go 
in that direction. To use the LINK command, start with "LINK" and follow 
it with the name of the room to set an exit for, then a space and the 
direction to set a link for, followed by another space and the name of 
the room that lies in that direction. Unless you wish to "move" rooms 
or open and close doors, you will probably never have to re-LINl< a 
room. Be VERY careful to always LINK all available directions; the 
debugger will tell you when you haven't, but without the debugger 
running, the results will be unpredictable. 

SET and UNSET are used to change the state of a room's or object's 
attributes. SET will make that attribute a ''Y", and UNSET will make that 
attribute an "N". Their format is the same. Use either "SET" or "UNSET", 
and follow it with either the name of an object or the name of a room, 
then finish with the name of the attribute that is to be changed for that 
object or room. "THISROOM" may also be used in place of an actual 
room name to indicate the player's current room, but this applies if, and 
only if, the attribute you want to set or unset for the current room is either 
VISITED or DARK. 

The two graphic commands are SHOW and IMAGE. The SHOW 
command will immediately display an image ifthe player has Graphics 
turned on. Use "SHOW" and the name of either an image in one of the 
VGED files listed in the .ADV file, or the filename of an IFF picture (also 
listed in the .ADV file). The IMAGE statement will associate an image 
with a particular object or room, and list its name in the Image Select 
window in PADV. The player will only see these if he clicks on the 
appropriate name in the graphic select window. To attach an image to 
an object or room, use "IMAGE", then the name of the object or room, 
followed by either the name of an image (VGED or !FF image), or the 
keyword "REMOVE" which will remove any image previously attached 
to that room or object. This allows images to change throughout the 
game, even if the object doesn't. (One possible use might be a magical 
map that fills itself in when the player accomplishes certain goals.) 

© 1989 Micro Momentum, Inc. & Alternate Realfties 1-29 



To employ sound or play music, an easy-to-use, note-generating 
facility is available. Use the command "NOTE", followed by two values 
(either constants or variables). The first value should be between 1 and 
1000, and designate the pitch of the note played. (See Appendix c for 
a table of note values.) The second value is the delay specified in fiftieths 
of a second. This value should be between 1 and 500 - that is, between 
1/50th of a second and 10 seconds long. 

Because of their limited use, math functions in T .A .CL are 
functional, but not fancy. However, T.A.C.L. 's facilities should be more 
than suitable for any standard adventure applications. 

The EQU statement is the T.A.C.L. assignment command. EQU 
simply sets a variable equal to either another variable or a constant. Its 
format is "EQU", followed by the destination variable, followed by either 
a number or the name of a variable. 

The ADD statement adds the second value given - whether it is 
a variable or a constant-to the variable that follows the ADD statement. 
Once again, keep in mind that a variable's value is limited to the range 
of -32768 to 32767. 

The SUB, DN, and MULT statements are the same as the ADD 
statement, except that the value is either subtracted from the initial 
variable, divides the initial variable, or multiplies the initial variable. The 
same value limits apply to all these functions as well. 

Note that the "SUB" keyword may be used in three different 
contexts. In the .ADV file, SUB denotes the start of a block that lists the 
names of the files containing subroutines. In those files, SUB or 
SUBROUTINE is used to start a new subroutine. However, within a 
subroutine, and eve1ywhere else in the source code, SUB is the subtract 
statement. Jhis should not cause any problems, as MADV knows how 
to handle each use, and how to tell them apart. 

The "IMAGE" keyword is also used in more than one way. In the 
.ADV file, "IMAGE" starts the block that describes all the image files 
available for the adventure. But in the rest of the adventure files, it is used 
to attach an image to an object or room. Be aware of all the uses of each 
command so as to avoid any confusion later. 

SUGGESTED ADDffiONS 
If you liked the concept of the test adventure we constructed, you 

may want to build upon it. Here are a few suggestions for additions and 
enhancements. Whether you modify the sample adventure, or start your 
own from scratch, you may want to incorporate the following sugges­
tions and concepts into your adventure game. 

1-30 T .A .C.L. User's Manual- Section 1 

l. Add "scenery" objects (e.g., walls, windows, desks). These objects 
may not serve any real purpose, but they do help to keep an adventure 
from seeming "bare" and "empty". 

2. Make the Russian State House a real ten-story building (i.e., use ten 
rooms, not just one). Although this may mean a lot more code, it will 
allow you to customize each floor more easily, and you will not have 
to worry about things being dropped on.one floor and appearing on all 
other floors. 

3. Add other objectives and intermediate goals, and complicate the 
current one. Try adding new agents (including ones on your side) and 
new obstacles to work through. 

4. Construct an arsenal of unusual gadgets, like James Bond himself 
always has. Try including weapons, lockpicks, or special computers. 

5. Add additional vocabulary statements to handle any special com­
mands that you are likely to encounter - for instance, Sleep, Sit, Stand, 
Yell, Scream, or Talk. Most commands of this type deal with what the 
character himself is doing. You may also wish to implement vocabulary 
statements to rebuke the player (and/or lower his score) for being 
obscene, or trying to destroy or kill everything and everyone in the 
adventure. Carefully worded, humorous statements are generally best. 

6. Add more rooms to the adventure. Where they are added is up to you. 
The Embassy would be a good start: the Russian State House is crying 
out for more rooms and passages. And, of course, the Secret Tunnel 
could easily link up to a whole network of passages and tunnels that lead 
to more buildings. Creating a deadly barrier Oike the streets) is usually 
a better way to limit your adventure than to merely say, "You can't go 
that way." It leaves the impression that all of Moscow (and the rest of 
the universe) is still there - it is just currently inaccessible to your 
character. 

7. Add more color and flavor to the descriptions. They were purposely 
kept brief here, but they generally should be longer, and more 
descriptive. 

8. Let others play your adventure, and ask for suggestions: What might 
be added? Changed? What is too confusing? Too easy? All comments and 
suggestions should be considered. 

l!:l 1989 Micro Momentum, Inc. & Alternate Realities 1-31 



. a be a warning sound when the agent 
9. Add sound effects and music. M y dio effects for when the player 

ears or other complementary ~u . 
a~p d'1,es or finds something that is uuportant. 
w ins, , 

. II· VGED.) Create images for all 
10. Add graphics. (Refe: to ~ec;~nad~enture, as well as death scenes, 
important ~ooms and ob1ects in 

victo1y scenes, etc. 

T. • CL User's Manual- Section 1 1-32 ,.n, . • 

cfECT/0;1/ II 
VGED (Vector Graphics EDitor) 

VGED is a special kind of paint program. Rather than saving a 
picture after you are done, VGED instead saves a "recipe" to redraw the 
picture. This makes graphic files MUCH smaller, and more easily trans­
ferable between different computers. The Amiga version also supports 
standard IFF images, although not all computers will be able to display 
these. Keep this in mind when designing graphics for your adventure. 

GRAPHICS CONSIDERATIONS 
When deciding whether to include graphics in your adventure, be 

sure to consider all the pro's and con's. Even if you aren't much of an 
artist, it usually will not take long to draw up illustrated signs, room 
maps, diagrams, special screens for specific events, or special warning 
screens. You may even want to include a few audio notes to comple­
ment the graphics. Also, since IFF images are accepted, you can use all 
the facilities of your favorite paint program, digitizer, frame grabber, 
image scanner, or graphic tablet to create images for your adventure. 

Given the wide variety of image-making capabilities, there aren't 
too many reasons not to include at least some graphics in your adven­
ture. The extra style and professional quality that graphics can add to 
your adventure are usually well worth the effort. 

How many images should you add? That depends on what type 
of images you are using, and how much time it takes to create each one. 
If you are using many large !FF pictures, you will have to limit your 
graphics to what will fit on a disk. If you are using VGED, space should 
not be a problem unless you create literally hundreds or thousands of 
complex images, but doing so also limits you to the VGED editor 
because no other program can create VGED images. We suggest a 
mixture of the two, and a consistent method to distribute images 
throughout your adventure . Here is one suggested plan: 

© 1989 Micro Momentum, Inc. & Alternate Recililies 2-1 



1. IFF picture Title Screen (possibly HAM). 
2. Either a VGED or IFF picture for each important room or region 

of similar rooms. (A Plan view is easiest to draw.) 
3. Make either a VGED picture, or an IFF brush for each important 

or unusual object in the adventure, keeping in mind that an 
object's appearance may change as the game progresses. 

4. Make a special graphics screen for special events (e.g., when the 
player dies, wins, or possibly an image for when something 
sudden happens). 

Note that it is usually not necessary to include this many images. 
The included images should start with places where you consider it 
important to use an image to clarify or add important details. 

Next, add images to any portion of the adventure where you have 
an idea for an interesting picture. Try not to make your adventure 
dependent on the included graphics unless you specifically mention at 
the start of the adventure that the included images are ·necessary to 
complete the adventure. 

Lastly, create enough images to fill the adventure evenly. That is, 
try not to bunch all your images at the start or at the end. If you must 
distribute them unevenly, do so by order of importance to the adventure. 

MAKING YOUR FIRST VGED IMAGE FILE 
The first step in creating a VGED image file is to run VGED. This 

can be done from either the Workbench or the CL!. From the 
Workbench, just double-click on the VGED icon. From the cu, type 
"VGED", or alternately, "Run VGED". VGED does not have any Com­
mand Line options, so there is nothing else to it. 

Once VGED is up and running, select NEW from the PROJECT 
menu. VGED will pop up a file requester. Use this file requester to select 
the volume and directory you want to save your graphic files to, and 
enter the name to use. If you already have a file started, and just want 
to add to it, or make changes to it, select LOAD from the PROJECT menu 
instead of NEW. 

Regardless of the option you choose, after you select the filename, 
VGED will ask for a password. If you wish to keep your images from 
spying eyes, enter your own secret password. Be sure to remember this 
password. (It might be a good idea to keep a notebook containing all 
the passwords for your graphic files.) Try to use different passwords for 
each file . That way, if someone discovers one of your passwords, they 
still will not be able to access all of your files. However, if you want other 

2-2 T .A.C.L. User's Manual - Section JI 

T .A.CL users to have access to your images, use the standard password: 
"PUBLIC". If you wish to copyright your drawings, or at least claim them 
as your own, it is a good idea to use a password. We also recommend 
using a different password than the one you use for your adventure. 

Now you are ready to draw your first picture. (See the next section 
for details on VGED's available options.) When you have finished 
drawing your image, select the SA VE option from the IMAGE menu. 
VGED will ask for the name of the image, and then add it to the graphic 
file. Note that in a VGED session it is not necessary to select NEW before 
you draw the first picture; if you simply begin drawing, you can select 
NEW PROJECT or LOAD PROJECT, then SA VE IMAGE afterwards. If you 
wish to determine how much memory your images actually take, 
remember that each graphic file has a base size of 14,856 bytes. 

Make sure to read the next part of tl1is section carefully to learn 
how to use VGED to its full potential. 

VGED's CAPABIIIrIES 
VGED is designed to produce images that can be quite complex 

while taking little memory. It is not designed to compete with 
DeluxePaint, or any of the other professional graphics packages 
available for the Amiga. However, with a base file size of less than 15 
kilobytes, and an average image size of less than 1 kilobyte, you can 
store literally five hundred to a thousand or more images on a standard 
Amiga disk. 

VGED displays some important information in its title bar. On the 
left, the name of the current graphic file and the name of the current 
image are separated by a period. Near the center, VGED displays the 
current X and Y position of the mouse pointer, followed by the current 
line length (or radius) when you are drawing lines and polygons. On the 
right is a word describing the current drawing mode. 

VGED has been designed to be very straightforward and easy to 
use. There are three ways to talk to VGED: through the Menus, the Help 
Window, and the Keyboard Shortcuts. Almost all options are available 
from both the mouse and the keyboard. We recommend that you use 
tl1e mouse to draw with, although you can even do that witl1 the 
keyboard if you wish. 

VGED's MENUS 
VGED has three menus. The first of these, the PROJECT menu, 

allows you to create or select a graphic file. (Remember that each file 
can, and should, have multiple images.) The PROJECT Menu contains 
the following items: 

© 1989 Micro Momentum, Inc. & Alternate Realities 2-3 



NEW 
LOAD 
ABOUf 
HELP 
QUIT 

(Right-Amiga-B) 
(Right-Amiga-I) 
(Right-Amiga-A) 
(Right-Amiga-H) 

(Right-Amiga-Q) 

Use the NEW or LOAD option to select a graphic file. Use NEW 
if you want to create a new file, and LOAD if you want to modify or add 
~o an existing file. Remember, these options select files with multiple 
images, and do not affect individual images. Both these options will 
display a file requester to ask for the name of the graphic file ro load or 
create. 

The ABOUT option will display a window with pertinent informa­
tion about the program and its copyright status. Display it often. 

The HELP menu option, the Right-Amiga-H, or the HELP key on 
the keyboard will toggle the Help Window on and off. The Help 
Window is smart; that is, it remembers where you last placed it, and 
returns there when you recall it. Usually you will want it on ro select the 
different modes, colors, and patterns, but sometimes it can get in the 
way. 

The QUIT option will, but not before it checks with you first to 
make sure you are really serious. Like P ADV, you can type "Y" or "N" 
from the keyboard, rather than click on the appropriate gadget in the 
requester. 

VGED's second menu is the IMAGE menu. It deals with functions 
that affect the individual images, rather than the file as a whole. This 
menu is as follows: 

NEW 
LOAD 
SAVE 
REDRAW ALL 
SET PALETIE 

(Right-Amiga-N) 
(Right-Amiga-L) 
(Right-Amiga-S) 
(Right-Amiga-R) 
(Right-Amiga-C) 

RENAME AN IMAGE 
DELETE AN IMAGE 

COMPRESS IMAGE FILE 

Use the NEW option to clear the screen so you can create a new 
image. Be careful not to activate this option if you wish to save your 
current image. Use LOAD to edit any image already saved in the file, and 
use SA VE to put the current image in the graphic file, whether you 
LOADed it or it is a NEW image. 

2-4 T A.C.L. User's Manual - Section Tl 

Since P ADV will draw every image from the start, it is often J good 
idea to know how long it rakes to redraw the current picture. To '-'"<llch 
a picture being redrawn, just select the RED!~ WALL option. Gener:illy 
speaking, try not to create pictures that are so complex as to take more 
than five to ten seconds to draw, as the player may begin to wonder 
what's going on. 

Eve1y image can have its own color palette using any sixteen of 
the Amiga's 4096 available colors. To choose your favorite sixteen, use 
the SET PALETTE option, or use "Right-Amiga-C" (think of "C" for 
"Colors"). Select the color you wish to change by clicking on the 
appropriately colored box, and adjust the amount of Red, Green, and 
Blue in that color with the proportional gadgets at the bottom of the 
window. When you are finished adjusting the colors, select the OK 
gadget to retain the changes, the CANCEL gadget to revert to the colors 
previously in use, or the RESET gadget to change all colors back to the 
original defaults. 

If you decide that the name you have assigned an image is not 
appropriate, or if it was used in another graphic file in the same 
adventure, and you wish to change it, select RENAME AN IMAGE from 
the IMAGE menu. This will allow you to choose the image from the 
standard image requester. You will then be presented with a window 
requesting a new name for that image. 

If you find that one (or more) of your images are unsuitable for 
use in your current adventure, select DELETE AN IMAGE from the 
IMAGE menu. Then use the standard image requester to select the image 
to delete, and confirm that you want to delete it. 

Finally, the COMPRESS IMAGE FILE option lets you reduce the 
size of the image file if any DELETED images are present. Since this is 
a reasonably time-intensive operation, it is not performed after each save 
and delete. VGED will attempt to create a temporary file in the "T:" 
directory, so be sure that there is enough room left here to hold a 
duplicate of your graphic file. It is generally a good idea to assign "T:" 
to a directory in RAM to speed up compresses. 

The last menu in VGED is the OPTIONS menu. This menu has only 
two options: 

MAGNIFY WINDOW 
CROSS HAmS 

Each of these options has a submenu containing two options: ON 
and OFF. This allows you to turn the Magnification window on or off 
with the MAGNIFY WINDOW option, and toggle the full-screen cross 
hairs on and off with the CROSS HAIRS option. 

© 1989 Micro Momentum, Inc. & Altemate Realities 2-5 



VGED's Help Window allows you to access the many dr~~ing 
functions by clicking in a window full of gadgets. Each gadget is 
presented below along with an explanation of how to use it. 

VGED's GADGETS 

First are the function gadgets. There are seven of these gadgets. 
They begin in the upper left comer and continue across the top and then 
down the right side. 

The first, and often one of the most useful gadgets, is UNDO. 
Because of the way VGED builds images and remembers every step, the 
UNDO feature lets you undo every single step all the way back to the 
first item drawn. 

The next gadget is the FILL gadget, which has a drop of paint 
depicted on it. Use this gadget with care. Because of the complex nature 
of this operation, it can take a long time to complete. Try to avoid FILLing 
large or complex areas. Use the POL YFILL instead of the FILL conunand 
wherever possible as it is much faster. Also, avoid filling within several 
pixels of your borders. If your adventure is played on a different 
computer, with a different resolution, the graphic translations may move 
your fill point slightly and end up filling in your border. This applies 
doubly when filling in and around text, because the character fonts will 
change with the computer system. 

The gadget sporting the large, fashionable "T" is the TEXT gadget. 
Select this gadget whenever you need to write text to the graphics 
screen. A requester will appear, asking for the tex't string to print, and 
then allow you to move and place tl1at string of tex't anywhere on the 
screen. 

The gadget with a straight line cutting across it is the UNE gadget. 
To draw a line, select this mode, then place the cursor at the position 
you wish to start the line, click the left mouse button, move the cursor 
to the ending position, and click the left mouse button again. 

The two remaining gadgets on the top line both bear a square and 
a triangle. However one is filled, and one is not. The outlined polygons 
selects the POLY mode. This mode pops up a requester that asks for the 
number of vertices. Enter a number between 3 and 100 to draw anything 
from a triangle, to a square, to a circle with 3, 4, and 20+ vertices, 
respectively. A circle requires a reasonably large number of vertices. If 
your circle is small, 20 or 30 might work well, bt1t if it is larger, SO to 100 
might work better. Click the mouse at the exact center where you wish 
to draw your polygon, then move the mouse away from the point, sizing 
and rotating the shape until you have it where you want it. If you are 
not satisfied with the current position of the polygon, type "U" from the 

2-6 T A.C.L. User's Manual - Section II 

keyboard, and the drawing function currently in progress will be 
abandoned. This also works for lines and POLYFILLs. The POLYFILL 
function, represented by the fill polygons, is the same as the POLY 
function, except it draws filled polygons instead of outlined ones. Use 
this in conjunction with the background color you are using to "erase" 
objects from the screen. 

On the second row at the far right-hand side is a gadget that 
resembles a camera. Click on this gadget once and you are in CUT mode. 
You now have the powerto cut out sections of the screen and paste them 
elsewhere at incredible speeds. Click the left mouse button at any comer 
of an area you want to clip. Stretch the box over the area you want, and 
click the left mouse button again. This will automatically put you in 
PASTE mode. (This works basically the same as a "brush" in 
DeluxePaint.) This snapshot is now available anytime, and in PASTE 
mode will follow the mouse pointer around. You can use the snapshot 
again - even if you have drawn new images since - by clicking 1W1CE 
on the snapshot gadget. The first click will put you in CUT mode, and 
the second will put you into PASTE mode. 

The next section of the Help Window is the Colors section. TI1ere 
are eighteen gadgets to select colors. On the left side· of the Help 
Window are sixteen gadgets, each with a different color.Just to the right 
of these are two larger, very important gadgets. The top gadget is the 
current foreground color, and the bottom gadget is the current back­
ground color. To change the current foreground color, click on the 
foreground color box (the big colored box in the middle on top), then 
click on the appropriate color box. To change the current background 
color, click on the background color box (the big colored box in the 
middle on me bottom), then click on the appropriate color box. 

To the right of the colors are the patterns, sixteen in all. The upper 
left comer pattern is merely the solid foreground color. Click on the 
pattern you want to use for all fill operations (FILL and POLYFILL). A 
sample of the current pattern will be shown in a large box in the lower 
right-hand comer of the Help Window. This box is not a gadget and will 
not do anything when you attempt to select it. Everything else in this 
window is a fully functional gadget. 

Finally, you can drag the Help Window to any position you want, 
or cause it to go away by clicking on the Close gadget in the extreme 
upper left corner. 

VGED's KEYBOARD COMMANDS 
All of VGED's options are easily accessible from either the Help 

Window or from the Menus. Most of these options are also available 

© 1989 Micro Momentum, Inc. & Alternate Realities 2- 7 



from the keyboard. Here is a list of all the implemented keystrokes, not 
including menu shortcuts: 

<Help> 

A 

c 
F 
L 
M 
p 

s 
T 
u 

The Help key will toggle the Help Window on and 
off. 
Select AREAFILL (POLYFILL) mode. 
Toggle CROSS HAIRS on and off. 
Select FILL mode. 
Select LINE mode. 
Toggle MAGNIFY mode on and off. 
Select POLY mode. 
Toggle between the CUT and PASTE modes. 
Select TEXT mode. 
UNDO the last or current command. 

The following apply to the NUMERIC KEYPAD ONLY! 

7 
9 
4 
6 
1 

3 

Decrement foreground color number. 
Increment foreground color number. 
Decrement background color number. 
Increment background color number. 
Decrement current pattern number. 
Increment current pattern number. 

Now that you know how VGED operates, you need only wony 
about what to draw. Take your time, experiment, and enjoy. After you 
have drawn a few images and want to tie them into an adventure, 
continue to the last part of this section. 

ADDING GRAPHICS TO YOUR ADVENTURES 
Now that you know how to draw graphics, the important question 

comes up: How do I include the images in my adventure? Actually, this 
is quite easy. First, decide if each image will be attached to an object, 
or a room, and if it will be automatically displayed by your adventure. 
Now include all the names of the image files contained in the ADVEN­
TURE file in the IMAGE block. On each line, include the name of a 
graphics file. If it is a VGED file, follow that name with that file's 
password. Here is a sample IMAGE block to add graphics to the 
"Spy.ADV" adventure file, assuming the existence of a VGED file called 
"Spy.GFX" that contains two images called "GunPic" and "Sl...llll". We 

2-8 T .A.C.l. User's Manual - Section II 

also assume the file's password is "BOND". Also assumed is the 
existence of an !Ff file with the name "Spy.PIC". 

IMAGE 
Spy.GFX BOND 
Spy.PIC 

ENDIMAGE 

Suppose we want to display the "Spy.PIC'' IFF image as our title 
screen, the "Skull" image whenever the player dies, and that we want 
to attach the VGED image "GunPic" to the Gun in the Spy adventure . 

To do this, we add the line: 

IMAGE Gun GunPic 

into the code block of the gun itself. This will allow the player to display 
the picture using the Image Select window in I' ADV. If we also want to 
force the display of this picture, we could add the line: 

SHOW GunPic 

to the "ACTION Look, Examine, etc." block of code, within the object 
Gun. To display your title screen, add the following lines to tlle start of 
the Embassy's CODE block: 

IF Embassy NOT VISITED THEN 
SHOW Spy.Pie 

ENDIF 

This will only display the title screen the first time the player enters 
the room, or if the player does a "LOOK" command. To show the skull 
when the player dies, we add the line: 

SHOW Skull 

to the SUBROUTI!\'E KillPlayer just before the line with tlle DIE 
statement. There, wasn't that easy? Enjoy adding graphics to your 
adventures and impressing friends witl1 your ability to create high­
quality graphic adventures! 

© 1989 Micro Momentum, Inc. & Altemate Realities 2-9 



2-10 T .A .CL. User's Manual - Section II 

SECT!()!/ Ill 
PADV (Play ADVenture) 

Adventure Player 

Now comes the fun part of T .A.CL, where you get to play the 
games that you or someone else has created with MADY. P ADV has been 
designed to be as flexible as possible, with each computer's version 
having been written so as to take advantage of that particular computer's 
special capabilities. The Amiga version,-for example, uses pull-down 
menus, special windows for various functions, a separate screen for 
graphics which may be manipulated using the standard Amiga layering 
and drag gadgets, speech, and other Amiga-specific features. 

LOADING AN ADVENTURE 
From the Workbench, either double-click on the icon of the game 

you wish to play, or double-click on the P ADV icon to load P ADV, and 
then load the game using the menu options in P ADY as described below. 

From the Command Line Interpreter (CLI), type "PADV 
<GameName>.GAM" or "PADV <GameName>". Or just type "PADV", 
and then load the game using the menu options as described below. 
Note that PADVoften uses considerable stack space, and the stack size 
should be set to at least 20,000 bytes. To do this, type "STACK 20000" 
at the CLI prompt, or put it in your startup-sequence. (Just edit the file 
"s:Startup-Sequence" and add the "STACK 20000" line somewhere in the 
file.) 

Debug Mode may be entered only from the CLI, and only on your 
own adventures. Simply include the "-E" switch after the adventure 
name when you run PADV, like this: "PADV <GameName> -E". After 
loading the game, P ADV will ask for the Adventure password (the one 
for the ".ADV" file) before putting you in debug mode. This is to prevent 
others from moving things around, or otherwise using ·the powers of 
debug mode to easily master your adventure. Debug mode also opens 

© 1989 Mfcro Momentum, l11c. & Alternate Realilfes 3-1 



a windo~ on the screen to report any run-time errors encountered. (See 
Append1.X B: P ADV Compiler Errors.) In addition to the error window 
~ADV will write a file with the adventure name with a ".ERR" endin' 
mst~ad of a ".ADV" ending. This file will list all errors encountere~ 
during your last adventure-playing session. The debug mode conunand 
are described in detail later in this section. s 

PADV's MENUS 

PADV has three main menus. The ADVENTURE menu gives you 
control over system options and which adventure game to play. The 
GAME menu allows Save, Restore, and Restart options. The OPTIONS 
menu allows you to toggle between Graphics, Audio, and Speech. 

The ADVENTURE menu is as follows: 

Load 
Color 
About 
Help 
Quit 

(Right-Amiga-R) 
(Right-Amiga-C) 
(Right-Amiga-A) 
(Right-Amlga-H) 
(Right-Amlga-Q) 

Use the LOAD Option to load a new adventure or to switch to a 
different adventure. (See the section below regarding' LOAD and SA VE 
game for a complete description of how to use the file requester.) As 
screen colors are a matter of personal choice, feel free to adjust the colors 
to your preferences with the COLORS menu option. At the end of the 
game ~e~~i~n, PADV will attempt to save the file "TACL-PAdv.Config" 
to the s: ?irectory so that, next time you run P ADV, it will begin with 
your favorite colors, as well as your selections for Graphics, Audio, and 
Speech. 

The ABOUT option will display a window with some information 
regarding PAD V's legal status. The HELP menu option, the Right-Amiga­
H co~bination, or the HELP Key can be used to pop up a window that 
describes the conunands available in any adventure. Note that both the 
Help and. About windows, and any PADV requesters will accept 
keyboard input. The Help and About windows will accept any keypress 
as an "OK", and any requesters that ask for a yes or no response will 
accept "Y" or "N" from the keyboard. 

The GAME menu is as follows: 

New (Right-Amlga-N) 
Load (Right-Amlga-L) 
Save (Right-Amlga-S) 

3-2 T .A.CL. User's Manual- Section ID 

Select the NEW option to abandon your current game, and restart 
the adventure from the beginning. Use the LOAD and SA VE functions 
to save games in progress and to resume from any previously saved 
point. PADV is a nice program, and does not erase your saved games 
when your character dies. This means that, as long as you save your 
game just before your character dies, you may keep tJying to get past 
a difficult portion of the adventure. 

Both LOAD and SA VE games, and LOAD adventure, will pop up 
a file requester. To look for files in the directory that you were last in 
(or started the program from), just click in the display window. If you 
wish to look on a specific drive, just click on the appropriate icon on the 
right side of the requester. You may not have all of the drives or devices 
listed, so ignore the ones you don't have. If you have a device that is not 
listed on a gadget, click in the path selector on the bottom, and type in 
the device name followed by a colon (":"). 

If you already know which file you want, just type it in the file 
selector by first clicking in that box, and then typing the name of the file 
you wish to load or save. The PARENT gadget will back up one direc­
tory, and the ROOT gadget will read the root directory of the current 
device. When you see the file you want, either double-dick on the 
filename, or single-dick and then click the OK gadget. If you decide that 
you want to stop and go back to what you were doing, click the CANCEL 
gadget. 

The OPTIONS Menu is as follows: 

Graphics 
Audio 
Speech 

No keyboard shortcuts are available for this menu. (Options from 
this menu are generally not used often, so this should not present an 
inconvenience.) Each item in this menu has a submenu that will have 
a checkmark in front of the current state of each option. 

The GRAPffiCS submenu will tum the graphics screen on and off, 
thus enabling you to see or not see any graphics that may be part of the 
adventure you are currently playing. The AUDIO submenu turns on and 
off any sound effects in tl1e adventure. And using the Amiga's built-in 
speech capabilities, the SPEECH option will read ALL text, including 
PADV requesters, and Help and Alx•11t windows. The submenu allows 
three different speech speeds to be selected. This feature has been 
included in the hope that it will prove useful for a child learning to read, 

© 1989 Micro Momentum, Inc. & Alternate Realities 3-3 



for someone who has difficulty seeing the computer screen or for 
someone who just wants to show off the Amiga. ' 

CONTROL KEYS 

PAD V's control keys are simple and straightforward. In addition 
to the menu shortcuts mentioned above, all the standard characters_ "O" 
thru "9", "a" thru "z" and "A" thru "Z", dash("-"), underscore(" ") the 
Spacebar, the Up and Down cursor control keys, Fl, F2, Flo.' the 
Back~pace, Return, Help, and Escape ("ESC") keys - are accepted. 
Heres how to use them. 

ESC: 
UpArrow: 

DownArrow: 
Help: 
Fl: 
F2: 
FlO: 

Backspace: 
Return: 

Other Keys: 

Blank the current line of input. 
Recall the last line of input. (Use to redo a 
previous command.) 
Recall the first line of input. 
Display the Quick Help window. 
Toggle between te>..'t and graphics. 
Toggle Image Select window. 
Toggle Debug window (in debug mode 
only). 

Delete the last character typed (as usual). 
Tell PADVyou're done typing that line, and 
to try to do what you've asked. 
Same as usual (i.e., the "A" key will type an 
"a" or an "A"). 

Use the Fl key to swap back and forth between the graphics 
screen and the te>..'t screen. The graphics screen will automatically pop 
to the front after any graphics are drawn or displayed. To return to the 
ga~e, press Fl .without clicking in the graphics window. If you 
accidentally do click in the graphics window, click about one centimeter 
to the left of the upper right comer of the screen. The layering gadgets 
are really there, in their usual places, but are invisible. 
. The F2 key is used to toggle the Image Select window. When 

VJSible, this window will display all objects (and the current room) for 
:Which there are images. The first one is usually the room, with any. items 
m the ~Jaye.r's inventory that have images appearing next, followed by 
the obiects m the current room (if they have images). You do not have 
to :wait for the ad~enture to display these; single-clicking on any listed 
obiect or room ~ill draw and display the picture for that object. This 
allows e'!ery obiect to have its own picture, often saving on Jong 
explanations. If you do not want to see the objects that have available 

3-4 T .A.C.L. User's Manual- Secuon ID 

pictures, except when they are automatically displayed by th~ adventu:e 
program, simply press the F2 key and the Image ~elect wmdow ~ill 
disappear. Note that clicking on the Close gadget will turn off the entire 
graphics system. 

When p ADV is run with debug mode, it opens a window to repon 
any errors encountered during the session. Since all errors are also 
written to a file, you may not wish to see the Error window. The FlO key 
will toggle this window on and off in debug mode. Otherwise, the key 
is ignored. 

PADV's STANDARD COMMANDS 
PADV contains several commands that are standard and should 

always be available, but most of these can be redefined by the adventure 
creator, and may function differently. All directions - NORTH, NORTH­
WEST, NORTHEAST, SOUTH, SOUTHWEST, SOUTHEAST, EAST, \VEST, 
UP, and DOWN, including abbreviations (N, N\V, NE, S, SW, SE, E, W, 
u, D) - are standard, and move you from room to room as described in 
the rooms' links. (See Section I: MADV Adventure Compiler for complete 
details on room links.) 

The SCORE command will display your current sc_<?re. The 
INVENTORY command (abbreviated as "I") will display all objects you 
are currently carrying. The LOOK command (abbreviated as "L") will 
display the full room description you were presented with when you first 
walked into the room. 

LOAD or RESTORE will bring up the "LOAD GAME" file requester, 
to allow you to continue or restart an adventure. SA VE will give you a 
file requester to save your current position in an adventure so you can 
continue from that position at a later time. QUIT will perform the 
obvious, but will first provide you with a last chance to confirm your 
request. 

PADV's DEBUG COMMANDS 
Note that the debug commands can only be used when PADV is 

run with the -E option, and the correct password for the adventure is 
entered. If the wrong password is entered, or ifthe -E option is not used, 
you will be dropped to normal play mode, and none of these special 
commands will work. Capitalization of the password does not matter. 

The JUMP command is one of the most enjoyable commands 
available in Debug Mode. First type JUMP, a space, and the name of the 
room that you want to go to, press <Return> and «KAPOW•> you are 
THERE. (Sound effects courtesy of DC Comics.) Neato!!! Almost as much 
fun as moving yourself instantaneously from place to place, is moving 

© 1989 Micro Momentum, Inc. & Altemate Realities 3-5 



arbitrary objects instantaneously from place to place. Type PLACE, a 
space, the object's name, another space, and the name of the room to 
send it to. Press <Return> and it is there. Savor the Power! As :in added 
bonus, simply leave off the room name to send the object to, and instead 
it will tell you what room that object is currently in. 

Using a little finesse, we move to the more subtle commands. First 
is the EQU command. Use EQU, a space, the name of a variable, another 
space, and the value to give to that variable. Like the PLACE command, 
leaving off the final value will instead tell you that variable's current 
value. 

The last Debug Command is SET. Type SET and a space, followed 
by either a room name or an object name, and the number of tl1e 
attribute to report on or set. If you want to set the attribute, follow the 
attribute number with either a "Y" or "N" to set the attribute on or off. 
Otherwise, the current state of that attribute will be displayed. Be careful! 
The names of attributes are not saved, and the numbers must be used. 
The numbers begin at zero with the first attribute defined, and go in the 
same order as they are defined. 

Rooms have the first two attributes already defined automatically, 
but objects have no predefined attributes. The "zero" attribute for all 
rooms is the DARK attribute which is predefined for your convenience. 
The "one" attribute is VISITED, which is set and reset automatically by 
the PADV system. Compiling the adventure with cross referencing will 
help you determine the numbers of attribu~es. See the MADY section for 
details on how to use these. 

Keep in mind that most commands can be overridden by defining 
a VOCAB block that redefines a command. This is usually not a good 
idea, but sometimes is quite useful. Also, some commands cannot be 
overridden. 

SENTENCESTRUCfURE 
One of the most important parts of an adventure game is the 

command parser. T A.C.L. 'sparser is a solid, top-quality, but not overly 
complex parser. Generally, the biggest limitation is that TA.CL only 
allows one verb per sentence, and one sentence per turn, unless 
specifically implemented for specific situations by the adventure writer. 
This simplifies programming to keep track of numbers of turns taken, 
and timing different events based on turns taken. 

The following sentence structures are standard, and should serve 
for almost all situations. Other sentence structures can be built in 
through your program, using vocabulary blocks. See tl1e MADY section 
on vocabulary blocks for more. Note that articles ("a", "an", "the", and 

3-6 T .A.Cl. User's Manual- Section Ill 

"that") can be placed in front of any noun (or in front of an adjective 
modifying the noun). 

SENTENCE STRUCTURE USTING 

<verb> <noun> 
ex: GRAB TIMER 

<verb> <adjective> <noun> 
ex: GRAB the NUCLEAR BOMB 

<verb> <noun> <preposition> <noun> 
ex: DETONATE the BOMB WITH the TIMER 

<verb> <adj> <noun> <preposition> <noun> 
ex: STEAL the SECRET DOCUMENT FROM the AGENT 

<verb> <adj> <noun> <prep> <adj> <noun> 
ex: DECODE SECRET DOCUMENT WITH the DECODER RING 

<verb> <prep> <noun> 
ex: LOOK UNDER the TRASHCAN 

<verb> <prep> <adj> <noun> 
ex: SEARCH THROUGH the OAK DESK 

OFrEN USED SPECIAL CASES: (These must be specifically imple­
mented by the adventure writer.) 

<verb> <preposition> 
ex: LAY DOWN 
ex: STAND UP 

<verb> 
ex: YELL 
ex: SLEEP 

A well written adventure should always include a good supply of 
witty, or at least appropriate responses to some of the more common 
short requests. For example, if the player typed, "STAND UP," while their 
character was already standing, the adventure could reply, "You make 
a fool of yourself trying to stand up before you discover that you already 
are." 

We hope you enjoy using PADV when playing adventure games 
written with the T.A.C.L. system. 

~ 1989 Micro Mome11tum, Inc. & Alternate Realities 3-7 



3-8 T .A .CL User's Manual- SecUon ID 

cf ECT/();f/ If/ 
TA.CL. - The Language 

T .A.CL OVERVIEW 
The Adventure Construction Language was devised specifically 

for the implementation of text and graphic adventure games. With 
T .A.C.L., you do not need to know the nitty-gritty details of HOW the 
system works. Rather, you can concentrate solely on the creative effort 
of writing an adventure game. 

T .A.C.L. is designed to be as English-like as possible; the more 
readable an adventure is, the easier it is to write and debug. To further 
its ease of use, T .A.CL is completely case-insensitive, meaning that it 
does not matter how or whether you capitalize words. 

Comments can be used in T .A.C.L .. Everything past an asterisk 
("*") on a line is ignored by MADY. Note that each comment line must 
have its own asterisk. Comments may be inserted on lines by themselves 
or following any command. 

To protect your secrets, T .A.CL adventure games are written in 
a specially encoded format that renders them unreadable. Also, pass­
words are associated with both the adventure game file and VGED 
graphic files. Nobody can look at your images or use PADV's debugger 
on your game without knowledge of these passwords. 

There is a limit to the complexity of your adventures, but this limit 
should not impede your creativity. Per adventure, you may have a 
maximum of: 

14 attributes per room 
6 attributes per object 
256 images per VGED graphic file 

© 1989 Micro Momentum, Inc. & Alternate Rea/it(es 4-1 



65,534 graphic files (including IFF images) 
65,534 rooms 
65,535 objects (including NPC's) 
65,535 object NAMEs (total) 
65,535 object ADJectives (total) 
65,535 subroutines 
65,535 ACTION blocks (including both VOCAB and object 

actions) 
65,535 variables 
4,294,967,295 characters of text 

Therefore, there are only two real restrictions: 1. The amount of 
memory you have to compile. (MADY is pretty efficient!) 2. The amount 
of disk space you have. 

DESCRIPTION NOTATION 
In the next subsection, we will describe T .A.C.L formally. To do 

so, we will use a formal description standard similar to Backus-Naur 
Form (BNF). Statement names that are to be used directly will be printed 
in uppercase, while the parameters and arguments to the commands will 
be printed in-between angle brackets (less-than and greater-than 
symbols). For example, 

PLACEOBJ <object_name> <room name> 

means that PLACEOBJ is the command, the phrase <object_name> 
should be replaced with the name of an object in your adventure, and 
that <room_name> should be replaced with the name of a room in your 
adventure. The brackets indicate that whatever lies between them 
should not be taken literally, but can assume the name of any valid 
identifier of the same class. This is called a VARIABLE. When a choice 
of classes is available, they are separated by an OR symbol(" I"). EITHER 
one or the other may be used, but not both. Like the brackets, the OR 
symbol is not to be typed; it is presented here only to help you 
understand T .A.C.L. 's fom1at. 

T .A.CL identifier classes: 
<text> = any line of text 
<word> = any word containing no spaces 
<variable_name> =the name of an integer variable (1 to 19 

characters) 
<file_name> = a standard AmigaDOS filename 

4-2 T .A .C.L. User's Manual- Section IV 

< oom name> = the name of a room ( 1 to 39 chars) 
<r b" c~ name> =the name of an object or NPC ( 1 to 19 chars) 

0 
ble -t"ne name>= the name of a subroutine ( 1 to 19 chars) 

<su rou l - f VGED h. file <" ge name>= the name ofan image rom a grap 1cs 1ma _ 
(1 to 39 chars) 

<attribute_name> = the name of an attribute (1 to 19 chars) 
<adjective>= any word describing an object (1 to 19 chars) 
<noun> = any noun (1 to 19 chars) 
<verb> = any single-word verb 
<direction> = NI S IE I WI NE I NW I SE I SW I U I D 
<condition> = any of the comparisons used in T .A.C.L. "IF" 

statements 
<comparison> = any of the T .A.C.L. "IF" variable comparators 

("=" "<" ">" or "#") 
<literal;= ~ny

1

1iteral constant integer such as 11 or -300 
<statements> = a sequence of program statements (see below) 

Square brackets are used around words or blocks t11at do not nec­

cessarily have to be present. 

FORMAL DESCRIPTION OFT.A.CL 
Format for the main Adventure file <word>.ADV: 

ADVENTURE <text> * a whole line 

PASSWORD <word> * a single word 

VAR * this block is optional , 
(<ll.'teral>J * pre-init to 0, else init to <variable_name> 

<literal> 
<variable_name> [<literal>] * any number of variables can be 

here 

ENOVAR 
l 

IMAGE * this block is optional 
<word>) I * this one is used for VGED graphics (<file_name> 

files 
(<file_ name>) 
[ (<file_name> 

* this one is used for IFF images 
<word>) I * any number of files can be here 

© 1989 Mlcm Momentum, Inc. & Altemate Realities 4-3 



(<file_name>) 

ROOM 
<file_name> 
[<file_name> 

END ROOM 

* any number of room files can be here 

OBJECT * this block is optional 
<file name> 
[<fil;_name> 

ENDOBJECT 
l 

* any number of object files can be here 

SUB * this block is optional 
<file_name> 

[<file_name> * any number of subroutine files can be here 

END SUB 
l 

VOCAB * this block is optional 
<f ile_name> 
[<file_name> 

ENDVOCAB 
l 

* any number of vocab files can be here 

INITROOM <room_name> * the room the player starts in 

ENDADVENTURE 

Format for Room files: 

ROOM <room_name> 

4-4 T .A.C.l. User's Manual- Section IV 

ATTRIB * this block is optional 
<attribute_name> [YIN] *defaults to N, else Y or N, whichever 
here 
[<attribute_name> [YJN] *up to 14 total attributes per room 

l 
ENDATTRIB 
l 

DEFAULT * this block is optional 
<direction> <room_name> *initial room links 
[<direction> <room_name> 

ENDDEFAULT 
l 

CODE * executed when player is here 
statements> 

ENDCODE 

ENDROOM * put as many rooms per file as you want: follow this 
* with another ROOM statement if you want. 

Format for Object files: 

(OBJECTINPC) <object_name> * either an OBJECT or an NPC 

NAME <noun> [, <noun>, ... ] *as many aliases as you need (on 
same line) 

* ADJ is optional 
ADJ <adjective> [, <adjective>, ... ] *as many as you need (on 
same line) 

ATTRIB * this block is optional 
<attribute_name> [YIN] *defaults to N, else Y or N, whichever 

here 
[<attribute_name> [Y JN] *up to 16 total attributes per object 

ENDATTRIB 
l 

© 1989 Micro Momentum, Inc. & Altemate Realities 4-5 



INITROOM <room_narne>IPLAYER * PLAYER means it starts out in 
inventory 

CODE 
<statements> 
ENDCODE 

* ACTIONS are optional 
ACTION <verb> [, <verb>, ... ] *as many verbs as you need (on 
same line) 
<statements> 
END ACT 
* as many actions as you want for this obj 

ENDOBJECTIENDNPC * put as many objects per file as you want: 
follow this 

* with another OBJECT or NPC statement if you want. 

Format for Subroutine files: 

SUBROUTINE <subroutine_name> 
<statements> 

END SUB 

SUBROUTINE <subroutine_name> * put as many subroutines as you 
want 

<statements> * in each file 
ENDSUB 

Format for Vocab files: 

VOCAB 

ACTION <text> * any line of text the player can type as a command 
<statements> 
ENDACT 

4-6 T .A .C.L. User's Manual- Sectfo11 IV 

_J_ 

* s man actions as you want per file 
AC;ION <:ext> * any line of text the player can type as a command 
<statements> 
ENDACT 
J 

END VOCAB 

Format for T .A.CL statements (one per line, listed in alphabetical 
order): 

ADD <variable_name> <variable_namelliteral> 

CALL <subroutine_name> 

DIE 

DIRECTIONS <room_name> <direction> [<direction> 

DIV <variable_name> <variable_namelliteral> 

DROP <object_name> 

ELSE 

ELSIF <condition> [THEN) 
(see IF for conditions) 

END IF 

EQU <variable_name> <variable_namelliteral> 

GO <room_name> 

GRAB <object_name> 

IF <condition> [THEN) 
where <condition> can be one of these: 
PLAYER IN <room_name> 
PLAYER HAS <object_name> 
<object_namelroom_name> IS <attribute_name> 
<object_namelroom_name> NOT <attribute_name> 
<object_name> IN <room_name> 
THISROOM IS VISITED 
THISROOM IS DARK 

. .. ) 

<variable_narne> <comparison> <variable_namelliteral> 

© 1989 Micro Momentum, Inc. & Alternate Rea/Illes 4-7 



PREPOSITION IS <preposition> 
USING <object_name> 

IMAGE <object_namelroom_name> <image_name> 

LINK <room name> <direction> <room_name> 

MOVE <direction> 

MOVEOBJ <object_narne> <direction> 

MULT <variable_narne> <variable_namelliteral> 

NOTE <variable_namelliteral> <variable_namelliteral> 

PLACEOBJ <object_narne> <room_name> 

RANDOM <variable_name> <variable_namelliteral> 

SCORE <literal> 

SET <object_namelroom_narne> <attribute name> 

SHOW <image_name> 

SUB <variable_name> <variable_narnelliteral> 

T <text> 

UNSET <object_narnelroom name> <attribute_narne> 

WIN 

PROGRAM EXECTmON ORDER 

T .A.CL functions by selectively running the programs associated 
with the objects· and rooms of your adventure. In each situation below, 
the listed programs are executed in the shown order. 

When the player moves or is moved to a new room (or the game is 
started), or when the player does a LOOK command: 

1. That room's program. 

Before each turn: 

1. The programs for all NPC's in the adventure. 

4-8 T .A.C.L. User's Manual- Secl(on W 

_J_ 

2. The programs for all objects that are in the same room as the 
player. 

When the player does an INVENTORY command: 

1. The programs of all objects that are in the player's inventory. 

\xrhen the player performs some action on an object: 

1. The program for the corresponding ACTION block for that 
object. 

When the player does one of the commands listed in a VOCAB ACTION 
block: 

L The program for that ACTION block. 

TIPS & TRlCKS 
There are many little tricks and techniques you can employ to 

make writing adventure games both easier and more successful. The 
sample adventure games enclosed utilize many of these to accomplish 
their magic. The following is a list of several tips and tricks designed to 
help you write a more successful and complete adventure. 

1. THE WRITI'EN PLAN. Whenever designing a complex adventure, 
write a detailed explanation of the adventure's major points. You should 
also draw up some kind of map so you can be sure, for example, that 
rooms do not overlap each other. This lets you work out all the quirks 
and design flaws before erroneous or conflicting code is written. 

2. PLAYABILITY. An adventure game should be a mental challenge to 
the player that he or she can solve in a logical, clear manner (with 
perhaps a little luck). It should NOT be winnable only with an act of 
God. Also, a game is often more enjoyable if it contains humor. A classic 
example of the effective use of humor is Infocom's "Hitchhiker's Guide 
to the Galaxy". 

3. OVERRIDING SYSTEM COMMANDS. You can override most of the 
system commands, including the direction commands and the play 
commands. The only commands that cannot be completely overridden 
with your own VOCAB ACTIONs are the GAME SA VE/LOAD commands 
(because they work from the menu, too). 

© 1989 Micro Momentum, Inc. & Altemate RealiUes 4-9 



4. TI-IE OBJECT "SELF". When you are using NPC's in a game, it may be 
necessary at some point to check if the NPC is in the same room as the 
player. Well, the object has an Object Position Variable, but what about 
the player? A trick to getting around this is to declare an object called 
"Self", which is in the player's inventory at all times. You can even define 
some cute ACTIONs on the object so that the player can look at himself, 
kill himself, etc .. But the object's main function is to check the player's 
current room. The system variable SelfPOS will be automatically defined 
to the object, but its value will be -1 because it is in the player's inventory. 
To get the player's current position, you can DROP the object (tempo­
rarily), copy the value of SelfPOS to another variable, and then - this is 
important-GRAB the object Selfagain. This can be done in a subroutine 
to save time. The other variable now contains the number of the room 
the player is currently in. Its value can be compared with the NPC's 
position variable. 

5. CAPITALIZATION. As you know, T .A.C.L. is case-insensitive, but it is 
wise to adopt some scheme of capitalization and STICK WITII IT 
throughout the project. One that works very well is to write all the system 
words in all capitals, and then capitalize appropriate letters in your own 
identifiers. This method allows you to scan your program and quickly 
tell the difference between your words and T .A.C.L. 'swords. 

6. INDENTATION. It is a good habit to indent one or two columns each 
time you enter another level of IF statements and when you first enter 
a new block. This also makes the program more readable. Indenting too 
much can make your program difficult to read in that text lines will run 
off the edge of the screen. 

7. COMMENTS. Another good practice is to comment the more complex 
sections of your program, or at any point that its function is not blatantly 
obvious. Maybe not at every line, but a comment here and there will 
clear things up nicely. You needn't worry about security because your 
comments DO NOT end up in the game file; MADY ignores them. 

8. DYNAMIC ROOM LINKS. You can add a lot of spice to your adventure 
by using dynamic room links. For instance, you can change the legal 
directions and links in a room based on some condition. An example can 
be found in Section I in the Spy Adventure; hidden passages in the 
basements appear under certain situations. 

4-10 T .A.C.L. User's Manual- SecHon JV 

9. LIMITING INTERACTION. Non-Player Characters (NPC's) can be an 
essential part of your adventure game. Each character should be 
designed to have some limited interaction with the player. That is, you 
cannot possibly account for everything the player tries to do to the NPC, 
so what you DO implement should either be what the player is most 
LIKELY to do, or it should be specific to the NPC's function. For an 
example, refer to the Agent's program in Section I's Spy Adventure. 

10. ROOM SWITCHING. As in the Spy Adventure in Section I, you can 
simulate the existence of a large number of rooms with just a few. This 
is also done in the Space adventure on the asteroid's surface; over 2,500 
apparent rooms are simulated by just 11 rooms. One drawback to this 
technique is that objects dropped in these rooms must be handled 
appropriately, or they will show up in all of the simulated rooms. 

© 1989 Micro Momentum, Inc. & Alternate Realities 4-11 



4-12 T .A.CL User's Manual- Section IV 

If PPEllOIX If 
MADV Compiler Errors 

The following is a list of compiler errors, in numerical order, 
and a brief explanation of their causes. 

1. Undefined room: Reference was made to a room name that was 
not defined. Check spelling. 

2. Unde.fined object: Reference was made to an object name that 
was not defined. Check spelling. 

3. Undefined comparator: Programmer tried to use an invalid 
comparison in an IF statement. 

4. Undefined attribute: Reference was made to an attribute that 
was not defined. Check spelling. 

5. Undefined system attribute: An illegal reference was made to 
an attribute that is not compatible with THISROOM. Only DARK and 
VISITED can be used with TIUSROOM. 

6. Illegal comparison: Programmer tried to use a comparator in an 
IF statement other than"-", ">", "<",or"#", which are the only legal 
variable comparators. 

7. Comparator(s) "•", "#","<",or">" expected: No legal com­
parison was found in the IF statement. 

8. Undefined variable: Reference was made to a variable that was 
not defined. Check spelling. 

«:> 1989 Micro Momentum, Inc. & Alternate Realities A-1 



?· Bad IF block: MADY did not recognize the attempted comparison 
m the IF block, perhaps because an identifier was misspelled. 

10. Undefined object or room: The identifier following a SET or 
UNSET instruction was not a valid object or room. Check spelling. 

11. Unknown direction: Reference was made to an invalid 
direction abbreviation. 

12. illegal Statement: A statement other than one of the 23 legal 
statements was used. Check spelling or format. 

13. Object name already used: An attempt was made to declare an 
object with the same system name as an existing object. 

14. Object name already used as room name: An attempt was 
made to declare an object with the same name as an existing room. 

15. "OBJECT" or "NPC" expected: The beginning of an object 
definition was not one of the legal choices. 

16. Attribute declared twice: An attribute with the same name was 
already declared for this object or room. Rename or respell. 

17. Too many attributes: In a ROOM, an attempt was made to 
declare more than 14 attributes. In an OBJECT or NPC, an attempt 
was made to declare more than 16 attributes. 

18. 'INTfROOM' expected: MADY found something other than an 
INITROOM statement where it expected one. 

19. CODE block expected: MADY found something other than the 
expected CODE block. 

20. Verb list expected: A line containing comma-separated verbs or 
commands was expected, but not found. 

21. "~~ON", "ENDOBJ", or "ENDNPC" expected: The object 
definition was not terminated properly. Check spelling or format. 

22. Room declared twice: This room name has already been used 
by another room. 

A-2 T .A.C.L. User's Manual- Appendix A 

23. cannot redefine room: Something happened to the ROOM file 
between compile pass 1 and pass 2. File may have been deleted by 

someone. A very unlikely error. 

24. •ENDROOM' expected: The room definition was not properly 
terminated. Check spelling and format. 

25. cannot open VOCAB .file: The file could not be opened. 

Usually a DOS error. 

26. "VOCAB" expected: The VOCAB file must start with this word. 

27. "ACTION" or "ENDVOCAB" expected: The VOCAB file has a 

bad format. 

28. "ADVENTURE" expected: The ADV file must start with ADVEN­

TURE. 

29. "PASSWORD" expected: MADY expected to find this word 

next. 

30. Password string expected: A protection password MUST be 

supplied. 

31. illegal password: Try another. The password provided was 
insufficient to protect the game. Another must be used. 

32. Variable already declared: This variable name has already 

been used. 

33. Cannot open .file: The filename supplied was probably 

misspelled. 

34. "ENDADVENTURE" expected: The ADV file was not properly 
terminated. 

35. Cannot open master .file: The main ADV file could not be 
accessed. 

36. OUT OF MEMORY: The system ran out of memory and could 
not finish compiling the game. 

© 1989 Micro Momentum, Inc. & A/lemate Realities A-3 



37. Unknown preposition: Programmer referred to an unknown 
preposition in an IF PREP statement, or misspelled a valid one. 

38. TlllSROOM attributes MUST be system attributes "DARK" or 
"VISITED": Programmer tried to SET or UNSET an illegal IBIS­
ROOM attribute. 

39. NAME block expected: In an OBJECT or NPC definition, the 
NAME block may NOT be omitted. 

40. Block not ended properly: MADY encountered a statement 
that was out of sequence. It was found in the middle of another 
block. 

41. At least one name expected: You must provide at least one 
name in the NAME block of an object or NPC. 

42. Text line is too long: A Text statement ran for more than 
seventy-nine characters. Truncate it. 

43. Subroutine name already used: A subroutine name was used 
for more than one subroutine. 

44. "SUB" or "SUBROUI1NE" expected: MADY expected to see 
one of these words. 

45. Unable to redefine subroutine: An unlikely error, MADY could 
not find the subroutine file again. 

46. Undefined subroutine: A CALL command used an invalid 
subroutine name. 

47. Cannot open .WRD file: MADY could not create a WORD file 
for the adventure. This is probably a DOS error. 

48. Object or room name expected: MADY expected to see the 
name of a declared object or room. 

49. Image not found in graphlc file: An IMAGE or SHOW 
command used an image name that does not exist in the graphic 
files declared in the main .ADV file. 

A-4 T .A.C.L. User's Manual- Appendix A 

50. Password does not match: The password supplied for a 
graphic file does not match the graphic file's password. 

51. Graphlc file already declared: The same DOS name was used 
for more than one graphic file. 

52. Note value out of range: A NOTE command's pitch value was 
out of the legal range of 1 to 1000. 

53. Note duration out of range: A NOTE command's duration was 
out of the legal range of 1 to 500. 

54. Line too long: Line cannot exceed seventy-nine characters in 

length. 

1000, 1001, ... : These are system errors. You should not see them. 

~ 1989 Micro Momentum, Inc. & Altemate Rea/mes A-5 



A-6 T .A.CL. User's Manual- Appendix A 

If PPE#!JIX 8 
PADV Debugger Errors 

1. Division by zero: A DIV statement tried to divide a variable's 
value by zero, an impossible task. 

2. Strange comparison yields TRUE: An IF statement tried to 
compare two values using a strange or logically impossible compari­
son. 

3. Object not in player's inventory: A DROP statement cannot 
drop an object that is not in the player's inventory. 

4. Requested direction has no room linked to it: A DIRECTION 
instruction was called and there was likely no LINK instruction 
following it. Therefore, the direction led to the "edge of the world". 
This error occurs only in the MOVE instruction. 

s. No exit in requested direction: An attempt was made to "walk 
through the wall", or go in a direction that has no exit. 

6. SYSTEM ERROR in variable formatting: If you receive this 
error, shoot Kevin Kelm. 

7. Object is still in player's inventory: An attempt was made to 
MOVEOBJ an object that the player is carrying. 

8. Object cannot move in that direction in the current room: 
An attempt was made to MOVEOBJ an object that is in a room 
which does not possess that object's requested direction as a legal 
exit. 

© 1989 Micro .Momentum, Inc. & Alternate Rea/ftfes B-1 



9. ELSE not found in IF block: Like it says. PADV found an ELSE 
statement that wasn't where it belonged. 

10. illegal statement: PADV encountered a statement it didn't 
recognize. Either the game file is conupt, or there is an incompatibil­
ity between the version of PADV and the version of the MADY 
compiler that generated the game. The latter is unlikely. 

11. Ilnked direction not enabled: An attempt was made to form a 
direction link in a room that does not currently have that direction as 
an exit. 

12. Position variable set to invalid room number: An attempt 
was made to set an object's ObjectPOS variable to a value that 
would put it in a nonexistent room. 

13. Note value out of range: A NOTE command's pitch value was 
out of the legal range of 1 to 1000. 

14. Note duration out of range: A NOTE command's duration was 
out of the legal range of 1 to 500. 

B-2 T .A.CL. User's Manual- Appendtx B 

If PPE!VOIX C 
Note Value Table 

Using the values listed in the table belo~, y~u ca_n make T-"! .C.L. 
generate simple music for your adventures. This might include a victory 
song, or a funeral dirge at the close of the game, or anything else you 

can imagine. 

OCTAVES 

NOTE LOW MIDDLE HIGH 

A 108 616 870 

A# 164 644 884 

B 218 671 898 

c 268 696 910 

C# 316 720 922 

D 362 743 934 

D# 404 764 944 

E 446 785 954 

F 484 804 964 

F# 520 822 973 

G 554 839 981 

G# 586 855 989 

© 1989 Micro Momentum, Inc. & Alternate Realities C-1 



C-2 T .A .C.L. User's Manual 

If PPE#OIX () 
How To Use ED 

If you do not have much experience with programming or the CLI, 
this section may be of use to you. We will briefly explain the basics of 
using ED, the simple screen editor that comes with your Workbench 
disk. 

To get started, ED is used from the CLI by typing: 

ED <filename> 

where <filename> is the name of the file you want to edit or create. ED 
will then open its own window in the Workbench screen. If the file 
already exists, it will be loaded. ("At" symbols("@") will be displayed 
to show its progress loading.) 

When ED is ready, the screen will blank and you can begin typing. 
You can use the arrow keys on your keyboard to move the cursor 
around. 

ED uses the escape key ("ESC") at the top left side of your 
keyboard to enter what is called COMMAND MODE. In command mode, 
an asterisk (" .. ') appears in the lower left side of the window. You can 
then type next to it any of the commands that make ED do special things. 
Some of the more useful of these are listed on the following page. 

Ii:> 1989 Micro Momentum, Inc. & Alternate Realities D-1 



ESC Result 
Q Exits WITHOUT SAVING that which you have typed in this 

session. 

X Exits and SAVES whatever you have typed in this session. 

T Moves to the TOP of the file . 

B Moves to the BOTTOM of the file . 

Mnnn MOVES to the line number immediately following the M. 

F(xx/ FINDS the next occurrence of the text between the forward 
slashes, starting from the cursor's current position. 

BF/xx/ BACKWARD FINDS the last occurrence of the text from the 
cursor's current position. 

··~ . 

E/xx/yy/ EXCHANGES the next occurrence of the first text (xx) and 
replaces it with the second text (}'y). 

U UNDO typing on the current line (only if the cursor has not yet 
been moved from the line). 

ED also uses CONTROL codes as special commands. These are 
accessed by pressing down the control ("CTRL") key on the left side of 
your keyboard while SIM ULT ANEOUSL Y pressing one of the keys listed 
below. 

CfRL Result 
A Inserts a new line. 

U Scrolls the cursor UP half a screen. 

D ,. -·scrolls the cursor DOWN half a screen. 

B Deletes the line the cursor is currently on. 

Y Deletes the remainder of the line the cursor is currently on 
(everything to the right of the cursor). 

G Performs the last ESCAPE command again. 

("right bracket") Alternately moves the cursor to the beginning 
and end of the current line. 

D-2 T .A.C.L. User's Manual- Appendix D 

Useful Words Defined 

AmigaDOS: The standard Disk Operating System built into your Amiga. 
Used by the user through the CU and Workbench interfaces. 

Compiler Errors: Syntactic problems (formed/written incorrectly) in 
your adventure's code that are detected at compile time. 

Cross-Reference: Special listing generated by MADY that will selec­
tively show all variables, rooms, objects, code blocks, and/or graphic 
files used. Can also include form-feeds between sections to ease 
readability w~en printed. 

Debug Comm.ands: Special commands available only in Debug Mode. 

Debug Mode: A special mode in PADV that reports run-time errors to 
the player, and allows the player to directly manipulate. objects in the 
adventure. Unauthorized players may not enter this mode without the 
adventure's password. 

Editor: The program used to enter source code into the computer and 
save it on disk. If you do not have a special editor of your own, use 
AmigaDOS's ED command. (See Appendix D for quick insuuctions on 
how to use it.) 

Gadgets: Standard Amiga "buttons" for layering windows or screens, 
closing and resizing windows, and dragging windows around the 
screen. 

© 1989 Micro Momentum, Inc. & Alternate Realities G-1 



IFF/II.BM:_ Standard Amiga graphic files. (IFF is the Interchange File 
Format, and ILBM stands for InterLeaved Bit Map, a standard way of 
saving image files.) May be read by PADV, and displayed as part of your 
adventure. Use DeluxePaint from Electronic Arts, or any other paint 
program to create images for your adventure. IFF/ILBM images gener­
ally take considerably more space than VGED pictures. 

Images: Either IFF (ILBM or HAM) or VGED image files that can be used 
in your adventures. 

Jungle: A small sample adventure that demonstrates T .A.C.L. 's graphic 
capabilities. The entire adventure was created in less than a week. 

Keyboard Shortcut: A special key combination that uses the Right­
Amiga-Key and the key listed next to a menu option to accomplish a 
function without having to select it from the menu. 

Keywords: Special words in your source code which have specific 
meanings that do not change, ever. These are words like IF MOVE 
DIRECTIONS, etc. They cannot be used as variable names roo~ names' 

' ' etc. 

MADV: Stands for "Make ADVenture". This is the adventure player, and 
it is responsible for reading all source code for an adventure, checking 
for syntactic errors, and generating the encoded adventure.GAM file for 
P ADV to read. This program is NOT freely redistributable. 

Menus: Allow easy access to many features in PADV and VGED. Use 
the right mouse button to access these menus. 

OBJECTS: Term used to describe all objects, creatures, people, and 
anything else that exists in the adventure that the player can interact 
with. Includes NPC's. 

PADV: Stands for "Play ADVenture". This is the adventure player, and 
it is responsible for actually playing the adventures created with MADY. 
It executes the adventure code, accepts input from the users, displays 
pictures, and plays sounds. This program is freely redistributable. 

Rescue: One of the sample adventures included with the T .A .C.L. 
package. 

G-2 T .A.C.L. User's Manual - Glossary 

ROOMS: Every geographical location in T .A.CL. These define WHERE 
the player is, and WHERE he is able to go. One of the main concepts 
of T .A.C.L.. 

Run-Time Errors: Problems with the logic behind how your adventure 
works. These cannot be detected by the compiler, and can only be found 
with Debug mode. For example, allowing the direction North as a legal 
direction in a room, but forgetting to link that room, to the North, to 
another room would be a run-time error. 

Source Code: The collection of text files that describe your adventure 
using a special format known as The Adventure Construction Language. 

Spy: A sample adventure that the manual uses to demonstrate the many 
features of T .A.C.L.. 

Subroutines: Special sections of code that can be used multiple times 
from different sections of your program. 

T.A.CL .: The Adventure Construction Language, T.A.C.L., is the com­
posite system that consists of MADY, PADV, and VGED. It is also the 
name of the language syntax used. Note that T .A.C.L.: the language, 
MADY, and VGED are copyrighted software, while VGED is also 
copyrighted (and NOT Public Domain), but may be freely copied and 
distributed with your adventures, or posted to any BBS or Information 
Service. 

Text Styles: The different text styles on the Amiga consist of Bold, 
Underline, and Italics. To tum off All styles, select Text Style: "Plain". 

Title Bar: The top line of the screen that contains various information 
independent of the rest of the screen. 

Variables: Special names that contain numbers representing different 
values (usually specified by their name). For example, Score, Moves, 
and Dollars could all be variables representing the player's score, how 
many moves he has made, and how much money he has. 

VGED: The "Vector Graphics EDitor". A special paint program that 
creates images that only P ADV can display. VGED creates an image by 
recounting the steps taken to draw the image whenever it needs to be 
displayed. P ADV is the only other program capable of displaying VGED 
images. However, VGED's images are almost always MUCH smaller than 
a "normal" Amiga IFF picture file. 

CO 1989 Micro Momelllum, Inc. & Alternate Rea/flies G-3 



Vocabulary: Special statements that allow you to include your own 
terms in the understandable vocabulary of your adventure. Use this 
when trying to get your adventure to recognize a phrase that P ADV does 
not currently acknowledge. 

G-4 T .A .C.l. User's Manual - Glossary 



Pl"d'"eecl b/: 
;lfiel"Q !folf(etrCMr, ltre. 

P.O. 8ox- 312 
kfa~J,;,,1,tQI( Oe,;o~ er 06791 

{800) 118-1121 


