THE ATARI

ADVENTURE
CREATOR

THE ST ADVENTURE CREATOR

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

ONE

TWO

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE

QO =m ® U Q w »

USER MANUAL

by Sean T. Ellis

29th April 1988

Introduction

Writing adventures

Use of Conditions
Graphics

Music in messages
Our small adventure
Disk and printer menus
The font editor

Special conditions and commands

Keys and control characters
Glossary

Contents of QSTART file
Character key sequences
Conditional words

Adventure Flowchart

Handy Reference Sheet

(c) Sean Rilis / Incentive 198

Page
Page
Page
Page
Page
Page
Page
Page

Page

Page
Page
Page
Page
Page
Page

Page

Page

27
32
34
42
45
48

52
54
58
62
64
70

71

72

CHAPTER ONE
INTRODUCTION

Welcome to the world of the ST Adventure Creator. I hope you
will have fun in creating and playing your own adventure games,
and even selling them if you wish (there is no fee for this,
just put a credit in the program).

Sean

EQUIPMENT

To use this program, you will need an Atari ST computer (520,
1040 or Mega ST), at least one disk drive, and a colour monitor
or a television set. In addition, a printer is useful, but not
essential.

YOU CAN NOT USE THIS PROGRAM WITH A MONOCHROME MONITOR.

CONTENTS OF THE PACKAGE

Inside the box, you should find two disks (the program disk and
the demonstration disk), this manual, and a registration card.
Please complete and return this to become a registered user.

LOADING THE ST ADVENTURE CREATOR

To load the ST Adventure Creator (which will henceforth be
referred to as the STAC), place the program disk in drive A,
which is the internal disk drive if you are using a 520STF,
520STFM, 1040ST or Mega ST, and switch the machine on. The screen
will show a small window with a program icon called STAC.PRG.
Move the mouse pointer over this icon and quickly click the left
hand mouse button twice.

THE PROGRAM DISK

This contains the STAC program itself, along with a "Quickstart"
file which contains many of the common words, actions, etc. used
in most adventures, a small adventure file for you to examine and
change, and a set of fonts already set up for you to use.

This disk is NOT public domain. If you experience problems with
this disk, please send it (just the disk, not the entire
packaging) back to us at the address printed on the back of the
box for a replacement. This does not affect your statutory
rights.

THE DEMONSTRATION DISK

The demonstration disk contains, as its name suggests, some
demonstrations of what you can do with the STAC. Full
instructions can be obtained by booting up from that disk, double
clicking on READ.ME and selecting "Show". The instructions will
then appear on the screen.

The disk contains a demonstration runnable adventure (called
SHYMER) produced by Sandra Sharkey using the STAC, a number of
compressed pictures produced by the STAC, and a slideshow to
display them all.

This disk is Public Domain and is not co
¢ y protected -
make copies for your friends ! R © Bl

ACENOWLEDGEMENTS

I would like to use this space to thank some of the
¢ 1
have helped in the development of this program. PR e

Thanks to:

Sandra Sharkey for the Shymer adventure,
Pat Winstanley for extensive playtesting,
David Wyatt for the demo pictures,
Dicon Peake for the graphics in Shymer,
Paul for graphic conversion,

Steve ‘The Bug’ for lively conversation,
Ian Andrew for constructive criticism,
Mike Griffin for destructive testing,
Deborah Stannard for not minding,

Jon Clark, Jeff Maude, John Maude,

and of course you for buying it !

DEGAS is a trade mark of Batteries Includ
ed
NEOCHROME is a trade mark of Atari Inc.

ABOUT THE AUTHOR

SS.ean Ellis is a 21 year old graduate in Cybernetics and Computer
Science from the University of Reading. His previous work
n(;cludes the. Graphic Adventure Creator, now the standard
a Yenture writer on many 8-bit micros. He is not married, has no
children, and lives in Reading with a lady Archéeolbgist

The STAC was originally conceived as an extension of

GA
i};asitgric::n over the 12 months.of design and development in?;esl’t).:;
ot g o aSTsepa_rate system in its own right. It was developed
o thega 2 in 68000 Assembly Language using Fast Asm, and
; e help of lots of coffee, music by Rush and Tangerine
ream, a shelf full of Larry Niven and David Brin books and a

battered co f it oI .
N Py o The Hitch-Hikers Guide to the Galaxy for

STAC is dedicated to Deborah for her love and support.

(© Gopydght 1988 Incentive Software Ltd., & Minerva House, Calleva Park, Aldernaston, Berks.

hA?r‘ nghtln dolz the pr'oducer, and of the owner of the work being produced, are reserved. Unauthorised copying,
ing, lending, public gerfomnce and broadcasting of this work is prohibited. The publisher assumes no

responsibility for errors, nor liability for damage arising from it use.

2

CHAPTER TWO

WRITING ADVENTURES

Having loaded the STAC, you are now ready to write an adventure!

Well, that’s not strictly true. Adventure writing needs a bit of
careful thought first. However, for a bit of fun, let’s write an
"adventure" in under 30 seconds ! Load the STAC, and then do the

following :

Start .stopwatch
Press D

Press L
Point the mouse at "QSTART.ADV", and click the left

hand mouse button.
Press Enter (or Return)
Press Esc
Press R
Press Insert
Press Enter
Press Enter
Type "A cave", Enter
Type "You are in a large cave", Enter
Press Enter
Press Enter
Press Esc
Press Enter
Stop stopwatch

Now try a few commands. Ok, so it’s not very interesting or
challenging, but look on the bright side - it can only get
better !

Seriously, though, writing an adventure does require a bit of
thought beforehand. Speaking personally, I cannot just sit down
and write an adventure - there are a few things to work out
first.

You will have to decide what the purpose of the adventure is, to

start with. The traditional rescue-the-beautiful-princess-and-
get—as—much-gold-as-possible—then-—kill—all—the—monsters type
adventure is one (and a bit old hat it is, too..), another
might be to tackle the robot defenses to deactivate a large
automatic enemy weapons installation (better), or even to
prevent the domination of Earth by a race of lust-crazed females
(seems familiar from somewhere...) !

Once the main story has been decided on, the adventurer will
need a world in which to play the adventure. The world (or
adventure universe) is arranged as a series of distinct
locations (rooms) which you can travel between, some of which
may contain objects, or require the solution of a puzzle to get
out of. Where you are is communicated by a description of the
place you are in, along with a list of any objects which are
there.

The rooms do not need to be indoors - it is just a convenient
way of splitting up the adventure universe.

3

The easiest way to set out an adventure universe is, I find, to
draw a map showing the positions of each room, the connections
between each, and the objects which are in each one.

Objects have several characteristics. It is quite useful to know
what the object is, so the object description tells the player
that‘ information. The objects will start the adventure in
particular rooms, although they may move around later. Thus the
start room for each object should be recorded. Also, the weight
of each object is important. You may be able to carry 100 coins
but onl.y one gold bar, so a gold bar will be 100 times as heav3;
as a coin.

With the STAC, it is a good idea to i

;) give all the room
ol?,)gcts their own specific numbers at this stage. It will beB n::-g
difficult to add them later on, when we actually need them.

Then, another thing you will need to specify is t
nfaeded. The player will be communicatingp witlir the };?iv:r(:fsf: Ia‘.'r'l.:
his typed commands, which must be interpreted by the adventure
'and used as a basis for action. It would be impractical to
include a complete English dictionary, so only the words you
actually n'('seq are given. In general, the larger the vocabulary
th.e more "friendly" the adventure needs to be. For example ou'
might have a lamp which needs to be lit. If you have to' tl}ipe

light lamp", it would be nice if you could also type:
.'"light torch" "torch on" "lamp on"

turn lamp on" "switch on lamp" etc.

as well.

These loosel i i
ity y define the adventure universe, as set up
I:iTt us go through .the construction of a very short adventure. We
wil start by setting up the adventure universe here, then

conclude with the i i i
o workings in Chapter Five, after they have been

Story: Get the gold from the castle strong room and bring it to

the entrance. All right, so it’s igi
g e A not very original, but then this

Here is a map of the adventure :

lli_\bove Ground 2.Large Cave 3.Passage 4.Lakeside
A lamp No objects Snake “;_1;;;“—
N i ;
W+E et ottt N bt i
S A dead rat The Gold

OUR SMALL ADVENTURE

4

It may seem, at first sight, that the five objects are the lamp,
the rat, the gold, the key, and the snake. However, there are a
couple of nice tricks to be had here.

Since the player will not be allowed to pick up the snake (it

will bite him and he will die), it cannot be moved from that
room, and can thus be included as a permanent fixture in the room
descriptions. Only things that do not move about or otherwise
change should be entered with the room descriptions. We can still
include a way of examining the snake to make the game more
friendly.

However, we will want to light the lamp. There are many ways of
doing this, but the one I find easiest is to have two distinct
objects - a lamp and a lit lamp. When the lamp is lit, swap the
unlit lamp for the lit one, and when it is turned off, do the
opposite. The lit lamp can be started in room 0, which is not on
the map. In fact, it is a sort of limbo room, where uncreated
objects are put, and where destroyed objects go. Very useful,
especially for magic ! (None of that in my adventure please...)

So the five objects are: a lamp, a rat, a key, a gold bar, and a
lit lamp. Here are the complete descriptions of each:

No. Description Weight Start room
1. A lamp 10 1
2. A dead rat 10 5
3. A key 1 4
4. A bar of gold 100 6
5. A 1lit lamp 10 0

In addition, it might be a good idea to add a longer description
of each one, for use when the player examines the object more
closely.

Since rooms 2 and 3 are underground, we can make these dark, so

that you will need the lamp to navigate them. Let’s be generous
and allow the player three moves in the dark before being eaten
by giant horrible nasty monsters of some form. Being in the dark
is signalled by using a "marker", something which is either on or
off. Setting a particular marker on could indicate that it is
dark, and setting a different one could mean that you have a lamp
with you.

Using STAC, the rooms are connected together in two different
ways. The first way is by connections, which are entered with the
room descriptions. These are taken no matter what happens, and
merely move the player to another room without affecting anything
else. They can only be used sparingly in this adventure.

They cannot be used between rooms 1 and 2, 3 and 4, or 2 and 5
since these moves must be accompanied by a change from dark to
light or vice versa. They cannot be used between 5 and 6 since
the strong room must be unlocked first, but on the return journey
from 6 to 5 they can be used since the door must already be open
for you to be in room 6 anyway. Therefore the only place they
can be used is between room 2 and room 3, which is always
possible, and changes nothing, and between 6 and 5.

This over with, we are now able to use the STAC program at last.

With . it on the disk is a previously saved adventure file
containing all the common vocabulary, etc. which is used in
almost every adventure.

Having loaded the STAC, you will be confront i

full. of options. This is the Main Menu. A meer?u wiI;h aa lissci:re?)rfl
ch?lces from which you can select one thing. We want to load the
qufck start file, which is a disk operation. Option "D" on the
main menu is labelled "Disk menu". Press key D, and a new menu
will appear. Among the options on this is L - Joad adventure
data, which is the one we want. Press L.

In the middle of the screen you will see a thin]
seIec_tor. Using this you can select any file og l;no;;:k.a BI: {1}{2
on in the middle there should be a list of file names, including
QSTART.ADV". If you move the mouse pointer over this name the
press .the left hand mouse button, (this is known as clickin’g on
something) you will see the name at the bottom of the selector
ch{ange to "QSTART.ADV". Then click on the "OK" box. The disk
drive should whirr briefly, loading the file as requested. Press
the E.sc key to get back to the main menu. There is now a set of
data in memory including all the most frequently used vocabulary.

.’I‘o enter the room descriptions, ress R i
displayed with a title at the top "Egit rooms",Aanidcrzer:nin“irﬂine:z
at the bottom. At the moment, there are no rooms stored in
memory, so the centre part of the screen is blank. To insert a
new room press Insert (on the right, near the arrow keys). You
.mll be asked which room number to add. If the displayed nv.;mber
15 not. the one you want, delete it using the Delete key (several
times if necessary), and type in the number you want. Then pres
Return or Enter. Enter room 1 to start with. .

The screen should now look like a form, with titles
spaces to 'be filled in. At first, the "Connections" titl:ndwﬂtilagla{
displayed in wnite-on-black (inverse), showing which bit of
data you are currently expected to provide. Since room 1 has no
connections, there is no need to type anything here. Just press
Returp .to g0 on to the next line, which is the short room
d?scrlptlon. For room 1 this is "Above Ground". Type that in
without the enclosing "quote marks", and press Return to go t’
the next line, the long description. -

This is the part where you can b i i
1 Vi n become poetic ! A typical long

You are standlng outside a lar e cav
(o) £ e entrance, which runs into

which gives you the relevant infor:
mation without submel‘g‘lng‘ it in
s of lrrelevancy. It could e viewed r owever
ream t co b W as a bit te se, h ’

S{ou are standing in the warm sunshine whi
maJegtlc cliff face to your east, in which there ‘;g ap;nee::chs:g'r o?
stygian glooxy, which appears to be a cave entrance. You shiver as
you look at it, reminded of the day you fought the venomous cave-
creatures armed only with your elven sword, stinger.

It is really a matter of personal preference whether you prefer
the first or second description. I prefer the first - the second
contains much that is irrelevant. Meanwhile, back on the screen,
you have typed in the first description, and pressed Return.

If you make any mistakes whilst typing, the Backspace key will
delete the character to the left of the cursor, and the Delete
key will delete the character under the cursor. You can move the
cursor about using the arrow keys, and anything you type will be
inserted, shuffling everything after it along.

You are now asked to supply an associated picture number. This
refers to the picture that will be drawn when you look at this
room. Since we haven’t done any pictures yet, press Delete, and
change this to 0. (From now on, I will assume you press Return
at the end of each line).

You will now be asked whether this is all right. If it is, press
key Y (for yes), if not, press N, which will take you back to
the top of the screen, and give you another chance to edit the
information you typed in. The third option, & abandons
everything you have just typed. Don’t press this one !

If all is well, you should now be ‘back at the screen with the

title at the top and mini menu at the bottom. In the middle,
however, will be a white-on-black line saying "1 Above Ground".
This is the one room you have typed in so far.

Use the Insert key to insert the descriptions of the other five
rooms, in the same way as you did with room 1.

Room two has a connection associated with it - you go east to
room three. Therefore, when you are asked for connections, type:

east 3

then Return. This means that if you type "east", you will move to
room three. Make sure you have a space between the word and the
number. Whole lists can be entered, with spaces between each
item. Here is an example of a room with connections to the north,

south and west :
north 4 south 9 west 2

Type in the rest of the descriptions, etc. After doing this, you
will have 6 numbers and short room descriptions in the middle of
the screen. You can scroll up and down this list using the up and
down arrow keys by one item at a time. Pressing Shift at the same
time will scroll by 16 items at a time. To delete the highlighted
item, press the key marked FI, which is far enough away from the
main keyboard that it should not be pressed accidentally. To have
another go at typing in the required information (editing an
item), press the space bar. The Esc key returns you to the main
menu from here, as it does from most places in the STAC.

Entering the objects is very much the same, except that the form
will ask you to supply a short description, a long description,
the weight of the object, and the room it is in at the start. The
STAC is designed so that the procedure for entering data is as
similar as possible no matter what it is.

7

CHAPTER THREE

CONDITIONS

USE OF THE CONDITIONS

The conditions are the most powerful and flexible part of the
STAC system. They provide the guiding intelligence for the game,
by matching the player’s commands and taking appropriate actions.

There are four types of condition in the STAC: low priority,
high priority, local, and special. Confused 2 Well, it’s not as
bad as it sounds...

Low priority conditions are executed after the user types in his
command. They are usually used for interpreting that command and
taking action based on it, and are executed no matter what room
you are in. Typical Ilow-priority conditions are those for
manipulating objects, and controlling the "feel" of the adventure
with save and Iload options, quit, and examining things.

High priority conditions are executed before the player enters
his command, and are thus beyond his control. They are usually
used for signalling dangerous events, and finally killing the
player off... or letting him win ' An example would be killing

the player off after 3 moves in the dark, whatever the moves
were.

Local conditions cover situations which only occur in one room.
Typing "jump" may do little on a level plain, but next to a cliff
this could quite easily be fatal. They are also used for moving
between places when the connections cannot cope.

Special conditions are called at any time. They take the form of
short lists of instructions to be carried out in extraordinary
situations which might occur at any point. For example, there is
a special condition devoted to alerting the player that he has
died, and taking appropriate action. For the most part, these can
be left safely alone and work well, but they can be used to
tailor the system response. Again, an example might be helpful.
There is a special condition that is called when you try to pick
something up that is too heavy. The standard response is to tell
the player that it is too heavy and leave it at that. However, if
you are feeling particularly cruel towards your player, it could
quite easily be altered to make him try to pick the object up,
stumble, fall over, and drop everything else he was carrying.

The conditions are entered in a language which is quite close to
English, but which has a limited vocabulary. Most of the commands
are quite obvious and easy to learn, so here goes...

I shall go through the conditions in logical sections, since
they divide up quite neatly. The first section deals with tests.

TESTING FOR A CONDITION

Most conditions will be of the form " If euc.h—and—such ha'p;}))er:js,
then do so-and-so ", so there are two words if and t‘ben'wh.lc o
exactly what you would expect. (Note that words in italics are
words that the STAC understands.)

So, most of the time, condition lines will look like:
if { test-is-true } then { do something }

Usually, after executing the { something } you w§11 yvar:lt tg :rtltt)ﬁ
and wait for a new command from the player. This is h'ol:l 0
either wait, which just waits for a new command, ok, W 1ch. E et
"Okay", and then waits for a new cgmmand, or newcom, W “ii o
ignore any other commands on the line that. th.e player ty;)el . ﬁen
ask for a whole new line of commands. This is most usetu . (:v :
the player does something silly and would not Kan e oﬁr
blundering on obeying all the other commands on the line. N

condition now looks like :

i i thing } wait
if { test-is-true } then { do some i
if { test-is-true } then { do something } ok

o if { test-is-true } then { do something } newcom

The most common things you will want to test for are words that
you entered as a command.

COMMANDS

i i tions: verbs are words
Commands can be split up into thrge sec :
which do something, nouns are the things to do it to, and adverbs
say how to do it. For example, in

Take the lamp quietly.

the verb is "take", the noun is "lamp", and "quietly" is an
adverb.

You can test for these using the words verb, noun, and adverb.
The construction

if verb "take" then { do something } ok

i i i d only if the word "take"
11 do whatever is after the then if an
::las typed in the command line. Note that you must already hgve
entered the word "take" in the verb table. You can combine
several words with and and or if necessary:

& i un "lamp" then
1f verb "take" and no e anthine T ok

There is no real limit to the number of ands or ors you can
combine in a condition.

i v bl been entered in the noun
Similarly lamp" must have already
table. If }:ou do not do this, the program does not know that the
word "lamp" is a noun, and will complain at you.

Obvigusly we need to do something wuseful with the { do
something } or all our efforts so far are pretty wuseless

OBJECTS

Objects are there for you to mani i
¢ pulate. The most obvious thin
you do with them are to pick them up, and drop them. Each objeii

is given a number so that we can o i
o refer to it in an unambiguous

Imagine that object number 1 is a lam T
« To get th
get 1. To drop it again, use drop 1 . 3 i ® lamp, we use

So, we can now pick up the lamp i
v P In response t
replacing the { something } with a get: y e g g e

. if verb "take" and noun "lamp" then get 1 ok
n

if verb "drop" and noun "lamp" then drop 1 ok

We use ok here because the action i

/ € ok he of getting or droppin
object is invisible to the player.. he needs to know F:.E})latg }ﬁl;
cqmmand 'has. bgen dealt with correctly. Thus, the ok, which just
glves an indication that everything is all right.

ETh;a.se are very useful conditions, and they are very close to the
nglish form. There are other things you can do with objects.

You can. list the .objects in a certain room with list. If you
Xvant to list the objects you have with you, use list with. So, to
check what you have with you, you can use d

if verb "inventory" then list with wait

:v.hlch willn list all the objects you are carrying when you type
'mvent.ory . $ee how we now use wait rather than ok since tge
list be.mg printed on the screen is all the player needs to s

that his command has succeeded. Note that with is really a ro:;

that moves around with . S
room number, you, and you can use it like any other

-Youl can describe objects. There are two descriptions per object
a long one and a short one. objlng prints the long one, and

objsht prints the short one.
You can summon an object (if it exists) and put it at your

feet using bring, and teleport yourself to an object using find.

(= Ef you are already with th e in, it
s
e ObJ ct, or you are carry g ’

if verb "summon” and noun "lamp" then bring 1 ok
will bring the lamp to you when you type "summon lamp".

You can move an object to a room using to. I to 3 will move the

lamp instant]
usixlx)g i+ y to room 3. You can then test where an object is

if 1 in 3 then { do something } wait

10

will { do something } if object 1 (the lamp) is actually in
room 3.

You can also swap two objects using swap. 1 swap 2 will swap
objects one and two over. This saves a lot of mucking about when
using lamps, for example. You simply have two objects, an unlit
lamp and a lit lamp, and swap them over when you light the lamp.

You can check whether an object is being carried using carried,
whether it is here in this room using here, and whether it is
available (ie within reach.. either being carried or in this
room) using avail All the words that are understood are 7
letters or less long which is why we use awvail It is the best
meaningful abbreviation of "available" that fits. As wusual you
can combine these to produce quite complex conditions.

if verb "get" and noun "lamp" and
here 1 then { do something } ok

will only execute the { do something } when you typed "get lamp"
and the lamp is actually in this room. Getting and dropping
everything is quite useful, hence getall and dropall which do
just that. It is wunrealistic to expect the player to be able to
carry every single object at the same time, so the weights in the
object description mount up. If this amount exceeds the strength,
then you can’t pick any more up. So we have a command setstir
which sets the player’s strength. If we do setstr 10 then the
player can carry 10 objects of weight 1, or 1 of weight 10, or 2
of weight 5, or one each of weights 1,2,3 and 4, or.. and so on.
Any attempt to pick up more than 10 weight units will fail. You
can change the strength during the adventure. Hence for a cheat,

you could use:

if verb "superman'" then setstr 5000 ok
if verb "superwimp" then setstr 1 ok

You can find out the weight of any object using weight This
introduces something new. Everything we have met so far either
was a test or does something. If you view the words as little
servants, the tests will answer yes or no to a question, and the
others are dumb brutes who just go away quietly and do something.
This weight answers back with a number, but what can we do with
it®

Well, you can check it against other numbers as a test. For
example:

if weight 1 > 5 then { do something } wait

will do the { do something } if and only if the weight of object
one is greater than 5. There are several of these types of tests.

Using any two numbers (which I shall call a and b since they
could be anything), there are the following tests :

> b will work if number a is greater than number b
< b will work if number a is less than number b
= b will work if number a is equal to number b

a

o

a

11

a >f b w'}ll work :E.f a is greater than or equal to b
2 <= b W?.ll work if a is less than or equal to b
and a <> b will work if a is not equal to b

So the following tests will work (they are true)

3> 1 4 <7 3 =3 o= 4 6 <9 3 <> 4
but these will not

1u>.8 (S 3 3 =9 A =07 3 >89 3. €> .8
Many of the words used by STAC return numbers, and these numbers

can be manipulated further using simple arithmetic. Although this

is not used too often, it can provide i
] some quite %
cuts" in some situations. 4 Bata

You can use + (add), - (subtract), ¥ (multi

e 4 ltiply) and /
(divide). y !
. -)S :To illustrate, here are the results of several simple

4 + 3 7
4 ka8 =12
4 - 3 =1
Aot 2 =2

In a more complicated calculation, th 2
3 e X¥’s an 4
worked out first, before the +'s and :’5 80: - ey i

5 % 3 + 9 =24
1
1
16 + 9
1
1
24
To alter this, use brackets - an i i
i yvthing in brackets will b
wori{'ed out' first. Note also that words that require number:
(ike weight) have preference even over multiplication.

weight 3 * §

will return five times the weight of object 3, not the weight of

object 15, i i
pr;ference. Again, brackets would overrule this order of

The final three words to do with j

t objects are not used ver
of.ten. cntobj counts the objects in a particular room, firstal);
gives you the m.lmbe.r of the first object found in a particular
room, and whereis gives the room number where the object is.

MESSAGES
So far, we have met quite a few wo
rds, but not many print things
onthto the screen. The few that do (list for example) give ga
rather bare response. If you were carrying a lamp and some gold,
the inventory condition above would print

a lamp, some gold

12

when you asked for an inventory. Messages can be used to liven
it up and make it a bit more friendly. Would it not
be better if we could make that into

You are carrying a lamp, some gold

Well, we can using the messages. Messages are entered like room
descriptions and objects, and are called by their numbers. So, if
we entered message 1 as "You are carrying ", then we could add to
the condition like this:

if verb "inventory" then message 1 list with

When you type "inventory", the condition first prints message
number 1 ("You are carrying "), then lists the objects you have
with you.

Note that some of the messages are used by the STAC, but you can
change the wording if you wish, as long as you don’t change the
meaning significantly.

If you want your message to appear on a new line, then use the

word If first. This stands for LineFeed, and will move the
printing position on to a new line, scrolling the screen up if
necessary.

You can also print out numbers, using print. If you wanted to
weigh an object, for instance, you could use

if verb "weigh" and noun "lamp" then
print weight 1 wait

which will print the weight of object 1 (the lamp) when you
type "weigh lamp".

ROOMS

Since you can move about in the rooms of the adventure, some
words to do with this might come in handy. The first of these is
look, which will print a description of the room you are in,
along with a list of any objects that are here, and a picture if
there is one. This one is very useful if you have been in a room
a long time, and wish to see the description of the room once
more.

To move between rooms. use goto, which takes you to a specified
room. This can be used for magic teleporting words, beloved of
Colossal Cave fans...

if verb "xyzzy" then goto 7 wait

will take you immediately to room 7, no matter where you were
before. It also prints a description of the new room, and
depending on whether you have been here before, will either print
the short description if you have, or the long description if
not. moveto is exactly the same, except it does not print the
room description.

The goto is also very useful for movements which cannot be
included in the connection table. Connections take place no

13

matter what, but if you require something to be done before you
can go somewhere, then use a condition. As an example, say you
are in room 1, and there is an opening to the east. However, you
need the lamp to pass through the opening. So, you must type
"east", and be carrying object 1 (the lamp) to go east to room
two...

if verb "east" and carried 1 then goto 2 wait

You can describe other rooms at a distance using desclng, which
prints the long description, and descsht, which prints the short
one. This could be useful for, say, a magic crystal ball which
allows you to look through it at another, distant, room.

For looking through doorways, you will need to know which room
is connected in which direction. This is accomplished using
connect. It gives you the number of the room lying in a direction
described by a veérb.. a bit confusing to say, easier to show.
Again, one of my myriad examples should help. If you are in room
two, and room three is in the connections to the north, then
connect "north" will give you the result 3 since room 3 is to the
north of your current location. This will only work with those
doorways that are entered in the connections for that room, not
those that have to be dealt with otherwise.

To find out which room you are in, use room. So, to list all the
objects in this room, use list room.

To draw a picture, use draw. In conjunction with this, pictof
gives you the number of the picture associated with a particular
room. So if room 2 has picture 17 associated with it, pictof 2
will give the result 17. The construction draw pictof room will
draw the picture associated with where you are. Pictures can be
turned off using text, and turned back on again using pict.

The text beneath the pictures can be in either low resolution
(40 characters across) or medium resolution (80 characters
across). To switch between these use the word split The
adventure will always start up in low resolution since those of
you who have TV sets rather than monitors will probably find 80
character text rather small and difficult to make out. Note that
this word will also clear all the text, but will not affect the
picture.

To change colours on the screen, there are two words colour and
topcol. Both work in the same way, but colour changes the colours
in the text region of the screen, below the picture, and topcol
changes those in the top part of the screen, that is the picture
itself. As an example,

0 colour 666

will change the background colour of the bottom part of the
screen to grey. The first number (0) is the number of the
colour you want to change - 0 is the background - and the second
number represents the amount of red, green, and blue you want in
the colour. This may range from 000 (black) to 777 (bright
white). If you are unsure about the exact colour that will
result, go to the graphics screen (see next chapter) and use
the colour sliders to get the shade you want. Then just read off

14

iti i ila - lour ! As another
their positions in order and voila your co
examplg, red and blue make magenta, so to get magenta (purtl:llek)
text (colour 3 is what appears black normally) on a ac
background (colour 0), use

0 colour 000 3 colour 707

707 means 7 units of red, 0 of green, 7 of blue. You may changi
colours 0 to 3 using colour, and 0 to 15 us}ng ttprcf
Experimenting with these can lead to some pleasing effects.

To test if you are in a particular room, use at.
if at 4 then { do something } wait
will do the { do something } only if you are in room number four.

i jgit and visit?, which set

Two other, little used words are VisI e

this room a; having been visited already, and test whether this
room has already been visited respectively. Thus

if visit? then message 2

where message 2 is "Hmmm... this looks familiar" will print that
if this room has already been visited.

MARKERS AND COUNTERS

MARR LN AN e

i i information about the
A lot of the time you will need to store in
adventure "universe" for later reference - which doors havehl.:)ee.n
opened, which buttons pushed, and how much gold you have. This is
accomplished using markers and counters.

Markers are used for things which can be in two situations I-t
doors can be open, or not, and buttons can be pushed, or not. -
may be dark, or not, there may be air, or not... that may be

enough examples, or not !

There are 512 markers, numbered 0 to 511, and they can be elti{herr

set or reset. You might represent an open door by a set matr en é
and a closed one by a reset marker. You must be.y able to seThaere
reset markers, so the words set and reset do this for you. -
is also a word change which will chech the state of 'fi:1e mar i e,
reset it if il was already set, and vice versa. It changes

state of the marker.

You can check the state of a marker using_ get? and reset? which
will test if the marker is set or reset respectively.

ine you are in room one, with a door to the east, which is
ir}i‘:li‘:fly cli’)sed. You must open the door before you :;:n gtc;t eea‘s);
to room two. So, let us use marker 3 to represgnt £ e- B8 i
the door. If it is set, the door is open, otherwise 1 wtcr thé
(Al of the markers are initially reFet when youf etr;) e oo
adventure.) The following conditions will take care O e S

if verb "east" and set? 3 then goto 2 wait

will only allow you to room 2 if you typed "east" and the door

was already open. To open the door

15

if verb "open" and noun "door" then set 3 ok

This will set marker 3, which re i
P e L) presents an open door, if you

thMarkerts Q,l aqd 2.are used by the special conditions to denote
g ree. special situations. Marker 0 is set whenever a room is
'es‘crlbed. Marker 1 is set if it is dark, and marker 2 being set
indicates that you have a source of light.

There are also 512 counters, numbered 0 to 511. They can be used
to store numbers, such as the amount of gold you have left in
your purse. To set a counter to a value, use setcntr. To give
yourself ?00 pieces of gold in your purse (counter 1), use the
constru.ctlon 200 setcntr 1. Counter riumber one now holds' 200. You
can think .of the counters as little boxes, numbered 0 to. 511
feach of which holds a number. You can put a new number in whic};
is what we have done, or you can look at it using counter.’ If we
used pmfzt counter 1 now, it would print the number 200 on the
screen, since counter 1 holds 200.

dYou Tcha‘n increase or decrease the counters by one using inc and
lic. 1s is useful as a countdown timer. If you have set off an
alarm, say, and you have five moves to escape, you can set a

counter to 5, dec it every turn, then d i
o s
player when it reaches zero. ' i g

If, however, you are using the counter as a indi
when you buy something for 20 gold pieces, you n:ic:)nerfotlrfa“r::tofz
.have to type dec 20 times. To do this, use -count, or +count t
Increase your gold. 20 -count 1 will take 20 from the value o?
t?}(ﬂfum‘.er one. 50 +count 1 will add 50 to it. Both of these update

€ counter - there is no need to do a setcnir afterwards.

Finally, to check i i
o S " k if a counter has reached a certain value, use

if 0 =count 1 then { do something }

will only do th i i
b ze};o. e { do something } if counter 1 has reached the

Again, the spec':ial conditions in the QSTART file need the use of
counter » which you should set up to hold the score

LIFE, DEATH AND THE DISKS
There should be some defini
] > ite end to the game, either b
iilsgie:iimg. In your quest, or by getting killed. Henc:e two word};
i .o._)ust what they say. death and success both end the game
s '?Y similar manr.ler',' but with different messages. The first gives
ou have died type message, the second "Well done £8

Il:l add.ition., the player might want to give up. Thus the word
i‘i’m}? v{hlch is the same as death, except that the player is asked
€ is sure that he wants to quit. If he answers "Y", for yes

’

then he is exited from the
: j ame. If NS
he is returned to the game. - ¥ y ~Ahaans

i6

Adventure games are dangerous things, and you are likely to get
killed several times before completing the adventure. Most
adventures give the option of saving your game position to disk,
and restoring it again afterwards. This is done in STAC using the
words save and load, which do just that. The player is asked to
give a name for the position before the save or load is executed.

Closely related to these are ramsave and ramload, which save and
load game positions to and from a reserved portion of memory,
rather than the disk. This has the advantage that it is
considerably faster, and that disk space is not taken up with
lots of game positions in dangerous situations. It is, however,
lost on exit from the game. There are three ramsave areas
reserved, and you can save and load from these using ramsave I,
ramsave 2, ramsave 3, ramload 1, ramload 2 and ramload 3.

MULTI-PART ADVENTURES

Adventure games can be very large, too. If an adventure cannot
be squeezed on to one disk (or into memory) then extra data can
be saved on to other disks using the Encode option on the disk

menu.

When a game is saved as a runnable adventure, two files are
created on the disk, both with the same name, but one with a .PRG
extension and one with .LNK. The file with the .PRG extension
contains the parts of STAC needed to run the the game whilst the
.LNK file holds your game data. When data is saved using Encode
from the disk menu, a file containing your game data is saved,
also as a .LNK file. Several .LNK files can be used by the same
adventure either from the same disk or spread over several disks.
This allows you to write enormous adventures.

Thus, if we assume that a game is split into three parts, each
one taking up a full disk (more or less), then disk 1 would
hold the files PART1.PRG and PART1.LNK, disk 2 would hold the
file PART2.LNK, and disk 3 would hold PART3.LNK. Parts 2 and 3
would both have been saved using the Encode option, whilst part 1
would have been saved as a runnable adventure.

When a new file is linked in, all the markers and counters stay
intact, as do object positions, except when the object is in room
0. In this case, the object is set back to its start position.
This prevents objects reappearing at their start positions if
they have been picked up or moved before crossing over to the new
.LNK file. However, this does mean that you cannot use room 0 to
destroy objects any more ! Instead, you should use another unused
room. Room 10000 is useful in this respect since there can never
be a ‘real’ room 10000, and so the player can never get to the

destroyed objects.

The command link m is used to swap from one link file to another
during play. The m is the number of the message which holds the
name of the .LNK file to be loaded. (Note - link will only work
in a runnable adventure, not during the testing stage.)

17

The link m can be used anywhere in the conditions generally in
the form:

If { new file needed]} then moveto r link m

which will lext you in room r of the new .LNK file.

F‘or.e.ach file that can be moved into, a message must be set up
containing the name of the file so that if the game was in three
g?rts, ezlagh of which being accessible from the others, each .LNK
ile wou need to contain two messages for th

other two .LNK files. o g i i

When link is operating it looks for the named file on the
current disk, and if found it loads the file, describes the new
room and waits for a new command. The conditions cannot be
continued since a new set will have just been loaded in !

If the named file is8 not on the current disk then the link
comman.d is ignored and the rest of the condition line is acted
on. This should ideally ask the player to insert the correct disk
apd the.n press a key. Then it should attempt to load the .LNK
file again. If the name of the .LNK file is in message 5 and a
prompt message asking the player to change disks is in xﬁessag’e 6
then the following construction will work: '

if { new file needed } then repeat link 5
message 6 pause 5000 until false

The pause 5000 will wait for about a minute and a half, or until
the player presses a key. This is a useful way of waiting for the
player to respond to something important.

When writing a multi-part adventure, it is a good idea to create
and save your own 'multi-quickstart" file containing all ° the
verbs, nouns, adverbs, and objects in the adventure, along with
thg messages and high and low priority conditions that govern
things that can happen anywhere. You can then load this at the
start of a new section and just put in new room descriptions
me.ssag.es and local conditions, rather than having to type every—’
thing in again. This approach requires a bit more planning in the
short term, but saves a LOT of time later on.

One other thing to note with multi-part adventures is that save
fmd ramsave save the name of the .LNK file that you are currently
in, for later reference, and load and ramload will attempt to
reloa.d that .LNK file if necessary. If they cannot find it
special condition 18 is called, which just prints a prompt and’

waits for a keypress before tryin agai i
construction above). - R

STRINGS

It .w111 sometimes be useful to ask the player a question which
requires an answer which cannot easily be handled using the
standard verb-noun-adverb commands. The player’s name, for
example, w<.)uld be impossible to determine. However, for purposes
such as this we have 16 "strings", which can be used to store a
sequence z.)f letters and/or numbers up to 79 characters long. To
get a string from the user, use get$ (the $ on the end is
usually pronounced "string", by the way, and is a fairly standard

18

way of showing something to do with strings). This will allow
the player to type in a string. For example, if message 1 says
"What is your name? ", then the following will get the player’s
name and store it in string number ows

message 1 get$ 0

Now that you have the string, you can print it out using print$,
or allow the player to edit it using edit$. If you wanted the
player to give you a number, then you can find out the value of
the string using value. If the player typed "100" when asked, and
this was stored in string 1, then value 1 would give you the
number 100 as a result. Note that if the string had not been a
number, then the result would be -1. This can be used as a check.
Conversely, you can use number$ to turn a number into a
string. After 100 number$ 1 , string 1 would be "100".

You can also print strings from within messages. If you use the
control character Control-V, then string 0 will be printed, and
Control-W prints string 1. So, if string 1 is "John", and message
number 1 is "Hello, [Control-W]!", then it will be printed as:

Hello John!

You can move strings around using copy$ For example,

1 copy$ 2

will copy string 1 to string 2, destroying whatever was
originally in string 2. swap$ will swap two strings over, and is
used in the same way.

You can add strings together. To add string 1 on to the end of
string 2, use

1 add$ 2

If string 1 contained "Aard" and string 2 contained "vark", then
after doing this, string two would be changed to '"Aardvark".

You can move the text of a message into a string using mess$. 1
mess$ 0 will copy message 1 into string 0. Note that with all of
these string commands, if the string gets too long (more than 79
characters) then any characters after the end will be lost.

You can cut a number of characters off the start or end of a
string using cutst$§ and cutend$. 5 cutend$ 7 will cut b
characters off the end of string 7. If you cut more characters
off than are actually there, then you will be left with an empty
string - a string with nothing in at all, not even a space.

To find out the length of a string, use length$. This gives you
the number of characters in a string.

You can add a character on to a string using addchr$, and find

out the value of the first character in a string using ascii$.
These use the fact that in a computer, all the characters are
represented by a code number from O to 255. For example, the code
for "A" is 65, so

65 addchr$ 1

19

would add an "A" on to the end of i i i
b el g of string 1, and if string 2 was

ascii$ 2

would give i i i
gl g“A". a value of 65, since the first character in string 2

You can find the first and last occurren i
sharacter in a string using first$ and Iaat:e IfOfst:in;ar;lc:Il::
HELLO {\RTHUR AARDVARK", then 65 first$ 1 would give a value of 7
- t.he first occurrence of "A" is the seventh character in the
string. 65 lasts$ 1 would give 19. If there were no matchi
characters in the string, you will get 0 back. g

You can c'?mpare strings in much the same way as numbers, except
that the "value" of one string is smaller than anothe;' if I;t
Somes b"efore it alphabetically. So "aardvark" is less tha
anteater", but "buzz" is greater than "bee". The alphabet e
extended so that all the UPPER CASE letters are smaller than allsi
the: lowe.r case ones, and all the numbers are smaller than that
Using this system, here is an alphabetical list. '
/

" Note the space on the front"

"88 wild horses"

"Alphabet soup"

"Zoological"

"ZZ9 Plural Z Alpha"

"aardvark"

"zap gun"

You can compare strings using the following words

0 =gl Is true if string 0 is EXACTLY the same as
string 1
g :s 1 Is true ?'.f string 0 comes before string 1
2 $ 1 Is true :'Lf string 0 comes after string 1
<>$ 1 Is true if string 0 is NOT exactly equal

to string 1

0 =%, 1 Is true if string 0 comes before, or is
equal to string 1
0 >=8..l Is true if string 0 comes after, or is

equal to string 1

Finally for the string section (i i

: pun not intended), is the d
obeys$. T‘hls passes control from the player to a s’tring. Asw Dgn
example, if string 1 was "Go north then east", then

obey$ 1

:o:ldhabandon the rest of the command line that the player typed
nt il en make _you go north and then east, just as if you had'
actually typed it in. It then returns control to you, the player.

This can be used to talk to oth i
5 er characte.
L e g e rs in the adventure and

Closely related to this are the two commands comm$ and parse$.
conim-f 1 takes the rest of the command line and copies it into
_atrmg. 1, and parse$ 1 will search for nouns, verbs and adverbs
in string 1 and fill in the values as if you had typed string 1.

20

Note that this keeps any verbs, nouns and adverbs already found
in your command line. A useful application for this is when you
require some extra clarification. Say, for example, that there
are two keys in your possession, a silver one and a bronze one,
and the user types "drop key". The following condition will ask
the user "Which one, the silver key or the bronze key ? S in
message 1), get a response from the user, and fill in extra
adverbs (for example "bronze" or "silver") -

if verb "drop" and noun "key" and zero? adverbl
then message 1 get$ O parse$ 0 If

This sort of thing makes adventures really friendly and pleasant
to use.

COMMENTS

You can include comments in your condition lines if you like. If

you include the characters ";" (semicolon) or "\" (backslash)
in the line, everything after that on the line will be ignored
when the conditions are executed, but will be stored for you to
refer to later. Here is an example:

if verb "quit" then quit ok \ let the player quit

or
if verb "save" then save ok ; save the position

This can be very useful in keeping track of what you are

supposed to be doing next ! However, they can take up quite a bit
more memory than the actual conditions !

ADVANCED CONDITIONS

There are still a few words left which are slightly more
advanced than the rest, and whose use is limited at first, but
can be put to very good use after the basic condition system has
been mastered. They do not really fall into any neat category.

random returns a random number between one and a particular
number. For example random 100 could come up with any number
between 1 and 100 inclusive.

caps makes sure that the first letter of the next thing printed
on the screen is a capital letter. This is useful when listing
objects (as in getall), where the first Iletter is usually

small.

Tests return two values - true and false. For example, 3 = 3 is
true, but 4 > 7 is false. Hence the words true and false, which
just return true and false values. True is given value -1, false

is 0.

In the verb, noun, and adverb tables you were asked to supply
each word with an identifying number. Any words with the same
number were taken as being the same. You can directly access the
numbers of the verb, nouns, and adverbs typed in a command.

verbl gives the number of the verb typed, nounl and noun2 give
tl:Ae number of the first and second nouns, and adverbl and adverb2
give the numbers of the first and second adverbs. This is ver
useful for dealing with objects. If you define the name of objec};:

1 as noun 1, object 2 as noun 2 etc. then a whole str
] mg of

1:1" verb ”"get” and noun "lamp" then get 1 ok
if verb "get" and noun "fish" then get 2 ok

e

ete.

can be replaced using a single condition. If th j

. e last object was
say, number 10, then the following conditions would al :
pick up and drop all objects. " - menrid

if verb "get" and nounl < 11 and nounl > 0
[. A then get nounl ok
if verb "drop" and nounl < 11 and nounl > 0

then drop nounl ok

This works because the object numbers and the noun numbers are
the same for each object. It will only work /if this is so.

Closely related to these is itis. Usuall the wo " i
f:ommand refers to the last noun that you };,’yped in. ;?)u :::n zrcz
it tlo s(?mething else if you wish by wusing itisz For example
hgvmg _Just given a message "A rock narrowly misses you" ym;
might like "it" to refer to the rock. Therefore you can' use

itis "rock"
to achieve this (assuming that "rock" is a recognized noun).
For really advanced tricks, you can even alter the wvalues of

nounl, noun2, verbl, adverbl and adverb2
this, use the word word : vl i <

13 word 1 puts 13 into nounl
9 word 2 puts 9 into noun2
11 word 3 puts 11 into verbl
99 word 5§ puts 99 into adverbl
54 word 6 puts 54 into adverb?2

Using 7,8,'?,11 .and 12 changes the command you are repeating when
you type "again", in a corresponding order.

Silmllarly, you can change the value of amount, turns, and with
using the three words setamnt, setturn, setwith. This will be of
use when constructing multi-character adventures. This also
requires a more comprehensive explanation of with. It is, as
mentioned .before, a room which moves around with you, and is’ by
.default, _ given the number -1. If you wish to have mul,tiple
inventories, like one for your pockets, and one for your
backpack, this can be achieved by changing the value of with to
say, -2 for your backpack inventory. '

To get a yes-or-no response from the player (like in quit),

you can use yesno. This waits for the player to press either "Y"
or "N", which are treated as true and false. A

22

if yesno then { do something }

will do the { do something } if the player pressed "Y", or just
go on to the next line of conditions if the player pressed "N".
Note also that the "Begin Where" option on the main menu will
allow you to change the keys used for "Yes" and "No". This is
useful for adventures which are not in English, and the words
begin with different letters. For example, French is "o" (Oui)
or "N" (Non) and German is "J" (Jah) or "N" (Nein).

You can get the amount of stuff you are carrying using amount,

and find out your current strength using stren? You can also
find out the number of turns taken since the start of the game
using turns.

There are a set of tests for checkir;g numbers which have not yet
been mentioned.

zero? will be true if the number is zero

pos? will be true if the number is positive
neg? will be true if the number is negative
notzer? will be true if the number is not zero
notpos? will be true if the number is not positive
notneg? will be true if the number is not negative

Tests may be negated using not. To check if object 1 is not
being carried, use

if not carried 1 then { do something }

Combinations of tests use and and or, which we have seen
already, and can also use xor, which is, in effect, either one or
the other but not both.

Additionally, you may use abbreviations - & or && for and, | or
i for or (this is accessed by using shift-backslash, next to
the Z key), ~ or ~~ for xor, and ~ for not This is used to

save time and space, and also to make C programmers feel at home.

pause will pause for a specified time. Fifty pauses is one
second, so pause 50 will wait for one second, pause 250 will wait
for 5 seconds. Long pauses may be cut short by the player by
pressing a key.

Additional special conditions may be invoked by using the word
special. They can then be used for frequently used sets of
conditions. To return from a special condition early, usually as
the result of a test, use return. For example, the special
condition that describes a room first checks whether it is dark,
and if so it prints a message to that effect, and returns before
it prints the room description.

There are two extra words which are designed especially for use

within special conditions. byebye exits you from the game
immediately - no messages, nothing. newcom waits for a new
command line to be entered, discarding any commands not yet done
on the previous line. This is useful for player errors, such as
trying to pick up an object that is not there. Whatever is after
this on the command line is ignored, since the player will
normally want to try again before proceeding.

23

The if..then construction can be extended to Iif..then..else if
necessary. The part after the else is executed only if the test
is false. An example might be:

if at 1 then message 1 wait else message 2 wait

will print message 1 if you are at room 1, and message 2 if you
are not.

Finally, there are two words used for repeating things - repeat
and ‘until. The repeat marks the beginning of a block of
conditions that will be continually repeated until the condition
?fter the wuntil is true. So, for example, let us write an
'Examine all" condition using a loop.

W}-\at we need to do is go through every object, see if it is
{ava}lable, and if so print its long description. We can also put
l_t in a special condition so that we can use it easily wherever
11:t}.1 is needed. Special condition 20 is not used, so we can put it

ere.

We need .to keep track of the number of the object we are looking
at, by using a counter. Again, we must choose one which is not
used anywhere else, say counter 3.

The. .construction objlng counter 3 will print the long
description of the object we are looking at, and we can test
whetl?er it is available using avail counter 3. All we need to do
now is to put these together in a loop which will count from 1 to
511 (the legal objects). Here it is (don’t type in the
comments in italics).

1 setentr 3
set the counter to the first object

xl'epeat. start the loop
if avail 'counter 3 then 1f objlng counter 3
! y if this object is available then describe it
inec

increase counter 3 (look at the next obj
until 512 =count 3 vl

until counter 3 reaches 512

Put.ting these lines into special condition 20 allows us to
describe everything around just by using special 20. See how the
repeat and the until are on different lines, repeating the whole
t.>lock of' lines in between them. One thing to note is that an
Lf..tben inside a repeat..until must not be on one line. If you
find you have something like :

repeat if { test } then { something } until { test }
then split it on to three lines:
repeat
if { test } then { do something }
until { test }
You can put repeat..until loops inside each other, up to a

maximum of 16 at a time. If you come up with a legitimate use for
a 16-level loop, please write and tell me.. I can’t think of one!

24

This restriction does not apply for loops which are not inside
each other - you can have as ‘many of these as you like !

Similarly, special conditions can be nested as far as you like,
as long as you do not call a special condition which is already
in the nest. If you do, it will be ignored.

TRICKS AND TIPS

There are several useful hints and tips which you can use to
either "short cut" conditions, or to do things that are quite
common in adventures.

The first of these is using nounl to bypass a lot of drop and
get conditions. As long as the number of an object and the number
of the noun describing it are the same (ie the rock is object
two and noun 2 is "rock"), you can check for a whole range of
objects in one condition :

if verb "get" and nounl > 0 and nounl < 11 then
get nounl ok

This will allow you to get all objects with numbers greater than
0 and less than 11, ie objects 1 to 10. The reason it works is
because the value of nounl is the same as the object number it
refers to. Obviously, if you have more or less objects, just
change the 11 to one more than the last object number you have
defined (21 for 20 objects, 6 for 5 objects etc.).

Wearing things is another useful trick. To wear something you
already have, just move it to an unused room (say 19999 for the
sake of argument). Since you haven’t actually dropped it, the
weight of stuff you are carrying will not be updated, so the
weight of the object will still register. To take the object off,
just move it back to your standard inventory. Here are examples
of wearing and taking off object 2 (a hat) :

if verb "wear" and noun "hat" then 2 to 19999 ok
if verb "remove" and noun "hat" then 2 to with ok

You could have used the swap objects trick like we used for
lighting the lamp, but swapping "a hat" for "a hat (worn)" and
then doing a dropall will allow you to drop that object and you
can get nonsense messages like :

You are in a cave. You can also see a hat (worn ¥s
How can you wear a hat that is on the ground ? This trick places
it safely out of the range of dropall To check whether an object
is being worn (in this case the hat), use in with the room
number you decided to put worn objects in :

if 2 in 19999 then { the hat is worn } ok
The same trick allows you to make use of bags, pockets, etc. To

give a list of what you are wearing, use list with your chosen
room number, in our case list 19999.

25

If you want to be particularly kind to your player, you can
build in an "Oops" command to take him back to before his last
command. This will use up two of the ramsave positions, leaving
one more for normal ramsave and ramload options.

You will need to use a marker (say marker 4 for sake of
argument, althoug:h you could use any one you want). This will be
a record of which ramsave holds your "Oops" position. Then

include the following lines:

In special condition 13, add
if set? 4 then ramsave 1
if reset? 4 then ramsave 2
change 4

In the low priority conditions, add

l:f verb :'oops " and set? 4 then ramload 1 look wait
if verb "oops" then ramload 2 look wait

This leaves ramsave position three for the player’s
ramsave/ramload option.

ERRORS

When entering a line of conditions, several errors can occur.

These are accompanied by a beep and a short message at the bottom
of the screen. The possible ones are:

Unknown operator - the STAC cannot understand one of the words
you have typed. This is most commonly because of a typing error.
Example: vreb instead of verb, or by not leaving a space in
bet.ween two words, or between a word and a bracket. Example:
print(2 + 2) % 2 - you must leave a space between words:

Mismatched brackets - the number of brackets o

pen does not match
the number of brackets closed. Example: print (2 + (3 * 5 p)
[one too many "("]

Mismatched numbers - either there is a result not doing anything
or there are not enough results. Example: print set 1 - set 1
doe‘s not return a result so print has nothing to work with. Also
weigh 1 - what do we do with the weight of object 1 "’

Unknown noun/verb/adverb - the word in "quotes" is not in

th? vocabglary. Example: if verb "aardvark” then... will give
this error if "aardvark" isn’t a defined verb.

26

CHAPTER FOUR

GRAPHICS

The STAC is designed to allow you to accompany your adventure

with 16-colour graphic pictures. These may be created using the
inbuilt graphic editor, or they may be imported from either
NEOCHROME™ or DEGAS™ drawing programs.

To get to the graphic editor from the main menu, press G. The
menu will be replaced by the drawing screen (see next page).

This consists of a large, blank window filling the top two
thirds of the screen, and a smaller window filling the lower
third of the screen which contains your drawing tools.

You must enter a picture number before you can draw on the

screen. This is so that you can recall the picture at a later
time. Enter your number (it will appear on the right hand
side), and press RETURN. You are now ready.

There are a bewildering array of icons on the left hand side of
the screen. The first row represent the 16 colours you can use.
One will be outlined in a different colour, and this is the one
you will be drawing in. To change to a different colour, just
move the mouse pointer over the colour you wish to draw with, and
press the left mouse button.

The second row represent the different drawing tools you can
use. They are, from left to right, airbrush, paintbrush, line
draw, rectangle, circle, ellipse, fill area, filled rectangle,
filled circle, filled ellipse, merge picture, import picture,
resize window, undo, clear screen, and drop back to main menu.
Again, selection of these is by positioning the mouse pointer
over one of them and pressing the left hand mouse button.

The third and fourth rows represent the different "brushes" you
can use. Selection of these is again the same. The brush affects
everything you do with the airbrush and paintbrush, and also line
draw, rectangle, circle, and ellipse.

Here is a brief guide to each of the functions:

Airbrush acts like a spray can. Position the mouse pointer and
press the left mouse button to spray colour on to the screen.

Paintbrush acts like a paintbrush. Again, pressing the mouse
button allows the brush to work. Try using different brushes and
colours with this and the airbrush to see what different effects
you can get. Try moving at different speeds.

Line draw introduces a concept called "rubber banding", which
describes the way that the line can be seen before it is placed
on the screen permanently. Move the mouse pointer to the start of
the line, and press and hold the left mouse button. Whilst
holding it down, move the mouse to the end of the required line.
The line can be s8een, acting like a stretched rubber band,
allowing you to position it exactly. Release the mouse button,
and the line will be dcawn permanently.

27

The Drawing Screen

28

Rectangle uses the same technique. Move the mouse to one corner,
hold the left button down, and move to the diagonally opposite
corner, and release.

Circle and ellipse require you to start with the mouse at the
centre, thenldrag the outline of the figure. Don’t worry if the
rubber band figure seems incomplete - it is merely a guideline.
The real thing will be perfect (*) =

By now you have probably got a messy screen, SO we will skip
ahead to the clear screen option (the icon is meant to look like
an eraser, and is the second from the right hand end). To use
this, position the mouse over it and click the left hand mouse
button, then move the mouse into the drawing area and click it
again. The window will clear, and you will be returned to
whatever tool you were using before.

The next function is area fill (the paint can icon). Using
lines, or the paintbrush, draw an enclosed area. Any shape will
do. Then select the fill icon, and click the left hand mouse
button inside the closed area. The area will then fill up with
colour. Be sure to leave not even the tiniest gap, otherwise the
colour will leak out. Clicking on the UNDO icon will solve that,
cancelling the last thing you did.

Filled rectangles, circles, and ellipses are managed in the same
way as normal ones, but their outline is not affected by the
brush being used, and, of course, they are filled in with solid
colour.

Merge picture requires that you have another previous picture to

merge with this one, so to preserve your current masterpiece,
click on the picture number you typed in at the start. After a
couple of seconds, which is STAC compressing your picture to save
memory, it will be replaced by a cursor and you should then type
a different number. The screen will clear, and you will be able
to draw another picture. We are now ready to merge pictures.
Click on the icon (two overlapping boxes), and you will be
asked to enter a picture number to be merged, on the right in the
usual place. Type in the number of your first picture. It will be
loaded onto the screen, overlapping your current picture. This is
useful for adding subtle detail to a sequence of largely similar
screens.

Import picture allows you to cut a rectangular piece from an
uncompressed NEOCHROME™ or DEGAS™ slide which has been saved to
disk previously. Click on the disk icon, and you will be asked
"Neo or Degas ?". Press D for Degas, or N for Neochrome. A file
selector box will then appear, from which you can make your slide
selection. Click on OK to load the slide, or NO to cancel the
function. If you selected OK, the glide will be loaded in, and
the colours set up. You can then draw a rectangle around any part
of the screen, which will be cut out and used as your picture.
Draw the rectangle as if you. were using the rectangle function.

29

Resize allows you to change the size of the window which you
wish to use for drawing in. Note that it also clears the picture
- you cannot get it back. Click on the resize icon (rectangle
with arrows), and draw a rectangle in the usual way on the upper
part of the screen. It will then be centred, and you can use it
for drawing in.

Undo allows you to undo the last thing that you did, and only
that one last thing.

The final icon drops you back to the main menu.

By this time, you will probably have noticed that there is a
small window towards the right of the screen, in which appear
coloured squares. This is a magnify window, and with it you can
see the area around your mouse position with pixel accuracy. It
can be used to pinpoint the position of your mouse for sensitive
things, like joining lines together, or small area fills.

Underneath this, at the bottom of the screen, is a small
horizontal line. Clicking on this with the left mouse button will
change the selected line style. There are 16 different styles, so
clicking 16 times will bring you back to the start pattern again.
The line style affects lines, of course, but also the paintbrush
and the draw rectangle options. There are many useful effects
which can be achieved using a combination of brushes and
linestyles.

At the extreme right are three boxes which slide up and down a
scale marked 0 to 7. These represent the amount of red, green and
blue that go to make up the currently selected colour. You can
move them by clicking the mouse at the position you want them to
move to. The colour "palette" that you set up will be remembered
when you leave the picture. This is an almost indispensible
feature - the default palette of colours is useful for only a
very few pictures. You can get quite subtle shade variations
using this feature, since there are 512 colours available.

When they are printed on the screen during an adventure, the
pictures can either sit snug against the top of the screen, or
space can be left at the top for an extra line of text. This
space at the top of the screen is set up in pixels from the Begin
where? option on the Main Menu. They are not surrounded by the
frame shown on the drawing screen - you can draw your own if one
is needed.

The pictures are stored in a compressed format, to save on
memory. If a picture cannot be compressed (as is the case for
some digitized pictures, and for highly detailed or random
pictures), then it is stored as a complete section of screen.
This is why you may notice that some pictures are loaded more
quickly than others. A full sized, uncompressed screen will take
about 18000 bytes of memory. Compression will take this figure
down by a significant factor, as will reducing the size of the
window.

You may have up to 9999 pictures, memory permitting, but in

practice this will not be possible. The number of pictures you
can fit in varies according to the amount of detail you include.

30

i i hey take up. In the
The simpler the pictures, the less ‘memory t 2 1
worst case, 16 full size very detailed pictures will fill 300 000

bytes of available memory.

i it is worth remembering is that a picture is not
ne(c):l::sa:'lilll;gworth a thousand words. Many of th'e best ?dventure‘e
ever produced were purely textual (ie no pictures !). It is
better to have a sparsely illustrated adventu.re that has many
locations and is fun to play than one which has a lot of
brilliant pictures but which is unplayable.

i i i aste of time,
Many adventurers maintain that plcture_s are a w
effort, and memory. I disagree. There is plenty of s.cope fo'!;
including pictures in adventures, b_ut as I have said, don
neglect the adventure to produce the pictures.

31

CHAPTER FIVE

MUSIC IN MESSAGES

The music system used in STAC is quite basic in construction,
but needs a separate chapter to explain - so here it is !

The tunes are entered in messages, and are played when the
message is printed. They can even be mixed with normal text. But
how does the STAC know what to play and what to print ?

Tunes are started by typing Cntrl-T (T for tunes). Now
anything after this will be interpreted as music, until either
the end of the message is reached, or a Cntrl-U character. The
first thing to do, usually, is to set the volume and tempo of the
tune. This is done using the v and t commands. Each of these is
followed by a number, then a space (remember the space on the
end !). So, to set the volume to 15 (loudest), and the tempo
to 5 (10 beats per second), use

w16 L5

Ok. So far so good, but what about playing notes ? Notes are
represented by the letters abcdef and g, as in normal music. You
have two octaves for use immediately - to get the upper octave
use upper case (ABCDEFG). So, to play a scale of C, you might
try

vl5 t5 cdefgABC

Remember to include the Cntrl-T and Cntrl-U to show that this is
a tune. (You will have to actually print the message to hear the
tune). All the notes here are in the key of C. To sharpen a
note, append "#". Here is a scale in the key of C#:

v15 tb c#d#ff#g#A#CC#

To change the durations of the notes, add a number afterwards.
Notes with no number afterward will sound for the amount of time
dictated by the last number. Here is a scale with an odd rhythm:

vl5 t5 c2 del f.g2A.BC4
Notice the use of "." as a rest here. The duration can be
altered just as if it was another note.

Two octaves is a bit restrictive. You can access the full range
provided by the sound chip by using + and -. These transpose up
and down one octave respectively. Here is an example of an
extended scale in C:

vl t5 cdefgAB+cdefgAB+cdefgABC
Repeats can be handled easily. The start of the repeat is marked
by an r with the number of repeats. The end is marked by a colon
(! because it looks a bit like a repeat mark). Hence to play a

scale 4 times, use:

vl5 t5 r4 cdefgABC

Finally, chords can be played like ordinary notes. Just replace
the note with curly brackets {} around the notes you want to play
as a chord. Here is an example:

vl5 t5 cdefgAB({Cec})

which is a scale with a chord at the end. You may have up to 3
notes in a chord. You can change durations in the same way as a
normal note:

vl5 t5 cdefgAB{Cec}4
will carry the chord on for four "beats".
The relation of tempo to "beats" per second is given here. Also,

if we assume that 4 "beats" is a crotchet note, then the tempo in
beats per minute is also given.

Tempo "Beats"/sec Crotchets/min

1 50 750

2 25 375

3 16,7 250

4 1248 187

8 10 150

6 8.3 1256

7 Tl 107

8 6.2 94

9 5+6 83

10 5 76

11 4.5 68

12 4.2 62

13 3.8 58

14 3.6 53

15 3.8 50
Here are the names of the notes on the treble stave:

S ! J_F i - -

e e

b (o] d e £ £ A B © D E F G

Notice that the STAC does not wait for the tune to finish before
going on to the next thing. If another tune is to be played
before this one is finished, then the old tune is stopped, and
the new one takes over.

33

CHAPTER SIX
OUR SMALL ADVENTURE
Having seen hox'v‘to set out an adventure in chapter two, and how
to use the conditions in chapter four, we will now attempt to get
a complt'ete adventure running. I am assuming that you have already
typed in the room and object descriptions from chapter two.

As a recap, here they are again.

ROOM DESCRIPTIONS

Room 1: Above Ground Connections: None

You are standing outside a large cave entrance, which i
! run
the cliff face to the east. i e

Room 2: .La'rge Cave Connections: east 3
You are inside a large cave. A lit tunnel leads west, and two dim
passages lead east and south.

Room 3: .Passage Connections: west 2
You are in an east-west passage. A snake is asleep in a corner at
the eastern end.

Room 4: Lakeside Park Connections: None

Ypu are in a small park by a lake, which surrounds you on all
sides except the west, where there is a cave entrance. The lake
looks too cold to swim in.

Room 5: Outside Castle Connections: None

You are outside a giant castle built into the cliff. A cave
entrance leads north and there is a door to the east.
Room 6: _Strong Room Connections: West 5

You are in the castle strong room. It has obviously not been used
for some time, and the only way out is to the west.

OBJECTS

The five objects from chapter two were:

No. Description Weight Start Room

i a lamp 10 1

2 " a dead rat 10 5

3 a key 1 4

4 a bar of gold 100 6

5 a lit lamp 10 0
MESSAGES

The next thing to do is to enter the messages we will need to
alert the. user to what is happening. Press M from the main menu
to get .mto the message editor. This is essentially similar to
the fadl.tor used for the room descriptions, and the object
descriptions. There will already be some messages in there,

34

numbered 9900 upwards. These are the ones that are used in most
adventures, and were loaded along with everything else in the
QSTART file. To insert a new message, press Insert, then alter
the message number if necessary. You can now type in your message
in the normal way. Here are the messages we will need (don’t
type in the comments in italics):

1. It lights up.
When the player lights the lamp.
2. It goes out.
When the player extinguishes the lamp.
3. It tastes even better than it looks !
If the player eats the rat. Think of everything !
4. The snake wakes up, comes over, and bites you.
If the player tries to go past the snake without the rat.
5. The snake wakes up, comes over, and eats the rat. It
then falls asleep again.
When the player goes past the snake with the rat.
6. You hear shuffling footsteps nearby...
After two moves in the dark.
7. An eight foot spider with glowing red eyes jumps from the
shadows and neatly severs your head from your twitching body.
After three moves in the dark. Gruesome stuff, eh ?
8. The door unlocks and swings open.
When the player unlocks the door.
You bump your nose on the door. Ouch !
If the player tries to walk through a closed door.
10.You got out with the gold !
When the player succeeds.
11.The snake does not like being touched and bites your hand. The
venom courses through your veins like liquid fire.
If the player tries to pick up the snake.
12.You find nothing much.
If the player tries to examine an unknown object.
13.I’'m afraid I don’t know what that is.
If the player tries to examine something.
14.1t is a large snake, which looks poisonous.
If the player examines the snake.

9

This covers all the situations that need a wmessage during the
game.

VERBS and NOUNS

In addition to those present in the QSTART file (see appendix

D), we will need some verbs and nouns to cover specific actions
in this adventure. The nouns are quite straightforward, and refer
to the objects in the adventure. Also, the player will need to
unlock the door, so "door" must be included. Notice that nouns
which mean the same have the same number, and the nouns for the
actual objects have the same number as the object they refer
to... ie "rat" is noun 2, and object 2 is the rat. This is so we
can use a short cut later on.

Here are the extra verbs and nouns we need:

NOUNS VERBS

1 lamp 20 extinguish
1 torch 20 off

2 rat 21 feed

3 key 22 score

4 gold 23 eat

4 bar 23 devour

4 treasure 24 unlock

5 door 25 light

6 snake 25 on

To enter these, press N or V from the main menu. You will be
presented with a familiar list of items. To insert a new item,
use Insert as usual, then type the number and word on the bottom
line of the screen. As usual, the Space Bar will allow you to
edit a word, and FI will delete it. The words are inserted in
alphabetical order, so you may not actually see your word go in.
You can scroll, as usual, with the arrow keys.

LOW PRIORITY CONDITIONS

At this point we have all the raw data we need for the
adventure, but nothing to say how the adventure will react to
player commands. These are mostly handled by the low priority
conditions.

To enter these, press L from the main menu, which will give the
familiar scrolling list. Insert will insert a new line of
conditions before (above) the line you are currently on. All
the lines after this will then be shuffled up one. For example,
if the conditions are listed as:

il print 1
2 print 2
3

and you are on line 1, then inserting a line "print 7777" will
result in:

print 7777
print 1
print 2

W N =

You will be asked to type the conditions in a line at a time.
Here they are (again, comments are in italics - don’t type them
1 R

Line Condition

1 if verb "score" then message 9902 print counter 0
message 9903 print turns message 9904 wait

If you typed "score", then print score and
number of turns taken. Score is held in counter
0.

2 if zero? nounl and verb '"get" then message 13 newcom
if you typed "get" but no recognized noun, say
"I don’t know what that is"

36

3 if zero? nounl and verb "drop" then message 13

newcom
and the same for drop
4 if zero? nounl and verb "examine" then message 12
newcom
and again for examine
5 if verb "get" and noun "gold" then get 4 20 +count 0
ok
give player 20 points for getting the gold
6 if verb "drop" and noun "gold" then drop 4 20 -count
0 ok

and minus 20 points for dropping it again !

T if (nounl < 5) and verb "get" then get nounl ok
this is the short cut I mentioned. If you typed
"get", and the noun number was less than § (ie
1,2,3 or 4) then get object 1,2,3 or 4. This
only works if the nouns and objects have the
same numbers.

8 if verb "drop" and noun "lamp" and carried 5 then

drop 5 1 swap 5 message 14 20 -count 0 reset 2 wait

if you typed "drop lamp", when you are carrying
a lit lamp, then drop the lit lamp and make it
go out, printing a message to that effect.

9 if (nounl ¢ 5) and verb "drop" then drop nounl ok
the same short cut for drop
10 if verb "examine" and noun 1 and avail 5 then objlng
5 wait

if you typed "examine lamp" and the lit lamp is
available then describe that
15 if (nounl < 5) and verb "examine" then if
avail nounl then objlng nounl wait
useful thing, this short cut ! Here it is again
for examining things.
12 if verb "eat" and noun "rat" and carried 2 then drop
2 2 to 0 message 3 wait
if you eat the rat, and it is being carried,
then drop it, move it to room 0 (ie destroy
it) and print the relevant message
13 if verb "light" and noun "lamp" and carried 1 then 1
swap 5 20 +count 0 message 1 set 2 wait
if you typed "light lamp", and the unlit lamp
is available, then swap it for the 1lit lamp,
add 20 to your score, print a relevant message,
set marker 2 to show you now have a source of
light, and wait for a new command.
14 if wverb "extinguish" and noun "lamp" and avail 5§
then 5 swap 1 20 -count 0 message 2 reset 2 wait
and vice versa for extinguishing the lamp.

The rest of the low priority conditions are to be found in the
QSTART file.

HIGH PRIORITY CONDITIONS

These take care of events the player cannot control, for the
most part. They are accessed from the main menu by pressing H
Here are the ones we will need (with comments as wusual):

No. Condition

1 if set? 1 and reset? 2 then dec 1
if it is dark, (marker 1 set) and we have no
source of 1light (marker 2 reset), then
decrease the "turns-left-in-the-dark" counter.

2 if (1 =count 1) and set? 1 and reset? 2 then

1f message 6

if you have only one turn left in the dark,
then print the "scuffling footsteps" message to
warn then player that something nasty is about
to happen.

3 if (0 =count 1) then 1f message 7 death
if the player has no moves left in the dark,
then kill him off !

4 if at 1 and carried 4 then 1f message 10 20 +count 0O
success
if the player is in room 1 with the gold, then
he has won ! Give him another 20 points !

Those are all the high priority conditions needed. The turns-in-
the-dark counter is set up at the start of the game by special
condition 17 (the start of adventure condition that is executed
only when you first enter the adventure). This is available from
the main menu under key S. Enter 17 for the condition number, and
insert line one as follows:

1 3 setentr 1 setstr 110
This gives you 3 moves in the dark before being
eaten. Marker 1 is already reset, therefore it 1is
not dark. Also, set the strength so you cannot carry
everything !

To get back to the main menu, press Esc, then enter a condition
number of 0 when asked.

LOCAL CONDITIONS

These are conditions specific to one place only, and are used

for movement between rooms that cannot be handled by the
connections, and also for interaction with scenery, such as
unlocking the door to the strong room, and dealing with the
snake.

They are found on key C from the main menu (key L was already
taken up by the low priority conditions...). Enter the number of
the room in which the conditions apply, then you will be asked to
enter the actual conditions in the wusual way. Here they are:

Room 1

1 if verb "east" then set 1 goto 2 wait
if you typed "east" then set the dark marker,
and move to room 2

Room 2

1 if verb "west" then reset 1 goto 1 wait
if you typed "west", then reset the dark marker
and go back to room 1. Most of the other local
conditions are of this form - =setting or
resetting the dark marker then moving.

2 if verb "south" then reset 1 goto 5 wait

38

Room 3

1 if verb "get" and noun "snake" then message 11 death
if you tried to get the snake, then print a
message and kill the player off.

2 if verb "east" and set? 4 then reset 1 goto 4 wait
marker 4 is set if the snake has already been
fed and will let you past. If so, and you tyvped
"east", then you will get outside again

8 if verb "east" then message 8 death
if you typed "east'", and the snake had not been
fed (if it had been, the last condition would
be true and we would not have got this far)y
then print a message and kill the player off.

4 if verb "feed" and noun "snake" and carried 2 then

message 5 set 4 drop 2 2 to 0 20 +count 0 wait
if you typed "feed snake" then say the snake
has eaten the rat, and set marker 4 to record
that it has been fed. Then destroy the rat and
give the player 20 points.

5 if verb "feed" and noun "snake" then message 8 death
if you typed "feed snake" and you don’t have
the rat, then it will come over and bite YOU !

6 if verb "examine" and noun "snake" then message 14

wait
if you examine the snake then print its
description (in message 14) and wait for a
new command.

Room 4

1 if verb "west" then set 1 goto 3 wait

Room 5

1 if verb "north" then set 1 goto 2 wait

2 if verb "east" and reset? 3 then message 6 newcom
if you try to go east, and the door (mrkr 3)
is closed, then print the appropriate message
and wait for a new command line.

3 if verb "east" then goto 6 wait
if the door is open, goto room 6

q if verb "unlock" and noun "door" and carried 3 then

message 8 set 3 20 +count 0 wait
if you type "unlock door", and you have the
key, then print an appropriate message, mark
the door as being unlocked, and give the player
another 20 points.

Room 6
No local conditions

To get back to the main menu, press Fsc twice.
BEGIN WHERE ?

On the main menu there is an option Begin where ?, accessed by

pressing the B key. This sets up where in the adventure you will
start, space at top of screen, and keys to use for yes and no,
and asks you to supply a name for a loading picture. If you do
not wish to have a loading picture for your runnable adventure,
just click on the NO button on the file selector box when it
appears.

SAVE THE ADVENTURE

Now would be a good time to save the adventure. This is done
from the disk menu (press D from the main menu). On the disk
menu is the option Save adventure data. Press key S, and a file
selector will come up, showing the files that are on the disk
currently in your drive.

Replace this with a disk which you don’t mind cluttering up with

adventure data (preferably a blank, formatted disk). To check
what files are on this disk, click on the drive letter (it will
usually be A:) on the right of the file selector box.

To enter a name for your adventure data, click on the filename
at the bottom of the file selector, and type in the name of your
adventure data. This can be up to eight letters long, and you
should follow it by ".ADV" to show that it is an adventure file.
Press Enter when you have a satisfactory name, then click on the
OK box to start saving the data.

The disk drive will whirr for a short while while the data is
being saved. When it has finished, you can return to the main

menu by pressing Esc as usual.

PLAYING THE ADVENTURE

You can test the adventure from within the STAC by pressing
Enter from the main menu. You should then be able to play the
adventure. If anything goes wrong, you can call up a help screen
by pressing Help then Enter when the system asks "What now ?".
This shows the state of all the markers and counters, as well as
where all the objects are, and various other useful information.
You can scroll up and down the using the arrow keys as usual, and
return to the game using Esc.

If anything really major goes wrong, then you will be given an
error message, and a listing of the line of conditions where the
error occurred. You can force an error by pressing both Shift
keys at the same time in case you get stuck in an infinitely
repeating loop. This will return you to the main menu.
Alternatively, pressing the Esc key when asked for a command will
do the same.

The errors are listed in appendix E, with a brief explanation of
what is likely to have caused them.

Remember to test everything the user is likely to say - don’t
just test that the adventure is solvable. Attempt to be as stupid
as possible. If a room description says:

You are in a cave. Entrances lead north and east.

Try going south and west too, and up, and try examining the
elderberry bush that is not there, and so on. This can uncover
many a mistake !

If, however, everything went all right, you can save the
adventure as a stand-alone program. This means that you can just
start it up in the usual way from the desktop, and other people
will be able to play it even if they do not own the STAC. Note

40

that this will require around 30K of extra space on the disk,
since the part of STAC that is responsible for running the
adventure must also be saved.

If you wish to sell your adventures, that is fine - we ask for
no licensing or royalty payments. However, the adventure should
contain a credit along the lines of:

Developed using the ST Adventure Creator by Sean Ellis
for Incentive Software 1988

preferably on starting the adventure.

To do this, go to the disk menu and press key R for Runnable
adventure program. Then follow the same procedure as for saving
an adventure data file, except give the file a ".PRG" extension
rather than ".ADV".

If you have one of the larger ST computers, with double sided
disks and over 512K of memory, it is a good idea to remember that
most people who will want to play your adventure will probably
have single sided disk drives and 512K of memory, so format your
disks single sided and try not to use more than about 290K for
your adventure. This will ensure the widest possible market.

CHAPTER SEVEN

THE DISK AND PRINTER
MENUS

So far, we have glossed over the printer and disk menus. This
chapter explains what the options in each menu do.

DISK MENU
The disk menu contains the options:

Encode and save link file
Format a disk

Load adventure data

Merge data section

Output data section
Runnable adventure program
Save adventure data

X - erase a file

? Disk information

as well as Esc to return to the main menu. We have already met

Load,Save, and Runnable. Format sets up a completely blank disk
so that you can save data on it, Output allows you to save a
single section of data on to the disk, such as just the verbs, or
just the pictures. Merge allows you to merge these saved sections
back into your adventure. This is useful for building up, say, a
library of pictures which can be merged in after an adventure is
written and tested. The X option erases a file from the disk, and
the Disk information option gives you an indication of how much
space is free on a disk.

The Encode option is used to create files to Ilink to in multi-
disk adventures. It would not be a good idea to let other people
just load these link files into the STAC and look at them, so
these files are encoded, using a sort of secret password known
only to the program. Only if you know the password and how it is
used can you get the original data back again. This is only an
analogy; you will not be able to load these files by typing in a
password, so I thought I would save everyone a lot of wasted time
and energy looking for it !

All of these use the file selector, which we have come across
before, but not all of its features have been mentioned.

At the top is the pathname, whiche indicates which area on the
disk in which to search for files. The name at the bottom is the
filename, the name of the file to search for. In the middle is
the directory window, which shows a list of files that are on the
disk in the area specified by the pathname. You can select one of
these by clicking on it, or enter a new filename by clicking on
the old filename at the bottom. On the left hand edge of the
directory window are a close box, and four arrows, up, down, fast
up and fast down. If there are more files on the disk than can
fit in the window, you can scroll up and down by clicking on the
arrows.

42

Sometimes you will find that a seemingly normal file will be
displayed with a small mark alongside it. This is not a file, but
a folder. It can contain more files and folders, and is used to
organize the disks better. To open a folder and see what is
inside, click on it. The close box closes it again. Note how the
pathname at the top changes when using folders. You can alter the
pathname if you like by clicking on it.

There are several disk selector buttons on the right hand side
of the file selector. These will only be of an§ use if you have
more than one disk drive, as they allow you to switch between
drives quickly and easily. Clicking on the disk selector button
for the disk you are already on will update the directory - if
you have just changed disks you should do this to see what is on
the new disk.

Finally, there are the OK and NO buttons. Clicking on OK will
confirm that you want to continue with what you are doing, and
clicking on NO will abandon it. Thus if you select the Delete
file option by accident, click on NO and nothing will happen. A
short cut for selecting a file and then clicking on OK is to
double-click on the file you want in the window. Also, the OK
button can be activated by pressing Enter or Return, and the NO
button by pressing Esc.

If you try to load a file which is obviously wrong - like
selecting a file called TIMES.FNT (a font file) when asked to
provide a name for an adventure file - the STAC will realize that

the file is the wrong type, and a box will appear in the middle
of the screen saying Invalid file format. To continue, press
Return. This prevents you loading incorrect types of data and
confusing the STAC !

PRINTER MENU

Many of you- will have printers, but those that don’t will still
find the printer menu useful. With it you can list any part of
the data to the screen or to the printer. You can also send it to
the serial port or down the midi lines if you like - this might
be useful for transferring data between computers.

To use the printer menu, press P from the main menu, then the
letter for the data area you want to use - R for room
descriptions, O for objects, etc. Then the program will ask
whether you want to send the output to the screen, the printer,
the RS-232 port, or the midi. Respond with either 5P,R or M.

You will then be asked to supply a range of items to be sent,
from one value to another. Thus you can list only messages 1 to
10, for example. The list will then appear on the screen or the
printer (or be sent to the serial port or the midi).

This is invaluable when you are writing adventures, as you can
print out all your messages and not have to swap between messages
and conditions all the time whilst looking for the right message
number.

In addition, option X allows you to set up the program to

recognize your printer’s needs. Some printers need to be sent a
linefeed signal to advance to the next line - others do it

43

themselves, hence the Auto-linefeed question. If your printer
does this itself, press Y for yes, otherwise N for no.

Many of the newer high quality printers are 24 pin dot matrix
printers, so the next questions asks 24 pin ? Again, answer Y.or
N. This is for the graphics printing - it uses a higher quality
screen dump for 24 pin printers. NOTE - the graphics screen dump
will only work if you have an Epson compatible printer. This is
true of most printers which can handle graphics.

The new printer dump routine is also patched into the normal
screen dump. This is activated by pressing Alternate and Help at
the same time. The contents of the entire screen are then sent to
the printer. If you do not have a printer and hit this option by
accident, be patient. It takes the computer nearly a minute to
realize that the printer is not attached and return to normal
operation. Also note that since this feature was inc.luded
primarily to print out pictures, it will not give a faithful
reproduction of text from a medium resolution (80 character)
screen, or a split mode screen when running an adventure.

The Printer width question is used to determine whether a
picture will fit across the paper or not (if not, then- it is
printed along the paper). Try experimenting with different
values for this - the higher the number, the wider the paper.
Since it is in printer units, it will vary from printer to
printer. I find a value of about 128 works well with an Epson
LQ800, which is what I use.

The linefeed length is again used for graphics, and represents
the distance between successive scans of the print head whilst
printing graphics. If you get white stripes across your pict\:lre,
try reducing it. Dark stripes suggest increasing this spacing.

Since control codes are widely used on screen, but can cause
havoc on a printer, they are translated on printing to a more
readable form. The abbreviations for each can be found in
appendix B, along with what the control characters actually do on
the screen.

144

CHAPTER EIGHT

THE FONT EDITOR

Using the STAC, it is possible to change the style in which text
is printed on the screen (though not to the printer). This is
known as the font, and the font editor can be called up from the
main menu with key F.

There are 256 characters in the character set, including
letters, numbers and punctuation. The first 32 are reserved, and
are not actually printed. These are known as control characters,
and cause different effects on the screen (see appendix B). The
other 224, however, are printable, and they can be redesigned by
you to add a personal touch to the adventure.

When you call up the font editor, the 256 characters are
displayed on the left, and an 8 by 8 grid on the right. There are
also three buttons at the bottom, marked Exit, Save and Load. By
the grid are four rectangles of colour, which are black, red,
white and blue.

You can draw in the grid using the mouse. Click on one of the
coloured rectangles (not white for the moment - it will not show
up...), and click in a square on the grid. It will be filled
with the colour you selected. This will allow you to construct
and change characters.

To see how a character is constructed, click on the character

you want using the IJeft mouse button. The grid will show a
magnified view of the character, which you can then edit by
selecting colours and clicking in the grid. This is easier to do
than to explain. The character will also be displayed life size
in the top left hand corner of the screen.

When you have finished redesigning the character, you can put it
back in the character set by moving the mouse over the character
you wish to replace, and clicking using the right mouse button.

You can redesign all the characters in the character set,
including the control characters. When you are satisfied with the
font, you can save it to disk. To do this, click on then SAVE
button. This will give you a file selector, in which you can
enter the name of the font in the normal way. In order to show up
on the file selector, font files should be followed by a ".FNT"
extension.

Loading fonts is just as easy. The font is then displayed ready
for editing. There are several font files on the disk in a folder
called "FONTS". If you open this up with the file selector, you
can select and load any of these for use in your adventure.

The EXIT button takes you back to the main menu, as does the Esc
key. The font you designed will now be used for all the printing
to the screen that the STAC does.

The UNDO button takes you back to the main menu, but restores
the previous font that you had, just in case you make a complete
mess.

Font Editor

UNDO

rstuvwxy
s A*YP®AaO000A)
s A*¥TYPEO0cAETOOD
Sl *¥T¥PAO0cATTOD
O I234YsE'1H9+$5 T4 ¥
mvaEEEBB
o1 Pl ADNDA

The Font Editor Screen

46

AK

23N e SRS - -

Ue

SAVE

LOAD

| EXIT

You may notice that the font is broadly divided into two
sections: the first half, which you can for the most part see on
the keyboard, and the second half, which you cannot. How do we
type in the characters in the second half ? This is relatively
straightforward. When typing in a message or a room description,
for instance, pressing the Insert key will let you use the second
half of the character set. If you press a key on the keyboard, it
will now return the character directly underneath it by 8 lines
on the character set (ie it adds 128 to the character code for
those of you who do a little programming). For a full list of
how to get all the characters see Appendix E.

To access control characters that also do things to the line you

are typing (like control-M which acts like return), press
Shift-Help and then the control character. Shift-Help means, in
effect, "put the next character into the line no matter what it
is". This is wuseful for inserting additional control characters
into messages etc. for special effects.

Successful fonts follow some general rules. Firstly, try to make
the letters look distinct from each other, or there is a danger
of the text becoming unreadable (try loading BLOCK.FNT to see
what I mean - all the letters look more or less the same). If
all the vertical lines are double width, then this makes the font
look darker and it is consequently more readable.

Don’t be tempted to use the whole 8 by 8 grid for a character -
if you do all the characters will butt up against one another and
the result will again be unreadable.

You can put special characters in the top half of the character
set since they can be typed in by pressing the Insert key. This
could be useful for, say, italics, or bold, or maybe double width
characters or monograms. You could even have mirror writing for
puzzles ! The possibilities are endless, and by using four
colours you can get some great effects.

CHAPTER NINE

SPECIAL: CONDITIONS AND
COMMANDS

SPECIAL CONDITIONS

The special conditions are a part of the STAC that can be loaded
with the @QSTART file and safely left alone. They control the
adventure’s responses to errors and other extraordinary
situations. A full list of the default conditions can be found in
Appendix D, but here 1 would like to show what each special
condition does, and how you can tailor the responses to your own
needs

There are 18 special conditions that are used by the system. You
can use the others by using the special word in conditions, and
they can be useful for often repeated sections in conditions.

Here are the first 18 special conditions.
1. Death

This condition is called when the user dies (ie when the death
word is executed in a condition). It should at the very least
exit the game, possibly giving a message as well.

2. Success

This is similar to 1, but is called when the player wins. Again,
it should at least exit the player from the game.

3. Quit

This should ask the player whether he really wants to quit or

not. If he answers yes, he should exit the game. Special
conditions will always return to where they were called from
unless they include wait, ok, newcom, or byebye, which will be
executed as normal,

4. Ok

This is called when the ok word is executed. It should print a
message "Okay", and wait for a new command.

5. Can’t get an object that is not here

This is called when the player attempts to get an object that is
not here. It should print a message to that effect, then either
wait for a new command, or scrap the rest of the commands on the
line and wait for the player to type a new one by using newcom.
In the first case, if the player had typed a whole string of
commands, then any after where he could not pick up the object
will be executed. In the second case it gives him a chance to
correct his mistake before continuing. This is a common thing to
do in situations that are errors.

6. Carrying too much to get object

Is similar to 5, and is handled in the same way.

48

7. Already got that object
Is again similar to 5.
8. Haven't got that object to drop.

This is called when you try to drop an object you do not have,
and is handled in much the same way as 5.

9. Dropall

This is what is actually executed when the STAC comes across a
dropall command. It should include a loop that goes through each
object that you are carrying and drops it, repeating until you
are carrying nothing. The default action also gives a list of
items dropped.

10. Getall

This is like dropall, cycling through all the objects in the
room and attempting to pick them up. It will stop if you try to
pick up too much.

11. You can’t

This is called when you have asked the system to do something it
does not recognize (ie it has gone through all the local and low
priority conditions and has not recognized anything). It should
Just print a message "You can’t" and then scrap the command line
with newcom. Again, similar to 5.

12. Pardon ?

This is called if you enter a command containing no verbs that
are recognized. Yet again, another one similar to 5.

13. What now ?

This is called when a prompt is required to tell the player he
is expected to give a command. The default also prints a status
line at the top of the screen showing where you are, your score,
and the number of moves taken.

14. Look

This is called when the Iook word is executed. It should at
least display the long description of the room you are in, and a
list of any objects that are there, or a message to show that it
is dark if marker 1 is set (ie it is actually dark) and marker
2 is reset (ie you do not have a lamp).

15. Describe room on entry

When moving from one room to another, you will want to be given

a description of the room you have just entered. This is what
this condition is for. The default action is to check if it has
been visited, and if so only print the short description,
otherwise to print the long description. The room is then marked
as having been visited. Again, if dark, a suitable message is
printed.

49

16. Strength reduced to below load

When using setstr, it is possible to set your strength to 1
whilst carrying a combined weight of 10. If this happens, this
condition 1is called. The default is to drop items one by one
until the amount you are carrying is less than or equal to your
strength.

17. Start up

This is called once, at the start of the adventure, and is used
to set up things. It is too specific to be included in QSTART,
but typically it will be used to set your strength, ask for your
name if necessary, set light or dark markers, and moves-in-the-
dark counters.

18. Load prompt

This is called if load cannot find the link file it needs on the
current disk. This condition should print a prompt to tell the
player to change disks, and then press a key. It should also wait
for the keypress !

COMMANDS

The commands that the player enters are processed by the STAC so
that they can be passed to the conditions in usable form. This
process is quite complex, but will allow you to see how a player
command is interpreted, and thus what sort of commands you can
use.

Let us take a very small vocabulary:

NOUNS VERBS ADVERBS
1 lamp 1 take 1 green
2 box 2 put 2 red
285 it 3 in
254 ,

and look at the player’s command
Take the lamp, put it in the green box

The STAC goes through the command one word at a time, checking
through the verb, noun and adverb tables, and filling in the
recognized numbers in verbl, nounl, noun2, adverbl and adverb2.
If it comes across an adverb with number 254 or 255, then it
stops and saves its position, having got a complete command.
Let’s see what happens:

Word Take the lamp) put
Verb? YES NO NO NO
Noun? ! NO YES NO
Adverb? : NO H YES

1] 1

Ll 1 1

verbl=1 ignore nounl=1 254 so end command
So we have: verbl = 1 TAKE
nounl = 1 LAMP

50

as our first command. Having dealt with this, we come back to the
next word in the line:

Word put Jit in the green
Verb? YES NO NO NO NO
Noun? H YES NO NO NO
Adverb? ' 1 YES NO YES

| H : H

verbl=1 nounl=255 advbl=3 ignore advb2=2
becomes 1
Word box
Verb? NO
Noun? YES
Adverb? !
noun2=2

Any occurrence of noun 255 (it) is immediately replaced by the
last noun referred to (in this case noun 1, the lamp).

Thus the command is: verbl = 2 PUT

nounl = 1 LAMP
noun2 = 2 BOX
advbl = 3 IN
advb2 = 2 GREEN

We then come to the end of the line, so processing stops and the
command is passed through to the conditions. Since there are no
more commands on this line, the next time through a new line will
be requested from the player.

The difference between adverbs with numbers 255 and those with
254 is a subtle one. In a command which was separated by a 254
adverb, if there is no verb in the command then the one from the
previous command is used. This allows such things as (assuming
adverb and had number 254)

get the lamp and the rat

since it preserves the get from one part to the next. Of course,
if there is a verb in the next part, the previous verb is
abandoned. It does, however, add a useful additional touch to the
command interpreter.

In addition to all this, a verb with number 255 is recognized as
an "again" feature, and recalls the relevant information about
the last command. Even if your last command was throw the green
pot at the monster, a verb 255 again will repeat it. This can be
very useful.

APPENDIX A

EDITING KEYS AND CONTROL
CHARACTERS

KEYS USED WHEN TYPING

If you make a mistake, or leave something out when typing a line
into the STAC, then the following keys will help you to correct
it. The cursor is a black rectangle which shows where your typing
will appear. If it is before something, then what you type will
be inserted, shuffling the rest of the text up rather than
overwriting it.

Key Action

Backspace Erase character to left of cursor

Delete Erase character under cursor

Arrow Keys Move cursor up,down,left,right if possible

Shift-Up Move to start of what you typed

Shift-Down Move to end of what you typed

Shift-Left Move to left hand screen edge

Shift-Right Move to right hand screen edge

Home Move to start of what you typed

Shift-Home Clear everything after cursor

Shift-Undo Clear everything you typed

Insert Toggle between first and second halves of
character set (press again to cancel)

Shift-Help Insert next character no matter what it is

CONTROL CHARACTERS FOR USE IN MESSAGES

These are accessed by holding down the Control key and then

pressing the letter key indicated. Note that some of these mimic
the actions of certain keys (these are given in Italic after the
description of the key), and should thus be preceded by pressing
Shift-Help before typing them in. Also, you can quite legally
include any of the characters marked '"ignored" if you like, but
as it says, they will be completely ignored. They will not even
leave a space.

Character Prints as Action taken

Cntrl-A [TAB4] Tab across by 4-character tab

Cntrl-B [CT-B] Ignored

Cntrl-C [CT-C] Ignored

Cntrl-D [CT-D] Ignored

Cntrl-E [BUZZ] Sound a buzz

Cntrl-F [BEEP] Sound a beep

Cntrl-G [PING] Sound a ping

Cntrl-H [LEFT] Move left one character
Backspace

Cntrl-I [RIGH] Move right one character
Tab

Cntrl-J [DOWN] Move down one character

Cntrl-K [UP] Move up one character

Cntrl-L [CLRS] Clear the screen

Shift-Home

52

Key
Cntrl-M

Cntrl-N
Cntrl-O
Cntrl-P
Cntrl-Q
Cntrl-R

Cntrl-S

Cntrl-T
Cntrl-U
Cntrl-V
Cntrl-w
Cntrl-X
Cntrl-Y
Cntrl-Z

Cntrl-[
Cntrl-\
Cntrl-]
Cntrl-_

Cntrl-?

Prints as
[CR]

[SAVE]
[REST]
[CT-P]
[CLRL]
[LARG]

[SMAL]

[TUNE]
[TEXT]
[STRO]
[STR1]
[INVS]
[NORM]
[TB10]

[ESC]
[CT-\]
[CT-]1]
[HOME]

[CT-?]

Action

Move to left edge of screen
Return/Enter

Save this cursor position

Move back to saved position

Ignored

Clear this line

Large window size enabled

The large window size covers the

entire screen

Small window enabled

The small window size covers the

area below the picture if there

is one.

Tune starts here

Tune ends here

Print string 0

Print string 1

Inverse on/off

Inverse off

Tab to 10 characters short of

right margin

Ignored Esc
Ignored
Ignored
Home cursor to top left corner
Home
Ignored
53

APPENDIX B
GLOSSARY OF TERMS

This section gives the meanings of some of the less common
phrases and words in the manual.

ADVENTURE UNIVERSE - is the setting for the adventure, and
includes all the Ilocations and objects that the player will visit
or use.

ADVENTURER - simply the person playing the adventure.
AUTHOR - the person who actually wrote the adventure.

BRUSH - on the screen, the shape you are drawing with. This need
not look anything like a "real" brush !

CHARACTER - any number, letter, piece of punctuation, or symbol
that the computer can display.

CHARACTER SET - the sum total of all the characters the computer
can display.

CHORD - playing more than one note at once (in music).

CLICK - to click on something, move the mouse over it and hit the
left-hand mouse button quickly.

COMMAND - anything the player types to get the adventure to do
something., Typical commands are "Go north" or "Get the gold".

COMMAND LINE - what the player types in. It may contain several
commands, separated by punctuation or words like and or then.

COMMAND INTERPRETER - the part of the STAC that extracts meaning
from the player’s commands. Also known as a '"parser". The STAC
parser can make sense of multi- part commands and complex actions
such as: "Get the screwdriver, the axe and the dog then hit the
log with the axe and examine the dog."

CONDITIONS - are the part of the adventure which make the
decisions. See chapter 3 for a full explanation.

CONNECTIONS - the means by which different rooms are connected to
each other.

CONTROL CHARACTER - is a character which is not printed
on the screen, but which instead controls some action on the
screen, such as clearing it or moving on to the next line. These
are for the most part typed by holding the Control key down and
typing a letter.

CURSOR - a small rectangle which shows where the next thing you
type will appear.

CURSOR KEYS - the four keys with arrows on to the right of the

main keyboard. They move the cursor in the direction of the arrow
on the key.

54

DEFAULT - the state something is in before you do anything to it.
The default message number, for instance, is one more than the
last one you used.

DOUBLE CLICK - to click twice very quickly.
ELLIPSE - a squashed circle; an oval.
EDIT - changing information about something is called editing.

ENTER - when asked to enter information, type the information and
then press either the Enter key or the Return key.

FILE - everything stored on a disk is in the form of files. Each
one stores a separate set of information, much like files in a
normal filing cabinet.

FILENAME - the name of a file on the disk. This consists of two
parts: a name and a type. The name can be up to 8 letters long,
and the type up to 3 letters. They are separated by a dot. It is
customary to give files that hold the same sort of information
the same type (also called its extension). An example is
SANSERIF.FNT , whose type of ".FNT" proclaims it as a font file.

FILE SELECTOR - is a useful tool for selecting files to save on
to disk, or to load from it. Rather than having to remember names
of files and type them in, the file selector allows you to pick
one from the disk using the mouse. It also handles opening and
closing folders, and changing disks.

FONT - when printing characters on the screen, the font specifies
exactly how they look.

FOLDER - files can be grouped together in folders for conven-
ience. Rather than having to look through a whole load of files
for the one you want, you can just open the relevant folder. All
the font files on the STAC disk come in a folder called FONTS to
keep them all together. See also "pathname".

GAC - short for Graphic Adventure Creator, an adventure writing
system for many 8-bit computers, upon which the STAC was based.
See also "STAC"

GRAPHICS - pictures, as opposed to text.

ICON - a small picture representing a function to be performed.
To "do" the function, click on the icon with the mouse. These are
used mostly in the graphic editor - see also chapter 4.

IMPORT - use a picture which has been produced using a different
program (either NEOCHROME™ or DEGAS™),

INTELLIGENCE - is generally the decision making property of an
adventure, rather than its ability to think. We are still a very
long way from a true "thinking" computer program.

INVENTORY - a list of objects, usually the ones you are carrying.
LINESTYLE - how a line is drawn. Examples are dotted, dashed,

continuous.

55

LOOP - a programming term for something which is done over and
over again. It is called a loop because on flowcharts (a
convenient programming aid consisting of little boxes connected
to each other with squiggly lines), the lines all join up in a
loop. Infinite loops just go round and round forever - for an
example of this see "LOOP".

MAGIC - a convenient cheat for letting the adventurer do
something very difficult (if not impossible).

OBJECTS - generally, anything in an adventure which you can pick
up and move.

OPERANDS - the pieces of information that are manipulated by
operators.
OPERATOR - (in conditions) is a word that does something to

operands. For example, in 1 + 2, the operands are 1 and 2, and
the operator is +, which simply adds them together.

PALETTE - the set of colours that you can use on the screen. You
can use 16 colours chosen from the 512 available on the ST.

PARSER - see "command interpreter".

PATHNAME - this specifies in which folder(s) a file may be found.
A pathname that looks like A:\FONTS\TIMES.FNT means 'file
TIMES.FNT in folder FONTS on disk A". See also "filename",
"folder".

PIXEL - the smallest dot you can produce on the screen.
PLAYER - the person who plays the adventure.

RANDOM - an action for which you do not know the outcome. The
action of rolling a dice provides a random number between 1 and
6.

RUBBER BAND - not a pop group ! A rubber band object is one that
can be stretched using the mouse until it is the proper shape.

SPLIT MODE SCREEN - the ST can display three screen modes,
usually referred to as high, medium, and low resolution. The STAC
allows a split screen so that you can have full colour low-
resolution pictures in the top half, and 80 character medium
resolution text in the bottom part of the screen, something which
is not usually possible.

STAC - short for the ST Adventure Creator.

STRING - a string is a sequence of characters (letters or
numbers). It may be up to 39 characters long. Here are some
examples of strings: "Hello", "99-64", "Aardvarks are not common

in Iceland".
TELEPORT - to move from point A to point B instantly without

going through any point in between. Star Trek and Larry Niven
fans will know all about teleporting.

56

TEMPO - how fast a piece of music is played. Most music by
Motorhead, for example, has a faster tempo than that favoured by
val Doonican.

TEXT - words and numbers, as opposed to graphics.

USER - the person using the STAC, as opposed to the adventurer.

VOCABULARY - the sum total of all the words that the adventure
game will respond to.

VOLUME - how loud a piece of music is played. Again, this might
merit another Motorhead / Val Doonican comparison.

57

APPENDIX C
CONTENTS OF QSTART FILE
The @QSTART file supplied .with the STAC contains many things
which are used in almost all adventures, no matter what the story

or the precise nature of the adventure.

Here is a list of exactly what you get when you load the QSTART
file, with additional comments in italics.

ADVERBS
254 , Adverbs with number 254/5 are taken to be
265 . separators between different commands on
2556 ? the same line.
255
254 and
255 then
LOW PRIORITY CONDITIONS

1 if verb "drop" and noun "all" then dropall wait
2 if verb "get" and noun "all" then getall wait

Get and drop all objects.
3 if verb "1" then look wait

Describe room when player types "look".
4 if verb "i" and notzer? cntobj with then message

9916 list with wait
Inventory when you are catrying something.
5 if verb "i" and zero? cntobj with then message 9916
message 9917 wait
Inventory when you are carrying nothing.
6 if verb "quit" then quit ok
¥ if verb "text" then text draw 0 ok
8 if verb "graphics" then pict draw pictof room ok
9 if verb "save" then save ok
10 if verb "load" then load look wait
11 if verb "split" then split 1f message 9932 wait

12 if verb "ramsave" then ramsave 1 ok

13 if verb "ramload" then ramload 1 look ok
MESSAGES

9900 You have died When the player dies

9901 Well done ! When the player wins

9902 You scored a total of
9903 points in

9904 moves. To show the score
9905 Okay Message printed for Ok.
9906 I can’'t see that ! Can’t find object to get.

9907 You are carrying too much already.

9908 Why? You've already got it.
When you try to get
something you already have.

9909 You don’t have that. Drop something you don’t
have.

58

MESSAGES ctd

9910 You can’t do that !
9911 Pardon ?7?7?7°?
9912 What now ?

9913 You can also see When listing objects in a
room.

9914 .

9915 Are you sure (Y/N) ? Ask when quitting

9916 You are carrying For inventory

9917 nothing.

9918 You feel weak, and stumble.
When strength reduced too
much to carry load.

9919 You drop For dropall

9920 taken. For getall

9921 You can’t examine that, I’m afraid.

9922 You see nothing special For examining things

9923 [SAVE][LARG][HOME][INVS][CLRL]
Move to top line, make it
black with white letters.

9924 [TB10] Move across to print score

9925 / Between score and turns

9926 [NORM][SMAL][REST] Go back to cursor position

9927 Dark in here, isn’t it? For when you enter a dark
room.

9928 It’s no use looking, it’s dark !
9929 You don’t have anything to drop.
9930 There’s nothing here to pick up.
9931

9932 Text size changed.

9933 Please insert disk containing

NOUNS
254 all
254 everything
266 it "it" must always be noun 255
255 them
SPECIAL CONDITIONS
1. Death

i 1f message 9900 1f
print "You have died"
2 message 9902 print counter 0 message 9903 print
turns message 9904 pause 5000 byebye
print score and number of turns, wait for
keypress, then end the game

2. Success
1 1f message 9901 1f
print "Well done"”
2 message 9902 print counter 0 message 9903 print
turns message 9904 pause 5000 byebye

59

SPECIAL CONDITIONS ctd

3. Quit
1 message 9915 if yesno then 1f message 9902 print
counter 0 message 9903 print turns message 9904
pause 5000 byebye
4. Ok
1 message 9905 wait
print "Okay", wait for new command

5. Get failed - object not here

1 message 9906 newcom
print "I can’t see that", scrap rest of command
line, wait for new command

6. Get failed - carrying too much
1 message 9907 newcom

7. Get failed - already got object
1 message 9908 newcom

8. Drop failed - not carrying object

il message 9909 newcom
9. Dropall
1 if zero? firstob with then message 9929 newcom
If not carrying anything, say so.
2 if firstob with then repeat 1f message 9919 itis

firstob with objsht firstob with drop firstob with
until zero? firstob with
A little complex, this one. Print "You drop ",
then describe the first object you have with
you, set "it" to refer to this object, and drop
it. Repeat until all objects have been dropped.

10. Getall
i if zero? firstob room then message 9930 newcom
2 if firstob room then repeat 1f caps objsht firstob

room itis firstob room message 9931 get firstob room

message 9920 until zero? firstob room
Similar to above. Describe object you are about
to pick up, then make "it" refer to it. Attempt
to get the object (this may fail if you are
carrying too much already).If it does not fail
then print "taken'", and repeat until there are
no objects left in the room.

11. You can’t !
1 message 9910 newcom

12. Pardon ??
1] message 9911 newcom

13. What now ?

3 1f message 9912
print "What now ?"
2 message 9923 descsht room message 9924 print counter

0 message 9925 print turns message 9926
print the status bar at the top of the screen.

60

SPECIAL CONDITIONS ctd

14. Look
1 if set? 1 and reset? 2 then message 9928 return
if it is dark and you have no source of 1light,
print "It’s dark" and return to where we were.
2 set 0 desclng room draw pictof room
otherwise print room description and picture if
any, and set marker 0 as confirmation of this.
3 if firstob room then message 9913 list room message
9914

if there are any objects here, list them

15. Describe room when entering it

1 i 1

] if set? 1 and reset? 2 then message 9927 return
test if it is dark as above

3 set 0

4 if visit? then descsht room draw pictof room else

desclng room draw pictof room
if this room has already been visited, use the
short description, otherwise use the long one.
15) visit
mark this room as having been visited
6 if firstob room then message 9913 list room message
9914
list any objects that are here

16. Strength reduced to below load

1 message 9918
print "You stumble"
2 repeat 1f message 9919 objsht firstob with drop

firstob with until stren? >= amount newcom
drop objects until the amount carried is less
than your strength.

17. Start of adventure
Not included - adventure start is very specific

18. Load prompt
1 1f message 9933 asslink 0 pause 5000

print "Please insert disk containing " then
link file name, then wait for keypress.

VERBS
255 a 9 1 2 s
255 again 10 list 14 save
6 d 15 load 2 south
6 down 9 look 17 split
8 drop 1n i3 ©
3 e 1 north 7 take
3 east 13 pictures 12 text
16 exam 11 quit 17 textsize
16 examine 18 ramload 5 u
7 get 19 ramsave 5 up
13 graphics 14 restore 4 w
1o i 18 rl 4 west
10 inventory 19 rs 12 words
61

APPENDIX D
CHARACTER KEY SEQUENCES

When using the Font Editor, it can be seen that there are
considerably more characters than are actually displayed on the
keyboard. How do you type these in ?

This generally requires use of the insert and shift-help keys
mentioned in appendix B. Here is a list of how to get all the
characters. Since they may change in appearance from font to
font, they are organized by row and column as they appear on the
font editor.

In order to compact the list, the following keys have been
abbreviated:

Control = Cnt - means "with" (eg ! is Shf-1)
Insert = Ins / means "then" (eg row 1 column
Shift-Help = Hlp 9 is Hlp/Backspace)
Shift = 8ht
Row Col Key sequence Row Col Key Sequence
1 1 Not available 3 4. #
1 Cnt-A 3 5 Shf-4
1 3 Cnt-B 3 6 Shf-5
1 4 Cnt-C 3 7 Shf-7
1 5 Cnt-D 3 8 .7
id 6 Cnt-E 3 9 Shf-9
1 7 Cnt-F 3 10 Shf-0
1 8 Cnt-G 3 11 Shf-8
i 9 Hlp/Backspace 8». 12 Shif-=
1 10 Cnt-I 2 43,
1y 11 Cnibed 3 14
1 12 Cnt-K 8 . 15 win
1 13 Hlp/Cnt-L 3 18 [/
1 14 Hlp/Return
1 15 Cnt-N 4 1. W0
1 16 Cnt-0 4 A |
4 8 2
2 1 Cnt-P 4 4 3
2 2 Cnt-Q 4 6 4
2 3 Cnt-R 4 6 6
2 4 Cnt-S 4 # B
2 5 Cnt-T 4 8 .7
2 6 Cnt-U 4 9" 8
2 7 Cnt-V 4 10 9
2 8 Cnt-W 4 11 S8Shf-;
2 9 Cnt-X 4 128 3
2 10 Cnt-Y 4 13 Shf-,
2 11 Cnt-2 4 14 .=
2 12 Eso 4 15 Shf-.
2 13 Cnt-\ 4 16 Shf-/
2 14 Cnt-]
2 15 Hlp/Home 5 1 Shf-’
2 16 Hlp/Cnt- -] 2 Shf-A
5 3 Shf-B
3 1 Space bar 5 4 Shf-C
3 2 Shift-1 5 5 Shf-D
3 3 Shift-2 5 6 Shf-E

62

Row Col Key sequence Row Col Key sequence
5 7 Shf-F 7 8 G
5 8 Shf-G 7 9 H
5 9 Shf-H Tl T
g 100 Shf-I 7 1 (R ¢
5 11 Shf-J T 12 K
5 12 Shf-K g 1R o
5 13 Shf-L T 3 M
5 14 Shf-M 7. 15 . N
5§ 16 Shf-N ¥ 168 g
g i6 Shf-0
8 1 B
6 1 Shf-P 8 2 R
6 2 Shf-Q 8 3 B
6 3 Shf-R 8 4 8
6 4 Shf-S 8 5 T
6 5 S8Shf-T 8 8
6 6 Shf-U 8 TtV
6 7 Shf-v 8 8 W
6 8 Shf-W 8 (PR 4
6 9 Shf-X 8 A0 %
G0 Shf-Y 8 Llweg
1] Shf-Z 8 12 Shf-[
g2 | 8 13 Shf-\
813\ 8 14 Shf-]
i | 8 15 Shf-#
6 15 Shf-6 8 16 Hlp-Delete
6 16 Shf- -
9 .. Insert, see row 1
f i R 10 .. Insert, see row 2
i 2 A 11 .. Insert, see row 3
7 3" B 12 .. Insert, see row 4
7 4. € 13 .. Insert, see row 5
7 8 D 14 .. Insert, see row 6
7 6 E 15 .. Insert, see row 7
i f i 16 .. Insert, see row 8

For rows 8 to 16, press Insert, then follow the key sequence 8
rows above (eg row 16 column 1 would be Insert then row 8 column
1 which is P giving the sequence Insert/P).

63

APPENDIX E
CONDITIONAIL: WORDS
For a full description of the words in each section, see also
the page numbers indicated.

DECISION MAKING [p9,24]

if...then...else Tests if a condition is true or
false. If true, performs action after
then, otherwise performs that after

else, if present.

PLAYER COMMANDS

[p4,9,21,22,25,35,50,64)

verb v Was verb v typed ?

noun n Was noun n typed ?

adverb a Was adverb a typed ?

nounl noun2 Return numbers of first and second
nouns typed by the player.

advbl advb2 Return numbers of first and second
adverbs typed.

verbl Return number of verb typed.

itis = Force "it" to refer to noun n.

ROOMS [p13-15,39

goto r Move player to room r and redescribe.

moveto r Move player to room r.

desclng r Print long description of room r.

descsht r Print short description of room r.

look Print description of this room, with
picture if present, using short
description if already visited.

draw p Draw picture number p.

pietof © Get picture number associated with
room r.

split Turn split mode screen on and off.

c colour xxx Change colour c¢ in bottom part of
screen to RGB value xxx.

c topcol xxx Change colour in top part of screen.

visit Mark this room as already visited.

visit? Has this room been visited before ?

room Get number of this room.

at » Is the player at room number r ?

COMMENTS [p21
3 \ Either of these signals that the rest

of the 1line is to be treated as a
comment and ignored.

64

get o
drop ©
getall
dropall

pto T
o swap O
bring o
find o

objlng o
objsht o

@ in r
carried o
here o
avail o

weight o
whereis o
stren?
amount

setstr e

firstob r

cntobj r

ist r
list with

set m
reset m
change m

set? m
reset? m

e setentr c

counter c
inc c
dec c

e

e
e

+count c

-count c
=count c

OBJECTS [p10-12,22-25,48-49]

Get object o.

Drop object o.

Get every object in this room.

Drop every object you are carrying.

Move object o to room r.
Swap object o and O.
Bring object o here.
Move player to object o.

Print long description of object o.
Print short description of object o.

Is object o in room r ?

Is object o being carried ?

Is object o in this room ?

Is object o available (ie. here or
being carried) ?

Return the weight of object o.

Return location of object o.

Return your current strength.

Return the total weight of everything
you are carrying.

Set player’s strength to e.

Return number of first object in room
number r.

Return the number of objects in room
number r.

List all objects in room r.

List all objects with you (being
carried).

MARKERS 15,38

Set marker m.

Reset marker m.

Change state of marker m (ie if it
was set before then reset it, and
vice versa).

Is marker m set ?
Is marker m reset ?

COUNTERS [pl6,24,38

Place value e in counter c.

Return value stored in counter c.

Add one to value of counter c.
Subtract one from counter c.

Add e to counter ¢ and put the value
back in the counter.

Subtract e from counter c.

Is the value e the same as the value
in counter c ?

65

t and T

&&
t op T

t N o

xor T

not t

™ o®omo
L I
sl les]

e mod E

O A UL

mo®mo®®oO0O O
vVoun

=

zero? e
pos? e
neg? e
notzer?
notpos?
notneg?

death
success

quit

byebye

save
load

o

COMBINATIONS [p23]

Are both t and T true ?

(Both same as and)
Is either t, or T, or both, true ?

(Both same as or)

Is either t, or T, but not both,
true?

(Both same as xor)

Is t false ?

(Same as not)

ARITHMETIC [pll

Return result of adding e to E.
Return result of subtracting e from E
Return result of multiplying e by E.
Return result of dividing e by E.
Note that this returns whole numbers
only. So 9 / 2 is 4, not 4.5

Returns the remainder when e is
divided by E. 9 mod 2 is 1.

COMPARISONS [pl11-12]

Is e less than E ?

Is e greater than E 7

Is e equal to E ?

Is e less than or equal to E ?
Is e greater than or equal to E ?
Is e not equal to E ?

Is e zero ? (e = 0)

Is e positive ? (e > 0)

Is e negative ? (e < 0)

Is e not zero ? (e <> 0)

Is e not positive ? (e <= 0)
Is e not negative ? (e >= 0)

LIFE and DEATH [p16,38,39,48]

Kill the player and stop the game.
End the game since the player has
succeeded.

Ask the player if he is sure he wants
to quit, and if yes, end the game.

Exit from the game immediately.

DISKS [p17,18,50

Save game position to disk.

Load a previously saved game

position.

66

ramsave n
ramload n

link m

asslink

message m

caps

get$ s
print$ s
edit$ s

value s
n number$ s

add$ S
copy$ S
swap$ S
mess$ s

Snonn

n cutst$ s

n cutend$ s
length$ s

c addchr$ s
c first$ s

c last$ s
ascii$ s
obey$ s
parse$ s

comm$ s

nnonnumn
v
“
w

w
v
"
“
[¢5]

DISKS (ctd.)

Save game position to memory slot n.
Load a previously ramsaved position.

Load and play an extension file. Note
that this will only actually work in
a runnable adventure. The filename to
load is put in message m.

Prints the filename of the expected
Link file.

MESSAGES and STRINGS [p18-21,36]

Print message m to the screen.

Make sure first character of next
message is a capital letter.

Get string s from the player.
Print string s to the screen.
Allow player to edit string s.

Get numeric value of string s.
Put numeric value n in string s.

Add string s on to end of string S.
Copy string s to string S.

Swap strings s and S.

Copy message m into string s.

Cut n characters off start of string
s.

Cut n characters off end of string s.
Return length of string s.

Add character c to end of string s.
Find first occurrence of character c
in string s.

Find last occurrence of character c.
Get character code of 1st character
of string s.

Obey string s as if the player typed
it in.

Fill in additional nouns, verbs and
adverbs from string s.

Put the rest of the command line into
string s.

Is string s equal to string S ?

Is string s less than string S ?

Is string s greater than string S ?
Is string s not equal to string S ?
Is string s less than or equal to
string S ?

Is string s greater than or equal to
string S ?

Print number e.

67

wait
ok

newcom

turns

false

true

yesno

repeat..until t

il
text
pict

e word n

connect v

random e
special

return

pause e

setamnt
setturn
setwith

cursor e

s

o o

MISCELLANEOUS

Wait for a new command. [pl0]

Print "Ok", wait for a new command
[pl10,48]
Ask player for new command line. All

commands not already done on the
current line are discarded. [p23]
Returns the number of turns since the
start of the game. [p21-23]

Returns the same result as a false
test. [p23]

Returns the same result as a true
test. [p23]

Waits for the user to press "Y',
which returns a true result, or "N",
which returns false. [p22]

Repeats conditions between repeat and
until until condition t is true.[p24]
Move printing on to a new line. [pl13]
Disable pictures. [pl4]
Enable pictures. [pl4]

Set word n to be equal to value e.

The value of n may be 1 (nounl), 2
(noun2), 3 (verbl), 5 (adverbl)
or 6 (adverb2). [p22]

Gives the number of the room which is
connected to this room by verb v.
[pl4]

Gives a random number between 1 and
e inclusive. [p21]

Executes special condition number s.
[p23,24]

Return early from special condition.
[p23]

Pause for e fiftieths of a second, or
until a key is pressed. [pl8,23]

Set amount to value of e. [p22]
Set turns to value of e. [p22]
Set with to value of e. [p22]

Sets the height of the text cursor
to e. e may be 0 to 7.

68

ERRORS

1. Number out of range

Occurs when you try to access counters, markers, or objects with
numbers greater than 511, and when you try to use nouns, verbs,
or adverbs with numbers greater than 255.

2. Internal error

will only happen if a very complex expression is being evaluated
and STAC runs out of space to store its results. This should
never happen, as very complex is really very complex !

3, Object not found
Occurs when you try to describe an object which does not exist.

4, Room not found
Occurs when you try to describe a room which does not exist.

5. Message not found
Occurs when you try to print a message which does not exist.

6. Break
Occurs when both shift keys are depressed at the same time whilst
executing the conditions.

7. Not a valid link file

Occurs when the file whose name was given to link is not actually
a previously saved link file. Also occurs when testing an
adventure - actually loading a link file would destroy all your
carefully typed adventure data !

8. No repeat for this until
Occurs when an until is found which does not have a matching
repeat before it.

DISK ERRORS

Several errors can occur whilst trying to access the disks. Some
of these are not obvious, so here is a list:

1. File not found
There is not a file with the requested name on the disk.

2. Pathname not found

You have tried to enter a folder that is not there. Typing a
pathname of "A:\FONTS\SANSERIF.FNT" effectively opens a folder
called FONTS. If there is no folder on the disk with that name,
then this error will occur.

3. Disk write protected
The disk you are trying to save to has its write protect tab
removed.

4. Disk full
There is no more room on the disk for the file that you are
trying to save.

The warning box for all these file errors can be cleared by

pressing a key.

69

APPENDIX F

ADVENTURE FLOWCHART

Startup [17]

[Describe room [15]

lAdd 1 to turns

g

This is a flowchart showing what goes on when you play an
adventure.

|-

Execute high priority

conditions
|

Print player’s
prompt [13]

[
Get next command
from the player
I

Check connection
table

yes

Execute local
conditions

Execute low priority

S

no

@ youiad

no

APPENDIX G

Ranges of numbers

Rooms: 1 to 9999

Messages: 1 to 9999
Pictures: 1 to 9999

Objects: 1 to 511

Special conditions: 1 to 255

Verbs: 1 to 255
Nouns: 1 to 255
Adverbs: 1 to 255

Markers: 0 to 511
Counters: 0 to 511

(which store -2,147,483,648

to +2,147,483,647)

Print "Okay"

[4]

[

conditions
@ e

no

@ yes

no

Print "You

can’t" [11] "Pa

Print
rdon" [1

2]

i

The numbers in [] brackets

are special

70

condition

Colours on screen: any 20 from 512
(16 in graphics screen, 4 in text)

Marker 0:
Marker 1:
Marker 2:

Maximum picture

size:

288 pixels

x 132 pixels vertically

Special Conditions

. Death
. Success

Quit
Ok

Can’t get object (not here)

Drop all

. Get all

. Print "You can’t"
. Print "Pardon ?"
. Print "What now?"
. Look

. Describe room on entry
. Strength reduced below load

Startup condition

. Load prompt

. Can’t get object (too heavy)
. Can’t get object (already got)
. Can’t drop object

Markers etc. used by STAC

Counter 0: Score.

Noun 255: It
Verb 255: Again

Adverb 254/255: separators

T

Set when room described.
Set means dark.
Set means lamp available.

HANDY REFERENCE SHEET

horizontally

INDEX
Item Page
Adventure Universeccociceneees SRsesessbeeansissiREsERRensARREUTIRIIRITRSIEEOSRIIOIOTRS 3
Adverbs ..ceieeceeenen 9,64,71
Again o 22,61
And,or,xor,not . SRR 66
Arithmetic ..o essuons sssipeissasnssene ORIV SRR SRR SRR RS R AR sseseasse 12566
Begin where ? R T S e awnasnasbaseding ssssuansavinas oitanured bsnssenioad 39
CHATACEOTrE «cosssssosssssonssssosssosnans deinasans sesosss RO, Ty e R L sassusees 45,58,88
Chords| issseesss 33
Colour palette .. 30
Combinations 66
Commands 50
Comparisons 11,12,21,23,66,67
CoNAITICNE ~ sedbecsossvasessrasrdes sedsduassesasose sssessseesneranss R DL o8 o) 8,64
..... high priority 37 local 38;
low priority 36,58;
special 48,59,70,71.
..... arithmetic 11,66; commands 9,64;
comments 21,64; disks 16,66;
markers/counters 15,65;
messages 12,67; objects 10,65;
pictures 14,64; rooms 13,64;
strings 18,67; testing 9,64;
.....other 21,68.
Connections ..esscesssss .. 4,5,14,68
Contents of package essansnsssavesansroshiashisediansinnratetieREesTor tl> 1
Control characters ..cccicececesnees e, Oy iy 45,58
Counters - conditional words 16,24,65
Counters - general .o PP AN P 38-40,65
DArk marker ..ssiccsssesrsessssssssss arsisneniTenAOIpaNes i Ra s sERe RIS ISRk D TS T 1
Decision making .. 9,24,64
Demonstpation | GiBK cisssisiimsssisrsisrssssissssrssarmsssssbrraissesissssensniniinssnensis 1
DBl NEIM wesussrnsecessihosroasssiasssartsanas ashindisinstsnstiaenaisivussssnnanones sesnsaseansl (0542
Disks 6,40-43,55
Drawing screen 28
Dropping ODJETTE " sitesncsassecarseivaissiiaoiotsnesanssssssseieamnonssng essssssasesses oo 10,25
BBUEDE | ecrrirsiininsssiioesistonsnsoniniebsssiiop sssssssusssts ssesasesace sesadsense sssneases « 37,39
Editing data .. 6,64,68
Encode > . 18,50,61
Equipment * s . seesssrerisersastsastsrsesesrsesesesesasases eees 1
75 14 0) of < B R N wses 120540,57
Examine objects ..iciiien. A e sessne e RoReRNeEs ssivesuRTEIRbEeY 37,39
Files OSSR AR SRS AR AEEREERTA SO CARIREENS SIURANEINO S SAP SRR SRS AR AREIHA s os cesininiiatie . 43
File selector we 6,42
Flowchart .. 70
Folder . 43
TIORIREL Svvnssnacscalbuness sormonshansRARsaases s sis it snsserira it snsnnsssoses cssnsinsstsansiiatissusrns 45
Font editor 45,46
Format disk sseessssereninssvesbidiisveisiivessiiioesssinssssins yekEen ey 42

72

Get ODJECLB ticvererinssssissnanincnas T) SEaiaTEs ceessscesesEsissNsRus U RRF RSO EERD ovs oo 0,20
65

Getall

Glossary - ensanansy -
GraphiCs .ceeeecee cesranes seesesnnetnnesaians ceeresseinnne, seerestecsensensnsnes ceseeee 14,27
Help SCreen e

High priority conditions ..ceeeeeee

If-then-else
Importing pictures ..

s

Initialization sasknig 30,50,51
Inventory 13
IE) 51
TEIR sessssecsssssssascesse shssssasisenneensan eossusnes ssssserpasenisaraling ssssosesesesasansssans 64
KEYE - eveersesrarantnennans sesesses teesesassnsansesaases T 58,68
LF (line feed) ..cccuee. e saxersined SaeshessnsessaneinuaP RS exenes w BB
Life and death - conditional WOrdS ...ccceeccesseesssessessessesssssonssasnes 16,21,23,66

Life and death - general ... 38 39,48,59,60,66

Light 5,37,38,71
Lighting a lamp .. G e 53
Link files e 218,67
Load adventure " A . « 40
Load game position ... 16
Loading screen S e 1as connss . 39
Loading STAC Rpram———— —— Y . el mgli
Local conditions o 38
IERDE c.ccoceceonnes 24,40,56,68
Low priority conditions R P Ty T e e Y TP Fivosrasavememstnes 3OS OH
REEOEINON. «cooeocseocnssanscsrnsansasnassnoes i sses B
Markers - conditional words 15,26,65
Markers - general ...c.cueue iadeannsnsisanase T (U o e «ees 5,38-40,65,71
Messages - conditional words 12,13,18-21,67
Messages - general . sessssavsesIaLsESI ORISR ER seessensenssessessesasssese 34,63,56,58,67
MiStakes .ccecesceessceces csesgarsve LB
IRIRTES TSR S v o suniissonsnstnsnssvassssvnincsionsnnpsnnvasisnssnassonsrsecons sesessasasensasansanansas w32
Nesting sssanseseseasens evssansvsrsssassnaseas sasasvese soeransARasEapy sescsscesscess 24
Newcom seses B8
Nouns 9,65,71
BIOIMBBUINTE sssessssiaisssisiiirsssisssassossesarssinsessasisessiavessnvessrnasssnissonons waw 28
Objects — conditional WOrdsccccceceeereecessosaenes ot 4,5,10-12,14,22-25,64
Objects - general ...cccceevnens .. 3,34,37,39,40,48-50,60,61,64
EKAINC L oo vssovassronsns seesssssessnsesensasess 10,48,68
MR cvcrisissssassins ST P = SRS RS SsesR AT ssinseunase - OB
Palette csssdianariusdasns abvaaoRddussvaesnsens asssnesansessatessTes sesssssasassvessssses 30
Pause 23,68
Pardon 49,60
Pictures 14,27
BIoE cocee . . . oves S
PEINEOP scseacereenvsnns . 43
Program i o . seseesapeasaEs S PP P |
Purpose of adventurecececeeeeen o 3

Questioning the player SRS R —— siscsmsanaaavaeresiite - 21
Quick adventure A 3
Quick start file 6,16,35,48,58

Ranges of numberscccciiiiicninennnne PP SRR e AEEAAASE wensaseusaniwalil
Reference sheetcccvvveieenns TEENE LR EE se

Repeat-until .vivinsssvevsrsssssssnsssineoas

Return cecesrnsssaverssssvess

Rooms — conditional Words escssssssssesicssiscsvsssssnssansss

Rooms - general . R 34,38,39,49,56,61,65
Royalties .iieeerenes ERERR TS aTere — asvsenhessad e 41
Runnable adventure program 40,41
Save adventure arsasvavetinatnite SReessaiaesn iR eR P e R — . 40
Save game position 17,18,21,25,26,66
BIERIB" cicnsiineaisnssinvusinesvenssessshessassorssstossssresearenssressosssessssnsaniuns cispsesensnie 33
SCOYINE cecsnsvassssoscsacss 36,37
Screen display ... vaest - D&
Screen dump .. vees PSRRI NSRRI) 44
Separators .cesessess R P 50,51,58,71
Short cuts ' susesssesicses it Absassves | 2O
Special conditions 48,65,70,71
Starting the adventure 39,40
Strings - conditional words .. 12,13,18-21,67
Strings = general ' (liisissviicsisrisintcssssiassessascans . 34,53,56,58,67

Testing'' iiessessisdorvarstses Wrshsevavenrre O T 11 i1
TexXt ccceeccccccens
Tricks and tips .

TUPBE 'COUNLEr wiisasaciisssssncsnssssnsessovesense s E e R
42 o (S O R o R SR PR T PP e O | 9,67,71
Vocabulary - conditional words . v 4,9,21,22,25,64
Vocabulary - general ... 34-37,39,40,48-50,58-61,64,71
WAkt e 10,48,68
Wearing things ... ssasssveny 2D
WhHat " oW N T L S S AT dsdadesies seasdanensvene BRPoT T weese 49,60
Yes and N0 cicsesevescessessrssene iessesoRvuEe s eSS cessrsasnianaeenees 22,68
YOu' “UAntY Clilani s ins s i anes R een T L e 49,60

74

O‘ © 1987 INCENTIVE SOFTWARE LIMITED, ZEPHYR ONE,
CALLEVA PARK, ALDERMASTON, BERKSHIRE RG74Qw.

