
fiotcbooh

Essays on t he use of :

The Professional Adventure Writer

A graphic adventure writing system for the Sinclair
Spectrum computers.

(c) 1986/90 Gilsoft.
Program: T . J.Gilberts, G.Yeandle and P.Wade

Graphics: D. Peeke, K.Maddocks and A.Williams
Manuals : T.J.Gilberts

All Rights reserved. No part of this publication may be copied,
loaned, hired or reproduced in any form whatsoever including
electronic retrieval systems without the prior written consent of
the authors and Gilsoft.

The above notice does not apply to the 'run time ' routines
appended to, and which form a part of, a saved game which you are
free to distribute any way you wish in that form. All we would
reques t is that you credit the use of the Professional Adventure
Writer somewhere within the game.

2

Acknowl.edgement

Thanks to Howard and Pam for their
forbearance. Phil. for his 'comments',
Graeme for his ideas, Dicon et al. for the
graphics and al.l. our customers for their

support and suggestions .

Contents

Whats al.l. this then

PAW Features

Contents

Page 5

Page 6

These discuss i n greater detail a number of importa nt
aspects of the PAW system which must be dealt with as
a whole.

The Parser Page 6

How it works and the way it forms the LS.

Objects Page B

Important aspects including ' ' and containers .

Screen Output Page 9

Compound messaging explained .

Wordwrap Page 10

Beware for hidden monsters dwell. here ...

The input line Page 10

Spectrum Specifics Page 11

A number of items which deal with the implimentation
of PAW on the Spectrum.

128K Considerations

This deals with the Page nature
database, when to change pages etc.

Colour Boundaries

The inescapable problem of colour
graphics has a number of solutions.

Flash and Bright

Character sets

Many people seem to suffer problems
concepts, here are some pointers . ..

Printers

Page 11

of a PAW

Page 11

clash in

Page 12

Page 13

with the

Page 14

A discussion of the use of external printers.

3

4

Contents

The RAMPRINT interface Page 15"

EXTERN and Loading screens Page 16

More on the workings of EXTERN and BASIC loader
program writing.

Common game features Page 18

Several features are found in most adventures . These
short extracts give the method required to impliment
them with PAW.

Light and Dark Page 18

Time Page 18

Exit lists Page 20

Secret exits Page 21

Examine objects Page 22

Invisible objects Page 22

Password protection Page 22

Multi-Part adventures Page 23

Comparing flags Page 24

PSI's revisited Page 25

PSI's are little more than a collection of process
tables and flags. But they can be made to do a great
variety of things.

Sanec created

Better directions

Following

Fighting

Multi-parsed commands for PSI's

Selling your games

Some notes to help those intending to
work .

sell

Page 25

Page 27

Page 27

Page 28

Page JO

Page 40

their

Overview

Overview

Two of the greatest problems with any programming language, and
indeed we must consider PAW as such, are:

i) Gaining an insight into WHY a particular feature was included
in the language, and what possible use it might have .

ii) Concieving the method necessary to impliment a wanted
function with the language.

The easiest
contains a
related to
the system.

way to solve these problems is by example . This book
series of notes and essays on a variety of topics

PAW which give useful examples of the functioning of

Some contain details that are not provided elsewhere in the
manuals of PAW, purely because they relate to a number of
features taken together. Thus there was no logical way of placing
them in the other manuals.

Some are detailed
specific function,
approach to take.

descriptions
while others

on the implimentation of a
a general guide as to the

Several of the sections herin have arisen in response to direct
questions from other owners of PAW over the years. We hope it is
of use ...

The level of expertise assumed in each section varies, so you
will find it far more useful to ' dip' into this book to read
about topics that interest (or puzzle!) you. As opposed to
reading it from start to finish.

5

PAW Features

The Parser

The parser works by scanning an input line (up to 125 characters)
for words which are in the vocabulary, extracting 'Phrases' which
it can turn into Logical sentences.

When a phrase has been extracted, the Response and Connections
tables are scanned to see if the Logical Sentence is recognised.
If not then system message 8 ("I can't do that") or system
message 7 ("I can't go in that direction") will be displayed
depending on the Verb value. i . e. if less than 14 then system
message 7 will be used. Then a new text input is requested.

A new text input will also be requested if an action fails in
some way (e.g. an object too heavy) or if the writer forces it
with a NEWTEXT action. The results might otherwise be
catastrophic for the player. e.g. GET AXE AND ATTACK TROLL, if
you don't have the axe you wouldn't really want to tackle the
Troll!

If the LS is successfully executed then another phrase is
extracted or new text requested if there is no more text in the
buffer.

Phrases are separated by conjugations ("AND" & "THEN" usually)
and by any punctuation.

A Pronoun ("IT" usually) can be used
Noun/Adjective used in the previous Phrase -
separate input . Nouns with word values less
Nouns and will not affect the Pronoun.

The Logical Sentence format is as follows:-

to refer to the
even if this was a
than 50 are Proper

(Adverb)Verb(Adjectivel(Nounl))(preposition)(Adjective2(Noun2))

where bracketed types are optional. i.e. the minimum phrase is a
Verb (or a Conversion Noun - which is a Noun with a word value
<20 - which if no Verb is found in a phrase will be converted
into a Verb e.g. NORTH). If the verb is omitted then the LS will
assume the previously used verb is required . i.e. GET SWORD AND
SHIELD will work correctly! - the pronoun will be the first
object in a list like this, SWORD in the example .

Note that the phrase does not strictly have to be typed in by the
player in this format . As an example:

GET THE SMALL SWORD QUICKLY
QUICKLY GET THE SMALL SWORD
QUICKLY THE SMALL SWORD GET

are all equivalent phrases producing the same LS. Although the
third version is rather dubious English .

6

PAW Features

A true sentence could be: -

GET ALL. OPEN THE DOOR AND GO SOUTH THEN GET THE BUCKET AND
LOOK IN IT.

which will become five LS's:-

GET ALL
OPEN DOOR
SOUTH
GET BUCKET
LOOK BUCKET

(because THE is not in the vocabulary)
(because GO is not in the vocabulary)

(from IT) IN (preposition)

Note that DOALL will not generate the object described by
Noun(Adjective)2 of the Logical sentence. This provides a simple
method of implementing EXCEPT . e.g. GET ALL EXCEPT THE FISH , it
has the side effect of not allowing PUT ALL EXCEPT THE FISH IN
THE BUCKET, as this has three nouns!

The main parser also stores the address of any string - section
of the phrase enclosed in quotes - when scanning for the LS . This
is the text examined by the PARSE CondAct.

One or two subtle changes have taken place in the string handling
section of the parser from Version A16 onwards. These are
designed to provide a facility for multiple commands to be given
to PSI's, a facility suggested by Gerald Kellett. The three
changes are as follows, and although they may not seem very major
the logic changes they represent could affect some games if you
weren't aware of them:

1/ The PARSE CondAct now maintains a 'current position' within
the string in the current logical sentence. Thus a second PARSE
CondAct will continue from where the last left off. Previously a
subsequent PARSE would have given the same logical sentence as
the first. Thus SAY TO PSI "GET SWORD AND CLEAN IT" can now be
made to work with some processing as described in the section on
PSI's.

2/ The PARSE action does not now affect the 'command line
empty/valid' flag - the one set by NEWTEXT . This means that a
statement such as; SAY TO PSI "HGGHHG" . GET SWORD - will now
continue on to do the GET SWORD action. Prior to this version the
NEWTEXT flag would have been set automatically . This was changed
to allow multi-parsing to find the last command in a string
without always setting the flag. You will thus need to add a
NEWTEXT action to old games just after the PARSE CondAct - which
is where processing goes if the string was invalid or empty _ if
the games are to operate identically with the new paws.

3/ The current Verb and Adverb are not cleared (flags 33 and 36
to 255) when a string is parsed (i .e . the PARSE action). This
means that if a Verb (or Conversion Noun) i s omitted from the

7

PAW Features

first phrase in the string then the current verb will be the one
from the phrase which triggered the PARSE (usually SAY or TALK!·
This is a minor change which means that the current Verb is
maintained when the string is multi-parsed. I.e. SAY TO PSI "GET
SWORD AND SHIELD" will now work with the processing shown below.

Flag SB wasn't used in earlier versions of PAW. Now if you set
this flag to 128, in a Process table, PAW will start to match
words. rt normally doesn't do so except in Response. This allows
the multi-parse facility to provide actions for a PSI during
Process 2. rt will also have other uses we are sure •..

The effect is cancelled next time Process 1 or 2 are carried out
- by PAW subtracted 128 from the flag. This ensures that Process
1 and 2 act as normal until specifically told to change. You can
of course cancel the effect yourself by setting the flag back to
zero.

* * * * * *
Objects

Underlines in text will be converted during gameplay into a
description of the last object referenced by GET,DROP,DESTROY
etc. This is mainly to deal with the fact that GET,DROP etc
report their success (or failure!) but can be used usefully for
examining objects and other automatic reports.

Flag 53 is used to control the way objects are displayed when
the LISTOBJ and LISTAT actions are used. If the flag is set to 64
(i.e. Bit 6 is set) then objects will be listed without newlines
between them, forming a valid English sentence - compound
listing.

The formats are as follows:

SM53 ("nothing.") - can only occur wi th LISTAT
object SM48(" . "l
object SM47(" and ") object SM48(" . ")
object SM46(", ") object SM47(" and") object SM48(" . "l

In addition, Bit 7 of flag 53 will be set (i.e. flag will be
greater than 127) if any objects were printed. This allows you to
determine whether or not a NEWLINE is required to reset colours .
A LISTAT action will usually be preceded by a message .

The description of object is constructed from the full
description given in the object text table . The preferred format
for an object description is:

indefinite.article (adjective) noun . extra text

where; the indefinite article is "A" or adjectives "An" or

8

PAW Features

"Some". The Adjective and the Noun should have a lower case
letter e.g . 'A small key', 'some sand' or 'An orange. Rather
mouldy' . PAW extracts a description of the object in two ways:

1/ For GET, DROP etc (i.e. "_")the indefinite article is
skipped and the description printed upto (but not including)
the first full stop. e.g. "I now have the small key . ".
2/ For a compound list of objects the indefinite article is
forced to start with a lower case letter and the description
printed upto (but not including) the first full stop. e.g.
"In the bag is a small key." .

Obviously if you don't use underline or compound listings, then
you are free to describe objects any way you like.

Important : If an object is to be a container; there must be an
unused location with the same number for PAW to use as the
' inside'! i.e. Object objno . 1 would need Location locno . 1 - Not
forgetting to mark it as a container ("C") on object weight! This
is the major cause of problems with objects as containers.

* * * * * *
Screen Output

Character sets are selected in text by selecting a colour 0-5
then a single DELETE to generate ESCCs 0-5, and will only take
effect if a corresponding set has been inserted.

ESCC 7 is a true newline (but does not reset colours as it is
part of a message) .

ESCC 6 works as a TAB but should be used with care as it will
often be suppressed by the text formatter when printing.

Colours and character sets selected within text
force until a NEWLINE action. e.g. To print the
carried by the player (held in flag 100 say);
contains a RED PAPER control code then an entry
a Process table) of:-

will stay in
number of coins
If message 1

in Response (or

COINS MES 1 ;" <RED>You are carrying"
PRINT 100
MESSAGE 2
DONE

; " coins . "

will result in the entire message being printed in red . This is
called a compound message and can be used successfully to create
neat displays.

9

PAW Features

Beware the wordrap, for hidden monsters dwell there ..

Wordwrap can cause problems with screen output in four situations
if you are not careful:

1/ SM14 ("Goodbye ... ") must end in a Space, control code or newline
(as in the start database), or the wordwrap system will never
print it!

2/ A similar thing applies for SM16 the ANYKEY message. The last
word will not be printed until after the key has been pressed
otherwise .

3/ If PAUSE is used to control the speed of text output, you must
ensure that a word is not left unprinted. This is automatic if
you only use PAUSE after a MESSAGE or NEWLINE action (which
print a newline and thus the current word under consideration
for wordwrap). Or after a MES which ends in control code .
Remember that SCORE and TURNS will suffer the same fate as they
are effectively a combination of PRINT and MES actions.

4/ If you use different PAPER colours in text which you rely on the
wordwrapping to deal with . Because the change of paper is not
wordwrapped, but output immediatly, the word which follows may
not fit on the line and the entire end of that line will be a
block of the new paper colour .

* * * * *
Input line

On PAW the state of the players input is controled by the colours
in force at the end of SM34 (the cursor) as stated on page 42
(Note 4.) . What might not be clear is that because the codes
which select a character set (ESCC 0-5) are treated like colour
control codes by PAW, they also stay in force . This allows the
players input to be in any character set you want!

10

Spectrum Specifics

128K Considerations

When loaded, only page 0 is in use and has about 25500 bytes
spare. Pages 1, 3, 4, 6 & 7 are unused but can hold 16K each .

Message & Location text, Connections, Graphics & Default Colours
can use pages 1-7, all the other tables only use page 0. All
table entries for a location will be held within the same page.

When a location text is inserted null entries are made in the
Connection, Graphic & Default Colour tables for that location.
The I option on the Location Text menu always inserts in the
highest used page. Option B on that menu is used to begin a new
page i.e. it inserts on the next page. You have to decide when
to use B to start a new page but we would suggest that you use
the compressor to gain all memory available before starting
another page as you cannot insert extra messages etc onto a page
once a new one has been started - only amend existing entries.

The start database supplied has location 0 on page 0 and you will
need to consider whether location 1 should be on a new page
bearing in mind that all the other tables can only use page 0 . We
would advise all messages and locations are on pages 1 and up, as
page O can soon become filled with vocabulary etc.

A similar thing applies to the message text table; I inserts · on
the highest selected page, B begins another page if it has been
initialised by putting a location on it!

If you want your game to run on a 48K spectrum then you must
use any page other than 0.

* * * * * *
Colour Boundaries

Probably one of the most difficult aspects of using graphics
the Spectrum is the problem of the attribute colour system .

This essentially means that only two colours
one Bx8 pixel group. The areas are shown by
the graphics editor. The two colours are the
colours of reset and set pixels respectively.
can be any of eight values for each 8x8 pixel

can be used in
the GRID option
PAPER and INK,

Both Paper and
group .

not

on

any
in

the
Ink

The fill and shade routines fill in a defined area with a pattern
of set and reset pixels . So if you use different INK and/or PAPER
colours for two adjacent fills or shades, you will get a coarse
stepping effect. This is due to the colours for the second fill
affecting pixels in the groups which were set by the first.

11

Spectrum Specifics

This effect can be overcome in one of four main ways:

1/ Ignore it! This system is used on some pictures in the TEWK
game. The effect is minimised by not having shaded or filled
areas directly adjacent to each other.

2/ Use shade fully. The shade system can be used along with just
two colours to create very effective pictures using varying
densities of shade.

3/ Careful positioning as used in the tutorial manual. All areas
are defined on exact attribute boundaries. This has the effect of
creating very cubist pictures.

4/ Alternate colour. This allows two areas of solid colour (not
shades) to be adjacent to each other. It sounds complicated but
in principle is fairly straightforward: The diagram shows this
far more simply than reams of text:

The outlines of area A and B are drawn . Area A is filled using
an INK of the first colour required. Area B is filled using an
INK of the second colour required. The block command is used on
the rectangle (C) with the PAPER set to be the second colour
required and an INK of 8. This leaves area A and B unchanged.
The colouring of the PAPER makes the join look continuous .

* * * * * *
Flash and Bright

In order to obtain Flash and Bright print codes on the Spectrum:

From EXTENDED MODE:

12

8 gives normal brightness .
9 gives bright.
CAPS SHIFT &. 8 gives no flash.
CAPS SHIFT & 9 gives flashing .

Spectrum Specifics

Character sets

Let's settle this FONTS/CHARACTER SET/UDGs/TYPEFACE lark once and
for all! The idea comes down essentially to redefining what
those 8x8 pixel blobs the Spectrum calls characters look like on
screen.

Normally the Spectrum uses a table of information contained in
its ROM to work out what the 96 characters from Space (Code 32)
to Copyright (Code 127) look like . This takes 8 bytes per
character thus using 8*96 = 768 bytes . It is possible to make the
Spectrum look anywhere for this information by changing the
system variable CHADD to point 256 bytes below the 768 bytes of
data for the character set (256 bytes below? Well that saves
having to subtract 32 from the character number when it looks up
the data i.e. 32*8 = 2561).

PAW takes care of CHADD for you when you select a new set using
Background colours (having loaded it into a previously inserted
space.) .

To reiterate the method to insert a set is: Use insert (I) to
insert space for a new character set - if neccessary. Then Load
(L) followed by the set number from 1 to 5 to obtain the filename
prompt. You may type your filename with or without the copyright
symbol as PAW adds it if needed!

With a blank database the Insert option will insert the 768 bytes
of space in the database required for character set 1 (subsequent
Inserts will insert 768 bytes for character set positions 2,3,4
and 5) . You can then use [L 1] to load the character set by
typing in the appropriate name at the character set prompt. After
the required Inserts, L 2, L) etc will load that set as well.
The character sets currently loaded are saved to tape whenever
you save the database.

The character sets on side 2 are designed so that you select the
set you require when you start writing your game (or during the
development) . These are loaded as described above.

You can use ANY previously defined set with PAW as long as it is
in the form of a 768 byte code block (at any address as PAW loads
it into a suitable place). The trick is to ensure that the last
(i.e. Tenth) character position contains a copyright symbol
(EXTENDED MOOE, SYMBOL SHIFT & P), it is also useful to make the
name capitals (upper case) as this is the default mode when PAW
requests a filename. Then simply follow the procedure for
loading a set into PAW.

13

Spectrum Specifics

PAW and printers

PAW prints to the printer using channel /13 (usually "P").

Should this be a ZX thermal printer (or the Alphacom equivalent)
then all printout is directed to the required ROH routines. The
Thermal printers will only work in 48K mode on a 128K spectrum
and will print exactly what is on screen including new character
sets and so on. The "C" option on the characters and graphics
menus will COPY the screen as normal.

on a 128K spectrum the printer channel defaults to the RS232
port. On the +3 the printer port can be either the Centronics or
the RS232. Just use the relevent FORMAT command before loading
PAW. If you have Interface 1, it is possible to use the RS232 to
print to a printer by opening the "t" channel with the command
'OPEN #3,"t"' before loading the PAW program.

All printout is directed through the port having filtered the
character set thus:

o - 31 are suppressed except for 7 & 13 which print a CR (13) and
6 (TAB) which prints as a space.
32 - 127 are printed as normal.
128 - 162 are printed as a question mark("?").
163 and 164 are expanded to be the keywords PLAY & SPECTRUM .
165 - 255 are expanded either to the standard keywords in an
uncompressed database, or to the correct letter groupings in a
compressed one.

In general it should be possible to use any printer interface
which redirects channel /13 correctly - with one proviso; it does
not mind having its output address redirected. Failing that if
you are nifty with the old m/c you can write a specific printer
driver (one for the RAMPRINT interface is given below. PAW prints
an address when it loads called PRTADD (normally 29587) . This
gives the address of the vectors within PAW for the printer
system defined as follows (char is in A):

PR TADD
COPVEC
PRTRET

DEFW PRTRET
JP DOCOPY
RET

;Address of character output
;Make this your screen copy
;Put your driver here •.

There are only 48 bytes available for this code, but this should
be sufficient for some simple OUTs. Save your driver code from
the correct address with a filename with character position 10
set to "A" along with a file of one byte (at address O?) with the
same name ending in "B". You must redirect channel 113 (to
anything) to fool PAW that there is a non thermal printer
connected before you load it. Then use the Load database option
from the main menu to load your driver (PAW thinks it's a
database and loads both files, one of which is your driver).

Spectrum Specifics

The RAMPRINT interface

After investigation it would appear that several of the tables,
(notably the System messages) do not print correctly with the
RAMPRINT interface. So the only solution appears to be a printer
driver. The listings below save a printer driver suitable for any
A17 PAW (with PRTADD at 29587) .

Thes.e create a machine code program which address the interface
directly. Thus the values in the "(c)SET" command will have no
effect. This is the reason there are two programs. One creates a
driver which assumes the switches in your printer are set to do a
newline on carriage return. This driver is called "RP" . The other
saves a driver, called "RPNL", which sends a code 10 (NL,newline)
for every carriage return (13,CR). Basically if you find that the
printer keeps printing all the characters on the same line then
use the RPNL driver - or change the switches in your printer .
Conversely if there is a blank line between every line of text
then use the "RP" driver!

You must type in the programs and save a copy somewhere . Now with
a clean blank tape run the program and allow it to save the
driver (there are two files so you must press enter twice). We
advise you to use a new cassette and save the driver (or several
copies if you wish) at the start. This is because it must be
loaded every time you load PAW .

The process is simple and can be carried out even if there is a
database or game already in memory. Select the Load Database (J)
option from the main menu and type the name of the driver you
wish to load; "RP" or "RPNL" . Although you are using the Load
Database option you will not affect the database in memory . It
merely loads the driver into the correct position. Now all the
LPRINT options will work as expected.

Due to space restrictions the COPY command on graphics and
characters will not work with the Ramprint interface from PAW.
You can of course Dump the picture to cassette and then load it
using BASIC to do the COPY.

RP

10 CLEAR 29591
20 LET a=29592: LET 1=0
30 READ n: IF n=-1 THEN GO TO SO
40 POKE a,n: LET a=a+l: LET 1=1+1: GO TO 30
SO SAVE "RP A"CODE 29S92,l: SAVE "RP B"CODE 1,1:STOP

100 DATA 245,245,219,S9,230,1,32,250,241,211,59,62,1,211,
123,62,0,211,123,241 ,201,-1

15

Spectrum Specifics

RPNL

10
20
30
40
so

100

CLEAR 29591
LET a = 29592: LET 1=0
READ n: IF n=-1 THEN GO TO SO
POKE a,n: LET a=a+l: LET 1=1+1: GO TO 30
SAVE " RPNL A"CODE 29592,1: SAVE "RPNL B"CODE 1,1: STOP
DATA 245 , 245,219,59,230,1,32,250,241,211,59,62,1,211,123,62,
0' 211 ' 1 23' 241 '254. 13. 192' 62. 1 0' 205. 1 52' 11 5' 62' 13' 201 '-1

* * * * * *
EXTERN and Loading screens

The EXTERN command can be used to call either your own machine
language programs or a section of a BASIC program . This feature
can be utilized only in a final game, as the 4K of memory
previously occupied by the main menu becomes available (the other
2K is PAWs workspace so hands off!). The important address is the
value printed when PAW loads called EXTVEC. You must use the
value given on the copy of PAW you save the final game from, or
chaos will ensue.

For machine coders only: In order that EXTERN can execute machine
code routines you must POKE the three bytes at EXTVEC with a JP
to your start address. Register IX must be preserved as it points
at Flag O. All others may be destroyed, but SP must be balanced.
Register A on entry contains the parameter to the EXTERN command.
If you save the two bytes at EXTVEC+l they point to the routine
which calls a BASIC program - the line number must be in A.

For BASIC users: a POKE extvec,195 - after loading the
interpreter file - will enable any EXTERN actions to execute the
BASIC line (100+parameter) . e . g. EXTERN 10 will goto line 110 in
BASIC. To return to the next condact a STOP command in BASIC is
required.

You cannot use CLS in BASIC (or m/c), but address EXTVEC+3
contains a routine to do this. i.e. RANDOMIZE USR extvec+3 will
clear the screen. In addition EXTVEC+12 contains the line number
to print the filenames of the database files on and EXTVEC+9 is
the load database and start game entry point.

As an example the following program (without the REM's) must be
saved to a fresh tape with SAVE "gamename" LINE 10:

16

10 REM load game
15 BORDER O:PAPER O:INK O:REM so filenames are invisible .
20 CLEAR 287~~:REM this is maximum value for RAMTOP.
25 LET extvec=?????:REM whatever it is .•.
30 LOAD"" SCREENS:PRINT AT 19,0;:REM stops damage to pie!
40 LOAD '"' CODE: REM load interpreter file
SO POKE extvec,195:REM enable EXTERN

Spectrum Specifics

60 POKE extvec+12,20:REM filenames on line 20
70 RANDOMIZE USR (extvec+9l:REM load database and start game

100 REM line that is called by EXTERN O
110 PRINT "hello from BASIC":STOP
355 REM line that is called by EXTERN 2551

Lines 100-355 could contain GOTO statements if required.

Save your SCREENS immediately after the program on the tape. Then
from within PAW save the Adventure (using option A) after that .

Important there must be at least 2000 bytes spare for PAWs
workspace or your BASIC program will start to disappear! RAMTOP
may be lowered to contain your machine code but 2K must be spare!

The flags can be accessed from BASIC by using the PEEK function .
The address of flag 0 is (extvec-544) . Thus flag 1 i s at (extvec-
543) and so on . If you want to pass a value back to PAW you can
POKE a value into a flag and use the EQ Condition to test it .

If music be the food of love ...

Several people have enquired about using music from stand alone
music generators such as Wham-The Music Box . rt should be quite
possible to do t~is, the on~y problem that occurs is where to put
the code! PAW is a very big program but about 4K is regained on
a final adventure where the main menu was. This unfortunately is
below 32768 which i s no use to music programs due to a timing
problem on the Spectrum.

The only suggestion we can make is that you leave sufficient
memory free in the database on page 0 to contain the data file .
Then use a header reader to discover the start address and length
of the" A" file on the finished game. Adding the length
to the start address will give you the start address of the free
space in the database, this can then be loaded with the music
file (assembled at the correct address of course) from you own
BASIC loader as described above .

For fastloaders etc. you may need to stop PAW
database itself in a finished game. This can be
adding the following line to your loader:-

65 POKE 34884,0:POKE 34885,0:POKE 34886,0

loading the
achieved by

The entry address of (extvec+9) in the RANDOMIZE USR statement
remains the same . You must also add a line 45 which loads your
database file! Of course you could assemble a single block with
the interpreter included and allow line 40 to do the load .

17

Game features

Light and Dark

Darkness is becoming something of a cliche in adventures these
days, but used correctly it can add to the sense of realism
considerably .

Within PAW, darkness is created by setting flag 0 to a value
other than 0. This must be done whenever the player moves into
and out of darkness. i.e . the move must be done with a GOTO in
the Response table, to allow the SET or CLEAR action to occur.

If the player is being provided with a source of light then
object O is the easiest way of implementing it. A source of light
does not have to be a torch or candle, with a little imagination
it can be infra-red glasses or a wide beam laser!

Take for example the creation of a night and day cycle, over 24
time frames which we will assume are equivalent to 1 hour.

The entries required in Process 2 are:

CYCLE EQ 5 0 ;End of cycle
LET 5 24 ;Start the counter again

NIGHT EQ 5 16 ;Nightfall
SET 0
MESSAGE x

DAY EQ 5 6 ; Daybreak
CLEAR 0
MESSAGE y

Importantly if
building, don ' t
see nightfall and
the messages.

part of the game is underground, or
forget to determine if the player can
daybreak from where they are, before

* * * * * *
Tick, Tock ow about a Clock cock!

inside a
actually
printing

If you want to create a simple clock and calendar system in an
adventure, the following method may be of use:

This clock will use our standard 7 days of 24 hours of 60
minutes, but of course your game can use any method of
representing time. In addition using a similar technique you
could provide a true calendar giving Months and Years.

We will use three flags, 150,151 and 152 to represent minutes,
hours and days respectively . In addition flag 153 will be used as
described later. An entry in Process 2 will allow the clock to be
incremented correctly: -

16

Game features

* * PLUS
EQ
CLEAR
PLUS
EQ
CLEAR
PLUS
EQ
CLEAR

150 1
150 60
150

; One more minute (or perhaps ten?)
; One hour done?

151 1
1 51 24
1 51
152 1
152 1
152

;Zero minutes
;Another hour
;One day over?
;Zero hours
; One more week . .
;All done?
;And so on if required.

You now have flag 150 containing 0 to 59 giving the minutes
within the hour. Flag 151 containing 0 to 23 giving the time as a
Twenty four hour clock and Flag 152 containing 0-6 as a day of
the week!

If you set up several messages thus:

Message 1
The clock shows the time as
Message 2

Message 3
pm.
Message 4
am.

And a sub process (which we will call x) of the following:

COPYFF 151 153 ; Make a copy
GT 153 11 ;Is it PM?
MINUS 153 12 ;Yes so make

PRINT 153 ;Print hour
MES 2 ·" · " ,
PRINT 150 ;the minutes
GT 151 11 ;Is it PM?
MESSAGE 3 ;Yes so print
DONE ; All finished

MESSAGE 4 ; Must be AM .

along with a simple entry in response of:

LOOK CLOCK MES
PROCESS
DONE

x

of the hours

a 12 hour clock

that .

No need for a DONE

will allow a clock to show the time . Using another sub- process
you could print the day of the week (using seven messages and
seven entries!). And so on for the month and year!

A problem can be linked to this clock by testing for specific

19

Game features

times . E . g. if the player can only enter a shop when it i s open,
say 9am to Spm every day except Sunday (which we will call day O)
then the conditional movement entries would be similar to:

ENTER SHOP AT loc ; Ensure outside shop
NOTZERO 152 ;Not a Sunday
GT 151 8 ;At least 9 o clock
LT 151 18 ;Must be less than six pm
GOTO ;Etc to move player to shop

ENTER SHOP AT loc ; Obv iou~ly shut
MESSAGE "The shop i s shut.
DONE

The same system can be used to trigger events at specific times
of day, e.g . trains etc . It is probably worth making time pass
faster for the player by stepping the clock at 5 or ten minute
i ntervals, or perhaps adding a few extra minutes (or hours) when
the player carries out an action which would take longer in real
life. Time provides a whole new dimension in an adventure.

* * * * * *
Proper exit listings

In order to create an exits list in keeping with the c ontinuous
format object listing you will need to create several messages
which are t he var i ous directions and several tables thus:

Process 4

CLEAR 200 ;No of messages printed
CLEAR 199 ;Indicate "Nowhere i s the message "
COPYFF 33 201 ; Save cur rent Verb as we use it

COPY FF 38 202 ;Use a copy of current location
LET 33 2 ; See if North a valid move
MOVE 202 ;Try it
PROCESS 5 ; Yes so use common routine

COPYFF 38 202 ; Us a copy (as may have been moved!)
LET 33 3 ;Try all other directions
MOVE 202
PROCESS 5 ; etc ..

;Repeat this entry for all direction word values

GT 200 ; If more than one direction printed
SYSMESS 47 ;" and 1

'

PROCESS 6 ;Print outstanding message

20

I ,

Game features

SYSMESS 64 ; full stop
NEWLINE
COPYFF 201 33 ; Restore current Verb

Process 5

GT 200 ; At least one already printed
SYSMESS 65 · " ' '

NOT ZERO 200 ; Not the first to be printed
PROCESS 6 ;Print description

PLUS 200 1 ; Increment number printed
COPYFF 33 199 ;Set up direction flag for message

Process 6 ; Useful t o c onvert Movement value into a Message

ZERO
MES

199 ; No direct i ons matched

EQ
MES

"Nowhere"

199 2
"North"

EQ 199 3
MES "South"

;Repeated for each direction value ...

Just call this from your response table entry
message along the lines of "Possible exits are
result in outputs of:

Possible exits are nowhere .
Possible exits are north.
Possible exits are north and south.
Poss i ble exits are north, south and east.
etc ...

preceded
" This

by a
will

With a l i ttle imagination you should be able to t ake care o f the
speci al case of only one exit . (i . e. ' i s north' etc .) .

* * * * * *
Secret exits

To c onceal an exit , just don't put i t in the Connections t able .
Then two entries in Response:

PUT CARD PREP IN
NOUN2 SLOT
AT locno
SET 200
MESSAGE x
DONE

; Where slot i s
; 'Flag' that player has done this
; "A hidden door appears eastward."

21

Game features

E AT locno
NOTZERO 200
GOTO
DESC

* *

;Where slot is
;Player has put card in slot
;wherever

* * * *
Examine

An examine command can be implimented simply by creating a
message which decribes an object, we will can it message number
x. Then inserting an entry in Event of:-

EXAM KEY PRESENT objno
MESSAGE x
DONE

* * *

;Whatever object number the key is
;Describe it

* * *
Invisible Objects

Objects can be 'invisible' by making them not created and using
an entry such as:-

SEARC DRAW AT locno
ISAT objno 252
CREATE objno
MESSAGE x
DONE

;Where draw is7
;Object to 'find' is still uncreated
;create that object here
;"In the draw is an "

in Response, to create them when the player finds them! Note that
the use of underline allows you to use only a single message as
the currently referenced object is set by CREATE.

* * * * * *
Password protection

The simplest way to create a password protection system within
PAW is to use anymatch ("* *") entries at the very start of the
Response table. In addition a flag (we will use 200 for our
example) will be used to indicate that the password has been
entered (when set). Say the password is defined as a Verb of word
value 100. Then the entries needed will be:

* * EQ 33 100 ;Correct password entered?
SET 200 ;Password has been entered
OK

* * ZERO 200 ;Password entered yet?
MESSAGE "Invalid Password"
DONE

22

t

Game features

Note that we check the current Verb directly (by examining Flag
33), this ensures that all inputs by the player will produce an
"Invalid Password" message until he/she enters the correct word.

* * * * * *
Creating Multi-Part Adventures

In order to create a larger (and thus more interesting) play area
in an adventure, without sacrificing the quality of the
description, you can split the game into smaller sections. It is
best to do this with a game that lends itself to having several
areas, with only one join between each, this is called a
bottleneck. e.g. a game where setting sail on a boat is the
final task in the first part.

To allow the score, turns taken and other information to be
carried forward into the next game you must use the LOAD/SAVE
game position actions. In order to load a game position into a
different game to that which it was saved from, you need the same
number of locations and objects in each part. In addition, all
objects which may possibly be carried forward by the player, must
have the same description in all parts.

Let's take a game with 120 locations, that is to be split in
half, thus requiring 60 locations in each part. Actually location
60 will exist in both games as the transition location (where the
player starts and finishes) and a spare flag (say ·26) will be
used to indicate which part of the game a position is from. So
when the player completes part 1 they are moved to location 60
and flag 26 is set to 1 to show it.

The setup for part 1 would be:

Location 60
End of Part 1 - Prepare a tape to save your position.
(You may save more than one copy if you like).
Please LOAD part 2 and follow the onscreen prompts.

Process

END AT
LET
SAVE

And in part 2:

Location 0

60
26

;End of game?
;Valid position from part 1 .

Part 2 - Prepare to load tape with saved position.

Location 60
Any introduction wanted for Part 2.

23

Grune features

Process

START AT
LOAD

START NOTEQ
GOTO
DESC

START AT
ANYKEY
RESET

0

26
0

60

;Just starting?
;Will then be at another location.

;Not a valid position from part 1.
;So request another load.

;Just loaded a valid position
;Wait until introduction read
;Start grune properly at location

The RESET action does a DESC of the new start location
automatically, after setting all objects that aren't carried,
worn or at location 60 to their starting position. Note that you
should insert any CLEAR actions for flags between the ANYKEY and
the RESET as the flags are not affected by the RESET.

Less than

An interesting omission from the comparison facilities of the PAW
condActs is the ability to compare two flags for relative sizes.
With a bit of thought a useful sub-process can be created which
does the same job - we will call it process z! Using two worki~g
flags the routine can be used with any two values - and won t
damage the original values either:

CLEAR 252 ;Flag 252 indicates the comparison
SAME 250 251 ;Are the working flags the srune7
NOTDONE ;Don't set the done flag

LET 252 1 ;A value of One indicates 250>251
SUB 250 251 ;Subtract the working flags
ZERO 251 ;If the result is zero then 250
NOTDONE ;is greater than 251.

LET 252 2 ;Otherwise flag 250<251
NOTDONE

24

Pseudo-Intelligences

Pseudo-Intelligences

The main thing to remember is that a character (or PSI) is a word
in the Vocabulary (usually a Noun with a value less than 50 so as
to be a Proper Noun) . Some flags, a series of messages and some
entries in one or more Process tables. One flag shows where they
are, the messages provide information about their actions and the
process table entries tie it all together.

So imagine a character called Sanec who can walk around
independently. He is described in the vocabulary as SANEC (word
value 25, Noun). Flag number 20 is used to give his location.
Process table 3 will deal with speech to him. While Process
table 4 will deal with his movements and actions. The following
entries allow him to move around when you ask him too. After a
short time he will get 'bored' and vanish in a puff of smoke!

Message 1
Sanec did not seem to understand what you said.

Message 2
No one of that name here!

Message 3
Sanec replies "hello" in a gruff voice.

Message 4
Sanec wanders that way as he has nothing better to do.

Message 5
Sanec the wizard is here.

Message 6
Sanec 'politely' ignores what you say.

Message 7
Sanec turns to face you and in his gruff voice announces;
"I'm bored with all this, I'm off to a bigger game"
and promptly vanishes in a puff of green smoke!

First; Sanecs' presence at a location must be announced. So in
Process 1 (which is called after every describe of a location) we
check if he is here i.e. flag 20 (his location) is the same as
flag 38 (our location). Note that we ensure we are not at
location O as this is always an introduction screen.

SANEC SAME 20 38
NOT AT 0
MESSAGE 5

;Ensure Sanec is here
;Player is not in location 0.
;Say Sanec is here .

To deal with speech too Sanec, we need two entries in Response as
follows:-

25

Pseudo-Intelligences

SAY SANEC PREP

SAME
PROCESS
DONE

SAY PREP
MESSAGE
DONE

TO

20
3

TO
2

38

;this could be omitted to allow
short Verb Noun sentences to be
understood

;Make sure Sanec is here
;Deal with any speech
;Prevent drop through with new LS.

;again optional
;no one of that name here!

The following entries in Process 3:-

* *

HELLO

PARSE

MESSAGE

DONE

MESSAGE
DONE

3

LT 34 14
MOVE 20
MESSAGE 4
DONE

MESSAGE 6

;This entry always carried out
convert the input string to a

;PARSE comes here if it fails
find a valid phrase

;Note that the LS is corrupt and
further table entries must
executed

to
LS.

to

no
be

;Assuming HELLO is a verb in vocab
;So that SAY TO SANEC "HELLO" works

;A movement word said to Sanec?
;See if a connection for that way
;Come here and tell player if so

;He ignores you (i.e. nothing else)

Obviously many more entries would be required to give Sanec an
appearance of understanding speech, but with a few clever entries
he can give a wide variety of responses.

Finally; to give Sanec a chance of disappearing when bored, we
need an entry in Process 4 of:

SANEC EQ 20
CHl\NCE 10
SET 20
AT 2
MESSAGE 7

2 ;At location two?
;10% chance
;Location 255 does not exist
;are we where he was?
;POOFFI - tell player he disappeared

And an entry in Process 2 to call table 4 reqularly:

SANEC PROCESS 4

In this way a very convincing character can be bu il t up . They add
a great deal to the sense of realism in games . Especially if
interaction with them is required as part of the solution .

26

Pseudo-Intelligences

Moving PSI's

A common request we had in the technical department was reporting
the movement direction of PSI's. Now, having chained a programmer
to a bench for a few hours, we can deal with the problem.

Continuing with the example of our wizard Sanec ...

Currently Message 4 is printed no matter which direction he
moves. Change the message to read "Sanec wanders " (note the
space). Now add six messages 8-13 (normally if you were allowing
Northwest, SouthEast and so on you would need 10 messages). Which
read "South.", "East.", "Up.'' etc

Next create a Sub-process using the Begin new table option (we
will assume it creates Process 5), and place the following
entries in it:

SOUTH

EAST

WEST

MESSAGE

MESSAGE

MESSAGE

8

9

10

etc. Note that you do not need any DONE actions as the only entry
which will trigger will be the one representing the direction
Sanec moved.

Now modify the
movement to be:

entry in Process 3 which deals with Sanec's

LT
MOVE
MES
PROCESS
DONE

34
20

4
s

14 ;A movement word said to Sanec?
;See if a connection that way
; Yep so report " Sanec wanders "
;and the direction

Note that the MES action does not print a NEWLINE and
reports will be of the form:

so the

Sanec wanders North.
Programmer goes Up the pub

* * * * *
Having them follow

*

In order for a PSI to be able to follow the main character, you
need only a few simple entries . Continuing with the example of
SANEC, we will use flag 21 to say what he is currently doing . A
value of zero indicates he is wandering as normal, whereas a
value of 255 (SET) will indicate that he is following the player.

27

Pseudo-Intelligences

In this case any entries which allow SANEC to move by himself
must ensure that flag 21 is zero (there are none given in the
manual). The following entries are needed in Process 3 (the one
which deals with speech to Sanec - IF HE IS AT THE SAME LOCATION
AS THE PLAYER):-

FOLLO SET 21 ;Make SANEC follow
;"Sanec says 'OK bud'. " etc MESSAGE x

DONE

STOP CLEAR 21 ;Stop him following
MESSAGE x
DONE

You might like to add other entries to give him replies to FOLLOW
when he is doing so already and so. on, or perhaps use CHANCE to
make it less likely he will just follow you like a sheep!

Ok now to make the flag do something. Put the following entry in
Process 4 {which is called from Process 2 each time frame):-

SANEC NOTZERO 21
NOTSAME 20 38
MESSAGE y
COPYFF 38 20

;Sanec is supposed to follow player
;He ain't where player is
;"Sanec follows you".
;Move him where player is

It might be best to position this after the entry allowing Sanec
to disappear when 'bored', as it will allow him when following
you to still appear sentient.

* * * * * *
And fighting them

Moving away from SANEC lets look at some rather aggressive PSI's;
The tables given below are a guide only and some development will
be necessary on your part ...

A combat system between the player and a PSI can be set up in the
following way: Assign a flag to both the player and the PSI which
will hold the Combat Value, which will represent the ability of
the PSI and player to inflict damage, avoid hits etc • . This is a
sort of Dexterity, experience and strength all rol~ed into one -
it would be possible to separate these functions but the
interactions would be made more complex to code for.

Flag 22 will hold the PSI's CombatValue and Flag 60 to hold the
players. It is assumed that Object 2 is a Sword and Object 3 a
shield. You may find it useful to make the combat routine general
purpose if you have several PSI's and use a sub-process to print
the PSI's name when needed according to a flag value.

The first thing we need is a way of comparing two flags . This is

28

Pseudo-Intelligences

provided by the compare sub-process created elsewhere in this
book. Armed with this information we can create an interaction
between the player and a PSI. We create a sub-process (which will
be called x) that will be called using a PROCESS action each time
the PSI decides to take a swipe at the player. A similar table
would need to be created for the PSI. This routine will have the
following call parameters:

Flag 100 - Potency of the weapon used .
Flag 101 - CombatValue of PSI.

There will also be a check made to see if the player has any
defences that can be used to fend off the attack - In this case
we will only check for the shield.

COPYFF 101 251
COPYFF 60 250
PROCESS z
EQ 252
CHANCE 60
MESSAGE
DONE

;Compare PSI against player

;Is player superior to PSI
;Less likely that attack happens
;" with a weak and glancing blow!"

;Player has the shield?
;Good chance it helps

CARRIED 3
CHANCE 70
MINUS 100
MES

2 ;Reduces the potency of the attack
;" it glances off the shield "

ZERO 100
MESSAGE
DONE

;If no force left ..
;"and misses."

MINUS 100 60 ;Make the attack
MESSAGE ;"striking a good blow."

Note the use of compound messages to produce a valid phrase. This
basic shell could be expanded to use further comparisons to
account for the difference between combat values in the strength
of attack and so on.

It would be called in the following way from the control process
for the PSI thus:

ATTAC PLAYE NOTZERO
RANDOM
LT
COPYOF
SAME
LET
COPYFF
MESSAGE
PROCESS
DONE

flagno
90
90 . 70

2 90
90 38

100 4
22 101

x

;The flag that says we are fighting
;A random element for the PSI
;70% .
;allows him to chose a weapon
; or if you like
;how vicious he feels!
;PSI strength
;"The PSI swipes with a broadsword"

29

Pseudo-Intelligences

ATTAC PLAYE NOTZERO f lagno
LT 90 50 ;50% etc .. .

Similar entries in Response which call the PSI's attack sub­
process would allow the player an attack capability!

You will of course need an entry at the start of Process 2 along
the lines of:-

* * ZERO 60 ;Combat value zero?
MESSAGE ;"You crumple to your knees . .. "
TURNS
END ; 11

* * * * * *
Using Multi-Parse

The ability to give a PSI a list of commands to do has incredible
possibilities for the creation of synchronized problems. Where
both the PSI and the player must work together .

These sort of
adventures and
suggestions :

problems
are well

can add
worth

a whole new
considering,

dimension
here are

to
some

Imagine a game with a room that is instant death for the
player which contains an object that he requires. You could
instruct a PSI to go in, get the object and come back out .

Say that in order to kill a certain monster you needed a
simultaneous attack from three characters. You could use the
following:
SAY TO PSil "WAIT,KILL MONSTER"
SAY TO PSI2 "KILL MONSTER"
KILL MONSTER
All three
time frame.

KILL MONSTERS would be carried out in the same

They say the best way to demonstrate something is by example. So
here goes with a short listing of a game with only one problem:

In order to get out of a cavern you need to be lifted on a
platform controlled from another room. This can only be achieved
by giving a PSI (who happens to be hanging around) a list of
things to do . I.e. Go to the cavern and pull the rope. While you
in the meantime step onto the platform and wait .. .

30

Pseudo-Intelligences

Flag Usage

20 - Location of PSI
21 copy of flag 20 during movement processing

60 - when 0 indicates platform is on floor, 1 - held by PSI
and 2 - held by Player.

195 - Players Verb/Pronoun-Noun Saved
196 - Players Adverb/Pronoun- Adjective Saved

197 - Number of Logical Sentences waiting for PSI
198 - Next storage flag group to store LS in
199 - Next storage flag group to get a LS from
200-206 - Store 0 for LS
207-213 - Store 1 for LS
214-220 - Store 2 for LS

Notes

The principle of the multi-parse is that the entire string i s
broken down into a list of LSs that the PSI will be required to
do. These LSs are then stored (saved if you like) in some flags
to be doled out, one per timeframe (use of process 2) .

The LSs waiting for the PSI to do are held in a ' queue' which is
a computer term for an ordered list . They ·are actually held i n a
' round robin fifo queue' . fifo stands for ' first in first out' .
i . e . the first LS given to the PSI must be the first it carries
out. While ' round robin ' indicates that the LS storage used goes
around the available storage flags in a circular motion. i . e . it
goes back to the beginning when it falls off the end!

Thus the groups of flags will be used in the order; . store O,
Store 1, Store 2, Store 0 etc . The use of only three storage
areas means that only three commands can be queued for the PSI,
there is no reason why this cannot be expanded upon. Indeed if
you only needed Verb Noun commands to be given to PSI's you could
save only those parts of the LS. Thus requiring only two flags
per LS not 7!

The extraction of multiple phrases is done by a single process
table which calls itself to get the next phrase . This is known as
'recursion ' and is simpler than a sequence of entries doing PARSE
and PROCESS calls etc. It does limit you to 9 phrases in a string
though - Why? (Clue: you c an only nest PROCESS calls to a depth
of ten.)

31

Pseudo-Intelligences

Locations

Location 0
I am in a large cavern. On the East wall, high
from which a shaft of light descends. A
obviously intended as a means of getting to
linked via a series of pulleys on the roof to
disappears into a hole in the North wall just
Location 1
I am standing on a platform
Location 2

up, is an entrance
lifting platform,
the entrance, is

a steel cable which
above a tunnel.

I am standing on a ledge overlooking a lush green valley. To the
West is an entrance to a large cavern .
Location 3
I am in a small ante-room. A twisting tunnel leads South. A steel
cable hangs from the ceiling.

Connections

Location 0 N
Location 1
Location 2
Location 3 s

Messages

Message 0
A PSI is here.
Message 1

TO 3

TO 0

The PSI doesn't understand .
Message 2
You have said enough to the PSI.
Message 3
You speak to the PSI.
Message 4
The PSI cannot do that.
Message 5
The PSI
Message

pulls on
6

The PSI
Message
The PSI
Message
The PSI
Message

releases
7

stands on
8

steps off
9

The PSI leaves.
Message 10
A platform
Message 11
The platform
Message 12

the cable.

his grip on the

the platform.

the platform.

cable.

rests on the floor of the cavern .

32

Message 13
hangs just inside the opening.

Message 14
now

Message 15
which

Message 16
jars into motion .

Message 17
A PSI arrives.
Message 18
The PSI can't go that way.
Message 19
You release your grip on the cable.

Response Table

* * EQ 60 2
CLEAR 60
MESSAGE 19
PROCESS 8

I INVEN

GET PLATF PREP OFF
AT 1
ZERO 60
GOTO 0
DESC

GET PLATF PREP OFF
AT 1
GOTO 2
DESC

GET PLATF PREP ON
AT 0
ZERO 60
GOTO 1
DESC

GET PLATF PREP ON
AT 2
NOTZERO 60
GOTO 1
DESC

R DESC

QUIT QUIT
TURNS
END

Pseudo-Intelligences

;Player holding cable?
;Release it

; Cancel DONE flag

;Movements on and off platform

33

Pseudo-Intelligences

SAVE SAVE

LOAD LOAD

RAM SA RAMSAVE

RAMLO RAMLOAD 255

SAY PSI NOTSAME 20 38
ATLT 2
LT 20 2
PROCESS 3
DONE

SAY PSI SAME 20 38
PROCESS 3
DONE

SAY PSI MESSAGE 20
DONE

WAIT OK

PULL CABLE AT
ZERO
LET
OK

RELEA CABLE OK

STAND PLATF PREP
AT
ZERO
GOTO
DESC

Process

* *

* *

* *

34

EQ
EQ
MODE
TIME
INPUT

NEWLINE
ATLT
MES

AT
NOT ZERO
MES

3
60
60

ON
0

60
1

31
32

1
8
7

2
11

2
60
10

2

0
0
1
3

;Talk to PSI if in cavern
;or on platform etc

;otherwise have to be same
;location

;Allow player to hold cable

;Deal with start of game

;Continuous scrolling text
;Timeouts
;Input at bottom of screen

;Always start a fresh line
;In cavern or on platform
;"The Platform"

;Outside cavern
;Platform is at top
;"A Platform"

* *

* *

*

*

Process 2

* *

ATLT 2
ZERO 60
MESSAGE 12

ATLT 3
NOTZERO 60
MESSAGE 13

ZERO
ABSENT
LISTOBJ

PRESENT
LISTOBJ

0
0

0

SAME 20 38
MESSAGE 0

NOTZERO 197
LET 58 128
PROCESS 5
CLEAR 58

Pseudo-Intelligences

;In cavern or on platform
;which is on floor
;-" rests on the floor . "

;Anywhere except anti-room
;Platform at entrance
;" by the entrance."

;Standard PAW dark stuff
;for Object list

;PSI where player is?
;"There is a PSI here . "

;Any commands for PSI
;Allow word matching
;extract next action for
;Prevent word matching

PSI

Process 3 - Deals with speech to PSI

* *

* *

Process 4 -

* *

*

COPYFF
COPYFF
SET
SET
PARSE
MESSAGE
COPY FF
COPYFF
DONE

46 195
47 196
46
47

1
195 46
196 47

MESSAGE 3
PROCESS 4
COPYFF 195 46
COPYFF 196 47

;Save 'IT' for player

;No IT at mol

;Get a phrase
;not one there
;Restore IT

;all over

;"You speak to PSI"
;extract and store phrases
;Restore IT

This will extract and store up to three phrases
although this could be expanded with a few simple
changes/extra entries. Note that this is Recursive
as it calls itself!

EQ 197
MESSAGE 2
DONE

3 ;Max of three phrases in queue
;"Said enough to PSI . "

ZERO
COPYFF

198
33 200

;Use store 07

35

Pseudo-Intelligences

*

*

COPYFF
COPYFF
COPYFF
COPYFF
COPYFF
COPYFF

EQ
COPYFF
COPYFF
COPY FF
COPYFF
COPYFF
COPYFF
COPYFF

EQ
COPYFF
COPYFF
COPYFF
COPY FF
COPY FF
COPYFF
COPYFF

PLUS
PLUS
EQ
CLEAR

PARSE
DONE

PROCESS

34 201
35 202
36 203
43 204
44 205
45 206

198 1
33 207
34 208
35 209
36 210
43 211
44 212
45 213

198 2
33 214
34 215
35 216
36 217
43 218
44 219
45 220

197
198
198
198

4

1
1
3

;Use store 1?

;Use store 2?

;One more phrase stored
;Next store
;reached the last?
;Go back round

;Get another phrase
;No more there so finished

;Store it

Process 5 - Extracts the next phrase from store for the PSI

* *

*

*

36

COPYFF
COPYFF

33 195
36 196

ZERO 199
COPYFF 200 33
COPYFF 201 34
COPYFF 202 35
COPYFF 203 36
COPYFF 204 43
COPYFF 205 44
COPYFF 206 45

EQ 199 1
COPYFF 207 33
COPYFF 208 34
COPYFF 209 35

;Save Verb/Adverb of player

;store O?

;Store 17

*

COPYFF 210 36
COPYFF 211 43
COPYFF 21 2 44
COPYFF 213 45

EQ 199 2
COPYFF 214 33
COPYFF 215 34
COPYFF 216 35
COPYFF 217 36
COPYFF 218 43
COPYFF 219 44
COPYFF 220 45

MINUS
PLUS
EQ
CLEAR

197
199
199
199

1
1
3

PROCESS 6
COPYFF 195 33
COPYFF 196 36

Pseudo-Intelligences

;Store 2?

;One less in store
;Extract next from one more
;Reached end?
;Back to start

;Do the job
;Restore player Verb/Adverb

Process 6 - Commands that can be given to PSI

* *

* *

GET PLATF

GET PLATF

EQ 60
AT 3
MESSAGE 6

EQ
CLEAR
ATLT
MES
MESSAGE
MES
MES
MESSAGE

PREP
EQ
ZERO
CLEAR
ATLT
MESSAGE
DONE

PREP
EQ
LET
ATLT
MESSAGE
DONE

60
60

3
11
16
11
14
12

OFF
20
60
20

2
8

OFF
20
20

2
8

1
2

Holding Cable?
Where player can see PSI?
"PSI Releases grip"

Holding cable?
Release grip .
Can player see effect?
Describe "The platform"
" jars into motion."
"The platform"
" now"
" rests on the ground. ''

GET OFF PLATFORM
PSI on it?
Platform on ground?
Put PSI in cavern (loc O)
Can player see it?
"PSI steps off."

GET OFF PLATFORM
PSI on it?
Platform by entrance?
Player see it?
"PSI steps off."

37

Pseudo-Intelligences

GET PLATF PREP
ZERO
ZERO
LET
ATLT
MESSAGE
DONE

PULL CABLE EQ
ZERO
AT
LET
MESSAGE
DONE

PULL CABLE EQ
ZERO
ATLT
LET
MES
MESSAGE
MES
MES
MESSAGE
DONE

RELEA CABLE DONE

STAND PLATF PREP
AT
ZERO
LET
MESSAGE
DONE

WAIT DONE

LT
PROCESS
DONE

CLEAR
CLEAR
CLEAR
SAME
MESSAGE

ON
20
60
20

2
7

20
60

3
60

5

20
60

2
60
11
16
11
14
13

ON
0

60
20

7

33
7

197
196
199

20
4

3

3

14

38

;GET ON PLATFORM
;PSI on ground?
;along with platform?
;Move PSI to platform
;Can player see it?
;"PSI steps on."

;PSI in anti-room?
;with no one holding cable?
;Is player here as well?
;PSI holding cable
;"PSI grips cable."

;PSI in anti-room?
;with no one holding cable?
;Can player see result?
;PSI holding cable
;Describe "The platform"
;" jars into motion . "
;"The platform"
;" now"
;" hangs by the entrance."

;Is done by any action!

;STAND ON PLATFORM
;See above GET ON PLATFORM

;Do nothing for a time frame

;Movement?
;Deal with it

;Can't do it so cancel any
;waiting LS for PSI.

;Is player where PSI is?
;"PSI can ' t do it . "

Process 7 - Deal with movement for PSI

* *

36

COPYFF 20 21
MOVE 20
NOTSAME 20 21
SAME 21 36

;Save current loc~tion
;Try and move
;Did location change?
;Was player there?

Pseudo-Intelligences

MESSAGE 9 ;tell them "PSI leaves. "

* * NOT SAME 20 21 ;Somewhere new?
SAME 20 36 ;Where player is7
MESSAGE 17 ;tell them "PSI arrives. "

* * SAME 20 21 ;No change?
CLEAR 197 ;Can't go that way so
CLEAR 196 ;clear any outstanding LS
CLEAR 199 ; for PSI
SAME 20 36 ;Player here7
MESSAGE 16 ;tell them .

Process 6

* * NO TOONE ;Cancel the 'done ' flag

Playing

If you do type this in you may like to try some of the following
sequences from the starting position .. .

GET ON PLATFORM, SAY TO PSI "GO NORTH,PULL CABLE AND RELEASE IT"
THEN GET OFF IT.

This shows the independence of IT for Player and PSI.

SAY TO PSI "N,PULL CABLE",STAND ON PLATFORM,GET OFF IT

Is the solution, although if you wished to lower the platform
after.

SAY TO PSI "N,PULL CABLE & RELEASE IT",GET ON PLATFORM AND OFF IT

Would leave you outside without a platform, while . . .

SAY TO PSI "STAND ON PLATFORM,WAIT THEN GET OFF IT". N,PULL
CABLE,RELEASE IT,S

Would leave you without a means of exit and the PSI outside!

39

Selling games

Hints for those intending to sell their work

The adventure market today is very much a hobby market. The
majority of sales are made by small companies - often the author
and a room in their house. The larger companies tend to stick
only to high profile, hideously expensive to write, moneyspinning
arcade games. So it is well worth considering marketing the game
yourself or pursuading one of the smaller companies to do this
for you. If you want to interest them in your game you will have
to ensure:

1/ The game is original. Most software houses will know about the
vast majority of games previously launched and will spot a ripoff
immediately. This also applies to characters 'borrowed' from
books or films, ensure you have permission from the copyright
owners before using them .

2/ The spelling is thoroughly checked - looking it over once
doesn't count! Check any word you are doubtful of with a good
dictionary . Also ensure your grammar and punctuation are correct.

3/ The game has been extensively tested. Ask your friends round
for an evening and let them try it, others will often try inputs
you never dreamed of .

4/ The documentation is legible and neatly presented (typed if
possible). See below for some hints on what is needed.

5/ Expect to wait a few weeks for a reply,
houses are always overworked.

(sm)all software

Most important of all do not expect to become an instant
millionaire, adventures are strictly a hobby market.

Documentation for a game is a very personal thing and depends on
the game a lot. The majority of adventures can be documented with
a tidy map (which shows location numbers and object positions),
along with a scene setting sketch perhaps. In addition a step by
step solution (or detailed instructions on solving each problem)
will be required. It is also worth devising a cryptic help sheet
which you can provide for the player should they get stuck.
Don't forget that to allow you to make corrections later, a list
of the uses of each of the flags will be required.

You obtain copyright by what is known as the common law rights of
the creator of a work. I.e. merely writing the game gives you the
copyright. Although if you ever needed to prove this you would
need some proof. This cen be obtained by posting a sealed,
written (and disc/tape recorded) copy to yourself and then NOT
opening it. Or you could deposit a copy at a bank and obtain a
DATED receipt - although a fee would be charged for this service.

But the most important thing is to enjoy yourself!

40

© 1986 Gllsoit
Published by GilsoH

2 Park Crescent, Barry, Soulh Glamogan CF6 8HD
Telephone Barry (0446) 732765

All rights reserved, unauthorised copying, hiring or lending strictly prohibited

