
Technical GuWe

A Technical guide to:

The Professional Adventure Writer

A graphic adventure writing system for the Sinclair
Spectrum computers.

(c) 1986/90 Gilsoft.
Program: T.J.Gilberts, G.Yeandle and P.Wade

Graphics: D. Peeke, K.Maddocks and A.Williams
Manuals: T.J.Gilberts

All Rights reserved. No part of this publication may
loaned, hired or reproduced in any form whatsoever
electronic retrieval systems without the prior written
the authors and Gilsoft.

be copied,
including

consent of

The above notice does not apply to the 'run time' routines .
appended to, and which form a part of, a saved game which you are
free to distribute any way you wish in that form . All we would
request is that you credit the use of the Professional Adventure
Writer somewhere within the game.

2

Acknowledgement

Thanks to Howard and Pam for their
forbearance. Phil for his 'comments',
Graeme for his ideas, Dicon et al for the
graphics and all our customers for their

support and suggestions.
Contents

Overview

The Interpreter

The CondActs

Conditions
Actions

The Database

The Editor

The Graphics Editor

Errors

Contents

Page 5

Page 6

Page 11
Page 14

Page 33

Page 38

Page 51

Page 55

3

4

Overview

Overview

PAW can be divided into three main functional areas thus:

1/ The Database

The database is a collection of tables organized in a logical
manner, which contain all the information to define an
adventure game. This database is initially set up to contain
a minimum of entries which will probably be needed in every
game. There is usually one entry in a table to simplify the
operation of the system. The database may utilize the
additional sideways RAM pages of a 128K spectrum.

2/ The Editor

This consists of a two level menu system i.e. most functions
on the main menu present a sub-menu from which all facilities
can be selected. All facilities are set either from a command
line as part of the sub-menu option or in response to a
prompt. This combination of menu and command line has been
found to be most efficient both for the beginner and the more
experienced user .

3/ The Interpreter

The real heart of PAW is contained in this section
program. The next chapter deals with the operation
interpreter in detail, but it essentially fetches
from the player and uses the information contained
database to decode and respond to those commands .

of the
of the

commands
in the

The sheer size of PAW precludes it being held entirely within the
main memory area. On a 128K spectrum the majority of the code is
held as overlays on a sideways RAM page and transferred into the
main area whenever required. A similar system is used on a 48K
spectrum by holding three of the overlays in free memory until
the area of memory used is overwritten. If the sideways RAM page
is initialised on a 128K or the memory area overwritten on a 48K,
an attempt to . select an option not in the current overlay will
result in PAW attempting to load the requisite overlay from
cassette (or disc). The main menu and overlay system gives an
overhead of approx imately 4K which is unavailable to PAW for the
database. About 10K is consumed by the interpreter and i ts
workspace (e.g. Ramsave buffer, input and wordwrap buffers etc.).
This leaves approximately 27K for the database, plus 5 pages of
16K each, on a 128K spectrum (a total of about 117K) . This is
maximised by the inclusion of a text compressor which introduces
an overhead of 222 bytes (for an expansion dictionary) thus
giving about 40\ effective text compression. On an average text
only game on the 48K spectrum this prov ides an effective addition
of SK of database space (i.e . a total of 35KI).

5

The Interpreter

The Interpreter

The following description of the interpreter should be read
conjunction with the flowcharts provided overleaf.

Initialise

in

The background colours and character set are selected - the
screen isn't cleared as this always occurs upon describing
location zero . The flags are all zeroed except for; flag J7, the
number of objects conveyable, which is set to 4; flag 52, the
maximum weight of objects conveyable, which is set to 10; flags
46 & 47, the current pronoun {"IT" usually), which are set to
255 (no pronoun) and flag 1 which is set to be the number of
objects carried but not worn. Note that clearing the flags has
the effect that the game always starts at location zero. This is
because flag J8, the current location of the player, is now zero.

Describe Current Location

If flag 2 is non zero it is decremented (reduced by 1). If it is
dark (Flag 0 is ~on . zero) and flag J is non zero then flag 3 is
decremented. If it is dark, flag 4 is non zero and object o (the
source of light) is absent, then flag 4 is decremented.

The screen is cleared if the current screen mode (contents of
flag 40) is not 1.

If it is dark, and Object 0 is absent, then System message o
(referred to as SMO - "It's too dark to see anything") is
displayed. Otherwise any picture present for the location is
drawn and the location description displayed without a NEWLINE.

Search Process Table 1

Flowchart 2 and the next section describe the scanning of a
proc7ss table. Process table 1 is used mainly to contain the
entries to add extra information to the current location
d7scription. E. g. details of open doors, objects present etc It
will also contain a PROTECT action, when using screen mode 4° to
set the screen line for text to scroll under. '

We now enter the main loop of the interpreter which deals with
7ach ti~e frame (i.e. each phrase extracted or each timeout
input which occurs) and the response to players commands .

on

Search Process Table 2

This conta~ns the main control for PAW's turn at the game. It is
used to implement the movements and actions of PSI's the
uncontrolled events such as bridges collapsing, and so on . '

6

The Interpreter

Get Phrase

If flags S to B are non zero they are decremented.
(Flag 0 is non zero) and flag 9 is non zero
decremented . If it is dark and flag 10 is non
decremented if object O is absent.

If it i s dark
then it is
zero it is

The parser is called to extract a phrase and convert it into a
logical sentence - LS. If the input buffer is empty, a new input
line is obtained from the player by printing a prompt and making
a call to the input routine. The prompt will be the system
message whose number is contained in flag 42 - a value of 0 will
select one of system messages 2,3,4 or S in the ratio 30:30:30 : 10
respectively.

If the timeout option is selected, by making flag 48 contain a
value greater than zero, then the input routine might time out.
In this case SM35 {"Time passes ... ") i s displayed and a return
made to scan process 2 again.

A phrase is extracted and converted into the logical sentence;
by converting any words present, that are in the vocabulary, into
their word value and placing them in the required flags.

If no valid phrase can be found then SM6 {"I couldn't understand
any of that") is displayed, and a return made to scan process 2.

Search Response Table

Turns {flags 31 and 32), which is the number of valid phrases
extracted by the parser, is increased by one . Two flags are used
to allow 256 lots of 256 turns (i.e . 65536) .

The Response table is then scanned, for an entry which
the Verb and Nounl of the current LS, using the process
routine detailed below .

matches
table

If it is successful in carrying out an action {i . e. If PAW
executes at least one action other than NOTDONE) then a return is
made to scan process table 2.

Search the Connections Table

A search is made of the connections table entry for the current
location, for a word which matches the current LS Verb. If one is
found then the players current location (flag JB) is set to be
the number associated with the word . Then a return is made to
describe the current location . Otherwise PAW prints SM8 ("I can ' t
go in that direction") if the current LS Verb has a word value
less than 1 4 or SM7 {"I can ' t do that") if it does not . In both
cases a return is made to scan process table 2.

7

The In te rp re te r

Flowchart

D

No

8

Start

Deec ri be
Location
Proceee I

Proceee 2

Get Phraee

Yee

TURNS+!
Search
Reepcinae

SM8
"Can't go
that way"

No

Search
Connection
Table

Thn Interpreter

Flowchart 2
Start

Ho

Yea

No

No

No Yea

Do Action

Yeo

Yea

End

9

The Interpreter

Scan a Process Table

Response is a process table (Note that any sub-processes which
are called from within Response exhibit the same features), so it
will also be scanned by this section of PAW. The difference of
course is that PAW tries to match the Verb and Nounl of the
logical sentence in a Response table.

Essentially PAW will look at each entry in the table until it is
exhausted - the table of entries, not PAWi Assuming there is an
entry, it will, if in Response (or flag 58 is set to 128), ensure
the Verb and Noun match those of the LS. The use of the words "*"
and " ", as either the Verb or the Noun, will cause a match with
any word in that part of the logical sentence. Thus entries in
Response of "* *","- _", and combinations of same, will cause a
trigger of the entry no matter what the LS. This feature must be
used in any table which will be called by both a Response and a
Process table. If in a Process the Verb and Noun will match
anyway, no matter what the logical sentence.

PAW will then look at each CondAct in turn; if it is a condition,
which succeeds, then PAW will look at the next condact. Otherwise
it will drop out of the current condact list and look at the next
entry, if present, in the table - an exception to this is the
CondAct QUIT which, if it fails, will drop out of the table
completely - this is not shown in flowchart 2 for clarity. If it
is an action it will be carried out . Actions can be divided into
five main groups:

1/ Desc; which will completely exit the execution of all tables
(i.e. even if in a 10th level sub-process) anc:r--jump to
describe the current location .

2/ END; (a group on its own) which will completely exit the
execution of all tables and jump to initialise a new game.

3/ Exit; any action which will stop processing of the current
table and exit to the calling table (or back to the main loop
if in Response, Process 1 or 2). e.g. INVEN,DONE etc.

4/ Conditional Exit; any action which will stop processing of the
current table and exit to the calling table (or back to the
main loop if in Response, Process 1 or 2) if it fails to do
its required function. e.g. GET, PUTIN etc. Otherwise it will
continue with the next CondAct.

5/ Normal; any action which carries out its function, and allows
PAW to continue looking at the next CondAct in the current
entry. e.g. COPYFF, PLUS etc

It may be seen that QUIT acts like a type 4 action, but is still
a condition, so it's a CondActl The summary of CondActs at the
end of this book shows which type each Action is.

10

The CondActs

The CondActs

There now follows a detailed description of each CondAct. They
are divided into groups according to the subject they deal with
in PAW; such as flags, objects etc and give some hints as to a
possible use .

Several abbreviations are used in the descriptions as follows;

locno. is a valid location number .

locno+ is a valid location number or; 252 (not-created), 253
(worn), 254 (carried) and 255 which is converted into the current
location of the player .

mesno. is a valid message.

sysno. is a valid system message.

flagno. is any flag (0 to 255).

procno. is a valid sub-process number.

word is word
vocabulary, or
normal.

of the required type, which is present in
which ensures no-word - not an anymatch

value is a value from 0 to 255.

Conditions

the
as

There are four conditions which deal with testing the location of
the player as follows;

AT locno.

Succeeds if the current location is the same as locno.

NOTAT locno.

succeeds if the current location is different to locno.

ATGT locno.

Succeeds if the current location is greater than locno.

ATLT locno.

succeeds if the current location is less than locno.

11

The CondActs

There are eight conditions which deal with the current location
of an object;

PRESENT objno.

Succeeds if Object objno. is carried, worn or at the current
location.

ABSENT objno.

Succeeds if Object objno. is not carried, not worn and not at the
current location.

WORN objno.

Succeeds if object objno. is worn

NOTWORN objno.

Succeeds if Object objno. is not worn.

CARRIED objno.

Succeeds if Object objno. is carried.

NOTCARR objno.

Succeeds if Object objno. is not carried.

ISAT objno. locno+

Succeeds if Object objno. is at Location locno.

ISNOTAT objno. locno+

Succeeds if Object objno. is not at Location locno.

There are eight conditions which de.al
comparison of flags;

ZERO flagno.

Succeeds if Flag flagno. is set to zero.

NOTZERO flagno.

Succeeds if Flag flagno. is not set to zero.

EQ flagno. value

Succeeds if Flag flagno. is equal to value .

12

with the value and

The CondActs

NOTEQ flagno. value

Succeeds if Flag flagno . is not equal to value.

GT flagno. value

Succeeds if Flag flagno. is greater than value.

LT flagno. value

Succeeds if Flag flagno. is set to less than value.

SAME flagno flagno
1 2

Succeeds if Flag f lagno
1

NOTSAME flagno flagno
1 2

has the same value as Flag flagno .
2

Succeeds if Flag flagnol does not have the same value as Flag
flagno .

2

There are five conditions to check for an extended logical
sentence. It is best to use these conditions only if the specific
word (or absence of word using " ") is needed to differentiate a
situation. This allows greater flexibility in the commands
understood by the entry.

ADJECT1 word

Succeeds if the first noun's adjective in the current LS is word.

ADVERB word

Succeeds if the adverb in the current LS is word.

PREP word

Succeeds if the preposition in the current LS is word.

NOUN2 word

Succeeds if the second noun in the current LS is word.

ADJECT2 word

Succeeds if the second noun's adjective in the current LS is
word.

The following condition is for random occurrences. You could use
it to provide a chance of a tree falling on the player during a
lightning strike or a bridge collapsing etc. Do not abuse this

13

The CondActs

facility, always allow a player a way of preventing the problem;
such as rubber boots for the lightning, or similar.

CHANCE percent

Succeeds if percent is less than or equal to a random number in
the range 1-100 (inclusive). Thus a CHANCE 50 condition would
allow PAW to look at the next CondAct only if the random number
generated was between 1 and SO, a SO\ chance of success.

A single condition to test for a timeout;

TIMEOUT

Will succeed if the last request for input from the player was
allowed to timeout. For example an entry in Process table 2 of;
TIMEOUT MESSAGE 0 (where message 0 read "Come on sleepy") could
be created, perhaps with a CHANCE or a count of time outs to make
it less monotonous!

The true CondAct;

QUIT

SM12 ("Are you sure?") is printed and the input routine
called. Will succeed if the player replies with the first letter
of SMJO ("Y") to the prompt. If not then Actions NEWTEXT and
DONE are performed.

Actions

There are nineteen actions to deal with the manipulation of
object positions;

GET objno.

If,,Object objno. is worn or carried, SM2S ("I already have the
_.) is printed and actions NEWTEXT DONE are performed.

If Object objno. is not at the current location, SM26 ("There
isn't one of those here.") is printed and actions NEWTEXT DONE
are performed.

If the total weight of the objects carried and worn by the player
plus Object objno. would exceed the maximum conveyable weight
(Flag S2) then SM43 ("The_ weighs too much for me.") is printed
and actions NEWTEXT DONE are performed.

If the maximum number of objects is being carried (Flag is

14

The CondActs

greater than, or the same as, Flag 37), SM27 ("I can't carry any
more things.'') is printed and actions NEWTEXT DONE are performed.
In addition any current DOALL loop is cancelled.

Otherwise the position of Object objno. is changed to carried,
Flag 1 is incremented and SM36 ("I now have the .") is printed.

DROP objno.

If Object objno. is worn then SM24 ("I can't. I'm wearing the
.") is printed and actions NEWTEXT DONE are performed.

If Object objno. is at the current location (but neither worn nor
carried), SM49 ("I don't have the .") is printed and actions
NEWTEXT DONE are performed.

If Object objno. is not at the current location then SM28
don't have one of those.") is printed and actions NEWTEXT
are performed.

("I
DONE

Otherwise the position of Object objno. is changed to the current
location, Flag 1 is decremented and SM39 ("I've dropped the_ . ")
is printed.

WEAR objno.

If Object objno. is at the current location (but not carried or
worn) SM49 ("I don't have the .") is printed and actions NEWTEXT
DONE are performed.

If Object objno. is worn, SM29 ("I'm already wearing the .") is
printed and actions NEWTEXT DONE are performed.

If Object objno . is not carried, SM28 ("I don't have one of
those.") is printed and actions NEWTEXT DONE are performed.

If Object objno. is not flagged as Wearable (WR option in the
object weight menu) then SM40 ("I can't wear the .") is printed
and actions NEWTEXT DONE are performed.

Otherwise the position of Object objno. is changed to worn, Flag
1 is decremented and SM37 ("I'm now wearing the . ") is printed.

REMOVE objno.

If Object objno. is carried or at the current location (but not
worn) then SMSO ("I'm not wearing the .") is printed and actions
NEWTEXT DONE are performed.

If Object objno. is not at the current location, SM23 ("I'm not
wearing one of those.") is printed and actions NEWTEXT DONE are
performed.

15

The CondActs

If Object objno. is not flagged as wearable (and thus removeable)
then SM41 ("I can't remove the . ") is printed and actions
NEWTEXT DONE are performed.

If the maximum number of objects is being carried (Flag is
greater than, or the same as, Flag 37), SM42 ("I can't remove the

My hands are full.") is printed and actions NEWTEXT DONE are
performed.

Otherwise the position of Object objno. is changed to carried.
Flag 1 is incremented and SM38 ("I've removed the .") printed.

CREATE objno.

The position of Object objno. is changed to the current location
and Flag 1 is decremented if the object was carried.

DESTROY objno.

The position of Object objno. is changed to not-created and Flag
1 is decremented if the object was carried.

SWAP objno objno
1 2

The positions
adjusted. The
objno .

2

of the two objects are exchanged. Flag 1 is not
currently referenced object is set to be Object

PLACE objno. locno+

The position of Object objno. is changed to Location locno. Flag
1 is decremented if the object was carried. It is incremented if
the object is placed at location 254 (carried).

PUTO locno+

The position of the currently referenced object (i.e. that object
whose number is given in flag 51), is changed to be Location
locno. Flag 54 remains its old location. Flag 1 is decremented if
the object was carried. It is incremented if the object is placed
at location 254 (carried).

PUTIN objno. locno.

If Object locno. does not exist or is not flagged as a container
(option C on the object weight menu) then a run time error is
generated of "Illegal Argument" .

If Object objno. is worn then SM24 ("I can't. I'm wearing the
_ . ") is printed and actions NEWTEXT DONE are performed.

If Object objno. is at the current location (but neither worn nor
carried), SM49 ("I don't have the . ") is printed and actions

16

The CondActs

NEWTEXT DONE are performed.

If Object objno. is not at the current location, but not carried,
then SM28 ("I don't have one of those.") is printed and actions
NEWTEXT DONE are performed.

Otherwise the position of Object objno. is changed to Location
locno. Flag 1 is decremented and SM44 ("The is in the"), a
description of Object locno. and SM51 (" .") is printed.

TAKEOUT objno. locno.

If Object locno. does not exist or is not flagged as a container
(option C on the object weight menu) then a run time error is
generated of "Illegal Argument".

If Object objno. is worn or carried, SM25 ("I already have the
_.") is printed and actions NEWTEXT DONE are performed.

If Object objno. is at the current location, SM45 ("The isn't
in the"), a description of Object locno. and SMS 1 ("-:-") is
printed and actions NEWTEXT DONE are performed .

If Object objno. is not at the current location and not at
Location locno. then SM52 ("There isn't one of those in the"), a
description of Object locno. and SM51 (".") is printed and
actions NEWTEXT DONE are performed.

If Object locno. is not carried or worn, and the total weight of
the objects carried and worn by the player plus Object objno.
would exceed the maximum conveyable weight (Flag 52) then SM43
("The weighs too much for me.") is printed and actions NEWTEXT
DONE are performed.

If the maximum · number of objects is being carried (Flag 1 is
greater than, or the same as, Flag 37), SM27 ("I can't carry any
more things.") is printed and actions NEWTEXT DONE are performed.
In addition any current DOALL loop is cancelled.

Otherwise the position of Object objno. is changed to carried,
Flag 1 is incremented and SM36 ("I now have the . ") is printed.

Note: No check is made, by either PUTIN or TAKEOUT, that Object
locno. is actually present. This must be carried out by you if
required.

DROP ALL

All objects which are carried or worn are created at the current
location (i.e. all objects are dropped) and Flag 1 is set to 0.
This is included for compatibility with older writing systems.
Note that a DOALL 254 will carry out a true DROP ALL, taking care
of any special actions included.

17

The CondActs

The next six actions are automatic versions of GET, DROP, WEAR,
REMOVE , PUTIN and TAKEOUT. They are automatic in that instead of
needing to specify the object number, they each convert
Noun(Adjective)1 into the currently referenced object - by
searching the object word table. The search is for an object
which is at one of several locations in descending order of
priority - see individual descriptions. This search against
priority allows PAW to 'know' which object is implied if more
than one object with the same Noun description (when the player
has not specified an adjective) exists; at the current location ,
carried or worn - and in the container in the case of TAKEOUT.

AU TOG

A search for the object number represented by Noun(Adjective)l is
made in object word in order of location priority; here, carried,
worn. i.e. The player is more likely to be trying to GET an
object that is at the current location than one that is carried
or worn. If an object is found its number is passed to the GET
action . Otherwise if there is an object in existence anywhere in
the game or if Nounl was not in the vocabulary then SM26 ("There
isn't one of those here.") is printed. Else SM8 ("I can't do
that . ") is printed (i . e. It is not a valid object but does exist
in the game). Either way actions NEWTEXT DONE are performed

AUTOD

A search for the object number represented by Noun(Adjective)1 is
made in object word in order of location priority; carried, worn,
here. i .e. The player is more likely to be trying to DROP a
carried object than one that is worn or here . If an object is
found its number is passed to the DROP action. Otherwise if there
is an object in existence anywhere in the game or if Nounl was
not in the vocabulary then SM28 ("I don't have one of those.") is
printed. Else SM8 ("I can't do that.") is printed (i.e . rt is not
a valid object but does exist in the game) . Either way actions
NEWTEXT DONE are performed

AUTOW

A search for the object number represented by Noun(Adjective)1 is
made in object word in order of location priority; carried, worn,
here. i . e. The player is more likely to be trying to WEAR a
carried object than one that is worn or here . If an object is
found its number is passed to the WEAR action. Otherwise if there
is an object in existence anywhere in the game or if Nounl was
not in the vocabulary then SM28 ("I don't have one of those.") is
printed. Else SM8 ("I can't do that.") is printed {i.e. It is not
a valid object but does exist in the game). Either way actions
NEWTEXT DONE are performed

18

The CondActs

AU TOR

A search for the object number represented by Noun(Adjective)l is
made in object word in order of location priority; worn, carried,
here. i.e. The player is more likely to be trying to REMOVE a
worn object than one that is carried or here . . If an object ~s
found its number is passed to the REMOVE action. Otherwise 1f
there is an object in existence anywhere in the game or if Nounl
was not in the vocabulary then SM23 ("I'm not wearing one of
those.") is printed. Else SM8 ("I can't do that . ") is printed
(i.e. It is not a valid object but does exist in the game) .
Either way actions NEWTEXT DONE are performed

AUTOP locno.

A search for the object number represented by Noun(Adjective)1 is
made in object word in order of location priority; carried, worn,
here. i . e. The player is more likely to be trying to PUT a
carried object inside another than one that is worn or here. If
an object is found its number is passed to the PUT~N action.
otherwise if there is an object in existence anywhere 1n the game
or if Nounl was not in the vocabulary then SM28 {"I don ' t have
one of those.") is printed. Else SMB ("I can' t do that . "') is
printed (i.e. It is not a valid object but does exist in the
game). Either way actions NEWTEXT DONE are performed

AUTOT locno.

A search for the object numbe.r represented by Noun(Adjective l 1 is
made in object word in order of location priority; in container,
carried, worn, here. i . e. The player is more likely to be trying
to get an object out of a container which is actually in there
than one that is carried, worn or here . If an object i s found its
number is passed to the TAKEOUT action. Otherwise if ' there is an
object in existence anywhere in the game or if Nounl was not in
the vocabulary then SM52 ("There isn't one of those in the"), a
description of Object locno. and SM51 (".") is printed. Else SM8
("I can ' t do that.") is printed (i.e. It is not a valid object
but does exist in the game). Either way actions NEWTEXT DONE are
performed

Note: No check is made, by either AUTOP or AUTOT, that Object
locno. i s actually present. This must be carried out by you - if
required.

COPYOO objno objno
1 2

The position of Object
position of Object Objnol .
to be Object objno .

2

objno2 is set to be the same as the
The currently referenced object i s set

19

The CondActs

There are four actions which allow various parameters of objects
to be; placed in flags, set from flags - for comparison or
manipulation.

COPYOF objno. flagno.

The position of Object objno. is copied into Flag flagno. This
could be used to examine the location of an object in a
comparison with another flag value. e.g. COPYOF 1 11 SAME 11 38
could be used to check that object 1 was at the same location as
the player - although !SAT 1 255 would be better!

COPYFO flagno. objno.

The position of Object objno. is set to be the contents of Flag
flagno. An attempt to copy from a flag containing 255 will result
in a run time error of "Invalid Argument '. '. Setting an object to
an invalid location will still be accepted as it presents no
danger to the operation of PAW.

WHATO

A search for the object number represented by Noun(Adjective)l is
made in object word in order of location priority· carried worn
here. This is because it is assumed any use of

0

WHATO will b~
related to carried objects rather than any that are worn or here.
If an object is found its number is placed in flag 51, along with
the standard current object parameters in flags 54-57. This
allows you to create other auto actions (the tutorial gives an
example of this for dropping objects in the tree).

WEIGH objno . flagno.

The true weight of Object objno. is calculated (i.e. if it is a
container, any objects inside have their weight added - don't
forget that nested containers stop adding their contents after
ten level~) and the value is placed in Flag flagno. This will
ha~e a maximum value of 255 which will not be exceeded. If Object
ObJno. is a . cont~iner of zero weight, Flag flagno. will be
cleared as obJects in zero weight containers, also weigh zero!

Now ten actions to manipulate the flags;

SET flagno.

Flag flagno. is set to 255.

CLEAR flagno.

Flag flagno. is cleared to O.

20

LET flagno. value

Flag flagno. is set to value.

PLUS flagno. value

Flag flagno. is increased by value.
the flag is set to 255.

MINUS flagno. value

Flag flagno. is decreased by value.
the flag is set to 0.

ADD flagno f lagno
1 2

The CondActs

If the result exceeds 255

If the result is negative

Flag flagno2 has the contents of Flag flagnol added to it. If the
result exceeds 255 the flag is set to 255.

SUB flagno flagno
1 2

Flag flagno2 has the contents of Flag flagnol subtracted from it.
If the result is negative the flag is set to 0 .

COPYFF flagno flagno
1 2

The contents of Flag f lagno is copied to Flag f lagno .
1 2

RANDOM flagno.

Flag flagno. is set to a number from the Pseudo-random sequence
from 1 to 100. This could be useful to allow random decisions to
be made in a more flexible way than with the CHANCE condition.

MOVE flagno.

This is a very powerful action designed to manipulate PSI's. It
allows the current LS Verb to be used to scan the connections
table for the location given in Flag flagno. If the Verb is found
then Flag flagno. is changed to be the location number associated
with it, and the next condact is considered. If the verb is not
found, or the original location number was invalid, then PAW
considers the next entry in the table - if present. Thus you
could consider that PAW carries out the following imaginary
entries on exit from Response if no action has been done;

MOVE
DESC

38

LT 33 14
SYSMESS 7
DONE

;Attempt to move player
;Describe his new lac.

;Movement word?
;"Can't go that way . . "

21

The CondActs

SYSMESS B ;"I can't do that"

This feature could be used to provide characters with Random
movement in valid directions; by setting the LS Verb to a random
movement word and allowing MOVE to decide if the character can go
that way . Note that any special movements which are dealt with in
Response for the player, must be dealt with separately for a PSI
as well.

Three actions to manipulate the flags dealing with the player;

GOTO locno.

Changes the current location to locno. This effectively sets flag
38 to the value locno.

WEIGHT flagno.

Calculates the true weight of all objects carried and worn by the
player (i . e . any containers will have the weight of their
contents added upto a maximum of 255), this value is then placed
in Flag flagno . This would be useful to ensure the player was
not carrying too much weight to cross a bridge without i t
collapsing etc.

ABILITY value value
1 2

This sets Flag 37, the maximum number of objects conveyable, to
valuel and Flag 52, the maximum weight of objects the player may
carry and wear at any one time (or their strength), to be value2 .
No checks are made to ensure that the player is not already
carrying more than the maximum. GET and so on, which check the
values, will still work correctly and prevent the player carrying
any more objects, even if you set the value lower than that which
is already carried!

There are seven actions which deal with the manipulation of the
flags for screen mode, format and input etc;

MODE mode option

There are five screen modes each controlled by Flag 40 and set
using the MODE action thus:-

22

Mode O

If a picture (other than ' subroutine') is present in the
database, the screen is cleared to the default colours and
the picture drawn. Once a key is pressed the original
colours are restored, and the location is described.

The CondActs

Mode

Text Only. Full screen scroll. Text is output to the screen
continuously. CLS is not active on describe.

Mode 2

If a picture (other than ' subroutine') is present in
database, the screen is cleared to the default colours
the picture drawn . The original colours are restored,
area below the line given in Flag 41 is cleared and
printed from the same line.

Mode 3

As Mode 2 above but the picture does not scroll away.

Mode 4

the
and
the

text

A text only mode which protects the location description as
if it were a picture, all other text scrolls under . Y~u
will probably need a PROTECT action at a suitable point in
Process 1 (e.g. after LISTOBJ7) as otherwise only as far as
the last but one line of the text will be protected.

In all the graphic modes above; option 2 forces the border NOT to
be set to the Paper colour - it's best to select this on modes 2
& 3 as the border is reset as soon as the picture is fu~ly dra~n
causing an annoying flicker. Option 1 makes SM32 (More .. .)
appear when the screen area fills (unlike 'Scroll?' you cannot
break out - well, in the editor you cant) . Option 3 of course
provides both options and option 0 neither! e.g . MODE 4 1 will
select a fixed text window with a "More ... " prompt.

LINE lineno.

This sets the line that text should be printed from in the split
screen graphic modes, and in the case of mode 2 the top line of
the area to be cleared. Be careful when using a lower screen
input (see INPUT action) to allow at least four spare lines in
the upper screen (not forgetting to account for the number . of
lines used by the prompt and marker) or a runtime error will
occur if a full input line is entered.

GRAPHIC option

This allows the way in which pictures are dealt with by PAW to be
modified, there are three valid options;

0 - Normal any picture present for a location is drawn when
the pl~yer first visits that location, and then only if
pictures are turned ON or a temporary redraw is
requested .

23

The CondActs

1 - OFF, any pictures are completely ignored by PAW, even if
a temporary redraw is requested

2 - ON, any picture present for a location is drawn every
time the player visits that location .

There is an option 3 (option= 2+1) but pictures OFF takes
priority anyway, so it is redundant. The current picture for a
location can be redrawn by adding 128 to Flag 29, this is a
temporary redraw, which can be used for when the player requests
the picture in Normal mode. i.e. PLUS 29 128 DESC would be the
required entry in Response.

PROMPT sysno.

Causes System message sysno. to be displayed whenever PAW obtains
a command line from the player. A value of 0 (default) will cause
PAW to select one of SM2,SM3,SM4 or SMS in the ratio 30 : 30:30:10
respectively. Note this does not affect the prompts displayed by
the END or QUIT condacts .

TIME duration option

Allows input to be set to 'timeout' after a specific duration in
1.28 second intervals, i.e. the Process 2 table will be called
again if the player types nothing for the specified period.
'option' allows this to also occur on ANYKEY and the "More ... "
prompt. In order to calculate the number to use for the option
just add the numbers shown next to each item to achieve the
required combination;

1 - While waiting for first character of Input only.
2 - While waiting for the key on the "More . . . " prompt.
4 - While waiting for the key on the ANYKEY action.

e . g. TIME 5 6 (option = 2+4) will allow 6.4 seconds of inactivity
on behalf of the player on input, ANYKEY or "More ... " and between
each keypress. Whereas TIME 5 3 (option ~ 1+2) allows it only on
the first character of input and on "More .. . ".

TIME 0 0 will stop timeouts (default).

INPUT option

This action allows the way the input routine operates to be
changed by selecting options. Some combinations are of no use but
are a by product of the way PAW works. To calculate the number to
use for the option just add the numbers shown next to each item
to achieve the required combination;

1 - will cause the input prompt, marker and cursor to be
displayed in the lower screen area. This is the
preferred input mode for time out games, where timeout

The CondActs

2 -

can occur between keypresses. as the input line is
left partially printed if a timeout occurs part

through.

will cause PAW to print a copy of the input line
ENTER is pressed this is for use mainly with item
allow the final input line to be displayed on screen
that the player knows what has been typed.

not
way

when
1 to

so

4 _ This will cause the reprint of any text input ~o far,
when input is resumed after a timeout. Again mainly for
use with item 1 when timeout can occur between

keypresses.

A default of INPUT o (no options) i s assumed by PAW.

PROTECT

4 i 1 Th ·s action sets the
Used i· n con1' unction with MODE ma n y . i

t h lli text window. It current print line as the top of e scro ng 11 d

S
hould only be d within Process 1 (it will be a owe

use meaning) after any text you want protected
elsewhere but has no I ft a LISTOBJ action
has been printed. This is usually before a er
as objects are usually the last thing printed.

d t llow say a picture and part
It also has uses in other mo es 0 at t d with the remainder
of the location description to be pro ec e '
of the text scrolling underneath!

Three actions to deal with the printing of flag values the on

screen;

PRINT flagno.

The decimal contents of Flag flagno. are d1~splayed in th~h~~r~:n;
1 rs without leading or trai ing spaces .

temporaryfc~ ~~tion Say flag 100 contained the number of coins
veryi dusebyuthe play~r then an entry in a process table of MES 10
carr e ' 1 (" ld · s ") could be ("You have ") PRINT 1 00 MESSAGE 1 go coin · ,
used to display this to the player.

TURNS

SM
17

_ 20 "You have taken x turn(s) . " is printed where x is Flag 31

+ 256 * Flag 32.

SCORE

SM21 _ 22 "You have scored xt" is printed where x i s Flag 30.

25

The CondActs

Thirteen(!) actions to deal with screen output and control;

CLS

Clears the screen to current background colours Also clears the
current print position and SAVEAT position to o:o.
NEWLINE

Prints spaces to the end of the current line and then resets the
colours & character set to the current background colours.

MES mesno.

Prints Message mesno . in the current temporary colours .

MESSAGE mesno.

Prints Message mesno. in the current temporary
carries out a NEWLINE action.

SYSMESS sysno.

colours, then

Prints System Message sysno . in the current temporary colours.

PICTURE locno .

Draws graphics picture locno. regardless of whether ·
subroutine or main picture. Note: the screen and colour~t is a
cleared first as with describe location. This are not
add (or take away if you use PRINTAT and MES could be used to

) to remove with spaces parts of a picture. The sample game T
feature several times. ~ that ~ picture will b EWK uses this
last point used .Qy the previous picture drawn! ~ ~ from the

PAPER n

Where n ranges from O to 9. Ch anges background paper colour.
INK n

Where n ranges from o t 9 Ch o · anges background ink colour.
BORDER n

Where n range from O to 7. Ch anges screen border colour.

CHARSET value

Changes main character t t
action is taken. se o value given if valid, otherwise no

26

The CondActs

The next three screen control actions allow a section of text to
be printed on the screen away from the current print position.
This could be used to provide an information line on top of the
current picture, or a section of text in a small window on the
picture etc etc . TEWK uses this facility to provide its drop down
window inventory in response to the STATUS command.

SAVEAT

Flushes the current wordwrap buffer thus restoring the current
background colours. Then saves the current print position,
overwriting any previously saved position.

BACKAT

Flushes the current wordwrap buffer thus restoring the current
background colours. Then restores the print position last saved
by SAVEAT .

PRINTAT lineno. colno.

The current print position is changed to the specified value.
Note this will also flush the wordwrap buffer and restore the
temporary colours to the background colours.

Three actions dealing with listing objects on the screen . The
first two are controlled by/set the value of flag 53 as described
in the chapter on objects.

LISTOBJ

If any objects are present then SMl ("I can also see:") is
printed, followed by a list of all objects present at the current
location. If there are no objects then nothing (as in null, not
the word!) is printed.

LISTAT locno+

If any objects are present then they are listed . Otherwise SM53
("nothing.") is printed - note that you will usually have to
precede this action with a message along the lines of "In the bag
is;" etc. It would be possible to create an alternative to the
INVEN action described next by using 253 & 254 as parameters for
LISTAT.

INVEN

This action is not affected by the continuous object list flag
for compatability with older writing systems.

SM9 ("I have with me:-") is printed. If no objects are carried
or worn SMll ("Nothing at all.") is printed. Otherwise the object

27

The CondActs

text for each object that is carried or worn is printed on a
separate line. If an object is worn its object text is followed
by SM10 (" (worn)"), right aligned on the next line if it will
not fit on the same one. Action DONE is then performed.

The two actions which completely exit Response/Process execution-;

DESC

Will cancel any DOALL loop, any sub-process calls and make a jump
to describe the current location .

END

SM13 ("Would you like to play again?") is printed and the input
routine called . Any DOALL loop and sub-process calls are
cancelled . If the reply does not start with the first character
of SM31 a jump is made to Initialise. Otherwise a jump is made
to the Editor (if it is present) or to the BASIC NEW command.

Three exit table actions;

DONE

This action jumps to the end of the process table and flags to
PAW that an action has been carried out. i . e. no more condacts or
entries are considered . A return will thus be made to the
previous calling process table, or to the start point of any
active DOALL loop .

NOTDONE

This action jumps to the end of the process table and flags to
PAW that no action has been carried out. i.e. no more condacts or
entries are considered. A return will thus be made to the
previous calling process table or to the start point of any
active DOALL loop. This will cause PAW to print one of the "I
can't" messages if needed. i.e. if no other action is carried out
and no entry is present in connections for the current Verb.

OK

SM15 ("OK") is printed and action DONE is performed.

28

' ,

The CondActs

Four actions to allow the current state of the game to be saved
and restored;

SAVE

SM54 is printed to request a filename, and the input line
presented . The standard start tape message for the spectrum is
printed at the bottom of the screen. When a key is pressed the
game position is saved to tape , then action DESC is performed.
If BREAK is pressed during the save a jump is made to Initialise.
The save includes all information required to allow the
restoration of the game to the exact same state as it was before
the save, including the values of flags, positions of objects,
picture drawn flags etc .

LOAD

A filename is obtained using SM54 and the standard input line.
The named file is serched for on the tape and the data loaded
which should be a game position. The action DESC i s performed. If
BREAK is pressed during the load or a tape error is detected a
jump is made to Initialise . If data is loaded which is not a
game position , a tape error will normally be detected .

RAMSAVE

In a similar way to SAVE this action saves all the information
relevant to the game in progress not onto tape but into a memory
buffer. This buffer is of course volatile and will be destroyed
when the machine is turned off which should be made clear to the
player. In addition it will also be cleared when you return to
the editor section of PAW - in case you then change the design of
the game!

RAMLOAD flagno.

This action is the counterpart of RAMSAVE and allows the saved
buffer to be restored. The parameter specifies the last flag to
be reloaded which can be used to preserve values over a restore,
for example an entry of:

RAMLO COPYFF 30 255
RAMLOAD 254
COPYFF 255 30
DESC

could be used to maintain the current score, so that the player
can not use RAMSAVE/LOAD as an easy option for achieving 100\1

Note: unlike SAVE and LOAD the RAM actions allow the next Condact
to be carried out . They should normally always be followed by a
DESC in order that the game state is restored to an identical
position .

29

The CondActs

The actions could be used to implement an OOPS command that is
common on other systems to take back the previous move; by
creating an entry in Process 2 (or Response) which does an
automatic RAMSAVE every time the player enters a move.

Two actions to allow the game to be paused for a time or until a
key is pressed;

ANY KEY

SM16 ("Press any key to continue") is printed at the bottom of
the screen and the keyboard is scanned until a key is pressed or
until the timeout duration has elapsed if enabled.

Pl\USE value

Pauses for value/SO sees.
pause is for 256/50 sees.
the duration of the pause.

However, if value is zero then the
Note that the keyboard is disabled for

Two actions to deal with control of the parser;

PARSE

This action was designed to deal with speech to PSis. Any string
(i.e. a further phrase enclosed in quotes [""]) that was present
in the players current phrase is converted into a LS
overwriting the existing LS formed originally for that phrase . If
no phrase is present, or it is invalid, then PAW will look at the
next condact, the text is not marked as illegal by a NEWTEXT
action as you might expect, so you must explicitly include one if
required. Otherwise the next entry is considered with the
new LS of the speech made to the PSI . Because it overwrites the
current LS it must be used only in a sub-response table, the
table will have the form of:

* * PARSE ;Always do this entry

MESSAGE x ;"They don't understand"

DONE

word word CondAct list ;Any phrases PSI understands

MESSAGE x ;as above or different message

there will be two or more calling entries which will be similar

to:

SAY

30

name SAME
PROCESS
DONE

pos
y

38 ;Are they here?
; Decode speech ..
;LS destroyed so always DONE.

j ·

The CondActs

SAY name MESSAGE
DONE

z ;"They are not here!"

See the Notebook for details on using statements in a string. PARSE to deal with multiple

NEWTEXT

Forces the loss of any remaining phrases on the current
;i~~~s~o~nwpo~ldhuse1dthis to . prevent the player continuing wi~~~~~

u s ou something go badly for his situation
the GET action carries out a NEWTEXT if it fails to · t et~·
requtired object for any reason, to prevent disaster g!ith e
sen ence such as: a

GET SWORD AND KILL ORC WITH IT

as attacking the ORC without the sword may be dangerous!

One action to deal with sound

BEEP duration pitch

Both duration and pitch may range from o to 255 .
unit~ of one hundredth of a second . The value
obtained by taking the value you would use in
command, adding 60 then dividing by 2 .

Duration is in
of pitch is

a BASIC BEEP

Several actions which are more difficult to classify;

PROCESS procno.

This powerful action transfers -the attention of PAW to the
specified Process table number. This sub-process will exhibit the
same features as the table which called it i e if 11 d
Response, PAW will match the Verb and Nounl ·of th~ LS ea. et t~~
word e~tries as with the main table. Note that it ~;ai~s true
subroutine call and any exit from the new tabl (
etc) will return control to the condact which f~ll~~; · th~O~lli~K
PROCESS action. A sub-process can call (nest) f th g to a depth f 10 t ur er process' o a which point a run time error of "L · · t
reached" will be generated . imi

DOALL locno+

~not~er powerful action which allows the implementatio of
ALL type command. n an

1 - An attempt is made to find an object at Location locno .
If this i s unsuccessful the DOALL is c ancelled a nd

31

The CondActs

action DONE is performed.

2 - The object number is converted into the LS Nounl (and
Adjectivel if present) by reference to the object word
table. If Noun(Adjective)l matches Noun(Adjective)2 then
a return is made to step 1 . This implements the "Verb
ALL EXCEPT object" facility of the parser.

3 - The next condact and/or entry in the table is then
considered . This effectively converts a phrase of "Verb
All" into "Verb object" which is then processed by the
table as if the player had typed it in .

4 - When an attempt is made to exit the current table, if
the DOALL is still active (i.e. has not been canceled by
an action) then the attention of PAW is returned to the
DOALL as from step 1; with the object search continuing
from the next highest object number to that just
considered.

The main ramification of the search method through the object
word table is; objects which have the Same Noun(Adjective)
description (where the game works out which object is refered to
by its presence) must be checked for in ascending order of object
number, or one of them may be missed.

use of DOALL to implement things like OPEN ALL must account for
the fact that doors are often flags only and would have to be
made into objects if they were to be included in a DOALL.

RESET locno+

This actj on is designed to allow the implementation of multi-part
games where the objects which are not carried forward are reset
to their starting location.

All objects which can be carried between parts must be
(with the same description) in each part. Any others
reused within each part at will.

present
may be

Any objects which are present at the current location are moved
to Location locno. And the current location is set to be locno.
Any other objects are set to the locations given by the Initially
At table. No effect on flags. Action DESC is performed when
complete .

The suggested method of its use is given. in the chapter on multi­
part games in the Notebook.

EXTERN value

Calls an external routine with parameter value.
dealt with in a section in the Notebook
specialised, and not intended for the beginner.

32

This command is
as its use is

The Database

Detailed Description of the Database

The database consists of a number of inter-related tables and
also contains an area of miscellaneous information e . g . values of
background colours, number of objects conveyable, character sets
etc. On a 128K machine the main data areas and pointers are
present for each RAM page. Effectively each page is an
independent database. The tables present (in the order they
appear in memory) are:-

UDG's

This table, which is 152 bytes long, contains the User Defined
Graphics. The UDG's can be changed with the character editor
described later. Codes 144-162.

Shades

This table is 128 bytes long and contains the graphics Shade
patterns. These can be changed with the character editor as
described later . Codes 0-15.

The above two tables are saved/loaded as a pair and are termed
character set 0 . (although the ROM set provides codes 32-127) .

Miscellaneous

Several small tables and values , 50 bytes in total.

Hunks

Any misc. data blocks inserted by user overlays. May be empty.

Character Sets

This table is empty until a character set is inserted using the
character editor . 768 bytes are used then by each character set
inserted.

Dictionary

This table contains only one byte until the compressor is used
for the first time on the database. After that it contains 222
bytes of expansion dictionary to allow the tokens 165-255 to be
converted into the letter groupings they represent.

The Process tables

These tables form the heart of the database providing
game control.

the main

33

The Database

The Response Table

Each entry contains the word values of the Verb and Noun for the
LS the entry is to deal with followed by any number of condact
When the adventure is played, if there is an entry in the tab~~
which matches the Verb and Nounl of the LS entered then the
condacts are performed. The condacts that may be present and the
effect that they have is fully specified in the description of
the Interpreter. The order of entries in the table is in
ascending order of the Verb value. Entries which have the same
Verb value are held in ascending order of the Noun value
Entries with the same Verb and Noun value are held in the orde~
they were inserted into the database. The word " " has d f
value 255 while the word "*" has a word value of T. An e=~~~e ~f
the order of the table, with word value shown in brackets i
follows :- , s as

* (1)
LOOK (30)
LOOK (30)
LOOK (30)
GET (100)
GET (100)
GET (100)
GET (100)

(255)

*
UP
DOWN

* KEY
LAMP
LAMP

(1)
(10)
(11)
(255)
(1)
(16)
(26)
(26)
(255)

The other process tables are held in the same format, but the
words are ignored by PAW when they are scanned, unless the
process is called from within Response using a PROCESS action.

Process

Is scanned by PAW after a location is described, to allow any
additional information which forms a part of the location
description to be displayed.

Process 2

Is scanned by PAW every time frame.
extracted from the player's input,
input.

That is after every phrase
or after every timeout on

Any further sub- processes follow the initial three when
the Process option of the main menu. begun on

The Verb and Noun used for each entry in Process 1 and 2
~uh-processes called from them) have no
ignored but can be used to provide a note

(and any
meaning as they are
as to the function of that entry within the table .

Every
in a

34

process table has an overhead of seven bytes (21 are used
null database as three - including Response - are already

The Database

present .). Each entry subsequently uses 5 bytes and each condact
uses 1, 2 or 3 bytes depending on the number of parameters.

Note: If a word is deleted from the vocabulary, and no synonyms
of it are present, then all entries in the process tables
(including Response) which contain that word, are also deleted .
The Object Text table

This table , which has an entry for each object, contains the text
which is printed when an object is described. Each entry uses 3
bytes plus the length of the text. An object is anything in the
adventure which may be manipulated and objects are numbered from
0 upwards. Object 0 is assumed by the Interpreter to be a source
of light. Whenever a new object text is inserted an entry of
not-created is made for that object in the Initially at table , an
entry of " _ " in object word and a weight of 1 unit without a
container or wear/remove attribute i s inserted into the object
weight table

The Location Text table

This table, which has an entry for each location, contains the
text which is printed when a location is described. Each entry
uses 3 bytes plus the length of the text . The entries are
numbered from 0 upwards and location 0 is the location at which
the adventure starts . Whenever a new location is inserted a null
entry for that location i~ also made in the connections table.

The Message Text table

This table contains the text of any messages which are needed for
the adventure. The messages are numbered from 0 upwards and each
one uses 3 bytes plus the length of the text.

The System Messages

This table contains the messages used by the Interpreter . Each
entry uses 3 bytes plus the length of the text. The description
of the Interpreter shows when these messages are used. In
addition extra messages can be inserted by the writer to provide
messages for the game if so required.

The Connections table

This table has an entry for each location and each entry may
either be empty (null) or contain a number of 'movement pairs ' .
A movement pair consists of a word value of a Verb (or conversion
Noun) from the vocabulary followed by a location number. This
means that any Verb (or conversion Nouri) with that word value
causes movement to that location. A typical entry could be SOUTH
6 EAST 7 LEAVE 6 NORTH 5 which means that SOUTH or LEAVE or their
synonyms cause movement to location 6, EAST or it's synonyms to
location 7 and NORTH or it's synonyms to location 5. Each entry

35

The Database

uses 3 bytes plus 2 bytes for each movement pair.

Note 1. The movement pairs contain the word value not the actual
word. If a word value is deleted from the vocabulary then
all movement pairs which contain that word value are also
deleted.

Note 2. When the adventure is being played it is only the LS Verb
which will cause movement.

Note 3. If a movement is performed by an entry in the Response
table using the GOTO action, then it may not be needed in
the Connections table, unless that entry is required for
a PSI who can move unconditionaly .

The Vocabulary

Each entry in the table uses 7 bytes and contains a word {or the
first five characters, if the word is longer than five
characters) a word type from 0 to 6 and a word value in the range
2-254. The types are:

0 - Verb
1 - Adverb
2 - Noun
3 - Adjective
4 - Preposition
5 - Conjugation
6 - Pronoun

Words with the same word value are called synonyms. The entries
are held in ascending order of word value and within each word
value, entries with more spaces come first e.g.

u
UP
CLIMB
ASCEN(D)

where entries with the same word value also have the same number
of spaces the entry inserted first comes earlier e . g. CLIMB was
inserted before ASCEN(D).

Note 1 . Whenever the editor has to convert from a word value to a
word it takes the first word with that value of the
required type.

Note 2. Verbs and Conversion Nouns with values less than 14
should be reserved for movement words.

The Object Initially At table

This table has a 1 byte entry for each object, which specifies
the location at which the object is situated at the beginning of

36

The Database

the adventure. An object can also start the adventure being
worn, carried or not-created.

The Object Word table

This table has a 2 byte entry for each object, which holds the
Noun and Adjective word values associated with that object.

The Object Weight and Attribute table

This table has a one byte entry for each object. Bit 7 is used to
show if the object can be Worn/Removed (i.e. the WR option) . Bit
6 is used to show that the object is a container (the C option)
and Bits O to 5 define the weight of the object (giving a range
from 0 -63).

The graphics area of the database grows DOWN from the top of
memory:

The Location Flags

This table has a 1 byte entry for each picture; Bit 7 specifies
if the picture can be drawn when that location is reached (i . e .
if the location is not a 'subroutine'), bits 0 to 5 describe the
start PAPER & INK for the picture while bit 6 is unused.

The Picture Table

Each entry in the table uses 3 bytes plus the length of the
Drawstring. There are always the same number of entries as
locations in the adventure. The Drawstring is encoded as a
variety of various length commands which minimise the amount of
memory needed to produce the ·drawing .

The pointers

The main database pointers.

37

The Editor

Detailed Description of the Editor

Each menu option is described in the order it appears;

vocabulary

Insert I word No. Type

No. is in the range 2-254 and Type is in the range 0-6 .

If word is not already present in the vocabulary it is inserted
with a word value of No. and a type of Type.

Delete D word

If word is present in
value are deleted.
in the vocabulary no
synonyms are present,

the vocabulary, it, its type and its word
If synonyms of the word deleted are present
further action is taken. However, if no
then:-

a) all entries in the process tables which use this word
value (in respect of type also) are also deleted.

bi if the word value is less than 14 then all movements in
the connection table which use this word value are also
deleted.

cl All entries in the Object Word Table which use this word
value (in respect of type also) are set to null.

Show synonyms S word

If word is present in the vocabulary, it and all other
the same word value and type are displayed. (Note
Conversion Nouns - those less than 20 - any synonymous
also be shown and vice-versa).

Print P (Type) or L (Type)

words with
that for

Verbs will

Printing is either to the screen using P or to the printer using
L . If Type is specified only words of that type are listed.

Note 1 . Be careful using delete as it can also affect the
process, connections and object word tables. It can also
take a long time (minutes) if the database is large.

Note 2 . Verbs and Nouns with a word value of less than 14 are
assumed to be movement words by the Interpreter and cause
SM7 ("I can't go in that direction.") to be printed
instead of SMB ("I can't do that").

Note J . Word values from 2 to 254 can be used for each word type .

38

The words will not by synonymous because they are of a
different type. This allows over 250 words of each type -
even without synonyms - to exist in the vocabulary!

The Editor

Location Text

Insert I

If the maximum number of locations has been inserted then the
error "Limit Reached" is generated. Otherwise the next available
location number on the highest used RAM page (shown on the Free
Memory option) is allocated and a null entry is made for it in
the graphic location flags, the picture table, connections table
and the location text table . Processing then continues with an
automatic call to the amend routine to allow the writer to amend
the null text entry already set up in the location text table .

Begin new Page B

If all RAM pages have been used or the maximum number of
locations have been inserted the error "Limit Reached" is
generated. Otherwise the next available RAM page has a null
database created on it and the next available location number is
assigned. Processing then c ontinues with an automatic call to the
amend routine to allow the writer to amend the null text entry in
the new page.

Amend A locno.

The existing text for Location locno. is copied to
buffer and displayed at the bottom of the screen for
When ENTER is pressed the existing entry is replaced
contents of the input buffer .

Print P (locno.) or L (locno.)

the input
amending.
with the

Printing is either to the . screen using P or to the printer using
L. Printing starts with the text for Location locno. or at the
beginning if locno. is not specified.

Note 1. The start of an adventure is always at Location 0.

Note 2. There is a limit of 252 locations.

Note J. You will be unable to begin a new page if all available
location numbers have been previously allocated.

Connections

Amend A locno.

The existing entry for Location locno. is decoded, copied to the
input buffer and displayed at the bottom of the screen for
amending. When ENTER is pressed the input buffer is vetted to be
empty or to contain word locno. repeated any number of times .
word must be a Verb (or Conversion Noun) which is present in the
vocabulary and locno. must be present in the location text table.

39

The Editor

If there are no syntax errors the existing entry is replaced with
an encoded copy of the input buffer (i.e. words changed to word
values).

Print P (locno.) or L locno.

Printing is either to the screen using P or to the printer using
L. Printing starts with the entry for Location locno. or at the
beginning if locno. is not specified .

Note 1. A location text must be present for a Location before
connections can be present.

Note 2. Any Verbs (or conversion Nouns) in the Vocabulary may be
used in the Connections table not only movement words .

Note 3. When an entry is decoded (for Amend or Print) the word
value is changed into the first Verb (or conversion Noun)
in the Vocabulary with that word value.

Graphics

Amend A picno.

The graphic database is expanded to provide a gap at the end of
the required picture. The main loop of the Graphic Editor
described below is then entered. When return is pressed any gap
still remaining is removed. n.b. unlike editing text the
database itself is changed, thus you cannot abandon an edit with
CAPS SHIFT & 6 (it does a NEXT command for a start!).

Size S

The number of bytes between the start of the drawstring and the
start of the next is calculated and printed on the screen.

Print, Copy and Dump . P picno., C picno. and D picno.

picno. must be specified.

IF D was selected a filename is requested.

The required picture is drawn on the screen.

If C was selected the printer COPY is called (see printer section
for details) .

If D
given
could
using

was selected a SCREEN$ file is saved with the
(i.e. a code block of the screen 16384,6912),
then be used as a loading screen for the game

another art package.

filename
this file
or edited

Note 1. You cannot reload a SCREEN$ file into the database.

40

The Editor

Default Colours

Amend A picno. (Paper Ink)

A flag is set to indicate that picture picno. is a subroutine
unless PAPER and INK values are specified, in which case they are
stored as the default colours for the picture. All locations in
the adventure which do not reguire ~ picture should be Amended ~
~ subroutine .

Print P or L

Printing is either to the screen using P or to the printer using
L. If the location is not a subroutine the colours are printed.

Messages

Insert I

The next available message number is allocated and a null entry
is made for it in the message text table on the highest used RAM
page (shown on the Free Memory option). An automatic call to the
amend routine is then made to allow the user to amend the null
entry.

Begin new Page B

The next available message number is allocated to the null
message on the next RAM page if it has been initialised on the
location text menu. Otherwise the error "Page not initialised" is
generated. Processing continues with an automatic call to the
amend routine to allow the user to amend the null entry.

Amend A mesno.

The existing text for message mesno. is copied to
buffer and displayed at the bottom of the screen for
When ENTER is pressed the existing text is replaced
contents of the input buffer .

Print P (mesno.) or L (mesno.)

the input
amending.
with the

Printing is either to the screen using P or to the printer using
L. Printing starts with the text for message mesno. or at the
beginning if mesno. is not specified .

Note 1. There is a limit of 255 messages, but as system messages
can be inserted and printed they can also be used in the
game providing 510 messages (although some are used)!

Note 2. You cannot begin a new page of messages without first
initialising the page by inserting a location on it .

41

The Editor

System Messages

Insert

The next available system message number is allocated and a null
entry made for it in the system message table Q!! RAM ~ ~- An
automatic call is then made to the amend routine to allow the
writer to amend the null entry .

A.mend A mesno.

The existing text for system message mesno. is
input buffer and displayed at the bottom of
amending. When ENTER is pressed, the existing
with the contents of the input buffer.

Print P (mesno.) or L (mesno.)

copied to the
the screen for
text is replaced

Printing is either to the screen using P or to the printer using
L. Printing starts with the text for system message mesno. or at
the beginning if mesno. is not specified.

Note 1. The description of the Interpreter shows where these
messages are used. They may be changed to use "You"
instead of· "I" if you prefer, i.e. "You're not wearing
it", or even into different languages, but be careful to
maintain their meaning .

Note 2. Messages 30 and 31 are not really messages but contain
the positive and negative replies used in the QUIT and
END condacts. Therefore be very careful changing these
as action END is the main way back to the Editor from the
Interpreter. You shouldn't make them more than one
character in length, or the compressor may tokenise theml

Note 3 . SM10 {" {worn)") has its length calculated by INVEN . This
means it should not include any control codes, and must
be re-entered if the compressor is used to remove any
tokens. In addition, for the calculation of screen
position to work, it should start with a space .

Note 4. SM34 (the cursor) may contain any number of control
characters, but, must not move the print position more
than one character space or input will become confused.
Any input characters will be in the temporary colours in
force at the end of this message.

Note 5. A further 202 messages may be inserted for your own use,
but as there is no equivalent of the MESSAGE action a
NEWLINE action must be carried out explicitly if needed .

Note 6 . CPM PAW uses messages 54 to 60. This should be borne in
mind if you intend transferring a game to another system.

42

The Editor

Object Text

Insert I

The next available object number is allocated and a null entry is
made for it in the object text table. An entry of not-created is
made for it in the object initially at table, an entry of " "
in the object word table and a weight of 1 unit without any
attributes in the object weight table. Processing then continues
with an automatic call to the amend routine to allow the user to
amend the null text entry already set up in the object text
table.

A.mend A objno.

The existing text for Object objno. is copied to the i nput buffer
and displayed at the bottom of the screen for amending . When
ENTER is pressed the existing text is replaced with the contents
of the input buffer .

Print P {objno.) or L {objno.)

Printing is either to the screen using P or to the printer using
L. Printing starts with the text for Object objno. or at the
beginning if objno. is not specified.

Note 1. Object O is considered by the Interpreter to be a source
of light .

Note 2. There is a limit of 255 objects.

Object Initially At table

Specifies the location at which an object is situated at the
start of the adventure.

Amend A objno. locno.

The existing entry for Object objno. is replaced with locno.
which must either be present in the location text table or be one
of the special locnos. 252 not-created, 253 worn or 254 carried .

Print P or L

Printing is to the screen using P or to the printer using L.

Note 1. An object text must be present for an object before a
start location can be present.

43

The Editor

The Object Word table

Amend A objno. Noun Adjective

The existing entry for Object objno. is replaced with the values
of Noun and Adjective which must be present in the Vocabulary (or
be an underline to set the entry to null).

Print P or L

Printing is to the screen using P or to the printer using L .

The Object Weight table

Amend A objno. Weight Option

The existing entry for Object objno, is replaced with the weight
and option specified. The weight may range from O to 63. The
option specifies the object attributes and may take the values:

0 - No attributes
1 - The object is a container.
2 - The object is wearable/removeable
3 The object is a wearable/removeable container!

Print P or L

Printing is to the screen using P or to the printer using L. The
weight can be followed by "C" to indicate a container and/or "WR"
to indicate wearable/removeable.

Note 1 • You may only select the container attribute for an
object, if a location with the same number exists . This
is because PAW treats this location as the 'inside' I

Note 2. A container of weight 0 will not have the weight of its
contents added to any calculation. This could be used to
create a magic sack or a levitation transporter etc .

The Process (including Response) tables

Two options are available only on the main Process sub-menu:

Begin new Table B

The next available process number is allocated and a null table
is created. Processing continues with a call to the Select table
option with the new table number .

Select table S No .

The specified table is made the currently selected table and the
sub-menu is redisplayed.

44

The Editor

The other options are available on both the Response and Process
sub-menus:

Amend A Verb Noun (n)

If an entry number n is not specified the first entry in the
table of Verb and Noun is copied to the input buff er and
displayed at the bottom of the screen for amending . Otherwise the
entry number specified is used (ranging from 0 to the number of
entries inserted - 1). When ENTER is pressed the input buffer is
vetted to be empty, in which case the existing entry is deleted,
or to contain any number of valid condacts. If there are no
syntax errors the existing entry is replaced with the contents of
the input buffer. Any following entries in the table with the
same word values (i . e. Verb and Noun) are then displayed in turn
for amending in the same way.

Insert I Verb Noun (n)

Verb and Noun must be underline characters, asterisk characters
or words which are in the vocabulary . The word values of Verb
and Noun (underline has a word value of 255, asterisk a word
value of 1) are used to find the correct place i n the table for
the new entry to be created. If any entries already exist for
Verb Noun and no entry number n is specified then the new entry
will be created after the existing entries. Otherwise the new
entry will be created before the entry number specified. A null
entry is created at the appropriate place and an automatic call
made to the amend routine to allow the user to amend the null
entry .

The condacts that may be used are shown in the description of the
In.terpreter and in the summary at the end of this guide.

Print P (Verb (Noun)) or L (Verb (Noun))

Printing is either to the screen using P or to the printer
L. Printing starts at the first entry with word values of
Noun If Verb or Noun are not specified then a word value of
assumed . Thus P or L by itself starts at the beginning of
table.

using
Verb
o is

the

Note 1 . To delete an entry; amend it, so that no conditions or
actions remain.

Note 2 . There is a limit of 255 process tables . Calls can be
nested to a maximum of 10, after which an error occurs .

Extra Options

Selects the other display for the main menu.

45

The Editor

Test Adventure

"Do you require diagnostics?" is printed and any reply that
doesn't start with "Y" is assumed to be negative. A jump is then
made to the Interpreter. If diagnostics were requested then
whenever the Interpreters' input routine is used, pressing ENTER
without typing anything will result in the value of a flag being
displayed in the lower screen along with an input prompt. You can
at this point type in the number of another flag to display that
flag's value or an "=" followed by a number to set the flag
displayed to that value. Pressing ENTER returns to the input.

The main way back to the Editor from the Interpr~ter is by
performing the action END in a process table.

Free Memory

The number of unused bytes on each page are printed. Pages which
have not yet been initialised are shown as "unused" and if Page 7
currently contains the overlays this fact is also displayed.
Following the unused memory list will be lists of the last
message and last location used on each page to allow you to
monitor them .

Note that on a 48K spectrum only page 0 will be displayed - as
that's all there is!

Background Colours

The BORDER, PAPER & INK colours may be set to any valid values.
INK 9 (i.e. contrast) is recommended but please note that INK 9
behaves differently in the bottom part of the screen.

In addition if any character sets have been inserted into the
database you will be able to select them as the primary set.

Characters

Characters consist of an 8 by 8 pixel grid and define the way
letters, numbers, punctuation, UDG's and shades look on the
screen. Initially only one character set is present, the one that
is contained within the spectrum ROH. This set is also considered
to contain the 16 shade patterns (codes O to 15) and 19 UDGs
(codes 144 to 162) and is termed Set O.

Insert I

If the maximum number of character sets has not been reached the
next available set number is allocated . A 768 byte entry is
inserted in the characters table and a copy of the designs for
the 96 characters (codes 32 to 127) in the ROH are copied into
the entry. Otherwise an error of "Limit Reached" is generated.

46

The Editor

Amend A set character

The character specified from the set specified is presented on
screen for possible amending. Only characters 0 to 15 and 144 to
162 may be amended from set 0, whereas only characters 32 to 127
may be amended from any other set.

The editor provides three areas of screen : -

1/ The Grid

2/ The Test
Patterns

3/ Status
Area

The bit patterns of a particular character are
shown on a much enlarged (xBI grid of yellow and
white squares, any set bits being shown by a black
square. Also present on the grid is a flashing
red square showing the current cursor position .

are two test patterns of
if it was a shade in both

This does not change as
i t can be updated by

To the right of the Grid
the current character as
normal & Inverted forms.
you change the Grid but
pressing key R for Redraw .

This shows the current character, set and a
summary of the commands available .

In order to modify the pattern use the cursor keys (CAPS SHIFT 5
to 8 on a 48K spectrum) to move the flashing cursor . The state
of the bit under the cursor can be changed at any time using the
SPACE key. ENTER will store the amended character back in the
database. Q will · abandon the edit leaving the character
unchanged.

Print and Copy sets P or C

The currently defined UDG's, Shades and inserted character sets
are printed on the screen.

If C was selected then the printer COPY is called - see printer
section for details .

Load and Save sets L set or S set

If set has been inserted a prompt is printed for a filename,
tenth letter is converted to a (cl sign and the required
loaded or saved as specified . Saving/Loading set 0 acts on
286 bytes of UDG's and Shades.

the
set
the

Note 1 . You cannot amend a character from a set or load a set
until it has been inserted.

Note 2 . The files for sets other than 0 are a standard 768 byte
spectrum character set. They could thus be loaded
into/defined with, a different designer as long as the
filename ends in position 10 with a (cl symbol.

47

The Editor

Compress text

"Compress database (Y/N)?" is displayed and any reply which
doesn't start with "y" is assumed to be negative and causes a
return to the main menu. Otherwise a 222 byte dictionary is
inserted into the database. The database is then scanned for
occurrences of each of 90 common letter groupings which are
replaced with a single byte token in the range 165 to 255. The on
screen counter displays the number of tokens remaining. This
method of compression reduces any text in the game by
approximately 40% This could on a text only 128K game provide an
equivalent of 160K of memory for the garnet

Note 1. When editing text after compression the cursor will skip
2, J, 4 or 5 characters due to the tokenisation.
Corrections should be typed in full as they will be re­
compressed the next time the compressor is used.

Save Database

The database area is saved to tape as a sequence of files, two
per page. The tenth position of the filename is set by PAW as the
letters A to L in sequence for each file .

Verify Database

The files for a database previously saved to tape are checked for
differences against the database currently in memory.

Load Database

The files for a database previously saved to tape are loaded
overwriting any database currently in memory.

Very Important

If BREAK is pressed or a tape error is detected during a load
then the database held in memory will be corrupt and should not
be used as it may corrupt the Editor and Interpreter . Onder
these circumstances the only Editor option which may be used
safely is Load Database and this Should be used until a database
is loaded successfully .

Save 11.dventure

The Interpreter and database are saved to tape as a sequence of
files using the filename specified. They are saved in such a way
that the Adventure will auto run when loaded from BASIC using
LOl\D"" - without the PAW Editor being present.

Verify Adventure

Verifies that an Adventure has been saved correctly.

48

The Editor

Oser Overlays

This allows any of 26 overlays (with the name PAWOVR x) where
'x ' is a letter from A to Z to be loaded into the overlay area
and executed. You will be prompted for which overlay to load .
This can be any of the letters A to Z. PAW then searches the
current device for an overlay with that extension .

This feature is designed to allow third party software producers
to create products which integrate with the PAW system correctly .
The products must be written in assembly language and can be up
to about SK in resident length. PAW PHOSIS/TEL/MEGA are an
example of the many uses to which the feature can be put. More
details are given in the Oser Overlay Writers Guide .

One user
PAWOVR H,
overlays .

overlay is provided on the PAW cassette . This is
the Hunk Manager . You will find this after the other

Hunk Management

The Hunk maager allows the manipulation of the data which may be
inserted in the database by other user overlays. This data is
inserted in a documented fashion by well behaved Oser Overlays
using a system of memory Hunks (sections or areas of the
database). The hunks of memory can be almost any size from 0
bytes (there is always a 3 byte overhead so a zero byte hunk will
be three bytes long - it just won't have any room for
information!) to the size of the free memory (although on a 128K
Spectrum the maximum size of all hunks is limited to about 6K if
you wish to use other character sets).

Each user overlay may own one (or more) hunks to contain
information which will be preserved with the database. An example
of this is the Direction Pointer Table (OPT) of PAW-TEL (one of
the PTM overlays) which is used to describe how the various
directions will be represented with the Map command. Thus it is
related to the database and is included within it to save
retyping it every time you load PAW-TEL.

The Sub-Menu

In the following description of each command, 'overlay' indicates
the letter of the Oser Overlay which 'owns' the hunk. E.g. The
OPT would be owned by overlay 'T' as it is used by PAW-TEL.

Insert I overlay size

Will insert a hunk of space (and initialize it
(plus three byte overhead) belonging to User
Thus to insert a OPT (for PAW-TEL) you would
insert the required space - This will of course
12 of which are for data .

to zero)
Overlay
use I T
insert 15

of size
overlay.

12, to
bytes,

49

The Editor

Delete D overlay (n)

Will allow the n(th) hunk belonging to User Overlay overlay to be
deleted. It is possible (but not usual) for a User Overlay to own
more than one Hunk, this allows you to delete the required one!

Load L overlay (n)

Allows a file to be loaded from the current device into the data
area of the n(th) hunk belonging to User Overlay overlay . rt must
load exactly the right number of bytes (E . g. 12 for a OPT) to
fill the data space of the hunk.

Save S overlay (n)

Allows the data area of the n(th) hunk belonging to user Overlay
overlay to be saved to the current device.

Verify V overlay (n)

Will allow the data area of the n(th) hunk belonging
Overlay overlay to be compared against a file on the
device. This is only of use if no change has occurred
address of the hunk, i.e. soon after Saving it!

Print P

to User
current
in the

Will list any hunks present in the database, as the User Overlay
which 'owns ' them, which number they are and their true size
i.e. including the three byte overhead. There is no theoretical
limit to the number of hunks belonging to a User Overlay, but a
practical limit is set by free memory and the fact that Hunk
Management can handle a maximum of 2551

Uses

The Hunk Management overlay will have no direct use
but as more user overlays become available (or you
yourself) you will find it useful to keep track of
handled by the overlays. Some suggestions follow:

immediately,
write some
data being

1/ Some user overlays may provide no way to Save and Load the
data from their hunks to use in other databases. PAW-TELs' OPT is
a trivial example. You could use the Hunk Management to do this
using its Save and Load commands.

2/ Indeed if they are feature packed some overlays may provide no
way of Inserting a data area for themselves - again this can be
achieved with Hunk Management.

3/ Perhaps the most useful is to allow you to squeeze the last
useful features into your game, by deleting all the unnecessary
Hunks as you approach a full database!

so

The Graphic Editor

Detailed description of the Graphic Editor

This section of PAW allows a variety of operations to be carried
out on the drawstring for a location. When editing, the string
is laid out in memory as follows;

END The end of string marker

NEXT Any commands still undrawn

SPARE Available memory

END Temporary end marker

DRAW The main draw string

A rubber banded line is used for drawing; the base point of the
line (Known as 'point') shows the last point plotted, moved to
etc, the rubber banded end of the line shows the next position of
point or the start point for a fill/shade etc.

The Editor provides four groups of commands. Any which insert a
command into the drawstring require the SYMBOL SHIFT key to be
held down;

1) Drawing Commands

ABS MOVE A

PLOT p

REL MOVE R

LINE L

Moves point to the x,y position of end of the line
setting only the attributes. This is coded as a
PLOT with Inverse and Over set on .

Sets the pixel at the end of the line according to
Inverse and Over, then moves point to that
position.

Moves point to the end of the line without
affecting the screen . This is coded as a relative
offset from the old point.

Draws (or fixes) a straight line from point to the
end of line according to Inverse and Over, then
moves point to end of the line . The line is coded
as a relative offset from the old point.

51

The Graphic Editor

FILL F The area from the end of line (relative) is filled
using solid pixels. Fill works by passing a
pattern to the SHADE routine so the notes on SHADE
apply also

All the above use 3 bytes in the database.

SHADE

Note 1 .

s The area from the end of line (relative) is shaded
with one of a large number of patterns . The
database contains 16 patterns (0-15), which can be
changed using the Character Editor.

The pattern used for shading is determined as
follows : -
a) You are asked for 2 pattern numbers in the
range 0 to 15. If you only want the one pattern
then specify the same number for both patterns .
b) The 2 patterns specified are OR'd together
i . e. they are placed on top of each other.
c) If INVERSE was 'on' the resultant pattern is
inverted, i.e. SET/RESET pixels are swapped.

The shade first works
an upward direction .
doesn't look up and
misses must be shaded
of the start position

in a downward direction and then in
For speed, when it is going down it
vice versa. Any areas the shade
separately, although careful choice
for the shade will minimise this.

Note 2. If the area to be shaded is too complex then the shade
will be abandoned. It has to do this to enable it to
detect when it comes across an area which has already
been shaded. Thus an area can only be shaded once as an
already shaded area will be too complex to shade again .
You should not shade an area and then try to fill in the
background with a fill command, use the Inverse option!

TEXT T If any character sets have been inserted in the
database , a set number is requested . Then a
character code in the range 32 to 162 is
requested. This character is placed on screen in
the character square (as shown by the Grid
command) that the tip of line is contained within.
It is manly designed to allow "the fiddly bits" of
as picture to be drawn using the character editor
- thus using less memory than lots of lines!

Text and Shade use 4 bytes in the database each .

BLOCK B Causes a block of the currently selected colours
to fill the rectangle of attribute squares which
the line defines the diagonal of.

Block uses 5 bytes in the database .

52

The Graphic Editor

2) Colour Commands

INK x

PAPER c

FLASH v

BRIGHT z

The current ink is set to the value selected.
8 as in BASIC causes all ink to be taken from
existing screen attributes.

INK
the

Sets the current paper to the value selected.
PAPER 8 as in BASIC.
The new value of Flash is requested (0,1 or 8).

The new value of Bright is requested (0,1 or 8) .

all the above use one byte in the database .

INVERSE

OVER

Neither
encoded
them.

I

0

The state of Inverse (on/off) is toggled.

The state of Over (on/off) is toggled .

Inverse nor Over use any memory but their state
as part of each future instruction which is affected

is
by

3) Subroutine Command

GO SUB G A picture number is requested which must be in the
range 0 to locno. A scale value for the picture is
then requested. This can be from 0 to 7 where the
number indicates the size · of the picture in
eighths - 0 means 'no scale' (i . e. 8/8) .

Please Note;

a) Scale only affects certain commands, these are
MOVE RELATIVE,LINE,FILL and SHADE. MOVE ABSOLUTE,
PLOT, BLOCK and TEXT commands will not be scaled
or relocated and should generally not be used in
subroutines (although they will work and can be
used usefully sometimes).

b) You may only nest subroutine calls to a level
of ten. (nesting means calling a subroutine from
within a subroutine).

c) Scale does not affect GOSUB commands, i.e. if a
GOSUB is used within a subroutine the string drawn
will be at a fixed size and not scaled.

di Calling the same routine you are drawing will
cause a " Limit Reached" error as the limit of 10
subroutine levels will have been reached .

Gosub uses two bytes in the database.

53

The Graphic Editor

4) Editing commands

START

NEXT

PREVIOUS

DELETE

DELETE NEXT

GRID y

JOYSTICK J

Puts the Orawstr~ng pointer at the start of the
drawstring. ·

Executes next available drawstring command: if
there isn't one the command is ignored.

Moves the drawstring pointer back one command and
updates the screen.

(CAPS SHIFT & 0 on 48K) deletes the previous
command in the drawstring and updates the screen.

GRAPH(ICS) (CAPS SHIFT & 9 on 48K) deletes the
next command if there is one.

Has a toggle action for a character grid of INK 0,
PAPER 7 and PAPER 6. This allows exact positions
of colour boundaries to be taken into account
while drawing.

Toggles the Kempston joystick option on and off .

The keys around S move the end of line around one pixel at a time
(this can be accelerated to eight pixels a time by holding down
the CAPS SHIFT key) thus:

Q

z
J/

t
w E

D-

The joystick should be plugged into Port 2 of Interface 2 or the
Spectrum Plus 2. Alternatively it can be plugged into a Kempston
interface in which case SYMBOL SHIFT & J should be used to enable
PAW to read it. CAPS SHIFT will also accelerate the rate of
movement on the joystick. The Fire button will act like SYMBOL
SHIFT and L to draw a line. ·

54

Errors

Editor Error Messages and their meanings

Due to the complex nature of PAW many features can generate
errors . Whenever an error is discovered a message describing the
error is printed in the lower section of the screen. PAW then
waits for a key to be pressed before returning to the menu on
which that error occurred . There are two exceptions to this :

1/ After an error during ~diting of a drawstring; the Drawstring
pointer is positioned Just before the command which caused the
error (i.e. a NEXT command will cause the error again) . If
you are unable to correct the problem then DELETE NEXT can be
used to delete the erroneous command. Note that this may still
leave further commands undrawn (which may cause another
error).

2/ While an adventure is running; If the PAW editor i s not
present then a jump is made to initialise a new game after the
error report. Otherwise a diagnostic line is printed on the
bottom line of the screen. This displays the Process table,
Verb and Noun of the entry and the condact in which the error
occurred. You are then provided with the flag diagnostics to
help confirm where the error occurred . When ENTER is pressed
the normal error report is printed and a return made to the
main menu of PAW.

When using your own programs in conjunction with
command any of the standard BASIC errors can occur .
that the line and statement number are not printed -
program thoroughly without the adventure present!

the EXTERN
Note though

so test your

PAW also generates several errors of its own which are:

BREAK

STOP in INPUT

Tape loading error

Database full

Limit reached

BREAK was pressed during a peripheral
operation or while a game was running.

CAPS SHIFT & 6 pressed .

as BASIC. Note that a tape error during
a load database means that the database
is corrupt and only reloads should be
attempted.

There is not enough room in the database
for what you were attempting .

The maximum number of locations,
messages, objects, process tables or RAM
pages are already present . Alternatively
the maximum subroutine or sub-process
depth has been reached - 10. This can
also occur if an attempt is made to
DOALL while a DOALL loop is active.

55

Errors

Integer out of range

Out of memory

Invalid Argument

While drawing a picture a LINE command
has gone out of range. This is usually
due to a change of position of the
starting point while editing.

This indicates that the entry for a
process or connection entry was too
large for the buffer (unlikely to
occur). Also occurs when attempting to
start a new RAM page on a 48K spectrum,
loading a 128K game on a 48K spectrum or
if insufficient workspace has been left
e.g. by setting up fixed channels before
loading or by writing too big a program
for use with EXTERN.

This error is printed when a condact
discovers an illegal value. e.g. An
attempt to set flag 38 to an illegal
location, an attempt to PUTIN/TAKEOUT on
a non container object or to set an
object at location 255 (COPYFO only).
But see point 2 above for diagnostic
information .

Note 1. During input the Spectrum will emit a RASP if the screen
and/or input buffer is full.

Note 2. If an entry is present in the database which is too big
to fit on one screen, the Spectrum will give out a RASP
when the entry is displayed at the bottom of the screen
for amending.

Note 3. If an abnormally large entry is inserted in the
connections table using abbreviations e.g. N 1 W 6 S 4
etc and the abbreviations are deleted from the
vocabulary, the movement entry (when decoded) i.e. NORTH
1 WEST 6 SOUTH 4 etc could be too big for the input
buffer. If this happens an out of memory message will be
produced. The remedy is to reinsert the abbreviations in
the vocabulary .

56

© 1906 Gilsoft
Published by Gilsoft

2 Park Crescent, Barry, South Glamogan CF6 8HD
Telephone Barry (0446) 732765

All rights reserved , unauthorised copying, hiring or lending strictly prohibited

