SAM76

238 - |ef,s0|
239 - |én|
237 - |ec|
159 - |ab,sl,s2,vt,vf|
128 - |ad,nl,n2,n3,...,nl|
160 - |ai,s0,sl,s2,...,s|
187 - |and,x1,x2|
161 - |as,s0,sl,s2,...,s|
220 - |bf.£,vz|
113 - |ca,s]
\ca,s\
195 - |cfc,dl,s|
\cfc,dl,s\

193 - |cin,tl,dl,...,t,d|
148 - |cld,t|

191 - |cll,d|
\cll,d\
133 - |cnb,d|
\cnb,d\

266 - |cpc,tl,dl,..., t,d|
147 - |crd,tl
203 - |cro,sl|
\cro,sl\
132 = lot.t1,k2:t3, 0.0 0t]
\ct,t1,t2,t3,...,t\
250 - |cwc,sl|

\CWC, seo \
261 - |cws,d|
\cws, x\
171 - |cx,s0,s|
200 - |cwb,d|
\cxb,d\
259 - |da,s0|
131 - |di,nl,n2,vz|
208 - |dq,s|
- |dr,t,a,0,v|

164 - |ds,d,s|
103 - |dt,t,s,dl,42|

\dt, t,s,dl,d2\
173 - |dx,d,x|
206 - |ea,tl,t2,...,t|
207 - |ed,t,dl,d2,vz|
224 - |ef,f1,£2,...,E|
151 - lep,t,pl.p2,...,p|
- ler) «.. |
104 - |et,tl,t2,...,t|
\et,t1,62,...08\
249 - |etb,s|
112 - |ex,f|
226 - |fb,f,vt,vE|
137 - |fc,t,vz|
138 - |fdc,t,d,vz|
139 - |fde,t,.d,vz|

140 - |fdm,t.d,s,vz|
141 - |fe,t,vz| v
142 - |££f,t,d,vz|
143 - |fl,¢,s,vz|
145 - |fp,t,x],...,x]|
144 - |fr,t,8,vz|
106 - |ft,t,sl,s82,...,8]
210 - |Etb,t,s,vz|
211 - |fts,t,s,vz|
212 - |he,s|

150 - |hm,t,s|

whe@ are Functions . H
wh@ is processor ser. Number :
whé is processor Title 3
Alphabetic Branch H
Add 3
Alphabetic Insertion H
And the bits H
Alphabetic Sort H
Bring File H
Change Activator (current) H
Change Activator (initial) :
Change Fill Character schema:
Change Pill Char. (initial)
Change Id Number

Characters Left of Divider
Change Line Length (active)
Change Line Length (initial)
Change Number Base (active)
Change Number Base (initial)
Change Protection Class
Characters Right of Divider
Change Rub Out char. schema
Change Rub Out (initial)
Combine Texts (superseding)
Combine Texts (save current)
Change Warning Character
Change Warn. Char. (initial)
Change Work Space

3
H
t
3
H
3
H
]
i
H
H
H
]
H
3

£ 1

Character to "X* H

Change “"X" Base (active) H

Change "X" Base (initial) 3

Date 3

Divide H

Define Quote H

Define Relationship H

Duplicate String :

Define Text (superseding) ]

Define Text (save current) H

Decimal to "X* | H

Erase All excepting 3

Extract "D" characters H

Erase Files H

Erase Partitions ]

Express Relationship H

Erase Text H

Erase all occurences of Text :

Erase Trailing Blanks H

Exit H

File Branch H

Petch Character H

Fetch "D" Characters 3

Fetch "D" Elements 3

Fetch “D" Matches H

Fetch Element t

Fetch Field 3

Fetch Left match H

Petch Partition 3

Fetch Right match 3

Fetch Text H

Fetch To Break character ]

Fetch To Span character H

How many Characters H

How many Matches :

105
214
110

|1t,s0,d1,42,...,.d]
|lw,s0,sl,s82,...,s|
Imc,d|

149 - |hp,t,d|
114 = |ht,t|
\ht\
115 - |icl
116 - |id,d|
153 - |idt,d|
136 - |ig,dl,d2,vt,vf|
135 - |ii,sl,s2,vt,vE|
117 - |im,sl,s82,...,s8]
102 - |is,dev|
152 - |it|
213 - |iw,nl
- |lef,dev|
216 - |1f,s0,d1,...,d]|
= g, o |

146
109

130
111
188
209
246
248
186
101
154
108
174
162
107

196

197
192
134

167
267
198
204
205
251
262

201
215
263
166
245
252
189
247
165
163
228
158

260

|mt,t,sl,s2,...,8/|
\mt,t,sl,s2,...,8\
Imu,nl,n2,vz|
Ini,vt,vEl

Inot, x|
Inu,sl,s2,...,s|
loj,s,sl,d,s2|
lop,s,sl,d,s2|
lor,x1,x2|

los,s|

Jot, t1,82,...,tl|
Ipc.dl
Ipl,sl,s2,...,sl
|ps,d,sl,s2|
Ipt,t,sl,s2,...,s|
\pt,t,sl,s2,...,s\
Iqfc,s0|

Iqin,s0,t1,t2,...,t| |Query Id Number

Igld, t|

Iqll}

lgnb

|gof

lap, ti
Igpc,s0,tl,t2,...
lqrd, t|

lgrol

Igtal
Iqwc,a2,al,...,al
Igws|

\gws\

Iqxb|

|ra,d,sl,s2,83,...,8) Return Argument

lrcp,dl,az,s|
leil
Iri,s,sl,d,s2|
len,nl
Irot,d,x|
lrp.s,8l,d,82|
jer,sl)

les,sl
Isaf,dev|
Isar|

\sar\
Isda,da,mo,yr|

lt'

., Query Number Base

How many Partitions

Hide Text

flide all Texts

Input Character

Input "D" characters

Input "D" Texts

If Greater

If Identical

Input to Match

Input String

Input Text

Input Wait

Load External Function
List Files

List Relationship

List Texts

List Where
Multi-partition Character
Move Divider to pos. “d"
Move Divider “d" increments
Multi-part Text all matches
Multi-part Text next match
Multiply

Neutral Implied

Not (complement) the bits
Null

Output Justified lines
Output Paddded lines

Or the bits

Output String

Output Texts

Partition Character

Plot

Pad String

Partition Text all matches
Partition Text next match
Query Fill Character schema

Query Left of Divider
Query Line Length

Query Over Flow conditions
Query Partition

Query Protection Class
Query Right of Divider
Query Rub Out char. schema
Query Text Area used
Query Warning Characters
Query Work Space

Query “X" Base

| Return Character Picture
Restart Initialized

Return Justified lines
Random Number

Rotate the bits

Return Padded lines

Return to Restart

Reverse String

Select All File function dev.
“Auto Return® on line feed
no Auto Return on line feed
Set Date

©F 00 00 04 @0 0 55 95 00 95 00 00 U0 O 08 S0 05 G0 @GN B0 00 00 60 G0 B9 G0 S0 69 G0 DO 00 00 B0 S5 0 S0 G4 S0 05 00 Ge S0 08 06 S5 6 6 G4 00 G4 B0 G6 S G5 S0 S0 B0 66 60 50 e e B8 6

language reference

199 - |sem,dev|

\sem, dev\
222 - |sf£,£,t1,t2,...,t]
157 - |sfd, fun,dev|
190 - Ish,d,x|
253 - |scn,n|
258 - |sti,tl,t2,¢e3|
129 - |ta,nl,n2,...,n|
231 - |sw,sl,s2,s],...,s|
232 - |sy,sl,s2,...,s|
127 - |tb,t,vt,vE|
257 - |ti,sl,s2|
125 - |tm,d|

\tm\
124 - |tma|

\tma\
168 - |tr,t,s|
218 - |uf,f,t1,82,...,t]
169 - |ut,cc)

\ut\
118 - |vt,tl,t2,...,t|
181 - |wc,sl,s|
175 = |wi,xnl,ynl|
179 - |wl|
178 - |wr|
180 -
176 - |wx|
177 - |wyl
170 - Ixc,x1,%2,..4,X]
271 - |xcg,s,x|
172 - |xd,x|
255 - |xi,port],
123 - |xj,x|
256 - |xo,x,port|
270 - |xqgf,s|
119 - |xr,x|
121 - |xep,x|
120 - |xw,x1,x2|
122 - |xwp,x1,x2|
126 - |yt,t,s,vt,vEl
182 - |zd,r,v=-,v0,v+|
183 - |zi,r,v-,v0,v+|
184 - |zqg,r|
185 - |zs,r,nl

Set "Echoplex" Mode active
"Echoplex" Mode inactive
Store File

Specify Function Device
Shift the bits

Switches

Systeam functions

Text Branch

Time

Trace Mode activated
Trace Mode deactivated
Trace Mode All activated
Trace Mode All deactivated
Trim

Update File

User Trap active

User Trap inactive

View Texts

Write Characters

Write Initialize

Width Left L4
width Right

|ws,xnl,ynl,...,xn,yn|Write Straight Lines

Write “X" displacement

Write “Y* displacement

“X" to Character

eXperimental Chance Function
“X* to Decimal

eXperimental Input
eXperimental Jump
eXperimental Output
eXperimental Query Function
eXamine Register

eXamine Register Pair
eXperimental Write in reg.
eXperimental Write req. Pair
¥s There

"Z" reg. Decrement and branch
"2" reg. Increment and branch
“2" req. Query

"1" reqg. Set

Expression formats, legend,

| function,arguments, ..,.1
\function,arguments,..,.\

syntax and conventions:

Active Expression
Neutral Expression

x,xl,.. “x" base numbers - f file name

d,dl,.. Decimal numbers - t text name
n,nl,.. “n" base numbers - vz default value

s0 prefixing string - v-,v+,v0 conditional value
s,8l,.. character strings - vt,vf true/false value
Protection syntax - l..../ (....) s wsad @char.
Active syntax = S: Wfn,arguments/ - M: #fn,argumentss:
Neutral syntax - S: &fn,arguments/ - M: {fn,arguments;

Wvt,t/= partition [d], mul
<sce-xxx> special condition
<nav-xxx> xxx not available

ti-partition [#d], divider (")
encountered



%0s,8is// is the Restart Expression which is originally
loaded. It means: “output that string which results from the
evaluation or execution of the string to be input". Thus:

1. Input a String 2. Evaluate said string
3. Output the result of the evaluation

In the examples that follow, the "os" of the Restart
Expression will not be shown, but its presence is implied.
For clarity in these exanples output will be shown between a
pair of curly braces thus: [ ... ).

ABCDEFGH= [ ABCDEFGH )

The “os" of the hestart Expression causes to be output that
string which was entered through execution of the “is"
(Input String) of the Restart Expression. The “=" equal sign
is the Activator, signalling the end of the input string.

%0s,APPLE/={APPLE]

The function "os" (output string) in the expression causes
the output of the second argument of the expression; the
comma is sensed as a delimiter between arguments and only
the second argument will be output by the “os" function.

%05, APPLE< , YORANGE /= (APPLE ,ORANGE )
%05, <APPLE ,ORANGE> /={ APPLE ,OKANGE )
$0s ,APPLE@ , ORANGE /= { APPLE ,ORANGE }

Here the comma is protected, hence it does not act as a
delimiter, and is entered as part of the input string. As
part of the string it is output by the “os"™ function. Note
that the protective symbol pair (in this case <¢...>) may be
anywhere as long as the comna is enfolded. Other protective
symbol pairs that may be used are (...) and !.../; in
addition any single character immediately preceded by a “@"
sign is also protected as shown on the third line example.

dt A, APPLES@,ORANGES /=

l?etine a Text named A with contents APPLES,ORANGES and store
it in a section of memory named the "Text Area".

%os,8ft ,A//=(APPLES}

%0s, ¥A//=(APPLES)
$0s,&ft,A//=[APPLES ,ORANGES )
%0s,6A//={APPLES)

Fetch from the Text Area “A" and output its contents. If the
name of the text is not the same as that of any of the
functions of the language, the fetch may be made as shown on
the second line of the example; this is said to be an
“implied fetch”. Should the text contain symbols which
should normally have been protected, or if it is desired not
to evaluate the text to be fetched, then the format of the
third line should be used; this is said to be a “neutral
explicit fetch". The fourth line shows a “neutral implied
fgtch“; this behaves in a manner that is identical to the
first two lines of the exanple, but information is retained
in the computer that it was a "neutral implied" fetch.

$A/=(APPLES)
sft,A/=[APPLES,ORANGES)

Fetch the text named A, both actively and explicitly
neutrally. Output is effected by the "os" function of the
Restart Expression as indicated in the following sequence:

1. %os,%is// 2. %os,¥// 3. tos,APPLES,ORANGES/ 4. APPLES

dt A, NE DOG AND TIE CAT |AND TIE HORSE/=

As a part of defining this text named A, the previously
defined text also named A [is erased from the Text Area, and
the new text A, containing the new text string is created.

%t ,B,8A//%ct ,C,A//=

$0s,8A//={"NIE DOG AND THE
%0s,%8//=(TIE DOG AND THE
%0s,4C//={THE DOG AND THE

AT AND TIE HORSE]
T AND TIE HOIGE)
T AND THE HORSE)

Define a text named B as the value resulting from fetching A
and create C by copying A using the "ct" copy text function.

$pt,B,THE,DOG ,MD,CAT,IUI4/=

Partition the text named [Jon the character patterns, "ME",
“DOG", “AND", “CAT", "HCRSE", creating partitions at those
locations in Text B where each pattern appears. The
partitions where the first| pattern occurred are given a
value of (1), the partitions where the second pattern
occurred are given value [2], etc.

sve,B/=([1] (2) (3] (1) (4] (3] (1) (5))

the numerical value and location
Note that the unpartitioned

"vt" (View Text) will s
of the partitions in a 'I‘ext.

| patterns (the spaces between the words) remain intact.

4B, LE,CHIEN ,ET ,CHAT ,CHEVAL/
={LE CHIEN ET LE CUAT ET LE CHEVAL}

The partitions with values 1, 2, 3 etc., are plugged by the
second, third, fourth etc.'arguments of the fetch of Text B,
and the plugged string re alting is then output by the
Restart Expression. A line code was input before the
Activator. This is why the output is on the second line.

fve,B/=((1] (2] (3] (1) (4] (3] (1] [5))
Note that Text B still has the partitions.

%dt,B,%B,LE,CHIEN ET,CHAT ,CHEVAL/ /=
B/=(LE CHIEN ET LE CHAT E" LE CHEVAL]
$A/=(THE DOG AND THE CAT AND THE HORSE]
1L, */=(*A*C*B)

slt, |

/= ‘

A
c
8)

This will redefine B, pluuging the partitions as indicated;
note that any unplugged partitions at this point would be
plugged with “null* strings. The text B, had been defined as
the same as text A. Then it was partitioned on the English
words in it and was then redefined with the corresponding
French words replacing the F:nglish ones.

The names of the Texts in the Text Area are determined
through use of the “1t" (List Texts) function. Each text
name is PRECEDED by whatever delimiting character pattern
the user specifies as the second arguncnt of the expression.
One example uses an asterick, and the other example has a
new line code as the second arqument of the expression.

SAM 76 BEbc

Box257, RR4 Pennmwoeron NT
F 534

¢dt A, 105, TUIS IS A PHOCEDURE///=
$A/=[THIS IS A PROCEDURL)
sfL,A/={%0s,M1S IS A PROCEDURE/}

A procedure is a text consisting of one or more expressions
exccuted by Ffetching said text “actively". An explicit
neutral fetch serves only to fetch it without its being
executed. The protective pair .../ serves to prevent
exccution during the process of definition. Partitions, if
any may be plugged during the fetching process at the time
of execution. Other examples of procedures follow.

$dt,SQUARE, I $mu, *,*///=
$pt, SQUARE , */=

tvt, SQUARE/=(%mu, (1], (1)/])
$SQUARE, 9/={81)

SSQUARE ,12/=(144)

tdt ,HOWDY, | ¥os,

WIAT IS YOUR NAME?- /tos,
WELL HELLO THERE %is////=
$HOWDY /=

(WHAT IS YOUR NAME?- }BILL=
{WELL HELLO THERE BILL)

As strings are evaluated from the inside out and from left
to right, procedures can be nested within other procedures.
In this case the Activator must be entered after the name
(BILL in this case), to signify the end of the "“is"
function. This value “BILL", then replaces the %is/ in the
procedure and is output by the second “o0s".

dt, LOoOoP, L ¥os,

‘HIS PROCEDURE LOOPS/$LOOP///=
LLOOR/={

THIS PROCEDURE
TUIS PROCEDURE
‘IHIS PROCEDURE
THIS PROCED
<sce-o0s>)

To make a procedure loop, it must fetch itself. If the
looping procedure has partitions in it, they will be plugged
during the fetching process. In such cases if no plugs are
specified, null strings will be used. In this example the
loop was broken from the keyboard by hitting the “rubout" or
“del" key; the <sce-0s> message means “special condition
encountered" during the execution of "os".

tde,F, 18ii,*,1,1,°

1y, * 4F ,4su,*,1///////=
$pt,F,*/=

F,1/=(1)

i+, 3/=(6)

F,5/=(120])

A short recursive procedure may find the factorial of any
number . This procedure tests the entered number, plugging
the partitions, to see if it is a 1; if not, the factorial
of the entered nunber is that nuaber multiplied by the
factorial of that number minus 1, which is computed by
fetching F. Sometimes it is desired to organize the
procedures in several lines, or use tabs to indent the
lines; these formatting characters (used only for esthetic
reasons) are not really part of the executable matter, and
would clutter up the scanning process. Such clutter’ is
avoided by preceding characters which have only an aesthetic
meaning with the “'* or "grave" accent mark. -

b



