
14478 G LORIETTA DRIVE

SH ERM AN O AKS, CALIFORNIA 91423

crJie Software C:Z-oolw6rk$
~It CJJilofsky; Prop.

ELIZA
Conversation Writing Language

with
DOCTOR "Psychiatrist" Script
Version 1.0 - September 1981

Walt Bilofsky

Copyright (c) 1981 Walter Bilofsky. Sale of this
software conveys a license for its use on a single
computer owned or operated by the purchaser. Copying
this software or documentation by any means whatsoever
for any other purpose is expressly prohibited. ELIZA
research paper and original DOCTOR script copyright (c)
1966 Association for Computing Machinery, Inc.,
reprinted by permission.

1. WHAT IS ELIZA?

TELEPHONE

121 31 986-4885

ELIZA is a program which allows you to converse with your
computer. It is a particularly good way to show your machine off
to friends, since most people find it fascinating to "talk" with
ELIZA.

ELIZA holds a conversation with you. You type a sentence to i t ,
and it replies. A prepared script is used to determine its
responses. The two scripts supplied on your disk are variations
of DOCTOR, which makes ELIZA behave like a non-directive
psychiatrist.

IMPORTANT: ELIZA with DOCTOR is not a "computer
psychiatrist". It is not intended to provide
psychiatric treatment or medical benefit of any kind.

EL I ZA was originally written in 1965 by Dr. Joseph Weizenbaum at
MIT. The program soon became famous for its ability to make
people think they were talking not with a computer but with a
person.

This version of ELIZA is a faithful recreation of Dr.
Weizenbaum's original script interpreter, plus a few carefully
selected new features. You can change ELIZA's behavior by
modifying the scripts provided, or even writing completely new
ones. So ELIZA is not only a computer game, but also a
prograrraning language.

Section 2 below tells how to run ELIZA. The remainder of this
document describes the ELIZA script writing language.

ELIZA - 2 - WHAT IS ELIZA?

To give you the opportunity to understand ELIZA in depth, we have
also included a reprint of Weizenbaum's original paper on ELIZA,
from the Communications of the Association for Computing
Machinery, January 1966 (Vol.--g N0:--1).

As you converse with ELIZA, and become familiar with the scripts,
you will gain insight into just how much the program really
understands, and what methods it uses to give the appearance of
understanding. You may decide that ELIZA is not so much
"computer intelligence" as simply computer cleverness.
Regardless, you and your friends will find it an absorbing and
amazing program.

2. HOW TO RUN ELIZA.

Before doing anything else, you should copy all the files from
the ELIZA disk onto another disk, and store the distribution disk
in a safe place.

The ELIZA disk contains the following files:

ELIZA.COM (or .ABS)
DOCTOR.SCR
ODOCTOR.SCR

The ELIZA program.
The current DOCTOR script.
The original -DGCT-OR scr i pt.

To run ELIZA, the ELIZA program and DOCTOR.SCR files should be on
the same disk. (ODOCTOR is the older, original DOCTOR script.
You can use it if you wish but it probably will not carry on as
good a conversation.)

ELIZA can run under CP/M and Heath/Zenith HOOS, and requires at
least 40K of RAM. If ELIZA complains of insufficient memory, and
you are using CP/M, be sure your system is configured for the
full memory capacity of your computer.

If you are using CP/M, set the default disk to the disk
containing the ELIZA files. For example, if they are on disk B:,
type the CP/M command

B:

Then execute ELIZA by typing the command

ELIZA

If you are using HOOS, and the ELIZA files are on SYO:, all you
need to do is give the ELIZA command. If the files are on
another disk, such as SYl:, type

SYl:ELIZA

ELIZA will load from disk, and then greet you. You should talk
to ELIZA using complete English sentences. Press the RETURN key

ELIZA - 3 - HOW TO RUN ELIZA

when you have finished typing your response. Since ELIZA replies
in capitals you may find the dialogue easier to follow if you
type in lower case.

To complete your conversation politely, type the word GOODBYE.
(You may also leave abruptly by typing ctrl-C: that is, hold down
the CTRL shift key and press C.)

If you want to run a script file other than DOCTOR.SCR, use the
command

ELIZA scriptname

If no extension is specified for the script file, ELIZA assumes
the extension .SCR.

If you want to record your conversation, when you first run ELIZA
use the command

ELIZA >f ilename

where "filename" is any legal file name. On CP/M,
also be the device name LST: or PUN:. Or you can
feature of CP/M to record the conversation on the
HOOS, "filename" can be a disk file name, or a
LP:.

"filename" can
use the ctrl-P
printer. On

device such as

Somet i mes y ou will be in the middle of a conversation and begin
to wish you had saved it. ELIZA remembers as much of the
conversation as can fit in the computer memory, so you can still
save much or all of it. To start saving while in the middle of
an ELIZA conversation, type the one word sentence

SAVE

ELIZA will ask you for a file name, on which it will save as much
of the conversation as it has stored, and everything from now on.
If your computer has a lot of memory, or if you have not been
talking long, you will probably be able to save the entire
conversation. Otherwise, only the most recent part of the
conversation will appear on the file.

3. THE SECRETS OF ELIZA

"It is said that to explain is to explain away," Weizenbaum says
of ELIZA. Although its behavior is remarkable, its effects are
produced by an inherently simple mechanism. As long as ELIZA
remains a mystery, you will marvel at its cleverness. Once we
explain its secrets to you, however, you may feel it is just a
gimmick.

Before reading further, therefore, we suggest you play with ELIZA
as much as you like. Once you have studied its workings, you may

- --- ---

ELIZA - 4 - SECRETS OF ELIZA

possibly find it less fun - or at least, a different kind of fun.

By showing you how it works, we provide the opportunity for you
to learn how easy it can be for a programmer to make computers do
marvelous things. In particular, you will be able to change
ELIZA's conversational habits, and even write completely new
scripts on whatever subject you like.

Once you decide to proceed, we reconunend you first read the
introduction to Weizenbaum's paper, which is included at the end
of this manual. Although we have tried to explain the script
language simply and clearly in the following sections, it
contains some details that might be confusing. Weizenbaum's
paper, although written mainly for computer scientists, presents
the same material from a broader viewpoint. So you may find the
paper helpful after you have read the rest of this manual.

4. THE ELIZA PROGRAMMING LANGUAGE.

The behavior of the ELIZA program is based on a simple mechanism.
Each sentence you type is processed, using a prepared script,
according to the following four steps:

Step 1. Look at the sentence and pick out any ke)QtOLds
specified in the script.

Step 2. Replace each keyword by a replacement word, if the
script provides one.

Step 3. See if the sentence matches any of the oatterns
specified in the script.

Step 4. If a pattern match is found, prepare a reply using
one of the rewriting rules associated in the script
with that pattern. If no match is found, use one of
the replies for "no match".

For example, suppose you tell ELIZA

YOU ARE REALLY HELPING ME.

The keywords in this sentence are YOU and ME. The script gives
the replacements YOU = I and ME = YOU, so the sentence is
rewritten

I ARE REALLY HELPING YOU.

One purpose of replacements is to "turn around" the sentences you
type to ELIZA, so it can repeat parts of them back to you.
Notice, though, that not all keywords have replacements. So at
this stage of the process, the rewritten sentence does not always
make sense, although the eventual reply probably will.

ELIZA - 5 - SECRETS OF ELIZA

Under the keyword YOU, the script contains the pattern

(0 I ARE 0)

"O" matches zero or more words, so this pattern matches your
sentence, with the first 0 matching nothing (zero words), and the
second 0 matching "REALLY HELPING YOU".

One of the rewriting rules for this pattern is

(WHAT MAKES YOU THINK I AM 4 ?)

The "4" means to insert in that place the 4th element of the
pattern: the word(s) matching the second 0. So ELIZA would
generate the response

WHAT MAKES YOU THINK I AM REALLY HELPING YOU?

This four step process, although simple in concept, can be
confusing when you first try to understand it in detail. ELIZA
itself can explain the process to you. If you invoke ELIZA using
the command

ELIZA -D

the program will print all sorts of information as it loads and
executes. In particular, it will print the keywords, patterns
and reassembly rules it uses as it generates each response. So
you may wish to first study the description below of ELIZA's
script language, and then, armed with a listing of the DOCTOR
script, run ELIZA -D, type sentences to it, and try to follow
along as it explains what it is doing. Remember that your
operating system allows you to use ctrl-S and ctrl-Q to suspend
printing so that you can read the output before it shoots off the
screen.

5. LISTS.

An ELIZA script is made up of lists. A list is simply a set of
words, numbers, and punctuation characters, enclosed in
parentheses. For instance,

(THIS LIST CONTAINS 5 THINGS)

But a list can also contain another list:

(THIS CONTAINS 4 (AND THIS IS ONE OF THEM))

When writing lists, you must be extremely careful to get all the
parentheses correct. The ELIZA -D command can help find
parenthesis errors; see "Debugging Hints" in Section 9.

ELIZA - 6 - SCRIPTS AND RULE LISTS.

6. SCRIPTS AND RULE LISTS.

An ELIZA script is a text file containing lots of rule lists.
You can prepare a script using any text editor program, such as
PIE, ED or EDIT. You may use upper and lower case in the script;
ELIZA translates everything to upper case.

The DOCTOR
rule lists.
sections.

script provided with ELIZA contains many examples of
You may want to study it while reading the following

First, we are going to show the most general form of rule list.
We will use braces l} to enclose items that may be either
included or left out. Ellipses (...) indicate that you can
include more than one of the preceding item. Then most rule
lists are of the form

(keyword i= replacement} {priority}
DLIST (/ listname ...) }

(pattern reassembly ••.) . . . })

An example of a rule list containing all the above elements is

(YOU = I 3 DLIST (/ PERSON)
((0 I 1 YOU 0) (OH, YOU 3 ME?))
((0) (WHAT ABOUT ME?) (TELL ME ABOUT YOU)))

This is complicated, but we will go through each part of the rule
list and explain it. As we do, you should keep in mind the four
steps (Section 4) which ELIZA uses to generate its response to a
user's sentence.

The first thing in a rule list is the keyword. This is the way
the script defines the keywords used in Step 1 of the ELIZA
conversation process. In the above example, the keyword is YOU.

If the next thing is the character "=" and a replacement word,
then every time the keyword is seen in a typed input, it is
immediately replaced by the replacement word (Step 2). In the
example, the replacement is I. Every YOU typed by the user is
replaced by I. If there is no "=replacement", the keyword is
left as it was typed.

The next thing in the rule list is an optional priority for the
keyword. This is a number between 0 and 127. If no priority is
specified, 0 is assumed.

The priority is used in deciding which keyword in a sentence to
consider first. As ELIZA scans an input sentence, it places each
keyword it sees on a stack. If the keyword has a higher priority
than any of the ones already seen, it is placed on top of the
stack. Otherwise, it is placed on the bottom.

When the sentence has been read, ELIZA considers the keywords in
the order they appear on the stack. Thus, the highest priority

ELIZA - 7 - SCRIPTS AND RULE LISTS.

keyword in a sentence is used first. If two keywords both have
the highest priority, the one on the left is used first.

If the next thing in the rule list is the word DLIST, then the
keyword is placed on one or more word lists. In the example, YOU
is placed on the word list called PERSON. Word lists provide a
way to define a category of words for use in a pattern, as
explained in the next section.

7 • PATTERNS.

The last thing in a rule list is one or more transformation
rules. Each transformation rule consists of a pattern followed
by one or more reassembly rules. Once the highest priority
keyword has been selected from the user's sentence, an attempt is
made to apply each transformation rule for that keyword, in turn.
This is Step 3 of the response generation process.

The first transformation rule in our example is

((0 I lYOU 0) (OH, I 3 ?})

This consists of the pattern

(0 I 1 YOU 0)

and the single reassembly rule

(OH, I 3 ?)

The items in the pattern are used, left to right, to try to match
the user's sentence. Here are the things you can use in a
pattern:

0 The digit 0 matches any sequence of words, i ncluding
the "sequence" containing no words. If 0 is not the
last item in the pattern, it will match the smallest
sequence before a match for the next item.

number Any other number matches any sequence containing
exactly that many words. Thus, 3 will match any
three words.

word Any word will match just that word. Remember that
keyword replacement (Step 2) is performed before
matching (Step 3), so to match a keyword that is
replaced, you must use its r eplacement.

(* word ...)
A list beginning with "*" will match any of the
words in the list. For example, in the pattern

(0 YOU (* WANT NEED) 0)

ELIZA - 8 - PATTERNS

the third item in the pattern will match either WANT
or NEED.

(/list) This will match any element on the word list named
LIST. For example, in the DOCTOR script, the
keywords MOTHER, FATHER, SISTER, etc., are all
placed on the FAMILY word list using the DLIST
feature. Then the pattern element (/FAMILY) will
match any of these words.

Thus, the rule

(0 I 1 YOU 0)

will match any sentence containing the phrase "I (one word) YOU",
with any number of words (including none) before and after.
Notice that, if the keyword replacements YOU = I and ME = YOU
were in this script, the user would actually have to type "YOU
(one word) ME" in order to match this pattern after replacement.

If the first element
only match starting at
element is not 0, the
a sentence in order to

(I 0 YOU)

in a pattern is not 0, that pattern will
the beginning of a sentence. If the last
end of the pattern must come at the end of
match. Thus,

will match any sentence starting with I and ending with YOU.
(Note that ELIZA treats commas just like periods: what comes
after the comma is a new sentence.)

The pattern (0) is used often. It will match any sentence.

8. REASSEMBLY RULES.

Recall that a transformation rule consists of a pattern followed
by one or more reassembly rules. If the pattern is found to
match the user's input sentence, ELIZA applies the first
reassembly rule in order to generate a new sentence, which it
prints as its reply. The reassembly rule is then moved to the
end of the list. So if there are several reassembly rules for
one pattern, they are used in rotation as the conversation
progresses.

Most reassembly rules are simply lists of words and numbers. To
create the reply, ELIZA replaces each number in the rule with the
part of the input sentence that matched the corresponding pattern
element. For example, if the input was

SOMETIMES YOU BOTHER ME

and the transformation rule was our old friend

ELIZA - 9 - REASSEMBLY RULES

((0 I 1 YOU 0) (OH, I 3 YOU?))

then, after rewriting the input sentence to

SOMETIMES I BOTHER YOU

the pattern gives a match, with the "l" matching BOTHER. In this
case, the reassembly rule would replace the 3 by the match,
BOTHER, for the third element in the pattern, "l". Then ELIZA
would reply

OH, I BOTHER YOU?

9. SPECIAL FEATURES.

The special transformation rule

(= keyword)

is like a GOTO in other programming languages. It tells ELIZA to
immediately begin trying to apply the transformations associated
with that keyword. For instance, suppose there is a rulelist for
the keyword WAS, and you want to treat WERE the same as WAS. You
could use the following rulelist for WERE:

(WERE = WAS (=WAS))

This replaces WERE by WAS in the input, and then starts checking
the patterns for WAS.

(=keyword) can also be used as a reassembly rule. Note that it
can be one of several reassembly rules following a pattern, or
the last of several transformation rules for a keyword. (It
should be the last because you'll never get past it to the
others.)

NEWKEY.

There are several other special reassembly rules. The rule

(NEWKEY)

tells ELIZA to give up on the current keyword and try finding
another one in the input sentence. It often appears as part of
the last transformation rule for a keyword:

((0) (NEWKEY))

ELIZA - 10 - SPECIAL FEATURES

PRE.

The reassembly rule

(PRE (reassembly) (=keyword))

is used to reassemble the input sentence, and then go back and
try pattern matching again. The input sentence is reassembled
according to the reassembly rule, and control is then transferred
to the rule list for the specified keyword, for attempted
matching on the transformed input.

For example, DOCTOR contains the transformation

(I'M =YOU'RE ((0 YOU'RE 0) (PRE (YOU ARE 3) (=I))))

If the input sentence is

SOMETIMES I'M VERY HAPPY.

it is rewritten to

SOMETIMES YOU'RE VERY HAPPY.

If I'M is the highest priority keyword in the sentence, the
pattern (0 YOU'RE 0) will always match. The PRE rule rewrites
the input as

YOU ARE VERY HAPPY

and the rule list for the keyword I is then used to try to match
this sentence.

NONE.

ELIZA breaks up the user's typed input into one or more
sentences, separated by any punctuation such as period, comma,
dash, and so on. Each of these sentences in turn is searched for
keywords, and a pattern match sought.

The reserved keyword

NONE

is invoked whenever ELIZA is unable to find a keyword in the
input, or to match any pattern for the keywords that do appear.
Every script must contain a rulelist for NONE.

EXIT.

If a reassembly rule begins with =EXIT, it has a special effect.
The remainder of the rule is printed as the output, without any
substitution, and ELIZA terminates its execution. (This feature
was not in Weizenbaum's original program.)

ELIZA - 11 - SPECIAL FEATURES

MEMORY.

A script may contain one or more rulelists of the form

(MEMORY keyword transformations ...)

These rulelists look just like any other, except for the addition
of the word MEMORY. The keyword must have a rulelist of its own
elsewhere in the script.

When the keyword is selected for transformation, before invoking
the keyword's own rulelist, an attempt is made to match the
patterns in the MEMORY rulelist. If a match is found, the
resulting output is not printed on the terminal, but is stored
away.

When five responses have passed since the last time a MEMORY
response was either stored or recalled, and no keyword match is
found, instead of using a NONE reply ELIZA will print the oldest
stored MEMORY response.

DEBUGGING HELP.

As mentioned in Section 4, running ELIZA with the command

ELIZA -D

produces debugging printout of various sorts. You can also use

ELIZA -D >file

to record the output on a disk file. Besides explaining the
pattern match process, ELIZA provides several other kinds of
output that may be useful in writing or modifying scripts.

The input rules
file. This can
parentheses.

are printed
be helpful

as they are read from the script
in finding missing or extra

After loading the script, ELIZA prints out the amount of memory
remaining. This memory is used to store the conversation for the
SAVE feature, and its size i s also a clue to how much larger your
script can become before it can no longer fit in memory.

ELIZA - 12 - APPENDIX I

APPENDIX I

Following is Dr. Weizenbaum' s research paper on ELIZA, reprinted
by permission from the January 1966 Communications of the
Association for Computing Machinery.

ELIZA-A Co1nputer ProgTam
For the Study of Natural Language
Co111munication Between l\Ian
And lliiachine

JOSEPH WEIZE::-IBADl

JI assachuselts Inshtule ,,f Techrwlvgy, * Cm11b1idge, Jlass.

ELIZA is a program operating within the MAC time-sharing

system at MIT which makes certain kinds of natural language

conversction between man and computer possible. Input sen·

tences are analyzed on the basis of decomposition rules which

are triggered by key words appearing in the input text.

Responses are generated by reassembly rules associated with

selected decomposition rules. The fundamental technical prob
lems with which ELIZA is concerned are: (1) the identification of

key words, (2) the discovery of minimal context, (3) the choice

of appropriate transformations, (4) generation of responses in

the absence of key words, and (5) the provision of on editing

capability for ELIZA "scripts". A discussion of some psychologi·

col issue6 relevant to the ELIZA approach as well as of future

developments concludes the paper.

Introduction

It is said that to explain is to explain aw:i.y. This mu..."\im
is nowhere so well fulfilled ::is in the :i.rea. of computer
programming, especially in wh:i.t is called heuristic pro
grnnuning and artifici:i.l intelligence. For in tho8e retllm.s
machines are made to behave in wondrous ways, often
:>Ufficient to dazzle even the most experienced observer .
But once a particub.r program is unmasked, once its
inner workings are explained in language sufficiently plain
to induce understanding, its magic crumbles a"t..-ay; it
stands revealed as a mere collection of procedures, each
quite comprehensible. The observer says to himself '· I
coulJ have written that". With that thought he moves the
program in question from the shelf marked "intelligent",
to that reserved for curios, fit to be discussed only with
people less enlightened than he.

Wurk reported herein was supported (in parL) by Projec t ~L.\C ,

an ~IIT research program sponsorPJ by the Advanced Research
Proj!'ct~ :\ge11ry, l1Ppurrr11e11t of J1.,iense, under uffa'e of Xaval
Research Contract :\umber);l)nr-U0'2<01) .

• Department of Elcctricul Engi11ccri11g.

36 Conunuuicatiou ~ of the AC:\I

The object of this paper is to c:iuse just such a. re·
e•mluation of the progmm about lo he "explained". few
programs ever needed it more.

ELIZA Program

ELIZA is n. program which makes n:itural langunge
conver:>ation with :.J. computer possible. Its presenL imple·
mentation is on the :-L\C time-sharing system at :-IIT.
It is written in :-L\D-SLIP [-l:] for the rn:-r 709-l:. Its name
wa.s cho·en to emphasize that it mn.y be ith:rementn.lly
improved by its users, since its bnguuge :ibilities m!ly be
continually i~1proveLl by a ·'te:icher". Like the Eliza of
Pygmalion fame. it can be made to :ippear even more
civilized, the relation of :ippen.rance to reality, however,
rem:iining in the domain of the playwright.

For the present purpo"e it is sufficient to characterize
the :-I.\C ~ystem as one which perm.its an indiv;dual to
operate a full scale computer from a remotely located type
writer. The indi,·iduul operator has the illusion thn.t he is
the sole user of the computer complex, while in fact others
may be ·'time-sh:iring" the system wi.th him. What is
important here is thac the compucer can read mess:i.ges
typeJ on the typewriter n.nd respond by writing on the
:-;ume instrument. The time between the computer's
receipt of :.i. message aud the :ippear:.i.nce of its response is
:i. function of the program controlling the dialogue and of
'"uch 1\-L\C system parameters as the number of users
currently corresponding with the system. T hese latter
parameters generally contribute so little to the over:i.11
response time that conversational interaction with the
computer need never involve truly intolerable delays.

When in conversation with ELIZA, the user types in
some statement or :;;et of statements in natural language
~ing nonual punctuation and sentence stm ctures. Only
the question mark may not be used, been.use it is inter
preted as a line delete character by the MAC system. The
user's statement is terminated by a double carriage return
which serves to tum control over to ELIZA. ELIZA then
:i.nn.lyzes the user's statement n.nd gener:ites some response
which it types out. Control is then ~igain with the u:-;er.

. .\. typical conversation is the follo,,ing:

:\(en are all alike .
INWH . .\.TWAY
They're ulways hugging 11s :lbo11t sl)mP.thing or other.
CA.'f YUU THINK 1 >F A ::iPECU'I C EX.\Y!Pf.E
Well, my boyfriend made rue •!ume here.
'iOUR BOYFRfE~D :\!ADE Y<)f. CO:\IE HE RE
IIe says I'm depres~ed much of the time.
r . .\.\I SORnY TO HE . .\R YOU . .\.TIE DEPRESSED

\'olume ~ ,' ~u1t1btlr I I January, llJflli

It 's t rue . I am unhappy .
DO YOu THI:--IK COMI:--I G HERE WILL HELP YO C ~OT TO

BE l":--IHAPPY
I need some help , t hat much seems certain.
WHAT WOGLD IT ~IEA:--1 TO YOL. IF Y OU GOT SO:\IE HELP
Perhaps I could len.rn to get along with my mother .
TELL ~lE ~!ORE :\.BOGT YOUR F . .\J.\ULY
J-ly mother takes care of me .
WHO ELSE IN YOCR F . .\.YULY TAKES CARE OF YOU
J-1y father .
YO UR FATHER
You are like my father in some ways .
WHAT RESE;yIBL . .\J.~ CE DO YOC SEE
You are not very aggressive but I think yCJu don' t want me to

notice that .
WHAT YIAKES YO U THINK I .\:\I XOT VERY AGG RESSffE
You don' t argue with me .
WHY DO YOU THIXK I DON 'T . .\RGL"E WITH YO U
You are afraid of me .
DOES IT PLEASE YOC TO BELIEH: I . .\...\I AFRAID OF YOU
Yly father is afraid of everybody.
WHAT ELSE CO\YIES TO :\II~D WHEN YOU THINK OF

YOUR FATHER
Bullies.
DOES THAT HAVE .rnYTHIXG TO DO WITH THE F . .\CT

THAT YOUR BOYFRIEXD :\!..\DE YOU COME HERE

The capitalized lines are the machine responses.
The gross procedure of the program is quite simple ; the

text is read and inspected for the presence of a keyword.
If such a word is found, the sentence is tr:l.nSformed
according to a rule associated with the keyword, if not a
content-free remark or, under certain conditions, an e:lrlier
transformation is retrieved. The text so computed or
retrieved is then printed out.

In detail, of course, the procedure sketched above is
considerably more complex. Keywords, for example, may
have a RA..~K or precedence number. The procedure is
sensitive to such numbers in that it will abandon a key
word already found in the left-to-right scan of the text in
fovor of one having a higher rank. Also, the procedure
recognizes a comma or a period as a delimiter. Whenever
either one is encountered and a keyword has already been
found, all subsequent text is deleted from the input mes
sage. If no key had yet been found the phrase or 5entence
to the left of the delimiter (as well as the delimiter itself)
is deleted .. \s a result, only single phrases or sentences are
ever transformed.

Keywords a.nd their associated transformation1 rules
constitute the SCRIPT for a particular class of ·con
versation. An important property of ELIZA is that a
script is data ; i.e., it is not part of the program itself.
Hence, ELIZA is not restricted to A. particular set of
recognition patterns or responses, indeed not even to any
specific language. ELIZA scripts exist (at this writing) in
Welsh and German as well as in English.

The fundamental technical problems with which ELIZA
must be preoccupied are the following :

(1) The identification of the "most important" keyword

1 The word " t ransformation" is used in its generic sense ra ther
than that given it by Harris and Chomsky in linguistic contexts.

Volume 9 / Number 1 / January, 1966

occurri ng in the input me:3;;age.
('.?) The identification of ;;ome minimal context \1·ithin

which the chosen key"·ord :ippe:irs ; e.g., if the keyword i;;
"you", is it fo llowed by the 1rnrd "are" lin which c:i.5e an
:issert ion is probably being m:ide).

(3) The choice of an apprnpriate transformation rule
and, of course, the making of the transformation itself.

(-l:) The provision of mechanism that will permit
ELIZA to respond ""intelligently" when the input text
contained no keywords.

(5) The provision of machinery that facilitates editing,
particularly extension, of the .~cript on the ;;cript writing
level.

There are, of coLi.r.;e, the usual constraints dictated by
the need to be economical in the use of computer time and
storage space.

The central issue is clearly one of text manipulation,
and at the heart of that issue is the concept of the tran.s
formation rule which has been said to be associated with
certain keywords. The mechanisms subsumed wider the
slogan "transformation rule" are a number of SLIP iunc
tions which serve to (1) decompose a data string according
to certain criteria, hence to test the string as to whet her it
5atisfies these criteria or not, and ('.?) to reassemble a
decomposed string according to certain assembly specifica
tions.

While this is not the place to discus5 these function;:; in
all their detail (or ewn to reveal their full power and
generality), tt is important to the understanding of the
operation of ELIZA to cie:;cribe them in some detail.

Consider the sentence "I am very unhappy these days" .
Suppose a foreigner \1ith only a limited knowledge of
English but with a very good ear . heard that ~ntence

spoken but understood only the first two words " I !.lm".
Wishing to appear interested, perhaps even sympathet ic,
he may reply ''How long have you been very unhappy
these days?" What he must have done is to apply a kind
of template to the original .sentence, one part of which
matched the two words ··I am" and the remainder isolated
the words "very unhappy these days". He must 3.lso have
a reassembly kit specifically associated with that template,
one that specifies that any sentence of the form " I am
BLAH" can be transformed to "Ho1v long have you been
BLAH", independently of the meaning of BLAH. A
somewhat more complicated example is given by the
sentence " It seems that you hate me". Here the foreigner
understands only the words "you" and "me"; i.e., he
applies a template that decomposes the sentence into the
four parts :

(1) It seems that !2) you (3) hate (4) me

of which only the second and fourth parts are understood.
The reassembly rule might then be "What makes you
think I hate you" ; i.e., it might throw away the first
component, translate the two known words ("you" to
" I" and "me" to "you") and tack on a ~tock phrase
(What makes you think) to the front of the reconstmc tion.

Communications of the AC:\I 37

. .\.formal notation in which to represent the decomposition
tempbte is:

\0 YOC 0 :OIEl

::me! the reassembly rule

(WHAT :OL,\KES YOC THI)l'K I 3 YOU).

The "O" in the decompo ition rule stands for "'an in
definite number of words" (analogous to the indefinite
dollar sign of CoMIT) [6] while the "'3" in the reassembly
rule indicates that the third component of the subject
decomposition is to be inserted in its place. The decom
position rule

(0 YOU l :VIE)

would have worked just u:; well in this specific example. A
nonzero integer "n" appearing in a decomposition rule
indicates that the component in question should consist
of exactly "n" words. However, of the two rules shown,
only the first would have matched the sentence, "It seems
you hate and love me," the second failing because there is
more than one word bet'IYeen "you" and " me".

, . '
~ , =- 1.1 "1 .z··· rl1,1111

FIG. 1. Keyword and rule list structure

In ELIZA the question of which decomposition rules to
apply to an input text is of course a crucial one. The input
sentence might have been, for example, " It seems that
you hate," in which cuse the decomposition rule (0 YOU
0 :\IE) would have failed in that the word " :VIE" would
not have been found at all, let alone in its assigned place.
Some other decomposition rule would then have to be
tried and, failing that, still another until a match could
be made or a total failure reported. ELIZA must therefore
have a mechanism to sharply delimit the set of decom
position rules which are potentially applicable to a cur
rently active input sentence. This is the keyword mecha
nism.

An input sentence is scanned from left to right. Each
word is looked up in a dictionary of keywords. If a word
is identified as a keyword, then (apart from the issue of
precedence of keywords) only decomposition rules con
taining that keyword need to be tried. The trial sequence
can even be partially ordered. For example, the decom
position rule (0 YOU O) associated with the keyword
"YOL'' (and decomposing an input sentence into (1) all
'IYorcls in front of "YO"C", (2) the word "YOU", and (3)
all words following "YOu") should be the last one tried
since it is bound to succeed.

Two problems now arise. One stems from the fact that

38 Communications of the AC::\I

aimost none of the ,,·orJ;; in any giYen :;;entence are ri>pre
sen teJ in the key"·ord dictionary. Th0 other is that uf
"as,,ociating' ' both clecompo,;ition and re:is::embly rules
with keywords. The fi~t is serious in that the determina
tion that a word is not in a dictionary may well require
more computation (i. e., time) than the location of t\ word
which is represented. The :ittuck ou both problems begins
by placing both a keyword and its :issociaterl rules on a
list. The basic format oft\ typit.lal key list is the followi.ng :

(K ((D1) (R1. 1) (R1, ~) rR1 1))
((Dz) (Rt, 1) (R~ . 2) · · · (Ri. m:))

((Dn) (R •. 1) (R •. 2) · · · (R •)))

where K is the keyword, D, the ith decomposition rule
::i.ssociated with [{ and R ;. i the jth re~embly rule asso
ciated with the ith decomposition rule.

A. common pictorial representation of such a structure
is the tree diagram shown in Figure 1. The top level of
this structure contains the keyword followed by the names
of lists; each one of which is again ::i. list structure beginning
with a decomposition rule and followed by reassembly
rules . Since list structures of this type have no predeter
mined dimensionality limitations, any number of decom
position rules may be associated with a given keyword and
any number of reassembly rules with any specific decom
position rule. SLIP is rich in functions that sequence over
structures of this type efficiently. Hence progranuniri
problems are minimized.

.An ELIZA. script consists mainly of a set of list strur.·
tures of the type shown. The actual keyword dictionary is
constructed when such a script is first read into the
hitherto empty program. The basic structural component
of the keyword dictionary is a vector KEY of (currently)
128 contiguous computer words. _.\s a particular key list
structure is read the keyword K at its top is randomized
(hashed) by a procedure that produces (currently) a 7
bit integer "i". The word "always", for example, yields
the integer 14. KEY(i), i.e., the ith word of the vector
KEY, is then ·examined to determine whether it contains
a list name. If it does not, then an empty list is created,
its name placed in KEY(·£), and the key list structure in
question placed on that list. If KEY(i) already contains a
list name, then the name of the key list structure is placed
on the bottom of the list rui.med in KEY(i) . The largest
dictionary so far attempted contains about .jQ keywords.
~o list named in ::my of the words of the KEY vector
contains more than two key list stmctures.

Every word encountered in the scan of an input text,
i.e., during the actual operations of ELIZA, is randomized
by the ;:ame hashing algorithm as was originally applied to
the incoming keywords, hence yields an integer which
points to the only possible list stmcture which could
potentially cont:lin that word !lS a keyword. Even then,
only the tops of :iny key list structures t hat may be found
there need be interrogated to determine whether or not a
keyword has beeu found. By virtue of the various list

Volume 9 I :'lumber 1 / January,1966

~------

f

sequencing operation::; thu.t SLIP make=- a.v::i.iluble, the
actual identification or :1 keywol'd leans as its prineiµal
product ::i. pointer to the list of Jeeomposition (and hence
reassembly) rules :issoci::i.ted with the identified keywol'd.
One result of this · trategy is that often less time is required
to discover that u. given word is not in the keyword dic
tionary than to locate it if it is there. However, the location
of a keyword yields pointers to all infomrntion associated
wi.th th::i.t word.

Some conversational protocols require that cert::i.in
trunsfonnt\tions be made on certain words of the input text
independently of any contextual con:iideration:i. The first
conversution displayed in this paper, for example, requires
that first person pronouns be exchanged for second person
pronouns and vice versa throughout the input text. There
may be further transformations but these minimal sub
stitutions ::i.re unconditional. Simple substitution rules
ought not to be elevated to the level of transformations,
nor should the words involved be forced to carry with them
all the structure required for the fully complex case.
Furthermore, unconditional substitutions of single words
for single words can be accomplished during the text scan
itself, not as a tr::i.nsionnation of the entire text subsequent
to scanning. To facilitate the realization of these
desiderata, 3.IlY word in the key dictionary, i.e., at the
top of a key list structure, may be followed by an equal
sign followed by whatever word is to be its substitute.
Tranfonnation rules may, but need not, follow. If none
do follow such a substitution rule, then the substitution is
mo.de on the fly, i.e., during text scanning, but the word
in question is not identified as a keyword for subsequent
purposes. Of course, a word may be both subtituted for
and be a keyword as well. An example of a simple sub
stitution is

(YOURSELF - MYSELF).

~either ''yourself" nor "myself" are keywords in the
particular script from which this example was chosen.

The fact that keywords can have ranks or precedences
has already been mentioned. The need of a ranking mecha
nism may be established by an example. Suppose an input
sentence is "I lmow everybody laughed at me." A script
may tag the word "!" as well as the word "everybody"
as a keyword. Without differential ranking, "l" occurring
first would detennine the transfonno.tion to be applied.
A typical response might be "You say you know everybody
laughed at you." But the important message in the input
sentence begins with the word "everybody". It is very
often true that when a person speaks in terms of universals
such as "everybody'', "always" and "nobody" he is really
referring to some quite specific event or person. By giving
''everybody" a higher rank than "!", the response "Who
in p::i.rticular are you thinking of" may be generated.

The specific mechanism employed in ranking is that the
rank of every keyword encountered (absence of rank
implies rank equals O) is compared ""ith the rank of the
highest ranked keyword already seen. If the rank of the

Volume 9 / ~umber 1 / January, 1966

new word is higher than th ~tt of any pre,·iow;ly encoun
tered word. the pointer to the tr:i.n:>form:i.t ion ru le:;
~\Ssoci::i.ted with the new word is placed on cop of ~• list
c::i.lled the keystack, otherni:;e it is placed on the bottom
of the key:; tack. When the text scan termin~ites, the key
st::i.ck has ~•t its top a pointer ns,,ociated with the liighe:;t
ranked key\\·ord encountered in the scan. The rem:iining
pointers in the stuck may not be monotonically ordered
with respect to the r::i.nb of the words from which they
were derived, but they are nearly so-in any event they
are in a useful and interesting order. Figure '.2 is a .'impli-

"'••d '"'

·~ - i..__r.:::::;__ (\
. .. , _ 11 I -\.. :.no ot tnr) 'W ES------\ £NO

FIG. 2.

NO

I '--'

$-<ES~~
NO YES

Oel•I• W 0"4 ~II
M.1Cl: t9d11\qt111CW4•
troflll l ld

YES
y s

P!OUOOll'l,_IO...,
on !JO of
11...,aroca

NO

0..•t• W C.nd Oii
')19CNdlltQWOfO• i------.
h om r .. 1.

Ba.sic flow diagram of keyword detection

fi.ed flow diagram of keyword detection. The rank or ::i.
keyword must, of course, also be associated with the
keyword. Therefore it must appe::i.r on the keyword list
structure. It may be found, if at all, just in front of the
list of transformation mles associated with the keyword.
As an example consider the word '1:\•IY" in a particular
script. Its keyword list may be as follows:

(MY = YOUR 5 (trn.nsformation rules)) .

Such a list would mean that whenever the word " :.[Y" is
encountered in any text, it \YOuld be replaced by the word
"YOUR". Its rank would be 5.

Upon completion of :1 given text sc::i.n, the key:;tack is
either empty or cont:lin.s pointers derived from the key
words found in the text. Each of such pointers is actually a
sequence ren.der-a SLIP mechanism which facilitate;;
scanning of lists-pointing into its particular key list io
such a way that one sequencing operation to the right
(SEQLR) will sequence it to the first set of transformation
rules associated with its keyword, i.e., to the list

((D,) (R1 .1) (Rd . . . (R,, R ... ,)) .

The top of that list, of course, is a list which ~en·es a
decomposition rule for the subject text. The top of the
keystack contains the first pointer to be activated.

The decomposition rule D1 associated with the keyword
K, i.e., { (D1), K }, is now tried. It may fail howe\·e1-. For
example, suppose~the input text wo.s:

Yon are very helpful.

Communications of the AC}[39

The keyword. ~ay , i;; "'you' ', and : r D1) . youj is

10 I remind you nr Ol.

(R tc:ill 1bat the "'you" in the origin:il ;;entence has already
been replaced by ·· I" in the text now analyzed.) This
decomposition rule obviously fails to match the input
sentence. Should (1.D1), K I tu.ii to find :i. match, then
J(Dz), Kl is tried. Should that too fail, \(D3), K} is
attempted, and so on. Of course, the set of transformation
rules can be guaranteed to terminate '.'.ith a decomposition
rule ". hich must. match. The decomposition rule

(0 K 0)

will match any text in which the word K :ippeo.rs while

{Ol

will match :my text whatever. However, there :ire other
'"ays to leave a ptwticular set of rransformation rules, as
will be .shown below. For the present , suppose that some
particular decomposition rule (D ;) has matched the input
text. (D,) , of course, was iound on a list of the form

((D,)(R,, i)(Ri, z) · · · (Ri. ,,.J) .

Sequencing the reader which is presently pointing at
(D,) will retrieve the reassembly rule (R .. 1) which may
then be applied to the decomposed input text to yield the
output message.

Consider again the input text

You are very helpful

in which "you,, is the only key word. The sentence is
transformed during ;;canning to

I are very helpful

{ (D1), you} is "(O I remind your of O)" and fails to match
as already discussed. However, { (D~), you} is "(0 I are O)"
and obviously matches the text, decomposing it into the
constituents

\1) empty

~ (R~ . 1), you) is

12) I (3) are

(What makes you think I am -t)

Hence it produces the output text

(4 1 very helpful.

What makes you think I am very helpful.

Having produced it, the integer 1 is put in front of (R2. 1)

so that the transformation rule list in question now appears
as

:\ext time 1 (D~), K: matches an input text, the reassembly
rule (Rz . 2) will be applied and the integer 2 will replace
the 1. .\fter (R2, ,.,) has been exercised, (R2 • i) will again
be invoked. Thus, after the 5ystem has been in use for :i.

time. every decomposition rule which has matched some
input text has associated with it an integer which corre
sponds to the last. reassembly rule used in connection with

-10 Communications of the AC:'\[

that clecompo:sition l'tlle . Th i:> mechanism !11.-;me;; tha t the
complete :>et OC re~l.Ssembly rule;; :l:>,..Ociated wit h :.i. ~i\·en

J.ecomposition l'tlle is 1•ycleJ throtu~h before :my repet itions
occur.

The system described ~o far i;; es;;entially one which
selects a decomposition rule ior the highest ranking key
word fount! in an input text, attempt;; to match that text
according to that decomposition rule and, failing to make
a match, selects the next reassembly rule associated with
the matching decompo::;ition rule and applies it to generate
an output text. It is, in other words, a system which, fo r
the highest ranking keyword of a text, selects a specific
decomposition and reas:;ernbly rule to be used in forming
the output message.

Were the system to remain that .simple, then key"·ords
that required identical sets of transformation rules would
each require that :i. copy of these transformation rule;; be
:l.:SSociated with them. This would be logically sound but
would complicate the tMk of sc ript writing :ind would also
make unneces.sary ;;;torage demands. There are therefore
special types of decomposition :rnd assembly rules char
acterized by the appearance oi " =" at the top of the
rule list. The word following the equal sign indicates which
new set of tro.nsform:ition rules is to be applied. For ex
ample, the keyword " what" may have associated with it
a transformation rule .~et of the form

((0) (Why do you a.:;k1 (h that :in important questioni ...)

which would :ipply equally well to the keywords '·how"
and ' ;when". The entire keyword list for "how1 may
therefore be

(How (=What))

The keywords ';how" ,,·hat" and ';when" may thus be
made to form an equi,·alence cla.ss with respect to the
transformation mles which are to apply to them.

In the above example the rule "(=what)" is in the
place of a decomposition rule, although it causes no
decomposition of the relevant text. It may also appear,
however, in the place of a reassembly rule. For example,
the keyword " am" m:i:r h:ive among others the following
transformation rule -set n..<:sociated with it:

((0 are you 0) <Do you believe you :i.re 4) . . . (~what) ...)

(It is here assumed that "are" has been substituted for ·
" am" and "you" for ;· I" in the initial text scan.) Then,
the input text

_.\.m I sick

would elicit either

Do you believe you :1.re 8ick

or

Why do you a~k

depending on how many times the general fol'm had
already occurred.

under still other conclitions it may be desirable to

Volume 9 / Number 1 / January, 1\166

perform a preliminary transfol'mation on the input text
before subjecting it to the decompositions and rea.5semblies
'\\hich finally yield the output text. For example, the
keyword "you're" should lea.d to the transformation rules
associated with "you" but shoulJ first be replaced by a.
word pair. The dictionary entry for ··you're" is therefore:

(you 're= I'm ((0 I'm 0) (PRE (I . .\..\I 3) (~YOU))))

\Yhich has the following effect:
(1) \Yherever "you're" is found in the input text, it is

replaced by "I'm".
(2) If "you're" is actually selected as the regnant

keyword, then the input text is decomposed into three
constituent parts, namely, all text in front of the first
occurrence of " I'm'', the word " I'm" itself, a.nd all text
following the first occurrence of "I'm".

(3) The reassembly rule beginning with the code
"PRE" is encountered and the decomposed text re
assembled such that the words ' I A~f" appear in front
of the third constituent determined by the earlier de
composition.

(-:!:) Control is transferred, so to speak, to the trans
formation rules associated with the keyword "you",
where further decompositions etc. are :.i.ttempted.

It is to be noted that the set

(PRE (I AM 3) (=YOU))

is logica.lly in the place of a reassembly rule and may
therefore be one of many reassembly rules associated with
the given decomposition.

Another form of re~sembly mle is

(NEWKEY)

which serves the case in which attempts to match on the
currently regnant keyword are to be given up and the
entire decomposition and reassembly process is to start
again on the basis of the keyword to be found in the
keystack. Whenever this rule is invoked, the top of the
keystack is "popped up" once, i.e., the new regnant key
"·ord recovered and removed from the keystack, and the
entire process reinitiated as if the initial text scan had just
terminated. This mechanism makes it possible to, in effect,
test on key phrases as opposed to single key words.

A serious problem which remains to be discussed is the
reaction of the system in case no keywords remain to
serve as transformation triggers. This can arise either in
cas2 the keystack is empty when ~EWKEY is invok~d or
when the input text contained no keywords initially.

The simplest mechanism supplied is in the form of the
special reserved keyword "~ONE" which must be pa.rt of
any script. The script writer must associate the universally
matching decomposition rule (0) with it and follow this by
as many content-free remarks in the form of transforma
tion rules as he pleases. (Examples are: "Please go on",
"That's very interesting" and "I see".)

There is, however, another mechanism which causes the
system to respond more spectacularly in the absence of a
key. The word "::\IE);IORY" is another reserved pseudo
keyword. The key list structure associated with it differs

Volume 9 I Number 1 / January, 1966

from the ordinary one in some respects. .1.n cx!lmple
illuminates this point.

Consider the followiug "cructure :

(YCE:\ IO R Y :\ CY
(0 YOC:R 0 =LETS DfSCL"f::S F L"RTHEP.. WllY YOL"R :3 1
(0 YOGR 0 = EARLIER YOU SAID YOt:R :3)

The word " :\IY" (which must be .m ordinary keyword
as well) has been -elected to serve :.1 :>pecial func tion.
Whenever it is the highest ranking keyword of :.1 text one
of the transformations on the ~[E:\i[QRY list is randomly
selected, and a copy of the text is transformed accordingly.
This transformation is stored on a. first-in-first-out stack
for bter use. The ordinary processes already described are
then carried out. When a text without keywords is en
countered later and a certain counting mechanism is in a
particular state and the stack in question is not empty,
then the transformed text is printed out as the reply. It
is, of course, also deleted from the stack of such trans
formations.

The current version of ELIZA requires that one keyword
be associated with :YIE::\IORY and thn.t exactly four
transformations n.ccompany that word in that context. (An
application of a tra.nsformation rule of the form

(LEFT HA_'l'D SIDE - RIGHT HAXD SIDE)

is equivalent to the successive application of the two forms

(LEFT H.-L."fD SIDE), (RIGHT HA~D SIDE).)

Three more details will complete the formal description
of the ELIZA program.

The transformation rule mechanism of Sc.IP is such that
it permits tagging of words in a text and their subsequent
recovery on the basis of one of their tags . The keyword
"MOTHER" in ELIZA, for example, may be identified
as a noun and ::is a. member of the class "family" a.s follows:

(MOTHER DLIST (/XOml' F.\.\ULYl) .

Such tagging in no way interferes with other information
(e.g., rank or transformation rules) which may be asso
ciated with the given tag word. _.\.decomposition rule may
contain a matching constituent of the form (/TAG 1
TAG2 · · ·) which will match and isolate a word in the
subject text having any one of the mentioned tags. If, for
example, ":YIOTHER" is tagged as indicated and the
input text

" CONSIDER :\IY .\GED :\-IOTHER .\SWELL AS :\lE"

subjected to the decomposition rule

(0 YOUR 0 (IF .UHL Y) 0)

(remembering that " :\IY" has been replaced by "YOUR"),
then the decomposition would be

(1) CO:-i'SIDER (2) YOL-a (3) AGED (-!) :\-IOTHER
(5l • .\S WELL AS :VIE.

Another flexibility inherent in the Sc.rP text manipula
tion mechanism underlying ELIZA is tha or-ing of
matching criteria is permitted in decomposition rules.
The above input text would have been decomposed

Communications of the ACW .n

preci.;;ely as stated above by the decomposition rule:

(0 YOGP.. 0 (•FATHER ~!OTHER) 0)

which, by \'irtue of the presence of '· •" in the sub list
structure seen above, would have isoln.ted either the word
" FATHER" or "~'LOTHER" (in that order) in the input
text, whichever occurred first after the first appearance of
the word "YOUR".

Finally, the script writer must begin his script with a
fo:t , i.e., a message enclosed in parentheses, which contains
the statement he ~;shes ELIZA to type when the system
is first loaded .. This list may be empty.

Editing of an ELIZA script is achieved via appeal to a
contextual editing progrum (ED) which is part of the
l-!AC library. This program is called whenever the input
text to ELIZA consists of the single word "EDIT".
ELIZA then puts itself in a so-called dormant state and
presents the then stored script for editing. Detailed
dEscription of ED is out of place here. Suffice it to say that
changes, additions and deletions of the script may be made
with considerable efficiency and on the basis of entirely
contextual cues, i.e., without resort to line numbers or
any other artificial devices. When editing is completed,
ED is given the command tO FILE the revised script. The
new script is then stored on the disk and read into ELIZA.
ELIZA then types the word "START" to signal that the
conversation may resume under control of the new script.

An important consequence of the editing facility built
into ELIZA is that a given ELIZA script need not start
out to be a large, full-blown scenario. On the con a ·, it
should begin as a quite modest set of keywords and
transformation rules and permitted to be grown and
molded as e:-..-perience with it builds up. This appears to
be the best way to use a truly interactive man-machine
fa.cility-i.e., not as a device for rapidly debugging a code
representing a fully thought out solution to a problem, but
rather as an aid for the exploration of problem solving
strategies.

Discussion

At this writing, the only serious ELIZA .;;cripts which
exist are some which cause ELIZA to respond roughly as
would certain psychotherapists (Rogerians). ELIZ • .\.
performs best when its human correspondent is initially
instructed to "talk" to it, via the typewriter of course,
just as one would to a psychiatrist. This mode of con
versation was chosen because the psychiatric interview
is one of the few examples of categorized dyadic natural
language communication in which one of the participating
pair is free to assume the pose of knowing almost nothing
of the real world. If, for example, one were to tell a psy
chiatrist "I went for a long boat ride" and he responded
"Tell me about boats", one would not assume that he knew
nothing about boats, but that he had some purpose in so
directing the subsequent conversation. It is in1portant to
note that this assumption is one ma.de by the speaker.
Whether it is realistic or not is an altogether separate
question. In any case, it ha.;; a crucial psychological utility

42 Communication!' of lhe AC1\1

in that it serves the speaker to maintain his 5ense of bei1.
heard and understood. The spe:iker further defenJ,, hi5
impression (which even in real liie may be illusor!·) l>y
attributing to his conversational partner all ,:ons of back
ground knowledge, insights and reasoning ability. But :1gain.
these are the speaker's contribution to the com·ersatio11.
They manifest them.,elves inferentially in the interpre/atio11s
he makes of the offered respon~:. from the purely technical
programming point of view then, the psychiatric intetTiew
form of an ELIZA script ha.~ the advantage that it elimi
nates the need of storing explicit information about the
real world.

The human speaker will, as has been said, contribute
much to clothe ELIZ_.\.'S responses in vestment.;; of
plausibility. But he will not defend his illu.;;ion (that he is
being understood) against all odds. In .hun1an conver-ation
a speaker will make certain (perhn.ps generous) a.;;sump
tions about his conversational partner. As long as: it
remains possible to interpret the latter's responses con
sistently with those assumptions, the speaker's image of
his partner remains unchanged, in particular, undamaged.
Responses which are difficult to so interpret may well
result in an enhancement of the image of the partner, in
additional rationalizations which then make more com
plicated interpretations of his responses reasonable.
When, however, such rationalizations become too massive
and even self-contradictory, the entire image may crumble
and be replaced by another ("He is not, after all, as smart
as I thought he was"). When the conversational partner
i a ma.chine (the disti.'iction bet\".'een machine and program
is here not useful) then the idea of credibility may well be
substituted for that of plausibil?'.ty in the above.

With ELIZA as the basic vehicle, experiments may be
set up in which the subjects find it credible to believe that
the responses which appear on his typewriter are gener
ated by a human sitting at a similar instrument in another
room. How must the script. be written in order to maintain
the credibility of this idea over a long period of time?
How can the performance of ELIZA be systematically
degraded in order to achieve controlled and predictable
thresholds of credibility in the subject? What, in all this,
is the role of the initial instruction to the subject? On the
other hand, suppose the subject is told be is communicating
with a machine. What is be led to believe about the
machine as a result of his conversational experience with
it? Some subjects have been very hard to com·ince that
ELIZA (with its present script) is not human. This is a
striking form of Turing's test. What experimental design
would make it more nearly rigorous and airtight?

The whole issue of the credibility (to humans) of
machine output demands investigation. Important de
cisions increasingly tend to be made in re!:ponse to com
puter output. The ultimately responsible human inter
preter of "What the machine says" is, not unlike the
correspondent with ELIZA, constantly faced with the
need to make credibility judgments. ELIZA shows, if
nothing else, how easy it is to create and maintain the
illusion of understanding, hence perhaps of judgmeut

Volume 9 / '."umber 1 I January. 1%(>

f

de5erving of eredibility .. -\. cerrnin danger lurks there.
The idea lhat the present ELIZA script conto.ins no

informo.tion about the real world is not entirely trne . For
exo.mple, the transform~ition rules which cause the input

Everybody hates me

to be transformed to

Can you think of anyone in particular

o.nd other such n.re bn.:;ed on quite specific hypotheses about
the world. The whole script constitutes, in a loose way, a
model of certain aspects of the world. The o.ct of writing a
script is a kind of progr:.unming act and has all the advan
tages of programming, most particularly that it clearly
shows where the programmer's understanding o.nd com
mand of his subject len.ves off.

A large part of whatever elegance may be credited to
ELIZA lies in the fact that ELIZA maintains the illusion
of understanding with so little machinery. But there are
bounds on the extendability of ELIZA's "understanding"
power, which are a function of the ELIZA program itself
n.nd not a function of any script it may be given. The
crucial test of understanding, as every teacher should
know, is not the subject's ability to continue a conversa
tion, but to draw valid conclusions from what he is being
told. In order for a computer program to be able to do
that, it must at least have the capacity to store selected
pans of its inputs. ELIZA throws away each of it.s inputs,
except for those few transformed by means of the
~IKY[QRY mn.chiner.y. Of course, the pr0blem is m~re
than one of storage. A great part of it is, in fact, subsumed
under the word "selected" used just above. ELIZA in its
use so far has had as one of its principal objectives the
concealment of its lack of understanding. But to encourage
its conversational partner to offer inputs from which it
can select remedial information, it must reveal itS mis
understanding. A switch of objectives from the conceal
ment to the revelation of misunderstanding is seen as a
precondition to making an ELIZA-like program the basis
for an effective natural language man-machine com
munication system.

One goal for an augmented ELIZA program is thus a
system which already has access to a store of information
about some aspectS of the real world and which, by means
of conversational interaction 'IVi.th people, can reveal both
what it knows, i.e., behave as o.n information retrieval
s~"Stem, and where its knowledge ends and needs to be
augmented. Hopefully the augmentation of its knowledge
will also be a direct consequence of its conversational
experience. It is precisely the prospect that such a program
will converse with many people and learn something from
each of them, which leads to the hope that it will prove an
interesting and even useful conversational partner.

One way to state a slightly different intermediate goal is
to say that ELIZA should be given the power to slowly
build a model of the subject conversing with it. If the
subject mentions that he is not married, for example, and
l::i.ter speaks of his wife, then ELIZA should be able to

Volume 9 / :\fumher 1 (January, 1966

make the tenrative iru"erence th:.i.t fie is either :i widower
or divorced. Of course, he could :<:imply be coniuseti. In
the long run, ELIZA should be able to build up :i he/ief
structure (to use .-\.belson's phrase 1 oi the ;,ubj ect ::md on
that ho.sis de tect the subject's rationalizations. contra
dictions, etc. Conversations with :::uch :in ELIZ.-\.. would
often turn into arguments. Imporrn.nt :>tep · in the realiza
tion of these goals have alreo.dy been taken. :.\lost no table
among the!!e is Abelson's and Carroll's \\'O rk on simulation
of belief st ructures [l].

The script that has formed the basis for most of this
discussion happens to be one with an overwhelmingly
psychological orientation. The reason for this has al ready
been discussed. There is a danger. however, that the
example will run away with what it is supposed to illus
trate. It is useiul to remember that the ELIZA progro.m
itself is merely a translating processor in the technical
programming sense. Gorn [2l in a paper on language
systems says:
Given a lauguage which already possesses semantic content , then
a t ranslating processor, even if it operates only syntactically,
generates co rresponding expressions of another langu:i.ge to which
we can attribute as ··meanings" (possibly multiple-the t ranslator
may not be one to one) the ''semantic intents " of the generating
source expressions ; whe ther we find the resul t consistent or useiul
or both is , of course, another problem. It is quite po~sible that by
this method the same syntactic object language c:i.n be usefully
assigned multiple me:i.nings fo r each e:'l.-pressio11 . . .

It is striking to note how well his words fit ELIZA. The
"given language" is English as is the ·'other lo.nguage",
expressions of which are generated. In principle, the given
language could as well be the kind of English in which
"word problems" in algebra o.re given to high school
students and the other language, a machine code allowing
a particular computer to "solve" the stated problems.
(See Bobrow's program STUDE:XT [3] .)

The intent of the above remarks is to further rob ELIZA
of the aura of magic to which it.s application to psycho
logical subject matter has to some extent contributed.
Seen in the coldest possible light, ELIZA is a transla ting
processor in Gorn's sense; however, it is one which has
been especially constructed to work well with natural
language text.

REFERE~CES

1. . .\.BELSON, R . P ., .\:-ID CARROLL, J. D. Computer simulation
of individual belief systems . Amer . Behav. Sci . 9 (:Vfoy 1965) ,
24-30.

2. Goa:-1, S. Semiotic relationships in ambiguously stratified
language systems. Paper presented at Int. Colloq. Algebraic
Linguistics and Automatic Theory, Hebrew U. of Jerusalem, .
. .\.ug. 196-t.

3. BOBROW, D. G. Xatur:i.l language input fo r a computer prob
lem solving system. Doctoral t hesis , :VIath. Dept., :vIIT.
Cambridge, :VIass., 1964.

4. WEIZENB .~m1 , J . Symmet ric list processor . Comm. AC.ll 6,
(Sept . 1963l, 52-!-~4 .

5. R OGERS , C. Client Centered Therapy: Current Pract ice , lmpli
caticms and Theory . Houghton :.Iiffiin, Boston, 1951.

6. Y:rnvE , J . CO.lllT P rogramming .llanual. :.nT Press . Cam
bridge, :.fass. , 1901.

Communications of the AC:\l 43

APPE~l)IX. An ELIZA Script

(HOW 00 YOU 00, PLEASE TELL ME YOUR PROBLEM)

START

(SORRY ((0) !PLEASE DON'T APOLIGIZE)

(APO LOG I ES ARE NOT NECESSARY) (WHAT FEEL! NGS

00 YOU HAVE WHEN YOU APOLOGIZE> Cl'VE TOLD YOU

THAT APOLOGIES ARE NOT REQUIRED)))

(OONT • DON IT>

(CANT • CAN'T)

(WOtlT • WON'T)

C~EMEMBER S

((0 YOU REMEMBER 0) COO YOU OFTEN TH INK OF .,

!DOES TMINKING OF •BRING ANYTHING HSE TO MINO)

(WHAT ELSE DO YOU REMEMBER)

(WHY 00 YOU REMEM!ER 4 JUST NOW)

(WHAT IN THE PRESENT SITUATION REMINDS YOU OF • >
(WHAT IS TME CONNECTION BETWEEN ME AND •))

((0 DO I REMEMBER 0) 1010 YOU THINK I WOULD FORGET 5)

(WHY 00 YOU THINK I SHOULD RECALL 5 NOW)

(WHAT ABOUT Sl !•WHAT) (YOU MENTIONED Sl)

((O) (NEWKEY)l)

(IF 3 ((0 IF Ol COO YOU TMINK ITS LIKELY THAT ~l (00 YOU WISH THAT l)

(WHAT DO YOU THINK ABOUT 3) CREALLY, 2 l)))

(WHAT 00 YOU THINK ~BOUT 3) CREALLY, l)))

(DREAMT k ((0 YOU DREAMT 0)

!REALLY, k) (HAVE YOU EVER FANTASIED k WHILE YOU WERE 4WAKE)

(HAVE YOU DREAMT 4 BEFORE) (•ORE AM l C NEWHY)))

COUAMED • DREAMT o (•DREAMT))

(DREAM l ((0) (WHAT DOES THAT ORE•~ suer.EST TO YOU)

100 YOU DREAM OFTEN) (WHAT PEqSQNS APPEAR IN YOUR DREAMS)

(DON'T YOU BELIEVE T+1AT CREAM HAS SOMETH1Nr. TO no WITH

YOUR PROBLEM) C NEWKEY)))

! DREAMS •DREAM 3 (•DREAM))

CHOW (•WHAT))

(WHEN (•WH~Tl l

(ALIKE 10 (•OIT))

CSAME 10 C•OITl)

(CERTAINLY (•YES))

!FEEL OLISTC/BELIEF))

(THINK OLI STC/BELI EF))

(BELIEVE OLISTC/BELIEF))

(WISH DLISTC/BELIEF))

(MEMORY MY CO YOUR 0 • LETS DISCUSS FURTME• wuy YOUR 31

(0 YOUR 0 • EARL I ER YOU SA I 0 YOUR l)

(0 YOUR 0 • BUT YOUR l)

(0 YOUR 0 • DOES THH HAVE AHYTH I HG TO 00 WI TH THE I' ACT THAT YOUR l))

(NONE ((0) (I AM NOT SURE I UNOERSTANO YOU FULLY)

C PLEASE GO ON)

(WHAT DOES TMAT SUGGEST TO YOU)

COO YOU FEEL STRONGLY ABOUT DISCUSSING SUCH TMINr.S))l

(PERHAPS C(Ol (YOU DON'T SEEM QUITE CERTAIN)

(WHY THE UNCERTAIN TONE!

(CAN'T YOU BE MORE POSITIVE)

(YOU AREN'T SURE> COON'T YOU KNOW)))

(MAYBE (•PERHAPE l)

(NAME lS ((0) (I AM NOT I NTERESTEO IN NAMES)

(I • VE TOLD YOU BEFORE, I DON'T CARE ·~our NAMES •

PLEASE CONTINUE)))

(DEUTSCH I •lFREMtl))

CFRANCAI S (•XFREMO))

(ITALIANO (•XFREMO))

(ESPANOL (•XFREMO))

(XFREMO ((0) (I AM SORRY, I SPEAK ONLY ENllLI SH)))

(HELLO ((0) CHOW OD YOU 00. PLEASE STATE YOUR PROBLEM)))

(COMPUTER SO ((0) (00 COMPUTERS WORRY YOU l

(WHY DO YOU MENTION COMPUTERS) (WHAT DO YOU THINK MACHINES

HAVE TO DO WITH YOUR PROBLEM! COON'T YOU THINK COMPUTERS CAN

HELP PEOPLE! CWHAT ABOUT llACHINES WORRIES YOU) (WHAT

DO YOU THINK AROUT MACHINES)))

(MACHI NE SO (•COMPUTER))

(MACHINES SO (•COMPUTER))

(COMPUTERS 50 C •COMPUTEjU l

CAM• ARE ((0 ARE YOU 0) (00 YOU BELIEVE YOU ARE •>

44 Communication" of the ACM

(WOULD YOU WANT TO BE ' J C YOU WISH I WOULD TE~L YOU YOU >~E ')

(WHAT WOULD IT MEAN 1: VOU WERC: Id (•WHAT))

((0) CWHY 00 YOU SlY 1 .t.M 1
) (I DON'T 1.!NDERSTANf' T"'!AT)))

(ARE ((O ARE I 0)

(WHY ARE YOU INTERESTED IN WHETHER I U I • O• NOT J

(WOULD YOU PREFER IF I WEREN'T la) (PERHAPS I A,p.1 i. IN YOUF\

FANTASIES) (00 YOU SOMETIMES THINK I AM •l (oWHATl l

CCO ARE 0) (010 YOU THINK THEY Mir.MT NOT BF. J)

(WOULD YOU LIKE IT IF THE Y WERE NOT l) (WHAr IF THEY WERE NOT 3)

(POSS I BLY THEY ARE l)))

(YOUR • MY ((0 MY 0) (WHY ARE YOU CONCERNED ovEq MY 3)

(WHAT ABOUT YOUR OWN l) CARE YOU WORRI EO •ROUT SO~EONE ELSES Jl

(REALLY, MY))))

CWAS 2 (CO WAS YOU 0

(WHAT IF YOU WERE •> (DO YOU THIN~ YOU WEPE •l

(WERE YO~ 4) (WHAT WOULD IT MF.AN IF YOU WERE ')

(WHAT DOES ' 4 ' SUGGEST TO YOU) (•WHAT))

((0 YOU WAS Ol

(WERE YOU qEALLYl (WHY 0~ YOU TELL ME YOU WERE • NOW I

(PERHAPS I ALREADY KNEW YOU WERE 4))

((O WAS I 0) (WOULD YOU LIKE TO RELIEVE I WAS•>

(WHAT SUGGESTS THAT I WAS o)

(WHAT DO YOU TH I NK) (PERHAPS I WAS 4)

(WHAT IF I HAD BEEN 4))

((O) (NEWKEY)))

(WERE • WAS (•WAS l l

CME • YOUl

(YOU'RE • 1 'M ((0 1 'M 0) !PRE (I ARE ll (•YOU))))

Cl'H •YOU'RE !CO YOU'RE Ol (PRE (YOU ARE 3l (•I))))

(MYSELF • YOURSELF)

(YOURSELF • MYSELF I

(MOTHER DLI ST! /NOUN FAMILY) l

(MOH• MOTHER DLISTC/ FAMILY))

(DAO• FATHER DLISTC/ FAMILY))

<FATHER DLI ST(fNOUN FAMILY))

(SI STER DLISTC/FAMI LY))

(!ROTHER DLISTC/FAMILYl)

(WI FE DLI STC/FAMI LY))

(CHILDREN OLISTC/FAMILYll

Cl • YOU

((0 YOU (• WANT NEED) 0) (WHAT WOULO IT MEAN TO YOU IF YOU GOT 4)

(WHY OD YOU WANT 4) (SUPPOH YOU GOT k SOON) (WHAT

IF YOU NEVER GOT 4) !WHAT WOULD GETT! NG • MEAN TO

YOU) (WHAT DOES WANTING k HAVE TO 00 WITH THIS DISCUSSION))

((O YOU ARE 0 !•SAO UNHAPPY DEPRESSED SICK l 0)

(I AM SORRY TO HEAR YOU ARE 5) COD YOU TH1'1K COMING HERE

WILL HELP YOU NOT TD BE 5) (I 'M SURE ITS NOT PLEASANT TO

BE Sl !CAN YOU EXPLAIN WHAT M•OE YOU 5))

((0 YOU ARE 0 (•HAPPY ELA TED GLAD BETTER l 0)

(HOW HA VE I HELPED YOU TO BE 5 l

(HAS YOUR TREATMENT MADE YOU 5 l (WHAT MAKES YOU 5 JUST

NOWl (CAN YOU EXPLAIN WHY YOU ARE SUDDENLY 5))

((0 YOU WAS 0) (•WAS))

((0 YOU (/BELIEF! YOU Ol COO YOU REALLY TMINK SOI (BUT YOU ARE

NOT SURE YOU 5) (00 YOU REALLY DOUBT YOU 5 l l

((O YOU 0 C/BELIEF) 0 I 0) (•YOU))

((0 YOU ARE O)

(IS IT BECAUSE YOU ARE k THAT YOU CAME TO ME>

CHOW LONG HAVE YOU BEEN •I

COO YOU BELIEVE IT NORMAL TC ft[k)

(00 YOU ENJOY BE I NG • ll
((0 YOU (• CAN'T CANNOT) 0) (HOW DO YOU KNOW YOU CAN'T o>
(HAVE YOU TRI ED!

C PERHAPS YOU COULD • NOW)

(00 YOU REALLY WANT TO BE ABLE TO kl l

((O YOU DON'T O)(DON'T YOU REALLY kJ(WHY DON'T YOU .,

(00 YOU WISH TO BE ABLE TO •l CODES TMAT TROUBLE YOU))

CCO YOU FEEL Ol !TELL ME MORE ABOUT SUCH FEELINGS)

COO YOU OFTEN FEEL •)

!DO YOU EN.IOY FEELING•>

(OF WHAT DOES FEEL I NG • REM I NO YOU l)

((0 YOU 0 I 0 > (PERHAPS IN YOUR FANTASY WE l EACH OTHEq l

!DO YOU WISH TO l MEI

(YOU SE!H TO NEEO TO l ME I

COO YOU l ANYONE ELSE)!

\'olume 9 / ~umber I / January, lt)hh

((01 (YOU SAY ll

(CAN YOU ELABORATE ON THAT) (0 0 YOU SAY I FOR SOME SPECIAL REASON)

(THAT'S QUITE I NTERESTINGll l

(YOU • I ((0 I REM I NO YOU OF 0 l (•0 I TJ I

((O I ARE OJ (WHAT MAKES YOU THINK I A~ • l

<OOES I T PLEASE YOU ; o BELIEVE I AM•>

(00 YOU SOMETIMES WISH YOU WERE ;)

(PERHAPS YOU WOULO LI KE TO BE 4 l)

((O I 0 YOU) (WHY 00 YOU THINK I l YOU)

(YOU LI KE TO TH I NK I J YOU • 00 N' T YOU l

(WHAT MAKES YOU THINK I l YOUl

<REALLY, I l YOU) (00 YOU WISH TO BFLIEVF. I l YOUl

(SUPPOSE I 010 l YOU • WHAT WOULn THAT MEAH)

(OOES SOMEONE ELSE BELIEVE I J YOU))

((O I Ol <WE WERE DISCUSSING YOU - NOT ME)

(OH, I ll (YOU'RE NOT REALLY TALKI Nr. AAOUT MF.· ARE YOU)

(WHAT ARE YOUR FEEL I NGS NOW)))

(YES ((Q) (YOU SEEM QUI TE POSITIVE) (YOU ARE SURE)

(I SEE) (I UNOERSTANO J))

(NO ((OJ (ARE YOU SAYING ' NO' JUST TO RE NEr.ATIVEJ

(YOU ARE BEING A BIT NEGATIVE) (WHY NOTJ (WHY 'NO')))

(MY •YOUR Z ((O YOUR 0 (/ FlMILYl 0)

(TELL ME MORE ABOUT YOUR FAMILY) (WHO ELSE 1'1 YOUR FAMILY

5) (YOUR •l (WHAT ELSE COMES TO MINO WHEN YOU THINK OF

YOUR 4))

((O YOUR 0) (YOUR ll <WHY 00 YOU SAY YOUR J) (OOES THAT

SUGGEST AllYTHING ELSE WHICH BELONGS TO YOUl (I S IT

I MPORTANT TO YOU THAT Z ll))

(CAN ((O CAN I Ol (YOU BELIEVE I CAN 4 OON'T YOUl (•WHAT)

(YOU WANT ME TO BE AALE TO •> (PERHAPS YOU WOULn LI KF. TO BE

ABL E TO • YOURSELF)) ((O CAN IOU 0 1 (WHETl'ER OR NOT YOU CAN •

OEPENOS ON YOU MORE ;H AN ON ME l (00 YOU WANT TO H AAL! TO •l

(PERHAPS YOU OOH' T WANT TO •) (•WHAT)))

(WHAT ((0) (WHY 00 YOU ASK) (noes THAT QUEST I CN I NTERF.ST YOU)

(WHAT IS IT YOU REALLY WANT TO KNOW)

(ARE SUCH QUESTIONS MUCH ON YOUR MINnl

(WHAT ANSWER WOULO PLEASE YOU MOST)

(WHAT 00 YOU THINK) (WHAT COMES TO YOUR Ml HO WHFN YOU ASK THAT)

(HAVE YOU ASKEO SUCH QUESTION BEFORE)

(HAVE YOU ASKEO ANYONE ELSEJ l)

(BECAUSE ((O) (IS THAT THE REAL RFASON) (OOH'T ANY OTHER RFASONS

COME TO MINO) COOES THAT REASON SE!I' TO EXPLAIN ANYTHING ELHl

(WHAT OTHER REASONS MIGHT THERE BE)))

(WHY ((O WHY DON'T I 0) (00 YOU BEL I EVE I DON'T 5) (PERHAPS I

WILL 5 IN r.ooo TIME) (SHOULO YOU s YOURSF.LFl (YOU ·.~ANT ME TO S)

(•WHAT))

((O WHY CAN'T YOU 0) (00 YOU THINK YOU SHOULO RE AALF. TO 5)

(00 YOU WANT TO BE ABLE TO Sl (00 YOU BELi FVE TIH S WILL HELP YOU

TO 5) (HAVE YOU ANY I OEA WHY YOU CAN'T 5) (•WHAT))

(• WHAT))

(EVERYONE 2 ((0 (• EVERYONE EVERYBODY NOBODY NOONfl 0 l

(REALLY, ll (SURELY NOT Z) (CAN YOU TH INK OF

ANYONE I N PARTICULAR) (WHO, FOR EXAMPLE) <YOU ARE THINKING OF

A VERY SPECIAL PERSON)

(WHO, MAY I ASKl CSOHEONE SPECIAL PERHAPS)

(YOU HAVE A PARTICULAR PERSON IN Mllln, OON'T ynu) (WHO 00 YOU

THINK YOU'RE TA LK I NG ABOUT)))

(EVERYBOOY Z (•EVERYONE))

(N0800Y Z (•EVERYONE))

(NOONE 2 C •EVERYONE))

(ALWAYS l ((Ol (CAN YOU THINK OF A SPEC I FIC EXA~PLE) (WH[N)

(WHAT I NCIDENT ARE YOU THINKING OF) (R EALLY, ALWAYS)))

(LIK[10 ((O (•Al4 IS ARE WAS) 0 LIKE 0) (•OITJ)

((O) (NEWKEY)) l

(OIT ((OJ (IN WHAT WAY) (WHAT RESEMBLANCE 00 YOU SEEl

(WHAT DOES THAT S I MILARITY SUGG[ST TO YOU)

(WHAT OTHER CONNECTIONS 00 YOU S[E)

(WHAT 00 YOU SUPPOSE THAT RESE.'48LANCE MEANS)

(WHAT I S THE CONNECTION, 00 YOU SUPPOSE)

(COULO THERE REALLY SE SOME CONNECT I ON)

(HOW)))

()

RECEIVED S EPTE)!BER, 1965

Volume 9 / Number 1 I Januar~-, 1966 Communications of the AC::H -t.5

