FANTAMY
GAMER

3 BIG PROGRAMS FOR THE ADAM*

2 ADVENTURES WITH GRAPHICS

PLUS
ADVENTURE CREATOR

Design Your Own Adventure Games!

CONTENTS

WELCOME TO FANTASY 'GBMER: ""2"2 o+ o' v B 3s o aitade » s ¢« « A

INTRODUCTION TO ADVENTURINGSSS , 1159 JRSIRSIY. o o s o o« o 1
PEPOIAg-tHe . GBME . - SeSERE. RUAl o o & 5w 'Y

Iaventory management ., 'S8 05 e o s s o oo)

Using FARTASY GAMER | . A BEEETRS 0. . o' 2

ADVENTURE CREXTOR 5 o0 ol 51 ¢ o o SURECTIN SRIEEE > o o o o 3

GeEE 10 NERECEETRE Ml o sl RTINS
Dedying your wordd"peshaat BiS Besiceimlh s o s ¢ s 3
BuiNoing Ehet SEory B LGl RIS Al o s h e s e Rty

ANALYZING THE ADVENTURE CREATOR PROGRAM 6

Program listing O o s o en o RGN UMY 7
General structure of the program s Lo BRI
Memory map . . . LB e ol v s 6 s v o8 ow 1T
BASIC program map MRS 2l b 4 e oo s 1R
TRATHEINEREION + 5 » Al Sl o wis o » o o 18
Description ang feedbackiBl it jd%e » v o e s s s 20
EBDAE. S8, 0 "o oy by w el Lor TOEEERR S A o s o e s 22
FHRSESTRRTS 0 ST N of o i DR s s, . b s oWl N w2y
HOMUTE GDRENESR ', . o SRR L Rt i .23
Extra features of the parse 5 o R ey I
RO "L BIDRIET s '« ¢ S e e YL
Tvo more extra parser features, . . 24
Assembly language listing of the parser . . . 24
Error messages and condxtxon CHECES "¢ « o v o 40
VErbERCTIon TOULINEE ¢ « o+ o o 8 « 5 8 o s @ » = 29
JumBpe Y verb routines S5 8 & o 6w 4 o 9 o« 29
SIantRiie . Help' « o » »slie ntu m e & el o B9
DINSRUEEU~ I CRrreing? . cbe s o e snes ol 30

B R = e L T e o b AT R Th it s T o RRORERD

P T R R < S e T S A |
IRt ESRU=»"DDOI o o ¢ o o oo Sagh s . b w e 5 3T
LIne NS00~ EXAMING o « 5 w va et s wila b e o e TE
LANERt RIDOCIVH0" . o . o N e s e e e e e 32
I ID0-~"18ave . . . o % o s BT s e 32
Eines 3200-3800 . s o < + « o s s s s & & = 32
HINerISU0 == UBE + » w' e s v o ko W o v o v 32
Hineg 36004100 o '% v v B s SN L 5 e s 23

ii

THsett & Pull RESET

Line 4600-- SAVE « «
Eineg 4700-- LOAD . « « « o« »
GRAPHICS . .
Using HPLOT tor “buxldan blocks
Plotting your drawings . .
Drawing the scene . . . :
Using sprites s
Sprite data
BIT PATTERN TABLE o
) Sprite data strategies .
Sprite attributes . . . X
Sprite Color Attribute Table .
Placlng the sprites in a sce

.
.
.
.
.
.
e

.
.
.
.
.
.
.
.
n

Animating the sprites . . .
The general principle . .

Assembly language listing for sprlt

Problems with BASIC
POMB SQUARE s o o o o5 0 ¢ o ¢ o o o o Wi

Saving and loading . . .
A bug tn BASIC W' ¢ ¢ s &
Graphics clues
Getting help in the game
A deadly warning

BHE VIESITOR « o o 908 & o o 000 w0 ¢ @

st -

o B TR e w

O A

o & w WMy %S e

s @ WL 3w ¥

o ses o

33
34
34
34
35
35
35
37
40
42
13
43
44
45
45
46
47

49

49
50
50
50
50

51

INTRODUCTION TO ADVENTURING

Adventure games are like stories in which the player is
the hero, and the outcome of the story depends on the play-
er's wisdom and actions. Adventure games can be grouped into
two general classes--puzzle adventures and fantasy adven-
tures (or interactive fiction). The game Bomb Squad is a
puzzle adventure; there is one set of solutions, and your
success at finding the solution will depend on your logic
and deductive reasoning. The Visitor is more of a story
with variable outcomes and more description and character
development. Your success in a fantasy adventure may depend
more on your understanding of an opponent's personality than
on deductive reasoning.

To play the game, you read information about your posi-
tion and status on the screen, and sometimes you must study
pictures presented graphically for clues. The game will ask
you vhat you want to do, and you will enter two-word com-
mands (a verb and a noun) like "kill dragon" or "charm prin-
cess" or "go south".

ggxng the game.

It is essential to keep track of the world you are mov-
ing around it by drawing a map as you go, noting objects in
various locations, in case you should need them later. Ad-
venture games consist of various specific locations in which
action takes place, so start your map with a rectangle rep-
resenting your present location. Add rectangles ("rooms") as
you go.

Develop your own shorthand to keep track of how you got
from place to place, what objects are in each location, and
which directions are not passable in each room.

Inventory management.

In most games (including Bomb Squad and The Visitor)
you can carry only a limited number of things--partly de-
pending on your physical condition. You never know what you
might need for any one situation, so at times you will have
to drop things in order to pick up others. Reep track of
vhere these things are, in case you need them again.

Using FANTASY GAMER
i nual and tape cover three separate programs. It
wouldT:::b:;ly be a good idea to play the two games actcu
times before you study the mater:al_called Adventure ;e—
ator because once you start analyzing tbe program ;n' e-
tail: most of the solutions to the games will become obvious
and spoil all your fun. Also, if your goal is to write yo§r
own adventure games, You should have some feel for hovlt e
player perceives these games without having all the clues
ime. .
.he'dagse:cure Creator conaists'ot a ”trgmeuor§ prograT :
which is not a game in its own right. It 13 des:gngd to let
you fill in the details of your own game. The written in-
structions for Adventure Creator are propably just ashxmpor:
tant as the program on the tape, since just having the p;ol
gram won't do you much good, without the tutorial materia
that explains it.

ADVENTURE CREATOR

Getting started

When you write an adventure game, you will be creating
a fantasy world in which you make up all the events and
rules. The world you create can be as fantastic or as real-
istic as you want to make it. Many adventure games use ma-
gic, and will be up to you decide how much magic is permit-
ted.

First, decide on a theme for your story. You might
choose a particular time in history, or even prehistory--and
have your player try to prevent the extinction of the dino-
saur. Haunted mansions are big favorites, and some adven-
ture games teach a little history by being factually accu-
rate in details, while the player tries to do something like
help Julius Caesar avoid assasination. We're not sure what
the implications would be if the player succeeds.

Once you have a general theme, work out the actual sto-
ry, which should be built around an objective--defuse the
bombs, find the alien's mother ship, retrieve the Ring from
the Lord of Darkness, or whatever. The course of your story
will always be built around this ultimate objective.

Then sketch out your world in a rough map. This stage
will take some imagination and many false starts, as you
think about your story line in relation to the place where
it occurs.

Draving your "world"

The first step in making your story into an adventure
game is to transfer your sketched in "world" to a square
grid, like the one in the next figure. Of course you can
make your world any size, but limitations of the computer's
memory put some limits on you, especially if you want to use
some memory for graphics and have lots of options in the
possible actions in the story.

The grid used in this example is 6x6, so we can have 36
locations or "rooms" in our game. Make your grid as larqge
as possible, because you will want to write in lots of
notes, treasures and object names. You will refer to this
diagram many times as you plan story action and keep track
of which objects are in which locations.

4

Number each location, starting in the top left corner,
as in the sample grid (which, obviously, is from Bomb
Squad). We find it clearest to start numbering at 1, rather
than 0 (as some games do). Use a pencil to lightly mark in
brief room names for each location and the exits possible
from each room. As’ your grid drawing develops, you will be
able to darken in lines for exterior walls and to set off
such things as cellars and attics.

As you mark the entrances and exits in each room, wuse
“the four points of the compass as direction markers. You
can use little arrows, as in the example grid. 1f you add

the interest of going up ladders and down stairs, etc., plan
routes carefully. Obviously, even going "up" is going to
require the player to go north, south, west, or east. It §s
a good idea to get used to always naming the directions in
this order, since we will be wusing numbers to indicate di-
rections in the game (north=1 south=2 west=3 east=4). Some
of your routes may be one-way (the door locks behind you; a
tunnel collapses after you go through it etc.).

Make a list of your rooms with all legal exits from the

room, like this:
1. wine cellar S
2. TV room SE
3. patio WE
etc. for later use.

Building the story

Now that your adventure world is mapped out, it's time
to get serious about our story. You need to plan what the
player can do in each room, and what objects will be needed
to do. its In the process of doing this, you will be build-
ing up a list of verbs to cover the actions needed and 2
list of "gettable" objects (things the player can pick up)
and "non-gettable" objects that will be in the room to stay.
Keep a separate list of verbs and objects, and list the get-
table objects ahead of the non-gettable objects in your ob-

ject list. Eventually, you will want an object list that
looks like this:
Object number Object Location
1. keys 21
2% amulet 3
3. scrolls !

etc.

As you place (and perhaps hide) your props around the
environment, you will be thinking about what the player will
do with them in each location. If you do hide an object
(like the crowbar in the grass in Bomb Squad), you will have
to keep track of what is visible and what isn‘t. We will
show you how to do this in our analysis of of the Adventure
Crgator program. It will help a lot if you write in each
object on your grid diagram.

As you plan your game,

actions,
sistent se
trating to

vorld includes magic,

out.

puzzles,
nse.
play.

Of course it's

keep your player in mind.

5

The

and events should make some kind of con-

but be

Random magic is maddening.
the verbs and nouns your player

sure

Also,

Otherwise the game will be impossibly frus-
OK to use magic,

the rules can be figured
try to anticipate
might use for various situ-

if your

ations.
2 3 1 [
wi:: TV patio pool garden glifr
cellar room t
> 4 ERw matchi\ > Fope .‘)Ql‘)’a 4
wine i 1
5 bogk
v AV Y T0) B R 7
urnace |storage |meeting | king's aide's war
room roomt room N Egom office room
rates <
f1ash- £4€bomb, 2 1€ Lools
light e 5
JL | 15 W16 v 17 A Varz
broten dog4/ ambassadof upper q% ambassadon
gate rd suit hal
E><“¥a e /(fv all hall t_><bc:ff1ce
dog bomb 1 5 badge keys
v ¥4 v
- w
duts{¥e [fYtchen glning §€aia 23han’m | s2senal
kitchen room
meat ex<W £
bongs knife p § bo;b 3
v i :
AV | 26 AV 27 W 28 A7 12_? 30 A=
all ii brary
grass staff ball foyer dark
quarters| room . book (Ef cellar
hidden EX ExF Letter K
crowbig a >
1 4] 33 33 34 7 35 36 A
corner o ence | garage entrance| guard cell
fence Sr&path ¢ auto jack % éxhouse
tirepumg# ¥

ANALYZING THE ADVENTURE CREATOR PROGRAM

Once you have your story planned, you are rea@y to
start programming. The purpose of Aqventure Creator is to
give you a “framework program” in which the hard parts of
the program are already done. Your main job will be to pro-
vide the details of the "world" of your adventure, and per-
haps to make up your own grgphicn scenes. This will still
be a complicated job, but it should be a fascinating pro-
cess, in which you will learn a great deal.

The next Section gives you a complete listing of the
"framework" program, and subsequent sections analyze the
program in detail. This is probably the best way to learn
programming. We are assuming that you already know some-
thing about BASIC programming, so you might have to study
your computer manual or some other book, if ’there are de-
tails of BASIC that you don't understand.

This "framework” program formed the basis for both Bomb
Squad and The Visitor, the two games on this tape, and we
will be using examples from Bomb Squad to illustrate various
points. You can, of course, list out the relevant parts of
Bomb Squad and The Visitor if you want more detailed exam-

les.
. We will now list the entire Adventure Creator program;
you will need to refer back to this listing as you read the
analysis of it. The analysis will make frequent reference
to the line numbers in the listing, as we explain each step
of the program.

1 LOYEN :29650
50v = 47: g = 1B: rm = 34: bl = 1: b2 = 1: b3 = 1: t1 = 30: t2 = 60: t3 = 90
t 4rS 5 Wiephey SV te =t e
60 GOSUB 19900: REM set scene
65 GOSUB B500: GOSUB 2160: REM initialize
70 HGR: CALL sr: TEXT: REM clear out sprites
90 GOSUBE 500: REM feedback 5
100 GOSUB 160: RE{ input
110 GCSUB 700: REM condition checks
120 GOSUR 2000: REM verb action routines
130 ¢OTU 90
159 KBl *****ipput and analysis of input
160 PRIKT " What will you do now?": INPUT " "y
170 IF q8 = " " GOTO 160
240 pk = 27720
250 FOR 1 = 1 TO LEN(qS$): POKE pk, ASC(MID$(q$, 1, 1)): pk = pk+1: NEXT 1
260 POKE pk, ASC(""")
280 GOSUB B630: CALL sr: TEXT
410 vb = 0: ob = O: CALL 27430
450 vb = PEEX(27409): ob = PEEK(27410): w$ = ""
455 IF ob < vn GOTO 490
458 ob = ob-vn: RESTORE
460 READ aS: IF aS <> "load" GOTO 460
470 FOR 1 = 1 TO ob: READ w$: NEXT 1
490 RETURN
499 REM ®***»feedback
500 IF b! > O OR b2 > 0 OR b3 > 0 GOTO 510 :
505 HOME: PRINT " YOU'VE DONE IT! You must, of course, slip avay quietly,but
"
507 PRINT " you have the personal satis- faction of a job well done! It t
ook you "; t; " moves.": END
510 IF bt =1 OR b2 =1 OR b3 > O GOTO 516
512 PRINT " Your job is done! You didn't get them all, but the embassy 1is s
till there.We may call on you again.": END
516 HOME: GOSUB 7900
518 IF t1 = O THEN PRINT " You're a little nutso.The dog has killed you.": E

qS: qs = qs.‘.ﬁ "

520 PRINT " Visible exits are ";

530 FOR 1 = 1 TO LEi(r$(rm)): PRINT MIDS(r$(rm), 1, 1); "2%3 ¢ NEXT 13 PRINT
535 RECTORE

537 HEAD a3: IF a8 <> "load" GOTO 537

540 FOR 1 = 1 TO g: READ 03

550 IF 1(1) = rm AND f(1) = O THEN PRINT " You can see "; 0$; " here."

560 NEXT 1: PRINT " "; m3: m$ = "What?"

600 IF rm = 34 THEN GOSUB 2160: GOSUB 6200
610 IF rm = 13 THEN GOSUB 2160: GOSUB 6100
620 IF rm = 8 THEN GOSUB 2160: GOSUB 6500

630 IF rm = 29 THEN GOSUB 2160: GOSUB 6400

690
099

RETURHN

h BH

Dﬂ’vs,’.. ..

825 t = t+l

g4C IF t > t1 THEN GOSUB 5100

850 IF t > t2 THEN GOSUB 5200

s60 IF t > t3 THEN GOSUB 5300

900 vj = vbs IF vb > 2 ARD vb < 11 ?BEN vi=3
310 IF vb > 10 ALD vb < 18 THEN vj'= 4
015 IP vb = 18 THEN vj = 5

G20 1f vb > 18 AND vb < 25 THEN v) = 6
325 iF vb = 25 THEN v) =17

930 IF vb = 26 THEN v} = 8 .

935 IF vb > 26 AND vb < 30 THEN vj = 9
940 IF vb = 30 OR vb = 31 THEN vj = 10
345 IF vb > 31 AND vb < 37 THEN vj = 1
950 IF vb = 37 THEN vj = 12

955 IF vb = 38 THEN vj = 13

360 IF vb > 38 AND vb < 44 THEN v] = 14
965 IP vb = 44 THEN vj = 15

970 IF vb > 44 AND vb < 49 THEN vj = 16
975 IF vb = 49 OR vb = 50 THEN vy =17
980 IF vb > 50 AND vb < 58 THEN v] = 18
985 IF vb > 57 AND vb < 66 THEN vj = 19
990 IF vb = 66 OR vb = 67 THEN vj = 20
992 IF vb = 68 OR vb = 69 THEN vi=21
994 IF vb = 70 OR vb = 71 THEN vj = 22
996 IF vb = 72 THEN vj = 23

997 IF vb = 73 THEN vj = 24
999 RETURN

1999 REI *#*w*yerb action routines

2000 IF vj = O THEN RETURN

2005 IF tc > t1 AND vj <> 11 AND vj <> 2 THEN n$

: RETURLE

2010

2029
2100
2110
2120
2139
2140

Ok vj§ GOTO 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000,
0, 3200

5020 ¢ vj-15 GOTO 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4600, 4700
PRINT * Words I know:": hp = O: m$ = ""

3300,

HRCSTORE:
REZAD al:
HEZAD al:

YRINT &$; " ,"

sxwsrcondition checks
700 IF ob = O THEN m$ = " That'
730 IF vb = O OR vb > vn OR (ob > 0

mlt l'l’_ s,’Il..
740 IF vb < vn

3400, 3500

s 8illy."

IF a5 <> "help"” GOTO 2110
IF a% = "zz" GOTO 2160

; ¢ we = we+l: IFP we > 3 THEN wc = O: PRINT
np = hp+l: IP hp = 64 THEN PRINT: hp = O: GOSUB 2160

AND ob-< vn) OR w$ = "™ THEN m$ = " yq,
AND ob > O AND ob <= g AND c(ob) = O THEN m$ = "You don't ng

= " You must drop somethin

9
2150 GOTO 2120
2160 FRINT: INPUT " Push return to continue."; a$: RETURN
2200 PRINT " You are carrying:"; : RESTORE
2210 KEAD aS: IF a$ <> "load" GOTO 2210
2220 FOR 1 = 1 TO g: READ o$: IF c(1) = 1 THEN PRINT o$; ",";
2230 KEXT 1: m$® = "": GOTO 2160
2300 d = 0: IF ob = O THEN d = vb-3
2303 IF ob = 19 THEN d = 1
2306 IF ob = 20 THEN d = 2
2309 IF ob = 21 THEN d = 3
2312 IF ob = 22 THEN d = 4
2344 IF rm = 34 AND (d = 1 ORd = 4) AND £(45) = O THEN m$ = " The guard won't
let you pass.": RETURN
2370 £(19) = 0: rl1 = LEN(r$(rm))
2¥72 POR" ="y 80 ¥
<374 ud = KIDS(r$(rm), 1, 1)
2276 1F (uS = "H" AlD d = 1 AND £(19) = O) THEN rm = rm-6:-£(19) = 1
2378 IF (us = "S" AiiD d = 2 AND £(19) = 0) THEN rm = rm+6: 1119) = |
2380 1F (u$ = "W" AliD d = 3 AND f}l9 = 0) THEN rm = rm-1: £(19) =1
2382 IF (u® = "E" AND d = 4 AND £(19) = O) THEN rm = rms¢t: £(19) = 1
2384 LEXT 1
2336 8 = " OK."
2358 IF £(19) = O THEN m$ = " Can't go that way!"
23990 1IF d < 1 THEN m3 = " Go where?"
2723 RETURN
2400 IF ob > g THEN m§ = " You can't get "4+w$+".": RETURN
2420 IF 1(ob) <> rm THEN m$ = " It isn't here."
2430 IF f(ob) <> O THEN m$ = " What "+w$+"?2"
2440 IF c(ob) = 1 THEN m$ = " You already have {it."
"zdggTb:rtc >= t1 THEN m$ = " You can't carry more than "+STR$(tl)+" things.
H .

2460 IF ob > O AND 1(ob) = rm AND f(ob) = O THEN c(ob) = 1: 1(ob) = 38: m$ = "
OK. You have the "+wG+".": tc = tec+1

2470 IF q8 = "take pictures” THEN m$ = "using what?"

2499 RETURN

2500 IF rm = 30 AND c(1) = O AND c(2) = O AND c(3) = O AND ob = 47 THEK m$ = "
You don't have anything to open 1t.": RETURN

2530 IF rm = 30 THEN m$ = " The door ie open. You had the tools for the job."
: r3(30) = "nsw"

259 RETURN

2600 IF ob <= w AND (1(ob) = rm OR c(ob) = 1) THEN m$ = " Nothing special--jus
Lra ange®, "

2630 IF rm = 19 AND ob
2640 IF rm = 25 AlID ob
ar in the grass!": £(2)
_2699 RETURN

36 THEN m$ = " That's disgusting!"
39 AND f(2) = O THEN m$ = " You've discovered a crowb
0

nun

2700 IF ob = 12 AND c(12) = 1 THEN m$ = " l} says, 'Moveable furniture ls dece;
tive.'"

2;;0 IF (ob = 11 OR ob = 12) AND c(11) = O AND c(12) = O THEN m$ = " How cap
ou read what you're not holding?"

2799 RETURN

2800 IP ob = 11 AND c(15) = 1 THEN m$ = " It says,'The bookcase moves. The
wbassador will die'"

2820 IF c(15) = O THEN m$ = " You don't have the codebook." v

2900 IF bl = 1 AND rm = 15 AND (c(6) = 1 OR c(17) = 1) THEN m$ = ® Good work,
mhe ambassador ie safe for nov.": bl = 0

2940 IF c(6) = O AND c(17) = O THEN m$ = " You can't defuse anything with no
nife or tools." 3

2950 IF rm = 8 AND £(26) = O THEN m$ = " A crate's in the way.

2999 RETURN .
3500 If rm = 30 AND (c(3) = 1 OR c(2) = 1) THEN n$ = " The cell is open.": r§
30) = "lSW": £(46) = 1

3010 IF c(3) = O AND c(6) = O AND rm = 30 THEN m$ = "You have no keys or crow

L

ar.
3099 RETURN
3100 IP ciob = 0 THEN It = " You're not carrying it."

3110 IF c(ob) = 1+ THEN c(ob) = O: 1(ob) = rm: m$ = " Done.": te = tc-i
3199 RETURN

3200 IF ob = 5 AND ¢ 5; =1 THEN m$ = " It's 1it.": 1(5) =1 "
3210 IF ob = 5 AND c(5) = O THEN m$ = " You don't have the flashlight.
3299 RETURN 2

3300 IF ob = 5 AND cisg =1 THEN m$ = " It's turned off. .
3310 IF ob = 5 AND c(5) = O THEN m$ = " You don't have the flashlight.
3399 RETURN

3400 IF rm = 15 AND ob = 35 THEN =n$ = " What good did that do?She's unconsc
ous now.": f£(35) = 1
3499 RETURN

3500 IF rm = 8 AND (ob = 1 OR ob = 2) THEN m$ = " QGreat.The crate moves. Ther
‘s the bomb!": £(26) = 1

3510 IF c(ob) = O THEN m$ = " You don't have it."
3599 RETURK

3600 IF rm = 8 AND ob = 26 AND £(26) = O THEN m$ = " It's extremely heavy.¥h
will you use to move 1t?" z
3605 IF rm = 29 AND ob = 41 AND ob) = 1 THEN m$ = " It's already woved.
3610 IF rm = 29 AND ob = 41 AND f ob) = O THEN m$ = " IT MOVES! Stairs lead
wn!": £(41) = 1: r$(29) = "WE"

3699 ALCTURN

3700 IF ob = 9 AND c(9) = 1 THEN m$ = " You doze off for 20 precious minut
": t = t+10
3799 RETUAN i}
3300 iF ob = 44 AYD (bl = 1 AND rm = 15) OR (b2 = 1 AND rm = 8) OR (b3 =1 A
rc = 24) THER m$ = * Don't do that!"™: GOTO 6000

3810 IF rm = 30 AND ob = 46 THEN n$ = " I's so strong. What will you us
3899 RETURN

a?”

3900 LF rm = 30 AND f(46) = 1 AND ob =
3910 IF rm = 15 AND ob = 35 THEN m$ =
m,you See a bomb"

3099 RETURN

4000 1F rm = 14 AND ob = 34 AND (c(4) = O OR c(14) = O) THEN m$
have anything he wants."

4010 IF rm = 14 AND ob = 34 AND (c(4) = 1 OR c(14) = 1) THEN mn$
seems to like you.": £(34) = 1: c(4) = 0: c¢(14) = O

4099 RETURN

md!OO IF £(20) = 1 AND rm = 34 AND £(45) = O THEN m$ = " Devious but effective.
The con- promising pictures got him.": f(45) = 1

vdlig I: £(20) = O AND rm = 34 AND ob = 45 AND f(45) = O THEN m$ = " What will
you use?"

4199 A ETURN

4200 IF rm = 11 AJID ob = 18 AND c¢(18) = 1 THEN m$ = " He's fooled and lets you
puss": £{30) = 1

4299 RETURE

4600 1LPUT " Tape or disk ready?(y/n)"; a$: IF a$ <> "y" THEN RETURN

4610 PRINT CHRS?4): "open bombgame,d"; dr$

4620 PRINT CHRS(4); "write bombgame"

4630 PRINT rm: PRINT bi1: PRINT b2: PRINT b3: PRINT t1: PRINT t2: PRINT t3: PRIN
Ttl: PRINT te

4640 FCR 1 = 1 TO 36

4650 PRIKT r$(1)

4660 KEXT 1

4670 FOR 1 =1 TO ¥

4675 PRINT f(1)

4680 KEXT 1

4685 FOR 1 = 1 TO g

4688 PRINT 1(1): PRINT c(1)

4690 HEXT 1

4695 PRINT CHR$(4); "close bombgame,d"; dr$

4699 RETURN

4700 IKPUT " Tape or disk ready? (y/n)?"; a$: IF a$ <> "y" THEN RETURN

4710 FRINT CHR$€4): "open bombgame,d"; dr$

4720 PRINT CHRS(4); "read bombgame" .
TAZ;O ig;g; ;m: INPUT b1: INPUT b2: INPUT b3: INPUT t1: INPUT t2: INPUT t3: INPU

3 c

43 GOTO 3902
" She 18 charmed. As you inspect the roo

" You don't

" Clever. He

4740 FOR 1 = 1 TO 36
4750 INPUT r$(1)
4760 NEXT 1

4770 FOR 1 = 1 TO w

4775 INPUT £(1)

4780 LEXT 1

4795 FOR1 =1 T0 g

4788 INPUT 1(1): INPUT c(1)
4790 KEXT 1

12

4795 PRINT CHR$(4); “close bombgame,d"; dr$
RETURN
;?g% AETURN: REM dummy unusual action routine
5200 RETURN: REM dummy routine
5300 RETURN: REM d:Tmy routine
i Henudorg cB8
2(9)?)(9) ;}El‘aor 0, lg TOP 80, 40 T0 79, 90 T0 O, 158: HPLOT 80, 90 TO 200, 90 TO 1499
39 TO 80, 40 y 3 :
T 00 0 TO 250, 15: HPLOT 200, 90 TO 250, 150: RETUR
28'}8 RELOT i. ¥ 20 x430 3 10 x+29, y+20 70 x-1, y+19 10 x, y: HPLOT x+15, y 1
x+#15, y+20: HPLOT x, y+10 T0 x+30, y+10: RETURN
6040 HPLOT 130, 90 T0 130, 60 TO 146, 61 TO 145, 90: RETURN -
6050 i#iPLOT x, y TO x+25, y-5 TO x+24, y+30 TO x-1, y+20 TO x, y: HPLOT x, y+11
o x+25, y+11: HPLOT x+11, y-2 TO x+11, y+23
6055 a STURN
610C RETURN: REN
o 40> : GOSUB 6030: =
6203 WCOLOR = 12: x = B: y = 22: GOSUB 6030: x = 60: y = 223 ;X s
™y = 22; GOSUB gO}gos“ 6030
6205 x = 603 y = 3:
6213 HCOLOR i 14: HPLOT O, 70 TO 255, 70: HPLOT 120, 70 TO 120, 45 TO 143, 46
2 0: HPLOT 131, 46 TO 131, 70
T a2t pr0t 10, 158 10 120, 70: HPLOT 180, 158 0 142, 70: HPLOT 48, 156 T0 35,
el
'3230 HCOLOR = 2: HPLOT O, 8O TO 12, 77 70 35, 85 TO 34, 120 TO 27, 119 T0 28,
0
922;8 Péx%4aa, 95: POKE sa+1, 160: POKE sa+3, 14: POKE sa+16, 79: POKE sa+17, 1
: POKE sa+60, 79: POKE sa+61, 160 :
06225 POEg’aa+61, 79: POKE 35165, 160: POKE sa+52, 95: POKE sa+53, 160: POKE 8
: POKE sa+57, 160 :
38160 BOKE satdd. 101 POKE ea+d5, 10: POKE sa+48, 101: POKE sa+d9, 10: POKE &
0: POKE sa+25, 200
2256?3 POKE sa+32, 64: POKE sa+33, 200: POKE ea+28, BO: POKE sa+29, 50
€15 c“‘L(;r) 1 THEN RETURN
6275 IP f(45) =
6280 FOR 12 = 1 70 2; FOR 1 = 95 T0 79 STEP -3
6263 IF 1 = 95 THEN FOR 1p = 1 TO 4: GOSUB 7800: NEXT 1p
6286 POKE sa+52, 1: POKE sa+56, 1: CALL sr: GOSUB 7800
6290 NEXT 1, 12
6295 POKE sa+52, 95: POKE sa+56, 95: CALL er
6299 RETURN
6300 RETURN: REM dummy graphice routine
6400 HETUkli: REiM dummy graphics
6500 AETURN: REM dummy graphics
7799 £ L. %xe*@2tige delay routine
7300 ©'Ok de = 1 TO 100: NEXT de: RETURN

dummy graphics routine

13

7899 REM #***%*¥roop descriptions

7900 ON rm GOTO 8010, 8020, BO30, B8040, 8050, BO60, 8070, 80OBO, 8090, 8100, B11
o, 8120, 8130, 8140, B150

7920 ON rm-15 GOTO B160, 8170, 8180, 8190, 8200, B210, 8220, B230, B240, 8250,
85260, 8270, 8280, B290, 8300

7930 OR rm-30 GOTO 8310, 8320, 8330, B340, 8350, B360

8010 PRINT " room 1": RETURN

8020 PRINT " room 2": RETURN

8030 PRINT " room 3": RETURN

8040 PRINT " room 4": RETURN

8050 PRINT " room 5": RETURN

8060 PRINT " room 6": RETURN

BO70 PRINT " room 7": RETURN

7080 IF b2 = 2 THEN PRINT " No wonder you heard an explo-
room is a wreck.": RETURNW

3034 PRINT " A storeroom with big crates.": RETURN

A090 PRINT room 9": RETURN

sion! This storage

L
8100 PRINT " room 10": RETURN
8110 PRINT " room 11": RETURN
8120 FRINT " room 12": RETURN
8130 PRINT " room 13": RETURN
8140 IF £(34) = O THEN PRINT " That dog will tear you to bits if you try to cr
oss this yard."
8142 IF £(34) = 1 THEN PRINT " The dog paacefully munches his food."

8149 KETURN

#4150 IF bl = 2 THEN PRINT " Smoke and the smell of death.
ite is wrecked.": RETURN

8151 PRINT " You have burst in on the
8152 IF £(35) = 1 GOTO 8158

8154 IF £(35) = O AND b1 = 1 THEN PRINT " 'Who are you?' she challenges
ont!"

8156 IF £(35) = O AND bl = O THEN PRINT " She welcomes you but asks why you h
ave returned to her suite"

8153 IF £(35) = 1 THEN PRINT " She's still unconscious."

Bi53 RETUR!

The ambassador's su
ambassador herself."

'Get

8160 PRINT " room 16": RETURN
8170 PRINT " room 17": RETURN
8180 PRINT " room 18": RETURN
8190 PRINT " room 19": RETURN
8200 PRINT " room 20": RETURN
8210 PRINT " room 21": RETURN
8220 PRINT " room 22": RETURN
8230 PRINT " room 23": RETURN
8240 PRINT " room 24": RETURN
8250 PRINT " room 25": RETURN
9260 PRINT " room 26": RETURN
"

8270 PRINT " room 27": RETURN

B280 PRINT " room 28": RETURN

8290 PRINT " room 29": RETURN

8300 PRINT * room 30": RETURN

8310 PRINT * room 31": RETURN

8320 PRINT " room 32": RETURN

8330 PRINT " room 33": RETURN

8340 PRINT * room 34": RETURN

8350 PRINT " You're at the door of the guard house.": RETURN
8360 PRINT " room 36": RETURN

8499 REH ssxuwinjitialize

8500 DIM c(w), 1(w), £(v), r$(36)

8600 DATA 200, 200,0,09,200,200,4,09,200,200,4,14,200,200,8,14,200,200,16, 14,
0,200.20,6,200,200,24,3,200.200.28.l2

8615 DATA 200,200, 32,06, 200,200, 36,08,200,200,40,14,200,200,44,04,200,200, 48
5,200,200.52.10,200.200.56.9.200,200.60.6

8625 DATA 200.200.64.09.200.200.68,IS,200,200.12,15.200.200,76.13

8630 sa = 29500: RESTORE

8640 FOR 1 = O T0 79: READ a: POKE sa+l, a: NEXT 1
8650 I1F ret = 1 THEN RETURN

8660 ret = 1

8750 pk = 27850

8760 READ a$: IF a$ = "zz" GOTO 8790

8765 wnum = wnumtl: IF a§ = "autojack" THEN vx = 1
8766 IF vx = O THEN vnum = vnumt|

3770 FOR 1 = 1 T0 LEN(aS): POKE pk, ASC(MIDS$(a$, 1,
8780 POKE pk, ASC ‘..§= pk = pk+1: GOTO 8760

8790 POKE pk, ASC("]"

9115 DATA help,carrylng?.go.H,S.V,B.vnlk.run,exlt.get,take,grab,lltt,aexze.
k,steal

9150 DATA open.exanlne,look,inapact.noarch,lnveatlgate,explore,reud.decode
9155 DATA defuse,dismantle, dlearn.unlock,pry.drop.throv.dump,relnase,leave
light",extinguish

9200 DATA tight.punch.kick,attack,hlt.uao,lovo,puch,shove,pull.conaume,drln
reak,bend.upllt,shlttor.daatroy.vreck,burn

9240 DATA talk.persundo,charn,threaten.convlnco.flatter.decelve.plead

9250 DATA feed.dlstract,hrlbe.blacknnll.ahov,'tlaah » save,load

3310 DATA nutojack,crovbnr,keya,neat.flanhllght.tools,camara,loney,vinc
9320 DATA rope,letter,"book ',-ntches.bonea,oodabook,tirepunp.knlre.budge."
h,south,vest,east

0360 DATA televlalon,pool.furnace.crato,hed.klng,turnlture.atde,naps.vnndov

1)): pk = pk+l: NEXT 1

nce
9370 DATA dog,anbassador.garbnge,statre.veapona,gruss,atnff,bookcnae,cur.Pf

ner,bowxb, guard,door,room,zz 5
s95!0 DATA l75.14,0,50,11.107,50.18.107,50,19.107.50,15.107.50.16.107.35.202

9515 DATA 237,99,20,101.58,16.!07,60,50,16,107,33.52.108,237.91,20,|07.26J
?ggo DATA 254.94,202.92.101.254.93.200.35.19.195.77.107.19.237.83.20.'07v‘7

2525
»107

2530

9535

DATA

DATA
DATA

16,107

2540

DATA

18,107

9545

DATA

07,201,256

9570
2530
9610
9612
0614
3620
ARG
o579
2689
Q€90
9700
9710
9720
9760
2901
9902
9904
9905
2907
Q908
9910
Q911

913
9914
9916
Q917
2919
2920
Q322

0923
9925
926
9928
9929

o9

9932
9034
9935

pk =
READ
DATA
DATA
JATA
FOR 1
DATA
JATA
DATA
DATA
DATA
DATA
FOR 1
f(2)
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

15

14,0,33,52,108,6,0,235,167, 237,66,235,14,0,26,71,126,254,94,202,150

50,22,107,120,254,94,202,63,107,58,22,107, 184,202, 145,107 2,108
19.195.105.107,35.19.12.'95.114:105.5é.17:107:230:255:194:?36?167,58

50,17,107,33,72,108,235,167, 237,82,235,123,50,15,107,195,63,107,58,
230,255,194,195,107,58,16,107,50,18,107,195,63,107,58,16,107,50,19,1
27430

a: IF a < 256 THEN POKE pk, a: pk = pk+1: GOTO 9580
33,25,18,20, 7,12,00,12, 1, 5,29,29, 4,19, 5,33,20,17
0,0,0,0,2,4,7,8,10,10,10,11,12,18,0,14,15,19,22
24,25,26,29,33,36,24,34,30,0

1 TO w: READ 1(1): NEXT 1

S,3%,WE, 45, SWE, W
HE,NSW,SE,SW,NSE,SW
35, HSW,NE,NSV,NSE, NW
S, NSE, SV NSE, W, S
H3,'1,NE,USWE ,W,NW
KE,WE,WE, NWE, W, N
=1 TO 36: READ r$(1): NEXT 1
S
1255,255,255 , 255,255,255 , 255,255 , 255 , 255, 255, 255, 255, 255 , 2
2001255 .200 12951295 | 2251255 | 225 1 395 | 355 | 290 395 355 | 225 1 355 1 395
255,255,255,255,255,255,255,255,255,255,255,255, 255,255, 255,255
259.2551255,255,255.1255,255 1255,255,255,1255,255 255,255,255 1255
255,255,255,255,255,255,2551255,255,255,295, 255,255, 255,259,255
255:12551255,255.259,255.1255 255,255,255, 259 ,295,255,259 1299, 255
’ ’ ’ g ’ ’ ’ ’ ’ 92 '92 ' 2.‘ 2.1 .2 ’
233129003,3,3,3.,3.3,3,3.3 3.3, 3,200 205 o1 920192,192,255,255

255,255,128,128,128,128,128,128,128,128,128,128,1
533’53?'553'551'53'"""""""'255 T T R

1191,223,224,239,239,239,224,223,128,239,239,239,224,223,1
53212930251 11,240 1947 19 1 201 1 BAT oAT AT T e 2E3128
3,7,13,55,63,127,251,239,255,247,253,127,59,15,15, 3
224,240,252,252 126,237,255 , 247,255,191 ,251 , 254,252,252 ,240,224
9,45,180,82,86,112,41,237,228,179,211,87,123,63,55,23
80,220,153,166,166,77,125,136,190,246,8%3,215,204,200,246,214
AR ERERR AR AR

152.240.224.96,224,224 ,224 32,224,224 224,224,224 , 248,158
255.245,240.224.224,224.240.224.192.192.|9z,162.152.125.ués?qza
255,15,31,127,127,15,3,3,3,3,3,3,3,3,3,
0,0,0,0,0,1,2,13,59,54,61,63,63,63,62,60
0,0,0,0,0,128,128,123,128,128,128,128,31,50,124
0,0,0,7,3.16,16,63,63,76,204,248,255,0,0,0
0,0,0,240,8,6,6,252,252,50,51 ,31,255,0,0,0

DATA 0,0,0,0,0,0,0,0,0,50,48,3,0,48,48,48

395% DATA 4.4.4.4.4.35,80:0,0,16,140,224.0,12,12,12

2G40 DATA 0,3,7,6,12,12,12,108,108,60,28,12,0,0,0,0

9941 DATA o.zsz.zsg.;qiéis‘s.66667;;.?5052.260

943 LAT 0,0,0,1,3,3,3,3,1,0,0,0,15,15,25,

o LATA 01010.240.88,248,248, 16,224,192,524,224,252,252, 246,243

9946 DATA 0,3,4,4,1,0,0,1,0,0,0,31,63,51,99,195

9947 DATA 0,240,8,4,0,0,0,224,0,0,0,28,254,242,243,243

9949 DATA 0.0¢3-3.6|7|7o4'1 ,0,1 loloéotolo 0.0.0.0

3250 DATA 0,0,240,248,216,248,248,16,224,192,224,224,0,0,0,

9152 LATA 0,0,0,0,0,8,8,24,104,254,31,31,63,100,68,194

0355 DATA 0,0,0,0,0,0,1,1,1,62,254,255,254,14,9,1

g 0,0,0,0,0,8,8,24,248,62,111,143,15,14,20,18
0,0.0,0,0.0,I,I.I.62.254.254,255,3|,IB,.’.’O.
0,0,15,24,46,96,255,248,232,230,194,198,232,224,248,255
0.0.25%,3.7,13,249,249,57,57,25,25,57,58,252,248,256
2685%0: 1 = 0
a: IP a = 256 GOTO 10030

2045 I'O’E sd+l, a: 1 = 1+1: GOTO 9997

10010 DATA 14,226,6,1 .205,32,253.58,24.252,253.33.80.00,33.178,l|2.I7,00,UU,2

144,253

{0020 DATA 58,23,252,253,33,20,00,17,00,00,33,60,115,205,44,253,201,256
0

10030 sr = 29600: 1 =

13028 READ a: IF a = 256 GOTO 10200

10750 POKE sr+l, a: 1 = 141: GOTO 10040

0200 RETURK

:9906 HOHE:'PRIHT TAB(6); "OPENING DESCRIPTION"

19910 PRINT: PRINT " deacription.”: PRINT " Please walt a moment.":

RETURN

General structure of the program
Memory map

In the ADAM, BASIC uses up memory up to memory location
27407. In Adventure Creator, we have to reserve a part of
memory for two important functions that are handled in ma-
chine language, rather than BASIC, because machine language
is so much faster. The area from 27407 is reserved by the
command LOMEM:29650. Thus, the area from 27407 to 29650
vill not be used by BASIC.

Each of these program parts will be explained in detail
later. In this section, we will just locate them for you.

The PARSER analyzes the player's input to see which.
verb and noun were used. It takes memory from 27407 to
27849. (Actually, a 1little memory is left over unused to
make it easier to expand the program later if desired).
From 27850 to 28849, the vocabulary understood by the pro-
gram is placed. 28850 to 29490 hold.the sprite data that
define the shapes of the 20 sprites used in the program.
29500 to 29580 hold B0 bytes that define the attributes of
the 20 sprites--4 bytes per sprite. From 29600 to 29640 is
the machine language routine that controls the sprites.

BASIC program map.
This listing uses program line numbers.
1-150 overall supervisor section
160-499 get input and analyze input (parser)
500-999 description and feedback
2000-4799 verb action routines
5000-5399 unusual actions routines (explosions in Bomb
Squad)
6000-7000 graphics
7900-8400 location descriptions
B8500-10010 initialization routines.
19900-end set opening scene
Note that the general strategy is to place often used
parts of the program near the beginning. This is because,
vhen BASIC is looking for a subroutine or a place to GOTO,
it starts at the beginning of the program. The extensive
initialization and the opening description are only used
once, so they're at the end. This greatly speeds up the
program and makes it more fun to play.

itiadizati

many things to be done before the game is
rg,dyT::rgl:;f InyAdvengure Creator,_ this takes about ;3
seconds. First the opening desgriptxon comes up on the
screen, So the player has sgmethlng tg read vhxle'uaxslgg
for the initialization to finish. This is accomplishe y
1ot :?;e 50 initializes a number of vagiables necessary E?;
the game. w=47 sets the number of objects or nouns. g
sets the number of "gettable objects". ‘rm=34 sets the room
number for the player's location at the start o(_the game .
b1=1 b2=1 b3=1 are unique to Bomb Squad, but they |llust:ute
a programming method. 1£ b1, for ?xample. equals |,.ue.‘n9:
that the first bomb is still ticking away somewhere; 1 dl_
has been set to zero by the program, the bomb has :een‘.§o
fused; if it has been set to 35 the bomb has exploded. t
£2=60 t3=90 set time limits in Bomb Squad. The proq;am
keeps track of "time" by countln? _the number of moves madeé
Thus it is easy to check if t1 (time #1) has been exceede
ropriate action. ’

5 t;:;l:h:naggnepso. dr$=1 determines which storage device
is used for saving games. As long as dr$=1, the grogr:m
will SAVE to and LOAD from the tape drive. 1f dr?- : t ;
disk drive will be |used. tl=4 sets the player’'s :?tg
load"--the number of objects that can be .carrxed. tc is
the number of objects actually being carried at the pomen;.
It is set to | here, because the player starts out with the
camera in Bomb Squad. You might want to change it to zero,

ing on how your game starts. ,
depen:ing 8500 reZerveg room for 4 arrays. If you don't un-
derstand arrays, you should study a book about BASIC, bu;_;n
general, an array is a block of memory that operates like
numbered boxes. The DIM command, dimensions or reserves the

ou want. !

array:r¥ay c(w) will keep track of what the player is carry-
ing. The variable v is the number of nouns or objects in gg:
vocabulary; w was set to 47 in this game, back in line s
When a program is RUN, all variables are set to zero, S©O
there is no need to set any of the numbers in ciw), unless
the player is carrying something to start with. In ?me
Squad, the player starts out carrylng a camera, so in line
9760, you will find that c(7) is set to 8 This is because
the camera is item #7 in the vocubulary.ot nouns (§ee lines
9310 to 9380). Notice that only the first 18 objects are
things that the player can cnrr¥-—§hese are gettable" ob-
jects, so only c(1) through c(18) will ever actually be used
for items being carried, but we still reserve space In the
c(w) array to check in case the player says something like
"throw car”. .)

The array 1{w) keeps track of the location of each ob
ject. In lines 9610-9620 we will set eagh 'value in array
1(w) depending on which room each object is in. For exam-

19

ple, if the first object in our object 1list is "autojack"
and it starts out in the garage, which is room 33, then 1(1)
will be set to 33, During play, if the player picks up an
object, the location of that object will be set to zero.
Later the player may put the object down, so we will keep
track of where the object is by changing its value in the
1(w) array.

The array E(w) keeps track of "flags" for each object.
These flags make the game much moré interesting. A value of
zero indicates that the object is in its normal state. For
example, in Bomb Squad, the ambassador is object number 35.
The game starts with £(35)=0. I1f the ambassoador gets
knocked out, f(35) is set to 1, indicating a changed status.
As another example, the crowbar is object number 2. At the
beginning of the game, it is hidden in the grass. £(2)=1
until it becomes visible; then f(2) is changed to zero, be-
cause that would be a "normal" state.

Array r$(36) stores the visible exits for each room.
In lines 9660-9720, each location in the array is filled.
For example, the visible exits for room 34 (the starting lo-
cation in Bomb Squad) are north, west and east. Thus, the
34th value (in this case, the 4th piece of data in line
9710) is NWE.

Lines B600-8660 POKE into memory, starting at memory
location 29500, the BO attributes of the sprites, These are
the first of many pieces of data to be POKEd into memory.
The sprite attributes are first because we are going to be
poking them into memory many times in the program--in fact,
each time we set up a new graphics scene. Look at line
8650. The first time through, the variable "ret" will be
zero (all variables are set to zero vhen a program is RUN),
so this line will be ignored. However, the next line sets
"ret™ o 1. Thus, we can now use lines B630-8650 as a sub-
routine that POKEs in the original sprite attribute data.
When we analyze the graphics routines, you will see the com-
mand GOSUB B630. This sets up 20 sprites in a location that
is not visible on the screen. Then with the screen clear of
sprites, we can move the ones we want onto the screen by
changing some of the attributes, (As you will soon see, the
first two numbers of each set of four places the sprite ini-
tially at coordinates x=200 and Y=200, vhich is off the
screen.)

Lines 8750-8790 PORE the next data into memory. This
data is the vocabulary of the game. The words will be POKEd
in starting at memory location 27850. Each word in the data
is read and then POKEd into memory, one letter at a time by
line B770. At the end of each word, the character "7*" is
POREd in because the parsing routine needs some way to rec-
ognize the end of a word or phrase. (As you will see later,
the vocabulary could contain phrases rather than just words,
if you want to get fancy.) At the end of the vocabulary
data section, the last "word" is "zz". When line B760 en-
counters "zz", it jumps to line 8790 and POREs in "]" to

20

mark the end of the vocabulary. Note that the first words
are the verbs and the objects (nouns) come second; ls you
add or subtract verbs, be sure that "save" and "load" are
always your last verbs. Line 8765 keeps track of the total
number of words by incrementing variable wnum. Line B766
keeps track of the number of verbs. It stops counting after
the word "autojack” is encountered--which happens to be the
first noun in this list.

The data in lines 9510-9560 are the values for the ma-
chine language parsing routine (see the parser section for
details). Lines 9570-9580 POKE these values in, starting at
memory location 27430. 1 A

Line 9620 reads in the locations of each object into
array 1lw), as discussed before. The data in lines
9610-9614 show which rooms hold each object. For example,
object #1 is in room #33. Object # 2 is in room # 25 etc. In
this list, object #7 has a location of zero, because the

layer is carrying it at the start of the game. Object # 33
?s zero because, in this example, it is a fence that is in
many locations. Objects 19,20,21, and 22 are also zero be-
cause they are not renll{ objects at all. Look at the vo-
cabulary list, and you will see that they are the directions
north, south, west and east. We need to include them’an
nouns because the player can indicate a direction to go with
the sentence "go south", for example. ' -

Line 9720 fills the r$(36) array, as discussed previ-
ously.)

Lines 9901-9959 contain the 640 values needed to define
the shapes of the 20 sprites used. The section on sprites
will explain all this. Lines 9997-9998 POKE these values
in, starting at memory location 28850.

Lines 10010-10020 are the values for the machine lan-
guage routine that controls the sprites. Lines 10030-10050
POKE this routine in, starting at memory location 29600. The
variable sr (for sprite routine) is set at 29600, so we can
CALL sr---later when we do graphics.

Lines 19900-19955 set the first scene for the player.

Description and feedback

The lines from 500-699 and the "room descriptions” in
lines 7900-8360 write to the screen after each move to tell
the player where he or she is and what happened as a result
of the last action.

Lines 500-512 check each time to see if the game has
been completed. In Bomb Squad, it checks the ntntus.of each
bomb. 1f they all have been defused, congratulations are
offered. 1f bomb 3 is defused but at least one of the oth-
ers has exploded, and the other one is defused or exploded,
lukewarm congratulations are offered. You will see else-
where in the game that if bomb 3 explodes, the game ends in
total disaster.

21

Line 516 clears the screen and prints the description
of the player's location. Let's skip to the room descrip-
tion routine starting at line 7900.

The variable rm always represents the number of the
room the player is in at the time. ' Lines 7900,7920, and
7930 will cause a jump to the lines that describe the cur-
rent room. Notice how the lines are numbered to help you
keep track of your room and find the right lines quickly for
debugging. 8010 is for room #1, B220 is for room #22 etc.
You always know the middle two numbers of the line number
correspond to the room being described. Of course, we don't
know what each of your rooms will be like, so in most cases
we have just put " room 1" etc. where you will put the actu-
al descriptions of your rooms. Notice that in the descrip-
tions, the first character in the string is a space. This
is necessary because on some TV sets, the first character is
displayed off the left side of the screen.

We have, however, included some descriptions from Bomb
Squad to illustrate some techiniques. For example, lines
B0B0-B0B4 describe room #8, Bomb #2 (whose status is kept
track of by variable b2) is in room B. If it has already
exploded (b2=2) we will want a much different description
than if it has not (b2=1 or =0).

In room #14 (lines B8140-8149) ve see the use of
"flags". 1If the dog is in his normal state--that is, hungry
and mean--his flag, £f(34), still equals zero. However, when
he is fed, the program sets his flag to 1, and ve get a much
different room description.

In the ambassador's suite (room #15) we get even more
complicated. Several different things might be said, de-
pending on the status of the bomb in her suite (what does bl
equal? and on whether the player has knocked her out,
changing the status of her flag, £(35).

One last point, in line 8350, the spacing looks odd on
paper. However, when you list this line on the screen, you
will see that the extra spaces are there to prevent the word
"gquard"” from being split at the end of the line.

Now let's return to the feedback section at line 518.
This is a condition check that only works placed here in the
program. The only way variable tl1 (total load) can be re-
duced to zero is if the player repeatedly tries to get past
the dog without wusing strategy. Obviously, this line is
unigue to Bomb Squad, but you might have similar conditions
arise in your games.

Lines 520-530 are absolutely essential. They take the
letters in r$() for this room and list them one by one to
show the player vhat exits are visible from the room the
player is in. I1f an exit becomes visible during the game,
we will change the letters for that room in r$(). We will
discuss this in more detail later, but for example, if the
player's flashlight reveals a hidden door in room # 12 on
the south wall, wvhen that happens r$(12) will be changed.
I1f . previously there vere three visible exits, r$(12) would

22

have been "NWE". Now we just include _th? statement
r$(12)="NSWE", and the next time the player is in room #12,
all four directions will be 1listed as visible. Similarly,
if a door locks behind the player, we might subtract a legal
“has Lines 535-560 add to the room description by listing
all the "gettable"” objects in the room. Line 535 RESTOREs to
the beginning of the data statements. Line 537 simply reads
from the data statements to skip over the ones we're not in-
terested in here. When it reads the word "load" it knows it
is at the end of the verbs. (This is why the verb "load"
must always be your last verb.) Line 540 loops through all
the gettable objects, reading each noun, one at a time.
Line 550 checks if the location of each object is in the
current room and if the object is visible--that 1is, its

flag=0. If both conditions are met, the name of the object
is printed out. .
Finally, line 560 ends the loop and prints out m§,

which is the feedback (message string) that much of the rest
of the program is devoted to. m$ is changed many times in
the program and should end up with a meaningful message for
the player--such as "You can't go that way." or "Excellent
move! The amulet weakened the monster" etc. As soon as the
- feedback is given, m§ is set to "What?". This is the fde-
fault" feedback. If nothing else happens unyvhere‘else in
the program (very unlikely), the player will get this feed-
back, and will have to try some other commqnd. Notice thgt
an extra space is printed just before m$ is printed. This
is also because some TVs don't show the first column of each
line with the ADAM.)

Lines 600-630 present the graphic illustrations for the
four rooms that have graphics. In each line, GOSUB 2160
causes the program to print "Push enter to 'contlnge“ and
then wait for the player to push enter. This permits the
verbal descriptions and feedback to stay on ghe screen unt?l
the player is ready to see the picturg. Notice that 2160 is
really part of one of the verb action routines,' but it
serves nicely whenever we want this kind of pause inserted.
Then the final GOSUB in each line calls the graphics rou-
tines.

1nput

After the player is given feedback and a description of
where he or she is, the question "What will you do ngu?“ ap-
pears on the screen. Line 160 gets the player's input as
q$. The player is not permitted to use commas in the input,
since the INPUT statement ignores everything after the com-
ma. This is no problem in most adventure games, since only
tvo word commands are permitted. If you want to permit com-
mas, wuse the input routine given later in the section on
"the parser”.

23
For the parser to analyze this input, the input must be
POKEd into memory starting at location 27720 and be termi-
nated with the character "A". Lines 240-260 take care of
this. Line 280 clears the screen in preparation for the
next feedback.
As soon as the input phrase is in memory, lines 410-499
set the verb number (vb) and object number (ob) to zero and
CALL the parser routine.

The parser

A "parser" separates a sentence
the analysis of those words.
ten in BASIC,

into words and permits
In most adventure games writ-
the parser uses string manipulation and is so
slow that the game is limited to a vocabulary of about 20
words., Adventure Creator uses a machine language parser
that permits a large vocabulary (Bomb Squad has 73 verbs and
43 objects, for example) and is very fast. In fact, this
parser has features that are not used in Bomb Squad. We
will describe its features, since you might want to use them
in your own games or for other programs.

How it operates.

Remember that the input routine POKEs the player's in-
put into memory at 27720. The initialization routine POKEd
the whole vocabulary into memory at location 27850. When
you CALL 27430, the parser routine takes each word in the
vocabulary and tries to match it to the input sentence.
When it finds the first match, it puts the number of that
word into memory location 27409, That is, if the player's
input was "persuade ambassador", the parser routine will try
to match each of the vocabulary words to the input sentence,
and when it reaches the word "persuade"” in the vocabulary
(this is word #59 in the vocabulary) it will find a match
and will put the number 59 in location 27720. Then it will
try to match the second wvord in the input sentence and put
its number in location 27410. 1f no match is found, those
locations will be zero. In our example, "ambassador" is
vord #108.

Thus, line 450 can set the value for the verb (vb) and
object (ob). (Note that line 458 subtracts the number of
verbs from ob, so we know which object this is, rather than
vhich word from the entire list.)

There is a problem you will have to watch out for. Look
at line 9195, The word " 1light" is in quotation marks and
has a leading space. Otherwise, the parser would be con-
fused by a word like "flashlight" because it would find a
match btween the word light in its vocabulary and the input
word flashlight. For the same reason, the directions N, S,
W, and E must be in capital letters, or the parser would
match them with any word containing the letter.

24

parser.

Although most adventure games use two word commands as
in Bomb Squad, the parser routine can include phrases in its
vocabulary as well. In the data statements containing the
vocabulary, you might include the phrase "why me?" as one
entry in your vocabulary data. The parser will look for
this phrase in the player's input.

1f you do use the parser for some application that per-
mits the use of phrases, the player will often enter sen-
tences that include commas. This possibility requires you
to use a more complicated input routine than included in Ad-
venture Creator, which simply uses an INPUT statement. The
INPUT command ignores anything typed in after a comma.
Change line 160 and add the following lines to the input
routine in Adventure Creator
160 print " What will you do now?"
180 q§= ""
185 get pSiprint ps;: if p$="," then ps=" "
190 ?! asc(p$)=13 goto 240
195 if asc(p$)=8 and len(qg$)=1 then q?-“':goto 185
200 if asc(p$)=8 then g$=left$(gs,lenl(qgs)-1):goto 185
210 g$=g$+pSigoto 185
220 if g$="" goto 185
These lines convert commas to spaces, look for the car-
ring: return (asc(13)) and handle backspaces (asc(8)) cor-
rectly.

Two more parger features.

The parser can actually find as many as three words or
phrases. With most adventure games, only two words, a verb
and a2 noun, are permitted, but if you ever have a use for
it, our parser will look for a third phrase. 1f it finds a
third match to the vocabulary list, it will put the number
of that word or phrase in memory location 27411,

Pinally, the parser also keeps track of where in the
player's input phrase the first match was found. In other
words, if the player input "don't o home", and the first
matching word found was "go", the location of "go" in the
sentence will be indicated as 8. That is, the end of the
matched word or phrase is at the eighth character. The par-
ser will place this number in memory location 27407, You
will have to use your imagination to find uses for this fea-
ture, but if you are trying to analyze a sentence input by a
player, this information is often useful.

language liating of the parser.
Most users will probably not be familiar with assembly
language, but for those who are, here is a commented listing

25

of the parser routine. The first number in each line is the
decimal address of the code listed in that line. The second
number is the same address in hexadecimal. The actual pro-
gram values (in hexadecimal) are next, follwed by the assem-
hly language code. s

27407 :6 BOF O PH1END DEFB O0; end of phrase 1
27408:6B10 O CURPHR DEFB 0

27409:6B11 0 PHCNT1 DEFB O; # of 1st phrase
27410:6B12 0 PHCNT2 DEFB 0

27411:6B13 0 PHCNT3 DEFB 0

27412:6B14 0 VOCADD DEFB Oj;current address in vocubulary
27413:6B15 0 DEFB 0

21414:6B16 0 TMPSTO DEFB 0

27430:6B26 ORG 27430

27430:6B26 AF XOR A; clear

27431 :6B27 OE d1 LD C,$00

27433:6B29 32 11 6B LD (PHCNT1),A

27436 :6B2C 32 12 6B LD (PHCNT2),A
27439:6B2F 32 13 6B LD (PHCNT3),A
27442:6B32 32 OF 6B LD (PHIEND),A
27445:6B35 32 10 6B LD (CURPHR),A
27448:6B38 21 CA 6C LD HL,S6CCA

27451 :6B3B ED 63 14 6B LD (VOCADD),HL

27455:6B3F 3A 10 6B NXTPHR LD A,(CURPHR);count phrase
27458 :6B42 3C INC A;update and store

27459:6B43 32 10 6B LD (CURPHR),A

27462:6B46 21 34 6C LD HL,S6C34 ;phrase buffer

27465:6B49 ED 5B 14 6B LD DE, (VOCADD) ;current location in voc
27469:6B4D 1A PHRMOV LD A,(DE); get character to move
27470:6B4E 77 LD (HL),A; store it

27471 :6B4F FE SE CP $5E:"""?

27473:6B51 CA 5C 6B JP Z,MOVDON;phrase moved

27476:6B54 FE 5D CP 85D;")7

27478:6B56 C8
27479:6B57 23
27480:6B58 13
27481:6B59 C3 4D 6B

RET Z; yes-end of phrases
INC HL; inc to store

INC DE; inc to get

JP PHRMOV; move another

27484 :6B85C
27435:625D
27432:6 301
27492:6 1864
27494 :0 306
27497:6369
27499: 0860
275000 BLC

21501 : 556D 3

27503: 6B6T
27504 :0 B70
21506 :6 372
27507 :6B73
271508:6874
27509: 6 BT75
21511 :6B77
Y514 :6R7A
27517:6BTD
27513:6B7=
27520 :6 B30
27525:0 BS3
27526 :6BB6
27527:6B37
27530:6B3A
27535 :0 33D
271534 :6BBE

2754915234 1

27543:0897
27546:6P9A
27548:6B9C
27551 :0 BIF
21554 : 6BA2
ZISST:6BAB
2TH00:0 3A3

2716301 2

Ji

\.l.;-.-
8 2

C &

0
(6]

00

—=owu
N

-l
L

G

‘ANDO
S

72
"
Py
B4
10
K
48

e
i =

60
60

63
nB

68
ol

) 6B

5o
5B

6B
5B
6B
60

2

b

.10VDO:I

HATCHR

TATHAC

ATCH

PHRDOY

26

I[1C Dilzuodate vocab addr

LD 1 YUCADB),DE jstore pointer
LD 73,56C48; inpnt addr

LD ,307; sero match counter
LY iL,.36C34 ;phrase buffer

LD B,300s0nly S w//'s

23X Da,HL; false atark-back up
AlID A; clear carry

3BC L, BC

EX D%, HL

LD ,500; zero match counter
LD A,(D%);get from in buff

LD 13,A

LD A, (ML) ;get from phrase buff
CP GSF‘. nituo

JP 2 PWRDON phrase done-a
nn ("‘"F'!"'ﬂ) WA

LD A,B

cp ‘q~'1nnut QoY

JP Z,UXT PHR.yes-done input
ub A.(THPSTU)

CP 3;match?

JP 4, ATCHN ;y2s-do more

match

LD {L,36C34 jno-restart vhrase buff
IHNC Deynext input char

JP ANTCHR

L8 {ilsnext 2 o~hars

EIG 12

[IC C;count natchen

JP i TIAC

LD A, (PHCHT1);already uatched?
AlD 3FF

JP NZ,5CHDPH;yes

LD A, (CURPYR);no-zget phr #

LD (P4Ci™),A;store it

LD 4%,%6C43; inpuf buffer

iX DZ,viLgsubtract

start of input bufr:

h

27561 :6 BA9

271562: GBAA ED
27564 : 6BAC BD

27565:06BAD
271566 :6BAE
27569:6B31

275'72: 53B4 3A
27575:6BB7 36

27577 : v BBY
27530 10 BBC
27583 :0BBF
27586:6BC2
27589:6BC5
275492: 6BC3
27595: 6BCH
27700:6C34
27700:6C34 0
21720:6C48

27720:6C48 0
27850:6CCA

271850:6CCA O

52

(EX})

0 R

A

68
ob
61
6B
6B
vb

3CHDPY

THRDPH

VOCBUF
[IIBUFF
VOCABU

clear carry)
D..‘
15,;1location of
'J»urv it

)} \:'n"m) A

4D Ty spun

LD A, (PHCHT2);already 27
AND SRR

JP 2, TRDPA

LD A, (ClinP:dit)

LD (RPHCHT2) A

JP ULTPHR

LD A,(CURPYR);3rd natca
LD (PHCHT3),A

RET ;3 plenty

0% 27700

DEF3 O;parase buffer
ORG 27720

DEFB O;input buffer
ORG 27851

DEFY Oj;vocabulary

Al
.l

RLLY i S

27

28
Error messages and condition checks

An essential part of adventure games is that various
events depend on what the player has already done. Lines
700-999 check for whether the player's input is valid and
whether certain conditions have been met. .

It is here that we will start assigning a value to the
string called m$. Remember in the feedback section that m$
(for "message string") was printed out to tell the player
vhat was happening.

First, line 700 checks to see if two words were used.
I1f there was no second word that exists in the vocabulary,
line 700 sets m$ to "That's silly.” Remember that we will
have plenty of chances to change m$ before we report back to
the player. Thus, if the player enters a single letter,
such as N, to go north, line 700 will set m$ to "That's sil-
ly" even though the input was valid. Later we will override
this with a new version of m$.

Line 730 checks several things. If there is no verb or
the first word in the input is not in the verb vocabulary or
if the second word in the input (ob) is in the verb list, m$
says "You can't (whatever the player input)."

Line 740 checks if the player is carrying the named ob-
ject. This m$ message will be replaced later in most cases.

Lines 825-860 are one condition check from Bomb Squad
and are included here as an example of the kinds of things
you should put in this part of the program. Bomb Squad is a
time-limited game, so t (for time) is incremented each move
the player makes. As soon as t1 (for timeff1) is passed, the
first bomb explodes, with GOSUB 5100. Similarly for t2 and
t3. In Bomb Squad, the third bomb is a killer, so the rou-
tine at 5300 ends the game. This kind of condition check
permits a lot of interesting variation. For example, in
Bomb Squad, there are actions the player can take that cause
time to be wasted (you'll have to figure out how yourself).
The passage of time can be simply marked by adding some num-
ber to the variable t.

You will need lines 900-999. The parser has given you
the number of the right verb, and in a moment you will want
to branch to the routine that handles the activity called
for by that verb. We have lots of verbs available, in order
to make the game more interesting, but many of the verbs
have roughly the same meaning and will call for the same
verb action routines. In other words, the player might want
to "search” or "examine" or "inspect" or "explore" etc. If
the game permits only one of these words, it can be very
frustrating to the player who has to make many guesses to
get exactly the one word used by the author. Adventure Cre-
ator permits many such words to be used, but- the parser will
give each of these words a different value (in the variable
vb). We need to see that all of these similar words have the
same value for getting to the right verb action routine.
Thus, for example, in the verb vocabulary, the words like

A~

29

. h" are verbs numbered 19-24. I1f the ‘input verb was
o::°:§ these, line 920 will set vj (for verb jump number) to
6. You will soon see that verb action routine #6 qe§ls with
all "searching" verbs. You can apply the same prgnlcple to
each of the lines that sets a value for vj. To figure this
out, you will have to keep referring to the vocabulary data
list in lines 9115-9370.

Verb pction routines
i i i dven-
In many ways, this section is the heart of the a

ture game. . The player's verb input tells what is to be
done. Each verb (or similar group of verbs) has its own set
of permitted actions. » 4

¥ Line 2000 returns with no action ;(no yerbt7:s found--
-m§ will say "You can't (whatever the player inpu S .

: Line gOOS is a condition check from Bomb Squad. This
condition check had to be put here because it is one that
permits only two actions--dropping something or checking
what one is carrying. 1f the player got vsakened in"tpe
game, his or her carrying capacity (tl for total load" in
Bomb Squad) was reduced. Thus, in order to continue, it may
be necessary to drop something. The copdition _check must
permit the player to get to the verb action routines 1in or-
der to drop something, but line 2005 permits only verb ac-
tion routine 2(carrying?) or 11 (drop,throw,dump,release, or
leave). We have gone into detail on this line as an example
of the kind of condition checks you will want to develop in
your own games.

Jumps verb routines.)
u:ine§220‘0 and 2030 use vj to jump to the appropriate
verb action routine. Note how we have numbered the lines
here. The first verb ("help") is at 2100, the second
("carrying?") is at 2200 etc. This permits you to find your
way around your program more easily. A hundred line ngm?e;s
are plenty ftor each verb routine, gnd your program wil e
much more readable and easy to modify if you use some ra-
tional line numbering system.

® Line 2100- Help

"re hard hearted, you may want to leave out tp:s
routi;:.youTh: player can ask for help and have the entire
vocabulary listed on the screen. This might be cgns:dered
cheating, since seeing the vocabulary usually gives huge
hints on solutions to problems. For example, in Bomb Squad,
seeing the verb "blackmail" practically gives away one solu-
tion.

Line 2110 skips through all the data
it finds the first vocabulary word. Then line 2120 reads the
vocabulary until

The variables wc

statements until

ft i Inda™" 2™,

(for word count)
only 4 words
screenful are printed, so the screen will be readable.

at which point

Line 2200-
Line 2210 skips through the data statements to the last
Then line 2220 checks the cl

array to see if each
item is being carried.

the object name
is printed.

Line 2300- Go.
The movement routine is so important,
a small program in its own right.
the direction the player wants to
just N, §, W,

it is practically
we must determine
1f the player input
line 2300 will set variable d (for di-
or 4 by subtracting 3 from the verb

These letters are items 4-7 in the verb list.

are included in the
jects" or nouns. We permit the player to say things like "go

Thus, the verb will be "go" and the
In this case,

vocabulary as "ob-

"crawl east".
object will be one of the
2303-2312 will set d correctly.

Following the
condition checks relating to player
one such check included from Bomb Squad as an example.
you want more examples,

directions.
setting of d, include some
Line 2344 is

list out Bomb Squad.)
the player is at the front door and has not yet "disa-
which the program knows because the "flag"
I1f the player tries to
under these circumstances,
let you pass"”,

In this exam-

bled" the guard,
for the guard (f(45))
go north (d=1) or east (d=4)
to "The guard won't
permitted to happen because the RETURN,

is still zero.

terminates the verb

Lines 2370-2388
trying to walk through a wall. Remember that the route ar-
contains the permitted directions of movement for
We are going to use "flag" 19 (£(19)) tempo-

we won't ever need it to
"object" #19
The FOR NEXT loop in lines 2372 take each letter from
r$() for the current location.
is in "room" #12,
then r$(12) will be

each location.
rarily here because

keep track of
events--why?,

a direction
For example, if the player
and room #12 has only doors at north and
If the player is trying to
go north, line 2376 will determine that d=1 and N is permit-
£(19) will be set to 1.
d will equal 4

the letter E is not in r$(12).

ted in room #12;

player is trying and line 2382

ER|

i not get set to 1. If this is the case, £(19) vlll.st:ll
;zliero, gnd line 2388 will set m$ to "Can't go that way!".
Now return to lines 2376-2382. When the IF condition
succeeds, the room number gets changgd. Now you can see u?y
the "world" of your adventure game is laid out 1in a squate
rid. When the player moves north, ghe nev.room number 12
2xact1y 6 less than the old one (assuming you're using a 6x
grid, as in Bomb Squad). Moving south adds six to the room
number, east adds one, and west subtracts one.

Line 2400- Get. :
ghez "getﬁicerbs are another gssential verb routine.
The player must acquire and discard.lteTs to solve eroblems.
1f the player says something like stea& guard" and you
have not included the guard as a “gettable object, line
2400 will prevent the action. Line 2429 checks if the play:r
is in the same room as the object. Line ?030 checks xg the
object is visible--if the object's flag is set to 1 ;t ;s
likely hidden or invisible, if magic is at work. If the
player is already carrying the object, line 2440 takes care
o thi?ﬂ:'ZCSZ is wusually necessary to force the player to
use strategies. 1t there is no limit to the objects that
can be carried, the player will s§mply pick up everythlngi
Here variables tc (for total carried) gnd tl (!or tot:
load) keep track of things. !(the load is at maximum, the
action is prevented by RETURNing the player without tak;ng
action. In this example, tl may change depending on whet e;
the player has been weakened in previous game action. §03
Squad starts with tl set at 4 items maximum to be c:r;:e.:
This®gives some flexibility but also requires carefu eci
sion making, since the player isn't sure what circumstances
i ntered. b 4
e :zn:ngﬂzotchecus all the requir:d conditions and then
r the item being sought. bl iy 2
qr.ntzi;:e22;3y?s specific to Bomb Squad, but it 1is xnclude?
here because it illustrates the solution to a common prob
lem. The verb “"take" is included as one of the "get® virbs,
but in Bomb Squad, it can also be sensibly used in "take
pictures”. This line gets around the problem. Your problem
is going to be that you will have to anticipate how your
players might use different words in ways you don't antici
pate. Probably your best strategy here is t? play your :un
game many times, putting yourself in others's shoes. Then
have some friends play the game while you take notes on such
problems.

Line 2500-- Open. y :
A common adventure verb, open is used in many ways de-

i i i 2500-2590 dem-
endent on your particular story line. Lines
gnst:ute sezeral condition checks, to see if the player has

32

the necessary tools (or magic spells or ke
C ys or whatever) t
open ghe door. Lipe 2530 is included to illustrate a ne:
technique. 1In this instance, the only permitted directions
of movement in room #30, were N and W. However, after the
Bigy:rhu;éock:ha door, south is also permitted, so r$(30)
ic olds e permitted route X
PRk A St s for room #30 is changed

Line 2600-- Examine.

Anogher very useful set of verbs are the i
ones. Line 2600 checks if the player is in th:e::;:/:;::l::
the object and sets mS to "Nothing special--just a (whatever
the object is)". Of course, if it is something special we
will soon cpnnqe m$ to something else. For example 'line
2639 deter|pes thgt the player said, "examine garbag;", so
m$="That's stgustnng!". (Try to catch the player off guard
and be amusing §ometimes.) Line 2640 illustrates what hap-
pens 15 something hidden is discovered. The player has
:gxd, searc? grafs" gnd discovers a crowbar. Thus £(2) --
bl:-szzztags'f&:gr;;lt? set to zero, Ssince it is now visi-

Lines 2700-3000.
. _These verbs (read, decode, defuse, unlock)
fairly specific to the Bomb Squad game. You may/p;g us?;;

other verbs here. The sample 1i i i
S mple lines provided are fairly easy

Line 3100-- leave.
Verbs like "leave" and "drop" are essential, if you

h. " " 2 2
c’::y?sed get” verbs and limit the amount the player can

Lines 3200-3400.

More specific verbs (light, extinguish i in-
teresting point here is thag the verbg "uniiéagbt;; 3:;r;:—
:at!cel but commonly accepted in adventure games, since we

on't have a common verb that means turn off the light. How-
ever, you gnd we are erudite gamers and prefer to use accu-
;:t:; even'x! gsoteric--vgrds, like "extinguish". Impressed?
th: :r point is that this action is absolutely useless to
; player in Bomb Squad. However, useless actions and use-
ess objects must be scattered through the game to force the
player to think through what really matters.

Line 3500-- Use.
Although this verb is absolutel
t t Yy essential try to
it sparingly. Adventure games sometimes get s;mpllgtic ::;

i3

boring by making the player say things like "use keys" and

not permitting "unlock door". The more specific language is
more interesting. However, some things do not lend them-
selves easily to one-verb commands. For example, you might

have to say "use crowbar", since we don't have a good crow-
bar verb. Bomb Squad gets around this at one point by per-
mitting "pry door" if the player has the crowbar.

Lines 3600-4100.

Some lines from Bomb Squad are included for these
verbs to illustrate the verbs--move, drink, break, talk,
feed, blackmail/bribe, and show.

Line 4600-- SAVE.

. The SAVE command is not essential, but better games in-
clude it, and it greatly adds to the player's pleasure.
Some people actually have to work for a living, and it can
be pretty frustrating to have defeated the Lord of Darkness,
cross the Mystic Threshhold, prepare to decode the magic
code and have the boss call to find out why you're late
again. A game in progress can be SAVEd to be completed lat-
er. It is also smart to SAVE a game as you are playing it.
Then if you get killed or are in a hopeless situation (per-
haps you can no longer carry anything), you can quit, RUN
the game again, and reLOAD the game as you were when you did
the last SAVE.

This and the "load” routine illustrate the general pro-
cedures for interacting with tape or disk drives with the
ADAM. Line 4610 opens the file. In this case, the file will
be named “"bombgame", but you will want to use some other
name. I1f you want to permit the player to SAVE the game un-
der many different names, include an INPUT line somewhere
that permits the player to assign a name (up to 10 charac-
ters long) to the variable f§ (for file string, although you
can use any variable name, or course). In this case, line
4610 would be exactly as follows.

4610 print chr$(4);"open ";£§;",d";dr$
This creates the equivalent of the current line 4610 with a
different file name. Remember that dr$ determines whether
you will be saving to tape or disk. In line SO, we set
dr$=1. This is for tape. If you want a disk version of your
game, set dr$ to 5 in line 50.

Line 4620 prepares BASIC to write to the file. Lines
4630 use PRINT statements to write all the important vari-
ables. In this circumstance, the PRINT command writes to
tape or disk because of the PRINT chr$(4) in line 4620.

Note that line 4695 terminates the SAVE and has the
same general format as the opening line, 4610. 1f you per-
mit £$ for different file names, make line 4695:

4695 print chr$(4);"close *328”,da%drs

34

Line 4700-- LOAD.

When the player inputs simply the verb "load", the pro-
gram looks for a file named "bombgame" or whatever you
change this to for your own games.

: Note that this routine is exactly like the
tine, except we say "read" instead of "write",
rather.than PRINT. It is essential that the variables be
INPUT in exactly the same order as they were SAVEd or, of
course, they will have the wrong values. If you use fS for
ghe t:}e name, make Line 4710 just like 4610 and line 4795
just like 4695. (Notice how we are using parallel line num-
bering to make the program easier to understand and modify.)

SAVE rou-
and INPUT

GRAPHICS

Lines 6009—7799 have been reserved for graphics rou-
tines. Graphics routines in BASIC take up quite a bit of
memory, but they are really worth it. Using visual clues in
pictures adds a lot to adventure games. The ADAM has some
pretty spectacular graphics capabilities, but BASIC makes
them hard to use. Once you understand these sections on
graphics, you should be able to draw high resolution pic-
tures and use up to 32 sprites--but more on this later.

Using HPLOT for "building blocks"”

Your general strategy is going to be to draw line draw-
ings using small subroutines as "building blocks", place
sprites around your picture, and then animate the sprites.

Examples‘o("building blocks" can be found in lines
6000-§05§. Lines 6000 and 6010 draw the interior lines of a
room in "3D" perspective. These two lines assume that some-
vyere else ip the program you have gotten into high resolu-
tion mode (with lines of text at the bottom of the picture)
with a HGR command and have set HCOLOR to some value. Then
you use GOSUB 6000 to draw the room walls. To portray dif-
ferent'roozgsoj?st use different HCOLOR's.

ine s a similar routine that draws a 4- win-
dov in whatever HCOLOR was set last. The upper ?:?:~h::d
corner of the window will be at coordinates x and y. X and y
must be set before this line is called with a GOSUB. X is
tye horizontal value and Y is the vertical value. This per-
mits you to dgav windovs anyvhere on the screen and to
stack” these windows on top of each other for big windows.
: By the way, let us save you some frustration--or at
east prepare you for it. The command HPLOT 100,50 to 150,50
should always drav a straight horizontal line. Sometimes
gor reasons best kn?vn to the writers of smartBASIC, ther;
is a jog in the 1line, 8o you have to use something like

rt
fe
50

10

12

35

HPLOT 100,50 to 150,49 to get a straight line. The
subroutines included in Adventure Creator are adjusted for
,this, but you will probably run into the problem when you

make your own "building blocks".

Line 6040 draws a door at the back of the room drawn by
line 6000.

Line 6050-6055 draws a side window, in perspective, on
the right hand wall of the room drawn by line 6000. As with
the rectangular window, you need to set x and y coordinates
before calling this subroutine.

In order to use HPLOT to draw pictures it is essential
to prepare graph paper marked from 0 to 255 along the hori-
zontal axis and 0 (at the top) to 159 along the vertical
axis. Draw in the major lines of your scene and determine
the points for starting and ending your HPLOT commands .

Drawing the gcene

The more "building blocks" you have, the easier it is
to draw a scene, but there will usually be unique parts to
be drawn for each scene. Bomb Squad and The Visitor both
use graphics to illustrate four scenes. One of the scenes--
the view of the front of the embassy--will be analyzed here
as an example. I1f you want more examples, of course, you

can list the sections from 6000-7793 in each of the other
programs.
Line 6200 sets BASIC to the HGR mode, which is high

resolution graphics, with room reserved at the bottom of the
screen for lines of text. For our purposes, this is the
best mode, so we can ask the player for input while the pic-
ture is still on the screen.

Line 6203-6205 sets HCOLOR and x and y and draws win-
dows by GOSUB 6030. Lines 6210-6230 wuse HPLOT's to draw in
building outlines, driveways, and a garage.

Now comes one of
most complicated) parts.
worth understanding.

One of the most powerful graphic tools on the ADAM is
the 32 sprite capability available. A sprite is a high res-
olution figure that can be 8x8 bits or 16x16 bits in size.
Each bit is one dot on the screen, and remember that in high
cesolution, there are 256 dots horizontally and 159 dots
vertically. So a 16x16 sprite will occupy about 10% of the

the most interesting (and probably
But hang in there, sprites will be

36

picture from bottom to top. We find that i
should thus be made up of two 16x16 sprites ?on:um:: :;gu;:
the other) to be proportional to an interesting picture on
the screen. The sprites can also be in a magnified mode, so
that an Bx8 becomes 16x16 and the 16x16 sprite becémes
3213?. The problem with the magnified mode is that the res-
olution looks much cruder--that is, each dot now looks like
:ozrall square, so the pictures don't have as professional a
. For now, don't worry about how to make i o
ticular shape; we will deal with that 1ater? sp;;:: 3n§::-
sgand how they look on the screen. Each sprite is a small
picture that can be instantly moved anyvhere on the screen
simply by setting two numbers, which will be the coordinates
ot_the.upper left hand corner of the sprite. 1In addition to
be:ng'nnstgngly moveable, each sprite has a certain priority
of being visible. The sprites are numbered from 0-31 and
the‘lover the number, the higher the priority of being'visi—
ble. Thus, if sprite 1 and sprite 7 are moved to the same
place on the screen, sprite 7 will be hidden "behind" sprite
11 Even better, if part of sprite 1 is not colored in, that
part will seem transparent, and we will be able to'catch
glimpses of sprite 7 behind it, through the transparent
ear&s of sprite 1. These characteristics permit very complex
3D :!tects without complex programming.

. Any one sprite can be only one color, but th -
teristics give us ways to make multicolored obj:::scggrzze
screen. An example is the woman vho appears and disappears
in the_guard house in Bomb Squad (and is included as an ex-
ample in fdventure Creator). She has peach-colored skin and
yellow hair. She is made up of two sprites, one yellow and
one peach. She is drawvn so that the "skin" sprite is trans-
parent where her hair goes and the hair sprite is transpar-
ent where the skin goes. Actually, both sprites are trans-
gerent “nround the edges too, 80 you can see the gquard

behind per. gbviously, this means that the guard is made
up of sprites with higher numbers than the sprites that make
Ep ghs vomgn. When she moves, we simply move both the
skin" and "hair" sprites simultaneously. 1f you want to
zet :uge. you could drawv her as bald in sprite 14 and draw
ter air in spfite 13. Then as long as both sprites move
ogether, she vxl} pave her hair, because sprite 13 has pri-
g;;gydlor bei?q visible, and her bald head would be hidden
herxav.the hair. Then if you move only the "hair" sprite,
v ol :zs ::ulgl come off. Then you could change her skin
e ;un. e ushes vith embarrassment. Let your imagina-
You probably won't run into this, but only 4
ggn be on any one line of the screen at a time{ :gzﬁgﬁz
1sastrous occurs, but if more than 4 sprites have the same

vertical coordinate,
bt 1 '.’s.e parts of some of them will fade in un-

37
Sprite data

Learning how to create sprite shapes will not be easy,
unless you already understand things like hexadecimal num-
bers and the bit patterns used by computers. We will try to
make the necessary information understandable.

Start with a grid on paper that corresponds to the size
of sprite you want. We much prefer the 16x16 sprites with-
out double-size magnification. They do consume a lot of
memory, but they are also of a more useful size on the
screen than the BxB sprites, and they look better than the
magnified sprites. Our example is of a 16x16 sprite, but
the same principles will apply to Bx8 if you prefer them.

The 16x16 grid in the following figure shows how we
created the two sprites for the woman. First sketch in the
parts, in this case the skin and hair, lightly. The squares
of the grid containing hair we filled in with the letter H.
(Actually, we did the original picture with colored pencils,
which made it easier to visualize.) The skin sguares are
marked S. Since the woman is to appear only in the top of
the guard house, we will need only the top part of her pic-
ture--otherwise we would have needed another two sprites
({for skin and clothing) for the bottom half of the picture.

Now that the grid contains H's and S's and blank spots
we can fill in two separate grids, one for hair and one for
skin, each representing one sprite.

Now comes the hard part. We have to determine the num-
bers that the computer will understand as the correct pat-
tern of bits for our picture. Draw a vertical line down the
middle of the grid, so you have two columns, each B8 boxes
wide. There are 16 rows of boxes in each column. Each row
of 8 boxes will be represented by one number from 0-255.
The computer represents numbers as patterns of B ones or ze-
ros, using binary notation. Wait! Wait! Don't stop reading.
We are not going to require you to understand binary and
hexadecimal numbers. If you already understand these things
you will not need the next table and can assign numbers
based on the bit patterns in your drawings. 1f you don't,
just use the following table, which gives you the "bit pat-
tern” of every number from 0-255.

Let's create the "hair" sprite as an example. We need
312 numbers--in this order. Sixteen numbers that represent
the left hand column of rows of eight boxes, followed by
sixteen numbers that represent the right hand column. (Each
of these numbers will be a "byte".) The first row in the
left hand column is all blanks, so the first number will be
zero. The second number will be 3 (we will provide the
hexadecimal numbers in parentheses here--03H for this one).
The third number is 7 (07H), fourth is 6 (06H), and fifth is

12 (OCH). You can refer to the diagram and to the bit pat-
tern table to understand how the rest of the numbers were
determined for the hair sprite and for the skin sprite.

38

As an example of how to use the bit pattern table, look
at the fifth row of boxes in the "hair sprite”, The left 4
boxes are empty, the next two are filled with the color, and
the right 2 boxes are empty. In the bit table, 0 represents
an empty box and 1 represents a colored one. Thus, the pat-
tern ve are looking for here is:

00001100

With a little practice, it will become easy to find a
particular pattern in the bit pattern table; here we see
that the number 12 gives us the pattern we want, So the
fifth number in the data for our hair sprite will be 12. 1n
the program listing, this is the fifth piece of data in line
9940.

ld 21 R A VI
Poul fedll Ui dl Kod Ui VA 17
rdfad Zls /e
2ol | oI5] el
Al 1510125 /4
, Al 151515150 5u]
4] _|H]s _ 4l
Al Ll 1715153 Hlif
o el 7l B 3 5 Al
ol U2d 555 /‘II
Ved >‘ led V¥
2551515151515 5]s
212122 0515 [s ks
S5 slzlsls sl Isls
215 2l515]ls S|z

Initial sketch of woman's head for making sprites #13
and #14. The letter H shows where hair color is to go,
and the letter S shows where skin color is to go.

pos

39

no. no.
0 0
J Vel Vs 7/‘/1 4 252
7 [.amaram 252
6 (e A 14
12 R mr 6
12 41/t ar 6
12 4t HlH 6

108 4] bk 1/t g

108 Al 1414 #le

60 \ir| A\t 72171
< 4/ / 7
12 14 114 6
0 4 0
0 0
0 0
0 0

i &) taken from
£ id for "hair" sprite. Numbers are
gﬁZgE?? gat%Zrn Table and correspond to the DATA in line
number 9940-9941.

no.
0
0
0
240
88
248
248
16
224
192
224
224
51513 252
3 ‘252

=
(=}

COO0OmWWWW=0 0O c

NN\

MAANN

NAMAS N
A NIMNIN KANA

N.DANMMBEAMAIL - MM | N

W N N M

NA RN
\."\ AW

b3
15 S
25 S S 1S 246
k9 S| ol5 S15] 243

i . Numbers correspond
Di am of grid for :skin" sprite
toaize DATA in line number 9943-994k4.

MM M NRAL I

no.
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041

042

043
044
045
046
047
048
049
050

pattern

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010

no.
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
oss
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114

BIT PATTERN TABLE

pattern

01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010

no.
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

pattern

10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011
10010100
10010101
10010110
10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010

no.

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229
230
231

232
2313
234

235
236
237
238
239
240
241

242

pattern

11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110
11101111
11110000
11110001
11110010

40

051

052
053
054
055
056
057
058
059
060
061
062

00110011

00110100
00110101

00110110
00110111

00111000
00111001
00111010
00111011
00111100
00111101
00111110

063 00111111

- -
-
~SNohon

118
119
120
121
122
123
124
125
126
127

01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
[(ARRRRRR)

179 10110011
180 10110100
181 10110101
182 10110110
183 10110111
184 10111000
185 10111001
186 10111010
187 10111011
188 10111100
189 10111101

190 10111110

191 10111111

243
244
245
246
247
248
249
250
251
252
253
254
255

11110011

11110100
11110101

11110110
11110111
11111000
11111001
111010

41

42

strategies.

Adventure Creator includes the sprites actually used in
the Bomb Squad game to illustrate some programming princi-
ples and to provide you with a starting point. Once you un-
derstand this part, you will be able to use some of the
sprites from The Visitor if you prefer them.

The lines 9901-9959 contain the data for drawing the 20
sprites from Bomb Squad. Each two lines of data represent
one sprite. Each data line contains 16 values. the first 6
lines of data are all 255. This creates three sprites that
are solid blocks--sprites #0, #1, and #2. These three
blocks can be made various colors for use in many different
scenes. For example, one block is the bottom half of the
guard house in Bomb Squad, and all three blocks are used to
make up 3/4 of the gate in the picture of the dog's yard
scene. Two blocks are used as furniture in the library
scene, and they also serve as crates in the storage room
scene, These blocks are put in low-numbered sprites so we
can hide things behind them. In the gquard house scene, for
example, the woman is hidden in the bottom of the guard
house until she appears.

The next two sprites (lines 9910-9914) are empty
squares that can also be used for different scenes. For ex-
ample, as the top of the gquard house and as crates in the
storage room, 3

Lines 9916-9917 are the top of a bookcase that is set
on top of one of the solid blocks to make a bookcase in the
library.

Lines 9919-9920 are a round bush that can also be used
as the top of & tree. 9922-9923 are a leafy bush that can
also be the top of a tree. 9925-9926 is a tree trunk. of
course, these three sprites can be used in different combi-
nations with each other and in different colors to create
different species of trees.

9928-9929 is the "broken part" of the gate (the lower
left corner) in the dog yard scene. 9931-9932 are the book
and letter on the shelf in the library. 9934-9935 make up
the main body of the car in the garage; 9937-9938 make up
the trim, wheels and steering wheel of the car. Of course
these two sprites always are placed in the same location.

9940-9941 is sprite #13 (remember to start counting
vith 0), which is the woman's hair. 9943-9944 make up her
face and shoulders.

9946-9947 are the man's hair and shirt, and 9949-9950
are his face. Note that these "face/hair" sprites could be
used to make several different characters in different
scenes by changing the color of hair and skin.

9952-9953 is one picture of a dog, and 9955-9956 is the
same dog with his legs and mouth in a different position.
By switching between these two sprites and moving horizon-
tally, you can animate the dog to be walking and biting.

9958-9959 are the bomb in Bomb Squad.

k3

As we noted in the section on initializing, all of
these numbers must be POKEd into memory in exactly this or-
der, starting at memory location 28850.

Sprite attributes

The control of each sprite depends on 4 numbers--the
attributes of the sprite. Thus, for our 20 sprites, we will
need B0 attributes. The first two numbers determine the lo-
cation of the sprite on the screen; they are the coordinates
of the upper left corner of the sprite. The first number is
the vertical coordinate, and the second is the horizontal
coordinate. (Note that this is opposite of using coordinates
with HPLOT, where the first number is the horizontal coordi-
nate.) The attributes of the 20 sprites in Bomb Game are in
the data lines B8600-8625. Notice that in each group of 4
numbers, the first two numbers are 200. This means that
when the game is initialized, each sprite is at location 200
(vertical) and 200 (horizontal). This is below the visible
part of the screen, so the sprites are hidden, waiting to be
used.

The third attribute is the sprite number. If you are
using B8xB sprites, this number will simply be Oomt 2 OF
whatever the actual number of the sprite is. However, |if
you are using 16x16 sprites (as we are), the actual number
you must use is the sprite number multiplied by 4. The rea-
son for this is that ADAM uses this number to know where to
look for the correct sprite data in the data table for de-
termining shapes. The 8xB sprites each use B8 bytes for
data, but the 16x16 sprites use 32 bytes each. Thus, in the
data statements in lines 8600-8625, the "sprite number at-
tribute” of the first sprite is zero (sprite #0 times 4).
The second sprite in the list is sprite #1, so the "sprite
number attribute®” must be 4. The next "sprite number attri-
bute"” is 12 etc.

The last attribute determines the color of the sprite.
Unfortunately, the colors do not correspond directly to the
color-numbers used in BASIC.

Sprite Color Attribute Table

Attribute # Color Attribute # Color

0 transparent 8 med. red

1 black 9 lt. red/peach
2 med. green 10 dk yellow

3 1t. green 11 1t yellow

4 dk. blue 12 dk. green

5 1t. blue 13 magenta

6 dk. red/orange 14 white

7 cyan 15 gray

44

Notice in the program that line B630 sets the variable
sa (for sprite attributes) to 29500, and then the sprite at-
tributes are POKEd into memory starting at this location.
We nov have our "sprite attribute table" in place. Remember
also that lines B630-B660 are set up so that in the program
ve can use GOSUB 8630 to set all the sprite attributes to
their initial state--with all of them hidden off the screen.
The main way we do this is in line 2B80--in the input section
of the program. This line restores the screen to text, so
if there is a picture there it will be erased. Just before
it does this, it reinitializes all the sprite attributes and
hides the sprites off the screen. 1f we did not do this,
the next time we draw a scene, the old sprites would be vis-
ible for an instant before we draw the new scene.

You will also notice that 1line 280 includes CALL sr.
This means to call the "sprite routine", which we will dis-
cuss in a moment.

Placing the sprites in a scene.

We are finally ready to put sprites in our picture. We
can now return to line 6250 in the "framework program". Up
to this point, we had used HPLOT to outline our picture.
Line 6250 is going to POKE new numbers into the "sprite at-
tribute table"” at memory location 29500; then we will call
the "sprite routine” subroutine, which will move the sprites
around and change their colors, depending on the numbers in
the "sprite attribute table"”.

The address of the "sprite attribute table” is given to
variable sa (for sprite attribute). Thus, in line 6250, we
see the command

POKE sa,95: poke sa+1, 160

Let's understand these two POKEs before looking at the
rest of this line. POKE sa,95 puts the number 95 into the
first location in the sprite attribute table. This will
then become the vertical coordinate of the first sprite.
POKE sa+1, 160 changes the second number in the table,
vhich is the horizontal coordinate of the first sprite (re-
member that the first sprite is #0). (Later, in line 6270,
ve will CALL sr, and sprite #0 will move onto the screen to
become the bottom of the guard house).

The next POKE sa+3, 14 changes the color of this sprite
to vhite, which is the color we vant for the guard house.
Notice that we skipped one number in order to set the color.
In each set of four attributes, the first two are always the
location coordinates, the third is the sprite number (multi-
plied by 4 if you are using 16x16 sprites) which you never
change, and the fourth is the color number. Since sprite #0

45

is used for many different purposes, we will have to change
its color each time, depending on what it is supposed to be
in the picture.

The next POKE sa+16, 79 and POKE sa+17, 160 sets new
coordinates for sprite # 4. How do we know thng thgse are
the coordinates for sprite #4? Simply by mutliplying the
sprite number by 4. Then this number and the next one are
the location coordinates. In this case we don't have to
change the color number, because we set the co!or of sprite
#4 to white when we initialized the sprite attributes.

After lines 6250-6265 POKE in all the coordinates and
new colors wanted, line 6270 finishes the picture by CALL
sr, the sprite routine.

Animating the sprites

In our example scene, line 6275 checks to see if the
quard has been "disabled"”. 1f he has, nothing furthﬁr hap-
pens (IF £(45)=1), However, if he is in his "normal" state
(£(45)=0), then we have to animate the picture, to show that
something fishy is going on in the guard house. The anima-
tion shows the woman standing up to look out the window,
quickly hiding and then looking out again before hiding for
good. Very suspicious. .

Lines 62B0-6295 animate the woman. Line 62B0 sets up a
FOR NEXT loop, so she will go through thg movements twice.
Then it sets up a FOR MNEXT loop that will automat:cnllz
change the vertical coordinates for the "hair”™ "and "tace
sprites that make up the woman. This loop goes from 95 to
79 in steps of -3.

In line 6286 we POKE sa+52, L and POKE §a'56, L :then
we call the sprite routine; then we stall briefly to smooth
out the movement. Thus, the first time through, L will
equal 95 and both the "hair" and “face" will still be hid-
den. The second time through this FOR NEXT loop, L will be
3 less, that i1s:92, Then the vertical coordinates of the
"hair" and "face" sprites will be 3 higher,and the woman
will start to rise in the window. i

As soon as the loop finishes a second one starts, with
the woman hidden again, so it looks like she guickly ducked
B L las £283 I» simply dncluded’ COEBEENESARIENI o3 when she
o h‘g?:2.6295 returns her to the hidden position before the
RETURN from this graphics routine.

The general principle. ¥ P ; .
Bascially, then, animation is easy; it is just tedious,
because you have to keep changing various coordinates and

then CALLing the sr routine.

46
Assembly lanquage listing for sprite control

We have made frequent reference to the "sprite routine”
vhich uses the sprite attributes to move around the sprites.
We will describe this routine in some detail. Those of you
familiar with assembly language should end up with an inti-
mate knowledge of sprite control. But even if you don't know
assembly language, we will try to explain things so you can
use sprites more flexibly.

The sprite routine consists of the numbers in the data
statements in lines 10010 and 10020. Lines 10030-10050 POKE
these numbers into memory starting at memory location 29600.
This is why the variable sr equals 29600; whenever we CALL
sr, this routine is called. We will give you an assembly
language listing of the program with extensive comments.

Assembly Code Decimal values from data statements
LD C,E2H 14, 226

LD B,1 6,1

CALL FD20 205,332,253

****comment: these lines set the magnification and size
of the sprites. The critical value is the underlined one--in
this case 226 will make the sprites 16x16 with no magnifica-
tion. Changing this number to 227 will give 16x16 with
double magnification. 224 gives B8x8 with no magnification.
225 gives BxB with double magnification.

LD A, (FC18H) 58,24,252
LD 1Y,0050H 253,33, 80, 00

****comment: this sets the number of entries to be used.
In our examples, we have 20 sprites of 16x16, so we have to
use the number 80 in the underlined value here--that is, the
number of sprites multiplied by 4. If one were using 20 Bx8
sprites, this number would simply be 20.

LD HL,70B2H ; 33,178, 112

****comment: load HL with the address of the sprite
data (28850 decimal). You will really need to understand as-
sembly language to change this address, so you may just want
to use it as in the sample program. :

LD DE,0000H 17,00,00
****comment: which entry should the routine start writ-
ing to? We find it very confusing to try to change this

value, so we always start with entry #0 and rewrite all of
the sprites every time, rather than trying to pick out just
a fevw to rewrite. The process is so fast that it makes no
practical difference to start at entry #0 each time. We re-
commend leaving this value alone.

CALL FD2CH 205,444,253
*#**comment: write these entries into VRAM (video RAM)
LD A, (FC17H) 58,213,252

****comment: set up tablefO--the entry point for attri-
bute setting.

LD 1Y,0014H 253,33, 20, O

47

®e*scomment : enter the number of spritgs being used.
Obviously the wunderlined number in this line would be
changed to change the number of sprites.

LD DE,0000H 17,00,00]
##**comment: entry to write to again
LD HL,733CH 33,60,115

##*2comment: location address of the sprite attributes
data (29500 decimal)

CALL FD2CH 205,444,253
#**tcomment: write attributes table to VRAM
RET 201

In the data statements in the framework program, the
last number is 256, but this is not part of the sprite rou-
tine. It is just there to signal the end of the data.

This should give you the information you need to add
dramatic graphics to all of your programs.

Problems with BASIC

We need to warn you about twe problems vigh smartBASIC.
The first one seems to be a bug that appears with large pro-
grams that push the limits of memory--which your program
probably will do. In the program, the string variable m§ is
used to give feedback to the player. f Occasionally, the
first several letters of m§ will be skipped and random lgt-
ters added on to the end. We can find no way around.thls.
and just warn the player to simply try the command again.

The second problem can be a real nuisance. For reasons
we will never understand, each time a program is LOADed from
tape or disk, BASIC adds a space immediately after each DATA
statement and each REM statement. 1f you Fhen make changes
to the program and SAVE the modified version--as you often
will when you develop a program--the extra spaces are also
SAVEd. The next time you LOAD the program, another space
will be added. 1In a program with many DATA statements, sev-
eral SAVEs and LOADs can waste a lot of memory, and adven-
ture games usually have little memory to spare. We find it
necessary, every novw and then, to list each DATA line and
edit it. To do this, move the cursor under the line number,
erase the "DATA" with the space bar, move the cursor a}onq
until it is five spaces from the actual data, and type in a

w DATA command.)

i Another problem is not a shortcoming of BASIC, but it
can be the source of a2 hard-to-find bug. At the end of line
160 we add one space to q$, which is the player's input. We
put the space at the end of g§ because later the Earse;
won't be able to tell the difference between "book an
"bookcase”. In the vocabulary, book is listed with a space
at each end:

48

*: book! *4 Now it won't be confused with codebook or
bookcase, as 1long as there is a space at the end of the
player's input like "read book ". However, now we have a
problem to watch for in line 2470, where we want to know if
the player said "take pictures". We must say

if gs="take pictures " then m$S="using what?"
being careful to include the space at the end of "take pic-
tures ", because gS will have a space there and BASIC is
very fussy. When you ask if q$ equals something, it must be
exactly like g$.

BOMB SQUAD

In this game, you have been appointed to find and de-
fuse three bombs that have been placed in the embassy of
tiny Lunaria, the only country with large known reserves of
kryptonite. As with most adventure games, you will be en-
tering two word English commands to find your way around the
embassy, to gather whatever supplies you might need, and to
deal with any situation a good intelligence/explosives ex-
pert might meet.

You can move around any of the four directions, N, S,
W, or E-- if there is a visible exit available. You can do
this either by typing in a command like "go south" or "walk
east” or, to save time and typing, you can simply enter one
of the letters N, S, W, or E. These one-letter commands must
be in upper case letters.

The computer will describe your location and what you
can see at each turn. You might try to accumulate objects
for later use, but there is a 1limit to what you can carry.
1f you leave something in a room, it will be there waiting
for you when you return.

I1f you try to do something, and the computer tells you
that you can't do that, try a synonym. Remember that each
command you enter should include exactly two words--a verb
and a noun (with the exception of the one-word direction

commands or "save", "load", "help", or "carrying?".)

Unlike most adventure games, Bomb Squad puts you under
some time pressure. 1f you don't find the bombs fast
enough, they will start exploding one by one. Even if this

happens, though, remember what you learned from your experi-
ences, so next time you will have a better chance of finding
all three bombs.

As a general strategy, it is essential to draw a map of
your searches as you go.

saving and loading.

1f you are in the middle of a game and have to stop,
you can enter the one word "SAVE" (be sure there is a tape
or disk in place) and your current position will be SAVEd as
a file named "bombgame". When you want to resume the game,
LOAD the program as usual, RUN it, and then enter the one
word command "load". This way, you don't have to start over
from the beginning of the game.

You may also want to SAVE the game occasionally as you
play, so if you get killed or get into a hopeless situation,
you won't have to start over.

=

50

A bug in BASIC. ¥
Occasionally, you might read a sentence with part of
the front cut off and gibberish at the end. This seems to
be a string handling bug in BASIC. Just try your command
again if you can't figure out what the feedback sentence
means.

clues.
Some of the scenes are presented graphically, so be
sure you study the scene and the action in the scene to help
you figure out the best course of action.

Getting help in the game.

1f you need to know what you are carrying, simply enter
the word "carrying?”, and the program will list your posses-
sions. Although it is considered bad form, you can even ask
for a list of the words that the game understands by enter-
ing the one-word command "help". It's bad form because it
makes the game too much easier, but if you really need to,
far be it from us to make you feel guilty--just because you
lack character.

A deadly warning.

It is possible to survive some of the explosions if you
don't find certain bombs in time--but it is also pessible
that you might be in the same room at the very moment one
goes off. In that unlkely event, there is nothing to be
done but start the game again.

