

Adventure Games
for the Commodore 64

Other Granada books for Commodore 64 users

Business Systems on the Commodore 64
Susan Curran and Margaret Norman
0 246 12422 9

Commodore 64 Computing
Ian Sinclair
0 246 12030 4

Commodore 64 Disk Systems and Printers
Ian Sinclair
0 246 12409 I

The Commodore 64 Games Book
Owen Bishop
0 246 12258 7

Commodore 64 Graphics and Sound
Steven Money
0 246 12342 7

Software 64: PracLical Programs/or the Commodore 64
Owen Bishop
0 246 12266 8

Introducing Commodore 64 Machine Code
Ian Sinclair
0 246 12338 9

40 Educational Games/or the Commodore 64
Vince Apps
0 246 12318 4

Adventure Games
for the

Commodore 64

A. J. Bradbury

GRANADA
London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, London WIX 3LA

First published in Great Britain by
Granada Publishing 1984

Copyright© 1984 by A. J. Bradbury

Bri1ish Library Ca1aloguing in Pub/ica1ion Darn
Bradbury, A. J.
Adventure games for the Commodore 64.
I. Computer games 2. Commodore 64 (Computer)-
Programming
I. Title
794.8'028'5404 GY 1469.2

ISB 0- 246- 12412

Typeset by V & M Graphics Ltd, Aylesbury. Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved . o part of this publication may be reproduced.
tored in a retrieval sy tern or transmitted , in any form , or by any

mean , electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

Contents

Acknowledgements Vl

Important Note to the Reader Vll

I Once Upon a Time ...

2 Plotting Your Adventure IO

3 Who Goes There? 20

4 O.K. Bugsy - We Know You're in There! 51

5 Interior Decor - Arrays and Things 71

6 One Step at a Time 106

7 A Code in Time Saves ... 125

8 The Well-chosen Word 145

9 Taking Shape 161

IO Sound and Vision 172

11 What Now? 188

Appendix: The Case of the Missing Adventure 197

Index 211

Acknowledgements

l would like to offer my sincere thanks to the following people who
each, in their own way, contributed to the preparation and success of
this book:

To Geof Wheelwright and Richard King of Personal Computer
News for their encouragement when I first began to write about
computer adventures.

To Perry, Nigel and Mike at Lion House, Brighton, for all kinds of
invaluable assistance.

To my editors, Richard Miles and Allan Scott, who had the
unenviable task of extracting the original manuscript from me and
managed to turn it into a finished book.

And finally , and most sincerely, to my wife, Carol, for her unfailing
support and patience.

A. J . Bradbury

Important Note to the
Reader

All of the programs in this book were developed and tested on a
Commodore 64 before being LlSTed for publication. If you have
any trouble getting a program to work on your own machine please
check that you have typed in exactly what you see in the original
listing.

The programs have all been written and USTed using the C64's
'start-up' mode - upper-case only. To ensure that you are using the
right mode please type in PRINT CHR$(142) - without a line
number - before trying to enter any of these programs.

You might also like to start all your programs with a 'mode
control' instruction to the computer to ensure that it RUNs the
program correctly. This line should read PRINT CHR$(142) if you
are using upper-case only, or PRINT CHR$(14) for mixed upper
and lower case.

To make it easier for you to understand and use the listings, all
programs have had bracketed instructions inserted in place of the
usual inverse graphics symbols - as shown in the following table:

Listing Press key(s) Displays as:

[CLEAR] SHIFT CLR/ HOME ~ (inverse heart)

[HOME] CLR/ HOME ~ (inverse 'S')

[UP] SHIFT UP/ DOWN :J (inverse circle)

[DOWN] UP / DOWN ~ (inverse 'Q')

[LEFT] SHIFT LEFT/ RIGHT II (inverse bar)

[RIGHT] LEFT/ RIGHT ~ (inverse ']')

[RVS] CTRL 9 ~ (inverse 'R')

[OFF] CTRL 0 ~ (inverse line)

Instructions such as [DOWN* X] mean that the named key should
be pressed X times.

Chapter One

Once Upon a Time •••

. . . As Jar-Zel raced across the desert landscape, now cut with a
lattice-work of bright red tracks, the Kharzog battlefleet moved
silently overhead . From a distance they looked , to him, strangely
familiar and not even remotely hostile - like floating pieces of that
same gorg-board that made up the walls and roof of his own house.
But those innocent-looking silhouettes were spraying the landscape
below them with random bolts from their life-consuming ergonic
cannon ...

GO WEST

... At the next intersection of tracks , Jar-Zel turned to his left and
headed towards the nearest butte ...

USE THE ZARN GUN

... Without breaking his stride, Jar-Zel pressed the belt stud that
activated the zarn gun on his right wrist , then fired a beam of raw
blue power towards one of the Kharzog ergon bolts. As the two
energies met, the track of the ergon bolt became an incandescent
pillar of fire, flashing back towards the Kharzog battleship that had
launched it and consuming it in a single blinding explosion of
energy ...

GO NORTH

. . . Again Jar-Zel changed direction, turning the way he had
intended to go. To his left the fallen ship, now half-buried in the
sand , continued to blaze like the very sun . . .

SAVE GAME

... Now at last he could rest, safe in the knowledge that somewhere
in a universe he could only imagine the sum knowledge of his world,
his personality, his possessions, and the state of the battle itself had

2 Adventure Games for the Commodore 64

been itemised , charted, and recorded - on an ordinary tape cassette.
Could you create an adventure like this, full of action, thrills, and

high adventure? You may not think so now - but it isn't really as
hard as it might seem. This book is about computer adventure games
- what they are and how to prepare and program your own
adventures for fun and / or profit. It is also quite different from any
other book or article on the subject you will have read before.

O.K. - that's the sort of claim you'd expect an author to make
about his book. But this time it happens to be true. In the following
chapters you'll find out not only how to write an adventure program
but also many of the tricks used in the best commercially available
games. Your journey into the world of top class adventure writing
starts here.

Back at the beginning

Once upon a time, many years ago in a far distant land , the wizards
of the East and West entered into a fierce contest. At first it seemed
certain that Crowther the Cunning and Woods the Wily - the
wizards of the West - must win the struggle. For they brought forth
from the dark tower of the Stanford Research Institute the
wondrous computer adventure game named Colossal Caves.

But the wizards of the East were not so easily defeated . Before
long Anderson the Artful, Blank the Boffin, Daniels the Devious
and Lebling the Learned (whose home was among the misty halls of
MIT) returned to the fray with Dungeon, an even more faithful
reproduction of the game Dungeons and Dragons as invented at the
dawn of time by the legendary Magi, Gygax and Arneson .

All of these events took place, believe it or not, a mere seven years
ago, in America. At that time it seemed unlikely that the adventure
type of game could be converted for use on any of the few
microcomputers then available within the foreseeable future. But
times change, and in the next few years several important events
occurred which turned the improbable into accomplished fact.
There was a drastic reduction in the cost of RAM chips, small (5 Y4

inch) disk drives became relatively commonplace, and Scott Adams
began to write his series of micro-sized adventures.

Just how much progress has been made can be judged from the
fact that a company called Level 9 has now released the original SRI
Adventures, in unabridged form , for use on a 48K computer.

Once Upon a Time . . . 3

Indeed, in the case of Colossal Caves they have actually managed to
add a further seventy rooms to the final section of the game!

Small is beautiful

So what is an adventure, and what separates the good games from
their rivals? These are pretty big questions. The answers are the key
to writing top class games.

Taking the first question first (and why not?), an adventure game
can be the players' passport to the universe. One of the greatest gifts
that adventure games bestow is the gift of freedom. The freedom to
be anyone you want to be, at any time in history - past, present or
future! The freedom to go wherever you want to go and to meet
whoever you want to meet. The only limits to the world of the
computer adventure game are those set by the ingenuity and
imagination of the writer. A glance down the list of adventures
already on sale shows how diverse that world has become. And the
list continues to grow.

But one thing needs to be made quite clear right at the start - an
adventure game is not an arcade game (despite some recent claims to
the contrary) . In an arcade game the player is required to control
what happens on the screen using a set of keys, a joystick or a paddle .
These games are basically about manual dexterity and reaction
times. A true adventure game, on the other hand , calls for the player
to take part in a story which is depicted either in text or in a mixture
of text and graphics. Thus adventuring is mainly concerned with
strategy, problem solving and mental rather than physical skills. An
arcade game is over, in say, ten minutes or less (unless you happen to be
extremely ski lful). A good adventure takes hours , days or even
weeks to so lve, and the lower your skill the longer it will take to
complete the game. Taking part in an adventure is, as one writer put
it, like reading a book in which yo u are both the central character
and co-author.

Unfortunately there are a couple of major hurdles facing the
writer, or writers, of an adventure game, and it seems that quite a few
authors are finding it difficult to jump those hurdles successfully.
Take these comments from a couple of reviews published in the
autumn of 1983:

'This is a text-only game and even the text formatting leaves a
lot to be desired.'

4 Adventure Games for the Commodore 64

'(This game) might sound like a disaster movie, but in fact it's
opening up a new field in the home micro market: disaster
software.'

Maybe it's not surprising that so many poor-quality adventures
are beginning to appear. Until quite recently most software houses
have concentrated on producing home micro versions and
variations of arcade machine originals. As a result the adventure
market has, for quite a while, remained relatively untouched ,
especially in the UK. But now the 'adventure boom' is on - witness
the rash of new programs, books, and even a specialist magazine .
And just as the original arcade games have spawned a stream of
second-rate look-alikes so, it seems, the core of high-quality
adventure games will find itse lf surrounded, at least temporarily, by
various ill-conceived , hastily-written and often poorly-programmed
imitators.

Yet this very fact can be interpreted as good news of a sort. For I
predict that even the dud adventures will help to create an appetite
for top-rate games. I predict that in the long run adventure games
will become the market leaders for computer software. And just as
record 'singles' usually burn themselves out in a matter of months
at most , while the best L.P.s go on selling year in and year
out, so the best of the adventures will enjoy a lifetime that far
exceeds that of the average arcade game. (How many people do you
know who still play the original Space Invaders?)

The golden oldies

If that last prediction sounds like an adventure freak's dream, it's
worth remembering that adventure gaming already has a ' Hall of
Fame'. And among its growing number of inhabitants the pride of
place must certainly go to the series of programs produced by the
American company Infocom.

Infocom, like the game Dungeon referred to above, and like the
LOGO computer language, has it roots in MIT - the Massachusetts
Institute of Technology. Indeed , Blank and Lebling are two of the
leading figures in the lnfocom setup. Since it was founded, only
three years ago, lnfocom has produced a string of smash-hit
adventures - Deadline and Witness (for the armchair detective) ,
Starcross and Planetfall (for the earthbound astronaut), and
Suspended (a 'hi-tech' game that is almost beyond classification) .

Once Upon a Time . . . 5

But the greatest of all the Infocom creations, at least at the time of
writing, has been the Zork trilogy: The Great Underground Empire,
The Wizard of Frobozz and The Dungeon Master. Let's try to see
why these games are so highly rated.

(1) Communication
A central feature of the lnfocom programs is the facility for the
player to 'talk' to other characters in the adventure. Readers who
have encountered the British program The Hobbit (Melbourne
House) may question the uniqueness of this function. After all , The
Hobbit shares this facility and the Melbourne House language,
known as Inglish (sic), bears more than a passing resemblance to
Infocom's I nterlogic.

In both languages the programmers have put a great deal of work
into creating command 'parsing' routines which can cope with
instructions from the player which look as much like standard
English sentences as is possible within the limited RAM space of the
average micro. Despite the complexity of this task (which will be
explained in detail in Chapter 8) , both companies have made
significant progress. Thu Inglish can accept compound commands
such as:

SAY GANDALF "READ SIGN'', GO N, UNLOCK DOOR,
ENTER DOOR.

and Interlogic would cater for:

TELL THE WIZARD TO READ THE SIGN. GO NORTH
AND UNLOCK THE DOOR THEN ENTER.

The difference between these two sentences is quite obvious,
though the practical differences may be much less noticeable. What
both sets of writers are striving for is an end to the familiar two-word
command format found in so many adventures even today . If we do
want to draw comparisons then Interlogic appears to allow for a
greater number of 'delimiters' - ways to define the end of each
command module (as in normal speech) This gives a rather stronger
impression that you really are talking to the computer rather than
simply feeding it instructions .

(2) Commands
Anyone who has ever played an adventure game will have a good
idea of the basic vocabulary available for use in commands:

6 Adventure Games for the Commodore 64

GET
DROP
GO
READ
FIRE, etc.

But using such a basic set of instructions can often be more
frustrating than helpful. Infocom claim, and there is no reason to
doubt them, that Interlogic can access a vocabulary of around 600
(yes, six hundred) words!

I've already mentioned the difference between, say, Interlogic and
Inglish - mostly it lies in the variety of words available for use by the
player. The point is worth repeating, however, since it concerns one
of the most critical factors in the success of any game - its
'believability'.

Since an adventure can be set at any time and anywhere, it's a fair
bet that players will usually find themselves in worlds far beyond
their own everyday experience (though not necessarily beyond their
daydreams). This means that in the opening stages of an adventure,
at least , the link between the player and the game will be somewhat
fragile. In a good game, as with a well-written book, that link should
develop and strengthen as the player becomes immersed in the
action . This in turn requires that the game runs as smoothly as
possible. Yet many commercial games still place that fragile link in
jeopardy right from the start by having a very limited and in some
cases quite inconsistent, set of commands.

In Chapter 8 we'll be looking at ways to develop an extensive
command vocabulary and upgrade command inputs to the level of
normal speech.

(3) Room descriptions
Recent months have seen the appearance of a growing number of
'graphic' adventures. In some cases - The Hobbit and Pirate Cove
(Scott Adams) for example - the graphics take the form of simple
displays of the various locations. The more ambitious Stateside
offerings - Aztec, The Temple of Aphasai, etc, - combine arcade
style graphics with an adventure-style plot. Yet most of the best
adventures have remained true to the text-only originals. Not
surprisingly, Infocom have managed to turn this apparent limitation
into a positive virtue. According to one of their advertisements:

'You'll never see Inf ocom's graphics on any computer screen.
Because there's never been a computer built by man that could

Once Upon a Time . . . 7

handle the images we produce. And there never will be. We
draw our graphics from the limitless imagery of your
imagination .. . ?

This claim has been supported , to quite a large extent, by reviewers.
The magazine Sofialk , for one, described the text in Zork Ill as
being 'far more graphic than any depiction yet achieved by an
adve nture with graphics'. The fact that all of the Infocom programs
seem to have taken up permanent residence in the Softsel best
selling games list adds further credence to the company's far from
modest self-appraisal.

With an introduction like this you might be forgiven for
supposing that I nfocom's room descriptions, etc. , take up page after
page of memory, and are beyond the scope of the average micro
with less than 40K of free RAM space. Fortunately this is not true.
And in any case, as Level 9 have recently demonstrated , there are
ways and ways of fitting text into the space available .

In Chapter 2 I'll be showing you some of the main steps needed for
the preparation of high-quality text displays. In Chapter 7 you' ll
find a BASIC version of the sort of ' text packer' that lies behind
Level 9's success .

(4) The plot
The main requirements for the plot of a successful adventure game
can be set out under three headings: (a) comprehensibility, (b)
interest and (c) internal consistency. Of the three it could be argued
that factor (b) is the most important. But only by a narrow margin.
And failure to maintain a high standard in just one area is often
enough to destroy the viability of the program as a whole. So let's
look at these three factors in a bit more detail.

(a) Comprehensibility. Though you might not guess it from playing
some of the games on the market at the moment, making a game
comprehensible is certainly not the same thing as making it simple .
To return to the Infocom series for a moment, not one of their games
is exactly 'simple'. Indeed , Suspended is so complex that even
though a game map and markers are supplied , one reviewer advised
potential players not to 'worry about your score on the first few
attempts - you'll have more than enough to cope with!'

To put it another way, what would you think of a book with only
two or three pages, or a comic with just one picture on each page? If a
game is too simple then it \.\'.On't last long as far as playing time goes.
And that can be quite a let-down if you've just paid out £20-£30. A

8 Adventure Games for the Commodore 64

good plot is not one that is easy to see through, but one which makes
ense when you take the time and trouble to get to grips with it.

Remember, an adventure takes place in its own little world.
Getting to know that world - when it has been created with care - is
half the fun of playing an adventure game.

(b) Interest. No game is going to attract much notice unless it both
grabs the players' interest and holds it. Many are the stories of lone
adventurers playing through the night , and even through a whole
weekend, as they struggle towards their elusive goal. Although
Jnfocom's earliest games followed the earlier 'sword and sorcery'
format of the original Dungeons and Dragons, their later products
Deadline and Suspended - have explored new avenues in computer
gaming. Such are the games which satisfy, and those are the games
that sell through the best advertising available - word of mouth. In
Chapter 2 I'll be dealing with the details of plotting and preparing an
adventure game.

(c) Internal consistency. While it is impossible to lay down any hard
and fast rules as to what should and should not appear in an
adventure, it is essential that any game should have what amounts to
a fixed set of rules. The most common failure in this area is the
relationship of one 'room' to another on a game map. In second-rate
games, one often finds that one can move from room A to room B,
yet for no apparent reason it is impossible to return to room A.
Worse still , one may move south from room A into room Band then
find that moving north again takes you into room C (room A having
disappeared, it seems, in a puff of smoke in the meantime!).

In some games this may be due, quite unforgivably, to poor
programming. In other cases it occurs because the writers / program
mers simply haven't bothered to prepare a decent map of their game
before coding it. In both cases the result is sloppy and, for the player,
incredibly frustrating. Such games deserve to fail when they reach
the market place, and they usually do.

In Chapter 4 you'll find descriptions of the various ways of
mapping out an adventure with their advantages and disadvantages.
In Chapter 6 I'll be showing you how to store a map in the computer
- in the form of movement codes - together with two methods of
accessing the codes without using valuable array space .

(5) The problems
One of the central features of any adventure game is the range of
problems set to trap, baffle and generally hoodwink the player.

Once Upon a Time . . . 9

Unfortunately this is one area where it is impossible to off er any very
useful advice.

The main consideration is that the problems in a game hould , by
and large, relate directly to the plot of the adventure , and should be
of a kind that could be solved by any reasonably intelligent person
with a fair amount of general knowledge. This may sound rather
narrow-minded , but I am looking at things from a professional
point of view. It's true , of course, that adventure games were first
developed by university students and staff, and that a large part of
the market is probably still made up of people with a similar level of
intelligence and education. But you don't have to be a genius to own
a computer. And it certainly doesn't make much sense, in terms of
potential profit , to aim at such a limited market. The best adventure
games around at the moment certainly don't 'talk down' to the
player, but neither do they demand that the player be a potential
candidate for MENSA. Generally speaking the best problems
require careful thought - and maybe a bit of 'lateral thinking' -
rather than a store of specialised knowledge.

So, with these thoughts in mind let's get down to business . Let's
write an adventure ...

Chapter Two

Plotting Your Adventure

The first step in preparing any adventure must be to set out a basic
storyline, since everything else that you do will depend upon and
relate to the plot of your adventure.

I should, perhaps, make it clear at this point that in this book the
word p!or is used to refer to the most basic outline of a story, while
the word storyline is used to indicate an outline of all the important
features of a story. Thus preparing a story goes through three stages:

Prepare the plor
Develop the sroryline from the plor
Fill out the srory!ine to arrive at a finished sro1T.

A uccessful plot will take three main factors into account:

(l) The need for p layers to 'believe' in the game
(2) The need for players to be satisfied with the roles they are
given to play
(3) The need for players to feel that their efforts are being
justly rewarded.

The e are the guidelines that any adventure writers worth their salt
will try to follow to the letter. Before we can follow the rules.
however, we first have to find and develop a plot and storyline.

Finding a plot

In many respects there isn't a great dea l of difference between
creating a good adventure and writing a book or, to be more exact, a
rlay or a film script. Obviously no game will take the same amount
of writing as a complete book or script, but the basic approach wil l
be pretty much the sa me. This may sound rather daunting if you've
never tackled adventure writing before, but don't be put off. The

Plotting Your Adventure 11

similarity is, as it turns out, a benefit rather than a disadvantage. For
while professional adventure writers and programmers are,
understandably, rather secretive about their work, there are plenty
of books on the market that give step-by-step details of how to write
short stories, a book, or a script. I won't pretend that there is room to
cover this whole subject in just one chapter. What we can do is to
take some of the basic 'tricks of the trade' and see how they can be
applied to the art of adventure writing.

It has been said th.at the whole of literature is based on just six
plots - three central ideas, each with a choice of two endings:

(1) The Love Story: A meets B - A gets B
A loses B

(2) The Search: A looks for B - A finds B
A doesn't find B

(3) Good Guy vs. Bad Guys: Good guys win
Bad guys win

Obviously no single story i quite that simple: the plot are open to a
wide range of variations and can be strung together in many
different combinations. And the action itself can be viewed from a
variety of different positions. So the first thing to realise when you
sit down to create a plot is this: the originality of your story, your
adventure, doesn't depend on your ability to dream up a totally
unique plot. It depends on your ability to present the story in a way
that i fresh , interesting and exciting.

Actua lly we cou ld go one step further and say that most people
actually prefer stories that are both new and familiar. This may
ound like a contradiction, but just think about the books you and

your friends read. How many people do you know who read more
than, say, three or four different kinds of book? One person will
prefer science fiction or westerns, another usually picks detective
stories or thrillers, someone else will choose mainly love stories or
biographies. This much we know for a fact, and there's no reason to
believe that the situation is any different when it comes to
adventures.

Tip number /:don't waste time trying to write a totally original
game. You might just make it, but the odds are very much against
you. And if you're trying to break into the commercial market it's
more than possible that no one will want to buy a game that is totally
unlike anything they've ever met before .

So if you're not aim ing for something comp letely original in the
plot line, where do you start? The answer can be found in advice

12 Adventure Games for the Commodore 64

frequently given to first-time authors: don't try to tackle subjects
yo u know nothing about - make use of what you a lready know. If
you think back to so me of the things I said in the first chapter you'll
see how even the top writers have followed this advice.

Take the Infocom team as a typical example. They started out
working on Dungeon, a direct development of the board game they
already knew. When they turned profes ional their fir t three
programs followed the same 'sword and sorcery' theme. Only then,
when their talents had been firmly established, did they branch out
into new territory.

Tip number 2: for your first attempt at writing an adventure take a
theme you al ready know about, (preferably one that interests you since
a high-quality program can take weeks or even months to complete!).
Don't worry if your chosen theme is already covered in the li st of
commercial games; this only proves that there is already an
established market waiting for you if your work is of a high enough
standard.

The storyline

O. K. You've chosen a plot , now you have to construct a toryline
around it - like se tting the foundations and then building a house on
top of them. The way you go about this task will depend on which
method you find works best for you, and the steps that follow, both
in this chapter and the next two , can be rearranged to a large extent
to fit in with your own way of working.

One poss ible way of starting to build your adventure, and one that
see ms to be quite popular with many profess ional story writers, is to
let the story write itself, so to speak.

To do this you need to start with just three items: a character, a
tart ing place for the story and a poss ible ending. The reason why

this approach is o popular is, I think, because it allows you to swa p
things around, or even alter the entire storyline, without having
wasted a sizeable chunk of time in mapping out what ought to
happen .

Where's your imagination?
Whether it's in relation to a school essay, a story, or an adventure,
one thing that hold s a lot of people back i the feeling that they don't
have the imagination needed to produce something that anyone else
would want to see. Yet being imaginati ve really is n't as difficult a

Plotting Your Adventure 13

you mi ght thin k. In fact it's usua ll y the fea r of not producing
a nything wo rthwhile tha t ho ld s us back, rather t ha n a genuine lack
of id eas. Fortuna te ly the re is quite a simple so lution to thi problem ,
o ne th a t a lm ost a nyo ne can be nefit fro m . It 's ca lled ' brainstorm ing'.

Des pite its odd -sounding title this process d oes n't require tha t yo u
have a ne rvo us breakdown . On the contrary, it has proved to be one
of the mos t s uccess ful ways of ge nerating or iginal and inte re ting
id eas tha t a nyo ne has yet discove red . The theo ry behind it goes
so mething like this.

o rma lly whe n we' re as ked fo r id eas, o r eve n whe n we' re just
dayd rea ming , we te nd to give each id ea ma rks as thoug h it were
so me kind o f sc hool exe rc ise. In o the r wo rd s we d ecid e whether a n
id ea is 'good ', pra cti ca l, useful , etc. o r no t - before the id ea ha s
rea ll y had time to develo p . Ob viously no t a ll id eas a re co nstructi ve.
but if we give them a cha nee to develo p - if we g ive o ur imagi na ti o n a
free re in - the n eve n dud id eas ca n lead o n to useful lines of th o ug ht.

So ho w d o we put this to wo rk? By ta king note o f all o ur id eas o n a
give n subj ect a nd writing them d ow n (this i a ve ry imp o rta nt pa rt
of the process) th en weedin g o ut the useless id eas a/ ier th e
bra insto rming sessio n is ove r . Thus. ass uming tha t we've a lread y
come up with the ba re deta ils of a sto ryline, we sit d own a nd thin k of
eve rything th a t o ur ma in cha racte r might d o in the co urse of th e
ad ve nture, no ma tte r how stupid , fa ntas ti c o r irreleva nt these
ac ti o ns may see m .

What will I need?
Havin g c rea ted a n initia l li st o f ideas - which we' ll ca ll list I for the
mo ment - it mig ht see m se nsible to go straight o n to so rt o ut a ll th e
use less id eas a nd see wha t yo u' re left with . In fa ct it i be tte r to leave
li st 1 intact for the mome nt while you prepa re list 2.

In thi s seco nd li st yo u sho uld ite mise a ll the c ha rac te rs, locati o n
a nd o bjects yo u wo uld need to inc lude in yo ur ga me if yo u used
eve ry id ea in lis t I. I say this fo r seve ral reaso ns. In the firs t place it
will he lp to g ive yo u so me id ea of j u t how much ma te ria l yo u need
to edit o ut o f li s t 1. Seco ndly, the process o f prepa ring li s t 2 may we ll
help to sugges t ex tra o r a lte rna ti ve cha racte rs a nd o bj ects, a nd may
indica te a lte rna ti ve ways o f dea ling with the situati o ns yo u have
ma pped o ut in li s t 1. Wha t yo u're ac tua lly d o ing here is ca rrying th e
'bra insto rming' p rocess o ne ste p furth e r, in a mo re immedia te ly
prac tica l directi o n, with o ut c lo ing off yo ur o pti o ns. Which brin gs
u to tcp three . . .

14 Adventure Games for the Commodore 64

Back to reality
We might de cribe the two lists we've prepared so far as follows:

List I = 'the po sib le' (however incredible it may be)

List 2 = 'the practical'
computer

what actually has to go into the

With both lists in front of you it's time to decide what you're going to
keep and what is to be discarded. To make these decisions you will
need to bear two factors in mind.

Fir t with regard to list 2, how much of the inventory will actually
fit into the RAM space yo u have available? A good deal of the
information in this book is concerned with ways of packing as much
into a n adventure as possible in quite a limited amount of RAM . So
you should find , unless li st 2 is very long indeed , that you don't need
to do too much editing at this stage.

Secondly, going back to Ii t l , after all the totally outlandish ideas
have been rejected how much of what is left can yo u actually fit into
your program? In other words, how good a programmer are you?
This will depend as much as anything on yo ur experience of
programming in general , and is very much a case of 'practice makes
perfect'.

Tip number 3: Know your limitations as a programmer. There are
few things as f ru trating as getting halfway through coding a
program and finding that you don't know how to deal with a key
sequence. Aim to improve with each program, but don't set yourself
goals that you have no real hope of achieving.

Blocking it out
Once you've completed that la t stage in your preparations, you
should have two lists of fairly manageable size on which to base your
adventure. At the risk of seeming repetitive I would emphasise that
the material you have left should be regarded as 'shortlisted'
material rather than something which is fixed and unchangeable.
Creating an adventure, despite its partly scientific element (the
actual programming), is essentially an artistic enterprise. And part
of the pleasure of any artistic undertaking is that until your work i
finally completed even you, the artist, cannot be entirely sure what
you're going to end up with. Writing an adventure game is itself a
kind of adventure, and since it will certainly involve a fair amount of
hard work there's no earthly reason why you - the writer / program
mer - shouldn't also get as much fun out of it as you can.

Plotting Your Adventure 15

At this stage of your preparations there is still plenty of room for
experiment and changes of mind. But be careful how many changes
you make! It can be tempting, when a really good idea comes along,
to rewrite your previous toryline to make use of the fresh material.
Experienced writers , however, soon learn to be more economical
with their ideas. For it's just possible that the ideas that come along
while you're creating one story are trong enough, if properly
developed , to provide the basis for another complete sto:·y. To put it
another way - if you use up all your best ideas in your first adventure
then what will you use for the next one?

Talking of stories, it's now time for us to put one down on paper in
uch a way that we can start to build a program around it.

The storyboard

The actual process of writing a story is a pretty personal thing, and it
would be impossible to set out one method of tackling this job that
would suit everyone. This section, therefore, is, definitely not about
how you should approach the task, but rather how you might
approach it.

It really is true that writing a computer adventure game is a lot like
preparing a film script (which i where the storyboard technique was
developed). For where a film consists of a number of 'set pieces' or
scenes in which the central story evolves towards it climax so an
adventure moves through a series of fixed locations as the player
tries to gain the maximum score or achieve the goal which the writer
has set.

I don't want to push this comparison too hard, but it does raise at
least one is ue that every adventure writer needs to think about - the
importance of imagery, transferring a picture from the script writer's
pad to the audience's mind.

If it's true that 'one picture is worth a thousand words' then
obviously film-makers have a terrific advantage over the adventure
writer in this area. Which is why lnfocom, for example, make uch a
big thing out of the quality of the text displays in their programs. But
this isn't to say that good writers will automatically produce good text
displays for an adventure game.Nor can we assume that the addition
of graphics will automatically improve the quality of a program.
(Indeed it has been said that graphics can actually spoil the effect of a
game unless they are of a particulariy high standard. For a more
detailed discussion on this subject see Chapter 10.)

16 Adventure Games for the Commodore 64

And that's where the storyboard comes in.
If you've ever seen one of the TV programmes which show how films

are prepared then it is quite probable yo u already know what a
storyboard is. For those readers who don't know what I'm talking
about, a storyboard is a kind of comic- trip vers ion of the film scrip t;
the director and cameraman use it to work out what will happen in
each scene, how it will be lit , what camera angles will work bes t , etc.,
etc. In a se nse, list 2 described above is a text version of a storyboard
in note form . What we need to do now i to turn the notes into
individual, itemised sce nes. What follows is an illustration of how
the storyboard for one scene (one text scree n) in a n adventure was
developed from the original li stings to the point where it was ready
to form part of a program:

List 1
Hero meets rogue cybernaut which is carrying the only key to
the lab . door. The door is the only way out of the room and the
key is the only way of opening the door. The room is on fire.
The cybernaut is heatproof, the key isn't!

List 2
Characters: Hero, cybernaut
Objects: A key (a magnetic card?)
Problem: Get key to open door before cybernaut kills yo u or
you are burnt to death .
(Need extra object?)

Reading these notes over, the idea looked O .K. , but I remembered
that the term 'cybernaut' came from Th e A 1•engers. I dec id ed to
make do with an ordinary robot.

Version 1: Screen 24. Laboratory.
You are locked in the laboratory with a highl y aggressive robot.
As the robot moves towards you it knock over a bench bearing
severa l bottles of fluid. When the bottles hit the floor they
break. The fluids mix and burst into flame. The robot is
obviously heatproof as it is still coming toward s you through
the flames. The robot has the only key to the door.

What now?

Hero , robot, magnetic card, (extra item?)

So far, so good. But the text doesn't look right yet, and the robot has
no character.

Plotting Your Adventure 17

Version 2: Screen 24. Laboratory.
The door slides open and you step into the Professor's
laboratory. The door closes automatically behind you .

The only key to the door is a magnetic card lying about
halfway between you and Igor the Professor's psychopathic
android.

Igor moves towards you but his arm catches a row of bottles
which crash to the floor. As the chemicals mix they burst into
flame.

What now?

Hero, Igor, magnetic card, (extra item?)

In case you haven't guessed, I don't know how to beat Igor yet! Still,
the text looks better and 1 like Igor. On the other hand I don't see
why 1 should make the presence of the magnetic key so obvious. 1
could make the player use the LOOK command before they can find
i I.

Version 3: Screen 24, Laboratory
With a quiet hiss the steel door slides open and you step into the
Professor's laboratory. The door closes automatically behind
you and you are trapped with Igor - the Professor's
psychopathic android.

As Igor moves through the cluttered equipment towards the
table which stands between you his arm catches a row of
bottles, sending them crashing to the floor. The chemicals mix
and ignite in a ball of flame.

What now?

Hero, Igor, magnetic card, (extra item?)

At this point the text has reached its final state, and I decided to
move on to the second part of the storyboarding technique -
planning possible moves and their consequences .

In the player's position I might well try to move out of harm's way.
But this won't be possible within the laboratory. I could make the
response to any movement (i.e. GO NORTH GO SOUTH , etc.)
'Bad luck - you're dead', but it's a little soulless. In the end I decided
on three different responses:

GO NORTH (i.e. back to the door)
The door won't open - and Igor's getting closer!'

18 Adventure Games for the Commodore 64

GO EAST or GO SOUTH
'Throwing the table out of his way, Igor seizes you by the neck
and squeezes the life out of you.'
(Go to the end of game sequence)

GO WEST
'Too bad , you escape Igor's clutches only to be roasted alive.'
(Go to the end of game sequence)

So much for the possible movements. What about the possible
actions? (At this point I stopped and planned a way in which Igor
could be beaten - the following orders and responses mirror this new
development.)

OPEN THE DOOR
'You can't - not yet!'

LOOK AT THE TABLE
'There is a striped plastic card on the table. It is the key to the
Jab. door.'

GET THE KEY or GET THE CARD
'Igor moves faster than you. Reaching across the table he grabs
you by the neck and throttles the life out of you.'
(Go to end of game sequence)

STOP / Kl LL/ DESTROY IGOR
'How are you going to do that?'

ANY WRONG ANSWER
'Too bad - Igor was so unimpressed that he rushed forward and
broke your spine in a fatal bear hug.'
(Go to end of game sequence)

WITH THE REMOTE CONTROL
'Well, well - Igor had an achilles heel after all. The TV control
has blown his circuits and he is unable to move a single
microchip.'
'What now?'

I won't go into all the possible variations on this theme, but J'.n
sure you get the general idea - stop Igor with the remote control unit
(which I now have to introduce in an earlier scene), grab the key and
leave the laboratory. This is the only acceptable solution and all
other lines of action result in the player being killed.

This part of the preparation of a story can be quite hard, given

Plotting Your Adventure 19

that you have to try to cover every possibility, and inevitably gets
boring after a while . It's worth remembering, however, that you may
not come back to the storyboard until you start coding your
program. And it's a lot easier to stamp out the bugs when everything
is written down in plain English than it will be if you have to start
adding lines, renumbering, etc. This really can be a case of'a stitch in
time saves nine' .

Chapter Three

Who Goes There?

It isn't everyone, of course, who can just think of an idea and then

weave a complete story around it. And there's no reason why they
should, any more than everyone should like Raspberry Ripple (or
any other ice cream, if it comes to that). A process of trial and error
may well lead you to decide that you are better at creating characters
first, and then playing around to see how they might react to each
other. This is certainly how many well-known writers work, and
when 'the plan comes together' the results can be quite fascinating.
But just how do you go about creating characters?

There are few experiences more daunting for a writer than sitting
in front of a blank sheet of paper and wondering how on earth he is
going to fill it up. It can seem as though you'll never have another
original thought in your life. And the longer you sit there, the worse
you feel. And the solution? Don't get stuck with a blank sheet of
paper!

That may sound rather facetious but I mean it quite seriously. One
of the easiest ways to create a cast of characters for an adventure is to
take a ready-made list and the11 alter it to suit your own
requirements.

In the last chapter I said that first-time adventure writers would
do well to stick to the kind of plot they already know and like. The
same thing applies to creating characters . If you like horror stories,
then start your list with a vampire, a werewolf, a couple of monsters
and so on . If you prefer detective stories why not begin with
Sherlock Holmes, Dr Watson, Inspector Lestrade and Professor
Moriarty? At thi stage of your preparations you will be creating a

ji-amell'ork for your story, not the finished article, and if a little
plagiarism helps to generate ideas, then do it. You'l l find that getting
something written at the top op the page will al mo t certainly help to
give you the ideas you need to fill the rest of it. And once the ideas
begin to now you can move on to the next stage - organising the

Who Goes There? 21

characters in a way that will provide the basis for an interesting
game.

Fixed vs. progressive

One of the most fascinating features of the Dungeons and Dragons
(or Trolls and Caverns) board game is the chance it offers players to
develop their personalities and abilities a the game evolves (a long
as they don't get killed, of course). Thus a character who starts off as
a down-at-heel sneak thief can gather treasure, learn spells, gain skill
in the use of weapons and so on until, after a time, he begins to take
on a whole new appearance. It's hardly surprising, therefore, that
many players become attached to a favourite character whom they
'freeze' between games so that he , or she, can continue to grow and
develop over a period of months or even years. (It's not unknown for
such characters to be resurrected if fate deals an unkind hand to their
careers!)

If we apply thi idea to the field of computer adventure games we
immediately come up against one of the great unsettled question of
the day: should a player's (fantasy) personality be dictated by the
player, the writer, or the computer (i.e., by controlled random
selection)?

In many games now on the market this problem simply doesn't
arise, since the player's character remains virtually static from tart
to fini h, depending entirely upon the player's skill and judgement to
complete his task. Although it is certainly a lot easier lo write and
encode this kind of adventure program, the situation has several
limitations which are worth considering.

In the first place, as the last paragraph suggests, a character which
is totally 'fixed' tends to appear as little more than a cardboard
cutout. For someone to go through the trials and tribulations of an
intere ting game without registering any positive re~pon e fear ,
caution, etc. - detracts from their credibility, and it is very difficult
for the player to feel that such a character is really ini ·oh•edin what i
going on . The player will not be drawn into the game by his game
character; instead he will be more likely to feel that there is a tangible
gap between himself and the action on creen. In other words he will
be aware that he is indeed just 'playing a game'.

The second objection to the 'fixed' character is that the game itself
will lack the important sense of progress that is possible in the
original board game. If this element of character growth is missing

22 Adventure Games for the Commodore 64

then the attraction of a game rests to a very large extent on whether
the player can work up any enthusiasm for the task he has been set.
Ju t scoring points, or completing a certain percentage of the whole
game, is 0 . K. in a fast-moving arcade game, but it offers very limited
satisfactio n after hours or days of effort over a relatively slow
moving adventure.

I'm not sayi ng that it is possible, even now, to produce an entirely
accurate representation of Dungeons and Dragons on a computer.
Nevertheless, the most successful computer versions have managed
to transpose the main features of the original game - which is almost
certainly why they are so successful!

The third and last drawback that I want to deal with here is
concerned, to a large extent, with commercial games rather than
those which are written simply for fun or practice. The problem is
the value of the game to the player. If a game is essentially 'static' - if
its only purpose is to score points and /or carry out a pre-set task -
then once the player has successfully completed the game it is, so to
speak , dead! Unless you happen to like action replays - or have a
truly appalling memory - there is no point in playing the game
again. All you can do is go out and buy another game, which is fine
for the games writers, but not so good for the players.

It may be that there aren't enough good games on the market at
the moment for players to expect anything better. But it is clear,
from the latest reviews at the time of writing, that most of the best
new ideas in adventure programming - the use of compound
instructions in standard English, for example - are being
incorporated into each new generation, so the overall quality is
bound to rise considerably, even within the next year or two.
Whether you plan to write your games for pleasure or for profit
there isn't much point in learning a style of presentation which is
already becoming out-of-date.

So what is the alternative? Actually there are several choices, and
I'll be discussing them, together with examples of how to program
each one, later in this chapter. But first I want to look at the actual
process of creating or adapting the characters for an adventure.

Zero population growth?

If you've ever come across the game Wizardry, or read one of the
numerous reviews, you'll know that it features the relatively unusual
ability to handle up to six player-controlled characters at a time.

Who Goes There? 23

This is no easy task , and it is only possible because Wi:;ardry - like
most of the top adventures - is written entirely in machine code . Its
great advantage is that unlike most other games the player can
afford to use several characters as scouts , decoys , etc, and even lose
them altogether, without running the danger of being sent back to
start a fresh game. (Obviously there is a limit to the number of risks
you can run even with this advantage, but six lives have to be a lot
better, from the player's point of view, than one.)

In a later chapter I will be showing you how to move minor
characters in an adventure around at the same time as the player is
moving. For the time being, however, I will work on the assumption
that you will have only one player-controlled character.

Hail the conquering hero

It is an essential feature of any adventure that both the storyline and
the characters be consistent within their own little world. One could,
fer example, have a hairy-chested , axe-wielding barbarian as a
character in a space adventure if that really took your fancy . But a
seven-foot, bright purple, blood-crazed alien with a laser spear
would surely fit the part just as well (especially if you taught it
English) , and it would probably fit much more realistically into the
main storyline. So when you begin to create your central character -
the one which will be controlled by the player - there are at least two
important factors to be considered.

Firstly, try to make your hero / heroine a little bit out of the
ordinary. Remember part of the fun of ad venturing lies in taking the
players away from their everyday world of the classroom, the
kitchen sink, the office or the factory floor . The stronger the link
that you create between players and fantasy characters the greater
will be their enjoyment. Restarting a game should ideally be more
like rejoining an old friend than simply switching on the computer
when you have an hour or so to spare.

Tip number 4: think player. Your main enjoyment will come from
creating a game that intrigue and fascinates your friends , and , with
a bit of luck, one of the big software houses. The player's fun comes
from games which offer genuine thrills, surprises and involvement.
So always try to keep in mind a picture of the sort of person you
think might enjoy your game. Try to imagine their response to the
character you have given them, and the things that happen during

24 Adventure Games for the Commodore 64

the game. This may not so und an ea y ta k, but if you are successful
you will find that it can help you in more ways than one.

Let's return, then, to our would-be hero or heroine. How do we
give them that little 'extra something' that will lift them out of the
ordinary?

Again this is something that is easier to do than to describe, so let's
take a typical character from the world of fiction - the spy - and see
how he has been depicted over the years.

If we go right back to the turn of the century we find that spies
played a very small, and usually unpleasant , role in the novels of that
time . The British public still regarded spying as a rather loathsome
occupation best left to villains and foreigners. So in the most famous
spy story of the time, Erskine Childers' Riddle of the Sands, the hero
is an innocent civilian who stumbles on a dastardly plan by the
German navy quite by accident. Yet even in this watered-down form
the idea behind the story were regarded by many people as being
thoroughly unsportsmanlike!

This attitude changed quite radically in the period immediately
following World War I, and as a result the gentleman spy began to
appear on the bookstall of the day. Character like Bulldog
Drummond and, much later, Dick Barton - Special Agent. This new
breed of spies, or 'spy catchers' (a very subtle distinction) , were
broad of chest, always kind to women, children and animals, and
often none too bright , to judge by their mistakes .

But times change, and the next character type to appear was
James Bond and his imitators. Though still a gentleman (of sorts)
the Bond-like breed were more in tune with the permissive society
and the growth of high technology. They relied less on brute strength
and more on seduction, and whatever weird and wonderful new
invention 'Q', or one of hi fellow-workers, could produce.

Coming right up to date the pattern has changed again . The most
recent figures at centre stage are the 'mackintosh brigade': men like
Callan, Harry Palmer and George Smiley. Ordinary people doing an
unpleasant but necessary job in an unpleasant world , often under
the orders of men who would make good candidates for the KGB.

Looking back, each of these character types may seem a little old
fashioned now. But each was a true original, and a best-seller, when
it made its first public appearance. As l said in the last chapter, total
originality is nearly impossible, but a few small changes to an
established character can give the appearance of creating something
entirely new. And that's what counts .

Who Goes There? 25

Of men and supermen

The second point I want to make about creating a hero is this: resist
the urge to create a super-hero. At the risk of seeming totally obscure
I believe that the games that last are the games that la t. In other
words, a good adventure game is one that takes a long time (within
reason) to complete. Indeed, some leading firms make it a central
feature of their advertising that it will take week or even months to
work right through one of their adventures. And when you think
how much the top game cost, this isn't a bad selling point.

But how long can an adventure last if the hero is so powerful,
intelligent and lucky that he can overcome all obstacles at the blink
of an eye? In the best games, the player usually has a less than 50-50
chance of completing the adventure at the first try. The addictive
quality of these games comes from the player's ability to turn the
odds gradually in his favour with each attempt.

Tip number 5: be very careful how you stack the odd . Make them
too large against the player and he or she will soon become
frustrated and disheartened. Stack them too heavily in the player's
favour, on the other hand, and you remove the challenge , the
excitement and the sense of achievement .that are essential to the
game's success.

And the monster came too ...

Having decided on a personality for your star character you will now
need to provide 'a full supporting cast'. If you have already drawn up
a shortlist by one of the methods de cribed earlier then this shouldn't
present too much of a problem. It will be useful , however, if you can
decide right away whether they will be leading characters or merely
extras. The uses of second and third level characters differ in several
ways and can, therefore, be defined quite clearly.

Leading, or second level, characters often appear on several
occasions over the course of an adventure, mainly because their
relationship with the hero will play a major part in deciding the
outcome of the game.

Where such a character is one of the'good guys' he / she will possess
pecial information, a useful object, or unu ual powers which can be

of help to the hero. If the character is one of the 'bad guys' , on the
other hand , he will be intent on hampering the hero's efforts.
Possibly with fatal consequences! Unfortunately for the player these

26 Adventure Games for the Commodore 64

characters are seldom identified in advance, so the hero will have to
use his own judgement in sorting the sheep from the wolves.

To illustrate the difference between second and third level
characters Jet's suppose that you've invented a little old man but
haven't yet decided how he will fit into the game.

If your little old man is a third level character then he will almost
certainly exist at only one location , though it helps add to the
player's confusion if one or two minor characters appear more than
once! Should the player meet this character then, depending on his
role, the old man may fulfil one of three basic functions:

(I) If he is a 'good' character then he may, if dealt with appropriately,
offer the hero a piece of mildly useful information - possibly in the
form of a riddle - or provide him with an object that will be useful
(though not too useful) elsewhere in the game. Whatever he offers it
should add to the interest of the game rather than playing a decisive
part in its result.

(2) Since the little old man is only a minor character he may be in the
game entirely for the purpose of giving the player something to do.
Thus he might set the hero a problem which is interesting in itself,
but of no relevance to the game whatever.

(3) Even minor characters may be set against the player, though the
results of their actions should prove a hindrance, rather than being
fatal. An evil third level character might misdirect the hero by giving
him wrong information, or by questioning the value of an earlier
clue or object which is of real value. However, since the character
should not have undue influence the player must be given a
reasonable chance of ignoring the little old man if he so wishes .

If, on the other hand , the little old man is a second level character
his actions , and the hero's treatment of him, should have a
significant effect on the progress of the game. In this case the little
old man may be a powerful ally or foe in disguise, thus giving the
hero's behaviour towards him far greater importance . A second level
character will never off er totally useless information or advice. But
he may retain his most important knowledge until the hero earns it
or asks for it in the right way. Thus he might pose the hero a problem
and, if treated correctly, provide the answer. In short , third level
characters will usually rate the same degree of importance as any
other minor task, trap, object or problem facing the adventurer.

Leading characters will be nearly as important as the hero himself.
This may mean taking a bit of trouble over their creation , but this

Who Goes There? 27

will be repaid by their contribution to the credibility of the game.
The more real these second level characters are made to appear, the
more satisfying the adventure will be for the players.

Curtain up

I said earlier that I would give details of how to program a character.
In fact I have included four of these 'character generators', each with
a different approach to the question of who decides on a character's
personality. At the end of the chapter you will find a further routine
which recalls the character details and presents them on screen for
easy reference .

Of course you don't have to include a character generator at all.
But even in this case, for reasons which will be made clear in Chapter
5, I would suggest that you at least give your hero a strength rating.

And now - to the keyboard!

Program 3.1: The built-in character

In this first , rather short program the hero's character is fixed by the
writer at the start of the game but can be altered during the
adventure if the hero gains wealth, gets injured or whatever. The
advantages of this method are (a) it is easy to program, (b) the writer
knows exactly what shape the hero is in at the start of the game and
can balance the problems accordingly, and (c) the routine itself takes
up very little RAM space .

The disadvantages are (a) the players may not agree that the
character they have been given has a fairly balanced personality, and
(b) the fixed nature of the hero makes this a 'one shot' game. Once
the adventure has been completed there are no alternatives to
experiment with.

] 1. .lE!T

'?
·'-

'" .. :)

8 REM *** SE T SCR EEN COLOURS
9
10 POKE 53280,15: POKE 53 28 1,15
:l. i'

28 Adventure Games for the Commodore 64

18 REM *** GET NAME FOR PLAYER
19
2 () p f~ I NT 11

[c L E t1 r-::] [D 0 !.J N lK !3] F' L. E f~ f.) E E N
TEF~ A Nr~ME FDf~ YD Uh: C:Ht1F<:t1CTEF~ ''

:30 INPUT ''AND F'F<F!:;!:; << Fi:ETUh:N>> ''N ti'I;
97
98 REM *** SET RANDOM CHARACTER
9S1

100 CH:::: INT (1:;:ND (:I.)* 'f) + 1
1.0 7
108 REM *** AND READ RATINGS
l 0 </
110 FOR X = 1 TD 4
120 IF X < > CH THEN READ A$,A,B ,C

, D , E , F , G , H
130 IF X = CH THEN READ CT$,C:TC1>,C

TC 2), CTC3>,CTC4l,CTC5l ,C TC6) ,C TC
/) ,C TC 8)

140 NE::<T
197
198 REM *** DIRECT STORAGE

700 FOR X = 1 TO 8
210 POKE 7 00 + X,CTCX)
2~>. 0 NEXT

2?8 REM *** INCLUDING NAME
·~ ··· <:) .(•• I{ ••• •

.~:. ::: ll F' 0 ~:. E 7 1 ~?: , I... E i·J. (N 1-'.i ·:1;)

240 FDR X = 1 TO LEN CNAS>
250 P O~E ? :L Z + X, ASC C MID$ CNAl, X ,

1))
:·:.<'.)0 NF XT
? 70 FND

2?8 REM *** CHARACTEP DATA
z9q
300 GATA WARRIOR,10,10,5,10,6,200,Z,

310 DATA WIZARD,7,7,10,:L0,6,1.50,10,1
0

::; :,;·fl D ,~,TA TH I I:: F , l.i , i:, , B , 0 , ~::; , :I. <'f '·' , J , D
330 DATA 0El...VER 1 6,6,6,5,5,:l.60, 1 , 4

Program 3. 1

Who Goes There? 29

Line-by-line analysis
Line 10: Sets the colours for the screen and border. The POKEd
value may be altered to get whichever combination you pref er.

Lines 20-30: A simple display asks for the player's (fantasy) name
which is then stored as NA$. Thi must be done in two statements or
the INPUT command may not work.

Line I 00-140: In this version of the program a choice of four 'fixed'
characters is selected random ly. For a truly fixed character delete
line I00-120andline 140and remove the first part of line 130(that
is, everything before READ) so that it becomes a simple READ
in truction. The purpose of line 120 is to clear any unused DAT A by
as igning it to a set of 'dummy' variables.

Lines 200-270: POKE the values of the CT() array plus the player's
name into a free area of RAM that is nor affected by NEW, CLEAR
or RU . This allows the character generator to RUN eparately
from the main program without losing the stored information. Line
250 plit NA$ into individual characters, starting from the left, so
that their ASCII codes can be to red in memory.

Lines 300-330: This is the DAT A fort he ;oop in lines 110-140. If you
have made the modification suggested above then you will only need
one line of DAT A here.

Program 3.2 : The made-to-measure rack

Our econd program is a direct offshoot of Program 3. I. Thi time
the player has the option of choosing one character type from a
preset li st. As in Program 3. I the ratings for each character are also
fixed by the writer. The advantages here are the same as before . An
added bonus comes from the fact that , using the program below, the
player would have four different guises in which to tackle the
adventure instead of on ly one. This doesn't mean that he or she will
neces arily get four times as much entertainment, but it doe offer a
significant improvement.

The disadvantages of this second program are mainly to do with
the actual coding of the routine. In the first place it is more
complicated. And secondly it takes up more RAM space~jus t over

twice as much.

30 Adventure Games for the Commodore 64

Jl...IST

:I. F:EM >K:t:)t()t()K FTXED !~ITH CJF'TICli' '!:; >l<lKl4<

''7
.< ••

::i
8 REM *** SET UP TITLE ARRAY
9
1 0 D IM C T ~~ < 't)
2 0 FOR X = 1 TO 4
30 l'.;;EAD C'rn (X)
1t0 NEXT

REM *)4(* GET PLAYER'S CHOICES

:L () () F' F\ I N T I I [c L. E (.:, F~] [D CJ w N)IX !3 J F' I... [(~ ~:; [F
N T E F\ A N 1~ M E F' () i::: y 0 u i::: c: H (.:, 1:~ (.:, c T [F: I I

1 :I. 0 I N F' u T I I (.:, N [) F' F\ E s s < < F~ E T u F\ N > > 11
; N A

!p
l20 NA$:::: "[RVSJ 11 + i'~A!I; + "[ClFF] 11

1 ::i o 1=· i:u NT 11
[c LE Mn L o ow N * 1n " NA ~t> 11 PL

EASE ~3El._ECT YClUF: 11

1 ·1 0 i=· 1:;; INT 11 c H ti F: (1 c TE F: T '(1=· E FF: CJ M THE L
IST BEL.OW: II

150 FOR X = 1 TO 4
:t.60 F'RINT 11 [DOWNJ< 11 X 11

) "CT$(X)
17 0 NEXT
:I. 8 () IN i=· u T 11

[D Cl w N)f(?] E N T E 1~: N u M [: F 1~: () F
CHAr.;:ACTEI:;; TYF'E NCJl,.l II; CN !I;

190 CN = VAL < LEFTS CCN$,1))! IF CN
< 1 OR CN > 4 THEN TE = 1

200 IF TE == :l THEN F'l~:INT "[DOWNJ r F:V
SJYOU MUST CHOOSE A NUMBER BETWE
EN 1 AND 41:0FFJ 11

21 0 IF TE = :l THEN F'F:INT 11 [HCJME:J [1)0
I-IN)K :L'.3:J":TE == o: CDTD JSO

25>7
298 REM lK)K)K GET RATINGS FOR CHAR' TY

F'E
299
~l 0 0 DIM CT
:31 () FOR x -· l TO 4
3?0 FOF\ y ·- l TO 8
330 F..:EAD CT(Y)
::M 0 NEXT y

Who Goes There? 31

~ 50 IF CN < 4 AND X - CN THEN COSUB
6oo:x -- 'f

360 NEXT X
370 CT$ = CT$<CN>
3BO END
.<f 97
498 REM *** CHAR' TYPES AND RATING S

DATA
If <jl <j>

500 DATA WARRIOR,WIZARD,THIEF,DELVER

5 10 DATA 10,10,5,10,6,200,2,4! REM W
ARIUOF.:

520 DATA 7,7,10,10,6,150,10,10: REM
HIZAl:;:D

530 DATA 6,6,8,8,5,140,3,8: REM THIE
F

540 DATA 6,6,6,5,5,160,1,4: REM OELV
ER

599
6 00 FOR CL = X + 1 TO 4
610 READ A,B,C,D,E,F,G,H
62 0 NEXT CL
630 F<ETURN

Program 3 .2

Line -by-line analysis
Line I 0: This line sets up, or 'initialises' a 4 X I array to hold the four
character types named in line 500.
Note: Strictly speaking the C64 does not require an array to be
DI Mensioned if it is this small , as it has a 'default' minimum size - 11
elements - which it allocates to any array which is accessed before it
has been DIMmed. However, once an array has been used in this
way the computer deals with it as if it had been correctly DIM med.
In other words, it cannot be re-DIM med at a later date (check your
manual for details). It is better to set all arrays before use , therefore,
rather than crash the program with an incorrect array call. If you
aren't familiar with arrays and their uses see Chapter 5 for more
details.

Lines 20-40: This is a simple FOR ... NEXT loop to store the names
in line 500 in the array CT$().

Lines I 00-120: These lines clear the text screen and collect a name
for the player's character which will be stored as NA$ (in reversed
characters).

32 Adventure Games for the Commodore 64

Lines 130-140: The printout is the headi ng for a simp le screen
display, or 'me nu' , which allows the playe r to choose a character
type from a preset list.

Line 150-170: Another FOR .. . NEXT loop , this time to print out
the four character types in the form:

(I) WARRIOR
(2) WIZARD
(3) THIEF
(4) DEL VER

Lines 180-2 10: These lines finish off the menu and include an 'error
trap' so that only the legal numbers - I, 2, 3 and 4 - will be accepted
by the computer. By inputting a number as a string and converting it
(line 190) yo u avoid the ?REDO FROM START error message
which comes up if a letter key is hit while a program is waiting for
numerical input.

Line 300: See line 10

Lines 310-370: Here we have a loop within a loop , that is to say
'nested' loops. The outer loop, starting in line 310, will collect from
one to four sets of character ratings. It is short-circuited in line 350 if
necessa ry by resetting X to the last value in line 310 (in thi s insta nce
4). In this way we avoid jumping out of the loop before it is complete
- something which is generally regarded as 'a bad habit'. See
Chapter 9 for more details.

The Y loop , starting in line 320, collects eight character ratings
from the DAT A in lines 510-540 and stores them in the array CT(),
ending when the required set is in the array.

Line 370: Although we are already using the variable name CT$()
for an array so me computers allow the first part of the name (i.e.
everything before the first bracket) to be used separately. Here CT$
is used to store the name of the character type and the array CT$()
can be re-used for something else to save space.

Line 500: Initial storage area for the information to go into the
CT$() array.

Lines 510-540: Initial storage space for the character ratings for the
CT() array. (In Chapter 6 you'll find a method of storing numerical
data more efficiently.)

Lines 600-630: Because DAT A is always read in the order that it
appears in the program you can't skip over a portion that has not

Who Goes There? 33

been used. Thi subroutine clears any excess DATA from lines 510-
540 so that future READ commands will not collect the wrong
information.

Figures 3.1 and 3.2 show the actual screen displays generated by
Program 3.2. The word BEOWULF, in Fig. 3.1, was of course input
from the keyboard. In this second program I have left the numerical
information in an array - CT(). It could , however, be stored directly
in RAM using the routine in lines 100- 120 in Program 3.1.

PLEASE ENTER A NAME FOR YOUR CHARACTER
AND PRES S <<RETURN>> BEOWULF

Fig. 3 . 1. Screen display from Program 3.2, line 210.

BEOWULF. PLEASE SELECT YOUR
CHARACTER TYPE FROM THE LIST BELOW!

(2) WlZAF\D

< ::i > THIEF

(Lf) DEL.VER

ENTER NUMBER OF CHARACTER TYPE NOW 2
Fig. 3.2 . Screen display from Program 3.2, lines 220- 230.

Program 3.3: User-controlled character type and ratings
The third program of this series, though it starts out looking a
lot like Program 3.2, offers an entirely different approach to
character creation. Here the player not only selects the character
type but also determines the number of rating points to be given to
each characteristic or 'character quality'. The writer controls this
process only to the extent that he determines the number and names
of the character types, and the upper and lower limits of the number
of points that may be assigned to each quality. For the sake of
consistency alone, the writer also controls the height and weight of
each character type.

The biggest advantage of this system is that it extends the range of
the game enormously while taking up comparatively little extra

34 Adventure Games for the Commodore 64

RAM space. At last the player's imagination is set to work immediately
the game starts. Will he be a Warrior with brains as well as brawn , or
a weakling Delver who trusts to luck rather than skill? The biggest
disadvantage lies in the high proportion of space-eating text. This
should be more than compensated for, however, if you use the 'text
crunching' routine described in Chapter 7.

Jl...JST

1 REM ***~~ USER-SET CHAR'S *****
2
:3
s:l RE i·1 lt<.)+; * DIM ~:>T 0F;:1~1 GE
9
10 DIM CT$(4l,CTC8), H1 <4>tH2 (4)

G8 REM *** SE T UP ARRAYS
99
100 FOR X = 1 TO 4
110 READ CT$CX>tH1<X>,H ZCX>
17.0 NEXT
l «? ~:·

198 REM *** ASK FOR NAME
:1.9?
:;:. o o F'F<' Il~T '' i::c1...Et1F<J [[•Cl'"'N * n=i ,,
2 1 o i::· r~: :r: N T • • r:· 1... r:: r., s E E N T E 1: ~· .~ N r., M E F o 1~: y

our;: cHt1F:t ,cr E 1~: ,,
'.? 20 INPUT "r:'!ii' lD PF~F~;!:; <·::J;:ETl.JF'ID·> " ; N(.1

~1;

~:'. J O i'J(.1 ~!; :::: ''[F;:V!3J'' + NA ~I; + ''l::OFF"J
' ? "" ... ,
.<-.:l /

738 REM **~ AND CHAR ' TYPE
2 3?
7 '.~() F'Fo:ll~T 11 LCl...E:f.1F<::l[DCJ!"1I~ * --'tJ''Nr-':\ '¥ 11 Pl...

F1·1!:;E !:!El...ECT YOU!:;: II
? 5 ci rr~11-~T '' i:: DDWN ::i cHr.,i:::,::1c TE r.: TY i=·i::. Fl~:oM

THE l...I~~\ T E:El...D~~: II

260 FDR X = :I. TD 4
? 7 o r· rn: NT 11 i:: u ow N ::i < 11 x " > 11 c T ~~ c x >
?!:!O NE XT
z 9 () p 1::: INT 11

[D Cl'"' i"'J)I(~:'.] ENT F i:;: N l.J Mi::: FF: D F
CHt1i:::1-':\CTE1:;: TYF'E NCJI,.) 11

;

:3 00 TF :::: O ~ GET CN~;: IF CN :I; :::: 1111 THEN
300

::! (l i'

Who Goes There? 35

308 REM)I(** VALIDATE INPUT
309
310 CN = VAL <CNS>: PRINT CN: IF CN <

1 OR CN > 't THEN TE = 1
::120 IF TE":: :I. THEN PF~INT ''[DO!-JNJ[l:"\V

SJYOU MUST CHOOSE A NUMBER BETWE
EN :I. AND 't[OFF::l[l.JF')I(6::1''! COTO?

398 REM)1()1(* ASK FOR CHAR' POINTS
39<1
' tOO PF:INT ''[Cl ... EAF\J[DOWN * :3J ''NA ~I; '' YD

u HA~)E 't8 F:ATING II

"1· 1 0 P F: I N T ' ' P Cl l N T !3 T Cl DE DI V I D ED E: E T W
FEN «> CH1~1'.i:ACTEr;: '' ;

't 2 0 F' F: I N T ' ' 0 l.J AL I T I E S < U '.:; E W H CJ 1... E N l.J ME:
E::l'.\'.~3 ONLY!)"

't 3 () F' 1~· INT 11
[D CJ w N] E (.:1 c H Du f~ 1 ... IT y Mu!:> T i::

i::· Cl (JEN r~T l...EA~3T :I. ' ';
' t-10 F'F' INT ''POINT. NO OUr~l...lTY MAY DE

c:rvEN Mor;:c THr-1N :1.z PCJINT!3 ! ,,
.q::_:.iO Pl:;:INT ''[l)CJi,.!N lK ?::I< :I.) STF.:ENCTH'' i TAC<

? ()) ; 11 (:+) !:> I< I I... I... I I

lf 6 () p F< l N T I I I:' D Cl \.l N] (7) HE (i I... T H I I ; T A [: (?
());II (::5) HEtil...TH Ui\!TT!3/l ()II

' t 7 0 PF:INT ''[DCJWN::l('.3) Ji.~TEl...1...ICENCE''t Tti[: (
2 ()) ; 11 ((:)) I... u c I< 11

lf80 F·r;: I i~T ''[DOWN>:<: ~·:·: ::!''

490 FOP X = :I. TO 6
~.:; 0 () PF.:IN T 11 Ei·~TEF' F' DINT'.3 FOF~ II x ; : IN F'UT

11 AND F' F' E !:; ~:; i:;: ET u F: H I I ; ; :: ·:1; : z :::: v (.:, L z
~1 ;

~""; :1.0 IF (Z. < l or< l >:I./) ClF' z < .. :· TNT
~ (..) THEM PF: ll~T 11

[l)[)~.JI·!] [Fi' l) ~3] Tl... LE
c i~ I... EI~ T Fi: y I I I [Cl FF J [up ~~ 3 J 11

; G Cl T CJ
::5 () ()

5 ~ 0 IF CH + Z + 6 - X > 4 8 THFN PRINT
''[DCJHiJ':l[f~ ~) '.3 J Y OU ClNl .. Y Ht1 1.J [''(tffl
c H) 11 F' [) I ,,, T '.:> I... c F T ! [" 0 i:~ F] [u r:· :it;: ::l] I I ; c CJ T D
~:i () 0

::5:·:i o CH :::: CH + z: CT < x) :::: z: PFi:JHT ,, i::i::·o
WN::I C3Z SPAC FS>

r ur:·)I(:'l ::i ,,
~:.:.i40 NF / T X
~.:.:; 9 I.)

36 Adventure Games for the Commodore 64

597 REM••* MODIFY CTC> ARRAY
598 REM <SEE LINE NOTES>
~5S'9

6 00 CTC7> - CT<5>tCTC5) - Hl<CN >
610 CT - CTC6)!CTC6) - H2CCN)
620 CT$ = CT$CCN>
63 0 END
<1r~<?6

9SH;lf:l
9999
:I.()() 0 ()
:1.0010
:I. 0 0 :;:·: ()
:I. 0 ()Ji)

F'EM)!(>K;+:

l~:EM

CHAR ' TYPES, HE IG HT S
r~ND ~,!EIGHTf:)

DATA WARRIOR,6 ,2 00
DATA WIZARD,6,:1.50
Dt1T1~1 THIEF,~~i, :1.40

DATA DELVER,5,:1.60
Program 3.3

Line -by-line analysis
Line 10: As I said in the line notes for the last program, many
computers do not require very small arrays to be DI Mensioned . If
you decide to dimen sion all arrays in advance I would suggest that
wherever possible you use each array more than once. It would be
possible, for example to make the arrays CT$(), HI() and H2()
rather larger than they are here , and then re-use them in the bod y of
the game as 'o bject arrays' (see Chapter 5).

Lines 100- 130: For general details see the same lines in Program 3.2.
By the way, if yo u want to tran late these programs for a different
computer, then for lines 10 and 120 in particular check your own
manual to see if multiple DIM and READ commands can be used in
the form given here, or whether they need to be DlMmed and
READ individually.

Lines 200-290: This is almost a direct copy of the lines 100-180 of
Program 3.2. See the appropriate line notes .

lines 300-320: Deal with the INPUT in a slightly different way from
that used in Program 3.2 in that only one digit is collected for the
Character Type. There's no special reason for choosing one method
over the other - 1 just like experimenting.

Lines 400-480: These statements se t up the whole of the screen
display shown in Fig. 3.3 excep t the last two lines .

Who Goes There? 37

BEOWULF YOU HAVE 48 RATIN G
POINTS TO BE DIVIDED BETWEEN w CHARACTER
QUALITIES CLJSING WHOLE NUMBERS ONLY')

EACH QUALITY MUST BE GIVEN AT LEAST 1
POINT. NO QUALITY MAY BE GIVEN MORE
TH(:1N :I. ? F'DINT!:; I

(:I.) STl;:ENCTH (''r) ~ :; 1<Il... L

('7 ~ ,_ , HE,~11 ... TH ('"" d) HEt1LTH UNIT~3/ :I.

(:3) JNTEL.L.TCENCE: (6) 1...UCI<

ENTER POINTS FOR :I. AND PRESS RETURN 6
Fig. 3.3 . Printout of lines 400- 500 from Program 3.3.

()

line 490: Sets up a standard FOR ... NEXT loop which will be
executed 6 times.

line 500: Produces the last but one line in Fig 3.3. Note that the
value of X actually prints out as part of the query.

line 510: Checks that the player has entered a number between
and 12, and that it is an integer (a whole number). If any number not
considered 'legal' is entered the player is advised of the fact (seethe last
line Fig 3.3) and line 500 is repeated .
Note: When line 500 is repeated (after line 510 or 520) the wrong
input is left intact at the end of the query line with the cursor sitting
over the left-hand digit. I did think of erasing the incorrect input on
the grounds of tidiness. But then it occurred to me that the player
might not automatically realise why the input was wrong. With this
in mind I have left the origina l input intact so that the player can
consider it in the light of the instructions at the top of the screen.

Line 520: Checks whether the player is in danger of using up all his
rating points too soon. The variable CH holds all the points entered
to date. To this is added the current input (CT(X)) plus the numbe1
of qualities sti ll to be rated (as 6- X) and the total is compared with
the total points allowed, in this case 48. If the total is greater than 48
then the player is told how many rating points he has left and the
program returns to line 500.

Lines 530-540: If the input is satisfactory in a ll respects then it is

38 Adventure Games for the Commodore 64

added to CH - the total number of rating points used to date. Next,
32 blank spaces are printed on the error message line , to erase any
earlier me sage and the query line is also blanked out entirely -
including the last input. Then , if necessary, the program returns to
the start of the loop.

Lines 600-620: At this point the CT() array holds only six values -
those included in the screen display. For the sake of compatibility
with other programs in this chapter I have now moved the values in
CT(5) and CT(6) - Wealth and Luck - into CT(7) and CT(8)
respectively, and transferred the Height and Weight values in
H f(C) and H2(CN) into CT(5) and CT(6) . The Character Type
name is again transferred from CT$(CN) to CT$.

Lines 10000-10030: These DATA statements contain the name,
height and weight for each of the four character types, to be stored
(temporarily) in the arrays CT$(), H 1() and H2().
Note: Because all the DATA in lines 10000-10030 is collected at the
start of this program I do not need the 'c lear out' subroutine found in
Program 3.2, lines 600-630.

By the way, if you wish to POKE the character ratings and name
into memory as before then add these lines at 700-770:

700 FOR X = 1 TO 8
710 POKE 699 + XtCTCX>
72 0 NEXT
730 POKE 712t LEN CCT$)
7~0 FOR X = 1 TO LEN CCTS>
750 POKE 712 + Xt ASC < MID$ CCTStXt

1))
760 NEXT
77 0 POKE 710t CN

Program 3.4: Computer-set character type and ratings

This last character generator, actually the first one I ever wrote,
comes the closest to duplicating the start of a game of Dungeons and
Dragons. The rather unusual random number sequence in line I 70 is
taken from the I 8-sided dice often used by board-gamers, and its
value may be changed to suit your own needs.

The basic intention of this program - which actually executes very
quickly, despite its apparent complexity - is to create wholly
fictitious characters in a totally random fashion. This it does very

Who Goes There? 39

well; in fact my wife and I had great fun (when it was first written)
assigning fantasy characters to a ll our acquaintances. It can be quite
amusing when your boss - in real life six feet tall with a definite
paunch - turns up as a three-foot Hobbit with a low IQ!

But why revert to a computer-controlled character creator after
singing the praises of a player-controlled program? In the first place
this program allows an even wider range of characters than did
Program 3.3, enhancing the challenge factor of the game. Secondly,
the player is still a llowed a measure of control over the character,
for this routine would appear at the start of an adventure, and ifthe
player doesn't like the character the computer has generated he can
always restart the program and hope for a better one next time.

As for disadvantages - well , to be honest, I can't think of any.

JL.IST

1 REM ***** COMPUTER -SE T CHARS' **
)l()t(*

'?
L.

3
8 REM*** SET UP CT<> ARRAY
9
10 DIM CTC10)
20 FOR X = 1 TO 9 STEP 2
30 xc ::: INT (rrnD (1))!(:l.B) + l!YC

TN T (F~ N D < 1) >K :I. 8) + 1
10 IF XC < 3 OR YC < J THEN 30
50 CT<X> = XC!CTCX + 1) = YC
60 NEXT
70 FOR X = 1 TO 9! PRINT CTCX)! NE XT

86
f:l7
88 REM *** MODIFICATION ROUTINES
89
97
98 REM *** RE-SET KIN TYPE
99
100 CTC9) = INT CCTC9) I 3) + 1
110 IF CTC9) > 1 THEN CTC9> - CTC9) -

1
:1.97
198 REM *** RE-SET HEIGHT & NEICHT
199

40 Adventure Games for the Commodore 64

ZOO IF CTC5) < 4 THEN CT C5) - 4!CTC6
) = 110! GOTO 300

210 IF CTC5) < 7 THEN
) = 130: GOTO 300

220 IF CTC5) < 10 THEN
6) = 160! GOTO 300

230 IF CTC5) < 13 THEN
6) = 190! GOTO 300

210 IF CTC5) < 16 THEN

CT<'.':;>

CT C '.5)

CT C '.5)

CTC5)
6) - 220! GOTO 300

250 CTC5> = 7!CTC6> = 250
296

.... 5!CTC 6

·-· '.'.):CT<

- tl !CT <

= 6!CTC

297 REM *** MODIFY RATINGS ACCORDIN G

290 REM TCl l<JN TYF'E
299
3 0 0 A :::: C T (1) :E: ::: C T C 2) : C ::: C T C 3) : D ··

CT C 1) ! E = CTC5>:F - CTC6>!H - CT
CB> !I = CT«T>

310 IF I = 2 THEN A = A * z:B = 8 *
2!E = E * .7:F = F * .B

320 IF I = 3 THEN B = B * .7:C = C *
1.5!D = D * 1.5!E - E * 1.25

330 IF I = 4 THEN A - A I Z!B - B *
2!D = D * 1.5!E = E I 2!F = F I

310 IF I > 5 THEN A = A I z:c = C *
1.5!D = D * 1.5!E = E / 3 :!F = F

I 1+ : H "" H >K :I. • '.~i
360 CT<l> = A!CTC2) = B! CT< 3 > = C!CT<

4) - D!CTC5) = E! CTC6) = F!CT
::: H

39 7 REM *** RE-SET CT(:I.) - CT C8 >
398 REM AS INTE GE RS

400 FOR X = :I. TO 8
410 IF CTCX> - INT CCT <X>> < . 5 THEN

C T < X) ::: I N T < C T < X >) : C Cl T Cl 't ::l 0
12 0 IF CTCX) < > INT CCTC X> > THEN

CT< X> - INT <CT<X> > ·~ 1
130 NE:XT
.(+97
498 REM *** GET NAME FOR CHAR'
1<?9

Who Goes There? 41

'.'.'.i 0 () F' 1:;: INT 11
[H 0 ME] [D Cl~~ N),~ 6] i::· I... EI~ s E EN

TE1:;: r-1 NAME:: 1=-o i:~ You r:~ CH1~r::,A.iCTE1:;: 11

5 :I. () l NF' l.J T 11 AND i=· RE: s s < < F~ ET l.J 1:;: N > > 11
; N '~

'.'.'i9 /

598 REM *** POKE: ARRAY INTO 'SAFE' R
1A.iM

'.'.'i ('l9
600 FOR X = :I. TO 9
610 POKE 7 00 + X,CTCX)
62 0 t'-ff XT
6·<L7
6~8 REM *** PLUS LENGTH OF NAME

650 POKE 712, LEN CNA$)
69/
698 REM *~* AND NAME CAS ASCII CODES

)

eic79
700 FOR X = 1 TCl LEN CNA$)
7:1.0 POKE 712 + X, ASC C MIDS CNAS,X,

l))

7~?.0 NEXT
730 FOR X - 1 TO :1.0! PRINT PEEK C70

0 + X) : NEXT'
740 FOR X - 1 TO PEEK C7 12>! PRINT

CHR$ C PEEK (712 + X>>; : NEXT
Program 3.4.

Line-by-line analysis
Line 10: As before, thi s line may be omitted if you wish .

Lines 20-60: This FOR ... NEXT loop fills the array CT() with 10
random numbers in the range 3 to 18. I chose not to allow any
characteristic to have a rating less than 3, because this would give the
player an unfair disadvantage .

Line 70: Is included for checking purposes only (to see that you're
really getting a set of random values). In a proper game version of
the routine this line should be removed.

Lines 100-110: CT(9) contains the value for the kin type -
Human, Dwarf, etc. As I was only using five kin types (see next
program) I have modified this value to fit within the range I to 6.

42 Adventure Games for the Commodore 64

(The sixth value is allowed for in line 200 of the Status Display
program which follows.)

Lines 200-250: In these lines the height and weight for each character
is preset to fit with a reasonable set of height / weight ratios. Since the
control value is in consecutive blocks it is quicker to jump to the next
section once the two CT() values have been set rather than go on
'falling through' the rest of the IF statements.

Lines 300-340: Here all relevant character qualities are modified to
fit particular kin types. If CT(9)= 1 then the kin type is Human and
the character keeps his given ratings. Leprechauns, on the other
hand , being traditionally known as 'the little people', have their
height reduced by two-thirds , their weight reduced by three-quarters
and their strength reduced by half. This is compensated for, to a
degree, by their skill, intelligence and luck being increased by a half
(see line 340). When I first wrote this program - usi ng an APPLE
£1+ (which allows up to 239 characters per program line) - all the
CT() values were altered directly in this section of the program .
Lines 300 and 360 are made necessa ry by the 80 character line limit
on the C64.

Lines 400-430: Another FOR .. . NEXT loop , which turns all CT()
va lues except CT(9) - which is already an integer - into whole
numbers. These lines are only needed if you intend POKEing the
values into RAM .
Note: Jn many machines - including the C64 - turning a floating
point (i.e. decimal) number into an integer mea ns that it will always
be rounded down, so the integer value of both 3.01 and 3.99 would
be 3. This is avoided in lines 410 and 420, where values below X.5 -
where X is the main value - are rounded down and values of X.5
and above are rounded up.

Line 500-510: The familiar routine for getting the player's (fantasy)
name as NA$.

Lines 600-620: Almost the last FOR ... NEXT loop, to store all the
values of CT() up to CT(9) in RAM. (CT(10) is not in practical use at
the moment - see next program.) If yo u prefe~ to keep using the CT()
array ignore these lines.

Line 650: POKEs the length of A$ to 712 for use by the Character
Display program coming up next.

Lines 700-720: Definitely the last loop of the routine proper - again
to POKE NA$ into memory using the ASCII va lues.

Who Goes There? 43

Lines 730-740: A final check routine, for demonstration purposes
only. Line 730 prints out the character ratings fo ll owed by (in line
740) the character name - complete with reversed letters!

Program 3.5: Character status display and printout

The last program in this chapter is the Status Display I mentioned
earlier. As given here it forms a separate program from the actual
Character Generators (though it does a tiny bit of creating itself in
lines 100 to 160). T he program was origi nally written to display the
results of Program 3.4 at the end of each section of a modular game.
The game was in a number of separate parts, and when each part was
successfully completed - or when the hero met his doom - the game
module would POKE the rating va lues into RAM, the Status
Display program would be loaded (in place of the game module) and
the Status Report would appear.

That was a whi le back, before I discovered most of the space
savi ng tricks you'll find in later chapter, and the version of the
program which appears here is intended as part of the master

BEOWULF, OF THE HOBBIT S
THESE ARE YOUR CHARACTERISTICS:-

SEX! MALE TYPE: APPRENTICE

~:; T F'. E N G T H : 6 HEi01 ... TH: :I. 0

INTEl ... l...:X:GE:.MCE: ~5

HEIGHT: ~'5 FEET WE:.IGHT: 140 POUNDS

HEALT H: 8 GOLD COINS

MA X. WEIGHT YOU CAN CARRY: 60 LB S

YOUR LUCK RATING JS: :1.0

AS AN APPRENTICE YOU MAY CHOOSE TO ST UDY
SWORDSMANSHIP OR SORCERY, BUT NOT BOTH .

PRESS <<RETURN>> TD CONTINUE
Fig. 3.4 . Pr intout of lines 400- 600 from Program 3 .5.

44 Adventure Games for the Commodore 64

program which could be called up at any point in the game using the
command STATUS, for example.

Before giving the listing I should just point out that this program
uses the whole of the CT() array including CT(9), which only exists
as a positive value in Program 3.4. To use the Status Display with
other modules , slight amendments may need to be made to allow for
characteristics which have not yet been set (this applies particularly
to Program 3. 1). You will also see that Program 3.5 assumes that all
character ratings have been transferred to the area of RAM from
700 onwards.

The overwhelming advantage of including the Status Display in
any adventure is, I hope, abundantly clear. It is one of the best ways I
know of giving a playe r the necessary se nse of involvement and
progress lacking in so many games available at the moment. Just
consider, for a moment, the comparative effect of the display in Fig.
3.4 as against a message like

YOU HAVE SCORED 165 POINTS

YOU HAVE COMPLETED 20% OF THE GAME

YOU NOW HA VE 350 GOLD COINS

J l. .. I~:; T

1 F: EM >K lK)I(lK lK CH AF~ ' f:) T (1 TU:::; D TS F' I... 1~ Y)I(

'")

' ··
::i

~)f()l()I(

8 REM **lK CHECK 7 10 FOR CHAR' TYPE
r;·
10 IF PEEK <710) ~ > 0 THEN 100
l /
18 REM *** IF NOT SET ·rH EN SE T IT
1 (;
? 0 A :::: F· E: E: I< (7 0 l) ! E: ::: PE 1::: I< < ? 0])
30 IF A > 10 AND B ~ 10 THEN POKE I

10tl! CDTD :1.00
' 10 IF A < :L :I. t1ND E: :I. 0 THEN F'Dl<E: 7

:1.0 ,2 ! GOTO 100
50 IF A < 8 AND B > 8 THEN PO KE 7 :1.0

,3! GOTO 100
60 IF A > :1.2 AND B > 12 THEN POKE 7

10,'I! GOTO :I.DO
70 IF A > 7 AND B > 7 ·rHEN POKE 710

i'.'5 ! GDTD lOO

Who Goes There? 45

n o P m(1:. 7 :L o t tJ

98 REM *** GET CHAR' TYPE FROM 709
9<;'
:LOO ON PEEK <710) GOTO 1:LOt1ZOt130,

140t150 t 160
:1.1 () T y $ -·· II w A 1:;: 1:;: I () 1:;: II : G 0 T (j ~?. () ()
1?0 TY~li ·- 11 WIZA1;:0 11

: GDTll ~zoo

1 3 () T y <~ -·· II T HI E F II : G 0 T 0 ? () 0
MO TY$ ···· "WAl:O:WIZAI:;:[)": CClTCl 200
1~.'iO TY~!; ·-· "DEL\,1EF\" ! GCJTO 20 0
16 0 Ty$ - II I~ p F' RENT I c E II
1<;-7
198 REM *** GET KIN TYPE FROM 709
199
20 0 ON PEEK <709> GOTO 2:L0,220t230t

240t2~)0

2 1 o ~cu -- " o F T 1-1 E Hu MAN 1< :r N " : Go To :3 o
0

220 !·CU -·· II DF THE DWAl:;:l.)ES II: GOTO 300
2::io
2.(Hl

1·<1$ ··- "ClF THE ELVES": COTO 300

2'.'50
27' 7

~cu
~(1$

-··
--

"UF THE HOE:[:JT~> 11
: GDTO

11 I... E F' F\ E c HI~ u N 11

298 REM *** RETRIEVE CHAR' NAME
299
:JOO NA$::" "[!:;:VS]"
310 FOR X = :L TO PEEK C7:l2)

~lO 0

320 NA$ = NA$ + CHR$ < PEEK <712 + X
))

'.3:30 NEXT
::l40 NA$:::: N1~ '.-li + "CDFFJ"
397
398 REM *** DISPLAY CHAR' STA TUS

'Hl () F' R I N T II [c LE A 1:;:] [I) Cl w N)K ::l J II N A 'Ii ;
'+ 1 o r· 1:;: 1 N T 11

t
11 1< :r $: i=· 1:0: :r: N T 1 1 i:: D o 1,~ N ::i T H i::: !:;

E AF::E Your.;: CUF~F\ENT F~ATINCS! ···· 11

If ? () F' R I NT 11
[D 0 w N] !:; F x : M (1 I... F I I ; T '~ [: (? :·?.

) ; "TYPE! "TY$
.q ::; 0 F' R l N T I I [D () w N] s T 1:;: [N c T 1-1 : I I ; F' E E I< (

7 0 :I.) ; T A E: (? 2) ; I I H F I~ I... T H : I I F' E F I< (
70?)

.<+ '+ o i:- R :r N T 11 i:: D o w N J :r N T i::: 1...1...1 c F N c i:: : • 1
; r:· i:: i:: 1<

(7 () '.3) ; T A i:: (2 ~?.) ; II s I< I I. .. I... : II ; F' I:~ El<
(/04)

46 Adventure Games for the Commodore 64

't ~5 0 F' F< l N T 11
[I) 0 y~ N J H [l c; 1-1 T : I I ; F' E E ~((7 0

~'.~) ; II F E E T II ; TA E: (? ~'.) ; II yff: l G H T : II ;

p EEJ((7 0 6) ; II I... E: ;.; II
"16 0 F'RINT II [DOWN J WEAi... TH: II; F'EEJ((7 0

7) ; II GOLD COINS II
"170 PRINT 11 CDOWNJM1'.)X, WEIGHT YOU CAN

c A 1:;: F< y : II ; F' E E I< (7 0 :I.))!(3 ; II L E: s II

ttu () F' RI NT II [D 0 w N J y 0 u F< UJ 0 (F\ AT ING I!:;
:

11 i i=·i::n(<708)
4 9 () IF F' E E ~((7 l 0) := 6 T H EN F' FU N T II

CDOWNJAS AN APPRE::NTICE YOU MAY C
HCJO~:;E TO f.>Tl..IDY II

5 0 0 IF F' E EJ((7 1 0) :::: 6 TH [N F' f(I NT II

SWORDSMANSHIP [RVSJORCOFFJ SORCE
G:Y t E:UT NOT E:DTH. II

5S?
598 REM *** WAIT FOR PLAYER
599
t.) 0 0 F' RI NT 11

[D 0 w N)I< '.? J 1:· I'.\: [s s < < F\ ET LI I~ N >
:> To coN ·r:rNtJE ' 1

;

610 GET z~r.: IF z~~ "" 1111 THEN 610
62 0 END

Program 3.5.

Line -by-line analysis
Line I 0: You will remember that in the last program we went as far
as defining the Character Type along with all the other details . This
line checks whether this characteristic has , in fact , been stored . If it
hasn't then the players may find that their character is slightl y
modified on the basis of their current streng1h and imelligence
ratings because this program allows for six character types rather
than the previous four. Note: For truly progressive characters omit
this line so that the Character Type can be re-evaluated (see lines 20-
80) as the player gains or loses st rength and intelligence points.

Lines 20-80: These lines set the Character Type and POKE the
relevant code into 710 for future reference . You will see that the
whole su broutine depends upon the values stored in 70 I (strength)
and 703 (intelligence). These va lues are transferred to variables A
and B for speed of execution and to save a little space. Even a llowing
that keywords like PEEK are 'tokenised' so that they only take up
one byte in memory, IF A > IO still has to be shorter, in both
respects, than IF PEEK(701) > 10. Note: The values used to decide

Who Goes There? 47

each character type have been set fairly arbitrarily in this
example and may be altered as you see fit. At the moment you
only qualify as an Apprentice if you don't fit into any other category.

Line 100-160: Rather than store the Character Type itself in
memory I've included the six strings in the display routine . This also
makes it easier to change the Character Type as a person progresses .
These lines merely set up TY$ according to the value in 710 .

Lines 200-250: This ection follows the same method as seen in lines
100-160, only this time we are setting the character's Kin Type .

Lines 300-340: This routine collects the player's name from memory
for the display. Although they won't actually make any difference if
left in , lines 300 and 340 may be deleted if you have stored the
REVERSE ON / OFF bytes with the name as shown in previous
programs.

Lines 400-480: These lines print out most of the chart hown in Fig.
3.4. The last section, which will only apply ifthe player falls into one
pecific category and if you want to include some kind of option , is

produced by lines 490-500.

Lines 600-620: A simple method of legally 'hanging' the program
until the player has had time to digest the contents of the Status
Display (thus providing a means of 'freezing' a game which includes
any real time action, incidentally). You will notice that while the
player is asked to press the RETURN key, pressing any key will
in fact have the same effect. Some people may find this a bit off
putting, so if you want to be more precise either change the wording
in 600 to PRESS ANY KEY TO CONTINUE or alter the second
statement in line 610 to IF Z$ <> CHR$ (13) THEN 610.

Program 3.6: George and the dragon

The last routine I want to include in this chapter shows how to
arrange a very sim pie form of combat between the player's character
and a second or third level opponent - in this case George and a
dragon. It also serves to show how the character ratings, once set,
can be altered from within a program. If you are using this routine in
a program with a character generator then for all the player's ratings
you should use the values you already have in an array, or POKEd
into memory.

48 Adventure Games for the Commodore 64

By the way, you might like to notice how the player' LUCK
rating is being used here. The player's combat strength is reached by
adding his actual strength rating to his luck rating to give extra
weight to his fighting ability. Even so, at first sight it might seem that
the dragon has an unfair advantage over George in that its skill
rating (ML) is only 3 points lower than George's (SL) whilst it's
strength rating (MH) is 11 points higher than George's combat
strength (PT). In actual fact I o rigina lly gave the dragon only 20
strength points, but after running the program two hundred times I
found that the dragon was on ly winning five per cent of the
confrontations! I therefore raised the dragon's strength to the
current figure to give it a fairer chance!

This program will run by itself. And lines 35 and 55 have been
included so you can watch how the battle is going. In a proper game
program, however , you may choose to omit these two lines and
simply display the result.

l 0 !:; L. ::: ~:; : !3 I ·I :::: :I. ~~ : L .. 1< :::: ::i ! F' T = :: !3 H + I ... f(: Ml.

= 2: MH -·· 26

2 0 F' !3 ·- I N T < < S I...)I(< < 1:;: N D < l) >K 6) + 1) + F' Tl

I 6>

30 MH = MH - PS! IF MH ~ 1 THEN JOO

40 M~:l ··- INT <<ML.)I(<<RND<J>)I(6> + 1.) + MH l

I 6)

50 SH = SH - MS: IF SH ~ 1 THEN 150

.55 F'l:;:INT II GEORGE ::: II SH

60 GOTO 20

l 0 0 F'FUNT ! F' RI NT II WE:L.L. [)ClNE: c [[)F\ C[_.. y OU I VE

~(IL. L. E D T H [(.q <;; p d c c-:> s) I) F~'. A c D N I II : E N D

1. 5 0 F' RI NT : F' RI NT II w H DCW s ! [) F\ AG 0 N s 1 , y 0 lJ I VE

LOST, R.I.P."! END
Program 3 .6.

Who Goes There? 49

Line-by-line analysis
Line 10: The meanings of the variables used in this line areas follows:
SL stands for player's Skill, SH for player's StrengtH and LK for
player's LucK. PT, as I explained before, is the Player's combaT
strength. The dragon , being a second level character (because he can
actually kill the player's character), does not get a combat rating and
has to make do with a limited skill rating (ML) and a fairly hefty
strength rating (MH).

Line 20: The next variable, PS, stands for Player' S hit and is
calculated by the same means used for the Monster'S hit in
line 40. Thus the effect of each character's blows are found by
multiplying their skill rating by a random number between 1and6(as
if we were throwing an ordinary dice). We then add on the character's
strength (combat strength for the player, ordinary strength for their
opponent), divide the total by 6, to make the combat last a bit
longer, and finally round the result down to the nearest whole
number. Please note that there are ten brackets in this line and in line
40. They must all be entered in the correct place to make the
calculation work correctly.

Lines 30-35: Having allowed the player to go first we now deduct the
effect of his blow (the value of PS) from the dragon's strength rating
and check whether that rating has fallen to 0 or below. If it has ,
usually after about three or four rounds, then the program goes to
line 100 to display George's victory message. If it hasn't then the
dragon's mod[lied strength rating is dis played and the dragon gets to
take a chunk out of George.

The fact that George always goes first, so that the dragon never
gets to attack him with its full strength is, of course, greatly to
George's advantage and the reason why the dragon needs such a
high strength rating to have any real chance of winning.

Lines 40-55: Given that it is now the dragon's turn to attack George,
these lines are a direct copy of lines 20-35 with the variables altered
accordingly.

Line 60: If George is still alive after line 40 - if his strength rating, not
his combat strength rating, is still higher than zero - then the
program returns to line 20 for another round.

Lines I 00 and 150 print out the victory messages for George and the
dragon respectively. It should be noted, here, that unless George has
been particularly lucky then his strength rating will be very low at

50 Adventure Games for the Commodore 64

this point - over four hundred combat sessions his average strength
at line I 00 was 2! This should be allowed for in a proper game setting
by giving him some means of getting his strength back before he is
required to undergo any further strenuous physical activity - an
enforced rest (in game time, not real time) or a healing potion of
some kind according to the nature of the storyline.

Again, if you are using a character generator and your player
survives the combat, his new strength rating (SH) should be used to
alter the original list of character ratings before the game continues.

Where to go from here

Well, that brings us to the end of this first 'programming chapter'.
There are plenty more programs for you to test and use in your own
games if you so wish . Most of all , though , do try experimenting with
these programs. Some of them are based on the latest techniques in
programming (at the time of writing) but that in no way implies that
someone, somewhere, isn't already thinking up better, faster , more
efficient methods of doing the same tasks . That someone could be
you!

You will already have seen that some routines in this book do not
give a final result unless extra lines are added. This is because they
have been written as modules, to be linked together to get the exact
program you want to produce. So don't be afraid to link up different
routines to see what kind of result you get. It may not always be
exactly what you expected , but if this is the case try to work out why
you didn't get what you were after.

As you study the various programs you' ll find almost every kind
of BASIC routine you could need for any kind of program - string
checks, PEEKing and POKEing, etc. If there's anything you don't
understand straight away, enter the program and RUN it to see what
it does , and then check it against the line-by-line analysis. If it has
POKEd something into memory, try using something like the
checker routine in lines 730-740 of Program 3.4 to see what it has
POKEd. (You'll find a lot more about 'reading' the memory in
Chapter 6.)

The best way I know of pulling a program to pieces is to alter it in
small ways here and there. Try leaving out a line or two and see what
difference it makes. If you can't follow what the variables are doing,
then add a line that will print out what is happening to them . And if
you think you could write a better piece of coding then by all means
do so!

Chapter Four

O.K. Bugsy - We Know
You're in There I

You're in one of the bedrooms of a deserted house. As you crouch by
the window a rat runs over your foot. Although it's night-time, and
the single light-fitting is broken, the room is as bright as day in the
glare of the searchlights outside. You wait. And after a moment or
two a voice, crackling through a well-used megaphone, shouts 'O.K.
Bugsy, we know you're in there. Come out now, or we'll blow you
out!'

Where are you? How did you get here? And why are they calling
you Bugsy?

The answer to all these questions can be found in Superspy, a yet
to-be-completed tale of espionage folk. You're in the building which
stands over the subterranean headquarters of the mad Professor
Geri (though you probably don't yet know what's in the basement).
You got there by following the advice of someone you should never
have trusted in the first place. And the police outside are calling you
Bugsy because they, too, are following a false trail.

Now let me answer those first two questions another way!
Where are you? In 'room' 56.
How did you get here? By moving from room 47, through rooms

51, 52 and 53 to your present location. In other words you followed
the trail through the fiendishly cunning map devised by the writer of
Superspy. Which brings us very neatly to the subject of this chapter
mapping out an adventure game.

Picking your spot

If you've already developed a storyline for your adventure, then
choosing the landscape within which the action will take place
should come fairly easily. Some writers, on the other hand , may find
it easier to start with a setting for their adventure and develop the

52 Adventure Games for the Commodore 64

storyline from there, which is fine. Indeed , if you haven't already
used this method why not give it a try? It may be the one which works
best for you.

But how do you choose the best location for an adventure? That
may sound like a silly question but it does have a point. The best
place to set a story is 'in the right place', but this isn't always the most
obvious place .

First , it' s as well to start thinking about a location for your story in
the same way that you approach the story itself - with a completely
open mind.

It might seem, at first, that your whole story can be set in a single
general location - a country house, a space ship, or wherever - as are
Cranston Manor, Star Cross and several other successful games. In
Deadline the entire action is confined to the vicinity of a fairly
luxurious, though otherwise perfectly ordinary house, with not a
trapdoor or secret cupboard in sight. But on the other hand don't be
afraid to spread yourself around a bit if the mood takes you .
Remember that many popular books and films owe a good deal of
their effect to the constantly changing locations of the action. Of
course, such changes won't by themselves make for a good story. But
if you think that your adventure can gain by moving all over
England , or all over the world for that matter, then by all means try
it.

'Hang on', says a voice in the background, 'how do 1 move the
hero around like that without having a map as big as the living room
floor?'

There are at least three methods which spring to mind
immediately, and probably several more that I haven't yet thought
of:

(I) Provide players with user-controlled transport such as a car or a
motorbike, so that instead of using the normal GO SOUTH
command they can use DRIVE SOUTH. In this way they will find it
believable that they have travelled ten or twenty miles in one move
(and from one 'room' to the next on your map), because the act of
getting into a car and driving implies a sense of distance.

(2) The act of travelling can become even more interesting when
players don' t know where they are travelling to, especially if you
want them to cover a substantial distance, say fifty miles or more. In
this case the player may be brought to a railway station or an airport
by normal means (this could be the start of the adventure , perhaps),
and then offered a ticket for the train or plane which is about to

O.K. Bugsy - We Know You're in There! 53

depart. Using a little routine that you will find at the end of Chapter
5 you can ensure that the player is forced to make a choice before
he's had a proper chance to consider the possible consequences. If
you don't want to include the element of surprise the same event can
be re-written so that the player has to get hold of a rail or air ticket
before he can progress to the next stage of the game (not so easy if he
is short of cash or his pocket has just been picked!).

(3) In the third alternative the player might be tricked into travelling
before he has a chance to avoid it. Thus he might be encouraged to
walk through a door which leads straight into the back ofa truck, or
into an interstellar version of the Space Shuttle. In a flash the door
of the vehicle is closed behind him and locked, and the text display
shows that he has been transported from one side of the country, or
one side of the galaxy, to the other!

It comes down to the fact that in an adventure game the entire
universe is your oyster.

All the heavens in a grain of sand

Having offered you the universe, we now have to come down to
earth for a moment and consider another kind of space - RAM
space - and its limitations.

One of the main reasons for writing this book was to encourage
would-be adventure writers by showing how great adventures can be
squeezed into surprisingly small (memory) spaces. This will become
much clearer in Chapters 6 and 7. But for the moment it is necessary
to point out that even when RAM space is used to the best possible
effect, it is still measured in very finite amounts. So the next step is to
decide roughly how big your adventure can be.

The first thing we need to know in reckoning the overall size of a
program is whether it will be stored on tape or on disk. Information
is written to and collected from different storage media in different
ways. Cassette tapes, for instance, can only hold 'sequential' files .
That means the information is written and read as one continuous
stream, so you cannot jump straight to a particular piece of
information on the tape with any degree of accuracy. Instead you
must read through a file from the beginning until you find the
information you want. Also the process of reading from , or writing
to , a tape file is extremely slow.

Disk storage, on the other hand, is extremely fast. Because the disk

54 Adventure Games for the Commodore 64

is flat the read / write head can read the disk directory track (a kind of
index to everything on the disk) and then move directly to the start
of a particular file . (To understand what I mean think of the
difference between trying to find the start of a chosen song on tape,
and doing the same thing on an LP record.)

And this isn't the only advantage disks have over tape storage.
Again, because of the way the information is stored , the
Commodore disk drives allow for a total of f our different methods
of storage - sequential, block access (moving 256 bytes at a time),
random access and relative access (a variation on Random Access) .
In all the last three methods information is stored in such a well
organised fashion that the computer can call up a single piece of
information - or even a single byte(!) - from within a file without
starting at the beginning. Instead , the read / write head is simply
moved to the start of the required file , record or field and reads it or
writes to it as required .

The difference between sequential and random access storage is
clearly very important when deciding how big an adventure will be.
The largest part of an adventure, with the possible exception of the
master program, is the room description file . If this is stored on tape
it must be fed into the computer before it can be accessed in the
manner required in an adventure . If it is on disk, however, each
room description can be called up directly from the disk when
needed. Thus the amount of RAM space required for the room
description file as a whole is no bigger than the size of just one or two
records (depending on the size of your room descriptions). One of
the longest adventures I have yet discovered - Fantasy/and 2041
A . D. - actually uses six disk sides, one for the master program and
five for room descriptions and graphics displays!

So, game size depends on three main factors:

(I) How much 'user RAM' you have in your machine
(2) Whether you are using cassette storage or disk drives
(3) Whether the game consists of a single unit or a number of
linked modules .

This last factor concerns the method of laying out your program. If
it is all in one piece - if the whole program is loaded at the start of the
game - then factors (I) and (2) are particularly important. But if the
game is divided into separate sections, each with its own master
program and room descriptions, etc. , then you can overcome many
of the limitations of limited RAM space and cassette storage.

I wouldn't advise newcomers to try writing modular games

O.K. Bugsy - We Know You're in There! 55

straight away, but once you have mastered the other aspects of the
art it is well worth taking advantage of the freedom of action this
approach offers.

The mushroom factor

So just how much room do you have in your computer? The answer
I'm afraid, is probably not as much as you thought.

The most common sizes for home computers on the market today
are multiples of 8 (because they are 8-bit machines). Thus we have
the Vic 20 (with minimum expansion) at the bottom of the table with
8K, followed by the smaller Spectrums and the Atari 600XL which
are I 6K machines. The BBC B, the original Dragon and the Electron
are 32K machines. The standard Orie, the Atmos, the larger
Spectrum and the unmodified Apple II series are all listed at 48K.
And the Commodore 64 weighs in at 64K! These figures will already
be familiar to most micro owners, I know. The reason I have listed
them here is because they are, to say the least, highly misleading.

In practice (assuming that we are talking about text adventures
only) the machines listed above have the following amounts of user
RAM space:

Vic 20 (expanded to 8K) - about 6.SK
Spectrum 16K - about 9K
The Atari 600XL - l 3K
The Eiectron - 20K
The Dragon 32 and the BBC B - 27- 28K
The Orie I (without high resolution graphics) - about 46K
The Spectrum 48K - about 40K
The Apple Il+ (minus high resolution graphics and DOS) -
SOK
The Commodore 64 - a few bytes less than 38K

In point of fact the C64 has more than 64K, and all 48K micros are
actually 64K machines! In other words they contain 64K bytes of
memory space if ROM, computer-controlled RAM etc. is included.
This is why, in the case of the Apple II+, you can find SOK of user
space in a 48K computer!

So once we know roughly how much space 0ur game has to fit
into, we can begin to get some idea of how large it will be.

If we take the control program first, then it is fair to say that quite
a sophisticated program can be made to fit into about 16K- 20K

56 Adventure Games for the Commodore 64

-

UJ..:
c"'
o~
u<.'.l

(/)~~
=>-::;; -~5~

..: a:
::;;(.'.)
><o -~a:

Cl.

~

-
UJ
::;;
::;; ..:
..: UJ
a: a:
(.'.)..:
0
a:
Cl.

in
- ~ ::::>

...J
0..
0

VJ a:: ..,. ::.:: 0 ::::>
<D co ::?: L:LJ w ..,. -a:: ::?: I- -- ~ w 0 ::::>

~ ...J ::.:: c a:: 0..
N 0 I- () 0..
(")

::?: () a:: <(g:i z ::?:
w 0

0 0.. - z ()
(.!) 0 VJ

0 al
<(()

a:: al a:: ...J I-- x () c
::?: 0 w 0
::::> <D ...J

- a::::.:: ~
w

0 I- <D <(N () ~

~ w I-
0.. <(

> VJ

Fig. 4.1 . Chart showing comparative size of user RAM in ten best-selling
micros.

(using machine code). Unfortunately this is only the first step in
calculating the total space needed. We must also allow storage for
strings, numerical variables and arrays (though the latter can, in
some cases, be made to fit into a much smaller area than usual - see
Chapter 6). Then the computer itself will need some free RAM space
in which to execute the program. And finally you will have to decide
whether you want to include any graphics displays (see Chapter 10
for further discussion of this last point).

O.K. Bugsy - We Know You're in There! 57

All in all the size of your adventure - assuming that every thing is
loaded into the computer at the start of the game - should be
estimated on the basis of not more than 100 locations for every I 6K
of user RAM . In terms of the C64 that comes to around 200- 230
rooms. As you become more proficient in programming techniques
you may well be able to improve on these figures . But it can be very
frustrating to work out all the details of a game and then find that a
major portion of the coding has to be rewritten because it won't fit
into the available space.

In short , unless you have the time and patience to constantly trim
and polish your game, start out by underestimating the amount of
space available; then, if possible, add extra touches to make the
optimum use of your machine.

Which brings us to the next stage of preparing a game: the
drawing up of an adventure map.

Where am I? Where am I going?

(Note: The word 'room' when used in relation to map-making is
taken to mean one location within the adventure. It may be an actual
room, or the cabin of an aircraft , a carriage on a train, a passageway,
etc., etc.)

Map-making can be one of the most interesting parts of preparing
an adventure game. Indeed , writers have been known to get so
involved in the map-making that they nearly forget what the map
is for. But the preparation of a map isn't only a way of having fun .
It is an essential part of a good game.

You may have a particularly visual imagination and be able, with
very little effort, to envisage a complete setting for your adventure
before you ever get anything down on paper. If this is true for you
then beware. Even now there are games on the market which fail to
run properly because they don't follow a consistent pattern of
movements . In fact I can think of one adventure where part of the
game layout (as described on the packaging) is actually missing
altogether! If the programmers had been working directly from a
clearly laid-out map this should never have happened.

So what does an adventure map look like? Obviously it won't
resemble anything you've ever seen in an atlas. In reality a completed
map may appear rather boring - not much more than a set of boxes,
containing brief notes and linked together by lines or connecting

58 Adventure Games for the Commodore 64

boundaries. Yet these 'simple' layouts represent a good deal of
genuine creative effort.

Broadly speaking there are just three sorts of adventure map:

(1) Boxes and lines
(2) Linked boxes
(3) Linked octagons

Let's look at each method in turn and consider their relative
advantages and disadvantages.

The error trap

The boxes and lines method is probably the easiest way of preparing
a map, and can be useful as a means of preparing the 'first draft' for a
game. As the title of this section suggests, however, I have
many personal reservations about using this method , and cannot
recommend it with any great enthusiasm.

The most positive thing to say about box and line maps is that
they allow the chart-maker a good deal of freedom. Each location on
the map is noted down in a separate box, and the box is linked to its
neighbours with a solid line (to indicate movement possible in either
direction) , a solid line with an arrow (one way movement only), a
broken line (conditional movement), and so on as shown in Fig. 4.2.
Landscape features around each location, if relevant, can be noted
in the spaces between the boxes. Unfortunately the freedom of this
kind of map is also its biggest potential hazard.

In the first place a map of this type can easily get out of hand. This
is no great problem if you are still in the early stages of planning. But
if your final map is spread out all over the place - with some rooms
off in the middle of nowhere with only numbers on their sides to
show neighbouring locations - things can get quite confusing.

The second objection is that box and line maps very often violate
what 1 call the 'consistency rule'. This can be seen quite clearly in Fig.
4.2 in boxes 5, 6 and 7. In this area the player can move into room 6,
a corridor, from either room 5 or room 7 by using the command GO
NORTH. But what happens if he changes his mind and wants to go
back? The command GO SOUTH, when used in room 6, has t wo
pos ible destinations. If I actually want to progress (by moving to
room 7) then all is well , if the program only allows movement from 5
to 6 to 7. But supposing I want to go back to room 4 to get the gun I
previously ignored? The computer has no idea where I want to go,

3

CLOSET

1

PORCH

O.K. Bugsy - We Know You 're in There! 59

6

CORRIDOR

5

DINING
ROOM

4

LOUNGE

2

HALL

7

KITCHEN

9

STAIRS

Fig. 4.2 . Boxes and lines map.

8

GARDEN

only where the programmer has allowed me to go. Of course we
could add an extra section to the command routine so that I am
asked which way I want to go: LEFT DOOR OR RIGHT DOOR?
But unless this choice will appear several times, the programmer has
wasted space dealing with a situation that need never have arisen in
the first place.

This kind of situation is also very confusing for the player, of
course. If I'm in room A to start with, go north into room Band then
go south and find myself in room C it is not immediately clear
whether the program is still functioning correctly. Newcomers to
adventuring, finding themselves in such a situation , might well
assume there is a bug in the program and try to get a replacement.

As J said before, this method has its uses . But they are strictly
limited.

Programs 4.1 and 4.2: Linked squares

The second method I want to discuss is far superior to the box and
line approach, and may be seen as a limited version of the linked
octagons system. Its main drawback, in fact its only real drawback,

60 Adventure Games for the Commodore 64

is that it can lead the programmer into a common, and rather
disastrous, error, which I will explain in a moment.

In order to use the linked squares method of map-making all you
need, to start with, is a pencil and several sheets of paper marked out
in fairly large squares. I say large squares because each sq uare
represents a single room a nd must, therefo re , contain a room
number, the room title, and the names of any objects or characters to
be found in the room. Since each room has four walls you may have
up to six possible exits and entrances - NORTH , SOUTH , EAST
and WEST, plus UP and DOWN. Later on in this chapter you'll find
details of how to mark these routes in a way that makes the map easy
to read when it comes to programming the adventure.

And now for the pro bl em J mentioned earlier. This usually arises
only when the adventure writer uses the A X B grid system to be
found in several other books on this subject. In the A X B grid below
(Fig. 4.3) yo u'll see a ten by ten grid which gives a total of one
hundred rooms. Since all rows and columns are equal in length it is

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100
'

Fig. 4.3 . Linked squares map frame. If an 'unmodified calculated' move
routine were used in conjunction with this map then off-the-edge errors
could occur in any of the thirty-six squares outside the thick inner boundary
line.

O.K. Bugsy - We Know You're in There! 61

possible to use a small program that calculates which room you will
end up in if you move in any direction. In this instance, the room
directly NORTH of your current location will be CR(Current Room
number)-10. The room directly SOUTH will be CR+lO. The room
directly WEST will be CR- I, and the room directly EAST will be
CR+I .

Jl...I!3T

10 REM ***** CALCULATED MOVES IN
10 X 10 GRID*****

20
3 0 F~EM

'HJ F~EM
50 1:;:EM
60 i:;:EM
70

MOVEMENT COMMAND HAS BEEN
TNF'l.JT t-1S CU<I;
CR=CLJRRENT ROOM NUMBER

80 REM ** ONl...Y READ LAST PART OF CO$

90
100 IF 1:;:J CHT~1; (CCH;,4) ''EA!:>T 11 THEN

c1:;: ·- CF.: + :I.
:1.10 IF 1:;:IGHT$ <CO~~,.q) - "WEST" THEN

CR ·-· c1:;: ·-· 1
:1.20 IF F\ICHT ~~ <CCl$,~5) ··- II No1:;:T1-1 II THEN

CF: ·-· ci:~ ·-· 10
130 IF F.:IGHT'I; <CtH,~:i) ··- II E>OUTH II THEN

CR ··- c1:;: + 10
:1.40 F\ETUF\N

Program 4. 1.

Line-by-line analysis
Lines I 00- 130: This very si mple version of the calculated moves
routine is based on a two-word (verb-noun) INPUT held as CO$. In
each case the program si mply reads off the relevant number of letters
from the right-hand end of CO$ and performs a calculated move
rr.odification to the current value of CR (the player's location) in the
fashion described earlier in this chapter.

Program 4.2: The wall around the world

But hold on for a moment. What happens if yo u're in a room wit h a

62 Adventure Games for the Commodore 64

number ending in I and you move WEST - you move to the end of
the previous row! And this kind of error can occur in any room on
the edge of the grid. This can be dealt with quite easily, as in this
second version of the program (Program 4.2) , but again this system
uses up valuable space to no good purpose. Indeed, as will be seen in
Chapter 6, the use of calculated movements is a waste of time. Thus
the linked squares map in Fig. 4.4 is just as satisfactory as , and rather
less restricted than, the symmetrical layout in Fig. 4.2.

6 7
CORRI· CORRI·

DOR DOR
WEST EAST

5 8 9

DINING
GARDEN ROOM KITCHEN

3 4

LOUNGE
CLOSET IQiiiil
1 2

PORCH -
\ rIOckl HALL

102

STAIRS

Fig. 4.4 . Linked squares map.

Jl...IST

10 REM ***** CALCULATED MOVES IN
10 X 10 GRID <WITH MODIFICATION>

)I()I()I()K)I(

? O
30 f:~ EM

'Hl 1:~EM

50 REM
60 F~EM

70

THIS ROUTINE ASSUMES THAT A

MOVEMENT COMMAND HA S BEEN
INF'LJT AS cu ~i;

CR=CURRE NT ROOM NUMBER

8 0 REM ** ONLY READ LAST PART OF CO$

</ ()

90
99
100

1:1.0

:L20

13 0

:L't ()
:L 97

O.K. Bugsy - We Know You 're in There! 63

REM ** CHECK FOR EDGE OF GR ID

IF li:IGHT$
CF\ I :I. 0 :::
IF li:IGHT~~

Cf~ -· (:I. 0)I(

~:l () ()

(C()$,'t) == "EAST" AND
INT <CR> THEN 300
<CCJ~~,'t) ::""\.!EST" AND
INT CCR I :1.0)) = 1 THEN

I F F\l G 1-1 T ~., (c () $ t !7i) ··- II N 0 F: T H II ,; N D
Cl:\: < 11 THEN 300
IF FUGHH» <CD~t>, !5) ··- "~3Dl.JTH" M~D

CF\ > 90 THEN ~JOO
RETUF\N

198 REM ** IF MOVE IS LEGAL THEN 00
IT

:l.«f9
?00

210

~·~3 ()

240
~~97

IF RIGHT$ <CfJ$,4)
CF~ ·- CF\ + 1.
IF RIGHT$ <co~~, 'D
CR ·- CF\ ·- :L
IF F\IGHT$ <C0~»,5)

er.;: ·- Cli: - 10
IF li:IGHT~~ <C0~»,5)

CR -- CR + 10
RETUli:N

.... "EAS T"

·- "WEST II

- "NORTH"

··- "SOUTH"

298 REM ** ADVISE 'ILLEGAL MOVE'
299

THEN

THEN

THEN

THEN

~lO 0 F'RINT "YOU Cr~NNOT MOVE IN THAT D
:rnECTION" ! F'li:INT

31 0 F\ETURN

Program 4.2.

Line-by-line analysis
Lines I 00- 130: Here the possibility of falling off the edge of the
world is allowed for by calculating the player's location, before any
move is made, in relation to the direction in which he wishes to go
next.

In response to the command to GO EAST line JOO checks to see if
the player is already on the eastern edge of the grid - in a room with a
value that is a multiple of 10.

Line 110, in response to the command GO WEST, checks to see if

64 Adventure Games for the Commodore 64

the playe r is in a room with a value that ends in I - that is , a room on
the western edge of the grid.

Line 120, handling GO NORTH, checks for the northern boundary
- rooms 1- 10 inclusive.

Line 130, responding to GO SOUTH , checks whether the player is
already on the so uthern edge of the grid - rooms 91 - 100.

If any illegal moves are entered execution passes to lines 300- 310,
the move is refused and the program RETU R Ns for a new
command.

Otherwise execution moves on to lines 200- 240 - a copy of Jines
100- 140 in the last program - the move is calculated, CR is altered,
and again the program RETU RNs for the next command.
Obviously a real program would also deal with the possible
consequences of each move, displaying a new room description etc.,
but these routines are intended for demonstration only.

Linked octagons

This last system is , I must confess, my personal favourite . Because
each room has eight sides the number of entrances and exits is
boosted to JO: NORTH, NORTHEAST, EAST, SOUTHEAST,
SOUTH , SOUTHWEST, WEST, NORTHWEST, UP and
DOWN. Using linked octagons does not increase the size of the
room description file, but it will make your movement codes
significantly larger. If you're working with a relatively limited
amount of RAM space - less than 30K for instance - it might be as
well to stick to linked squares when you plan your first adventure.

The main advantage of the linked octagons system, apart from the
extended range of movements, is that it forces you to draw well
structured maps . If your map isn't properly laid out the results will
become horrifyingly clear very quickly.

Some writers may regard the need to be so exact as a drawback. A
more obvious disadvantage, however, is the fact that no one
produces pads of paper marked out in octagons at the moment. It is
a fairly simple matter to prepare these yourself, of course. Or you
could prepare a master sheet and have it photocopied. This may
sound rather extravagant, but unless you write your games very fast
indeed you are unlikely to use up more than a dozen or so pages in a
year.

O.K. Bugsy - We Know You're in There! 65

... Twopence coloured

Having chosen the style of map you will use , the bare framework
now has to be transformed into a 'living landscape'. This is easily
done with a set of coloured felt-tipped pens. You will need a
minimum of five , but it is worth buying one of the larger sets since
they often provide as many as 30- 40 pens for the same price as some
of the smaller sets.

(Note: Although the next two maps are made up of linked
octagons, exactly the same approach may be used for any other style
of layout.)

The first thing to beware of when preparing a map is the urge to go
too fast, to start writing things in - in ink - before you have roughed
out all the details. Remember the creation of the map is one of the
crucial stages in preparing an adventure. Go too fast, and you may
find that when that sudden burst of creative ideas hits you, the map
is already nearly complete. If that does happen you'll either have to
re-draw the map (very frustrating), or leave out the gimmick that
might have made the whole game rather special. Moreover, trying to
turn two or more pages of badly-prepared map into a successful
program will take far more time in the Jong run than you will need if
the map is clear and well-organised . So Jet's get started.

There you are with a blank sheet of paper in front of you and a
pencil in your hand. But where does the map start? In practice, since
it's very unlikely that you'll manage to draw up a map to your
complete satisfaction at the first attempt, it really doesn't matter too
much where you put that first room. The centre of the page is
probably as good as any. Now number and label that first location.
And by the way, start numbering from I, not from 0 - you'll see why
when we start organising movement codes in Chapter 6.

From this point on the shape of the map is up to you. The
direction which you plot for each move will depend entirely on what
is happening in the adventure.

In Fig. 4.5 you'll see that I've already numbered twenty-two
octagons, but only one has been labelled. Let's suppose that there is
a large obstacle occupying rooms 5, 8, 9, and 12. I would start by
blanking out this area and renumbering the octagons that will be
used. (You see why everything is done in pencil to begin with!)

Next I develop routes away from room l which are consistent with
the landscape in my adventure. If the action were set in a city, or in
outer space, moves might follow the paths I, 2, 4, 7, etc., or 1, 3, 6,
I 0. But if the adventure started in a forest, or an underground

66 Adventure Games for the Commodore 64

Fig. 4 .5 . Linked octagons map.

tunnel, I might start to alter the map again to give the twists and
turns that would fit the situation.

Once I have the general layout of the map pencilled in to my
satisfaction (with room titles) I can start placing objects and
characters. It is now that the preparation of list 2 (in Chapter 2) will
pay dividends. Before too long you should begin to see a landscape
emerge on paper that really does bring your story to life.

But we're still working in pencil. Once you're satisfied with the
overall layout of your map, you can begin to colour it in. This isn't a
matter of making the map look any prettier, though if you're
artistically inclined there's no reason why the map itself shouldn't be
a work of art. Colouring your map, though not essential, is a way of
making it more easy to follow when you start programming.

Colour coding

lf you turn to Fig. 4.6 you'll see that it has altered quite significantly

O.K. Bugsy - We Know You're in There! 67

Fig. 4.6 . 'Coloured' linked octagons.

CO~OURCODES:

-RED
r:zzzzJ PURPLE
C=::;:;JQRANGE
CCII BLUE
u:::::;:::;:i GREEN

from the simple framework in Fig. 4.5. Unfortunately it was not
possible to provide a full-colour illustration of this map, and for that
reason I have omitted room titles etc. , for the sake of clarity.

In this example I've colour-coded seven different basic situations.
Feel free to change the choice of colours and add more of your own if
you wish. One word of warning though. Don't get carried away. The
colour code system is designed to simplijj1 your task. Use too many
colours and you will defeat the purpose of the codes. And by the
way, until you become familiar with the code that you are using it's a
good idea to set out a chart of the colours and their meanings in one
corner of each map .

Now for the actual colour codes. All room boundaries that cannot
be crossed under any conditions should be marked in red on both
sides. Thus the entire boundary of your map (except for any points
where it may connect to another level) should be outlined in red, as
well as any internal room boundaries that cannot be crossed.Note

68 Adventure Games for the Commodore 64

that the coloured line should always be inside the walls of the room it
applies to.

The reason for this last requirement can be seen in the case of
rooms 11 , 14, 15 and 18 . The squares are not used as such, but they
may provide links between rooms. In this instance it is possible to
move from room 11 to room 18, but not from room 14 to room 15
(or vice versa).

So, red on both sides of a boundary means 'no way, no how'.
An item boxed in red is one which may not be picked up or used by

the player, even though it might play an important part in the
adventure. Such items do not need to be included in the 'o bject
array' (see next chapter) as they will always be in the same place.

There may be occasions when you want to trap a player into going
in a particular direction. In practice, then the player can move out
of a room but not back again - if they dive from a cliff edge into a
rive r, say. In this situation the purple line marks the boundary of the
room they may leave, while a red line marks the boundary of the
room they enter and may not return from.

Other such situation might be doors with no handles or keyholes
on the far side, lifts which break down when they reach a certain
floor, airlocks which have been damaged so that they can only be
used once, and so on .

Incidentally, it might seem that the purple line is unnecessary, and
that the exit in a 'one way' situation could be left unmarked. The
danger in taking this option is that the single red line may be
mi interpreted when you come to program your adventure. Using
the purple line as well is a form of insurance against such mistakes . A
purple line, then , means 'one way only' and should always be
coupled with a red line in the neighbouring room.

A purple line round an item in a room indicates that the item ma y
be used only once. This will apply to many booby-traps, hand
grenades etc.

Even if your game takes place on only one level there may be some
situations where the player has to go over or under an obstacle. On
my own map , s ince there is an obstacle in rooms 5, 8, 9 and 12, I've
included a secret tunnel , marked in orange, between rooms I and 19
which may be entered from either end. (Note: If the tunnel had been
one way only then the connecting line would have been marked in
purple.)

The basic purpose of the orange boundary line, and connecter, is
to indicate (a) a move to a different level in a multi-level game, {b) a
connection between two rooms which requires the player to move

O.K. Bugsy - We Know You're in There! 69

UP or DOWN rather than north, south etc., or (c) any link between
non-adjacent rooms.

This last option is very necessary. The octagons are all the same
size, but the locations they represent are not. Because of this,
locations which are adjacent will not always appear to be so on yo ur
map, though the intervening spaces will normally be blank.

Items surrounded by an orange line come into a rather special
category as they can move 'by themselves', as it were. This applies
particularly to characters who move around the map independently
of the adventurer - as in The Hobbit, for example. (Details of how to
program such characters are given in the next chapter.)

Having used red and purple lines to indicate routes that are
completely blocked off, in one direction at least, we now come to
boundaries which allow 'conditional' movement . 1 n such cases I use
a blue line on one side of a boundary to indicate that the player may
not move in that direction without satisfying some previous
condition. If you look at Fig. 4.6 again you'll see that just such a
situation exists at the border between rooms 6 and I 0.

Going back to a previous example, this boundary line might
repre ent the entrance to the Mad Professo r's laboratory. If yo u
remember, this door closes automatically once the player e nters
room 10. It can only be opened again if the player succeeds in
paralysing Igor and finding the magnetic card. Thus the north
ea tern boundary of room IO is marked in blue. But that isn't all that
happens in the laboratory, which means that we need a further code.
Once Igor moves toward s the player, the chemicals are knocked over
and a fire starts. I have assumed that even if the playe r escapes from
the laboratory, this fire will damage the door mechanism beyond
repair. Thus room 10 may only be entered once - another
conditional situation - and so both sides of the border must be
marked in blue. (lf you have blue on one side of a boundary only the
border line itself may be indicated by a double-thickness line to
avoid confusion. This is because crossing the line in one direction
from the non-marked side - does not require any action in the
program. This point will become clearer when we come to
movement codes in Chapter 6.)

Objects marked in blue also fall into the 'conditional' category.
Such objects can only be accessed by the player if he already holds
another object, has completed a certain task, or whatever.

The last situation I want to deal with by colour coding concerns
hidden exits and hidden objects. In this case I use green. In a sense,
the finding of hidden items is another conditional situation and

70 Adventure Games for the Commodore 64

might be dealt with by using blue lines as described above.
Personally I prefer to indicate the difference between the two
si tuations on the map. Blue lines will usually signify that the player
must have a particular object or piece of information before he can
move in a given direction (which means checking the object array).
Finding hidden items requires the player to search for them (which
requires the use of the relevant commands). Thus different
programming requirements get different colour codes.

Chapter Five

Interior Decor - Arrays
and Things

Once the basic map has been prepared it will still , despite the pretty
colours, look rather bare. What it need s now is a little ' tarting up' .
We have to decide what should , and should not , go into all those
rooms.

The contents of the rooms will fall into two categories - things
that exist in one room only and may not be moved , and things that
are ' transportable'. The items in the first group need not concern us
at the moment. But for the items in the seco nd category there is a
simple rule: if it exists , then it must exist somewhere. The so mewhere
is, as with the character qua lities we dealt with in Chapter 3, in an
array.

The process of interior decoration is , of course, another crucial
part of preparing an adventure. It is also one of the easiest things to
get wrong. To a certain extent, therefore, this chapter is more
concerned with what not to do .

Little boxes ...

Before dealing with the interior decoration of an adventure in detail
l want to spend a few moments discussing arrays and their uses. If
you are already familiar with their function then you may wish to
move straight on to the next section.

The primary purpose of an array, or a 'matrix' as it used to be
called, is to store lists of numerical or alphabetical information as
sub-units of a single variable. If we start with a 'one-dimensional'
array named A$() then the various values of A$ will be labelled
A$(I) , A$(2) , A.$(3) , etc. In Fig. 5.1 you will see that it holds a list of
five names. So in order to create the A$() array prior to its use we
would use the statement.

DIM A$(5)

72 Adventure Games for the Commodore 64

M; < 0) UNU~>ED

A$(l) ,JOHN !:>MITH

A~~< 2) PAUi JONE!:;

A$< '.3) ERIC 0 'SOC:I<

A$ ('t> E:EOWUl...F

A~~<~.)) RED ~>HIFT

Fig. 5. 1. One-dimensional array for AS() .

In this line the number 5 does not refer to the dimension of the array
but to the number of'elements' or boxe within the array. In order to
create a multi-dimensional array we must add more numbers to the
DIM statement, because the 'default' dimension value for an array
the value the computer gives to the array unless told otherwise - is 1.
For a two-dimensional array, for example, we would enter

DIM A$(5 ,2)

which would give us 5 rows with two columns in each row (actually
we get six rows and three columns - see the discussion of 'zero
elements' below). The number of elements in this array would be the
number of rows multiplied by the number of columns, in this case 10
(see Fig. 5.2). Some machines - the Lynx, for instance - only allow

A$< 0 , 0 l UN USED A$(0 , 1l UNUSED A$(0 , 2) UNUSED

A$< 1 , 0 l UNUSED A$(1 , 1l J. SMIT H A$(1 , Zl COLLEGE l~D

A$(2 , 0l UN USED A$< 2, 1l P. JONES A$(2 , 2> ANY ST

A$(3, 0) UNUSED A$(3,1) E. O'SOC I< A$(3 , Z> LAUNDRY AVE

A~H 'I, 0 l UNU SED A$< 'I, 1 l E:EOWUL F A$ ('! ,2 l VA LH AL LA

A$(5 ,0) UNUSED A$(5,1l RED SHIFT A$C5,2) CRAB NEE: .

Fig. 5.2 . Two-dimensional array for AS() . Note difference in number of 'zero '
elements.

one-dimensional arrays, while others allow truly labyrinthine arrays
with up to 88 dimensions! Such complicated arrays actually have
very little value except when used in complex mathematical
calculations, and in high-powered databases and spreadsheets. It is

Interior Decor - Arrays and Things 73

very unlikely that an adventure game would ever need mo re than
one or two dimensions in each array.

One last point. It's always a good idea to bear in mind the
existence of the zero element in an array. It is still possi ble to find
machines which start arrays at element 'I', but most computers,
including the C64, start arrays from 0. Just how big a difference the
'zero elements' make can be see n in the two diagrams above. In the
C64, numerical arrays take up five bytes per element (including the
actual value for the element) while string arrays take up 3 bytes plus
I byte for each character in the string. At that rate the one
dimensional array below would take up a total of 65 bytes including
3 which are unused - less than 5 per cent wastage. In the two
dimensional array a total of 139 bytes are needed , of which 24 are
unused - about 17 per cent wastage! So don't waste space
unnecessarily by creating a separate array for every list if you can
possibly use the same arrays for severa l different routines.

Don't make any array bigger than it needs to be. I have said in the
line notes in the last chapter that arrays of less than 11 positive
elements don't need to be DIM med. At the same time, if you address
an un-DIMmed array the computer automatically sets aside space
for 11 elements (including the zero element). So if you really only
wa nt four positive elements, and you're short on space, then do DIM
the array before using it.

The C64 assigns 0 (zero) as the lowest value in an array, so why not
try to use the zero elements? This may not always be possible - it
cannot be done, for instance, if the elements are called by variab les
with va lues greater than zero, as when printing room descriptions,
e.g.:

IF RN > 0 THEN PRINT A$(RN)

All the same, it will save a lot of space if you can.
Alternatively, if you have a fairly large two-dimensional array in

which the zero column is not used , then why not treat it as a separate
one-dimensional array?

Program 5 .1 : Making the most of your zeros

The program below is a short test of the array-maki ng process. It
demonstrates quite graphically the amount of space that would be
wasted by ignoring the zero elements of quite a small array.

74 Adventure Games for the Commodore 64

]LIST

1.0 DIM A$(12t2>
12 FOR X = 0 TO 12
14 FOR Y = 0 TO 2
20 A ~HXtY> ::o "CAT"
:3 0 r:· f(I N T x II I II y II II A ~1; (x t y) II II +

t

q(1 Nl::X f
' t '.5 F' F: I N T
~5 0 NE XT

Program 5. 1.

And here is the printout this program produces

010 CAT O/l CAT 0/2 CAT
:I.I 0 Cr;T l / 1 C1~T 1. /2 CAT
210 CAT 2/:L CAT 2/2 CAT
310 CAT 3/:L CAT 3/2 CAT
4 I 0 CAT 4/:l CAT 4/2 CAT
5/0 U1T '.5/:1. CAT 5/2 CAT
6 / 0 CAT 6/1 C1~T 6/2 CAT
7 10 t: AT 7/1 CAT 7/2 CAT
8/ 0 CAT B/1 CAT 8/2 CAT
9/0 CAT 9/1 CAT 9/2 CAT
10/0 CAT 10/ 1. CAT 10/2
11 /0 Cr~T :1.1/ 1 CAT :1.1/2
12 / 0 CAT :1.2/:1. crn 12/2

Think character

CAT
CAT
CAT

In Chapter 3 I spent a good deal of time explaining how to create
'progressive' characters - characters which would be modified by
their experiences in the course of an adventure. On the assumption
that many writers will appreciate the value of the progressive factor ,
and want to include it in their own games, the first rule of interior
decor must be to include at least one unavoidable test of each
character quality.

To do the subject justice, then, let's deal with all eight of the
qualities included in the programs in Chapter 3 - Strength, Health,
Intelligence, Skill , Height, Weight , Wealth and Luck.

Strength
As I said earlier, strength is the one character quality which should

Interior Decor - Arrays and Things 75

really be included in every adventure. The original purpose of the
strength rating - in board game adventures - was to help determine
the outcome of a fight. Your strength rating would be used to
calculate the effect of each hit you scored on your opponent (or
opponents). Because of the time taken to calculate the effect of each
blow, in a fight, few computer adventure games use the strength
rating in this way. This is not to say, however, that it has lost any of
its importance.

The most important function of the strength rating is, or at least
should be, in helping to calculate what objects the player may carry
at any particular stage in the game. In other words, the strength
rating should act as a direct control over the size of the player's
'inventory'.

'And just what might an inventory be?' asks the voice in the
background.

Those of you with some experience of adventuring will no doubt
be familiar with the INVENTORY function under one name or
another (INV I etc.). Basically it controls, records, and lists on
request all the items that a player is carrying at any given moment.
As such it is a very useful function, and saves yo u the trouble of
constantly updating a handwritten list of objects.

Unfortunately, many adventure writers in the past have
mishandled the inventory routine by using the number of objects
carried as a way of limiting the size of the inventory. This can lead to
so me quite ridiculous situations. It could, for example, result in a
player being able to pickup (or GET) a sledgehammer (one item) but
have to drop something in order to pick up a box of matches and a
piece of paper (two items) beca use the player is already carrying five
items and may not carry more than six items at any one time. In one
game that I came across - written by an amateur - this kind of
programming allowed the player to carry a maximum of four items.
Thus you could carry an iron stove, a deflated weather balloon, a
large (i.e. man-size) wicker basket and an inflatable rubber raft all at
the same time. You could not , however, carry a pair of flippers, a
snorkel, a book, a fish and a box of matches!

Now you are going to need an inventory routine of some so rt in
any adventure ga me. There is no good reason, then, why each
portable item should not be given a realistic weight to be used in
calculating how many items a player may carry at any one time. The
actual programming requirement is virtually the same as when
inventory size is calculated by number of items (see below) , though
you will need an additional array to hold the weight value for each
item.

76 Adventure Games fo r the Commodore 64

One word of warning if you use this method . Don't leave too
many small (i.e. lightweight) objects lying around , or stro nger
characters could end up with an inventory list that fills up the best
part of a screen.

Program 5 .2: Picking up the pieces

This first , very simple routine creates the most basic kind of
inventory, taking no account of the player's STRENGTH rating or
the weight of the objects themselves.

·:i l...J~:; T

RFM ***** GET OBJECT ti *****
,.)
,(,.

8 REM *** SET UP DEMO
9
l () p F' l NT I I [c I ... E t-1 p J 11

: G 0 :;; u i::: 1. 0 () ()
ZO T ::: 0
30 INPUT 11 [DIJWN]!.fHICH F'OOM 11 ;F~N~I~

40 RN = VAi... <PN$)! IF RN< 1. OR RN>
0 THEN 30

98 REM *** 'PARSE' COMMAND INPUT
99
:1 on INPUT 11 t:DO!,,.IN * '+JWHAT NO'.J 11 ;co~1;
:l.:J.O IF LEFT ~!; cco~1;,:1.) -·· 11 1 11 THE:N CCl~'l..ID

300: GOTCl 20
:1.20 IF LEFTS CCCl$t1.)

400~ GOTO 70
:1.30 IF LEFTS CCCl$,:I.)

900
:1. tt 0 Pl:\'.TNT II [DOI.JN] ~;01:~F~Y

ERf:)T .~,,~() 11 co 'I;: GOTO
29?'

....

....

11c.;11 THEN

"G" THEN

- J DON' T
20

2G8 REM *** DISPLAY INVENTORY

300 FOR X = :1. TO 8

C 0 ~;I.ff:

GOTO

UND

'.'.l1 () IF OE:$ (x t ;::) :: " -<I. II THEN PF\J:IH Cl
E: ~; < X t :I.)

370 NEXT
33 0 F~ETU 1;·N
'.]<.f"/

Interior Decor - Arrays and Things 77

::ic) n REM •::+::ii: 'C ET ' CJ[:,JECT :I. ·-· FIND N1~·,

ME

400 FOR X = LEN <CO$) TO :I. STEP
l

·i ., () IF MIC·~~ (CO !~' x t :I.) II
11 TH Et·' N ~;

- RIGHT$ CCO$,T>: X - 1
Lf2 () I :::: T + :I.
1+:3 0 NE :-<. T

498 REM **~ PART Z - FIND THE OBJECT

500 FOR X - :I. TO 8
510 IF NS - 08$C X, :I.) THEN CH - X:X -

s: NE XT : GOTO 600
!.'.:;zo NF XT
!;'; '.3 (l F' F\' JN T 11

[I) I) 1,.J N] I s EE N 0 11 N ~; 11 HE 1 ~: E •
II

~i 9 7

598 REM **• TRY TO GET OBJECT
·:.=.; <:~<?

r.»OO IF IN>~':! THEN PRINT ''LDD!..IN-:1 ~:;0 1:~

RY - YOU CAN ONLY CARRY SIX ITEM
~3. II : f~ETUl"N

610 IF OE: !~(C:H,2> :::: '' ····:!.''THEN Pf<:INT
' 1 LDO~J.i.JJYOU (1Lf;:E1~1LiY Hf.ilJE THE 11 N!li 1

'

! II: 1 :~ETUf~N

62 0 IF ()E: !t> (CH, 2) :::: II() II THEN PF' INT II

[DO!-Ji·J.::1 ~3()1:;;1;:y - II N~; II ISN I T AW~1ll...AB

LE! II! l:\'.ETUl:<l.J
630 IF VAi... (OBS<CH,Z>> < >RN THEN

p1:;·:rt.JT 11 [DOI.JN] THE II N!I; II I~3 N I T HEI:;;
EI II: RETUF'N

640 PRINT 11 LDf:Jl.JN::ICJ . I< . - YOU H<-~VE THE
"Wt>

6!:iO OE:!l><CH,~~)::: 11 - l":IN ::: IN+ 1: HETUPN

897
898 REM *** QUIT ROUTINE
B99
1? f) () PRINT " [CLEM~] II: END
997
998 REM *** ARRAY - FOR DEMO ONLY

78 Adventure Games for the Commodore 64

9<?9 :
:I. 0 () 0
:1.0:1.0
l 0 '.~'.. 0
:I. 030
:1.9??
2 000

?0:1.0

FDF' X ::: l TO B
READ OBS<X,l>,OBS<X,2>
NE XT
1=<ETl.Jl;:N

DATA KNIFE,l,BANANAS , 2,CARROTS,
:3 , BClTTL.E, 4

DATA Gl.JN , 5,PAPER,6,RHUBARB,7,WA
TEI=\:, B

Program 5 .2. ·

Line-by-line analysis
Line I 0: Having cleared the screen, program execution passes to
Jines I 000- 1030 which fills a mini-Object Array with items and the
number of the room in which they can be found .

Line 20: The variable T is a supplementary value in the routine
which reads CO$ in lines 400- 430. As Jong as it precedes that loop its
value can be reset to 0 either here or immediately before the loop is
executed .

Lines 30- 40: As this is a demonstration, the current value for RN -
the player's location - must be set before each trial. See the DAT A in
lines 2000- 20 I 0 to find out what is in each room.

Lines I 00- 140: The routine will only respond to three commands: I
(for INVENTORY), G (for GET) , and Q (for QUIT), though it will
respond to any form of these commands as long as they start with the
right Jetter (read by LEFT$(CO$, I)) . The first two commands will
allow further trials; Q just quits!

Lines 300- 330: Displays the inventory, if you've actually collected
anything, by searching for - I in the third element on each row of the
object array. If it find s - J it prints the name in the second element of
that row (see line 650) .

Lines 400- 430: If told to G , or GET, an object this section of the
routine moves back wards through the command IN PUT until it
finds a blank space. It then assumes that what it has collected
(N$=RIGHT$(CO$,T) - which does not include the blank space) is
a valid noun. This method of collecting words ignores everything
between the first and last words in the command and will respond in
exactly the same way to G KNIFE , GET KNIFE or even GET ME
THE SHEATH KNIFE.

Interior Decor - Arrays and Things 79

Lines 500- 540: The program now checks the second element
(remember the zero elements!) of each row for a word to match N$.
If it finds a match then it sets CH to the value for that row and moves
on to the next section (see Chapter 9 for more details). If no match is
found, the appropriate message is generated (line 530) and the
program RETURNs to be directed back to line 20 for a new
command.

Lines 600- 650: Because the inventory is controlled by number of
items held, rather than total weight, line 600 simply checks whether
we are already holding 6 items (it would only a llow us past this point
if IN equalled 5 or less). If we already have six items then line 600
RETURNs the program for a new command. Li ne 610 handles
requests for items already held. Line 620 deals with items no longer
available - a factor not actually used in this program but one which
would apply to , say, a smashed bottle, spi lt water, etc. Line 630
responds to requests for an item in another room, and 640 tells you if
you have successfully obtained the required object. Only then would
the program pass on to modify the third element of the appropriate
row - a - 1 means you are now holding that object - and the value of
IN is raised by 1.

Line 900: As I said - Q quits.

Lines 1000- 1030: A simple READ loop to fill the array OB$() with
the DATA in lines 2000- 2010.

Program 5.3: 'You can't carry anything that big .. .'

This routine assigns a maximum weight value that can be carried by
the player, and individual weight values to each item. If the player
tries to pick up an item that will take the weight of his inventory over
the maximum value, the message 'SORRY - YOU CAN'T CARRY
ANYTHING THAT BIG' is printed out.

If you were using this routine in a program which included detailed
characteristics for the player, you could obviously replace the figure
20 in line 600 with the player's current strength rating, or a formula
based on that rating.

··11.TFT

.. ,
<..

80 Adventure Games for the Commodore 64

I r. r:· P J iJ T '' i:: c I... F t i r<: ::i ' ' :. c (] ::; u i::: :I. o o o
';.: o T ::: 0
J O lf·lF'lJT '' [[· Cl~'·! i) J\.l l lT CH i::: uo ;1 ' 'iF'."1:1
lt 0 F' I·.! :::: U t1 1... (P f\1 \! ..) ; I F P t··.i < :I () I~ P ;..~ ·· ..

fl TH1:::1,1 3 0
C/:.:."

I 0 (1 li'JF'l.IT ,, [ooi.,IN »:. /..} J 1.,)H(1 T NDH ,, J, col
l 1 C1 :x: F I ... E i::· T :I; (c D "' t 1) ... I I T I I T H [, ... J c Cl '.::: u [:

JOO ~ C:.ClTO ;::.O
t ? c1 1 F 1... FF T 1; < c ci =i:. , :1) 1

' c 1 ' T 1 ·1 i::: i'' c n r. u i:::
.<t (l 0 ~ GOT O '.? 0

l 3 () :r: F !... [F T ~; (c Cl l I l) I I Cl I I T H [N c 0 T Cl
9 () (!

·1lf() F'F::l!-JT "L DfJt,.,1~.JJ~:;OF'F'.Y I DCfrl 'T Ui~ D

E F'!:; T (.1N 1::1 ' ' CO ·=1;: COT Cl ? 0

7~8 RFM *** DISPLAY INVENTORY

? 0 () p r-:: T N T I I [[) 0 I,.) N)}:: ~?. J y () u i~ i::: E c (., R F'. y I H
(~ . " ;} \•

3l 0 FOR X = 1 TO 8
3 2 0 I F' Cl [: ~1; (x , l) :::: I ' :I. I I T 1-1 F N F' F'. J H T ' I

THF " icm :l>(X t O)
::::3 0 NE XT
3 if (l p F'. l N T I ' (~ T Cl T t1 I... ~ ..) E l c H T Cl F I I l N I I I... B

('."' II · ..).,

~l".~(1 F<E::TUl:\:P.J

398 REM *** 'G[T' OBJE::CT l - FIND NA
ME

qoo FOR x = LEN (CO$) TO :I. STEP
l

/.~ l () IF MlD '.I; (CO'.I; t x, 1) II ,, THEN N'.Ii
- RICI-IT$ CCO$,Tl!X - 1

·4 Z 0 T ::: T + 1
1.n 0 NFXT

498 REM *** PART Z - FIND THE OBJECT

Interior Decor - Arrays and Things 81

~no FOP I ~ 1 TO 8
510 IF Nt = 08$ tX,0) THEN CH - Y:X -

i>, :~ (l[Y T ~ GOTCl (, 0 0
'.''!'.:' 0 NLXT
~==; '.J c1 F' F· 1 t·.1 T 11 i:- o o 1.-~ N ::1 J ~: ; r:: i::: N n 11 t-..1 ~1. 11 1-1 E' r:: E •

ti

1=;;.:.p F~F TUF' f".I

~'""ll'.J l~ ' EM >K;«iK TF~Y TC1 CFT OE:.JFC T

h 00 IF IN+ VAL <OB4CCH ,2)) > 20 THEf".I
p F' J i'·J T I I [' D 0 [,.) t\ I '] :::; C) i::· 1::: y y Cl u c t1 N I T

ct1i::·1-:.:Y f., NYTHJN C THt1T i:::r:c . 11 : r:·ETUF'N

,l~ :I ('I l F C) i:: < I ~ (c H t :I.) :::· 11 :I. 11 T H EN F' 1~: I M T
11 [DOl.-.lN] YOU t1 1 .. i:::Et1DY Ht1'·,I[TH E II N'I> II
1 11 : r::ETur::N

b2 0 IF 08<1; (CH , :I.) :::: II 0 11 THEN F'F'. lf'.IT II

c ei o 1 . .i N ::i ~:;or~ r:· Y 1 1 N ,,, 11 :r '.3 1,1 .. T t·1 l.J ,.~ :x: 1... t1 E:
LF ! II : F~ ETl.JF' l".I

t) 3 0 I F V C.1 I.. < D E: 'I> (C H , :I.)) < > r-:.: N T H E N
F' F"nn ti i:: Dm.n-1 ·:i TH F 11 N+" :rn1-,1' T HEr;:

c: 1 11
: i::: 1:::Tt.Hrn

,:<, 4 n i:· 1::::n1 T 11 i:: i::1 o !--frLI o .. 1< • -· you H t i 'J E THE
II t·l ·:1;

6 '.':: 0 0 [: 'I> (c H :> :I.) :::: 11 :I. 11 ! l 1'1 :::: l N + ~) ti I... (
OB$CCH , 2>>: RETURN

("'I('', ., "' . .., •) F~ EM JK ;« JK CllJ lT F:r:JUT Il~E

q f) f) F' F: l N T 11 [c I... E (.., F'] 11 : EI~ D
997
998 RE M **~ ARRAY - FOR DEMO ONLY

1000 FOR X = :I. TO 8
:1.0:1.0 READ 08$CX,0>,08$(X , 1> , 0B$C X,2)

10 ~~ 0 NE XT
:1.030 F'ET IJf.'N
:1.99?
~0 00 DATA KNIFE,1,:1.,BANANAS ,2,2,C ARR

OTS,3, 2 ,BOTTl...Et4,1
7 010 DATA GUN, 5 , 3, F'AF'ER ,6 ,1,RHLJ BARB,

7 , 7. , i::: r~ I\ i:;: F I... , B , :I. ::;

Program 5.3.

82 Adventure Games for the Commodore 64

Line-by-line analysis
Lines I 0- 540: These lines are a direct copy of the lines in the last
program except as detailed below.

Line 300: Just to show that this is the inventory a short introduction
has been added.

Line 320: The program now utilises the zero elements for all rows
from 1 to 8. Thus element (X, 1) of the last program is now (X,0) - the
name; element (X,2) is now (X, 1) - the location of the object; and
(X ,2) holds the weight of each object.

Line 340: As each item is collected its weight is added to IN so that
this line is able to display the total weight of the current inventory.

Lines 600- 650: Again a fairly close version of the lines in the
previous program with the exception of line 600, which now looks
for a maximum weight of 20 lbs including the object to be got! I feel
that the message generated by this line is a lot more satisfactory than
the one shown in the last program. Line 650 is now altered to add the
weight in OB$(CH,2) - translated to a number by the VAL ()
command - to IN

Lines 900 and 1000- 20 I 0: Again as before, but now three 'values' are
READ into each row of the OB$() array - a name, a location and a
weight.

Program 5.4: Dropping out

Having discovered how to pick things up we also need to be able to
put them down again. ln most adventures this is done with the
command DROP (item), and in this example I've stuck to that
si mple format.

.::.

"? F~Fl · i

H F'FM
9

c c:i ~I ' ,,,, '' r:· i:;· or:· TH i::: 1< NT FF • •
N 'l; (NF') ::::''T HC l<NJF'F''

10 FOR X = 1 TO Fl

Interior Decor - Arrays and Things 83

20 IF OBSCX,O> = N4CNP> THEN TE = X:
X = Fl: NEXT : GOTO 100

:30 NEYT
'to PF'TNT ' 1 [DCJHN::i~:;o i:~F~Y -·· CAN'T FIND ' 1

N ~I; <NP)~ Fi'ETUl:~N

97
98 REM *** IF NSCNP> EXISTS CHECK LCl

Cf.lTTDN
99
:I 0 () 0 :::: 0
110 IF VAL COBSCTE,1)) < > PL THEN

Q ::: l
1 2 () IF (~ THFN 0 :::: (): F'F'::CNT 11 [DOHN] YO

U CAN'T DROP WHAT YOU DON'T HAVE
I I II ! F°FTUF0 N

1'.30 PRINT 11 i::Doi..tN::iu.1<. 11 :oi:::~1><TE, :t >
STRS CPL>! RETURN

Program 5.4 .

Line-by-line analysis
Lines l 0- 40: A simple X loop (adventure programs can often seem to
be little more than an unending series of loops!). The variable Fl is
simply the highest row value for the object array - 08$(). We now
search through the object array for the noun given in the command
INPUT - CO$. If we find N$(N P), then the routine continues at line
J 00. If we don't find it then we politely tell the player what an idiot he
is and go back for another command.

Lines I 00- I 30: The variable Q is necessary here because the
statements in Jines l 10- 120, although they all deal with the same
situation , won't fit into one program line on the C64. Setting Q to 0
and then altering its value, if necessary, is the quickes t way round the
problem. In line 130 the player's current location - PL - is changed
from a numerical or 'real' value into a string value so that it can be
entered into the 08$() array.

By the way, if you're using an inventory size controller then an
appropriate statement must be added before the RETURN in line
130, either IN= IN - I or IN = IN - VAL (OB$(TE,2)).

Strength is not enough ...

Health
The health character quality keeps track of the player's physical

84 Adventure Games for the Commodore 64

condition. If the hero catches malaria, loses a fight , etc., his health
rating will drop . In the original board game this meant two things. If
the health rating of any player dropped below a certain level he had
to take a rest for a certain number of goes in order to recuperate,
even though his colleagues might choose to 'play on'. If his health
rating ever dropped to 0 (or below!) he was automatica lly declared
dead and had to bow out of the game.

In computer adventure games 'resting' would mean waiting for a
certain amount of time while absolutely nothing happened , a very
boring situation for the player. For this reason many games use the
player's strength rating to indicate his state of health, and only
consider whether the player is alive (that is , whether he has a positive
strength rating) or dead (if the strength rating falls below I) .
Depending upon what actually happens in your adventure you may
want to ignore the health quality altogether.

Intelligence
Like health, the intelligence rating comes towards the bottom of the
list of useful character qualities. In the randomised character
creation program in Chapter 3 I used intelligence as one of the
guidelines for deciding what type of character the player was given. I
assumed that thieves and wizards generally had higher intelligence
ratings than warriors (who kept their brains in their biceps) and
delvers (who kept theirs somewhere else).

Generally speaking intelligence is used to decide whether a
character can learn new skills - languages, code-breaking methods,
etc. - and should be applied to interesting problems rather than
essential problems. Acquiring a high intelligence rating might make
life easier for the player, but not too easy. As I said before, anyone
who writes games that only a genius can complete is going to have a
ve ry small audience indeed .

Skill
The 'skill factor' plays a major role in advent ure board games since
they usually involve fight sequences of some kind. In that context
strength would determine how hard you hit your opponent, and
your skill rating would determine how well the blow was aimed.

In computer adventures, use of a ski ll rating will depend upon
whether the hero is actually required to show any physical dexterity.
If he uses a gun, for example, his skill rating will show how good a
shot he is. Thus a perso n with a low skill rating might need to take
two , or even three, shots before he can be sure of hitting his target.

Interior Decor - Arrays and Things 85

(You might even include a short arcade-style test of skill before the
adventure begins, so as to give the player a truly representative skill
rating.)

Height and Weight
These two ratings usually go together. Their main purposes are to
decide (a) whether a player is big enough to handle certain objects
(very few leprechauns are see n wielding five-foot broadswords), and
(b) whether the player can move through certain areas.For instance,
a character who weighs 200 lbs will obviously be far more at risk
when crossing ice, damaged bridges , etc., than a player who weighs
only 140 lbs. And a tall , well-built character will find it much harder
to avoid trouble by hiding than a 110 lb midget.

If you are short of space then height and weight , like health, are
usually the first qualities to be dropped from the list of ratings.

Wealth
Apart from strength , the wealth rating is probably the most
important factor in many adventures. ot only is the player's wealth
very often the measure of his or her success, but it is often necessary
quite rightly - for the player to acquire a rea onable amount of
money to buy the items needed to complete the game.

Luck
I've argued, in an earlier chapter, that a good adventure game is one
that has fairness built into it. Too many games in the past have
included sections where the player' s success is based on sheer chance
rather than skill - a complaint to be seen in many reviews. So it may
seem strange to argue that a luck rating should be included as a basic
part of an adventure game.

Luck , or what looks like luck, plays an important part in our
everyday Jives . It can be good or bad , and when players complain
about the chance element in a game they usua lly mean that they
seemed to be having an unfair share of bad luck. Broadly speaking,
the luck rating should be used in a game to give the player a chance
to win through in a situation that might otherwise seem pretty
hopeless. Handled in this way, and used in moderation, the luck
factor adds spice to a game rather than spoiling it.

Will the hero notice a small trap-door in a dark corner? Will he be
wounded seriously, only a little, or eve n escape unharmed from a
cunningly placed booby-trap? Will a small or poorly-armed
character strike a lucky blow and defea t a superior foe? The luck

86 Adventure Games for the Commodore 64

factor can be made to maintain the balance of a game, so don't be in
too much of a hurry to cross it off the Ii t of useful character
qualities.

What? Where? And how many?

There's always a temptation, especially when you're working with a
very limited number of rooms, to try to fill every nook and cranny
with people, creatures and objects as a way of holding the player's
interest. Resist thi temptation at all costs!

No writer wants to waste space, and if there are too few items
dotted around the map then the game can indeed lose its sparkle. But
this is one of those occasions where too much can be as bad as, or
even worse than, too little - for several reasons.

First there is the element of surprise. Let's suppose that you have
decided to put two 'things' in every room, be they people, creatures,
or objects. What you have done here is to give a pattern to your
game, and even the slowest player will soon realise that there are
going to be two things in every room. So how do you hide anything?
How do you create an element of surprise? A suming that you've
used each thing for a specific purpose you'll either have to introduce
a few extra things - o that some rooms contain three items - or drop
some of the items you've already listed and alter the shape of the
storyline accordingly.

Adopting the second alternative can be frustrating and time
consuming. Adopting the first is likely to turn even a small
adventure into something that looks like a tube train in the rush
hour. Which takes us back to the usual reason for overcrowding -
lack of RAM space. For the space that you have saved by limiting
the number of rooms (and the number of room descriptions) will
soon be taken up again by the larger object arrays and the extra
subroutines that you'll need to process all the added events.

On the whole it is better to keep the number of 'things' in an
adventure down to a satisfactory minimum and spread them out in
what would appear to be a random manner. The appearance of the
occasional empty room can be most unsettling, especially if you use
one or more of the subroutines which follow .

Anyone who knows anything about Melbourne House's best
selling game The Hobbit will almost certainly be aware of its
'animated' characters, who move about in the adventure quite
independently of the player. Amazing? A trick made possible by

Interior Decor - Arrays and Things 87

machine code? In one word: no. This element of The Hobbit is
certainly a very imaginative piece of programming, yet the actual
coding involved is really very sim ple. These next three programs -
Random Item / Chase, Random Item / Limited Move and Random
Item / Place - show how you too can introduce independent objects,
be they things or characters, into your own programs.

Note: As they stand none of these programs will RUN by
themselves . To see them at work they must be accompanied by a
command input routine (to move the player character), a set of
movement codes and a means of checking what is happening to the
Random Item (or Items) such as a simple PRINT RI (the variable
giving the Random Item's location) after each move.

Program 5.5: Hot pursuit

In this program one item, which should be carefully placed at the
start of the game, is programmed to move towards the player as he
or she negotiates the adventure. However, since the item moves after
every command , and the player may give more than one command
in the same room , the player and item will not necessarily meet up in
the sa me place each time.

,.,
. •

H RFi'1 :>1<.:u: F'l ... t1r::E F\' 1.:ii-Jl:\Oi-1 lH'.. M
q

I. 0 F'J ::: .<+ ?
99 7
Q98 REM *** CHEC~ FOR RI
(/QC>

1000 lF RI THEN GO SUB 3 000

Z 99 7 REM *~* GET RANDOM MOVE FOR RI
2 998 REM AND CHECK VALIDITY

- ~·:'. 9</ 9

:3nno n =,,
~:~o :I. 0 NH -··

Nh ····
::io :1. ii

INT< i:;:ND (:I.) lK F'D) + l
PEEK CRI * F'D +BA+ Q): IF

0 THEN F'.ETl..IF'N

88 Adventure Games for the Commodore 64

'.:lo l7 F'E:M lK·-1;. :i I F Nii Vt1l...ID TF;:y TO MC1U[
F'I

2018 R[M TOW ARDS Pl...~ YE P AN~ 'RET
ui:;·j .J.

::::o ;;'.o IF f·.Ji 'I F'I ... THFiJ F'I ::: NH ~ CUTCJ)<'

X\
::: 0 J O IF F'I... ·:. i:; ·:x: (1hl[1 NM .;, F'l THEl·.t F'T

I J i'1 A F'FTUF;·i'-' .,
:.: () ..:'f 0 IF F'I... ··:· F~I r:'.·H D Ni' i > i:;:I THEi ·~ F'I

Ni'! ' F:r:: TUF:IJ " ::i o ,,,~ ;~·
'.:lO ·:tE F(Fh JK;+.:» Fl .. ~:;E 'F\'E TUF'N ·' t1NYqt1Y

Program 5.5.

Line-by-line analysis

....

....

Line 10: Everyone has to be somewhere, even a Random Item -
which is all that this line is meant to indicate. For the method of
placing random items see Programs 5.6 and 5.7.

Line IOOO: Depe nding on its nature, the random item may be picked
up by the player or destroyed. If this is the case this line should be
altered to read

1000 IF RI= OTHEN GOSUB 3000

because IF Rl is 'true' (i.e. the GOSUB will be executed) for any
value of RI except 0

Lines 3000- 30 I 0: Q is a short-lived 'local' variable used to hold a
random number. The value of PD will be the number of possible
directions of movement on your map - 4, 6, 8 or 10. ln line 3010 the
variable NM (New Move) temporarily holds a value to be taken
from a POKEd set of movement codes. The equation for the
PEEK is: (the current location of the Random ltem)*(the Possible
Directions for movement)+ (the Base Address of the Movement
Codes - PD)+(a random value between I and PD inclusive). What
this PEEK actually gives us is either a positive number - the room
that the Random Item is to move to - or zero, which means that no
move in that direction is possible, in which case the program
RETURNs (to get the player's next command). Perhaps this will be
a little clearer if I give an example.

Let's suppose that we're using a linked squares map with only one
level, which gives us four possible directions for movement. Thus we

Interior Decor - Arrays and Things 89

would start by ei ther ' initialisi ng' PD at the start of the program,
giving it a va lue of 4 (I = North, 2 =South , 3 =East and 4 = West) ,
or we can substitute the number 4 for PD in the eq uation (often
called the 'argument' in computing) in lines 3000 and 3010.

The variables RI and Qare also dealt with quite eas ily. RI - the
location of the Random Item - should be initialised at the start of the
program as shown in line 10. Its va lue will then be altered from time
to time whenever this routine finds a new room for it to move to. The
variable Q is re-set in line 3000 every time that this routine is u ed.
Since the value of PD, in this example, is 4 then the value for Q must
be 1, 2, 3 or 4 . For the sake of this illustration let's assume that the
Random Item is currently in room I (RI= I) and that a va lue of 3
(for move East) has been assigned to Q in line 3000.

Finally we come to the variable BA (the letters stand for Base
Address). In this routine we need the value held as BA - which
should also be initialised at the start of the game or replaced by its
numerical va lue - in order to find the correct item in the movement
code table, which has been previously POK Ed into memory. But the
va lue of BA is not, as you might imagine, the address of the first byte
of the movement codes. To see why this should be so let's experiment
with the argument in line 30 I 0, taking the address of the first byte of
the movement code table as 20014. Substituting numerical va lues
for each of the variables we would get.

NM= PEEK (I* 4 + 20014+3)

Now what we actually want is the value held in the third byte of the
movement code table , which would be at 20016. So the value we
should be reading is found by PEEK(20016). But if you work out the
argument above you'll find that the line is giving us PEEK(2002 l) - 5
bytes away! To get the correct location for any PEEK, that is to get
the correct value for BA, we must subtract the number of possible
directions for movement for any room plus I from the true address
of the start of the movement codes. Thus our argument should read

NM = PEEK (I* 4+ 20009+ 3)

which gives us PEEK(20016) the byte and value that we really want.
A full explanation of the principles involved here is given in Chapter
6.

Lines 3020- 3050: If the location generated for NM is also the
player's current location (PL) then the value of NM is transferred to
RI (the random item moves to that location) and the program moves

90 Adventure Games for the Commodore 64

off to the routine which deals with that situation. Otherwise the
program checks whether (a) the random item is being moved
towards the player, who is in a lower numbered 'room' (line 3030), or
(b) whether the random item is following the player who has
somehow slipped past into a higher numbered room. In either case
NM is accepted as a satisfactory move and its value is transferred to
RI.

Line 3050: If moving the random item to room NM does not bring it
to the player, or at least nearer, then it must be moving away. In this
case the random item is left where it is and the program RETURNs
to the command input routine.

There are at least two simple modifications which could be made
to this routine. Firstly, if the random item is allowed to pass through
walls , etc. , then change lines 3000- 30 I 0 to:

3000 Q =INT (RND (I)* 2) + I
30 I 0 IF Q = I THEN NM = RI + I
3020 IF Q = 2 THEN NM = RI - I

The random item will now have a 50-50 chance of moving towards
the player on each turn. Secondly, if you want the random item to
elude the player for as long as possible, then alter lines 3020- 3050 as
follows:

3020 IF NM = PL THEN RETURN
3030 IF PL< RI AND NM< RI THEN RETURN
3040 IF PL > RI AND NM > RI THEN RETURN
3050 RI = NM: RETURN

The random item's location will now only be altered if moving to
NM takes it away from the player. Be careful about using this
version when the random item is important to the player's success. It
could be so successful that the player never catches the item up since
he has no way of knowing where it is - unless you deal with that
elsewhere in your program.

Program 5.6: The watchdog

In this program an item is made to move about, but within a
restricted area - which it might be guarding, for instance. The
player's chance of avoiding the item depends on two factors:

Interior Decor - Arrays and Things 91

(I) Whether there is an alternative route past the area in
question
(2) How many rooms the item moves through.

Even if there is no alternative route for the player, these rooms
should include at least one 'side room', so to speak, so that the player
does have some chance of passing the item without meeting it.

:11...I'.:! T

1 REM *~*** RI - LI MITED MOVE ****
)I(

8 REM *** PLACE RI <RI AREA =4 0 TO 45

l 0 H :x: :::: tt ::l

995 REM *** IF RI EXI STS TRY TO MOVE

996 l~:E M

9r17 F:EM
9c,>n F<: EM

IT AFTER EACH COMMAND
BY THE PLAYER HAS BEEN
EXECUTED .

1000 IF RI THEN GOSUB 3000

2998 REM *** GET RANDOM MOV E FOR RI
299 9
3 000 n = INT < RND <1> * PD> + 1
30 0 6
3 007
3 0 on
30 0 9
::i () 1 0
30:1.7

REM *** CHECK RESULT AGAINST
REM THE MOVEMENT CODES

NM = PEEK <BA + <R I * PD> + Q)

3 0:1.8 REM *** MAKE MOVE IF VALID
:3 0 :I. 9
3 020 IF NM - 0 THEN RETURN
3030 IF NM < 40 OR NM > 45 THEN RETURN

30 .-tO F~I ::=NM

J O l f / F\EM *** 'CHEC I< FDR l~:J/ F'l...1~ YE !'.\:
3048 REM MEETING AND HAND LE
30 't9

92 Adventure Games for the Commodore 64

3050 IF RI = PL THEN GOTO XXX
3 ()~.'ii
3058 REM -~~ OR SIMPLY 'RETURN'
30 '.'.'j9
::iot.)O l=<'.ETLJr-\:N

Program 5. 6.

Line I 0: As you see, I've chosen to confine the random item to the
area covered by rooms 40 to 45 inclusive. In this case, therefore, it is
specifically placed at the centre of this area at the start of the game.

Lines I 000- 3020: These are the same as lines I000- 30 I 0 in the last
program.

Line 3030: If changing RI to the value of NM would take the item
outside its alloted area then don't change it.

Lines 3040- 3060: Otherwise move the random item and, if it meets
the player, go to the routine which deals with that situation. If there's
no meeting then RETURN for another command input.

Program 5. 7: The random monster

In this third program one or more items are placed randomly at the
start of each game. This last routine is in many ways the most
effective, since a given room might come up empty for several games
in a row, and then suddenly become inhabited by an aggressive
monster in the next.

If more than one item is to be placed by this method you may wish
to include the 'filter' section, which ensures that each item is
definitely placed in a different room. If you're only placing one item
the filter will not, of course, be necessary.

::i1...1!:;T

1 REM ***** RI - RANDOM PLACING **

8 REM *** SET LOOP TO NO , OF RI ' S

:1 ()

l ?
:I 0

v
.'". :I. TO NF'.

EACH WITH F'.ANDOM LOCATION

:I.?
20
17-y
1. .. /

2U
2Sl
'.:io
'f 0

T

Interior Decor - Arrays and Things 93

INT C RND Cl) * TR> + LR

REM *** FILTER OUT REPEATS

FOR Y = :I. TO X - :I.
IF VAL COB$CY,:I.>> = T THEN Y - X

- :1. : NEXT Y: GOTO 20
:::;o NEXT Y

58 REM *** AND PLACE RI
:'59
60 OBSCX,:1.) - STR$ CT>
(()7

68 REM *** THEN REPEAT FOR NEXT RI
6<?
/ P NEXT X
BO END

Line -by-line analysis

Program 5 . 7.

Line IO: Sets up a standard loop for I to NR, the total number of
random items to be placed.

Line 20: Gets a random value for T that is between LR and the total
number of rooms in your map. LR is the number of the Lowest
numbered Room in which any random item will be placed. TR
eq uals the Total number of Rooms minus LR.

Lines 30- 50: One way of simplifying your control of random items is
to include them in the object array. In this case I've assumed that the
random items will occupy the first NR rows of 08$(). This means
their names, initial locations and weights will already be in the array,
and this routine will relocate them in a random fashion. Line 40
checks whether the location for the next item is already occupied by
another random item, and gets a new location if it is . If you don't
want any doubling up at all then make the top value for the Y loop
the top row value for the object array. If you don't care what goes
where then delete lines 30- 50.

Lines 60- 70: Once the routine has found a satisfactory location for
item X, the numerical value of Tis transformed into a string value
and placed in the appropriate element of OB$() and the X loop , if
sti ll incomplete, is repeated .

94 Adventure Games for the Commodore 64

The last objection to using large numbers of items in a game
concerns the time needed to process each command . The best
commercial games are nearly all written in machine code. There is
nothing that machine code can do that BASIC cannot handle - but
machine code does everything very much faster. Thus machine code
programs can be made far more complicated than BASIC programs
and still run in the same amount of time. If you can write your
programs in machine code then RAM space alone is the limiting
factor in setting a maximum size for your object arrays and event
handling routines. If you're working in BASIC, however, remember
that as the player enters each new room, the control program will
have to scan through the entire list of objects to see which of them, if
any, is in the room.

You can complicate a game by making objects and problems
interrelated rather than using a larger number of'one off' items. For
example, if there is a bottle in one of the rooms near the start of the
game, why not make it a multi-purpose bottle? When the bottle first
appears in the game it may be hidden, as it contains a piece of paper
on which is written an important clue. Then , in case the player is
tempted to keep the clue and discard the bottle, it can be used to
carry liquid , a small animal such as a scorpion , or some fine -grained
substance like sa nd . Once it has served this new function it might
then be used as a weapon, and since this will inevitably lead to it
getting broken why not use the edge as a cutting tool? In other
words, if an item must be included in the game for one purpose why
not see if it can be used somewhere else as well?

Program 5.8: Coming or going?

There is, in fact , one way of using the same object array twice in the
same game (though the control program will of course be longer).
To use this system the game must be set up as a two-part journey -
there and back. This will allow you to have one set of items in play on
the outward journey, and a second set for the return trip. The one
condition here is that all items used will be unique to one journey.
That means you won't be able to use an item collected on the
outward journey when you are on the way back. If you do need any
item on both journeys it will have to be re-introduced in the second
array and the player will have to GET it again, unless the second
array is carefully set up so that currently held items are preserved.
This can be done - as in the program below - but it isn' t worth the

Interior Decor - Arrays and Things 95

extra program space / execution time unless it is absolutely essen tial.
Tip number 6: go for quality rather than quantity. Most

adventurers will gain more satisfaction from overcoming one really
challenging problem tha n they will from resolvi ng half a dozen
problems that look petty and pointless once the sol utions are
known.

1 RFM ***** SIMPLE ARRAY FILLER •~
llOC*.

,.,
1 .•

'.;l
10 FOR X =ST TO FJ
2 0 READ OB$<Xt0>,08SCXt1>,0B$CXt2>
:30 tJF::)<" T
't fl END
999 /
G998 RFM ***ITEMS FOR 08$() ARPAY
99(7<1
10000 DATA 081 NAME , 081 LO CATION, OB

1 WFIGHT,08Z NAME,08 2 LOCATION , O
BZ \.IEICHT

100:1.0 Dt1Tt1 ETC.
Program 5.8 .

Line -by-line analysis
Lines 10- 40: Although the basic array-filling routine is included in
severa l other programs, J thought I'd include it for the use of any
newcomers to computing. Line 10 sets up a simple loop by which the
same operation (or operations) is / are repeated a given number of
times. In this case I want to fill an array of (FI-ST) rows by 3
columns, ST being the lowest row number and Fl the highest.
Because the value of X increases by I each time we go round the loop
we are saved the bother of writing something like

20 READ OB$(1 ,0) ,0B$(1,l),OB$(1 ,2)
30 READ OB$(2,0),0B$(2. l) ,OB$(2,2)

and so on. Line 30 simply sends the computer back to the beginning
of our loop (to the start of line 20, in fact) until X = F 1. Incidentally,
when a loop is completed the value of the loop index - in this case X
- is actually l higher than the highest control value. So don' t make
the mistake of thinking that X = FI when you get to line 40; it
actually equals Fl + I.

96 Adventure Games for the Commodore 64

Lines 10000- 10010: Whenever a program includes the command
READ (as opposed to READ#) it looks for the earliest piece of
DAT A in the program that has not yet been used by another routine
and proceeds to collect items (separated by the commas) until the
READ command has been completed.

Once we understand the ba ics of filling and using arrays the job of
altering them, if necessary, becomes a whole lot easier, especially if
you keep a note of what is in each element of the array. This isn't too
difficult if you use one of these two simple routines. Of course you
will need to have used the usual system of setting your program out
with all the line numbers as multiples of ten (I 0, 20, 30 and so on) in
which case you'll have plenty of room to insert either routine, with
the line numbers changed accordingly, at any point in your program
where you want to check the contents of a given array. The first
routine will display the contents of a one-dimensional array, the
second will set out a two-dimensional array. Both routines (which
will not, of course, do anything unless they are part of a larger
program containing at least one array) will hold the array display on
the screen until you press a key to allow program execution to
continue.

12 FOR X = 0 TO 10

13 PRINT "ELEMENT 11 ;X;" =-" "A$(X)

14 NEXT X

15 GETZ$: IF l$ === ""THEN :1.5

Note: This first routine assumes that the array we want to examine
has been setup, at the start of the program, using the statement DIM
A$(I 0), though it could, of course, be altered to read any part of an
array rather than the whole by altering the values in line 12.

In this next routine we will examine an array that has been set up
using the statement DIM A$(JO, I 0) using what are called 'nested
loops' (one loop inside another).

12 FOR X - 0 TO 10

13 FOR Y - 0 TO 10

:l.4 PRINT "ELEMENT 11 ;X; 11 1 11 ;Y; 11 ::= 11 A$<XtY>

Interior Decor - Arrays and Things 97

15 NEXT Y

16 GET z~~: IF z~t> -·· 1111 n1n~ U>

17 NEXT X

Note: It is not necessary, on the C64, to specify the variable name in
the NEXT statement of a loop, though it is advisable to do so when
you are using nested loops. If you do specify your variables then
make sure that you a lways follow the FILO principle - first in , last
out - or your program, while it may not crash , will certainly not
handle the work within the loops correctly.

You will also notice that the GETZ$ statement, which causes the
breaks between displays , has been inserted bet ween the two NEXT
lines. This is necessary when examining an array of this size as it
causes the program to pause after each row of the array has been
displayed. If we tried to display the entire array in one go most of it
would run straight up beyond the top of the screen before we had
time to read it.

Program 5.9: Re-filling an array

The next subroutine, used to re-fill an array that has already been in
use for some time, makes use of the nested loop system I described
just now. In this case the outer loop is set for the number of new
objects to be placed in the OB$() array, whilst the inner loop
controls the search of the rows of OB$() as we look for 'free' array
space.

]LIST

l 1:;:F::M lK:*.)lliKiK f.·,r~:F:AY F'E:FTL..I... ll-'.lK::+:: lllll-'.

2
~1

8 REM*** STRIP CURRENT OBSC) ARRAY
9
10 FOR X = 1 TO Fi
2 0 I F () i:: $ (x t l) < .> " -- l II T H EN () E: ~; (x t

1) :;-" "0"
30 NEXT
97
98 REM *** AND INSERT PART 2 OBJECTS

98 Adventure Games for the Commodore 64

100 FOR X = 1 TO F2
110 FOR Y = 1 TO Fl
120 IF OE: !p (y t 1) ::: II 0 II THEN l~:EAD [)[:$

< Y , 0) , 0 F:: $ < Y , :I.) , Cl E:: $ < Y , ?) ! Y ::: F l
130 NEXT Y
140 NEXT X
:I. 9997
19998 REM **~ ITEM S FOP PART 2 ARRAY

1 <7999
20000 DATA
20010 DtiTtl

Program 5.9.

Line-by- line analysis
Line I 0: This looks like any other start to a loop , but it isn't! In this
context I've assumed that the player may still be carrying some items
gathered in the first part of the game. And unless I've inserted some
kind of control - like 'YOU CAN ONLY CARRY THREE ITEMS
BEYOND THIS POINT' - I won't know exactly how many items he
has. Now as everyone knows you can't DIM the same array twice
(not unless you want to crash your program!), so I have to have
made the OB$() array big enough at the start of the game to allow
room for all the items to be used in the second part of the game p lus
any that the player is still carrying. F 1 then, is the maximum size of
the OB$() array.

Lines 20- 30: The rest of the loop runs all the way through OB$() and
sets the location element of any item the player isn't carrying to zero .

Lines 100- 140: I can now insert all the items for the second part of
the game (a total of F2 objects) into the 'empty' spaces in OB$(). The
X loop deals with all the part two items. The Y loop searches OB$()
until it finds a vacant space. The statement Y = F 1 in line 120 makes
sure that I don't waste time looking for more vacant spaces when I've
just filled one. Nor can any items be unintentionally carried over
from part I to part 2: by the system we've been using up until now, if
OB$(X, I)= "O" then that item is automatically unavailable.

Now you have it, now you don't

The last routine I want to deal with before going on to make some
general comments is the SA VE GAME option.

Interior Decor - Arrays and Things 99

This option is designed to allow players to SA VE a game while it is
in progress, either to preserve a situation before moving into an
unknown area (so they can start again at the last room successfully
dealt with , rather than having to go right back to the beginning of
the game), or so that they may end that session and come back later
to pick up the game where they left off. Many players think this
option is essential, but it has yet to become a standard feature of all
adventures.

Quite why so many writers fail to include this option I really don't
know, since it involves nothing more than saving the current room
number plus the two arrays which hold the character status and the
list of objects. This is achieved with a couple of simple loops which
store the information in a sequential file called SAVED GAME, or
whatever. After the game itself has been loaded , then, the player is
asked whether he wants to (I) play a new game, or (2) recommence
an old game. If he chooses option (2) then the information is read
back into the computer so that it replaces the DAT A set up at the
start of each game. The means of saving simple and array variables is
clearly laid out in the manuals for the cassette player and the disk
drives. The only point of deviation from these procedures would
occur if some information - such as the character status array and
name - had been POKEd into memory. In this case it would be
necessary to reassign the relevant values to a set of variables before
saving them.

Mr Nice and Mr Nasty

Two of the most common faults in adventure games come about
when the writers are either too helpful or too devious. There is , in
fact , a very thin dividing line between being fair and being obvious.
Being fair means constructing an adventure so that it follows a
consistent set of rules , and setting problems that anyone with a
reasonable amount of intelligence and general knowledge should be
able to solve - given enough time.

Being obvious means ... well, let me show you what I mean with
an example from a game I came across in a magazine a few months
ago. In this game the only correct solution to the problem that
provided the climax of the game was to drop a banana skin at the
right moment. This skin was placed , when the game began, in a
room about halfway through the map, and in that position seemed
to serve no useful purpose whatever. Moreover the room containing

100 Adventure Games for the Commodore 64

the skin was on one of two possible paths through the same area.
So far, so good . Unfortunately the writer ruined what would have

been a rather clever and unusual piece of problem-setting by making
it impossible to leave any room containing the banana skin unless
the player was carrying the skin. Thus there was absolutely no need
for the player to work out the purpose of the skin in advance, since
he had to be carrying it when he came to the final problem!

Tip number 7: don't underestimate the player's ability by
telegraphing the value of clues , objects and characters. Exploration
of uncharted worlds is , after all , an important part of the lure of
adventuring.

While the over-obvious program can be irritating, an even bigger
problem, and one which tends to occur more frequently , arises when
adventure writers try to be too subtle. Take this example, drawn
from a commercially available game.

At the very start of the game the player finds himself in a store
room containing just three objects . He is allowed to GET any or all
of these objects, though none of them has any immediate value. If he
uses the INVENTORY command before leaving this room then he
will only be told which of those three objects, if any, he is carrying.

The player now proceeds to room 2 (room I has only one exit) and
find s himself engulfed by total darkness. So what does he do? He
cannot use any of the objects from room I to lighten his path -
maybe he should just keep on moving. But the result of that decision
is instant death! In fact the writers have created a situation where the
only correct choice is to call up the inventory again - though there is
no earthly reason why anyone would. If you do ask to see the
inventory, lo and behold - you're carrying a lamp!

Now where this lamp comes from is anyone's guess . It certainly
isn't hidden in room I, and you can't GET it in room 2. It may well be
that the writer(s) of the game have some logical explanation for this
incident, but 1 suspect that they alone know what it is .

Tip number 8: be logical. There's no reason why your game
shouldn't have some very strange twists to the plot - so long as the
player has a genuine chance of finding out what's going on and how
he can deal with it. (And I don't mean that every game should have a
book of 'hints and answers' like the one supplied with the game I've
just quoted. This solution is , all too often , a substitute for good
planning.)

Interior Decor - Arrays and Things 101

Skinning the cat

The old saying that 'there's more than one way to skin a cat' may not,
at first sight, seem to have much to do with adventure games. Yet it
leads us to the next common fault made by adventure writers -
leaving too many opportunities open. In the opinion of some writers
(and reviewers) every item in an adventure should have a use. This
view has its value, but it also has its faults. If every item has a
purpose then the adventurer will need to collect every item at some
point in the game. This leads to moments when the player will need
to make strategic decisions about what to hold on to and what to
drop. And God help you if you make the wrong decision!

On the other hand , if the player knows that he must collect each
item he will soon be able to compile a list of what's available, and
work out the solution to each problem on the basis of logic rather
than by app lying truly creative thinking. Of course we could give
every item a purpose - but make it a negative purpose in some cases .
Thus a packet of flash powder (as used by magicians) could be left
lying around close to a room with an open fire. Pick up the flash
powder and go too close to the fire and the powder erupts, giving
you a very nasty burn or blinding you temporarily.

Personally I pref er the third alternative - positive and negative
articles plus red herrings. This last group not only serve to confuse
the player (do I really need a left-handed widget?) but also serve as
problems in themselves (what do I do with a burnt-out light bulb and
a broken tripod?) . Moreover since some articles are immovable (see
below) a carefully set-up situation can have a player spending a
confused half-hour or so trying to work out, for instance, how to
shift a tin bath bolted to the floor of the outhouse .

Some of the best red herrings I've come across actually resemble
items in the same game which have real value. Thus you may find a
truly sturdy-looking broadsword that only reveals its weakness
when the player tries to use it in battle (it has been cut half-through
close to the hilt and the hole filled with dirt - you can guess what
happens when it strikes another sword).

The last group of objects to be included in a game - though they
are not stored in the 'object array' - are the immovables. These are
objects which always remain in the same room and can be useful,
harmful and red herrings. The purpose of this group of objects is to
provide extra items without using up much extra space . Because
they cannot move, or be moved , their weight and location is
irrelevant. Moreover, since it is generally assumed that being in the

102 Adventure Games for the Commodore 64

same room as an immovable will inevitably bring yo u into contact
with it , we don't even need to store a name for an immovable except
in the room description. To deal with attempts to GET an
immovable object (assuming that you don't include too many of
them) first let the program check the object array. If it can't find the
name of the required article then check which room the person is in,
and tell them the object can't be got if it is one of the relevant rooms.

Which brings us neatly back to the first subject of this section - cat
skinning. The point is that one object can often have several uses, as
in the case of the bottle I mentioned earlier. And if one object can be
used several ways, so one purpose can be served by several objects .
Take cutting a rope as an obvious example. It could be done with a
knife, a piece of glass, a sharp bit of rock or even, if you're prepared
to run the risk , by setting fire to the rope. That's a fairly obvious
example, and not one a writer is likely to overlook when they're
setting problems. Yet the same kind of mistake still crops up
regularly in commercial games in one guise or another.

There is one very well known game, for instance, where the player
should conceal himself in a barrel at one point in the story. The
trouble is that there are several barrels stored in the same place. If
the player reaches the right room before one of the barrels is
removed then, so long as he makes the right choice (that is , to hide) ,
the program automatically assumes that he is hiding in the right
barrel. If the player arrives after one barrel has been removed and
tries to hide he will be told this is not possible. Which is none too
smart, as there are still plenty of empty barrels lying about!

This is an illogical situation , the result of insufficient thought. If
the program had been capable of dealing with just one more item -
the placing of the only correct barrel - then there would be no
problem. The other hiding places could be left open and the 'HIDE'
command would be obeyed (but useless) . Alternatively all the other
barrels could be sealed off. Either way the whole situation could
have been dealt with quite easily, and remained consistent.

Tip number 9: double check. If the only acceptable way out of a
given situation is .by breaking the window, and if the window must
be broken with a stone, then make sure that the glass is described as
being too thick to be broken by a bare fist. And make sure that the
player has no other implements at hand with which to do the job. In
other words , take time over the problems you set, and if you do find
alternative solutions to a problem either block off the ones you don't
want or expand the program to deal with them. Whatever you do,
don't just brush them aside and hope they won't be noticed.

Interior Decor - Arrays and Things 1 0 3

Program 5.1 0 : The unexpected

You bend down to pick up a coin - and the ceiling falls in on you.
You walk into an empty room - and drop thirty feet because the
floor was an optical illusion . You find a shortcut - and get skewered
by a set of bamboo spikes. Yes , my friends , these are the booby
traps. Beloved by adventure writers , feared and hated by adventure
players, booby-traps are themselves a kind of booby-trap.

Like most things, booby-traps can be used or abused. They come
in two main varieties: those which can be made safe (defused) and
those which can only be avoided by sheer luck or well-thought-out
tactics.

Type one traps can occur anywhere. They may be set to penalise
the careless player, to ensure that the player is carrying a certain
object (an object with more than one purpose), or simply to add an
element of danger. They are also a legitimate form of problem
setting in their own right , of course, and finding devious solutions to
tortuous situations can be as much fun for the writer as it is for the
players.

Type two traps, which are almost always fatal , differ from type
one traps in a quite important way. Firstly, because they cannot be
defused , they should not be placed on a route that the player must
take. Their main purposes are to prevent players taking short cuts ,
to penalise the over-daring and greedy player, and to guard objects
or clues that aren't essential to the game. The one qualification to
this last point is that a room containing an important item or clue
may have one entrance / exit which is guarded by a defusable booby
trap, and another which is sealed by a non-defusable booby-trap so
that the player must go out the same way that he came in.

Tip number IO: use booby-traps harshly if you will , but be fair.
The routine below is a typical example ofa 'defusable booby-trap' . It
was invented to fit a situation where the player is required to open a
safe with a combination lock - provided that he ha collected the
numbers elsewhere in the game. Since it is always possible that a
player may, in his excitement, hit the odd wrong key, this routine
generously allows ten digits to be entered, even though it only
requires three. In other words, you're allowed seven wrong digits .
Hit an eighth wrong key, however, and it'll be the last thing you do in
this adventure.

104 Adventure Games for the Commodore 64

Jl ... JST

1 REM ***** RANDOM LOCK *****
8 REM *** SET RND VALUE FOR LOCK

:I. 0 1...0 :::
1...0

INT < RND Cl> * 999) + 1: JF
/ 100 THEN LO = 1...0 + 100

:;>. 0 L 0 ~ 1; :::: STR$ Cl...O>:L.0$ = RIGHT$ CLO
'I; t 3)

30 MT == :I. 0
'f 0 F' R I NT 1... Cl ~;

REM *** EXPLAIN SITUATION
</9
l () () Q :: l : r:· F\ I N T 11

[[) () l..J N] THE s A FE HA ~:;
A CDMDINATION LOCI<! 11

:1.0 7
10 8 REM *** AND ALL.OW MT ATTEMPTS
10 <)

1:1.0 FOR X = :I. TO MT
:1.20 PFUNT 11 CDDWN:JPLEASE ENTER DIGIT

NUMBEF: 11 Q" II;: INPUT TU;
130 IF TL$ < > MIDS Cl...OStQtl> THEN

F'F'\INT "[DOWN:rnoR1:-.:Y -· THAT WAS w
HONG. II: GOTO :I. ~50

:1.40 F'l"INT 11 t::DOWN:IWEL..L. DONE. 11 :Q :::: Q +
1! IF Q = 1 THEN X = MT! NEXT : GOTO
~:~ 0 0

1'.~.iO NEXT
1'.57
:1.58 REM *** RELEASE BOOBY - TRAP
159
160 F'IUNT 11 [[)QWN:JCRVS:JOOPS ! AFTEF\ II (

MT -·- o + 1> 11 FALSE ·nuEr:; A WELL II t
t

t 7 0 p RI N T II F' L. Ac E [) i:: 0 ()E: y ·-- T 1:-.: A p ~:; END f:) A
E:l...()CI< OF !:>TONE II;

:I.BO PRINT 11 DCJWN ON YDUI'."\ HEAD. F~
.I.P.!!! 11

: END
197
198 REM *** OR OPEN SAFE
:L 99
~~ 0 0 Pf\:INT 11 [DOWN J THE SAFE IS NOW OPE

N ! ! ! II: END
Program 5. 10.

Interior Decor - Arrays and Things 105

Line-by-line analysis
Lines 10- 20: For the later part of this routine I need a three-figure
number, but I need it in string form. Line 10 gets a random number
and line 20 converts it into a string.

Line 30: I also need a value for the Maximum number of Tries that
the player is allowed before the booby-trap is activated. MT can
equal any reasonable number.

Line 40: Prints out LO$ for test purposes only. This line should
obviously not be included in the final version of the program.

Line 100: Q will be the controller for the number of successful
attempts. It is a lso used as part of the instruction printout to show
which digit the player is looking for and as the index to LO$ when we
look for an fNPUT / required number match (see lines 120- 130).
That's why it must be set to I rather than 0. The rest of the line
merely sets the scene for the player.

Lines 110- 150: Another loop! But quite a clever one. Line 120 looks
for a digit to be input to TL$ using Q to tell the player which digit
he's looking for. Line 120 compares TL$ with the required digit in
LO$. If they don't match, an error message is generated and the
program tries to execute another loop. If TL$ and MID$(LO$,Q , I)
do match then brief congratulations are offered and Q is
incremented by I. If Q now equals 4 then , since we only want three
digits , the player has succeeded and moves to line 200.

Lines 150- 180: If, on the other hand , the player uses up ten attempts
without finding the right combination then the program 'falls
through' line 150 and the player is 'stoned to death' (aren't you glad
it's only a game!). At this point the game does , of course, END.

By the way, if you want to adapt this routine so that even one
attempt at opening the safe will trigger the booby-trap simply set
MT to I. The routine could also be altered to one that is time
dependent. In this case line 110 would be altered to

110 TA = TI + (seconds allowed * 50)

Line 150 would be altered to

150 IF TI < TA THEN 120

Chapter Six

One Step at a Time

The processes described in this chapter and the next are , as you will
soon see, rather more technical than most of the other material in
this book. So if you're fairly new to computing, or haven't ventured
beyond straightforward BASIC programming before, don't feel too
bad if, at first reading, these chapters look impossibly complicated .
Like most things in computing, playing around with the internal
processes of the C64 gets much easier once you have a bit of practical
experience to look back on .

Once your basic map is complete, including the placing of objects,
you will need to Jay out a table of 'movement codes' based on that
map. Although these codes are comparatively simple to construct,
and even easier to control from the main program, they are a central
feature of any game and it is imperative that the movement code
table is one hundred percent accurate. After all , it doesn't really help
to know where you are if you don't know where you've come from or
where you are going.

If you turn back to the map in Fig. 4.6 for a moment you'll see that
there are three possible routes in and out of room I - via room 2,
room 3 or room 19. Of course you can see what I'm talking about ,
because you can see the map. But how would the computer
understand this information? It cannot literally see the map, so it
must be given this knowledge by some other means. In fact it must
have access to what is often called a 'look-up table', which holds the
details on the map in numerical form . This is the only efficient way
of storing the map in the computer so that it can tell which moves are
valid for each room.

You'll notice I didn't say 'the only way' but 'the only efficient way'
of storing the required information . This takes us back to the
'calculated move' routine which I described in Chapter 4.

At first sight the grid map and calculated moves system looks
extremely effective. But only at first sight. For when you come to

One Step at a Time 1 07

examine the programming details more closely you find that the
whole thing is a waste of time (despite the fact that at least two other
books on adventure writing feature this routine as the key to
movement control). And I'm not just referring to the error which
allows you to 'fall off the edge of the world'.

To recap very briefly on the earlier discussio n of this system, the
basis of the calculated move grid is that each row of rooms within the
grid is of equal length. Thus to move NORTH you deduct the
number of rooms in a row from the room number of your Current
Room number - CR= CR - RL. To go SOUTH you add row length
to your current room number - CR= CR+ RL. And to go WEST
or EAST you deduct I or add I to your current room number
respectively - CR= CR - I (for GO WEST) and CR= CR+ 1 (for
GO EAST).

On the face of it , assuming that we include the error trapping
routine in Program 4.2, this all looks perfectly logical. And it is.
Except tha t we don't need to calculate the new location in the first
place!

Under, over, sideways, down

If we stick with sq uared maps for the moment it is possible to move
in at least four directions - NORTH, SOUTH, EAST and WEST.
Add movements UP and DOWN and yo u can move six ways. And
we could calculate the result of any move. (To move UP one leve l the
new room number will be found by adding the current room number
to the total number of rooms on the current level - CR= CR+ TR.)
The fault in this method rea lly only becomes clear when yo u look at
what happens ajier the move has been calculated. Because at some
time or other the writer has to use a second routine which tells the
computer whether the move is lega l (that is , whether the player has
moved through an open doorway or through a brick wall , for
example). And to do this the computer has to check . .. yes, yo u've
guessed it - a set of movement codes!

'Sounds good. But what on earth are you talking about?' says the
voice in the background . 'Of course you have to check whether a
move is legal - unless every possible move is lega l.'

The voice is right, of course. So let me explain myse lf more
clearly. I sa id just now that a squa re room has six possible exits. And
if we use a separate variable for each direct ion , as we must , then we
would end up with a list of movement codes which looks something

108 Adventure Games for the Commodore 64

like this:

N = 0: S = 0: E =I: W = 0: U =I : D = 0

The logic here is pretty obvious. The variable for each direction
must be given one value (above 0 or below I) if movement is allowed,
and an opposite value (below I or above 0) if movement is not
allowed. So, all that we need to do to process each 'grid move' is (a)
calrulate the result of the intended move, (b) check that the move is
legal , and then (c) move the player to the new location or generate
' bad move' message. It all looks very simple and straightforward. Yet
this method actually involves a redundant step - stage (a). If we're
going to use a ' look-up table' to check for legal moves then we might
just as well make that table a record of destinations and illegal
moves, both at the sa me time.

In this case a single sector of the table might look like this:

N = 0 : S = 0: E = 19 : W = 0: U = JOI : D = 0

Using a table laid out in this form allows us to eliminate the
calculation part of each move in favour of direct collection of data .

O.K.? Well , not quite. Using the calculation method does appear
to have the advantage of using far fewer bytes , even in its modified
form. After all , the calculation routine itself takes up very little space
(less than 150 bytes) and each va lue in the table of mo ve ment codes,
or movement 'validation' codes, takes up just one byte. By adopting
the second method we free much of the space used for the calculation
routine (saving about I 00 bytes), but at the sa me time we are forced
to use up an additional byte for each code with a va lue greater than 9
- or an extra two bytes if the value i over 99. In an adventure based
on just 99 rooms, with only 4 direction codes for each room (no UP
or DOWN), this second method could use an extra I 000 bytes or
more!

' I thought yo u were going to show people how to save space, not
how to waste it ,' ays the voice.

And so I will. Let's look at the problem again.

Program 6.1 : One byte at a time

The idea that each digit of each room number must take up one byte
is based on the standard method of storing movement codes, in an
array. Usi ng this method we would indeed be wasting space,
not only for each additional digit but also for each array element.

One Step at a Time 109

And that is assuming that the array is loaded directly into the
computer's memory. There are still many programs which initially
hold the movement codes in DAT A statements so that the values
must be READ from the program and re-stored elsewhere in the
memory. It's true that the C64 will allow you to store a zero in a
DAT A line without actually having a digit in the line, as in:

DATA ,, 19,, 101 ,

This line would be READ as 0, 0, 19, 0, IOI , 0. But even so there
must be a comma (one byte) for each and every value. At this rate the
movement codes for even a small adventure map eat up RAM at a
terrible speed . Fortunately there are alternatives.

The simplest option is to re-value all direction variables each time
you enter a new room (as in the program that follows) . This way you
avoid the use of an array altogether, so you don't need any array
space and you don't need any array pointers . However, you will still
be wasting a couple of bytes for each change of value, and you will
till need to use one byte for each digit.

Please note that neither this program nor Program 6. 2 - a second
method of directly revaluing the room movement codes - will have
any effect when RUN by themselves. They are 'how to' programs,
and must be linked into a larger program containing a command
parsing routine (see Programs 8. 1 and 8.2 in Chapter 8) plus a set of
room descriptions and movements codes .

::11 ... IST

1 REM ***** DIRECT REVALUE 11 ****
)f(

96
97

9fl
9<?
:I. 0 0
1 :I.()

120

:1.30

F~EM

F~EM

F~EM

r::EM

IF
IF
()

IF
N!
IF
('' t
.. :> •

*** ROUTINE TO MOVE TO NEW
LOCATION <WHEN N$ IS THE
SECTION OF COS CONTAINING

A MOVEMENT I N~3TF<LJCT I() N

L.EN < N~I;) > :I. THEN zo () 0
N~t> "I" ni::: N$ 111... 11 THFN :I. El()

N~; "N" AND N :· () THFN F~N

GOTO :1.90
N~; 11('"11 ,;) AND ,.,

;:> .. :. () THEN i:::N

GDT!J :I. r; ()

110 Adventure Games for the Commodore 64

:1.40

15 ()

16 ()

17 0
:I.<_;) 0
2 () ()

IF N~I; llF" f'.'1ND !"" '·:· (l THEN r::N ··- .. -··
I""" . ::. + ccrru 190
IF N$ II w II f'.'1N D ~~ '> () THEN F'.N
y~ ; CDTD :I. <.~()

F' F:: l NT 11 CDOWN::II Ct1N IT MO'...J[11 t·N !
X' . F\EM x :::: ~:; T I~ F~ T or:· COMMAND TNr:·uT
F~ CJUTINF

ON RN CO S l..18 10000,10050,:1.0:1.00
COTO X! REM X= START UF COMMAND
I NF'l.JT F~ Dl.JTTNE::

CUTD

r;9.:;7
<?</?U REM *** START OF ROOM DESCRIPTI

UN!:;

:1. o o o o r:· F~ :r: N T 1 1 c r~ o o M o i::: !:; c 1:-.: :r: i:- T :r CJ N) 11

100:1.0 N = o:s = :1.:1.!E = 14!W = O
100?0 F\'.FTUl1:N

Program 6. 1.

Line-by-line analysis
Line I 00: I have started this program with the assumption that most
of the commands being used will be more than one letter long. The
only one-letter commands that are accepted are I (Inventory), L
(Look) and , S, E, W (GO NORTH, GO SOUTH and so on). So
line I 00 filters out all commands longer than one letter and sends the
program execut ion to line 2000 (not included here) to deal with
them.

Line 110: This leaves us with six va lid commands and any illegal
one-letter commands entered by mistake. This line filters out
commands I and L, sending the program on to the routines at line
1800 (also not included here) if it finds a match between N$ and
either of these letters. This means that when we get to lines 120-1 60
we only have to deal with commands to move North, South, East or
West, or any illegal entries.

Lines 120-150 deal with the four legal commands - N, S, E and W. A
check is made to ee which letter has been entered as the command ,
and the value of the appropriate variable is read to see if it is 0 (zero)
- which means that you cannot move in that direction - or a positive
number, which would show which room to move to next.

So where do we get the values of N, S, E and W from in the first
place? In order to understand this we must jump forward to lines
10000- 10020 for a moment.

One Step at a Time 111

Lines I 0000-10020: Right at the start of any adventure game you
must move the player to the room at the start of the map (normally
room I). You would then set PL - the player's location variable - to
equal that room number (just as it is updated for each legal move in
lines 120-150), di play a room description , as in line 10000, and
initialise the movement code variables for that room. In this
example, in line I 00 I 0 the movement variables have been set so that
the player can on~1 · move SOUTH, to room 11 , or EAST, into room
I4. Variables N and Ware both set to 0 for 'no move allowed'.

If this was the start of a game then the program would move on to
collect the player's first command input. In this example, however,
the player's location (indicated by the variable PL) is probably
about room 12 or 13 (Pl= 12 or PL= 13), so instead of going traight
on to the command routine we RETURN from line 10020 to line
200.

Lines 190-200: If we've managed to make a move then RN will have
been set to a new number. We use this , in line 190, to direct the
program to the correct set of lines to print out a room de cription
and re-set the movement variables (as in lines 10000-10020). When
the program RETU RNs, to line 200, we mu t direct it on to another
section of the program which will check what the results of this move
may be, if any (see below) .

Finally, we must deal with moves that cannot be executed, either
because the required movement variable has a value of 0 or because
the command is illegal. Thus, rather than having line 160 read l
CAN'T MOVE THAT WAY we use a more general message: I
CAN'T DO THAT. Program execution then goes back to the start
of the command input routine for a new command.

Before we move on to the next program I'd like to deal very briefly
with the 'move result check' that I mentioned just now. Many
programs simplify the situation by not having any results from a
straightforward move command other than making the move itself.
In this case line 200 would send program execution back to the start
of the command input routine. Whichever way you want to shape
your programs the 'resu lt check' routine would be made up of lines
like this:

5000 IF PL = 10 THEN GOTO 7000
5010 IF PL= 14 AND 08$(5, I)= 14 THEN GOTO 8080
5020 IF PL = 26 AND OB$(12, I) <> "- I" THEN GOT09160
5030 IF OB$(45, I)= PL THEN GOTO 9530
5200 GOTO X

112 Adventure Games for the Commodore 64

In other words, we are checking to ee whether the conditions are
right to initiate a choice of 'event routines'.

In line 5000 the event will occur, or go on occurring, as long as the
player is in room I 0. In line 50 10 the event will only occur if both the
player and object 5 are in a given room at the same time, object 5
being a movi ng Ra ndom Item (see Programs 5.5 a nd 5.6) .

In line 5020 the event will on ly occur if the player moves into a
given room and is not carrying object 12. Final ly, in line 5030, the
event occurs in any room if object 45 is in the same room as the
player. ote that the event check routine must end with a line to
return the program to the start of the command input routine (at line
X) if none of the event conditions is met.

Program 6.2: Packing it tighter

A second method, w hich involves slightly more complex program
ming, saves bytes by removing the need to re et each value.
Unfortunately it u e up a good proportion of the space you have
saved because all values must contain the same num ber of digits.
Thus, if your map has 99 rooms, a ll va lues below IO will need a
leading zero attached to them as in 0 1, 02, 03, etc. And if you have
100 or more rooms, values below IO will have two leading zeros -
00 I, 002, etc. - and numbers from I 0 to 99 will have one leading zero.
The method of accessing movement codes stored in this man ner is
shown in the following program.

::11...IST

1 REM ***** DIRECT REVALUE t 2 ****

96
97

F~'.EM

F<EM
F<EM

</B F~'.EM

9?

*** ROUTINE TO MOVE TO NEW
LOCATION <WHEN N$ I S THE
SECTION OF CO$ CONTAINING

A MOVEMENT INSTRUCTION

100 IF LEN <NS> > 1 THEN 2 000
1 :1. o :r: F N ~1; 1 1 :r 1 1 o F< N ~1; ,,,, 11 1... 1 1 T H E N :1. n o

0
:1. ? 0 I F N $ II N II T H E N [) l ::: :1. : c CJ T () :I. 7

()

One Step at a Time 113

:I. :J 0 IF N~I ; I I ~:> 11 THEN DI 3: COTU :1.7
()

:I. lf 0 IF NS "E" THEN DI 1::· +
,.) t COTO :1.7

()

:I. ~.'5 () IF N1; "y.)" THE~~ DI 7: COTO :1.7
()

:I. 6 () F' I~: J N T " [D () w N TI c A N , T M 0 v E II N ~t> : c (J T u
X! REM X=START OF COMMAND INPUT
l~: Cll.JTIN[

170 NR = VAL C MID$ CDIS,DI,2))! IF
NF;:< :I. THEN :1.1.>0

18 0 F:N :::: NF~

:1.90 ON RN COSUB :1.0000,:1.0050,10100
200 COTO X! REM X=START OF COMMAND

INF'UT F~Ol.JTINF:
<(9 r; 7

9998 REM *** START OF ROOM DESCRIPTI
ON~:;

S'999
:I. 0 0 0 () i::· 1~: I N T I I (F~ Cl Cl M [) E: ~:; c 11: I F' T I () N) I I

l. 0 () :L 0 D l ~r. :::: I I () 0 :I. l :I. .(t 0 () I I

10 020 F.:ETUF~N

Program 6.2.

Line-by-line analysis
Although this second 'direct revaluation' program is longer than the
routine in Program 6. 1 it doe save space in the long run because the
actual movement codes - in DI$ - are shorter. Thus line 10010 of
Program 6.1 takes up 22 bytes where line 10010 of Program 6.2 uses
only 19 bytes (including the line header block in each case). As I said
in the notes on Program 6.1 , these routines won't do anything unless
they are part of a complete Command Input / Revaluation / Room
Description and Movement Code combination. So let's take a closer
look at Program 6.2:

Lines 100-110: These lines are, as in Program 6.1 , used to filter out
commands longer than one letter plus commands I (Inventory) and
L (Look).

Lines 120-150: Although we will end up by doing the same thing as
we did in Program 6. I - getting a positive or zero movement code -
the system used here is rather different. Thus in these lines -
assuming that we are not dealing with an illegal command - we do
not get a new value straight away, but rather the location in DI$
where we can find the correct code. Note: In this example each

114 Adventure Games for the Commodore 64

individual code has a length of two digits only, giving a maximum
room code of 99 . If you have more than 99 rooms on your map then
the values for DI in these lines would be 1, 4, 7 and IO and DI$ would
be twelve characters long. Finally, in each line, when a value for DI
had been collected execution moves on to line 170.

Line 160: As in Program 6. I this message has been worded to deal
with unsuccessful moves (which we will come to in a moment) and
illegal commands. In either case program execution will go back to
the start of the command input routine.

Lines 170-180: If the program has reached this point then we can
look for an actual movement code in DI$. In order to do this we take
the numerical value of 2 characters in DI$ starting at the Dlth
character from the leji in DI$. Thus, if N$ equalled "E" then DI
would equal 5 and we would translate the 5th and 6th characters of
DI$ into a numerical value to be assigned to NR (New Room). Next
we check that NR has a value greater than zero. If it is, then this
value is copied to PL (the Player's current Location variable) in line
180. If the value of NR is 0 then the program goes back to line 160
and the move is rejected (the value of of PL is not altered) . Notes:
When we use the VAL command, 'leading zeros', as they are called ,
will be ignored. Thus if VAL (MID$ (DI$, DI ,2)) actually equals
'02' this will be interpreted by the computer as plain 2. Also don't
forget that if you are using this routine with a map containing more
than 99 rooms the expression in line 170 must be altered to NR =
VAL (MID$ (Dl$,Dl,3)) .

lines 190-200: Exactly the same points apply to these lines as
mentioned in the notes for the same two lines in Program 6.1.

Lines 10000-10020: These three lines are basically the same as the
stateme nts at the same line numbers in Program 6.1 , but notice the
difference in line 10010. Instead of assigning values to four variables
we now have a single string called DI$. Thus we are still telling the
computer that it cannot move North (N=O in Program 6. I) , that
moving South takes the player to room 11(E= 11), and so on, but we
do it by packing all the information into one variable value and let
line 170 sort it out for us. Incidentally, if you were using this line in a
game which included room numbers above 99 then this line would
have to read I 0010Dl$="000011014000", that is: 000 for North, O 11
for South, 014 for East and 000 for West.

You won't be surprised to hear there is a better way of dealing with

One Step at a Time 11 5

the movement codes than any I've discussed so far. It does , however,
involve playing about with the 'innards' of the computer so it will be
of considerable value to start by discussing just how the C64 does
what it does. Unless you already have a good understanding of
things like page zero and the way in which BASIC programs are
stored and executed l would advise against skipping this next
section .

Bits and bytes and PEEKs and POKEs

It is quite beyond the scope of this book to exp lain machine code
programming in any great detail. Nevertheless there are times when
a basic knowledge of the ' low level' operations of your computer can
allow yo u to do things which would not otherwise be poss ible. This
is one such time.

The first thing I want to look at here is a part of RAM your
computer makes continual use of - the zero page. The name zero page
derives from the fact that all the addresses in the first 256 bytes of the
computer's memory take up only two Hex digits . The point is that
the highest number which can be held in one byte (that is, one
address) is 255 , or Hex FF (usually written as $FF). Since the
computer usually expects a four- digit hex number - that is two bytes
which it processes one at a time - this means that the second byte it
looks at in a zero page address , known as the high byte or MSB
(Most Significant Byte) will equal zero . Obviously the computer can
process one byte faster than two, which means that using the zero
page for much of its work allows faster overall processing time than
if it used , say, the area of memory just below ROM , which consists
entirely of four-digit hex addresses in most machines.

Now if the computer uses zero page whenever possible for its own
operations, we would logically expect to find things like 'po inters'
somew here on this page. A pointer consists of two adjoining
locations (usually on the zero page) which sto re a two-byte number -
the address of so mething in memory which the computer needs to
keep track of whi le it is R UNning a BASIC program. The list of
addresses which require a pointer include the start and end of the
program in the BASIC storage area, the start of the variable table
and of the array and string storage areas, etc., etc. The two pointers
we shall be using in the next section are (a) the ST ART OF BASIC
pointer and (b) the TO P OF PROGRAM pointer.

The second thing we need to know about what goes on inside the

116 Adventure Games for the Commodore 64

computer concerns the actual storage of BASIC programs.
Have you ever wondered how a computer knows where to look

for the line it is sent to by the GOTO and GOS UB commands? Or
where it stores the number for each line of a BASIC program? The
answer to these, and many other question , can be found in what I
call the 'line header block'.

Believe it or not, every line of a BASIC program starts with a five
byte block that looks something like Fig. 6.1. The values are , of
course, all in hexadecimal. The five bytes have the following
functions:

0 ()
19
OB
:I. 0
00

Fig. 6. 1. A BASIC program 'line header block' (decimal values).

Byte I - 00. This will be either the start of the program or the EOL,
the End Of Line byte of the previous line of code. This byte serves
two purposes. Firstly it tells the interpreter that the command or
statement in the previous bytes is complete and should be processed.
Secondly, the computer understands that it has reached the end ofa
line and that the next four bytes are for reference and not part of an
instruction .

Byte 2 - 19. This is the first half of the address at which the header
block for the nex t line of BASIC commences. This first byte is the
lower half of the address (which is actually $0813) , and is known as
the 'low byte'.
(Note: It is worth remembering that computers habitually store two
byte numbers in this back-to-front fashion.)

Byte 3 - 08 . The 'high byte' of the address of the next header block.
This address is stored at the start of each line so that the computer
can 'jump' from block to block when it is looking for a particular line
during a GOTO or GOSUB, rather than having to scan through
everything in the program.

Byte 4 - 10. Using the standard back-to-front format this is the
low byte of the actual line number. In this example the line number
is 10 ($0A in hexadecimal) .

Byte 5 - 00. The last byte of the header block is the 'high byte' of the
line number. It only comes into use for line numbers above 255
(decimal). The fact that the whole line number must be stored in two

One Step at a Time 117

bytes is the reason why BASIC programs cannot have lines
numbered above 65535 (or Hex FFFF - the maximum value
storable in two bytes).

With these two relatively simple pieces of information in mind we
can start fooling the computer into doing what we want - without
putting the program at risk!

Now you see it - now you don't

Learning to juggle with the innards of a computer is very much a
matter of getting plenty of 'hands on' experience. So this section is
almost entirely practical. That means that if you haven't got your
computer switched on at the moment, then now's the time to do it.

Now, if everything is ready, let's begin. The first thing to do is to
type in a one-line program (which does absolutely nothing):

IODATAl2,40,50, 100

Now enter the following line - without a line number - and press
<<RETUR >>:

FORX=2048T02069:?X" "PEEK(X),:NEXT

(Notice that in both cases there are no blank spaces in the line,
except the one between the quotation marks.) All being well, you
should now see the two columns on the left of Fig. 6.2 appear in a
four-column display:

DECIMAL DECIMAL MEANING HEXIDECIM~
~SS CONTENTS ADORE SS

ZO"lB 0 0 !~ 0 B 0 0
~·~ (l't 9 19 :I. <f ~; ono 1
~?. () ~:; () n El !liOBo~·~

?O~H :I.() :I. 0 1; ono::i
2. () ::5 2. () () ~t>OBO.<t

~·~0~53 :l.::l:L DATA !Ii o no:'5
~?.O:S4 't9 ASC (II :L II) ~liOB06
2. () ::5 ::; ~5 () ASC<"2") :liOB07
2. () :56 't ..<t ASC:<",") ~liOfJOfl

?O:S7 &::"'"')
,.J.<.. ASC: ("Lt") !~OBO<;i

~~o:sB Lffl ASC<"O") ~liOflOA
;~()~)<;i if Lf ASC<",") !~onoi:::
2. 0 6 () :7i :3 ASC<":'5") !li!J B 0 C

118 Adventure Games for the Commodore 64

2061 'H3 A~3C< 11 0 11) ~~ 0 8 0 [)
2062 'M A~3C< 11 t 11) ~l;OEJOE

2063 't9 ASC (II l II) ~;OBOF

2064 'H3 ASC<"O") ~~OBlO

2 06'.5 4B ASC<"O") ~~OB:I. :I.
2066 0 Er1d '~0Bl2

2067 0 of $BO:L:3 (~~:1.:3 === :1.9 [)(?.C •)

206!3 0 I ... in[~ $0814
2069 88 b~:rt<?.S $0tl1~5

Fig. 6.2 . Memory contents for line 10.

No doubt you will recognise the first five items from the earlier
example. They are, of course, the 'header block' for our line. And if
you think about it for a moment it might seem reasonable to suppose
that the contents of bytes 2049 and 2050 could be altered to point to
any address that you liked . In other words, why not set them for
some address a hundred or so bytes further on , and then store
your own data in the 'hole' that you've created. Unfortunately

2 048 0 2049 19
2~50 B 205:1. :1.0
2052 0 2053 :1.3:1.
2 0 ~5:3 't9 2 0 '.'5 '.'5 '.'5 0
~?. 0 ~56 44 2 0 ~:57 1::·11

.. .J ~-

20'.58 4B 2 0 ~59 't 't
2060 '.:i ::i 2061 '+El
;?. 0 6 ~?. -'l't 206:'.l 't9
2064 'H3 2 0 6~5 'H3
zot.>6 0 2067 0
;?.068 0 2069 BB

Fig. 6.3 . Screen display of memory for line 10.

there are two problems associated with this . Firstly the process of
SA VEing and re-LOADing will reset the header blocks to their
original contents. Secondly, while the computer does read each
header block pointer during a LISTing, when the program is RUN
the computer's internal bloodhound - the text pointer that I referred
to earlier - moves remorselessly from byte to byte. The only time
that the text pointer bothers with the header block is when it is
involved in temporarily storing it, or when it is looking for a
prticular line in a GOTO or GOSUB. The next exercise will show
you what I mean.

In the demonstration which follows we will insert a 'hole' into a
three line program. Again the program must be entered exactly as
given here - with no gaps. First type in

5REMOOOO,OO
IOA=IO

One Step at a Time 119

Then re-enter the direct mode display line, only this time make it
read

FORX=2048T0209 I :?X" "PEEK(X),:NEXT

You should now see:

20 'tEl () 2 0 't 9 :I. 4
20~.~q (;) 2 0 ~.=.;:I. 1::·

'-··' ..J

2 0 ~52 () ?O~j 3 :I. 4 3
~?. () '.:i ·'l 4D 20~5'.'5 't8
20~56 't!3 z 0 ~:.; 7 .tfB

z 0 ~:i8 'M ? 0 ~:_;9 'H3
2060 'tB ?06:1. 0
20<) ~~ Z::l ?06 3 B
2064 :I.() 2 () 6~5 0
2066 6'.':i 2067 :I. 7 El
;?. 0 68 't9 ;?. 069 'W
2070 () ?07:1. ()

207? () 20 7:3 BB
207't () ?07'.5 :I. 't ()
~?.07 6 :I. 2077 20 El
~?.07El () 2079 ()

2080 't 3 20f:l:l. 43
~-?.OB;?. 43 ~?.083 'f 3
Z08't 't 3 zow:.; 't3
~?. 0 81.i 43 2087 't :3
20BB 't'.3 ;?.089 4:3
2090 't :3 ~?. 0 91 43

Fig. 6.4 . Screen display of memory bytes 2048- 2091 .

The important locations to look at here are, firstly , bytes 2062 and
2063. They are the address bytes of the header block of line I 0 ,
pointing to the start of the next line of the program - $0823 (2071
decimal) . Ignore the 8 for a moment and just add 23 to 2048 - though
here this is the second of three End Of Program bytes because there is
no more program. I'll deal with this in more detail in a moment. The
second set of locations to note is 2073 to 2079. These will be holding
different values in your display - probably all will contain 43 if
you've just switched your computer on. Whatever values you do
have in these locations note them down - you'll want to check them
again in a moment.

Lastly, check locations 2080 to 2091. Unless you've overwritten

120 Adventure Games for the Commodore 64

another program, as I had , this area will probably also contain the
value 43 in every location.

Notice that the header block of line 10 - from 2061 to 2065
(inclusive) - is pointing at 2071 (ignore the 8 at 2063 and simply add
23 to the base address, 2048) . Although our mini-program actually
ends with the three End Of Program bytes in 2070 2071 and 2072, if
we were to add another line in the normal way it would be tacked on
starting at 2071 , not at 2072 or 2073 , because there can only be one
zero between lines. Now we will add another line, but we'll start it at
2080 , not at 2071. And for the sake of clarity we'll make it the same
as line 10, apart from the line number. We can do this in two ways.
For the moment let's stick to direct access and do it 'by hand', so to
speak, by POKEing it in.

First of all we have to create a new header block (I'll explain why
in a moment). So POKE the first five addresses like this:

POKE2080,0
POK E208 I ,42
POKE2082,8
POKE2083,20
POKE2084,0

and then copy the contents of line I 0 plus the three EOP bytes:

POKE2085 ,65 - A
POK E2086, 178
POKE2087,49 - I
POKE2088,48 - 0
POKE2089,0
POKE2090,0
POKE2091 ,0

If you now enter the line

FORX=2048T0209 I :?X" "PEEK(X),:NEXT

you'll see that 2085-2091 is indeed a copy of bytes 2066-2072. And all
we need to do to complete the job is to move the EOP pointer up to
the new position, that is , one byte after the third zero. 2092 minus
2048 = 44, so POKE 45 ,44 and there we are. We've added a new line
to our program - at the far side of a seven byte gap - and the
computer is none the wiser. To prove the point just enter LIST and
see what you get.

Whoops! What you didn't get was line 20. Have you been wasting
your time? Am I out of my mind? ls the header block of line I 0

One Step at a Time 121

pointing to the start of the new line? No, no and NO!! The low byte of
the address at the top of line 10 (byte 2062) still contains 23. Enter
?PEEK(2062) and you'll see what I mean. To point it to the right
location enter POKE 2062,33 and type LIST again. And there's line
20. The program is complete.

So far, so good. But we still have one more item to deal with. For if
we were to SA VE our program and then re-LOAD it we would find
that the byte of the line header block at 2061 had been re-set to 23.
And that's why we need line 5.

Up until now line 5 has looked rather redundant. Its purpose,
however, is to undo the housekeeping work that the computer does
when it LOADs a modified program. At this point, then, (and still
with no blank spaces) line 5 should be re-entered as:

5POKE2062,33

Obviously just having the line in the program won't do anything. But
as long as the program is RUN after being LOADed byte 2061 will
be re-set correctly (from our point of view) and subsequent attempts
to LIST the program will produce the complete, modified listing.

If you've got it - flaunt it

This is all great fun, but how do we put it to practical use?
It is possible, as I said at the start of this chapter, to hide data

either inside a program or at the end of it. And in both cases the data
can be made virtually invisible. Let's start with the more practical
option - storing data at the end of a program. In order to do this we
need only take account of one set of pointers - at locations 45 and 46
- which hold the address of the point at which any BASIC program

ends and its VLT, the Variable List Table, begins. (See Ian Sinclair's
book Introducing Commodore 64 Machine Code for a detailed
explanation of the VL T .)

The following program, though extremely simple to look at, gives
an excellent demonstration of the way in which data may be POK Ed
to the end of a program without leaving any obvious trace.
Note: this program must be entered in three parts. It must also be
entered exactly as shown - with no blank spaces in any line.)

Part I:
5IFPEEK (45)>000THEN 1010
I 0 FO RX =OOOOTOOOOO
60?CHR$(PEEK(X))"(2 spaces)";:NEXT

122 Adventure Games for the Commodore 64

Well that looks pretty vague, doesn't it? The reason for all those
zeros harks back to our last experiment - the line is made up to size
with zeros because we don't yet know what numbers to use. But we
can find one of the numbers that we'll need for the next line simply
by checking the Top Of Program pointer. So enter

?PEEK(46)*256+ PEEK(45)

and check the result. You should get the value 2108. But this will
include the three zero bytes which mark the end of any program. In
other words the true end of the program is at 2108 minus 4 (2104).
What we actually want, however, is the location of the first byte of the
address in the next header block. Given that the header block must
start with a zero the location we're searching for must be halfway
between these two addresses, at 2106.

To complete the first half of the program - those lines which will
still exist after the program has been modified - we must add one
more line which includes the address of its own header block:

70POKE2106,00:END

and then find out where this section of the program ends. So enter

PRINTPEEK(46)*256+ PEEK(45),PEEK(45)

and you should get

2123 75

Now, the address section of this printout - 2123 - is, of course, the
fourth byte after the last byte of actual program code. If we PEEKed
at locations 2120 to 2122 they would all show up as zeros. So if we
added another line, as we will in a moment, it would be tacked on at
2121, not at 2123. Thus the first byte of DAT A should be POKEd at
2121 . The first bytes of data, however, will be two zeros, to replace
those that are overlaid when the next line is added (if we didn't do
this the interpreter would think it had found the next line and try to
LIST the DAT A as a command!). The actual DAT A that we wish to
recover in lines 50-60 will indeed start at 2123. And that's the first
of the two loop controllers to be entered in line 50. The second
number, given that there are ten items of relevant DAT A, can be
found by adding 9 to this base address (base address plus nine others
equals ten). Line 50 can now be altered , then, to read:

50FORX=2 l 23T02 I 32

Next we must have a new NEXT LINE address for the header block

One Step at a Time 1 23

of the last line of the permanent program (line 70). In order to get
this we have to take the address of the last piece of relevant data -
2132 - and add 2. In this way when the computer jumps over the
POK Ed data it will land on the middle byte of three zeros, just as it
would if it came at the real end of a program. In other words the
computer must be made to go 11 bytes beyond the original End Of
Program position , which showed as 75, and the seco nd byte of
line 70's header block must read 86. Lastly, the permanent program
will appear to the computer to end two bytes beyond that last
address, at 2048+88, and 88 is the number to check for in the Low
Byte of the Top Of Program pointer at location 45.

The final version of the permanent program should now look like
this:

5IFPEEKC45> > <one srace>8BTHE N1010
50FORX =2123T02132
60Pl:"\INTCl-H"\~I> (PEEi< (X))" <t wo ~:;paces)";: NEXT
70POKE2106,87:END

At this point the rest of the program can be added in the normal
manner as no DAT A has yet been transferred and no 'hole' exists.
Part 2 of the program looks like this:

80 1:;:EM
1000 DATA 0,0,65,66,67,68,69,70,71,72,73,74,

o,o, 0,88
1010 E:A == 2:1.20
1020 FOR X = :I. TO 16
1030 READ NO! POK E BA + X,NO
1040 NEXT
1050 POKE 45, 88 ! GOTO 50

The lines we have added are all straightforward except, perhaps,
for line 1050. Here we are moving the Top Of Program pointer
down to the address of the last byte of POKEd data - the 88 -
so we can SA VE the program. If this routine came close to a 'page
boundary', where the High Byte of the Top Of Program
pointer might a lso be affected, then the value in location 46 might
also need to be a ltered by subtracting 1 from its current value.

Please note that once this program has been RUN none of the
lines below 80 may be altered, unless you wish to change the IF in
line 5 to REM (they both take up just one byte) just to confuse things
for anyone reading the final program. 1 f you make any other
alteration to the actual number of by1es in lines 5-70 inclusive you
will need to redefine the values in lines 5, 50 and 70.

124 Adventure Games for the Commodore 64

The program with a hole in it

I said earlier that you could POKE data into the middle of a
program and still have it look right. I'm afraid 1 may have overstated
my case.

It is certainly true that on some computers you could make a 'data
hole' in any part of your program and it wouldn't make a scrap of
difference. Indeed , my earlier example may have seemed to show
that you could do such things on the C64. In fact you can't . For
while such programs will LIST quite normally, nothing beyo nd the
hole will actually RUN without a considerable amount of tampering
with various locations.

The problem here is that the C64 doesn't use just one set of tex t
pointers. If it did , then we could use a positively tiny machine code
program - about ten bytes long - whenever we wanted to jump from
one side of the hole to the other. In the C64, however, lines of BASIC
are not read by the interpreter in the Basic Program area. Instead
they are moved to a rather small buffer at the bottom of 'page' 3
(locations 512-600) and TEXTPOINTER points to this buffer.

The final trick that I off er in this chapter, then, is a way of entering
fake lines beyond a hole without having to do it on a byte- by-byte
basis. Like all the best tricks it is actually extremely simple, though
you may need a bit of practice to get it right first time, every time. All
that you need to do is to temporarily move the ST ART OF BASIC
up to the end of your POK Ed data. To be precise, if we were using it
with the last program then we would alter location 43 (the Low Byte
of the ST ART OF BASIC pointer) to the same value held in the
modified version of location 2106 - 84 - and place that address plus 2
in location 45 . In this way the computer would think it was starting a
new program and would itself give each additional line of code a
'co rrect' header block so that the added lines would LIST correctly.
Once you have finished adding lines, simply enter POKE
43 , I: POKE44,8 and the ST ART OF BASIC pointer will again point
to the correct start of your program. The values in the TOP OF
BASIC pointer should be left exactly as they are.

Oh, and don't forget, you'll still need to include a statement before
the hole which will make the necessary adjustment to the pre-hole
line header block; this will take effect whenever the program is RUN
(see line 70 above). Which reminds me of another interesting point
before we close. What happens if someone tries to LIST the program
before RUNning it - won't they find th e POK Ed data? Actually no,
because the computer will try to interpret the data as lines of BASIC
and go a bsolutely haywire!

Chapter Seven

A Code in Time Saves •• •

Leaving aside the most basic details of layout and programming, the
most important part of an adventure is the composition of the room
descriptions. The originality, humour and inventiveness that goes
into the writing of these descriptions can, some1imes save even a
third-rate game from being a total disaster. But there is a limitation
involved in this part of the adventure writing process - lack of RAM
space.

As I mentioned in the first chapter, one of the major factors
involved in moving adventure games from mainframe computers
over to micros was the gross inequality of RAM space available on
the two types of machine. It's quite true, of course, that even
mainframe computers (despite their terrific size) once had their
RAM capacity reckoned in tens of kilobytes rather than hundreds
and thousands. The early machines took up vast areas of Ooor space
because they were made up of wires and valve rather than the
integrated circuits of today. But by the time the first adventure
games were being developed - many of them on machines like the
DEC PDP / 11 - transistors had taken over from valves, and had in
turn been overtaken by the silicon chip. Memory space in the
average machine was increasing by leaps and bounds.

But why, you may ask, was so much RAM space needed? After
all , the main control programs were much the same size as they are
today, though often written in languages like FORTRAN rather
than in BASIC or machine code. To find the answer to this question
we need only look around and see the difference between a good
adventure and one of the 'also rans'. Take this passage from a recent
review:

' ... the room descriptions are far 100 short, giving only the
name of each location, a brief description and a list of possible
moves.'

126 Adventure Games for the Commodore 64

And that's where the memory goes in the best games - on the
room descriptions.

Don't get me wrong. I'm not saying that lengthy descriptions are
necessarily good descriptions. But even where all the other factors in
a game are as well thought-out and presented as they can be, where
text is kept as brief as possible while being as effective as possible,
thousands of bytes are needed to produce the kind of text screens
that will make the player's situation seem both realistic and
believable.

If you've ever had the chance to play a top-rated game, or even if
you've only seen sample displays in magazine articles and reviews ,
you will know that each full-length room description takes up most
of the screen. That means that each long description (as opposed to
the short descriptions used by some programs when you re-enter a
room) is something like 300-400 characters long.

'Hang on there,' gasps the voice . 'Two hundred room descriptions
at 400 bytes a time. That's about 80K!' Where do you put all those
bytes in a 32K-48K computer?'

If we stick to what might be called the 'conventional' approach
then there are three possible alternatives , depending on which
machine (and which peripherals) you are using:

(I) If you have at least one disk drive then your problems are more or
less over. Room descriptions may be stored as separate records in a
random access file . In this case the size of each room description,
and the total number of descriptions used in the course of a game,
will depend on nothing more than how much information you can
get on each disk, how many disks you use and the size of the game
that the control program can handle.

(2) The second alternative is to store the room descriptions in the
control program itself (in the form of DAT A statements). The
problem comes when the data is transferred to an array, as it must be
each time the game is RUN. Suddenly you begin to lose RAM space
at an alarming rate, for the entire list of descriptions is now in two
separate blocks of RAM - in the DAT A statements and in the array.
Quite amazingly, several games released as late as 1983 still used that
archaic form of storage!

(3) If your computer can handle such tasks, the room descriptions
can be set up in a separate program which holds nothing but room
descriptions (as DAT A statements) , which are transferred to an
array. Once the transfer is complete it is possible to SA VE the array

A Code in Time Saves . . . 127

alone, and the 'set up' program is then discarded . Thereafter the
control program can LOAD the array straight into the memory and
doe not need to carry the identical set of DAT A statements.

As we will see in a moment, this third alternative, subjected to a
little extra manipulation, can be a very effective way of storing room
descriptions - or any other text for that matter - even in comparison
with a disk drive.

Time and space

Before we get down to discussing the second of our 'super space
saving storage systems' let's take a quick look at the advantages and
disadvantages of the various methods of storage.

If, for example, we use a single disk drive, we can count on
something in excess of 80K of storage space on each disk. This just
happens to be the exact size of the storage space needed for a game
with around 200 room descriptions of a satisfactory length.

In practice, of course, the amount of storage space per disk side
has been rising steadily over the last few years. Out of more than
sixty drives included in a December 1983 trade list only six offered
less than IOSK storage per disk side. And only one offered less than
90K. In fact the Commodore 1541 drives - offering around 170K of
storage - are now on the low side of average, with several ordinary 5-
inch floppy drives offering as much as SOOK or more for the same
kind of price. With this amount of storage available it is possible to
store not only the entire set of room descriptions, plus the movement
codes, on one disk , but also the main game program. In this way the
computer can constantly access the drive to collect each room
description and the set of movement codes for each new move as and
when they are needed. This means that while the game is RUN ning
we need only enough space in RAM, to hold one room description and
one set of movement codes, leaving almost all the programming area
free for the control program.

This sounds pretty good, but there is a price to pay - a wait of
several seconds on each move while the computer (a) turns the disk
drive on, (b) collects the room description from one or two records ,
(c) collects the relevant set of movement codes, and (d) waits for the
drive to return control. And on top of all this you must remember
that the drive has to.find each record before it can READ it - that's a
lot of wear on the BAM sectors and the 'read head'.

128 Adventure Games for the Commodore 64

(Note: because cassettes can only read information sequentially -
they must read each file from the start in order to find a particular
record - the amount of time needed to collect a given room
description from tape would be measured in minutes rather than in
seconds. In other words, it would be totally impractical.)

So, the first method is at least practical. Method (2) - transferring
DAT A to an array - is so costly in terms of RAM space that it isn't
worth serious consideration. At least, it shouldn't be! Which brings
us to the third alternative.

Method (3) - the SA VEd array method - has as its main
advantages over disk access (a) the almost instantaneous display of
each room description as it is called up, and (b) an enormous saving
of wear and tear on the storage facilities. Unfortunately it also has
two major limitations. Firstly it requires that all the room
descriptions be in memory at a ll times. Secondly, it isn't a trick that
you can use very easily on the C64. So, we come back to our original
question: how do we get all that text into a limited amount of RAM
space?

Of course, we could simply 'slim down' the text, but to do this
wou ld require a pretty drastic bit of edit ing. Lose seventy-five per
cent of the text space mentioned above and you still have 20K of text
that has to be stored somewhere. And maybe you've lost a good deal
of the 'punch' of the original text in the meantime!

For reasons that totally escape me for the moment, it has taken
somet hing like three or four years - since the first micro-adventures
arrived on the market - for someone to come up with what is really
the 'obvious' so lution to this problem.

I know I've used this 'it's so obvious you'll kick yourself' line
before, but this time it really is obvious. Because the method
involved, first successfully used by Level 9 in their range of
adventure games, is nothing more or less than an adaptation of the
routine that every micro already contains - a coding routine based
on 'tokenised' keywords.

Packing 'em in

Before I get down to the details of this routine I'd like to give you
some idea how effective it is. In order to do this I would ask you to
look at the amount of text contained in this chapter, from the first
word of the title to the last word in this sentence.

Now, if we include everything that appears in that block of text,

A Code in Time Saves . . . 129

which includes letters, numbers, punctuation marks (and even the
blank spaces between words), then we have a total of just over 9,000
characters. So let's suppose we can only encode, or tokenise, one set
of the letters - t, h and e - so that only one byte will be needed to
signify each occurrence of 'the'. What kind of result will we get?

Actually this particular letter group is quite common in the
English language - the, then, rather, other, etc., etc. - so it's not
much of a surprise to find it occurs about 146 times (including a few
The's) in this passage. In other words, out of9,000 cha:-acters a total
of 438 are used for the sequence the. Not many? Actually they
amount to a little under five per cent of the total. If we can tokenise
this one group, then, we will have saved two-thirds of the space it
takes up.

In practical terms, tokenising the letter group the in this passage
would save 3.2 per cent of the space. And that's not all. A closer
study of the text shows that, in this passage at least, the letters
the usually occur at the start of a word (or on their own). I haven't
done an exact count, but let's suppose that on 125 occasions the
actual character group consists of'the'. In this case we can tokenise
one hundred and twenty-five/our-letter groups, a total saving of 4.1
per cent of the text. If we apply that to the 80K description file
mentioned earlier we're now talking about saving something like
3.2K with just one code!

Perhaps 3.2K still doesn't look like a very big saving on 80K, but there
are two factors which need to be taken into consideration. Firstly
we're not restricted to using just three or four codes. We can, in fact,
go as high as 127. This doesn't mean you can tokenise everything in
sight and end up with just a couple of hundred tokens in your room
description array. But it does suggest we can knock a pretty big hole
in that 80K. Secondly we are not restricted to three and four-letter
groupings. The programs we will be coming to in a moment can
handle letter groups of any reasonable size. Thus, if we were using a
'one-for-three' system we could not hope to reduce our text by more
than 66.6 per cent at the absolute maximum. Using a 'one-for-four'
system the ideal saving rises to 75 per cent. At 'one-for-five' it rises to
80 per cent, and so on. And for added efficiency we can actually mix
up codes of differing lengths in the same program. The only
common factor will be that each letter grouping, regardless of size,
will be stored as just one byte!

130 Adventure Games for the Commodore 64

Program 7.1: Sardines - the computer version

So how do we go about this 'text crunching'? First, we need to study
the ASCII codes for the C64. These are the numerical values that the
computer uses to store letters, symbols and numbers where they
appear in a program listing or as text.Normally all these codes come
below 127, so we can use values above 127 for our codes without
fouling up the computer's normal operations. What we are going to
do involves three operations:

(I) Search every room description to discover which Jetter
groups , if encoded, will give us the greatest savings
(2) Set up a code array so that each room description can be
tokenised
(3) Introduce a decode routine so that our program can
translate any decoded passage back into its original form for
display.

This will involve three separate programs, the first two of which
are, to put it mildly, an absolute pain! The programs themselves are
fairly simple and straightforward; it's putting them to use which
takes so much time. Nevertheless, the results will , I promise you, be
well worth the effort. And just to prove the point I want to start off with
a very short introductory program which shows the 'encode/ decode'
process at work. (By the way - I've deliberately misspelt my name
here to give the program a little extra work to do.)

J l...J~;T

1 REM ***** ENCODE / DECODE DEMO ***
)I()K

2
'J
..;

8 REM **• ENCODER

J. 0 r'.1•1; '"' ''ANDf;: ,~w E:Rr~DE:ui:::Y ''

20 1'.'i '~(:l) :::: 11 1::.:ri 11

3 0 FOR X ~ :L TO 15
40 IF MID' CAS,X ,2) = A$(1) THEN 85

- 8$ + CHR$ (1 28>1 X ~ X + 1! GOTO
f.iO

50 Bt = 8$ + MIDS CA$,X,:Ll
C) 0 1=· R I N T x II II i:: ·~
7 0 NF:X: T
'17

98 REM *** DECODER
99

A Code in Time Saves ... 131

100 FOR Y = 1 TO LEN C8S)
110 K = ASC C MIDS C8$tY,1))
120 IF K > 127 THEN PRINT ASCK - 12

7); ! COTO :1.'TO
130 PRINT MID$ C8$ 1 Y,1 >;
140 NEXT

Program 7. 1.

Line-by-line analysis
Line I 0: In the two later programs this string would be the one you
INPUT from the keyboard. In the decode program it will be one of
the room descriptions in the memory.

Line 20: This arrayed string represents one of the code strings to be
found by the String Analyser (Program 7.2) and subsequently stored
as CD$(X)

Lines 30-70: A simple search loop which 'steps' through the string
looking for a match to A$(I) . It moves one character at a time, but
always reads two characters at a time (X and X+ I) . If a match is
found , a code character is added to 8$ and the searchjumps forward
two letters - one letter in line 40 (X= X + I) and a seco nd when it hits
the NEXT command in line 70. If no match is found the current
letter is added to 8$ - line 50 - and the loop continues. Line 60 has
been inserted simply to show you what is happening during the loop .

Lines 100-140: When you've gone through the String Analyser and
Encoder programs you may wonder how long the decoder program
is going to be. Well , here's your answer - this is a ll it takes. These
lines repeat the search suggested by lines 40-50, only now we are only
looking for the 'odd men out' - ASCII codes higher than 127 . When
found , the coded byte is replaced by the appropriate letter group and
the loop continues until finished.

Eagle-eyed readers may notice that the last line of the display - the
decoded version of 8$ - prints out slightly slower than normal. This
is an unavoidable delay caused by line 110 and the IF check in line
120 which must occur before each letter (or letter group) is sent to
the screen.

132 Adventure Games for the Commodore 64

Program 7.2 Checking it out

Let me say right at the start that this program takes a long time to
RUN . The actual time will depend upon how many strings you
analyse at any one time: the 'drag factor' is the constant searching of
the SA$() array for matching letter groups.

1 REM ***** STRING ANALY SER *****
z
3
8 REM *** PREPARE STORAGE ARRAYS
9
10 DIM SA$(2000)tSIC2000):CA = 1
97
98 REM *** INPUT STRINGS
99
100 FOR Y = 1 TO 255
1 z 0 F' 1:;: INT II [c L. E f~ R J [D 0 \,JN)K 2 J F' L. EJ'1 s E E

NTEF\: !=>TRING Nl.JMDEF: 11 Y11 NOW: [DOW
N] II

1. :30 IN$:::: II II

1qo FOR X = 1 TO 255
:L'.'.'iO CET l ':P! IF. I':~:::: '''' TH EN 1~50

160 IF IS = CHRS (13) THEN IN$ - LEFT S
<IN$tX - l)!X = 255! GOTO 190

17 0 IF I S - CHRS <20) TH EN PRINT I
S!INS = LEFTS CINS tX - 2 >!X - X

-- 2! GOTO 190
180 INS = INS + IS! PRINT IS;
1<.NJ NEXT
196
197 REM *** DI SP LAY IN$ FOR
198 REM CORRECTION S
19</
?O 0 Z $:::: II I I +

• F' F' :r: N T I I [c I... E iA.1 h J [I) Cl J.-.) N * 2]
11 IN ':t•"[DOt..JNJ 11

'..~ 1 () F' F: I N T I I I ~3 T H J !:; c Cl F: i:;: E c T (y 0 F<'. N) ';>

" . t

2 2 () GET l ':t> : IF J ':p :::: II II THEN ? ? 0
2 ::i o r:· R I N r z ':i; : I r-- Z ':t• < > 11 Y 11 T H F N :1. ~?

0
?'to r1:;:rNT 11 LDOWNJTHANI< You. 11

27'7
? 98 REM *** AND BREAK IT DOWN
2<7'9
3 00 FOR Q = 1 TO LEN <INS> - ?

A Code in Time Saves . . . 133

310 HO$ = MIDS <INS,Q,3)
320 FOR HA = 1 TO CA
330 IF HO$ = SASCHA> THEN SICHA> - S

ICHA) + i:HA = CA: GOTO 360
3't0 NEXT HA
350 SA$CCA> = HOS:CA =CA+ 1: GOTO 3

70
:160 NEXT HA
:37 0 NEXT Q
397
398 REM *** GET ANOTHER STRING?
3r_;9
'+00 PRINT "[DDWNJANY MOF\E STRINGS TO

ANALYSE CY CH~ N)'? ";
.q1 0 GET z~~: IF Z$ == 11 Y11 THEN F'l'.\:INT

II
11

: NEXT y
420 Y = 255: NEXT Y
497
498 REM *** OR DISPLAY RESULTS
.q99
500 FOR Y - 1 TO CA STEF' 15
5:1.0 PRINT "[CLEAR]"
520 FOR X = Y TO Y + 14
530 PRINT SASCX),SICX)
5.lf 0 NEXT
:=j 5 () p RI NT II [D 0 w N * ~?. J [i;: vs J i=· 1:;: Es s AN y

~(E y T () c [) N T I N LJ E:L 0 F F] II ;

5 6 () GE T z (~ : I F Z.$::= II II T H EN ~:, 6 ()
57 0 F'F\INT II II: NEXT y

Program 7.2.

By the way, the number of occurrences of each letter group will
always be the correct total minus I since the start value of any

element of SI() will always be 0 and they are not incremented until a
repeat group is found. If you prefer total accuracy then alter line 530
to

530 PRINT SA$(X),Sl(X)+ I

Line -by-line analysis
Line IO: If you're prepared for a long session then the size of these
arrays can be increased considerab ly. The maximum size will
depend on the length of the letter groups you want to search for. At
the same time, however, the time it take to scan the SA$() array for
a match can be very long indeed when you have a thousand or more
elements filled .

134 Adventure Games for the Commodore 64

Lines I 00-190: The program is currently set to handle a maximum of
255 room descri ptions, though this limit could be raised if you're
truly ambitious. The ize of the X loop should nor be increased,
however, as doing so could crash the program.

Lines 160 and 170 are designed to deal with the end of string
RETURN and any deletions you may wish to make. Line 160 simply
clears the loop and moves on to the next stage. Line 170 deals with
deletions by knocking off the last two letters of the string, setting the
value of X to X - 2 and then re-entering the loop. Taking out two
letters rather than one is necessary - try taking out just one and
you'll see what I mean .

Lines 200-240: Present the completed (?) string for approval. Line
240 is there just to reassure you that the program is still in operation
when the waits get longer.

Lines 300-370: As in the demonstration program we now have to
step through the input string looking for a match to an element of
SA$(). In this case we are looking for three-letter groups so, in line
300, we must not go beyo nd the third from last letter or the routine
crashes. The size of groups you're looking for is controlled by the
last number in the brackets in line 310 and this must be 1 greater than
the number at the end of line 300.

The variable CA indicates the lowest empty element of SA$(). Jn
lines 330-340 SA$()'s elements are searched for a match to HO$. If a
match is found then the counter for that element - SI(HA) - is
incremented, HA is set to its highest possible va lue (CA) and the
program jumps to complete the loop at 360 so that the Q loop can go
again. If no match is found then the first empty element of SA$() is
filled, CA is incremented and the Q loop is repeated if necessary.

Lines 400-420: Ask if there are any more strings to be analysed . If
'Yes' then the Y loop goes again. If not then the Y loop is completed
and ...

Lines 500-570: The results of the string analysis are displayed, 15
elements at a time. (I'm afraid you' ll have to note down which are the
commonest letter groupings by hand.)

Program 7.3: CRRUNCCCH!

Having analysed the contents of your room descriptions you might
well take time out to see if you can't re-word a few passages to fit in

A Code in Time Saves . . . 135

with your top 127 letter groups . Also, if you've run more than one
analysis - to test for letter groups of different lengths - you may want
to check that none of the groups overlap. If they do you'll obviously
go for the one which offers the greater saving, but you'll have to
discard the other.

The next job is to actually start encoding some strings. Which
brings us to the ENCODER. By the way, the whole of the first part
of this program , with the exception of line 10, is exactly the same as
in the String Analyser, o you can save a lot of time by SA YEing the
last program and then chopping offlines 300 onwards to prepare for
this next program.

]l ... IST

1 REM ***** $TR I NG ENCODER *****
2
3
8 REM *** PREP ARE STORAGE ARRAYS
9
10 DIM RD$C255l , CD$C127)!LC = 127!CL

-·· 3
1.7
18 REM *** AND FILL CODE ARRAY
19
20 FOR X = 1 TO LC
:30 F\EAD CIH < X)
ifO NEXT
97
9B. F:EM ll<lK::.t: lNF'UT ~:; TF' TNCf:)

99
100 FOR Y = 1 TO 2 5 5
:l 2 () F' R l N T I I [c I... E (1 F< J [[) Cl w i'l)+: '.? J F' L E A ~3 E E

NTEI~ ~!TF\JN C NUME::Fti'. ''Y'' NOW! [DO!-!
N] II

1 ::io 1N ~1; ====
11

"

140 FOR X = 1 TO 7 55
:I. 5 () c [T I ~~ : T i:~ I <~ :::: I I I I T H [N 1 '.'5 0
160 IF IS = CHR$ (13) THEN TN$ - LEFTS

CIN$,X - l> :X = 755: GOTO 190
170 IF IS - CHR$ <20) THEN F'RINT I

$!TN$ = LEFT$ <TN$, X - 2)!X - X
···· 2! GCJTCl 1 <;- 0

180 IN$ = IN$ + 1$: PRINT rs;
190 . NEXT
196

136 Adventure Games for the Commodore 64

197 REM *** DISPLAY IN$ FOR
198 REM CORREC TION S
:1.9<?
? 0 () z $:::: I II I : 1:· F: l N T II [c L. E ~ii:;: J [D Cl !rl N * ~?.]

"IN ~!;" i::Do~m] 11

? 1 () F' F: I N T I I I ~3 T H I ~3 c Cl F\ 1:-..: E c T ('(Cl F: N) ';l
II +

t

2 2 () GET z ~1; : IF z $:::: II II T 1-1 EN 2 2 0
2 ~l () p F: INT z 'p ~ I 1:· z ~I> < > 11 y 11 THEN :I. 2

0
~?. 4 o F· R 1 N T 11 c D o i..n.1 J T 1-1 AN 1< Yo u • 11

29/
298 REM *** AND INSERT CODES
299
~l () () H01; :o: II II

310 FOR Q = :I. TO LEN <INS) - CL
320 FOR HA = :I. TO LC
330 IF MID$ CIN$,Q,CL) = CD$CHA> THEN

HOS = HO$+ CHR$ CHA+ 127)!HA =
LC! NEXT HA:Q = Q + CCL - 1)! GOTCJ
360

~MO NEXT HA
350 HOS =HOS + MID$ CINS,Q,:I.)
36 0 NEXT Q
~l9 6
397 REM *** STORE ENCODED $TRING
398 REM AND GO ROUND AGAIN?
39?
400 RDSCY) - HOS
.<t 1 () i=· F.: I N T 11

[D () "~ N J E N c Cl [) E () L. D $ I N E: 1.-l !:> T F\
ING QI:;: QUIT CO, N OF: Q)':> 11

;

4 2 0 GE T z ~~ : I F z 1; :::: " II T I-IE: N 4 2 0
430 IF ZS "D" THEN Y ::= 2'.'5~5: NEXT

END
4 4 0 IF z $ " N II T 1-1 E N F' F: I N T " " : N E x T

y
4'.'30 IF Z$ < > "Cl" THEN .<f:t 0
46 o IN$ = rrn1; c v > : INF'UT "c DCJWN J NEW co

DE LENGTH? ";CL.
470 GOTO 300
:1.000 DATA CCODEABLE LETTER GROUPS)

Program 7.3 .

Line-by-line analysis
Line I 0: The RD$() array is for the storage of encoded strings.
CD$() should be DIM med according to the number of coded groups

A Code in Time Saves . . . 137

you are using. CL is the number of letters in coded strings in CD$().
For LC see below.

Lines 20-40: These lines are an addition to, but don't clash with
anything in, the last program. This is , of course, a simple loop to
load the CD$() array with the actual letter groups that are to be
encoded. LC stands for Last Code; its highest safe value is 127 and
should be set in Ii ne I 0.

Lines 100-240: Exactly as in the String Analyser program.

Lines 300-360: As they stand, these lines are designed to use a
version of CD$() in which all the codes are the same length. The
routine at 400, however , allows multiple encoding of the same string
where various elements of CD$() are of different lengths.

Line 330 does the actual encoding when a match for any part of
CD$() is found in IN$. Note the statement Q= Q + (CL - 1) at the end
of this line. This value must be CL - 1 - to jump a given number of
(encoded) letters - as the number will be increased by 1 again at line
360. If no match is found then the letter at MID$(I N$,Q, 1) is added
to the encoder string as is .

Line 400: Stores the encoded string as RD$(Y)

Lines 410-470: You now have three options : to continue encoding
the last-used string (RD$(Y)) using a new code length, to start
over with a new string, or to QUIT. Line 430 handles QUIT
(notice we still clear the Y loop even though the program is over).
Line 440 re-activates the Y loop to go back for a new string. And
lastly lines 460-470 re-assign RD$(Y) to IN$ and collect a new value
for CL (Code Length) in order to ret·nn to the encoding routine.

'Hang on a minute. Now we've got it - what do we do with it?'
I thought you'd ask that. The answer is not exactly a piece of cake,

but before I give it to you perhaps you'd like to try writing the
routine yourself. Here are the main points that the necessary code
must deal with:

(1) Reset the TOP OF MEMORY pointers to allow space for the
stored strings in a 'safe' area.
(2) Working your way backwards through the encoded string - using
a loop (what else!) - store the last string at the top of memory. In
other words work your way down from 40959.
(3) Once the string is stored take a note of (a) its length, and (b) the
address of the first byte, in Low byte / High byte form.
(4) If you've any strings left to store then go back to step (I).

138 Adventure Games for the Commodore 64

(5) When all the strings have been stored enter a 'table' of sets of
three-byte pointers below them so that working your way up in
memory you have byte 1 (length of RD$(X)) , byte 2 (High byte of
starting address of RD$(X)), and byte 3 (Low byte of starting
address).
(6) Make a note of the srart address of this table - its length will be
(number of rooms)* 3 - then raise the BOTTOM OF BASIC pointer
to the byte immediately before the start of the table(re-set locations
43 and 44) and raise the TOP OF BASIC pointer to the end of the
descriptions (re-set locations 45 and 46) . Then SA VE everything in
the normal way.
(7) Lastly, when the rest of your programming is completed , clear
the BASIC Programming area and LOAD the game program. Then
raise the BOTTOM OF BASIC pointer to the address used when
you SA VEd the RD$() array and table , set the TOP OF BASIC
pointer to the address two bytes above it and re-LOAD the table and
arrays. Finally, lower the BOTTOM OF BASIC pointer to its
normal position and SAVE the whole of the BASIC Program area .

To use this method your game program must contain the
following features.
(I) As soon as the program starts RUN ning it must set the TOP OF
M EM 0 RY pointer to the byte below the array table (alter locations
55 and 56) or everything at the top of the programming area will be
overwritten. (Note: When re-setting the TOP OF MEMORY
pointers always follow the operation with the CLR instruction to
ensure that the computer recognises the new TOM location.)
(2) In order to reclaim any string you will need a printout loop which
is set to read LE (RD$(X)) letters starting at the address given by
High byte* 16+ Low byte. You will find the necessary information by
calculating the address of the length byte using the formula LEN
BYTE = PEEK ((address of lowest byte in the table - 3) + (room
number* 3)). The address for the loop to start reading from will be
at PEEK((LEN BYTE + I)* 256) + PEEK(LEN BYTE +2). You
should PEEK and PRINT from that address tothataddress+ (value in
LEN BYTE - I) because the first letter will be at byte 0, not at byte I.
Jn other words, your PEEK and PRINT loop should start with a line
like

I 0 FOR X = (B * 256 + C) TO (B * 256 + C) + A

where A equals the value in the LEN byte, Bis the High byte of the
start-of-string address and C is the Low byte of the start-of-string
address. l know this is rather complicated, but I hope I've explained

A Code in Time Saves . . . 139

enough in the previo us chapters for you to handle it without too
much difficulty. And now, whether you've found the solution to our
little puzzle or not, here is my version of the necessary code.

First, the whole program must begin by moving the TOP OF
MEMORY down far enough to allow room for the strings that will
be stored . This must be done in advance or we will certainly end up
by overwriting both the latest INPUT string and the array which
holds the code letter groups (CD$()). Obviously we can't know in
advance just how large a space we will need , so let' s err on the s ide of
safety and give ourselves a full twenty thousand bytes (this can
always be altered later if necessary - see below). So, we start by
adding line 5 (or any line number below I 0 - that is, before the arrays
are set up):

5 POKE 56,8 1: POKE 55,223: CLR: TS = 40959

The top of BASIC memory is now situated at 20959 (PEEK(56) *
256 + PEEK(55)). The CLR command ensures that the computer
recognises this alteration. And TS , used in the subroutine below, is
initialised after the Variable, Array and String pointers have been
cleared.

ext, lin e 440 of the encoder program needs to be changed. If you
are moving on to encode a new tring then this is the time to store
'Old String'. Line 440 should now look like this

440 IF Z$ =" "THE GOSUB 2000: PRINT" ": NEXT

In fact we also have to change line 430 - for extra user-friend liness
- but let's add the subroutine first, before we forget it :

2000 LE = LEN CRDSCY>>
2010 FOR X = 1 TO LE
2020 LL - TS LE

LL,ASCCMID$CRDS<Y>,X,1))
2030 NEXT
2040 TS = TS - LE

+ x:

2050 PRINT LE, INTCTS I 256), TS - CINTCCTS
+ 1) I 256> * 256)

2060 IF CINTCCTS + 1) I 256)) <=PEEK (56)
AND T - <INT<<TS + 1) I 256) * 256) +
1 < PEEK C55) THEN END

2070 ru::TURN

In line 2000 we get the length of the encoded string, but as a control
figure for the loop a nd for our own information .

140 Adventure Games for the Commodore 64

Lines 20 I 0-2030 POKE the ASCIJ codes of each string into memory
in ascending order ending at the current address whose value is given
by TS.

Line 2040 re-sets the value of TS ready for the next storage
operation. Note that the first byte of each string is not POKEd to
TS - LE but to TS - LE+ I, one address higher in memory. So
address TS - LE is indeed the correct ending point for the next string
down.

You'll remember that we are going to have to construct a reference
table at the bottom of the room descriptions in order to find them
again. Line 2050 prints out those values in the order that they will
appear in the table. LE is the length of the string. INT((TS + l) / 256)
gives us the High byte value for the start address. TS- (lNT((TS+ I) /
256)*256)+ I gives us the Low byte of the starting address, that is ,
the current value of TS plus I.

Line 2060 is very important. lfTS falls lower than the address whose
values you POK Ed into 56 and 55 at the start of the program - in this
case 20959 - then you've probably just overwritten the top of the
String storage area. I've chosen to let this occur - rather than waste
the INPUT - but your POK Ed strings have now left the 'safe' area
and the program will therefore cease to operate to avoid overwriting
the last set of POKEs. As long as you are still within the safe area,
however, the program will RETURN to line 440.

And that leaves us with line 430. I've left this till last as its
amended version will be much clearer in the light of the operations
we've just dealt with . The first thing to note is the fact that , if we
simply QUIT the program on this line, the last string to be encoded
would not be stored. We must therefore include a GOSUB to the
routine described above. If we are ending the encoding routine,
moreover, we will also need to make up the table I've mentioned .
This will need another subroutine of course. So, first we change line
430:

430 IF Z$ = "Q" TH EN GOSU B 2000: GOS UB 3000: Y = 255:
NEXT: END

and then we add the 'Table Maker' subroutine follows :

3000 F·1:;:1NT! JNF0 UT 11 ENTEF·'. TAE::LE OF~ DUTT (TOR
n) ':) II ;

~rn 1 o c E T z ~~ : :r F z ,~ ,,= 11 11 T HE N :i o :1. o
:3020 IF 2$ < > "T" THEN F~ETURN

A Code in Time Saves . . . 141

3030 TL = TS - CY * 3) + 1! K = 1
3040 FOR X = TL TO TS STEP 3
3 o ~-5 o P rn N T : F' F: I N T ~< 11 11

; : x N P u T 11 !3 T r.:r N c
L. E N G T H ? 1 1

; !:; I... : F' () ~(E x t !) L.
3 0 f°J 0 F' f([N T ! F' 1:;: I N T I< II II ; : :r. Np l.J T II AD [) F\ E s !3 H l G H

E: y T E ? II ; Ht: : p 0 I< E x + :L t 1-1 E:
3 0 7 0 F' R I N T : p 1:;: I NT I< II II ; : I N F' u T II A D I) R E s s I...() w

E:YTE? II; L.E: : F'Ol<E x + 2 t LE:
30!30 I< :::: I<+ :I.
3090 NEXT
3 1 0 0 r:· 1:;: INT ! F' R INT 11 TA E: I_ E C 0 MP LET E • E: Y Tr~

E:EFDF<E TABL.F :::: ' 1

3110 TL = TL - 1: LT = TL - <INTCTI... I 256)
)I(?:'3f.i) : PF([NT 11 l ... ClW DYTE: II; L. T

3120 PIUNT 11 HIGH DYTE: 11 ;INT<TL I 2:".if.i)
3 :L 3 0 F' F(IN T 11 ST ART Cl F T t-1 [:I ... E DECIMAL VA I... U E ··-

11; TL + :I.
3:1.'lO F\ETUl::..:N

Programs 7.4 and 7.5: Bringing it all back home

And that's just about it. Our last two programs, positive midgets
compared the last String Analyser and the Encoder, are different
vers ions of the kind of decoding routine to be included in the actual
adventure game. Program 7.4 deals with encoded text held in an
array. Program 7.5 handles room descriptions that have been
POK Ed into memory. They are both short , efficient , and a lmost
exactly the sa me as the seco nd part of the demon stration routine.

ei ther program wi ll run quite as fast as a norma l print statement ,
and Program 7.4 won't run quite as fast as the demo program, it
actual speed depending on the size of the RN$() array. Nor, on the
other hand , will they run anywhere near as slow ly as the ana lyse and
encoder programs , since we are able to l?ok q uite directly at both the
contents of RN$(PL) a nd CD$(), rather than sea rching through the
arrays , as we have a specific refe rence to the locat ion of the re levant
information in both .

:I. REM lKlKlKlKlK DECODER l:L lK*lK*lK
'?
L .

::!
1 REM lK*lK RN$() - ROOM DE SC RIPTION S
5 REM PL - PLAYER'S LOCATION

142 Adventure Games for the Commodore 64

6 REM CD$() - CODE LETTER GROUPS

7 REM
8 REM
9

THIS SUBROUTINE IS USED
WITH EACH SUCCESSFUL MOVE

100
:L1 0
12 ()

:1.30
14 ()
:1.50

FOR Y = 1 TO LEN <RN$CPL>>
K = ASC < MIDS <RNSCPL>,Y,1>

IF K > :1.27 THEN PRINT CDSCK
27>;: GOTO l'tO
PRINT MIDS <RNS<PL>,Y,1>;
NEXT
1;:ETURN

Program 7.4.

Line-by-line analysis

··- :I.

Line 100: It is assumed that the room descriptions will finally be
stored as elements of RN$(). It is RN$(PL), where PL stands for the
player's current location, that is to be printed on the screen, one way
or another.

Lines 110-130: Using Kasa numerical variable for the temporary
storage of ASCII codes we 'look' at and display, one at a time, the
characters in R $(PL). Unless, of course, the value passed to K is
greater than 127. In that case we deduct 127 from the value of Kand
use the result as an index to the CD$() array to see which letter group
should be printed .

Lines 140-150: Line 140 keeps the loop going until it is complete;
when the whole of RN$(PL) has been printed. We then close off the
string with a blank space (since it was left open in line 130) and then
RETU R from what should indeed be a subroutine since it will be
used so frequently.

Program 7.5

JLIST

1 REM ***** DECODER 12 *****
'"1 ,_

1::
,.J

6

REM
REM
REM

*** BA - TABLE START MINUS 3
PL - PLAYER'S LOCATION
CDS<> - CODE LETTER GROUPS

7 RE::M
8 REM
c;

:I.<'>

A Code in Time Saves . . . 143

THIS SUBROUTINE IS USED
WITH EACH SUCCESSFUL MOVE

:1.7 REM *** INITIALISE 8A AT START
:1.8 REM OF GAME
:1.9
20 BA = 20959 - 3
97
98 REM *** READ 3 TABLE BYTES
99
100 TL = PL * 3 + BA
:1.10 LE = PEEK <TL>:ST - PEEK <TL+

:I.) * 256 + PEEK <TL + 2
:1.17
:1.:1.8 REM *** THEN PEEK/PRINT STRING
119
120 FOR X = 0 TO LE - 1
130 K = PEEK CST + X>
:I. 4 0 IF- I< > 127 THEN PIUNT CD~~ (I< -·· 1

27>;: GOTO 160
150 PRINT CHRS CK)
:1.60 NEXT
l / 0 1:;:ETURN

Program 7.5.

Line-by-line analysis
Line 20: If you are using any variable , rather than entering a number
(the C64 can find a variable value somewhat faster than it handles
raw numbers), it's a good idea to 'initialise' them - that is, assign
them a value - right at the start of the game. And if there's quite a lot
of initialising and array filling to do, which all takes time, a good
way to cover up the waiting time is to give the player something to
read - extra instructions, a brief (one screen long) introduction to
the first situation he will find himself in, etc. In this line we have to
initialise the Base Address (BA) of the look-up table. Notice that the
formula in line 100 cannot give a value lower than 3 (if PL= 1 then
PL* 3 = 3) so we must deduct that value from the starting address of
the table so that the first byte it will look at is I (the first value of PL)
* 3 + 20956 (BA) to get the real start of the table - at 20959 in this
example.

Lines 100-110: The formula for TL (Table Locations) must be
calculated every time we want to pull out a string for display. Having

144 Adventure Games for the Commodore 64

found the address of the first of three bytes in the table we can now
get the length of the string to be displayed (LE) and the STarting
address of the POK Ed st ring (ST) . Since the C64 will always carry
out a multiplication before it performs an addition, if they occur in
the same line, we don't need to put brackets around PEEK (TL+ I)
* 256 to tell the computer it must do this calculation beforeaddingon
the value held in TL + 2.

Lines 120-130: Note the calculation invo lved here. We must sta rt
collecting bytes from the address pointed to by ST and we must end
at the last byte of the current room description. We could do this by
writing in line 120 FOR X = I TO LE, which would be slightly
shorter than the statement I've written. The trouble is that if we used
this formula lin e 130 would start PEE King at the second byte of the
string, and end up on the first byte of the next string up . To avoid
this we would either have to subtract 1 from the value calculated for ST
in line 110, which is a poss ibility, or alter line 130toread K = PEEK
(ST - 1 + X) , thus adding another calculation to every step of the
loop. Which is not a very good idea at al l! Line 130, by the way, is the
one that saves so much time. Instead of having to search through a
string for each successive letter and finding its ASCII code we
already have either an ASCII value or a code number.

Lines 140-160: As before, we need to determine whether the value of
K is above or below 127 to find out whether we're looking at a letter,
to be printed direct to the screen in line 150, or a code letter, in which
case we print out the appropriate group of letters and jump over line
150. Note that both print statements end with a semicolon to ensure
that we print across the screen, not down.

Line 170: Lastly, having completed the subroutine, we can RETURN
to the move handling routin e to be sent on either to the 'event check'
routine (see Program 6. 1 notes) or to the command input routine ,
according to the method you have selected .

And talking of command input routines ...

Chapter Eight

The Well - chosen Word

The Inglish Language (that is spelt correct ly) was invented for the
game The Hobhit released by Melbourne House. The entire
program was a team effort involving Melbourne's own managing
director, Alfred M ilgrom, who originated the eighteen-month
project, and a team made up of Philip Mitchell and Veronica
Megher (programmers), Stuart Richie(lingui tics expert) and a pair
of graphic designers who produced the artwork for both the screen
displays and the packaging. But it is the presence of the linguistics
ex pert which particularly interests me here. 1 t emphasises the
difficulty of programming a real ly effective 'command parser' - that
part of the program wh ich receives and interprets input from the
player. Jt's worth looki ng at this area of the adventure program in
ome detail.

Sounds and words

If you have any interest in art ificial speech units then you already
know that the entire English language, in its spoken form, can be
broken down into just 64 phonemes or so unds. The complexity of
actual speech is due to the way that we link these sounds together,
a long with shorter a nd longer pauses, and the emp hasis placed on
each part of each word. On this basis it could be argued that our
la nguage is essentially rather simple, and that its complexity is
largely dept:!ndent on the way it is used. Which is true, in a way.

Suppose I write somethi ng like: 'I want three more.' There's not a
lot you ca n tell from this sentence on its own except that the speaker
has already got at least one of something and wants three more.
What yo u can't tell, just from reading the words, i whether the
speaker is male or female, young or old, ha ppy or sad. Nei ther can
you tell whether the words are a command - ' I want three more (so

146 Adventure Games for the Commodore 64

give them to me)' - or a request - 'I want three more (please?)'. The
only way you could understand exactly what was going on would be
to either hear the words spoken, or see the sentence in its proper
setting. Now this book can't talk, of course, so you can't hear the
sentence at all. But suppose I rewrite the sentence like this:

The bricklayer turned to the hod carrier and said 'I want three
more.'

Even though I've only added nine words - which don't really say
much in themselves - the whole meaning of my original sentence
becomes much clearer. I don't even have to tell you that the
bricklayer wanted three more bricks, because in this context the
meaning of the words is implied by who said what to whom.

The point is this. While producing artificial speech might seem
very difficult , it' s actually quite simple once you have the right
hardware and the software needed to drive it. 1 ndeed , I have a home
brewed program for the APPLE I I+ which actually digitises recorded
speech, stores the result in RAM , and plays the message back again
si mply by 'toggling' the speaker whenever it finds a bit which has a
different value from the one before. The result wouldn't win any
prizes for elecution, I admit, but it is possible to store simple
messages like ' Hello . I am an APPLE computer', plus the
record / playback program, in about 3.2K!

If only parsing written commands were that easy! But it isn't. In
order for the computer to execute a command it needs to know not
only what was said, but also what that particular collection of words
meant. Just how difficult it is to extract the meaning from any
command will depend upon the length and complexity of the
command itself.

How many words make a sentence?

If we weren't talking about computing then this question would
make about as much sense as the old favourite 'How long is a piece of
string?'. Since we are talking about computing it makes very good
sense indeed.

The original adventure programs, despite being run on mini
computers with around 256K or more of RAM , only accepted one- or
two-word commands. In practice the one-word commands were
restricted to directional commands - so GO EAST could be
abbreviated to EAST, or even plain E. All other commands were

The Well-chosen Word 147

made up of two words, a verb and a noun, thus:

GET SWORD
THROW ROPE
DROP CANDLE

and so on.

Long or short?
This leads to a very interesting and fundamental question which has,
as yet, received little or no public discussion. Is the implementation
of complex parsers, necessarily a mark of progress in the field of
adventure games?

I have argued, elsewhere, that the more commands can be made to
resemble standard English the more realistic the game becomes. At
the same time I am well aware that many players find it tiresome to
enter every command in full - especially when they are re-running a
game for the nth time. So which is really best? Frankly I don't know,
and for that reason this chapter covers both alternatives.

It is, of course, possible to create an extremely simple command
parser based on just one letter for each action. But this limits your
choices quite considerably (one action for each keyboard character)
and requires that the player keep looking up the instructions to find
out which letter stands for which command. In other words,
although games are still on sale which use the 'one key command'
system, no one has yet produced a really satisfactory implementation
(can you?!).

Program 8.1: Two by two

The next step up from the one-Jetter command is - you've guessed it
- the two-letter command. This may not sound like much of an
improvement, yet it does mean that (using capital letters only) we
can implement a total of 676 commands. That's quite a step!

Like most systems the two-letter method does have its faults - the
main one being that the player still has to learn which letter stands
for which verb and noun. In the case of the verbs, initial letters are
nor the most obvious answer as one would have no way of
distinguishing between, say Go West and Get Wood or between Drop
Sword and Draw Sword. And of course the same problem applies in
relation to the objects, which would each need a different initial
letter in order to avoid confusion between Get Axe and Get Apple.

148 Adventure Games for the Commodore 64

However, the problem is by no means insurmountable and a little
re-definition can work wonders:

Get becomes Take
Go becomes Move (or Run, Walk, etc.)
Apple becomes Fruit

and so on.
So, we have two lists - verbs and nouns - but how do we access

them? Actually the process is pretty simple, using a short formula
given below, and as you can see in this program the operation breaks
down into just four stages:

(I) The program first takes the ASCII value for each of the two letters
in CO$ and deducts 64 from each so that A = I, B = 2, C = 3, etc.
(Note: there must not be a blank space between the two letters.)
(2) If either of the characters in CO$ is not an upper case letter then
the 'DON'T UNDERSTAND' message is displayed and the
program returns for a new command.
(3) When a command containing two 'legal' letters is found the
program moves on to a brief calculation based on the modified
value of V (the first letter on CO$) and N (the second letter). From
these two values, plus EN (a 'constant' which equals the total
number of nouns plus one, i.e. EN=27) we can find a unique value
for every command by using the formula:

X = ((V * EN)+ N) - EN

Note that the second EN is used to make sure that the possible values
of X start from l and not from EN+ I. (lfV= I and N= I and EN=27
then X=(V*EN)+N would produce the result X=28. In our formula
EN is deducted again so where V= I and N= I and EN=27 the result
of X=((V*EN)+N)-EN will be X= I.)
(4) Finally, having found a value for X, we can use the statement

ON X GOS U B 200,250,300 etc.

to move to the correct line to execute every possible command.

Just before we go on to the program itself I should point out that
the use of this formula has one significant drawback - it allows all
sorts of irrelevant pairings. In other words it is possible to link any
verb with any noun. While you could certainly THROW a KNIFE, a
ROCK or a ROPE it makes no sense at all to TH ROW DOOR or
TH ROW WEST. So, while the formula method is highly efficient in
one way, it does require that many of the addresses in the lines

The Well-chosen Word 149

ON X GOTO 200,250,300 etc.

will be directed to the subroutine which simply prints out 'I CAN'T
DO THAT' and then goes back for a new command.

::I L. I~;T

REM ***** 2 LETTER COS PARSER ***
**

8 REM *** FILL VERB AND NOUN ARRAYS
9
10 DIM VS<10),N$(16)!EN = 17
20 FOR X = 1 TO 10
::io r~EAD V <~ (x)
"'tO NEXT
50 FOR X = 1 TO 16
60 r~Er'.:\D N$ (x)
70 NEXT

REM *** AND SET VES,NOS AND BAS
79
!3 () v E $:::: II Ai::: c [)EFG HI J II : NCH II A E: c DEF G H

I,m1 ... MNDP 11

90 BA$ = CHR$ (20>
97
98 REM *** GET COS AS 2 ASCII VALUES

9<J
10 0 F'F.'INT 11 [DOWNJWHr'.:\T NOW? 11

;

110 GET VS! IF V$::: 1111 THEN :l. :LO
120 FOR X = 1 TO 10
130 IF V$ = MIDS <VES,X,1> THEN VP -

X!X = 10! NEXT ! GOTO 150
1.q 0 NEXT : PIUNT II II: G()T() JO()
150 F'RINT VS<VP>;
16 () IF VP :::: 2 THEN PRINT II II: COTCl

3000! REM *** GO TO ' LOOK ' ROUT
INE

:1. 7 0 IF VF' :::: <? THE:N PRINT II II! COT()
3500! REM *** GD TO 'INVENTORY'

F\Ol..ITINE
1 so c ET N ~, : 1 F N s ===

11 11 THEN :1. n o
190 IF NS = BAS THEN FOR X = :1. TD LEN

<VS<VP))! PRINT BAS;: NE XT : GOTO

150 Adventure Games for the Commodore 64

1.:L 0
200 FOR X = 1 TO 16
210 IF NS - MIDS CNOS,X,1> THEN NP -

X:X = 16: GOTO 230
22. 0 NEXT : PRINT " "; : GOTO ::i :I. 0
23 0 F' FUNT II II N $ (NF') ;
'.?47
2 48 REM *** ALLOW CORRECTION
2'+9
250 T = TI:T = T + 120
~'.6 0 GET AL$: IF AL$::= "" AND TI < T THEN

7.60
2 70 IF AL$ = BAS THEN FOR X = 1 TO

LEN CNSCNP>> + 1: PRINT BAS;: NEXT
: COTU 180

2 8 0 F' fn NT " " : C Cl Hl 'Hl 0
? 97
298 REM *** DEAL WITH ILLEGAL COS
299
300 PRINT "CDOWNJI DON'T UNDERSTAND

CRVSJ 11 V~t>: GOTO :L 0 0
:31. 0 PRINT II [[)QWNJI DON IT l.JNDl:T\STAND

[RV!:;J 11 V$CVP>" "N~>: GOTD 100
39/
398 REM *** PROCESS VALID COMMANDS

'100 CO = VP * EN + NP - EN
'11.0 ON CO GOTO
</9<17
9998 REM *** COMMAND DATA [DEMO ONLY

]

10000 DATA GET,LOOK,CLIMB,DROP,EXAMI
NE,THROW,GO,SAY,INV,WEAR

10010 DATA THE TREE,THE GLOVES,THE 8
ANANA,THE RING,THE SPADE,HELLO,Y
ES,THE SWORD

10020 DATA THE BOOK,HEEBEE JEEBEE,NO
RTH,SOUTH,EAST,WEST,LJP,DOWN

Program 8 . 1.

Wasn't that fun? Well, it wasn't that bad! But I did start off by
talking about the kind of advanced parsing routines found in The
Hobbit, Infocom games and the like. And that's what I want to go on
to now.

The Well-chosen Word 151

Every little word ...

What the more sophisticated command parsers are actually
designed to do is to break every INPUT down into separate words,
analyse each word - is it a verb, a noun, a preposition , etc. - and then
go on to analyse the 'syntax' to make sure the command actually
does look like good English. Now that's pretty heavy going, to say
the least, and a major problem with trying to tackle a job like that -
from our point of view - is that these routines are all written in
machine code. In other words they execute a lot faster than any
BASIC program trying to do the same job.

For BASIC programming, then, it is essential that we take a few
short cuts in order to achieve an acceptable execution time. Whether
these short cuts actually work will depend, to a large extent, on how
closely we stick to the normal syntax of the English language.
Fortunately this isn't too hard to do if we aim for the 'practical'
approach:

(I) 'I the knife threw', is obviously not good English, even though it
isn't too difficult to understand what the sentence means. 'I threw
the knife', on the other hand , is perfectly good English, even though
we've only moved one word. And if we modify it again to get a
command rather than a statement - 'throw the knife' - we have the
basis for our first rule: verbs must always come before the nouns they
refer to. In fact, for adventure programs, we can insist that the first
word of each command must be a verb. And if the first word of any
command is not one of the program's listed verbs then the whole
command string is declared invalid.

(2) Following on from the last rule we can also state that every verb
must have a noun (though every noun doesn't have to have its own
verb - more of that in a moment). 'Go quickly' may be good English,
but the computer can't 'go' anywhere unless you give it a direction.
On the basis of this second rule we can, at least temporarily, handle
command strings by looking for a valid verb in the first place and
then going straight off to find the noun that goes with it. For the time
being we will ignore everything between these two words, including
the syntax of the command.

Taking things this far, we're obviously still working with a system
that looks very much like the old two word parsers of yesteryear,
even though the input itself can be quite complex. The next step,
then, is to broaden the system so that we can begin to deal with
compound sentences.

152 Adventure Games for the Commodore 64

(3) A compound command is, as you probably know, one which
contains several different instructions in one INPUT. In order to
separate the various commands we must introduce what are called
delimiters, or 'boundary markers'. For all practical purpose:> we can
restrict ourselves to the use of just five delimiters - the words 'and'
and 'then', the punctuation marks ',' and '.', plus RETURN.
Nevertheless, the use of any delimiters raises a whole nest of
problems.

In the first place only a full stop or the RETURN key act as
'absolute' delimiters. Then, and and commas can all function as both
absolute and secondary delimiters. For example:

GET THE AXE, GO NORTH
GET THE AXE, THE SWORD AND THE ROPE

or

GO WEST THEN EAST

For the sake of simplicity, then, we'll introduce a couple of
subsidiary rules:

(a) Where a full stop is not followed by RETURN it must be
followed by a verb.

(b) The words THEN and AND, plus commas, must be
followed by a verb or a noun (the word 'the' counts as part of a
noun). I'm not saying this is absolutely faithful to the rules of
English grammar, as this sentence proves, but it's completely
adequate for our purposes. This still won't solve all our problems,
however. There are at least two more situations that need to be taken
into account. Fortunately both of them are fairly straightforward.

(4) Suppose that we have more than one object of the same general
description. How do we know which object the player wants to deal
with? Is it the RED APPLE or the GREEN APPLE, the LONG
SWORD or the SHORT SWORD? The simple answer would be to
avoid the problem by never duplicating items . And this is also
probably the best solution from the view of actually writing a
program. But there may be times when you particularly want to
introduce at least two similar items - to cause confusion, perhaps.
So we'll deal with such situations by introducing another rule: the
adjective for any noun must come immediately before the noun that
it qualifies. Thus

THE LEFT DOOR

The We/I-chosen Word 153

is valid, whilst

THE DOOR ON THE LEFT

though nearer to everyday English usage, wouldn't be allowed. I'm
sorry if this part of the rules is a bit clumsy, but the reason for it will
become abundantly clear when we get to the program itself.

(5) What, you may ask, about qualified actions? In two-word (ortwo
letter) commands one types in

KILL GOBLIN

the computer asks

WHAT WITH?

and you reply

THE AXE

or the sword, the mace, the one-ton jar of marmalade, or anything
else you can lay your hands on.

Using our new super compound parser you might think we now
have to deal with a whole new group of words, words like WITH,
ON, UNDER, FROM, etc. Actually the problem never arises.
Instead we follow the same logic as the two-word parser - we get the
verb and the noun and then the program to execute that command

KILL GOBLIN

The difference comes when the program wants to know what we're
going to kill the Goblin with. Instead of going back to the player and
asking for more INPUT we go on through the original command
string until we come to another noun. If a satisfactory noun is
found, then the command is acted upon. If no noun is found that
would fit the situation then we print a polite rejection, cancel the
whole command string and go back for a new set of instructions.

Program 8.2: Compound Parsing

At this point I'd like to go on to the Compound Parse program itself,
rather than get bogged down in too many details which I hope,
will become a lot clearer when you see how they are dealt with in
practice.

154 Adventure Games for the Commodore 64

JLI!:>T

1 REM ***** COMPOUN D PARSER *****
2
:3
8 REM *~* SET UP WORD ARRAY
9
10 DIM C0$(26),A$C30>!VT = 10!NT - 2

6: EN :::: :1.7
20 FOR X = 1 TO 26
J O F~FAD CO':~

-<t o NEX T
1t96
~9 7 REM •~~ GET CO$ Af A SET OF

WORD S AND SYMBOLS

~~;oo x :::: 1:t1~1i<X> :::: 1111 ! Pl~INT "LDCJWNJWH
AT NOW';> II;

'.510 IF X > 1 AND CA$(X ·-· U ".:: 1111 CW
A<j;(X ·-· 1) ::: II") THEN x '"' x l

5?0 GET AS! IF A$ ""' 1111 THEN ~.'.;20

530 IF A$ = CHRS (20) THEN PRINT A
S ; : A $ (X) :::: L E F T'I» (A ':!; (X) , L.. E N (1~1

~j;(X)) ··- :1.)! GOTO '.::.;zo
'.'5 .q () I F A $ = c H R $ (1 '.3) T H EN F' F.: J N T II

": CH ::" 1: GOTO 600
:'.'is o u· <As :::: " " AND x > :1. > (.)ND < ('.\ ':J; <

x ··- 1) = II , II cm ('1 ~., (x ·-· :I.) ":: II • II)

r'.:\ND A:j; (x) :::: " II THEN PF:nn ():j;;

: GOTO ~:i :LO

'.'.'i 6 o :r F A s := 11
" T HEN i=· Fn N T A ':~ ; : x ".::

X + :L!AS<X> :=""!COTO '.5 10
s?o IF A$:= 11

," or.: A':i; :::: ". 11 THEN x -··
X + :1.:AS<X> = A$! PRINT AS! X - X

+ 1 ! A ':J;(X > = 1111
: COTO ~.'.'i:L 0

:rn 0 F' I~ I N T A :i; ; : A ':j; (X) "" rH (X) +· (', ':\; : C 0 T 0
5ZO

598 REM **~ VERB SEARCH
'.599
600 W = CH!WF - 0
6 10 FOR VS = l TO VT
c'> 2 0 IF A$ (W) C(H (lJ '.3) fl-l l:~N VF' :::: V~;:

VS = VT! NEXT :w = W t 1 : GOTO 7
0 0

The Well-chosen Word 155

/;:3 0 NEXT
/) ·! 0 F' R I N T I I [D 0 w N] [F~ I) !3 J c () M M A N D s M u !:; T

s Ti'.\ RT w ITH A v AL. ID v 1::: F.: E: • [0 FF] II : v
S = VT! NEXT ! GOTO 500

697
698 REM *** NOUN SEARCH
699
700 FOR NS = VT + 1 TD NT
710 IF A$CW) = CDSCNS) OR A$CW) - RIGH T$

CCO$CNS>, L.EN CA$(W))) T~EN NP -
NS!NS = NT! NEXT : GOTO 800

7;>, 0 NEXT
730 IF W < X AND WF = 0 THEN W = W +

1! GOTO 700
710 IF HF THEN 600
75 () PFUNT II [DOWN] [RV~>] IF YOU I VE INCL.

7rn

UDED A VALID NOUN I SURE CAN'T
FIND IT I I [OFF] II: COTO :s 0 0

798 REM *** PROCESS COMMAND
799
800 CO = VP * EN + NP - EN
81.0 ON CO GOTO
:l.9<.i7
1'98 REM *** CHECK ADJECTIVE
1 <;-' CiC,,>

2000 IF L.EN CAtCW)) < L.EN CCOS<NP>
) THEN 8$:::: A~t> (w 1) + II II + A$
o.n

2010 FOR Q - VT + 1 TO NT
2020 IF 8$ - C0$(Q) THEN NP = Q!Q =

NT! NEXT ! GOTO 20~0

20'.30 P-RINT "[DOW~·IJ~!OF: F: Y - Tl-IEVi: IS N
0 l::F\\)SJ 11 A$CW ···· :I.) 11 COFF] 11 A•t><W> ! GDT D
~5 0 0

2 0 .q 0 F' R l N T II [D () w N] () • I< • II : E N D
2050 IF W < X GOTO 20000
99'?7
9998 REM *** CO$ DATA
9999
10000 DATA GET,GO,TAKE,READ,DROP,OPE

N,UNL.OCK,ENTER ,THROW,KIL.L
10010 DATA EAST,E,WEST,W,NORTH,N, SOU

TH t ~;, oum.;: , WINDOW

156 Adventure Games for the Commodore 64

10020 DATA GREEN BOOKtKEYtROCKtKNIFE
tGOBLINtHAMBLJRGER

:l.9?97
1?998 REM *** CHECK NEXT 'WORD'
19?99
2 0000 W = W + 1: IF W < X AND CASCW) -

"THEN" cm A~1; < w > ==~ "." rn:;: A~1; cw> ,,,,
"t"> THEN ~·~oooo

20 () 10 IF w < x AND (Mi (1--l) :::: II THE II CJF'.
A ~li< !.-.!) :::: "AND") THEN 2 0000

20020 IF w < x THEN CH = w:wr = 1: GOTO
7 00

20030 GOTO '.'500
Program 8. 2.

Line -by-line analysis
Given the length of this program you may well be wondering what
all the fuss was about. After all you'd hardly call it a mammoth piece
of coding. This is, in fact, due to the situations I've chosen to deal
with and those I've chosen to ignore. Besides, I couldn't see much
point in creating a program which was marvellous at so rting out the
meaning of the input but took five or ten minutes to handle each
command . Here, then, are the line notes for the program:

Lines 10-40: The CO$() array is used to contain the set of words
which are actually recognised by the parser and will be filled from
the DAT A statements in lines I 0000-10020 in lines 20-40. The A$()
array is used to hold each set of commands as a series of separate
words. The size of the array takes account of the normal size of input
that the C64 will allow, and exercises what I think is a reasonable
limit on the number of instructions that can be given at any one time.
VT, which stands for Verb Top , gives the length of the verb section
of CO$() - see lines 600-640. NT (Noun Top) gives the element of
CO$() which holds the last noun. EN holds the value for total
number of nouns plus 1 for the formula in line 800.

The next section of the program is essential to its success . It must be
entered very carefully, taking especial note of the positions of the
brackets: one mi placed bracket could well crash the whole routine.
Because these lines are so important I want to deal with them in
so me detail.

Line 500: This routine actually has three entry points, of which this is
the first.Before any new command input is accepted, X must be reset

The Well-chosen Word 157

to I, and the first element of A$() is cleared to become a 'null string'.
The familiar "WHAT NOW?'' enquiry is then displayed.

Line 510 is the second entry point into this routine, used whenever a
word or symbol has been accepted as part of the A$() array. Its
purpose is to ensure that no blank spaces or null strings are accepted
as part of the final version of A$() when we move on to the analysis
routines .

Line 520: The third and final entry point, this line actually collects
the individual letters and symbols for the elements of A$(). If we
used INPUT rather than GET then commas would not be accepted
by the computer a legal material.

Line 530 deals with deletions made during input. The deletion
is made both in the screen display and in the element of A$()
currently being entered. Bw beware, this line cannot tell the
difference between a deletion and an insertion.

Line 540 comes into play when the RETURN key is pressed. The
input string is terminated, the value of CH is reset to 1, and
execution moves on to line 600.

Line 550 handles any blank spaces entered for A$, entered after a
comma or a full stop. In either of these situations execution moves to
line 510, which will clear the relevant element of A$() to prepare it
for fresh input.

Line 560: When a blank pace appears at the end of a word this line
ensures that only the word itself enters A$() . The value of Xis then
incremented and the next element of A$() is cleared to prepare it for
input. (Note: Although they are not included in A$() , all blank
space will appear on the screen.)

Line 570 handles commas and full stops on~v as valid input,
assigning them to their own elements of A$(). Any other
punctuation marks would, unless deleted at the time of entry, be
included as part of the preceding word . Finally line 570 handles any
other input, either letters, numbers or symbols, adding them to the
current element of A$(). Note that only this line and line 530
(deletions) return immediately for a new character without having
line 510 check for unwanted blanks. So don't include blank spaces in
words unless they are meant to be there.

Line 600: The variable W indicates which word in the A$() array is
being handled at any moment. If a new command input is being

158 Adventure Games for the Commodore 64

handled then W will be set to one - from the value given to CH in line
540. Other sit uations, when we're looking at a new command rather
than a new input, are dealt with in line 20000. Likewise the value of
WF is cleared to 0 to how that we are looking for a new command
see lines 20000 and 730.

Lines 610-630: On the basis that every command must start with a
verb this loop only sea rches the first VT ele ments of CO$for a match
for the first element it can see in A$() - element A$(W). If A$(W) is a
verb execution moves on to line 700, otherwise . ..

Line 640 prints a carefully worded rejection and refuses all the
current command input. This may seem a bit drastic, but it does save
the player from finding that , for example, because they weren't able
to GET THE SWORD they now have to try to KILL THE GOBLIN
with their bare hands.

Lines 700-720: A simple loop which searches through A$() for a
noun. Here I've allowed this search to include a match with the last
LEN(A$(W)) letters of any of the nouns to cope with elements
which include an adjective for clarity (see GREEN BOOK in line
10020).

Line 730 ensures that this search continues until we find a noun ,
reach the end of A$() , or ...

Line 740: ... WF has been set in line 20000. In this case what we're
looking for is a new command, so program execution is sent back to
the start of the verb search routine. If this is still a bit confusing,
don't worry. All will become clear when we get to line 20000.

Line 750: If none of the above conditions results in a satisfactory
pairing of a verb and a noun then all of A$() is scrapped (as in line
640), an error message is generated and the program goes back to
line 500 for fresh input.

Lines 800-810: A repeat of the 'unique commands' formula from
lines 400-410 of the two-letter command parser.

Lines 2000-2040: This subroutine is designed to find the adjective
that accompanies a given verb - remember my example of THE
LEFT DOOR? When we left the noun search routine we did not
increment.the value of W. This means that A$(W) will still be the noun of
the command we wish to execute. But supposing it is not the whole
of the noun as given in the CO$() array because it was let through by
line 710? Here we look back at the previous word - A$(W- l) - attach

The Well-chosen Word 1 59

it to A$(W) with an intervening space, and search for a match in the
noun section of CO$() . If we still cannot find an exact match then an
error message is generated, the rest of the command input is
scrapped and the program returns to line 500.

Lines 2040-2050: If we now have a satisfactory match then the
command can be executed and the program should be sent to line
800. Line 2040 should actually appear at the end of each command
execution routine as its function is simply to discover whether we've
used up all the words in the command string held in A$() - is the last
word of the current command (W) the last word of the command
input (X)?

To see this routine change line 800 to GOTO 2000 and then RUN
the program using the command

GET ME THE RED BOOK

Lines 10000-10020: Contain the verbs and nouns to be stored in

CO$().

Lines 20000-20030: We're there at last! So what does this second
subroutine do?

Firstly line 20000 adds 1 to the value of W, taking us on to the next
word of the command string, and then checks what the next word
is. If there is a next word, and it is not a recognised delimiter, then the
value of CH is reset to the current value of W so that the word can be
recognised as the first word of a command in lines 600-640 - {(
necessary. Then we set the WF 'flag' to 1 before sending the program
off to do a noun search. Yes, a noun search. Because we might be
looking at a command like

GET THE SWORD A D THE HAMBURGER

or

GET THE KNIFE, THE KEY AND THE ROCK

in which case we need the same verb with a new noun. If we're wrong
about this, and we're actually dealing with a brand new command,
then setting WF to 1 ensures that a failed noun search will ·be
followed by a verb search.

Laying your cards down

And so we come to another of the unresolved questions in adventure

160 Adventure Games for the Commodore 64

gaming: Should the writer document the words that can be used to
make up valid commands, or should the players be left to find out
for themselves?

My own feeling is that a game should contain worthwhile
problems for the player to solve without addingthe need to discover
what words make up the writer's own game vocabulary. In defence
of this view l would cite The Hobbit and Valhalla, which not only
give word lists in the instruction booklets but also quite lengthy
explanations of how the words may be put together to form legal
commands. Admittedly lnfocom instructions are not quite so
detailed in this respect, but then a vocabulary of 600 words or more
would probably do more to confuse the player than help him.

The one exception to this view which I do find acceptable is the
note in the handbook for The Hobbit which explains that a few
special words - actions and nouns - have been omitted from the list ,
though it should become apparent during the game what these
words might be. Certainly the writer should not be obliged to give
away all his or her secrets in advance, but it is a good idea to keep
such special cases down to a minimum. Nothing can be more
frustrating for a player to find that he cannot manage a perfectly
obvious action because the writer has not only failed to disclose his
basic word list, but has occasionally chosen words which are
themselves by no mean obvious. For example, it may come quite
naturally to one person to talk of scaling a wall , so that when a
player uses the more mundane, but more widely accepted (?)
command CLIMB THE WALL the computer replies YOU CAN'T
DO THAT. Should the player take this to mean that there is no way
over the wall , perhaps most people's first reaction, or does he run
down to the local bookshop for a copy of Roget's Thesaurus so he
can try out every possible variation on the word CLIMB?

l n broad terms, then, I would argue that, unless there is a very
good reason indeed for not making a word known - such as
concealing the existence of a special object until it is found in the
course of the game (because the player would almost certainly guess
what it was for if he knew it existed) - then all valid words should be
disclosed in the documentation which accompanies the game.

Chapter Nine

Taking Shape

At this point in the book it's worth taking some time out to consider
the subject of program organisation - Block Diagrams, Flow
Charts, etc.

Whenever people talk about 'o rganising' programs they inevitably
think of s1ruc1ured programs. This word 'structured' - as in
Structured BASIC, Structured Programming and so on - is one
that is frequentl y used , yet seldom explained.Many people think it is
'a good thing' to use structured programming, even if they aren't too
sure what it really is.

Take this example from a computing magazine:

'Structured programming is no1 splitting up a program into a
sequence of subroutines, each one performing one task as a part
of the whole process.

'It is no l the use of constructs such as WHILE ... or
IF ... THEN ... ELSE . .. statements in a language.

'It is no1 the elimination of all unconditional jumps (e.g.
GOTOs) from a program.

'It is no l the ability of a language processor to produce auto
indented listings of programs.

'It is not the provision of labels, named subroutines, data
declaration (local or global).'

Well , that's what structured programming isn't. So what is it?
The essence of a structured program is that it shows good

organisation. As one programming guide explains (referring to
Structured COBOL):

' . .. one of the major advantages of structured programming is
that it is readable by human beings . A person who isn't a
programmer at all can read a structured COBOL program and
figure out what is happening.'

162 Adventure Games for the Commodore 64

And what is true for a program written in COBOL should also
hold true for a program written in BASIC (given that BASIC is not
as 'high' a language as COBOL, relying to a greater degree on
symbols and mathematical constructs).

The term 'structured' seems to have arisen from the spread of
computer software into the 'outside' world where it was more and
more likely to be used by people with little or no knowledge of
computer languages or programming methods. A well-structured
program is one that is clearly laid out and therefore (a) can be de
bugged relatively easily and (b) can be read , understood and
modified at a later date by someone other than the original
programmer(s). So the pursuit of structure is not merely an
academic whim. It has a worthwhile, practical purpose.

It is not the purpose of this chapter to provide a complete course
in structured programming. What I will try to do however, is to
provide some useful pointers to better - by which I mean more
effective - programming methods.

Block diagrams

The task of preparing the actual program for an adventure game
follows much the same pattern as we saw when we were preparing
the plot and storyline for a game. The main difference is that we now
know what we want to do but still have to decide how it is to be done.
A useful first step in organising the actual 'encoding' of a program is to
prepare a block diagram (sometimes known as a systems.flowchart) .

Drawing up a block diagram actually has two purposes . Firstly it
is an easy way of sorting out exactly what is to go into a program.
(Easy to do, and easy to read afterwards.) Its second function is to
show the relationships between various sections of the program
within the overall setting. To put it simply, the block diagram shows
what goes where.

Let's Jay out a sample diagram (Fig. 9.1) and you'll see what I
mean.

(Note: in this examp le I've assumed that the main Introduction to
the game and the Character Generator will be LOADed and RUN
prior to the LOA Ding of the main program.)

Obviously what I've drawn here represents a very bare minimum.
It doesn't cover any of the details of the game except - as briefly as
possible - the handling of various type of INPUT (the player's
commands) . Indeed, this diagram cou ld apply to almost any

Taking Shape 163

Start

t
Introduction

t
Set up

Variables,
Arrays and

Room
Descriptions

,j, - 1 -
Command

Input
(Validate

Command)

t
Display Yes

New Room --- Move?
Description

t No

~

Event Yes
Action?

Check r--

t No

No Save Game? .__.. Dead? (Save Game)

Yes t
Quit?

No
r-

,j,
Yes r

(End

Fig. 9 . 1. Block diagram .

164 Adventure Games for the Commodore 64

adventure game. Which is exactly how it shou ld be. For while the
flowchart for each game will be unique (and may need substantial
alteration before it reaches its final form) , the block diagram is for
guidance only, and may not need to be altered through several
different games. In fact it would only need to be changed if some
quite new area of operation were introduced - the use of graphic
displays, for example - or if you wanted to remind yourself how a
radical new subroutine fitted into the rest of the program.

Having defined the main areas of the program, we can now begin
to turn this into something rather more concrete. The first step will
be to set aside specific areas of the program for specific tasks - the
areas are defined in terms of line numbers, of course. Even if you
intend to produce a final program with entirely consecutive line
numbering (thus making it harder for ' intruders' to sort out
individual sections of the program) it's sti ll well worth breaking the
earliest ve rsions of the program down into clearly defined modules.
Not only does this make the process of de-bugging each program
section much easier, it also allows you to save individual modules for
inclusio n (as they stand or in modified form) in future programs.

The second step is to prepare a detailed or program flowchart (see
Fig. 9.2) .

Little boxes

'Why bother to prepare a flowchart in the first place? By the time
you've finished laying out a chart you might just as well have written
the program itself.'

This is a common argument, and one that sounds particularly
convincing when you've just altered a chart for the tenth time to
include a subroutine that had previou ly gone unnoticed . Unfor
tunately it isn't a very accurate argument. As someone o nce said,
ninety out of every hundred programmers canno t put a program
together successfully without first preparing an adequate flowchart.
And of the other ten , nine only think they work well without a chart.

Is thi an over-cynical attitude? I don't think so. After all , there's a
lot more to the flowcharting process than just st ringing together a
variety of little boxes. First there's the question of how you will set
up various sections of the program - the actual construction of lines
of BASIC. lf you write your program 'at the keyboard' then, unless
yo u're a ve ry ex perienced programmer, there's a strong likelihood
that you'll type in whatever seems good at the time. And as long as it

Display
'Can't Do'

Get
Command

Parse
Command

Section of
Flowchart

Display
Error

Check
Movement

Codes

Check
For

Event

Fig. 9. 2 . Flowchart.

Taking Shape 165

Display
' No Go'

works it's lia ble to get left just the way it was written even if you
come up with a better version of the routine, or even a whole new
approach. To put it bluntly it's a lot easier physically and
emotionally - to change a piece of code that you've roughed out on
paper than one that's already been entered, tested and which stands
ready to run.

166 Adventure Games for the Commodore 64

IF C< 10 THEN Q=V(R,C)

As if you hadn't already guessed it , we now come to the subject of
variables. Broadly speaking, there are two types - ' local' and
'global'. A local variable is one which has relevance only within the
subroutine in which it appears. A 'global' variable is one which
remains active, so to speak, throughout the program. Controlling
the use of yo ur variables is a task which need s to be approached with
considerable care.

There are some languages which allow the same var iable names to
be used both locally and globally without causing total chaos.
Obviously this is extremely useful. lt is equally obviously not an
option allowed for by the C64's version of BASIC. lt is down to yo u,
the programmer, to keep meticulous track of what names are being
used for what, where and when.

Now some people will argue that specific variables don't belong in
a flowchart, and that it should indicate processes rather than
snippets of actual code. This is , however, very much a matter of
opinion, and it seems a bit daft to miss out on one of the most
va luable functions that a flowchart can serve for the sake or standing
on a rather dubious principle. Having got that off my chest, Jet's get
back to the plot.

The best illustration of the use of a local variable is the way that X
is used in most of the programs in this book. On almost every
occasion where [have used X it is as the 'index value' for a loop . Xis,
then , a very definite local variable. It might crop up in many places in a
program, but its value is constantly being re-set, seldom remaining
the same for more than four or five lines of code. Because Xis used in
this way it has been necessary on a few occasions to 'skim' the value
of X and to hold it in another variable for subsequent use while Xis
re-valued once again.

This process can be seen quite clearly in the two-letter command
parsing routine (Program 8.1). [n lines 110-130 X is the index value
for a loop in which an INPUT string value is compared with a list of
acceptable values for that JN PUT. If a match for V$ is found in the
longer string - VE$ - then the value of X is transferred to VP (as a
index to the array V$()), and X is re-set to the highest possible value
for that loop to allow an immediate exit.

In this context the V$() array and the checklist VE$ are global
variables which must retain their initial values throughout the
program. VP is a 'major' local variable in that its value normally
only alters when the routine is called (though it will also be affected

Taking Shape 167

by an incorrect INPUT). Poor old hard-working Xis an utterly local
variable which is re-valued just five lines after it has been set.

To put it another way , if either VE$ or any element of the V$()
array were re-set during the RUN ning of the program then the whole
program would become inoperable (e pecially in the case of VE$) .
VP, on the other hand , while holding its value for the duration of the
subroutine, could be used for another short-term purpose outside
the subroutine, since it will automatically be re-set next time the
parsing routine is activated. And Xis not only used elsewhere but is
actually re-set not once but twice within the one subroutine.

The second important aspect of flowcharting, then, is to ensure
that the names and functions of all variables are defined in advance
of the moment when you start to enter the BASIC code for your
game. This avoids overlapping u e of any particular variable and
avoids having too many variables where one or two could be made
to do the work of ten. After all, the Variable List Table takes up
space as well.

The third major value of preparing a atisfactory flowchart is also
concerned with economy. As I said before, it is all too easy, when
preparing a program 'off the top of your head' to make routines
unnecessarily complicated or even to write in different versions of
the same routine where a single subroutine would do. The problem is
that by the time you've spent two or three weeks preparing a
program, you become so familiar with it that errors like this become
increasingly difficult to spot unless they actually crash the program.

By laying everything out in chart form before you even touch the
keyboard it's much easier to pare down and maximise the efficiency
of your routines than when you're running through several pages of
listing (especially if you don't have a printer and have to work from
the screen).

The final touches

Well, that's about all of the really hard work dealt with . To finish off
this chapter I'd just like to go over a few short points that will, I
hope, be useful in improving your general programming technique.

(1) GOTOI GOSUB and REM
Even experienced programmers often address GOTO and GOS U B
statements to a routine which starts with an explanatory REM line.
This a mistake! Not long ago, for example, I came across an

168 Adventure Games for the Commodore 64

American magazine where the editor had to apologise for a program
in a previous issue. It included no less than twenty-eight occasions
where REM lines - deleted before publication - had been used as
target addresses! No doubt many readers had spotted the e rrors
while entering the program in question and made the necessary
alterations. But the fact remains tha t the errors were unnecessa ry,
and should not have occurred in the first place.

Since REM lines are very useful in the early stages of preparing a
program - particularly if yo u intend keeping a copy of the list ing for
the future reference - 1 would suggest that all REM statements are
set out on separate lines from the main program, with 'odd' line
numbers that can be easily recognised and deleted from the final
version.

(2) Loop breaking
'Thou shalt not break out of an uncompleted loop' has long been one
of the card inal rules of good programming. The reaso n for this rule
leaving aside the fact that anything else is messy writing, and messy
thinking - is related to the way in which many computers handle
a BASIC program .

A standard way of handling loops is to store the sta rting address
of the operations within the loop on what is called 'the stack' an
area of RAM set aside specifically for this kind of task. Thus,
whenever the interpreter reaches the NEXT command at the end of
the loop, the address at the top of the stack is transferred to
TXTPTR (or TEXTPOINTER - assembly language labels are
traditionally limited to 6 characters even if the Assembler can handle
more) !/'the loop is not complete, and the looped operations are
repeated again.

In fact, as we've already seen, the C64 uses a rather different
method of moving through a program, using a ' middleman' buffer.
Thus TXTPTR actually points to the buffer area rather than to the
main BASIC program area. Not surp risingly, then, we find that it
also deals with loops rather differently. The start address is not
stored on the stack but on the zero page at addresses 61 and 62
(decimal).

In theory, then, it is not possible to overload the stack by
repeatedly jumping out of uncompleted loops. Nevertheless it is
unwise to take the chance of crashing a program just because you
believed it couldn't happen! The way to get out of a loop before it is
complete (that is , before the loop indexer has reached its highest

Taking Shape 169

value) i actually very simple - as can be een in the subroutine
below:

llOFORX= I TO 100
120 IF A$= B$(X) THEN TE = X: X = 100: NEXT: GOTO

150
130 NEXT
140 PR! TA$" IS NOT VALID." : END
150 PRI TA$" = B$(";TE;"). ": E D

Incidentally, the amount of time saved by usi ng the last three
statements in line 120 is actually quite s ignificant. If a demonstration
array is created for 8$() in which A$ is equal to the 50th element then
line I 50 is completed in about .4 of a second (using three letter items
for A$ and all of the array). If A$ is re-set to equal the 25th element
in 8$() then the execution time drops to .2 of a seco nd. If no escape
method is used then it takes .6 of a second to complete the entire
loop. This may not sound too hot, but suppose yo u're using this
routine over and over again (as in a command parse r) . Taking the
exa mples above you actually save 33 and 67 per cent of the execution
time needed for the complete loop. And as the comparisons grow
longer so will the amount of 'real time' that you can save.

(3) Program layout
Every type of program has its own distinctive 'a rchitectural style' .
Ma ny business program , for example, are made to be used by
people who have little or no knowledge of computer programming
and functions . Because of this they often have an opening sequence
made up of one or more menu , each followed by a set of conditional
GOSUBs.

Adventure programming also encourages a certain style of layout
inOuenced by the essential constituents of such programs. This
layout can be broken down into the following list of general
routines:

(a) The Introduction
(b) Set up room descriptions and other variables, arrays, etc.
(c) The most frequently used subroutines (preceded by a jump
to the main program)
(d) The main program
(e) A body of routines to deal with specific (usually 'one off)
situations
(f) The End of Game routine
(g) DAT A statements

170 Adventure Games for the Commodore 64

I've already expressed my own preference for RUNning the
Introduction and Character Generator as a separate module, so this
leaves us with units (b) to (f).

Generally speaking any adventure program should start off
looking something like the layout I've described. This allows us to
chop off DAT A at the end of the program once it has been stored
elsewhere. But why put subroutines at the beginning of the program?

The reason for this is related to the way in which the C64 (and
many other micros) finds the line it has been sent to by a GOSUB or a
GOTO instruction. In order to find such lines the computer goes
back to the very start of the program (pointed to by locations 43 and
44, using the formula PEEK(44)*256+PEEK(43)) and then scans
through the BASIC program area until it finds the target line
number. On the RETURN journey, however, it goes directly to the
last byte of the GOSUB instruction and then moves forward one
byte (which brings it up to a mid-line colon(:) or an end of line zero)
and the next instruction is then dealt with . This is why you can jump
from or RETUR N to the middle of a line, but can only jump to the
start of a line.

(4) Beating the intruder
A secondary benefit of using assembly language (or machine code)
rather than BASIC is that low level language programs are much
harder to decipher unless you are already familiar with the program.
However BASIC, too , can be rendered at least semi-incomp
rehensible if you wish to make it so.

It may eem rather weird, having argued in favour of well
organised programs and flowcharts , to suggest that anyone should
deliberately jumble a program up. Yet a well-organised program is
easier to scramble than one that is none too clear in the first place.
The point is that al l writers / programmers have a certain 'style' -
even the bad ones. Thus anyone who want to break into a program
has only to search out that overall style and they will soon be able to
follow the flow of the entire program.

If, on the other hand , you start out with a well-defined set of
modules it is relatively easy to rearrange them in a fairly random
fashion that has nothing whatever to do with your normal method of
working. In this situation an intruder will have to track down every
variable, every GOTO and every GOSUB before they can begin to
get any clear picture of holl' you are doing what you are doing.

Obviously the final result of such manoeuvres will ne·1er have the
same air of inscrutability as as unexplored machine code program,

Taking Shape 171

but it is fairly certain that less experienced 'peekers' will soon
abandon the struggle.

(5) Speed tips
(a) Define all frequently used numbers as variables at the start of the
program. The computer can actually find a variable in the VL T
faster than it can evaluate and use raw numerical data.
(b) Try to arrange your variables in order of priority. Since the
computer always starts reading the VL T from the top (that is , in the
order that variables have been defined) the most frequently u ed
variables should be at the top of the table.
(c) Don't use integer variables (such as A% or YC%) unless you
really need to. In order to handle an integer value the C64 turns it
into a floating point value and then back again . In fact the only
reason for using integer variables is to create an integer array, a this
does save three bytes per element over 'real' arrays.
(d) Don't bother to define the index variable in a loop - use EXT
rather than NEXT X or NEXT VC. This saves on the time that the
computer takes to see if it's N EX Ting (is there such a word?) the
right loop. So long as you haven't incorrectly nested your loops (i.e.
as long as they don't overlap) the computer will execute each loop
correctly all by itself.
(e) Use single-letter variables wherever you can. In a long program
you will almost inevitably need to use some two-letter variables, but
it does take time to handle that second character. If you do need to
use both one- and two-character variables, then try to make sure
that the one-letter variables are assigned to the most frequently-used
values. The time saved in one operation may be negligible, but when
a routine is called tens or even hundreds of times during the program
the overall saving can be quite significant.
(f) And finally - don't forget to remove all REM and 'spacer' lines
from your final program. It's always a good idea to keep a back-up
copy of your programs so why not SA VE the REM'd version, delete
all unnecessary material , and then SA VE the compact version as
your final copy.

By the way, do make sure that you've really completed the
program before you do this , or every alteration will need to be
duplicated , a boring task at the best of times and far worse if all your
work is on tape.

Chapter Ten

Sound and Vision

There will , I'm sure, come a day when adventure programs without
graphics of some sort come to be regarded as out-of-date. At the
same time I think , for reasons which will be explained in the last
chapter, that the time for this is still several years in the future . In the
mean time it's worth asking to what extent we can introduce sound
and graphics into adventures written for the C64 to our advantage.
My own first reaction to this question - when I was roughing out this
chapter - was that there really weren't many advantages involved in
going beyond pure text.

'Hang about,' says the voice (l wondered where he'd got to!).
'They've got Th e Hobbi1 on the C64. And that's just for starters!'

Which is true. But it also highlights the old theme of BASIC
versus Machine Code. The Commodore 64 is so named because it
includes a whole 64K of RAM space. And it does - but not in an
easily accessible form. For not only is a 2 K chunk of the 'easy-to-get
at' RAM already allocated to the computer - and thus rendered
unusable for all practical purposes - but much of the other RAM
space that appears to be free isn't! Not as long as you're u ing
BASIC. The way this paradox comes about is as follows .

When you first switch on your machine the title block at the top of
the VDU screen announces that you have '38911 BASIC BYTES
FREE'. Given that I K actually equals 1024 this means that we can
use just a fraction under 38K of RAM. So what happened to the
other 26K?

Part of it , we know, is computer-used space - pointers, the stack,
the BASIC buffer, etc. But even after deducting the 2K so used
there's still 24K unaccounted for. The answer is to be found in the
C64's method of mapping the memory. If you can get hold of a good
memory map you' ll see that most of the addresses above 40960 (the
top of BASIC program space) are actually listed twice. Thu
everything from 40960 to 65535, with the exception of the block

Sound and Vision 173

from 49152 to 53247, is taken up by SID. VIC, BASIC ROM,
Kernal ROM and so on. But if the right bits of address I on the zero
page are set correctly then this whole area is converted to RAM.
What actually happens is that since the same set of addresses are
shared by two separate sets of chips, the zero page address tells the
processor which set of chips it should deal with at any given
moment.

Now, if all you want to do is to POKE data into this high area of
RAM then the computer automatically treats it as RAM. But just
you try to get anything back out while you're using BASIC. What
you'll PEEK at is the contents of the ROM , SID and Y1C chips!

The problem is , of course, that the processor needs the ROM in
order to execute the BASIC instructions. And since it can't read two
versions of the same address at the same time it will only read the set
it needs. Of course you could switch the addres pointer over
yourself by POKEing 1 with the appropriate number. But your
BASIC program would immediately cease to function. In other
words you couldn't recover data from that area of RAM even if the
processor was looking at the right set of chips! Frustrating, isn't it?

So, apart from the 4K block from 49152 to 53247, the RAM
between 2048 and 40959 (plus a few small sections of the area below
BASIC) is normally all that we have to play with. And on top of this
we must remember that (a) the 4K referred to can only be used for
storage, not programs, and (b) if we try to use high resolution
graphics we'll lose a sizeable chunk of the normal BASIC program
area. And that brings us back to the all important question. How
much space can we really afford to use up for sound and graphics
routines?

My own feeling is that in a BASIC adventure any graphics
element needs to be economical, extremely relevant and well
designed before it is even worth thinking about. Good graphics may
help to enhance a well-written game, but even the best graphics the
C64 can manage (and they're pretty good) won't do much for a
poorly-written game. (Except, perhaps, to make it look even wor e
by comparison.) And the same thing goes for sound routines, be they
musical accompaniment or sound effects.

Having said that , is also occurred to me that where the
lntroduClion to a game is LOADed and RUN before the main
program is loaded into the computer, there would be room for
something a bit special in the way of scene-setting, where anyone
with the necessary artistic talents (and patience) could afford to let
their hair down.

174 Adventure Games for the Commodore 64

I mentioned patience there because of the limitations of the C64's
built-in BASIC. Unfortunately, due to the ab ence of the neces ary
BASIC commands, both graphics and so und - though extremely
well catered for in terms of hardware are none too easy to use.
Rather than try to do them justice in a few short pages , I've chosen to
limit the discussion in this chapter to relatively brief descriptions of
the VIC and SID chips and how to begin to use them.

Program 10.1: Looking spritely

There was a time, B.C. (before Commodore), when everyone knew
them as MOBs - Moveable Object Blocks. But the full name was a
bit of a mouthful , and the shortened version sounded positively
barbaric, so they were given a love ly new, utterly harmless-sounding
name. They are, of course, !.pri1es. And it's with sprites alone that I
want to deal in this first section.

Since the best way to find out how to do things on a computer is by
actually doing them I've included a 'ma p' of the Vic chip (see Table
I 0.1) plus what probably looks like a rather simple program. It is, in fact,

VIDEO INTERFACE CHIP (VIC)
Base Address (=BA):53248
Top of VIC: 53294
Size in BYTES: 46
Pointers for SPRITE data: 2040- 2047
(Addre s of DAT A for SPRITE X = PEEK(2040+X) * 64)

Absolute Relative
Address Address

53248 BA+O
53249 BA+ I
53250 BA+2
53251 BA+ 3
53252 BA+ 4
53253 BA+ 5
53254 BA+6
53255 BA+ 7
53256 BA+8
53257 BA+9

VIC CONTENTS

Contents

Sprite 0 - X (horizontal) co-ordinate
Sprite 0 - Y (vertical) co-ordinate
Sprite I X co-ordinate
Sprite I - Y co-ordinate
Sprite 2 X co-ordinate
Sprite 2 Y co-ordinate
Sprite 3 - X co-ordinate
Sprite 3 - Y co-ordinate
Sprite 4 - X co-ordinate
Sprite 4 - Y co-ordinate

Abso/u1e Re!a1ive
Address Address

53258 BA+ IO
53259 BA+ ll
53260 BA + l2
53261 BA+ l3
53262 BA+ l4
53263 BA+ l5
53264 BA+ l6

53265 to 53268 BA+ l7 to BA+20

53269 BA+ 21

53270 BA +22
53271 BA+23

53272 to 53274 BA+ 24 to BA+26
53275 BA+27

53276 BA+ 28

53277 BA+ 29

53278 BA+30

53279 BA+3 1

53280 to 53284 BA+32 to BA+36
53285 BA+37

53286 BA+38

53287 BA+39
53288 BA+ 40
53289 BA+ 41
53290 BA+ 42
53291 BA+ 43
53292 BA+ 44
53293 BA+45
53294 BA+ 46

Sound and Vision 175

Co111e111s

Sprite 5 - X co-ordinate
Sprite 5 Y co-ordinate
Sprite 6 - X co-ordinate
Sprite 6 - Y co-ordinate
Sprite 7 - X co-ordinate
Sprite 7 Y co-ordinate
Where the X co-ordinate is greater
than 255 then this location holds the
value 1 and the Sprite X register
contain X co-ordinate 256.
These locations are not to be used by
the Sprites
'E nable' each Sprite by setting the
appropriate bit to 1
Not used by Sprites
Set appropriate bit to double Sprite
height

ot used by Sprites
If appropriate bit is clear (=0) then
Sprite will appear in front of back
ground . If set(= 1), Sprite will appear
behind
Set appropriate bit for 'multi
coloured' Sprite (see 53285 and 53286)
Set appropriate bit to double Sprite
width
Computer sets appropriate bits if two
Sprites 'collide'
Computer set appropriate bit if
Sprite 'collides' with background

ot used by Sprites
Second colour (0- 15) for multi
coloured Sprite(s)
Third colour (0- 15) for multi
coloured Sprite(s)
Primary colour (0- 15) for Sprite 0
Primary colour for Sprite 1
Primary colour for Sprite 2
Primary colour for Sprite 3
Primary colour for Sprite 4
Primary colour for Sprite 5
Primary colour for Sprite 6
Primary colour for Sprite 7

Table 10. 1. Structure of the VIC (video interface chip).

176 Adventure Games for the Commodore 64

nea rly as imp le a it loo ks, but it a lso serves to illu trate a ll the most
imp orta nt as pects of sprite ma nipula tion . Fo r th o e readers who
a lready have a so und knowledge of this subj ect I wo uld re
emphas ise tha t this is o nly a n in1rodu ction to sprite ha ndling.

By the way, wha t the program act ua lly does is to create a rather
' bouncy' horse whi ch tracks backwa rd s a nd forwa rds across the
scree n. T he res t o f the progra m detai ls ca n be found in the line no tes
which fo llow.

] LIST

1 REM ***** SPRITE 0 DISPLAY *****

3
8 REM *** SET SCREEN COLOU~S
9
10 POKE 53280t5: POKE 53281,6
17
18 REM *** SET DATA POINTER
19
2 0 F'Ol<E 2040, 13
27
28 REM *** POKE SPRITE 0 DATA
29
30 FOR SD = 832 TO 894
40 READ A: POKE SD,A
50 NEXT
1.00 v = 53248
110 POKE V + 27,0
120 POKE V + 21,1
130 POKE V + 39,0
110 POKE V + 39t0
150 POKE V + 23,1: POKE V + 29t0
160 POKE V + 1t100
170 A = O:B = 347:C = l:D = - B!E -

8:1-(::: E
177
178 REM *** MOVE SPRITE 0
179
180 FOR X = A TO 8 STEP K
190 IF Q = 0 ~HEN POKE V + 23,1: POKE

V + 29,0!Q = 1: GOTO 210
200 POKE V + 23,0: POKE V + 29,l!Q =

0
207

Sound and Vision 177

208 REM *** DELAY MOVEMENT
20 <.~
;:: :I. 0
22 0

?30
24 ()
;::47

FOR Z = 0 TO 250: NEXT
HB = INT <XI 256>:XP = X

HE:
POKE v,xP: POKE v + 16,HB
NEXT

248 REM *** MOVE <- OR - > ?
24 9

- 256 lK

250 IF A = 0 THEN A = 347:8 - o: POKE
V + 27,B:K = D: GOTO 180

260 IF A = 347 THEN A = O:B = 347: POKE
V + 27,C:K - E: GOTO 180

397
398 RFM ~** DATA FOR SPRITE 0
399
400 DATA 1,o,o,1,o,0,7,128,0,7,224,0

,7,240,0,7,112,0,15,49
~:1.0 DATA 7,255,0,31,255,0,63,255,0,1

11,254,0,207,254,0,207,251,0,6,1
,128

420 DATA 6,1,128,6,1,128,128,12,1,12
8,24,1,128,4s,o,o,o,o,o,o,o,o

Program 10. 1.

Line-by-line analysis
Line 10: First we must set up the screen and border colours. They
are, of course, purely a matter of choice, though that choice must
take into account the colour, or colours, of the sprite(s) that you are
using.

Line 20 tells the computer where to look for the DAT A for sprite 0.
The address for the POKE is found by adding the number of the
sprite to the base address - 2040. The value to be POK Ed is found by
dividing the address of the first byte of DAT A by 64. In this case the
DAT A will start at 832 - 832 divided by 64 equals 13. You may not
start sprite DAT A at any address which is not a multiple of 64.

Lines 30-50: A simple loop to collect t~e sprite DAT A from lines 400-
420 and POKE it into memory.

Line 100: Assigns the base address (the lowest byte of the Video
chip) to the variable V.

178 Adventure Games for the Commodore 64

Lines 110-160: Set up the basic parameters for sprite 0 in the
following order:
(I) Clearing V+27 to 0 means that our sprite will appear in front of
everything else on the screen .
(2) Setting the first byte of V+2 I to I 'enables' sprite 0 - enables us to
see it, that is.
(3) The value POK Ed to v+ 39 dictates the primary colour for sprite
0 using the standard colour values for the C64. The effect of this
instruction may be altered if we also use the 'multi-colour' option
(see below) .

Because I wanted to alter the shape of my sprite as it moved , I've set
the values of Y+23 and V+29 so that the sprite will start off with
normal width but double height. If the appropriate bits are not set
(to I) then a default value ofO is used by the computer and the sprite
will appear at normal width and height.

Finally I have POK Ed the horizontal location for the sprite (that
is the I OOth graphics line from the top of the screen) into the relevant
Y co-ordinate. The computer uses this as the location of the top row
of bytes of the sprite.

Line 170: I'll explain this line in a little more detail in a moment. For
the time being all we need to know is that , in the loop below, A is
used as the location at which the sprite will appear and B is the
furthest location (X co-ordinate) to which it will move on the far side
of the screen. The value of C is used when we want the horse to
appear in front of the background. Dis the number of bytes that the
sprite will 'jump' on each move when it is travelling backwards (right to
left) , and the value of E is used for the same purpose when it is
travelling forwards (left to right). These two values are transferred to
K as necessary. We could also assign a value to Q at this point, but
this is unnece sary as yet, as unassigned variables are automatically
cleared to 0 - which is the correct value for Q at the point when the
routine starts.

Lines 180-240: This is a pretty complicated loop, used to move the
sprite across the screen , so I'll explain it in detail.

Line 180: As I said before, the sprite actually jumps across the screen
rather than moving one byte at a time. A and B are the start and
finish location for each journey, and the value of K dictates how
many bytes it will jump on each move. You might notice that despite
this jump in the loop the sprite still appears to moye quite smoothly .

Sound and Vision 179

Lines 190-200: In order to make the horse 'bounce' I have to
continually reset the bytes controlling its width and height. Thus on
every move the value of Q is changed to I or 0, depending on its
previous value, and that dictates whether it is double height, normal
width (line 190), or double width, normal height (line 200). Only one
of these lines is executed on each move.

Line 210: This is a simple 'wait' loop to give us time to see the sprite
before it moves again.

Lines 220: This line is essential to the process of getting the sprite all
the way over to the right-hand edge of the screen because v+ 16
holds a second (high byte) value for the X co-ordinate, which allows
us to get a total value of up to 347 - the furthest location on the right
hand side of the graphics screen.

Line 250-260: As with line 190-200 there is a selection system to
decide which of the two lines will be executed, except that here
the lines alternate with each loop and not on each move.

If A=O when the program reaches this point then the horse has
been moving from left to right , which means that we now want to
send it back again. To do this we reverse the values of A and B, and K
- the 'step' controller - must be given the value of D, a negative value,
because the loop will be counting down, not up. But I also wanted to
demonstrate another function of the VIC chip, the ability to move
sprites behind any background material. To do this we POKE the
new value of B (= O) into the priority register.

The elements of line 260 are simply the reverse of those in line 250,
but they will only be used where the loop ends with the value of A set
to 347. In this case we know, or ratherthecomputer'knows', that the
sprite has completed a journey from screen right to screen left. So
once again the values of A and Bare swapped, K is set to equal E - a
positive number - and the value of C (= I) is POK Ed into V+ 27 to
put the sprite back in front of anything else there may be on the
screen. At the end of both of these lines program execution is sent
back to the start of the loop, at line 180, for a new journey.

Just a couple of extra points . If you want to use a multi-coloured
sprite then add this line to the program:

125 POKE V+ 28,1 : POKE V+ 37, 12: POKE V+ 38, 13

POKEing the appropriate bit in V+ 28 tells VIC that you want
sprite (bit no. - 1) to be multi-coloured , using the values in V+37
and V+ 38. In this example the two secondary colours will actually

180 Adventure Games for the Commodore 64

block out the original black used for this sprite altogether, though
some combinations will give you a three-coloured sprite. Experi
ment with the last two POKEs in line 125 to seethe different effects.

Lastly , in order to stop this program simply press the
RUN / STOP key. If the sprite is still on the screen you can erase it by
typeing in POKE 53269,0.

What we also need to know, of course, is how to prepare a sprite
diagram so that we can compile the right set of DAT A to include in
our program. This is a fairly simple process, thanks to the way that
Commodore have set up the sprite handling functions , and the only
aspect that might prese nt any problems at all is the job of labelling
your 'sprite grid' correctly. In the two diagrams below (Figs 10. 1 and
10.2) you will find first the basic sprite grid outline, and then a grid
showing the rough diagram from which I coded the 'horse' sprite
used in Program 10. I.

Bit values for sprites

00 00 00
N~NW N~NW N~NW
~~M~OO~N~~~M~OO~N~~~M~OO~N~

1-3
4-6
7-9

,..._,-+--+--+--1-+-+-_._-'-'._._-+--+-+-<-+-+--+--1-+-+----+-4--I 10-12
l--l-+-+--l-l--l--+--l-+-li--l--+--l-+--1--+-+--l-l--l---+--l--+-I 13-15
l--l-+-+--l-l--l--+--l-+-li--l--+--l-+--1--+-+--l-l--l---+--l--+-I 16-18
t--1--t--+-+-t-+-+--t--l--+-+--l-+-l--+-+--1-1--1--+--+-+-I 19-21
l--l--t--+-+-t-+-+--t--l--+-+--l-+-l--+-+--1-1--1---+--+-+-I 22-24
l--l--t--+--l-l--l--+--l--l-i--l--+--l-+--1--+-+--l-l--l---+--l--+-I 25-27 ~

:::::::::::::::~:::::~:::::::::::::~:::::~:::::::::::::::~~=:~::::::::: ~~:~~ ~
34-36 3

t-i-+-+-+-1-+-+-+-+-li--1--l--l--l-l-l--+-+-1-+-l--+-+--l 37 -39 ~

t-t-+-t--l-lf-+-l--f--l-l-+-+-+-1-+-l--l--l-lf-+-l--l-~40-42
43-45

t-t--t--+-+-l-+-+--l-+-l-+-+-+-t-+-+--1--l--li--l--+--I-~ 46-48

49-51
t-+-+--+--1--1-+-+--+-+-l-+-+-+-t-+-+--l--l--li--l--+--I-~ 52-54

55-57
t-+-+--+-+-l-+-+--+-+-l-+-+-+-t-+-+--1--l--li--I--+--+-~ 58-60

61 -63 ._..._.__._...._ _._ __,--..,_... __.__

Fig. 10. 1. Sprite grid.

You will see from Fig 10.2 that when you do prepare your sprite
DAT A each byte is taken in logical sequence moving across each
row and then down to the next line, so that you st arr at the top left
hand corner and work your way down to the bottom right-hand
corner. You may also notice that although each set of sprite DAT A
i assigned to a set of 64 locations, the data that is actually used by
the computer is only 63 bytes long (that is, 3 columns by 21 rows).

Sound and Vision 181

l.t.

~ ' ,, ~""'
I

I l
I' -

"' v
I/ , j

I j \ ·' "" ' ~~ "" 1'-
'\ ' ~ "" >)

/ ,
. ,J

,,
.... /

~

Fig. 10.2 . Sketch of horse sprite.

The difference is simply because the computer finds it easier to
calculate in multiples of 64 than in multiples of 63. The contents of
the 64th byte are, therefore, totally unimportant and will not affect
the sprite concerned.

Sounds good

Well now, if you think that sprite handling is a bit tricky j ust you
wait till you start on the sound rout ines. With sprites you have
on ly to draw and then code the sprite DAT A correct ly in order to get
exact ly what yo u expect. When using the sound routines, however,
gett ing the right co llection of notes (see the User's Manual, pages
152- 154) is o nly the start of your problems. Once you know what
notes you want to play you still have to define the so und 'envelope',
choose a waveform, decide w hich voice (or voices) you want to use,
etc. And then you have to make sure that all the relevant registers are
POK Ed in the right order!

The fact that sound ro utines are so difficult to access is really
rather frustrating, because the actual hardware - the S ID (Sound
Interface Device) chip - is actually a very advanced device worthy of
sy nthesiser units se ll ing at evera l times the cost of the entire C64.
Don't feel too bad, then, if you still find the task of accessing S ID
about as st raightforward as a trip through Hampton Court maze.
This cha pter should at least give you a reliable map!

182 Adventure Games for the Commodore 64

So, if it's that difficult to use the sound routines, why bother with
them at all? 1 n fact I think the useful inclusion of these routines is
limited to three settings within any adventure:

(I) As part of the Introduction routine.
(2) To give short sound signals to indicate good and bad moves
- finding a useful item, falling into a pit , etc.
(3) A pair of End Of Game melodies - a winning tune and a
losing or 'I give up' tune which use the same routine but
different sets of DAT A.

In other words, unless you manage to complete an adventure
program and still find yourself with plenty of RAM to spare (a
rather unlikely event), or you have moved on to the point where your
sound and graphics routines are in machine code, stored in one of
the 'double- mapped' areas of RAM , and can be activated with a
simple SYS command, then the use of sound and vision should
definitely be regarded as an expensive luxury rather than a necessity.

Having said that, since the sound facilities are so good I'd like to
finish this chapter by exploring them in a little more detail. (For a far
fuller explanation I would suggest you get hold of a copy of Steve
Money's excellent new book Commodore 64 Graphics and Sound,
also published by Granada) .

What's where in SID

Since the User's Manual really doesn't give a very clear memory map
of the sound chip (and every edition appears to include at least one
incorrect address) let's start off with a list of the relevant locations,
or registers, together with their functions.

And now, in case you're thinking that all that detail has made
matters worse rather than better, let's put it all to some use. Once
you get the hang of it, it isn't half as difficult as it may look.

The central feature of any SlD-based operation is the need to
'enable' whichever voice (or voices) you wish to use. At the simplest
level this involves POKEingjust six pieces of information into the
chip registers:

(a) The ATTACK / DECAY value
(b) The SUSTAIN / RELEASE value
(c) The WAVEFORM value

(Note: values (a) and (b) must always be entered before value (c).)

Sound and Vision 183

SOUND INTERFACE DEVICE (SID)

Base Address (=BA):54272
Top of SID: 54300
Size in BYTES: 28

ote: The first 24 locations in SID are WRITE ONLY their true values
cannot be PEEKed .

Absolute Relarive
Address Address

54272 BA+ O
54273 BA+ I
54274 BA+2

54275 BA+3

54276 BA+4

54277 BA+ 5
54278 BA+6
54279 BA+7
54280 BA+8
54281 BA+9
54282 BA+ IO
54283 BA+ll
54284 BA+ l2
54285 BA+ l3
54286 BA+ l4
54287 BA+ l5
54288 BA+ l6
54289 BA+l7
54290 BA+ l8
5429 1 BA+l9
54292 BA+20
54293 BA+2 1
54294 BA+22
54295 BA+23

SID CONTENTS

Contents

Low Frequency Voice I
High Frequency - Voice I
Pulse Width (Low) - Voice I (0-255)
Note: The Pulse registers are only
used in conjunction with the Pulse
Waveform - 65.)
Pulse Width (High) - Voice I (0- 15
only)
Waveform - Voice I (enter 17 ,33,65 or
129 or) plus Sync. / Mod. (POKE
Address, 19 (17+2) for Sync., or
POKE Address,21 (17+4) for Mod .)
Attack / Decay register - Voice I
Sustain / Release register - Voice I
Low Frequency - Voice 2
High Frequency Voice 2
Pulse Width (Low) - Voice 2
Pulse Width (High) - Voice 2
Waveform - Voice2 plus Sync. / Mod.
Attack / Decay register - Voice 2
Sustain / Relea e register - Voice 2
Low Frequency - Voice 3
High Frequency - Voice 3
Pulse Width (Low) - Voice 3
Pulse Width (High) - Voice 3
Waveform - Voice3 plus Sync. / Mod.
Attack / Decay register - Voice 3
Sustain / Relea e register - Voice 3
Low Cutoff for filters (0- 7 only)
High Cutoff (0- 255)
Filter enable (set bit Voice number
- I) plus Resonance - bits 4 to 7

184 Adventure Games for the Commodore 64

Absolute
Address

54296

Relative
Address

BA+24

Contents

Volume (0- 15) plus filters (set bit4 for
Low Pass, bit 5 for Band Pass and bit
6 for High Pass) . When bit 7 is set(= 1)
Voice 3 is turned off.

The last four locations in SID are all READ / WRITE addresses and may
be PEEKed.
54297
54298
54299

54300

BA+ 25
BA+ 26
BA+ 27

BA+ 28

Hold s value for Paddle 1 if in use
Holds value for Paddle 2 ifin use
Keeps track of the value in 54290. It is
then incremented at a rate which
depends on theji·equency of Voice 3
Works in a very similar manner to the
last register but is controlled by the
Voice 3 envelope.

Table 10.2 . Structure of the SID (sound interface device).

(d) The VOLUME LEVEL for the sound
(e) The HIGH FREQUENCY va lue
(f) The LOW FREQUE CY value

Obviously there are several other bytes which could be adjusted
as well for fuller note control, but these are the only ones that must
be set up by the program. The only other value to be set by your
program - as a loop rather than by POKEing it - is the note
duration. Thus a simple program to set up Voice I to play a single
note might look like this:

10 SC = ~4272! K = 57
20 FOR X = 0 TO 24
30 POl<E ~3C + X, 0
40 NEXT
50 POKE SC + 24,15
60 POKE SC + 5,1
70 POKE SC + 6,240
80 POKE SC + 4,17
100 POKE sc,112: POKE SC + 1,K
120 FOR X - 1 TO 500
1:30 NEXT
150 FOR X - 0 TO 24
160 POKE SC + X,O
170 NEXT! END

Sound and Vision 185

The segments of the program break down as follows:

Line 10: SC represents the 'base address' for the sound chip. K is the
High Frequency value for the note A.

Lines 20-40: Clear any values previously held in the first 25 registers .

Line 50: Sets the VOLUME register to its maximum value.

Line 60: Sets the ATTACK / DECAY register for Voice I to I - very
fast attack and decay times.

Line 70: Sets the SUSTAIN / RELEASE value for Voice I.

(Note: the values for the ATTACK / DECAY and SUSTAIN /
RELEASE registers are calculated by assuming that each element
may have a value in the range 0-15. The value to be POKEd to the
register is found by the formulas AD=(AT* 16)+ DE or SR= (SU* 16)
+ RE.)

Line 80: Sets the WAVEFORM for Voice I to 17 - Triangular
Wave.

Line I 00: Loads the first and second registers of the chip with the low
and high frequen cies for the note to be played. As soon as this line
has been executed the note will begin, and will continue until SC and
SC+ l are cleared to zero.

Lines 120-130: A simple FOR . . . NEXT loop keeps the note going for
a fixed time until. . .

Lines 150-170: A repeat of lines 20-40 to clear all the first 25
registers . The note will cease (with a slight 'click') as soon as the loop
is completed for the second time.

So far , so good . But how do we vary notes, or add another voice?
The answer to the first question is usually to add a set of DAT A

statements to the end of the routine containing the High and Low
frequency values of the notes to be played plus, if you want to vary
the length of the notes, a set of Duration values. If, then, the DAT A
is stored in lines 160-180 or whatever, lines 100-130 might look like
this:

100 FOR X = 1 TO <total nuMber of notes)
110 READ LO,HI,DU
120 POKE SC,LO: POKE SC + 1,HI
130 FOR Y = 1 TO DU! NEXT
140 NEXT

186 Adventure Games for the Commodore 64

Alternatively, and as a simple way of testing out a range of notes (in
two voices yet!) make the following amendments to the original
program:

10 SC = 54272 <delete value for K>
60 POKE SC+ 5tO: POKE SC+ 12t30
70 POKE SC + 6,240: POKE SC + 13t100
80 POKE SC + 4t17: POKE SC + 11t33
90 FOR K - 20 TO 140 STEP 10
110 POKE SC + Bt140 - K: POKE SC + 7,120
140 NEXT

And that's about it! From this point on everything becomes a
matter of trial and error. Only a detailed knowledge of the technical
aspects of sound generation can help to speed this process up.

Fortunately the C64 has already proved itself extremely popular
and a number of sound generation routines - with and without
graphical displays - have already begun to appear in various
computer magazines, so be sure to watch out for them. To finish off
this brief introduction here are a few short hints on some of the
intricacies of the SID chip.
(a) As I said before, always set up the Attack/ Decay and
Sustain / Release registers for a voice before entering the Waveform.
If you want to change AD or SR whilst a sound routine is running
then re-set the Wave register afterwards.
(b) If you want to use the Sync. or Mod . facility for any voice then
the second or third bits of the appropriate Waveform register must
be set to I. Note that these functions are normally only applicable if
the Voice in question is set for Triangular wave (i.e. 17).
(c) Very important! All registers from 53272-54296 inclusive are
write only addresses . If you try to PEEK them, directly or as part of
an adjustment, you will always get a zero value returned. Thus the
values for these registers , in any routine which involves adjustments
such as turning filters on or off, etc. , should always be held as
variables or POKEd to a separate set of locations which can be
copied to SID.
(d) In order to change the filters used in any routine you will need to
set, or clear, bits 4 (Low Pass), 5 (Band Pass) or 6(High Pass) of the
Volume register at 54296. At the same time, however, bits 0-2 of
54295 must also be set (to filter a voice) or cleared (for unfiltered
sound) - bit 0 relates to Voice I, bit I to Voice 2, and bit 2 to Voice 3.
(e) By the same token , the Cutoff registers at 54293 and 54294 will
only affect the sound SID is producing if the Filter registers have
been. set.

Sound and Vision 187

(f) The Pulse Width registers for each voice (54275 and 54276, etc.)
will only affect the sound of a particular voice if it is set for the Pulse
waveform (= 65).

Chapter Eleven

What Nowt

In this last chapter I want to look at some of the exc1tmg
developments that will certainly occur in the area of adventure
gaming - and computing in general - over the next few years; but
first I have one more piece of programming for you. Writing
adventure games can be every bit as satisfying as playing them - as I
hope I've shown you already. But it's still fun to play them! If you'd
like to turn to the Appendix at the end of this book you'll find the
complete listing for a game I've called The Case of the Missing
Adventure. I hope you enjoy playing it as much as I enjoyed writing
it.

When I first began work on this book my primary intention was to
provide a useful guide to the art of writing adventure games - the
sort of book that would allow almost anyone with a computer and a
reasonable knowledge of BASIC to create their own adventures, for
fun or profit, without feeling they had to be an 'expert'. In fact , I
have stuck entirely to BASIC, as I felt this was the best way to show
readers how the various sections of an adventure game function.

Speeding things up

In practice, of course, a growing number of commercial games are
written in machine code. Now using machine code doesn't often
allow you to do anything that you couldn't do in BASIC. It does ,
however, allow the computer to execute the more complicated
routines at much higher speed. The room description decompiler is
one very good example of a routine which would be much improved
by conversion to machine code.

As for the more advanced command parsing routines, the more
sophisticated they become the more impractical it is to use them in a
BASIC program because of the time taken to interpret just one

What Now? 189

command. Indeed even in Valhalla, which has an excellent
command routine written in machine code, the time taken to handle
a single command begins to get quite noticeable after about half an
hour of play.

But don't worry too much if you don't feel up to using machine
code for while. The first adventures were actually written in
FORTRAN, and even now quite a few professional games are first
written in a form of BASIC - on a mainframe computer. The
original program is then compiled (converted to machine code by
the computer!) and the result is translated again into the particular
form of machine code (6502, Z80, etc) used by the target micro.

On the other hand , those of you who are really into programming
and are learning assembly language and machine code might like to
add a practical dimension to your studies by converting some of the
BASIC routines in this book into low level language.

Two heads . . .

There are one or two best-selling adventure writers who prefer to
work on their own - or at least started out that way. It's much more
common, however, to find at least two writers , or even a whole group
working on each project - Woods and Crowther, Blanc and Lebling,
the Legend group (responsible for Valhalla) , and the Melbourne
House group. My personal feeling is that the group setup is probably
best, especially for newcomers, for several reasons:

(1) It's usually easier to generate fresh ideas in a group where
ideas can be tossed back and forth .
(2) Working with at least one other person tends to create
a more disciplined atmosphere. It's all too easy, when
working alone, to get side-tracked by minor considerations.
This is less likely to happen when there's someone around to
ask what you're up to if you go off course.
(3) The group setting is ideal for on-the-spot appraisals of a
program while it is still coming together. The lone writer may
well try to get the whole task completed before going back to
iron out the problems. This may produce the same end result,
but it is likely to take much more time than a group effort , where
each step of the process is being discussed and reviewed.
(4) Groups cater for specialised attention to specialised tasks.

No one factor on this list is more important than any of the others.

190 Adventure Games for the Commodore 64

But the last factor is worth considering as a guide to the variety of
tasks involved in creating an adventure game, and the numerous
skills required. In fact there are seven different job descriptions,
though two relate only to adventures with graphics .

(a) The 'ideas man' - has the task of coming up with as many ideas,
detailed and general, as possible. It is his or her job to organise and
lead creative discussions and 'brainstorming' sessions in the group
when needed.
(b) The writer - is responsible for turning ideas into coherent story
lines. This person also prepares text for screen displays (the
introduction and room descriptions) and for the documentation for
each game.
(c) The map maker - takes the work of the ideas man and the writer
and prepares a detailed map for each adventure including objects,
booby-traps, etc. The 'creative team' - the ideas man, the writer and
the map maker - are jointly responsible for the accuracy of the map
and for providing full lists of items, characters, events and so on for
use by other members of the group.
(d) The graphics designer - roughs out all screen displays, both
those involving 'pictorial' presentation and purely textual displays
like the character status report, inventory listing, etc. In a
commercial operation he would also be required to design the
packaging for the fini shed game with its documentation.
(e) The graphics programmer - is gradually becoming an essential
part of adventure writing groups. Each manufacturer has a quite
unique system for producing screen graphics, even though their
particular version of BASIC is quite standard. When the graphics in a
game are of a good to excellent standard it's often because it took as
much time to write the graphics routines as it did to program the rest of
the game. (Which is another reason why the majority of adventure
games tend to use few if any graphic effects.)

(f) The analyst - covers two tasks found in commercial computing,
the Consultant and the Systems Analyst. The adventure group
analyst is involved in nearly all aspects of the preparation of each
game. He or she must prepare a general outline of the game when it is
first developed by the creative team and must monitor it throughout
its development to ensure that it remains credible in terms of the
amount of RAM space needed / available and to ensure that the
ideas being put forward really are possible in pure programming
terms. Once all the details of a game are complete the analyst must
draw up a detailed flow chart for the programmer and ensure that

What Now? 191

the documentation supplied by other members of the group is as
clear and detailed as it needs to be.
(g) The programmer - has the thankless task of turning everyone
else's ideas and efforts into a working program. In the case of a
graphics adventure the programmer and the graphics programmer
will, of course, work together as far as possible (though much of the
preliminary coding will have to be done separately).
(h) The translator - takes games created on one machine and
modifies them for use on different models. If you're thinking of
setting up any kind of commercial operation then the ability to
present the same game for a variety of machines is essential. If the
game is successful and you don't market it for other machines then
you can bet your life that someone else will. Just look what
happened to Donkey Kong and Frogger!

The method I've outlined here may seem to be particularly
concerned with the production of programs for the commercial
market. Not so . What I've tried to do is to split up the creation of
almost any game into its logical parts. Obviously you don't have to
have a separate person for each task, though as computing becomes
ever more popular I suspect that groups of about this size already
exist all over the country. Not, perhaps, for the purpose of
producing games, but rather because the members share common,
computer-related interests.

Moreover, groups such as the one I've described need not be
restricted to competent computer users. Several tasks can be
undertaken by people who may have no interest in computing
whatever apart from playing games on them. Indeed, it would be
useful to have at least one person in each group who doesn't know
much about computing: he can act as the 'guinea pig' who
deliberately tries to crash the program when it's thought to be
complete. (There wouldn't be half as many 'dud' programs on the
market if some of the commercial games producers bothered to test
run their programs before releasing them.)

But why put so much organisation, time and effort into creating
games if you don't want to write commercial games? The answer
might be 'Adventure Networks': large and small groups of people,
all over the country, prepared to exchange ideas, tips , techniques
and even complete adventure games on a one-for-one basis (don't
forget to make copies of each game).

After a while some of the most productive groups might choose to
'go professional' - but there will always be another generation
coming along to take their place. After all, that's almost exactly how
the very first computer adventure game got started!

192 Adventure Games for the Commodore 64

Why stick at games?

At last there really is a way of making learning more of a pleasure
than a headache! Like most writers on the subject of computer
adventures I've concentrated on the idea of adventures as games ,
that is , as leisure-time amusements. But the potential use of games
covers a much wider area than pure entertainment.

One of the most obvious uses of adventure games and one that is
still almost entirely overlooked , is in the field of educational
software. If adventure games are largely about solving problems -
with some kind of reward for each correct solution (like being
allowed to stay alive!) - then why not base adventures on specific
subjects.

Biology, Chemistry and Physics are perhaps the most obvious
place to start, with History and Geography close behind. The
method of application will , I think, be fairly obvious . Chemistry is
perfect for some kind of detective / mystery story, while Physics may
be better suited to an all-action game. It would probably be wise to
stick to just one subject per adventure, but the range of possibilities
is endless. Indeed , since students are expected to have set standards
of knowledge of their subjects you can aim at very clearly defined
groups in terms of age and exams to be taken.

The educational software available at the time of writing tends to
be either very good or, more often, pretty awful. The problem is that
the market for this kind of program is so large, and has such a large
potential for fat profits, that it is still a happy hunting ground for
'cowboy' programmers. As school staff become more familiar with
computers, and computer programs, the demand for top rate
software is bound to clean out the rubbish. But the market itself is
likely to go on growing for some time yet. So there's still plenty of
room for well-produced, relevant programs, especially those
produced by students and teachers, who are ideally situated to know
what is required.

You ain't seen nothing yet

So where does computer adventuring go from here? Certainly I
don't know any more than you about what Uncle Clive and the rest of the
computer manufacturers have in store for us next. All the same, here
are a few guesses (I hesitate to call them predictions) about what will
be coming our way in the next two to five years.

What Now? 193

Large Memory. Believe it or not, even the APPLE only had 4K of
RAM when it first appeared in 1977. Even in the last couple of years
RAM space on the average micro has doubled and even trebled, and
there is no reason to believe that the same kind of expansion of the
basic memory won't continue, especially when the next generation
of chips arrives and forces prices down. I will be most surprised if
128K micros don't become standard within the time period I've
quoted , and this is going to make a lot of difference to the adventure
programs of the future.

Tape to Disk. It has been common in the past, and is still true to a
certain extent, for a single disk drive to be more expensive than the
computer that it serves . However, prices are beginning to drop
significantly, and it is highly likely that those people who have had a
computer for two or three years are beginning to think very seriously
about moving on from the old cassette. Hardly a surprising
development when you think that one 5-inch floppy carries at least
twice the storage space of a micro and takes only seconds to write to
or read from.

8, 16 and 32 bits. Most readers will probably already know that
the 'bit' size of a micro relates to the maximum number that the
computer can handle in a single operation. The much-predicted
move from 8-bit machines to 16-bit machines for the home market
has already arrived, with the Sinclair QL. It only remains to see how
quickly the other manufacturers can follow Uncle Clive's lead.

Micro Networks. The ability of numerous home computers to
access a central database is almost taken for granted in America,
where The Source is probably the best-known network to date. The
use of such networks depends very largely on the wide distribution
of home modem units (which connect computer to phone to phone
to computer). Although modems are not exactly best-selling items in
Britain at the moment, I think it's pretty likely that they will become
so in about three to four years time. In this connection (sorry!) it's
worth noting that modem interface cards are themselves becoming
more sophisticated, and it's not impossible that you will eventually
get a CPM-type interface where you can connect your micro to any
other, regardless of make.

Now, how does all this relate to adventure games?
First there's the matter of storage capacity. The larger the

standard RAM space becomes, the more detailed and complex
adventure plots can become. Add to this the spread of disk drive
systems rather than cassette-based systems and we could be talking
about some very big games indeed! Moreover, when we combine

194 Adventure Games for the Commodore 64

extended memory with faster chips (both 8- and 16-bit), not to
mention the development of highly specialised graphics and sound
chips, it's not difficult to imagine that graphics adventures (in the
true sense), including the element of animation as seen in Valhalla,
will become much more commonplace. Whether they will actually
take over from text games, however, is something else again, and is
likely to depend on the quality of the games themselves.

Some readers will already have seen the latest generation of
arcade games which feature genuine cartoon action using a laser
disk(!) in much the same way that the normal computer accesses a
floppy or hard disk. Certainly plans are being made to produce laser
disks for use with home micros, but just how soon this will actually
come about is anybody's guess at the moment.

So I said 'Get the axe .. .'

As I explained in Chapter 8, handling complicated command input
requires a lot of space - and time. For the time being, the
vocabulary and input language of adventure games is likely to go on
improving, but I anticipate that in the long run, and as the hardware
gets cheaper, adventure writers will become more and more
interested in dealing with direct verbal commands from the player.
(If you have to use that much space anyway, why not use it to the
best advantage!) It shouldn't be too long, then, before players can
save their fingers by feeding commands directly to the computer via
a microphone - and the computer will, of course, answer back!

So, more pictures, animated action , bigger games and spoken
communication. What else could there be? The something else may
well be, I would imagine, the spread of adventure networks. Not the
sort of network that I described earlier in this chapter but groups
where several people can all take part in a single adventure without
going outside their own front door!

By way of their modem connections I can imagine adventures
becoming part of nationwide link-ups where each player can join in,
or bow out, of an ongoing game. The forerunner to this idea - postal
adventures monitored by a central computer - has already proved to
be a commercial success on a limited scale. And the idea of direct
' home-to-mainframe' phone-linked adventuring is now in use on a
minor scale at Essex University. Needing only a terminal, each
player can sign on in a game - known as MUD (Multi-User
Dungeon) - in progress on a PDP- I I computer.

What Now? 195

In a sense, if and when this does happen on a large scale,
adventuring will have gone full circle - from group activity to solo
game to group activity. Yet in completing that circle it will have
evolved and developed in a way Gygax and Arneson could hardly
have imagined when they first broke away from their own
boardgame group in order to develop Dungeons and Dragons.

It will, I hope, prove to have been a positive development.

Appendix

The Case of the
Missing Adventure

This fascinating case, the last known exploit of the famous computer
detective - Mike Rowchip - involves the search for an adventure
game lost somewhere in the vast building occupied by Fantasia
International, a highly successful software publishing house.

Believing that the game has been stolen by a rival company, Mike
goes in search of Eddy the Kwill, an underworld character whose
willingness to tell what he knows (for a price!) has made him less
than popular with other members of the criminal fraternity. After
several days following Eddie's devious trail , Mike finds himself at a
dead end . What he doesn't know is that this particular dead end lies
at the back of the 'new projects' section of the Fantasia International
building . . .

Fortunately the projects section only takes up ten rooms in the
F.I. building, and the missing adventure is definitely in one of those
rooms. Your task is simply to find it. If you are successful then,
under the Finders / Keepers law introduced in 1987, it becomes your
property. Good hunting!

So that's how it's done ...

Unlike the rest of the programs in this book I have not included a
line-by-line analysis for the game (no , you haven't bought a copy
that has the last few pages missing!).

By the time you reach this point in the book you will , I hope, at
least have thumbed through the various programming modules with
their explanations . Broadly speaking there is nothing in the game
program that is not dealt with, in detail , elsewhere in the book.
Having said that , I would like to mention just a few minor points
that may be of help to anyone who wants to break this program
down to see exactly how it works.

198 Appendix

(I) The Structure. As far as possible I have used modules exactly as
they appear in other parts of the book - with altered line numbers, of
course. At the same time I tried to avoid making the general flow of
the game too obvious so that readers won't learn too much about the
game simply by entering it - there isn't much point in playing the
game if you already know the solution! So, the various routines
within the game have been laid out in a fairly random fashion . But,
each routine is entirely self-contained except in about three cases
where a single routine does two or more jobs. Moreover each
module starts on what might be termed an 'even numbered multiple
of 100' - 7000, 10800, 11200, etc.
(2) Routine variations. To repeat what I said before, most of the
modules within the game are in the same form that they appear
elsewhere in the book - with a couple of variations. Firstly, the flow
from the Command Parser to the rest of the program is not
controlled by the formula X= V*NT + N-NT that I used in Chapter
8. Instead each verb has its own area of the program and this is
reached by the simplified command ON (verb number) GOTO.

You will also find a couple of extra subroutines which don't
appear elsewhere in the book. I won't tell you much about these
modules except that the most important one will only become
obvious when you try to map out the game plan. There is , by the
way, a clue in the game itself as to what this subroutine is doing.
(3) Extra keys . In the last section of the program you will find two
extra bracketed commands - CTRL 1 and CTRL 6. These are used
simply to change the colour of the lettering and produce White text
and Green text respectively. To use them hold the Control key and
the Number key down at the same time.

You will also notice that I have used the '2 Letter' command
parsing routine. In order to use it please consult the list of verbs and
nouns given below. Incidentally, this list is complete. There are no
hidden commands.

All of the verbs should be accompanied by a 'logical' noun, except
for verbs A and B, or the command will be rejected.
(4) Line Length. You will find that this listing includes a few lines
with numbers ending in 5, where 99.9% of the lines end in zero. The
reason for this lies in the two-line limit for entering statements on the
C64. In fact the program will RUN as listed, but if you use the
abbreviations listed in the User's Handbook, you will find that the
contents of the odd-numbered lines will fit onto the end of the
previous line.

I mention this in order to introduce one last tip. If you have ever

The Case of the Missing Adventure 199

Verbs Nouns

A - Inventory A - not used
(Note: No second letter
is required with verbs
A and B)

B - Search (as in LOOK or B - Flowchart
EXAMINE)

c - Go c - Map
D - Get D - Storyline
E - Drop E - Key
F - Use F - Hatchet
G - Read G - Crucifix
H - Open H - Badge
I - Unlock I - Ring
J - Climb J - Ray Gun
K - Chop Down K - Stairs
L - Kill L - Tree

M - Safe
N - Vampire
0 - Gobbet
p - Sign

Q - Door
R - North
s - South
T - East
u - West
v - Up
w - Down

tried to 'pack' a line on the C64 you will notice that, unless the cursor
is still on the second line, when you press< <RETURN>> you get a
?SYNTAX ERROR message, even though your line is within the 80
character limit. If you ever need to get round this there is a simple
solution: enter your statement or text up to the last place on the
second line (so that the cursor is on the first position of the next
line) and then press <<RETURN>>. Ignore the error message
and ; without LISTing the line, use the cursor keys to get up to any
position on the apparently rejected line and press< <RETURN>>.
You should find that the line is now accepted in full and no further
error message is given.

200 Appendix

Back word

Just before we come to the game listing there are a couple of points
that I'd like to make clear in case anyone has a problem with any of
the programs in this book.

First, as I stated in the Note to the Reader at the start of the book,
all the programs have been tested before publication. Unfortun
ately, as all programmers know from bitter experience, it is
impossible to test every routine 'to destruction' and it is possible that
a few bugs still remain undetected. If you should be unlucky enough
to find one then please accept my sincere apologies .

Secondly, if you think you have found a 'bug' which you are
unable to remedy, or if you have any other queries about this book,
then please don't contact Granada directly; they are publishers, not
computer experts. If, on the other hand, you would like to write to
me - care of Granada - enclosing a stamped addressed envelope, I
will do my best to deal with your enquiry as quickly as possible.

And now for The Case of The Missing Adventure . . .

1 REM
2 REM
3
4 REM
5
6 REM
9

10 :

***** THE

1000 GOSUB16000

CASE OF THE MISSING
ADVENTURE

BY A.J. BRADBURY

COPYRIGHT 1984

1100 AD=INT<RND<1l*9>+1
1500 GOT05000
2000 PRINT"YOU ARE CARRYING: "
2010 FORX=1T010:IFOB$!X,1l="-1"THENPRINT"A
"OB$!X,0l
2020 NEXT
2030 PRINT"A TOTAL WEIGHT OF "IN" LBS."
2040 GOT07000
2200 IFSF<>30RPL<>ADTHEN2250
2210 PRINT"CDOWN * 3l"TAB!9l"CRVSlCONGRATUL
ATIONS! ! ! COFFl"
2215 PRINT"CDOWNl YOU'VE FOUND THE MISSING
ADVENTURE"
2220 PRINT" NOW ALL YOU NEED IS A GOOD SOFT
WARE HOUSE TO MARKET IT AND MAKE •;

The Case of the Missing Adventure 201

2230 PRINT"YOUR FORTUNEFOR YOU.":PRINT" BUT
THAT 'S ANOTHER GAME ALTOGETHER ... ":END

2250 IFPL=1THEN2300
2260 FORX=2T04
2270 IFVAL<OB$(X,1ll=PLTHENPRINT"YOU FOUND
"OB$<X,0l"!":01=1
2280 NEXT:IF01=1THEN01=0:GOT07000
229.0 GOT02320
2300 PRINT"THE OBJECT IS A SMALL BADGE WITH

A BLACKFIGURE 6 ON IT.":GOT07.0.00
2320 PRINT"[DOWNJWHAT YOU SEE IS WHAT THERE

IS!":GOT0700.0
3000 PRINT"[DOWNJTHE SAFE HAS A COMBINATION

LOCK - ";
3005 PRINT"WHERE HAVE YOU HEARD THAT BEFORE
?. "
3010 PRINT"WOULD YOU LIKE TO TRY TO OPEN IT
?n

3020 INPUT"IENTER Y OR Nl ";AN$
303.0 IFAN$ <> "Y"THEN7000
3040 LO=INTIRND<1>*999l+1:IFL0 <100THENLO=LO
+100
3050 LO$=STR$<LO>:LO$=RIGHT$1L0$,3l:Q=0
3.06.0 FORX=1T05
3070 PRINT"PLEASE ENTER [RVSJDIGIT[OFFJ NO.
"X;:INPUT"NOW ";SA$
308.0 IFSA$<>MID$1LO$,X,1lTHENPRINT"[DOWNJWR
ONG!":GOT0310.0
3.09.0 PRINT"[DOWNJCORRECT! !":Q=Q+1:IFQ=3THEN
315.0
31.0.0 NEXTX
311.0 PRINT"[DOWNJYOU'VE GUESSED IT - THE SA
FE IS BOOBY- TRAPPED. YOU FALL THROUGH";
312.0 PRINT" A HATCHWAY INTO THE ROOM BELO
W.";:IFOB$17,ll="-1 ~THENBT=1

313.0 IFBT=1THENPRINT" AND YOU'VE DROPPEDTH
E CRUCIFIX!"
3140 GOT011850
3150 PRINT"[DOWNJOH DEAR ! ":GOT03110
460.0 HF=0:PRINT"rDOWNJYOU CAN SEE ";
461.0 FORX=5T01.0
462.0 IFVALIOB$1X,1ll=PLTHENHF=1:PRINT"A "OB
$IX,.0l
463.0 NEXT
464.0 IFHF=1THENS1$="AND"
465.0 IFHF=.0ANDIPL~10RPL=30RPL=7>THENS1$="NO
THING EXCEPT":HF=l:PRINT

202 Appendix

4670 IFPL=10RPL=3THENPRINT"CDOWNl"S1$" A SI
GN ON THE WALL."
4680 IFPL=7THENPRINT"CDOWNl"S1$" A SIGN ON
THE DOOR LEADING WEST."
4690 IFHF=0THENPRINT"ONLY WHAT IS LISTED AB
OVE."
4700 HF=0:RETURN
5000 FORX=1T04
5010 T=INT<RND<1>*7>+3
5020 FORY=1TOX-1:IFVAL<OB$<Y,1>>=TTHENY=X-1
:NEXTY:GOT05010
5030 NEXTY
5040 OB$<X,1l=STR$<T>
5050 NEXTX
6000 PRINT"CDOWN * 5l":SH=12:PL=l:PRINTRD$(
PLl:SF=0:FF=0
6010 GOSUB4600
7000 GOSUB9000:PRINT"CDOWNJWHAT NOW? ";
7010 GETV$:IFV$=""THEN7010
7020 FORX=1T012
7030 IFV$=MID$<VE$,X,1>THENVP=X:X=12:NEXT:G
OT07050
7040 NEXT:PRINT" ":GOT07200
7050 PRINTV$CVP>;
7060 IFVP=10RVP=2THENPRINT"CDOWNJ":PRINT"CR
VSJ"V$(VPl":COFFJCDOWNJ":ONVPGOT02000,2200
7080 GETN$:IFN$=""THEN7080
7090 IFN$=BA$THENFORX=1TOLENCV$CVPl>:PRINTB
A$;:NEXT:GOT07010
7100 FORX=1T023
7110 IFN$=MID$CNO$, X,1JTHENNP=X:X=23:NEXT:G
OT07130
7120 NEXT:PRINT" ":GOT07210
7130 IFNP<18THENPRINT" THE";
7140 PRINT" "N$<NPl;:T=TI:T=T+120
7150 GETAL$:IFAL$=""ANDTI<TTHEN7150
7160 IFAL$=CHR$(20lTHENFORX=1TOLEN<N$(NPll+
1:PRINTCHR$!20l;:NEXT:GOT07080
7170 PRINT" ":IFVP>6THENVP=VP-6:GOT07190
7180 ONVPGOT00,0,10000,10200,10400,10600
7190 ONVPGOT010800,11000,11200,11400,11600,
11800
7200 PRINT"CDOWNJI DON'T UNDERSTAND CRVSJ"V
$:GOT07000
7210 PRINT"CDOWNJI DON'T UNDERSTAND CRVSJ"V
$!VP>" "N$:GOT07000

The Case of the Missing Adventure 203

9000 ND=INT<RND<ll*4l+2:LR=6
9010 MS=VAL<RIGHT$<MC$,ll>
9020 FORX=NDTOLR:MC<3,X>=VAL<MID$<MC$,X-1,1
> > : NEXTX
9030 IFND<>2THENLR=ND-l:ND=2:GOT09020
9040 MC<3,ll=MS:MC$="":FORX=1T06:MC$=MC$+CH
R$(MC<3,Xl+48l:NEXTX
9100 IFOB$!1,1>="0"THENRETURN
9110 BL=VAL<OB$<1,l>>:BM=INT<RND<ll*6l+l:IF
MC<BL,BM>=0THENRETURN
9120 BL=MC<BL,BMl:OB$<1,ll=CHR$<BL+48l:IFBL
<>PLTHENRETURN
9200 PRINT"CDOWNJOOPS! YOU'VE JUST FOUND T
HE DREADED BUG- YOU HAVE NO ";
9205 PRINT"CHOICE BUT TO";
9210 PRINT" STAND AND FIGHT ... ":FORX=lTO
3000:NEXT
9220 ML=2:MH=21:SL=l:IFFF=1THENSL=9
9230 PS=INT<<SL*<RND<ll*6+1>+SH>l6>
9240 MH=MH-PS:IFMH<1THEN9300
9250 MS=INT<<ML*<RND<1>*6+1l+MHl/6)
9260 SH=SH-MS:IFSH<1THEN9400
9270 GOT09230
9300 PRINT"CDOWNJWELL DONE - YOU'VE DEFEATE
D THE DREADED BUG. YOU ARE ";
9305 PRINT"FREE TO CONTINUE."
9310 OB$<1,ll="0":RETURN
9400 PRINT"CDOWNJBAD LUCK - THE BUG GOT YOU

T-T-THAT'S ALL FOR NOW FOLKS!":END
10000 NR=NP-17:IFNR<10RNR>6THENN$=N$<NP>:GO
T07210
10010 IFMC<PL,NRl=0THENKF$=" ":GOT010050
10020 IFPL=7ANDCNM=4ANDKF=0>THENKF$="- YET!
":GOT010050
10040 PL=MCCPL,NR>:PRINT"CDOWNJO.K.":PRINT"
CDOWNl"RD$<PL>:GOSUB4600:GOT07000
10050 PRINT"CDOWNJSORRY - YOU CAN'T GO THAT

WAY "KF$:GOT07000
10200 IFNP>10THENN$=N$!NP>:GOT07210
10210 FORX=1T010
10220 IFN$CNP>=OB$CX,0>THENCH=X:X=10:NEXT:G
OT010250
10230 NE><T
10240 PRINT"CDOWNJI DON'T SEE "N$CNPl" HERE
.":GOT07000
10250 IFIN+VALCOB$!CH,2>> >20THENOF=99

204 Appendix

10260 IFOF=99THENPRINT"CDOWNlSORRY - YOU CA
N'T CARRY ANYTHING THAT BIG.":OF=0:GOT07000
10270 IFVAL<OB$CCH,1>>=-1THENPRINT"CDOWNlYO
U ALREADY HAVE THE 11 N$CNP> 11 ! 11 :GOT07000
10280 IFVAL<OB$CCH,1>>=0THENPRINT"CDOWNlSOR
RY - THE 11 N$CNP> 11 ISN'T AVAILABLE!":GOT0700
0
1.029.0 IFVALIOB$CCH,1>><>PLTHENPRINT"CDOWNlT
HE 11 N$CNP> 11 ISN'T HERE!":GOT0700.0
1.03.0.0 PRINT"CDOWNlO.K. - YOU HAVE THE "N$CN
P> ".II
1.031.0 OB$CCH,1>="-1":IN=IN+VALCOB$CCH,2>>:I
FCH=30RCH=40RCH=5THENSF=SF+1
1.032.0 IFCH=2THENFF=1
1.033.0 IFCH=5THENMCl7,4>=1.0
1.034.0 GOT07.0.0.0
1.04.0.0 FORX=1T01.0
10410 IFOB$1X,.0>=N$CNP>THENTE=X:X=1.0:NEXT:G
OT01.044.0
1.042.0 NEXT
1.043.0 PRINT"CDOWNlSORRY - THERE IS NO "N$1N
P>:GOT07.0.0.0
1.044.0 Q=.0
1.045.0 IFVAL<OB$1TE,1>><>-1THENQ=1
1.046.0 IFQ=1THENQ=.0:PRINT"CDOWNlYOU CAN'T DR
OP WHAT YOU DON'T HAVE! '":GOT07.0.0.0
1.047.0 PRINT"CDOWNlO.K.":OB$CTE,1l=STR$1PLJ:
IFTE=30RTE=40RTE=5THENSF=SF-1
1.0480 IFTE=2THENFF=0
1049.0 IFTE=5THENMC<7,4l=.0
1.05.00 IN=IN-VALIOB$CTE,2JJ:GOT07.00.0
1060.0 IFPL<>5ANDPL<>5ANDPL<>7THEN107.0.0
1061.0 IFPL=5ANDN$CNPJ="HATCHET"THEN11610
10620 IFPL=4ANDN$1NP>="KEY"THENPRINT"CDOWNl
THE KEY DOESN'T FIT THE SAFE.":GOT03.0.0.0
10630 IFPL=7ANDN$1NP>="RING"THENPRINT"CDOWN
JAS YOU HOLD UP THE RING BULBOUS ";:R7=1
1.064.0 PRINT"SIMPLY FADES AWAY. YOU ARE FR
EE TO CONTINUE.":R7=.0:GOT0700.0
1.0700 PRINT"CDOWNlUSING THE "N$1NPJ" HAS NO

EFFECT.":GOT070.00
10800 IFPL<>10RPL<>30RPL <> 70RN$1NP>< >"MAP"T
HENPRINT"CDOWNlREAD WHAT?":GOT07000
10810 IFN$CNP>="MAP"THENPRINT"CDOWNJHARD LU
CK - IT ISN'T FOR THIS":PRINT"ADVENTURE.":G
OT0700.0

The Case of the Missing Adventure 205

10820 IFPL=1THENS$="CDOWNJDO YOU WANT INFOR
MATION? WELL YOU WONT GET IT!"
10830 IFPL=3THENS$="CDOWNJTHE WORLD KEEPS T
URNING - AND SO DO I. "
10840 IFPL=7THENS$="CDOWNJABANDON HOPE ALL
YE WHO ENTER HERE!!!
10850 PRINT"CDOWNJTHE SIGN SAYS:":PRINTS$:G
OT07000
11000 IFPL<>4THENPRINT"CDOWNJHUH?":GOT07000
11010 IFPL=4ANDN$!NPJ="SAFE"THENN$CNPJ="KEY
":GOT010620
11020 N$=N$CNPJ:GOT07210
11200 IFPL<>7THENPRINT"CDOWNJNOTHING HERE I
S LOCKED.":GOT07000
11210 IFN$!NPl="KEY"THENPRINT"CDOWNJO.K. B
UT DON'T SAY YOU WEREN'T WARNED! !":K7=1
11220 IFK7=1THENNP=20:GOT010000
11230 GOT07000
11400 IFPL<>3ANDPL<>5ANDPL<>8THENPRINT"CDOW
NJTHERE'S NOTHING HERE TO BE CLIMBED.":GOTO
7000
11410 IF<PL=30RPL=8lANDN$CNPJ="STAIRS"THENN
P=22:GOT010000
11420 IFPL=5ANDN$CNPl="TREE"THENPRINT"CDOWN
JWHOOPS - A BRANCH BROKE!":BB=l
11430 IFBB=lTHENPRINT"AND YOU'VE BROKEN ONE

ARM!":SH=SH-3:GOT011900
11440 PRINT"CDOWNJYOU CAN'T DO THAT.":GOT07
000
11600 IFPL<>5THENPRINT"CDOWNJTHERE IS NOTHI
NG HERE TO CHOP DOWN.":GOT07000
11610 PRINT"CDOWNJO.K. YOU NOW HAVE A PILE

OF LOGS.":GOT07000
11800 IFPL<>7ANDPL<>8THENPRINT"CDOWNJTHERE'
S NOTHING HERE TO KILL!":GOT07000
11810 IFPL=7THENPRINT"CDOWNJBULBOUS IS UNDE
RA SPELL AND CAN'T BE KILLED 1 ";:F7=1
11820 IFF7=1THENPRINT" BUT YOU'VE WASTED S
TRENGTH IN THE EFFORT.":SH=SH-2:GOT011900
11830 IFPL=8ANDOB$<7,1l="-1"THENPRINT"CDOWN
JTHE VAMPIRE DISAPPEARS AT THE SIGHT ";:F8=
1

11840 IFF8=1THENPRINT"OF THE CRUCIFIX. YOU
ARE FREE TO CONTINUE.":GOT07000

11850 PRINT"CDOWNJWITHOUT THE CRUCIFIX YOU
ARE POWERLESS AGAINST THE VAMPIRE.":SH=0

206 Appendix

11900 IFSH<1THENPRINT"OH DEAR - YOU'VE USED
UP ALL YOUR

11910 GOT07000
STRENGTH! R.I.P.":END

13000 DIMV$!12l,N$!22l,MC<10,6l,OB$(10,2l,R
D$!10l
13010 FORX=1T012:READV$(Xl:NEXTX
13020 FORX=1T023:READN$(Xl:NEXTX
13030 FORX=1T01!2f:FORY=1T06:READMC<X,Yl:NEXT
Y:NEXTX
13040 FORX=1T010:FORY=!ZIT02:READOB$<X,Yl:NEX
TY:NEXTX
1305!21 FORX=1T010:READA$,B$,C$,D$:RD$!Xl=A$+
II "+B$+ II II +C$+ II "+D$: NEXTX
13070 VE$= 11 ABCDEFGHIJKL 11 :N0$= 11 ABCDEFGHIJKLM
NOPQRSTUVW"
1308!21 BA$=CHR$(20l:MC$= 11 624598 11

131!21!21 RETURN
14!21!210 DATAINVENTORY,SEARCH,GO,GET,DROP,USE,
READ, OPEN, UNLOCK
14!211!21 DATACLIMB,CHOP DOWN,KILL
141!21!21 DATATHE BUG,FLOWCHART,MAP,STORYLINE,K
EY
1411!21 DATAHATCHET,CRUCIFIX,BADGE,RING,RAY G
UN
14120 DATASTAIRS,TREE,SAFE,VAMPIRE,GOBBET,S
IGN,DOOR
14130 DATANORTH,SOUTH,EAST,WEST,UP,DOWN
1420!21 DATA2,0,0,0,0,!2f,3,1,0,!2f,0,0,6,2,4,5,9

' 8 ' !21' !21 ' 3 ' 0' !21 ' !21
1421!21 DATA!Zf,5,7,3,!21,0,7,3,0,0,0,0,0,6,5,0,0
,0,0,0,0,0,3,0
14220 DATA0,0,0,0,0,3,0,0,7,0,0,0
14300 DATATHE BUG,3,0,FLOWCHART,3,2,MAP,3,2
,STORYLINE,3,2
14310 DATAKEY,7,1,HATCHET,6,16,CRUCIFIX,4,4
14320 DATABADGE,1,1,RING,5,1,RAY GUN,2,6
14400 DATAYOU ARE INSIDE FANTASIA INTERNATI
ONAL' THIS FIRST ROOM IS
14410 DATAABOUT 10 FEET BY 6
DOW HIGH UP ON THE WEST WALL

WITH ONE WIN

14420 DATATHERE IS A SMALL OBJECT ON THE FL
OOR AND WHAT LOOKS LIKE
14430 DATAA HANDLE ON THE FAR WALL.
14500 DATAWELL 'BEAM ME UP SNOTTY' - YOU'RE

ABOARDTHAT WELL-KNOWN FLYING

The Case of the Missing Adventure 207

14510 DATACAKE TIN THE USS SPLIT INFINITIVE
UNFORTUNATELY THERE DOESN'T

14520 DATASEEM TO BE ANYONE AROUND SO I
F YOU GET SCARED YOU'LL HAVE
14530 DATANO-ONE TO 'KLING ON' TO!!!
14600 DATAYOU ARE IN A SMALL CAVERN. THE W
ALLS AND CEILING ARE COVERED WITH
14610 DATACOBWEBS ANDTHE ONLY LIGHT COMES F
ROM TWO BLAZING TORCHES.
14620 DATAIN THE DUST ON THE FLOOR ARE SE
VERAL SETS OF STRANGE TRACKS
14630 DATASUCH AS MIGHT BE MADE BY A GIANT

INSECT.
14700 DATA"YOU HAVE ENTERED A LIBRARY FULL
OF WELL-MADE LEATHER FURNITURE,"
14710 DATA"ROWS AND ROWS OFBOOKS, AND A DEA
D BODY LEFT OVER FROM A MURDER"
14720 DATAADVENTURE. A PICTURE ON THE WEST
WALL HAS BEEN PULLED BACK
14730 DATATO REVEAL A SMALL SAFE. THE SA
FE IS STILL CLOSED.
14800 DATAYOU ARE IN A FOREST THAT DOESN'T
SEEM TOHAVE AN END. ITS
14810 DATAQUITE A NICE FOREST - AS FORESTS
GO - BUT THAT'S THE BEST THAT
14820 DATATHAT COULD BE SAID FOR IT. STILL

THE PATH MUST LEAD SOMEWHERE
14830 DATABECAUSE THERE'S A BROKEN SIGN TO
THE EAST THAT SAYS 'TO GO'
14900 DATAYOU SEEM TO BE ON A DESERT ISLAND

THERE'S NOTHING BUT SAND SEA
14910 DATAAND A FEW PALM TREES AS FAR AS T
HE EYE CAN SEE. THERE DOESN'T
14920 DATASEEM TO BE MUCH GOING ON HERE <T
HOUGH YOU COULD
14930 DATATRY DIGGING - IF YOU HAVE A SPADE
) .
15000 DATAWELCOME TO GOBBETANIA - THE LAND
THAT TIME FORGOT.
15010 DATAYOU ARE GREETED BY A SMALL FIGURE

WITH A LARGE SWORD - IT'S
15020 DATABULBOUSFAGEND <WHO CAN REINCARNA
TE AT WILL!>.
15030 DATABUT WHY IS HE WAVING THAT SWORD A
T YOU? I THINK HE WANTS TO FIGHT!!

208 Appendix

15100 DATAAS YOU ENTER A DAMP AND GLOOMY CR
YPT A BAT
1511~ DATAFLIES PAST YOU INTO THE SHADOWS.

INTHE FAR CORNER THE LID OF A
15120 DATACOFFIN OPENS - A SMILING GENTLEMA
N WITH LONG TEETH AND AN EVEN
15130 DATALONGER BLACK CLOAK STEPS OUTAND M
OVES SILENTLY TOWARDS YOU.
15200 DATAAT THE TOP OF THE STAIRS YOU FIND

YOUR- SELF IN
15210 DATATHE COCKPIT OF A JUMBO JET. ONEL
DOK AT THE CONTROL PANEL TELLS YOU
15220 DATATHATTHE PLANE IS NEARL Y OUT OF FU
EL AND GOING INTO A STEEP DIVE.
15230 DATAI'D SAY YOU'D STEPPED INTO THE W
RONG ADVENTURE' ! 1

15300 DATAO.K. - HERE WE GO THEN. YOU STEP
THROUGHTHE DOOR INTO THE ROOM
15310 DATADEDICATED TO A NEW GAME CALLED
'APOCALYPSE YESTERDAY'. UNFORTUNATELY
15320 DATASOMETHING HAS GONE WRONG - THE RO
OM IS A NUCLEAR WASTELAND - AND THERE
15330 DATAIS NO WAY OUT! 1 !
15999 REM ******** INTRODUCTION
16.0.0.0 PRINT" [CLRl CDOWN * 31 CRVSl CCTRL 61 < 1
1 SPACES> THE CASE OF THE <22 SPACES> 11

;

16.010 PRINT"CCTRL 6JCRVSl MISSING ADVENTUR
E (13 SPACES> II

16020 PRINT"CCTRL 2JCDOWNl IT WAS A DARK A
ND GLOOMY DAY AND THE RAIN WAS 11

;

16025 PRINT"COMING DOWN IN 11
;

16030 PRINT"SHEETS - COTTON SHEETS, SATIN S
HEETS - I SHOULD HAVE STAYED IN BED!"
16040 PRINT"CDOWNl I'D SPENT SEVERAL DAYS
TRYING TO TRACKDOWN EDDY THE KWILL, THE";
16050 PRINT" ULTIMATE IN UNDESIRABLE CHAR
ACTERS. I'D ENDED UP ATTHE WRONG END 11

;

16060 PRINT"OF A BLIND ALLEY.":PRINT"CDOWNl
SUDDENLY A DOOR AT THE END OF THE ALLEY 11

;

16070 PRINT"OPENED. A HAND BECKONED TO ME,
TO BE HONEST I WASN'T SURE WHAT TO DO."

16.080 GOSUB1300.0
16.09.0 PRINT"CDOWNl I THINK I'LL LEAVE THE
CHOICE TO YOU. PRESS D AND I GO THROUGH 11

;

161.00 PRINT"THE DOOR.":PRINT"PRESS ANY OTHE
R KEY AND I QUIT THE CASE.":INPUTZ$

The Case of the Missing Adventure 209

16110 IFZ$<> "D"THENPRINT"CCLRJ CDOWN * 3JO .K
. - I au I T . ,, : END
16120 PRINT"[CLRJ[DOWN * 3lGOOD CHOICE. NO
W I'M YOU AND YOU'RE ME.";
16125 PRINT"FROM NOW ON ITS YOUR CASE."
16130 PRINT"GOOD LU CK - YOU'RE GOING TO NEE
D IT! 1 ":RETURN

READ Y.

Index

adventure , location of, 51 - 70
adventure groups, 189

networks , 191
ar ra ys,

Program 5.8, 94
Program 5.9, 97

check routines , 96
dimensions, 71

Fig. 5. 1, 72
Fig. 5.2, 72

zero elements , 73
Program 5. 1, 74

booby-traps, I 03
Program 5.10, 103

brainstorming, 13

cast li st , 20
characters,

co mputer- et , 38
Program 3.4, 39

fixed , 21
Program 3. I , 27

fixed with options, 29
Program 3.2, 30

hero / heroine, 23
progress ive , 21
ratings,

health , 83
height and weight , 85
intelligence, 84
luck, 85
s kill , 84
strength, 74
wealth , 85

second level , 25
status display, 43

Program 3.5 , 44
super-heroe , 25
third level , 26

user-controlled , 33
Program 3.3 , 34

combat, 47
Program 3.6, 48

commands ,
documenting, 159
drop,

Program 5.4, 82
get ,

Program 5.2, 76
Program 5.3, 79

inventory, 75
parsing, 5

Program 8.1 , 147
parsing, compound, 5

Program 8.2, 153
save game, 98

comprehensibility, 7

delimiters, 5
documentation ,

block diagrams, 162
Fig. 9.1 , 163

commands, 159
flow charts, 164

Fig. 9 .2, 164
program layout , 169
variables, 166

ed ucation , 192

graphics, 172 187
sprite grid ,

Fig. 10. 1, 180
sprite sketc h.

Fig. 10.2, 181
sprites, 174

Program 10. 1, 176
u e of, 172
VIC map, 174

212 Index

ideas list, 13
interest, 8
interior decor, 71 - 105
internal consistency, 8, 99

language, 145- 160, 194
Inglish, 5
I nterlogic, 6

line header block , 116
Fig. 6. 1, 116

map-making, 57
maps ,

boxes and lines, 58
Fig. 4.2, 59

colour coding, 66
linked octagons, 64

Fig. 4.5 , 66
Fig. 4.6, 67

linked squares , 59
Fig . 4.3, 60
Fig. 4.4, 62

linked squares, calculated moves, 60
106

Progra m 4. 1, 61
Program 4.2, 62

mo vement codes, I 06- 124
Program6.I , 108
Program 6.2, 11 2

PEE Ks and POK Es , 11 5
Fig. 6.2, I 17
Fig . 6.3 , 118
Fig. 6.4, 119

plot, 7, 10- 19
'pointers', 115
problem setting, 8, I 03
program organisation , 161 171

programming, 166
GOTO/ GOSUB, 167
loops , 168
REM , 167
speed tips, 171

RAM space, 53 , 193
chart. 56

room contents, 86, I 0 I
random items, 87

Program 5.5, 87
Program 5.6, 90
Program 5.7 , 92

room descriptions, 6

sounds, 188- 198
S ID, 181
S ID, map , 183

Program 184, 185, 186
storyboard , 15

examples , 16, 17, 18
storyline. 12

text packing, 125 144
cassettes, 128 , 193
decode.

Program 7.4, 141
Program 7.5, 142

dis k storage, 127, 193
encode,

Program 7.1 , 130
Program 7.3 , 134

string analysis ,
Program 7.2, 132

variable list table (VL T) . 121

zero page , I 15

CREATE YOUR OWN ADVENTURE GAMES!

Are you an experienced programmer or new to
computing? Do you want to write games for profit or iust
to bamboozle your friends? If you answered 'YES' to any of
these questions and you are interested in adventure
games then you will enioy this book. Your Commodore 64
with its large memory and stunning graphics, is an ideal
computer for adventure games.

In this book you will find every aspect of adventure
writing -from stories and character creation to the more
technical programming tricks found in top commercial
games -described in detail. The only boundaries in the
world of the computer adventure game are those set by
your own inventiveness, imagination and skill. Numerous
examples and programs which can be incorporated into
your own adventure games are included to help you push
those boundaries to the limit.

The Author
A. J. Bradbury, who also writes under the name John
Noad, is a computer studies teacher and a keen
adventurer. His articles have appeared in Windfall and
Personal Computer News.

M ore books on the Commodore 64 from Granada

COMMODORE 64 COMPUTING
Ian Sincla ir
0246120304

THE COMMODORE 64 GAMES BOOK
Owen Bishop
0246122587

SOFTWARE64
Practical Programs for
the Commodore 64
Owen Bishop
0246122668

Front CCM!r illustration by Angus McKie

GRANADA PUBLISHING
Printed in Great Brita in 0246 t24121

INTRODUCING
COMMODORE 64
MACHINE CODE
Ian Sinclair
0246123389

COMMODORE 64
GRAPHICS AND SOUND
Steve Money
0246123427

£6.95 net

