*
\

W NS

CREATE YOUR OWN INTERACTIVE PROGRAMS

For the Macintosh

Copyright

This manual and the software described in it are copyrighted
with all rights reserved. Under the copyright laws, this manual
and the software may not be copied, in whole or part, without the
written consent of Silicon Beach Software, Inc., except in the
normal use of the software or to make backup copies. This
exception does not allow copies to be made for others, whether or
not sold, but all of the material purchased (with all backup copies)
may be sold, given, or loaned to another person.

You may take the software from one computer to another, but
you may use the software on only one computer at a time. A
multi-use license may be purchased to allow the software to be
used on more than one computer at the same time, including a
shared-disk system. Contact Silicon Beach Software, Inc. for
information on multi-use license.

© 1986 Silicon Beach Software, Inc., P.O. Box 261430
9770 Carroll Center Road, Suite J, San Diego, CA 92126
(619) 695-6956

World Builder and Enchanted Scepters are trademarks of Silicon
Beach Software, Inc.

Macintosh is a trademark licensed to Apple Computer, Inc.
MacDraw and MacPaint are trademarks of Apple Computer, Inc.
MacNifty is a trademark of Kette Group, Inc.

SoundCap is a trademark of Fractal Software

Warranties

Silicon Beach Software, Inc. warrants the disk to be free of
defects for 90 (ninety) days from the purchase date. If the disk is
found to be defective in this 90 day period, return it to Silicon
Beach Software for a free replacement. After 90 days, return it
with $5.00 for a replacement. To obtain this warranty, you must
send in the registration card.

THE SYSTEM IS A COPYRIGHTED PROGRAM OF APPLE COMPUTER, INC.
LICENSED TO SILICON BEACH SOFTWARE, INC. TO DISTRIBUTE FOR USE ONLY
IN COMBINATION WITH WORLD BUILDER.™ APPLE COMPUTER, INC. MAKES
NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE ENCLOSED
COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY, OR ITS FITNESS
FOR ANY PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES
IS NOT PERMITTED IN SOME STATES. THE ABOVE EXCLUSION MAY NOT
APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL
RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY
FFROM STATE TO STATE.

Finder, System, System Resource, ImageWriter Driver are copyrighted programs of Apple Computer, Inc.
licensed to Silicon Beach Software, Inc. to distribute for use only in combination with World Builder. Apple
Software shall not be copied onto another diskette (except for archive purposes) or into memory unless part of
the execution of World Builder, When World Builder has completed execution Apple Software shall not be
used by any other program.

World
Builder

Programmed by W. C. Appleton

Manual by W. C. Appleton and Charlie Jackson

Special thanks to:
Bill Atkinson, Mari Hughes
Robert Eberhardt, Richard Kaapke

Silicon Beach Software, Inc.
P.0. Box 261430
9770 Carroll Center Road, Suite J
San Diego, CA 92126
(619) 695-6956

Table of Contents

Preliminaries
Making Backup Disks
Becoming a Registered Owner
Commercial Use of World Builder
Playing Demo World
Two Windows
Five Menus
Objects
Keyboard Entry
Fighting Characters
Summary of Standard Commands
Introduction
Welcome to a Brave New World
The Basics of Creating Your Own Adventures
Getting Used to World Builder
About This Manual
Chapter 1 -- Using World Builder
Getting Started
Creating Scenes
Creating Characters
Creating Objects
Ending the Session
Exploring Your World
Chapter 2 -- Creating New Worlds
Editing Existing Worlds
Creating New Worlds
Making a Scene
Moving Scenes
Naming Scenes
Scene Information
Scene Design
Using World Data
Backup
Chapter 3 -- Populating Your World
Editing Existing Characters
Creating New Characters
Naming Characters
Character Information
Character Design
Editing Existing Objects
Naming Objects
Object Design

L=l =leCl- N e e We U, WU N7 I N N N

Chapter 4 -- Using the Graphics Editor
Opening a Design Window
Selecting an Object
Moving Objects
Resizing Objects
The Tools Menu
The Fill and Pen Menus
The Edit menu
Disk Space Considerations

Chapter 5 -- Writing Scene Code
Syntax
Using MENU
Using PRINT
Using MOVE
Variables
Comparison Operators
Using IF-THEN

Chapter 6 -- Advanced Adventure Code
User Variables
Random Numbers
Player Attribute Variables
Global Code
LOOP Zero
The Sound Statement

Chapter 7 -- Working With Sound
The Sound List Window
Clipboard Operations with Sound
Sound Library Files
Sounds in Scenes
Sources of Sounds
The MacNifty Audio Digitizer
Using the Sound Converter
Sound Quality

Appendix A -- World Builder Specifications

Appendix B -- Adventure Code Summary

Index

Preliminaries

Making Backup Disks

Before using World Builder, make a backup copy of the
World Builder master disk. Put the original away in a safe place
and use the copy. The World Builder disk is not copy-protected,
so you may make backups from the Finder. If you're unsure
how to do this, consult the user's guide that came with your
Macintosh. Remember that backups are for your use
only. Please do not copy this program for your friends, no

matter how much they beg you. Have them buy their own copy.

_ If you use a sector-copy program to make your backup, you
will continue to get the message that you're using your master.
Use the Finder to make your working copy of the disk and you
will not get the message anymore.

Becoming a Registered Owner

Please take the time to fill out the enclosed owner
registration card. The World Builder disk is warranted to be free
of defects for a period of 90 days from the purchase date. Please
see the registration card for warranty details.

Also, if World Builder is updated for any reason, your name
will be on file and you will be notified.

Commercial Use of World Builder

World Builder creates stand-alone applications. Although
World Builder itself will not run on a 128K Macintosh, the
programs created by it will.

There are no restrictions on the use of programs created with
World Builder. It is your choice what you do with them. You
may give them away, release them as Shareware, or even sell
them. If you are going to sell one and you want to lock your
program such that it cannot be altered with World Builder,
contact Silicon Beach Software, Inc. for assistance.

Silicon Beach Software, Inc. cannot guarantee that programs
created with World Builder will be compatible with future
Macintosh architectures.

Playing Demo World

The application Demo World is a simple adventure game
that has been created with World Builder. It consists of nine
scenes and contains a couple of nefarious characters that you'll
meet sooner or later. We've included it to show you what World
Builder can do and how a World Builder game is played. After
trying this game, you can use it as a springboard to build a more
complex adventure. To begin Demo World, simply double-click
on its icon.

Two Windows

When Demo World opens, two windows appear: the scene
window shows where you are, and the text window describes
what is happening. If the text window is full, you can scroll
the text up or down by pressing the scroll bar.

You explore a World Builder adventure by selecting menu
items, clicking on things in the scene window, or entering text
commands.

Five Menus

The menus contain frequently used commands that allow
you to move around, take a look inside your pack to see what
items you're carrying, use weapons, and so forth. Try all the
commands in each of the menus to see what they do.

There are five menus: Apple, File, Edit, Commands, and
Weapons. The desk accessories are under the Apple menu. Most
all accessories work with World Builder, but we recommend not
using those that take up a lot of memory.

File Menu -- The File menu allows you to begin a new
adventure, open an old adventure, close the current game, save
the current game, revert to the last saved version, or quit.

Edit Menu -- You can cut, copy, or paste text with the
Edit menu. Use this menu, for example, to capture an important
passage of text, and place it in the Scrapbook for later retrieval.

Commands Menu -- The Commands menu contains
frequently used directives. If you choose "North", "South”,
"East", "West", "Up", or "Down" then you will go in that
direction, if possible. The "Look" command describes the current
scene. The "Rest" command passes time and restores strength.
The "Status" command describes the condition of you and your
armor. The "Inventory" command lists the contents of your pack.
"Open" and "Close" can be used to operate doors or boxes.

Weapons Menu -- The Weapons menu is used during
battle. All of the weapons at your disposal are included in the
Weapons menu. If a hostile character appears, choose a weapon
(quickly!) to fight back.

Objects

Demo World contains two objects that you find by
Searching different rooms. Clicking on an object has different
results depending on the type of object. In Demo World,
clicking on an object adds that item to your pack. In games you
create, clicking on objects can lead to a totally different result.
It's up to you.

Keyboard Entry

The keyboard is used to enter commands not included in the
menus. After typing in a command, press the Return key to
execute it. Here are some examples of some of the commands
used in Demo World. A complete list of commands can be
found at the end of this chapter.

Get and Drop -- If you want to add an object to your pack,
or drop an object, type "Get" or "Drop" followed by the name of
the object (don't type in the quotes, of course). Example: If you
see a laser gun on the ground, type "Get Laser"; to drop the gun,
type "Drop Laser."

Offer -- Angry characters can be bribed with the "Offer"
command. If a giant monster attacks, type "Offer Laser" in
hopes that the monster will accept the offer and go away.

Aim -- The "Aim" command lets you aim your attack at the
head, side, or chest. Type "Aim Head" to direct your attack at
the most vulnerable area.

In addition to the standard commands, there may be special
commands that are only appropriate for a certain scene, character,
or object. In another game, for example, if you find a lantern
you might type "Light Lantern." Or if you find a book you
might type "Read Book." The use of special case commands is
up to you when you write your adventures.

Fighting Characters

Sooner or later you will meet a hostile character. If a fight
gets started you can do four things:

» Fight with a weapon;

« Cast a magical spell;

» Offer any object you own in exchange for peace;

*» Try to run away.

All of the weapons and spells that you have in your
possession are listed under the Weapons menu. To fire your laser
gun, for example, choose the item "Fire Laser" (or type it from
the keyboard). If you think your opponent is greedy and you
have something of value, offer it. If your attacker looks a bit
slow you could try to run in an open direction by choosing the
commands "North", "South”, etc. from the Commands menu.

Summary of Standard Commands

NORTH Moves you to the north, if possible
SOUTH Moves you to the south, if possible
EAST Moves you to the east, if possible
WEST Moves you to the west, if possible

UP Moves you up, if possible

DOWN Moves you down, if possible

LOOK Describes the current scene

REST Restores strength and passes time
STATUS Indicates your condition

INVENTORY Lists the contents of your pack

OPEN Opens a door or a box, if possible
CLOSE Closes a door or box, if possible

GET object Adds an object to your pack

DROP object Drops an object from your pack

WEAR armor Exchanges one piece of armor for another
OFFER object Offers the given object in exchange for peace
AIM body part Aims a weapon for the head, chest, or side
op-verb weapon Uses the given weapon

Remember to try special commands specific to a given object,
character, or scene!

Introduction

World Builder is primarily a game creation tool, but it can
also be used for many other applications, such as training
materials, storyboarding, etc. The manual takes the approach
that you are creating games, in order to show all its capabilities.

If you will be using the program for non-game applications,
try to create a small game first. Going through Chapter 1,
which is a step-by-step tutorial, should be sufficient. Having
done this, you'll understand how programs are created. You can
then adapt these techniques to your particular needs.

Welcome to a Brave New World

Have you ever wished you could stop the hero of a novel
from making a terrible mistake? Or perhaps you're the sadistic
sort and wish that some of the less lovable characters would
makg a few more mistakes than they do. Computerized role-
playing interactive fiction games put you in the driver's seat; you
get to make all the decisions. When it comes time to choose a
course of action, you take full command. The computer keeps
track _of your moves, accompanying you on your quest as a
combination storyteller, scorekeeper, confidant, and referee.
Interactive fiction games combine the intelligence and speed of
the computer with the wit and entertainment of a good novel.
It's no wonder they're so popular.

If you enjoy playing interactive fiction games, imagine
writing your own. World Builder lets you do just that. This
powerful program provides everything you need to make your
own professional-quality stand-alone adventure games on the
Macintosh. World Builder games combine text, graphics, even
sound to create realistic and exciting adventures. Most of the
difficult programming chores are done for you automatically, so
you can concentrate on the more important aspects of game
writing -- creating interesting characters, plot, and action.

World Builder is more than a simple game maker, it's a
sg:rious programmer's tool. With it, you can develop games that
rival even the best commercially available adventures. Players of
your World Builder adventures can:

* Explore up to 2,500 different scenes.

* View each scene in a detailed graphics window.

* Encounter any number of characters or objects.

» Battle monsters.

* Hear realistic digitized sounds while exploring or fighting.

* Save unfinished games for completion later.

* Plus lots more.

The Basics of Creating Your Own Adventures

World Builder is used to generate the scenes, characters, and
objects that your planets will need. Unlike the normal Macintosh
application that creates documents, World Builder generates
stand-alone adventure game applications. Two examples of
World Builder games are Demo World (included with World
Builder), and Silicon Beach's Enchanted Scepters.

The application World Template is an adventure game just
like Demo World except that it contains no scenes, characters, or
objects. World Template is used as a source of new, empty
programs that can be edited with World Builder.

Step One -- Design the Game

The first step in designing a new adventure is to decide what
kind of people, places, and things exist in your world. World
Builder can be used to create games from any place or time
period. You might consider themes such as outer space, modern
times, World War II, the wild west, knights in shining armor,
dinosaurs, gangsters, monsters, or fantasy.

Step Two -- Populate the World

The next step is to draw the scenes, characters, and objects
that you will need in your world. These things can be drawn in
World Builder or brought in over the clipboard from other
applications like MacPaint or MacDraw. You might want to
copy a few of your scenes, characters, or objects from other
World Builder adventures like Enchanted Scepters.

Step Three -- Define Characteristics

After this, you decide how your planet -- the scenes,
characters, and objects -- behave by filling in a few dialog boxes.
Some scenes will only allow movement in a certain direction.
Different characters can be placed at different locations, and be
given particular strengths, weaknesses, weapons, and strategies.
There are various types of objects, and each type has different

characteristics. Some objects are simple props, like a candle or a
book. Other objects can be used as weapons or magical spells.
You may also specify an object to be a piece of clothing or
armor. All objects have value, and can be offered to angry
characters in exchange for peace.

Step Four -- Play the Game

Once you have drawn some scenes, characters, and objects,
and filled in the dialog boxes, you have done everything
necessary to create an exciting adventure game! Try out the
game to see how it plays. Give it to friends and see how they
like it. Sell it! It's up to you.

Getting Used to World Builder

The best way to get started using World Builder is to go
through Chapter 1. This chapter contains a step-by-step tutorial
on how to create a complete game. It introduces you to the
fundamental aspects of World Builder. After that, read the
following chapters that are reference sections covering all the
details of World Builder. You may want to examine Demo World
with World Builder to get some ideas on how a planet is put
together. If you've purchased Enchanted Scepters, be sure and
take a look through it with World Builder, as it is full of detailed
examples of how to do things. Be creative! Your world is at
your fingertips!

About This Manual
This manual consists of a tutorial chapter (Chapter 1) and
five reference chapters. Chapters 2 through 6 expand upon the
information presented in the tutorial and act as reference guides
for different aspects of word building.
Here's a quick rundown of what you'll find in each one:
Chapter 1 -- Using World Builder. A step-by-step guide to
creating your own world.
Chapter 2 -- Creating New Worlds. Designing scenes.
Chapter 3 -- Populating Your World. Adding characters and
objects.
Chapter 4 -- Using the Graphics Editor., Drawing graphics
for scenes, characters, and objects.
Chapter 5 -- Writing Scene Code. Enhancing your games
with adventure code.
Chapter 6 -- Advanced World Building. Using sound,
advanced features of adventure code.
Chapter 7 -- Working with Sound. All about digitized
sounds.
Appendix A provides details on World Builder specifications
(including Switcher considerations), and Appendix B provides a
summary of adventure code variables and instructions.

10

Chapter 1
Using World Builder

This chapter is going to take you through the step-by-step
creation of your first World Builder adventure, "Midnite Snack."
The player's goal in Midnite Snack is to get something out of
the refrigerator in the kitchen and eat it. But, between the
bedroom and the kitchen lurks a Wuggly Ump that escaped from
an Edward Gorey story. The player must be wearing a robe to get
past the Wuggly Ump; if the Wuggly Ump hasn't been given a
ball of twine to keep it happy, it steals all the food from the
refrigerator and the player dies of starvation. As in all adventure
games, the player isn't told about these twists, but is left to
deduce or otherwise discover them.

The Midnite Snack world is a simple one that consists of:

4 scenes: Bedroom, Hallway, Kitchen, and Outside.
2 characters: the player and the Wuggly Ump.
2 objects: the robe and the ball of twine.

Getting Started
The first thing you have to do is make a "shell" in which you
can build your world:
* On the DeskTop, duplicate the icon named World Template
and name it "Midnite Snack."
» Open World Builder by double-clicking on it.
= Select and open Midnite Snack from the Open box that

appears.

Four windows open on your screen: Scene Map, Character
List, Object List, and Sound List.

Creating Scenes
Each scene, or location, in an adventure has four components
that you control:
The Design: The picture that appears when the player
enters the scene.
The Text: The words and descriptions that appear when the
scene is entered.
The Data: Information about which directions are blocked,
and which sounds are automatically linked to the scene.
The Code: The list of instructions that tells the program
how to handle the player's actions in the scene.

11

Making a Map
_Fi{st, you're going to map out the four scenes needed for
Midnite Snack. Working in the Scene Window, which is at the
top of the pile:
* Press the Create button.
> A black box labeled Untitled appears in the window.
* Press the Name button; type "Bedroom" in the dialog box
that appears.
> The box in the window is labeled Bedroom.
* Press the Create button three more times.
> Three more boxes appear in the window.
Click in the middle box in the top row and press the Name
button; name the scene "Hallway."
Select and name the right box in the top row "Kitchen";
select and name the box in the second row "Outside."

The positions of the squares in the Scene Window correspond
to the relative positions of the locations in the game; right now,
the Kitchen is east of the Hallway, and Outside is south of the
Bedroom. You can change scene positions by dragging the
boxes with the mouse.

* Rearrange the boxes so Outside is alone in the top row, and
thf: other three boxes are in a row beneath it, in their
original order.

The player now has to go North to go out the window; two
moves east bring her to the kitchen.

Scene Map:MidniteSnack
Create || o0 KT tchen

Outside

Scene Map:MidniteSnack
Outside

Bedroom Hal lway Kitchen

Create, name, and
rearrange the
four scenes for
Midnite Snack

Fig. 1-1. Scene Map Window

12

Bedroom Design

With the Bedroom box selected, choose Open Scene
Design from the Window menu. This is the window in which
you create the picture for the scene. You can paste in a graphic
that you've imported from another program, but you can also use
the tools that World Builder supplies.

The Design window appears during the game exactly the way
you create it in World Builder, including its size and placement.
To move a World Builder window, drag it by its title; to re-size
it, drag in the box in its lower right corner.

* Move and re-size the Design window so it takes up about
two-thirds of the screen vertically.

To draw the bedroom with World Builder:

« Select Rectangle from the Tool menu, and draw a
rectangle in the upper third of the Design window. When
you release the mouse button, a black rectangle appears.

A graphic object can be moved or re-sized in the Design
window as long as it is selected. A selected object has a frame
around it that has small black squares in its corners. Drag on any
of these comner handles to re-size the object; move the object by
dragging it from within the frame.

« Select a pattern from the Fill menu to turn the black
rectangle into a wallpapered wall.

Scene Design:Bedroom

Draw a rectangie and fill it
with a wallpaper pattern

Fig. 1-2. Starting a Scene

13

* Select the Rectangle tool again. Draw a rectangle within
the existing one to serve as a window; select Black from
the Fill menu to turn it black.

* Draw a moon. Select Oval from Tool menu, and White
from the Fill menu. Holding down the Shift key to make
the oval a circle, draw the circle.

=] Scene Design:Bedroom

Add a biack rectangte for a window
and a white circle for a moon

Fig. 1-3. Adding to the scene

* Draw the left wall with the Polygon tool from the Tool
menu. Click on the upper left corner of the back wall; click
again at a spot down and to the left to draw the ceiling line;
click another line down to the floor. Place the cursor on the
bottom left corner of the back wall, and double-click to
complete the polygon. Select the wallpaper pattern from
the Fill menu.

Scene Design:Bedroom

click 1
*

d:-bln elick
Use the Polygon tool to
draw the ieft waii, then
fill it with the wallpaper
pattern

Fig. 1-4. Adding a Polygon
You can continue drawing the bedroom now or at another

time, but that's enough to get the idea. Now it's time to create
the text.

14

Close the Design window by clicking in the box in its upper
left corner. A dialog box appears asking if you want to save the
changes before closing; click Yes. Close the Design window,
saving it by way of the dialog box alert.

Bedroom Text

Scene text is the text that appears in the game whenever the
location is entered, and whenever the player uses the Look
command in that location.

» Select Open Scene Text from the Window menu.

« Size the Text window to take up the remainder of the screen
next to the Design window, and type the text as shown in
Fig. 1-5.

You can use the Font, Fontsize, and Style menus to adjust
the text the way you want it.

& File Edit Window Font Tool Fill Pen

| O e Scene Text:Bedroom jmms |

The full moon shining on
your face wakes you in the
middle of the night. Your
stomach is growling, and so
is something in the hallway.
You realize you must get
something to eat, or you'll
die.

Of course, you might die
anyway.

The door to the hallway is in

the east wall of your
bedroom; the window is in
the north wall.

Fig. 1-5. Entering Text in the Scene Text Window

Bedroom Data

Data for a scene tells the game which directions a player is
not allowed to move, and defines the sounds that will accompany
the scene.

« Select Open Scene Data from the Window menu.
» Click in the South and West checkboxes to block those
directions.

15

: When a player tries to move in a blocked direction, the game
will tell hen: "You can't go that way." If you want the game to
say something else instead, you enter that information here.

. Ty.pe t_he comments as shown in figure 6.
» Click in the OK button to put the Data window away.

Blocked Comment
[North [

X South |Vou bump your head on the wall.
[JEast [
R West [vou stub your toe against the wall.

Scene Sound [

UL

Frequency, Times/Minute (max 3600)
Sound type ® Periodic O Random

Fig. 1-6. The Scene Data dialog box

You'll find information about sound effects in Chapter 7;
We're not going to put any in Midnite Snack. Notice the heavy
lines on the blocked sides of the Bedroom box in the map that
correspond to the information you entered in the Data window.

E Scene Map:MidniteSnack
Create Gatside

m Bedroom Hal lway Kitchen
o)
2!
These directions are

blocked

Fig. 1-7. Blocked directions

16

Bedroom Code

The code is the list of instructions that tells the game how to
respond to a player's actions in a scene. If the player types a
directional move, like North, the game automatically moves her
to the appropriate scene. If she types "Swing Fist" and you've
defined Fist as a weapon, the game will take care of the fight.
You don't have to program these general activities.

You will, however, want to control a lot of what happens
when the player does something in a scene. She may type a
command in the text window, or select one from the Command
window--the commands could range from eating something to
casting a spell; or, she might click on an object that appears in
the scene. These are all actions you'll want to respond to in a
special way.

Midnite Snack allows only a limited number options; here in
the bedroom, the only option besides leaving it is to pick up the
robe or the ball of twine. (We'll be adding those objects to the
scene later.)

Writing code in World Builder is programming; if you're
familiar with BASIC, you won't have any trouble. If you're not
familiar with BASIC, you still shouldn't have much trouble;
BASIC is basic because it looks a lot like English.

« Select Open Scene Code from the Window menu.

« Enlarge the window to the width of the screen.

« Select the font and size you want to work with from their
menus.

« Type the following in the Code window:

IF{CLICKS$=robe JOR { TEXT$=Get robe} THEN
PRINT(The robe is shabby, but you slip it on to ward off the
night chill.}
PRINT{With luck, it will ward off even more.}

EXIT

Make sure you put the braces where indicated and type in
capitals where shown. World Builder will automatically indent
the PRINT commands after you type the line. Don't leave any
spaces between the command and the braces.

17

This piece of code tells World Builder what to do if the player
clicks on the robe or issues the command "Get robe." CLICK$
stands for the action of clicking on an object; TEXTS stands for
whatever the player types or selects from the Command menu. In
this example, if the object clicked on is the robe, or the phrase
typed is "Get robe," World Builder will do everything listed
before the EXIT statement--it will print the two statements.

You have the option in World Builder of changing what
appears in the Command menu. The MENU statement is used
to do this. For example, you might want to add "Get" to the
Command menu for this scene. Normally "Get" works
automatically in World Builder, but this would be a way of
giving the player a strong hint or clue.

* Add this statement to the code window:
MENU{Get/G}

The "/G" after the word adds the command key option to the
menu, too. Once you use the MENU command in a scene's code,
the normal Command menu is replaced with the commands you
list. To put some of the standard commands back in the menu,
you have to include them in your MENU statement.

» Change the menu statement to:
MENU {Get/G;North/N;South/S;West/W;East/E;Inventory/I }

One more important thing has to be added. If the player gets
the robe, you'll want the program to keep track of the fact that
the robe is now in her possession, and remove it from the
bedroom scene. Since this can happen only if the player gets the
robe, you must add another statement to the block of statements
before the EXIT command.

« Click in front of the EXIT statement.
* Type:
MOVE {robe} TO{PLAYER@}
* Press Return to move the EXIT statement to the next line.

The word PLAYER@ is always used to indicate the character
in the game that represents the player. The MOVE command in
this case moves the robe from wherever it is into the player's
inventory of items.

18

— cene Code:Bedroom]

IF(CLICK$=robe) OR(TEXT$=Take robe)THEN
PRINT(The robe is shabby, but you slip it on to ward off the night chill)
PRINT(With luck, it will ward off even more.)
MOVE(robe) TO(PLAYER@)

EXIT

MENU(Take/T;North/N;South/S;East/E;West/W Inventory/I)

IF(CLICK$=ball of twine)OR(TEXT$=Take ball)OR(TEXT$=Take twine)THEN
PRINT(The twine is slightly slimey, but you slip it into your robe pocket)
MOVE(ball of twine)TO(PLAYER®@)

EXIT

Fig. 1-8. Scene Code

» Close the Code window, by clicking in the box in its upper
left corner.
> A dialog box appears asking if you want to save the
changes.
* Click in the Yes button.

If you have made any mistakes--put in extra spaces, or forgot
to use capitals--you'll get an alert letting you know there's been a
mistake, and what line it's in; fix the mistake and try closing the
window again.

* Close the Design and Text windows; click Yes to save the
changes.

Now, on to the other scenes.

The Outside Scene

If the player goes out the window, she falls to her death. The
graphics are simple, since it's dark out, and the text lets the
player know what happened.

« Double-click in the Outside box in the Scene Map; this
opens both the Text and the Design windows.
« Set up the windows as shown in Fig.1-9.
» Open the Code window and type:
MOVE{PLAYER@ }TO{STORAGE®}

19

% File Edit Window Font Tool Fill Pen

Scene Design:Outside O} Scene Text:Outs |

You plunge 30
stories to the
ground. During
your fall, you
hear the Wuggly
Ump weeping
silently. Or is it
muffled laughter
that follows you
down to your

death?

Fig. 1-9. Outside

STORAGEQ is another special World Builder word. When
you move characters or objects to storage, they go into a
temporary oblivion from which they can be recalled when you
ne@d them; this way, a player won't encounter the character or
object as she wanders around the world. When you move the
player character to storage, however, the oblivion is permanent,
and the game ends.

Since moving outside ends the game, there's no need to set up
a Data window for the Outside scene. Close all the windows,
saving their information. On to the hallway!

The Hallway Scene

ffSetting up the Hallway design is simple, since the lights are
off.

* Open the Design and Text windows and set them up as
shown in Fig. 1-10.
* Close and save the Design and Text windows.

Don't worry about drawing in the eyes mentioned in the text:

the Wuggly Ump will be designed separately and placed in the ,
Hallway later.

20

& Ffile Edit Window Font Tool Fill Pen

[[scene Design:Hallway[| Scene Text:Hallwa
You are in a dark hall. The
bedroom is west of here, but you're
sleepy and can't remember where
the kitchen door is. There is a sad
snuffling sound and two - or is it
three? —— pinpoints of light that
might be eyes.

Nervously, you recall the Edward
Gorey story you read before you
fell asleep. Something about Wuggly
Umps.

You are still hungry. Something
in the hallway is still hungrier.

Fig. 1-10. The Hallway

» Open the scene Data window.

« Block the north and south paths, and type the comments as
shown in Fig. 1-11.

« Click the OK button to put the Data window away.

Blocked Comment

X North Wnu stumble into a wall.

[South [There is no doorway in this direction.

[East [7
O west

[958 | | 15

Fig. 1-11. Blocking directions

The hallway code has to take into account that unless the
player has her robe, she can't do anything at all--except go back
to the bedroom and get the robe. The only action allowed will be
the command "west."

+ Open the scene Code window.

« Type in the Code as shown in Fig.1-12.
« Save the code when you close the window.

21

€ File Edit Window Font Tool Fill Pen

—— Scene Code:Hallway
IF(robe>PLAYER@®)}AND{LOOP*>0)AND{TEXT$>west)THEN &
PRINT{You are frozen in fear. There is only one thing you can do.} |l
EXIT

Fig. 1-12. Scene Code for the Hallway

There are three things that this piece of code checks: the
player's possession of the robe, if she has issued a command in
this scene, and the command that she uses.

To check if a character owns an object, the phrase "object =
character " is used. To check if a character doesn't own an object,
the phrase "object > character " is used. Since we want the
PRINT statement executed only if the player doesn't own the
robe, the first phrase, or condition, in the IF statement is "robe >
PLAYER@."

The second condition in the IF statement has to do with
whether or not the player has given a command yet. We don't
want the "frozen in fear" comment printed unless she tries to do
something. The word LOOP# stands for the number of
commands a player has used in a scene. If LOOP# is zero, she
hasn't done anything yet. Using {LOOP#>0} makes sure the
number of commands is greater than zero; the ">" sign is used in
its mathematical sense when it is used with numbers in the code
window.

The third condition in this IF statement has to do with just
what command the player uses; if she decides to go back to the
bedroom, she will be allowed to do so without any statements
regarding her emotional state. The phrase "TEXT$>west" means
"the command does not equal west."

Using multiple phrases in an IF statement with AND
between them tells the game to check that all conditions are true
before executing the block of commands. There are three
conditions here--all of which must be present--for the PRINT
statement to be executed: the player does not own the robe, she
has issued at least one command, and she has not used the
command "west" (the bedroom direction).

In true adventure game tradition, the player is given no clue
as to what she can do; she'll just be told she can only do one
thing every time she tries the wrong command.

* Close the Code window and save the changes.

22

el il

e) e

World Builder has a lot of built-in code to handle general
commands. You don't have to write code for the hallway scene to
take care of the ball of twine transfer. If the player uses the
command "offer," the game takes over if you don't have specific
code for the situation. Here in the Hallway, it will check the
Wuggly Ump's character traits (which we'll define later) and
calculate the likelihood of its accepting the twine. If it accepts,
the game will inform the player, and the transfer of the twine
from her possession to the monster's will also be taken care of
automatically.

The Kitchen Scene

When the player reaches the kitchen, she'll want to open the
refrigerator to get some food. According to the original scenario,
she'll only find food there if she has given the ball of twine to
the Wuggly Ump in the hallway.

& File Edit Window Font Tool Fill Pen

| |Scene Design:Kitchen| | ' Scene Text:Kitchen _-

You can see the refrigerator at
the far end of the kitchen; it is
bathed in moonlight.

There is a strange aroma in
the air--the Wuggly Ump has
been here.

Fig. 1-13. The Kitchen

» Open the Design and Text windows for the Kitchen; set
them up as shown in Fig.1-13.

* Open the Code window and type in the code shown in
Fig.1-14.

23

Scene Code:Kitchen

IF(TEXT$=open) THEN

1F(ball of twine>wuggly ump)THEN
PRINT{The wuggly ump has stolen all the food.}|* If statement block
PRINT{You expire from extreme starvation) within main If
MOVE(PLAYER@)TO{STORAGE®@} statement block
PRINT(Grateful for the twine, the Wuggly Ump has left you some food.}
PRINT{You satisfy your hunger and head back to bed.}

EXIT

Fig. 1-14. Scene Code for the Kitchen

The code in the Kitchen scene must check for one major
thing: the player's opening the refrigerator. After that happens,
the game must do different things depending on whether or not
the player has given the Wuggly Ump the twine.

The first IF statement in the code checks if the player's
command is "open." (In a complete adventure, you'll want to be
more specific, but for now, as long as the command contains the
word "open", we'll assume the player said "open refrigerator.") If
the player issues that command, the game looks at the rest of the
code in the IF block.

Within the first IF block is another IF statement. If the
Wuggly Ump does not own the ball of twine ("ball of twine >
Wuggly Ump"), the game prints the bad news and ends the game
by moving the player off to the storage area. Because this IF
block is inside the main one, the game won't even check the
Wuggly Ump's possessions unless the player has issued an Open
command.

If the Wuggly Ump does indeed own the twine at this point,
this inner IF block is skipped altogether, and the two PRINT
statements are executed instead. Although this is the end of the
Midnite Snack scenario, the player is not moved to storage -- she
can go on exploring this limited world.

* Close the Code window and save the changes.
Creating Characters
It's time to create the two characters needed in Midnite Snack:

the Wuggly Ump and the player. Click in the Character List
window to bring it to the front.

24

The Wuggly Ump

» Click in the Create button, then the Name button; name
the character "Wuggly Ump."

» Double-click on the Wuggly Ump name to open the
Design window.

« Use the Oval tool, with White from the Fill menu, to
draw three tiny ovals--this is all the player will see of the
Wuggly Ump.

» Close the Design window and save the changes.

Character Design:Wuggly Ump m

Fig. 1-15. The Wuggly Ump

Characters in World Builder are defined by attributes: how
strong they are, how likely they are to fight, how open they are
to offerings, and so on. These attributes are assigned through a
series of dialog boxes.

» Select Open Character Data from the Window menu.
>The first box appears.
« Fill in the information as shown in Fig.1-16.

Name of initial scene [Hanway |
Character gender O He QO She @It

Is character name a proper noun? @® No O VYes
Is character the player character? @® No O Yes

Number of objects character may own (max 255) E
Return used up character to
QO Storage O A random scene @ The initial scene

[k] [Next | [Pres | [cancer |

Fig. 1-16. The First Character Data dialog box

25

The first box contains basic character information. The
Wuggly Ump's initial scene is the Hallway; its gender is neuter.
(As far as we can tell.) You can leave the rest of the items in this
box at their default settings, except the last. Click in the Initial
Scene button so the creature stays put in the Hallway no matter
what happens.

» Click the Next button to go to the next box.

The second box lets you set physical and spiritual
characteristics of a character; the Wuggly Ump can use the
default settings, so you don't have to change anything.

« Click the Next button to go to the next box.
« Click on the extreme left edge of each rating bar.

The thin rectangles partially filled with black are used to rate
character attributes. Clicking in a bar changes the filled area to
the click point; clicking on the left edge empties the bar. By
setting these three attributes at the lowest point possible, you
have made the Wuggly Ump extremely slow, very likely to
accept any offer, and unlikely to follow the player around.

¢ Click here to empty bar
L

Running speed

Rejects offers !
t [
Initial sound |
Scores a hit sound L

Follows

vy

Receives a hit |

S | S

Dying sound l

[ok | [Neut | [prev] | cancet |

Fig. 1-17. More Character Attributes

« Click in the Next button. (We're not adding sound to
Midnite Snack.)

» Erase the contents of all the edit fields in this box.

= Set both rating bars to minimum.

26

"Native weapons" are things like hands and feet, or claws and
fangs. The Wuggly Ump is basically a passive and pacifist
creature; not defining any native weapons for it will keep it from
attacking the player when they meet.

» Click the Next button. Empty all the bars by clicking on
the left edge of each one.

This box lets you define the character's tendencies to do
something when she is winning or losing a fight. Since the
Wuggly Ump won't fight, you can set these traits all to
minimum.

= Click the Next button.
« In the first field, type:
The Wuggly Ump is thinking about you.

This last box lets you fill in the text that will appear when a
certain situation occurs. The initial comment when the player
meets the Wuggly Ump is all that is needed.

« Click the OK button to close the box and save all the
Character Data.

The Player Character

Every world must have a character in it who is the player's
alter ego. You don't have to worry about the character design,
because the player is seldom seen; however, you do have to set
his or her attributes. (In a full adventure, these attributes can
change as the game progresses--a character can become weaker, or
more likely to run away, and so on.)

« Click the Create button in the Character window.

Name the character "Sleepyhead."

Select Open Character Data from the Window menu.
Fill in the first four items of information as shown in
Fig.1-18--set the gender at whatever you prefer.

Click the OK button to close the box.

27

Name of initial scene [Bedroom |
Character gender ® He O She on

Is character name a proper noun? ONo ® Yes
Is character the player character? ONo @ Yes

Fig. 1-18. The Player Character

The player character can use all the default settings for his
character attributes, so there's no need to go through the other
boxes.

Now, on to objects!

Creating Objects

Objects in World Builder can be of different types, and
different types are assigned different attributes. Armor and
weapons, for instance, need strength attributes assigned; magical
objects need spell accuracy ratings.

Midnite Snack needs only two objects--the robe and the ball
of twine. These are simple movable objects that need only a
minimum of information entered.

Use the Polgon tool from the Tool

menu and design a lump that looks
like a robe dropped on the floor.

N

Fig. 1-19. The Robe

Creating the Robe
« Click on the Object window to bring it to the front.
« Click the Create button; click the Name button and name
the object "robe"
» Double-click on the name "robe" to open the Design
window.

28

« Use the Polygon tool to draw a lump that looks like a
robe dropped on the floor. Select a pattern from the Fill
menu.

« Close the Design window and save the changes.

Now, you have to assign a few attributes to the robe.

« Select Open Object Data from the Window menu.

« Type "Bedroom" as the initial scene. Leave all other
attributes at their default values.

« Close the Data window, saving the changes.

Name of scene or owner rBedroom]
Is object name plural? @ No O vYes
Value of object | .]
O Regular Weapon O Throw Weapon (O Magical Object
O Helmet QO Shield O Chest Airmor

QO Spiritual Armor @ Mobile object © Immobile object

[ok | [Nexnt | [Pres | [cancel |

Fig. 1-20. An Object's Data dialog box

Creating the Ball of Twine
« Create and Name an object "ball of twine."
» Open the Design window and draw the twine: draw a circle
with the Oval tool and fill it with a striped pattern. You
can add a trailing string by selecting a striped pattern and a
thick line from the Pen menu, then drawing with the
Freehand tool.

The ball of twine is made
from a filled circle

and a striped line

drawn with the

Freehand tool.

Fig. 1-21. The Ball of Twine

29

When you draw an object in a Design window, its position in
the window controls where it appears in a scene during the game.
To keep the robe and twine from appearing on the bedroom
ceiling, make sure you draw them near the bottom of their
Design windows.

+ Close the Design window and save its changes.

* Select Open Object Data from the Window menu.
» Type "Bedroom" for the initial scene.

* Close the data box with the OK button.

Ending the Session

It may not have taken seven days, but you just created a
whole world. Select Quit from the File menu. The Midnite
Snack icon on the DeskTop is now a self-contained adventure
game.

Exploring Your World
* Double-click on the Midnite Snack icon to start the game.
> The initial bedroom scene appears, with the robe and the
twine on the floor. The Command menu contains the
commands you wrote in the Code window for this scene.
Notice that the text refers to the robe and twine, although
you did not code that.

(& File Edit Commands LWeapons

The full moon shining on
your face wakes you in the
middle of the night. Your
stomach is growling, and so
is something in the hallway.
You realize you must get
something to eat, or you'll
die.

Of course, you might die
anyway.

The door to the hallway is in
the east wall of your
bedroom; the window is in
the north wall.

On the ground you see a robe
and a ball of twine.

|____| automatically indicates their presence in the Text box.

Fig. 1-22. Starting in the Bedroom

30

El

1l

« Click on the robe.
> The robe disappears (as a result of the
"MOVE{robe} TO(PLAYER@}" statement you put in
the code). In the text window, the text you specified is
printed.
« Click on the twine.
> The twine disappears, and the text window describes it.
= Type "east"
> You are shifted to the Hallway scene. The Wuggly
Ump's eyes are superimposed on the background. The
"encounter statement" is put in by the program; the last
statement is the one you entered in the character data for
the Wuggly Ump.

& File Edit Commands Weapons

| | Hallway | |

You are in a dark hall. The
bedroom is west of here, but you're
sleepy and can't remember where
the kitchen door is. There is a sad
snuffling sound and two -- or is it
three? —— pinpoints of light that
might be eyes.

Nervously, you recall the Edward
Gorey story you read before you
fell asleep. Something about Wuggly
Umps.

You are still hungry. Something
else in the hallway is still
hungrier.

You encounter a Wuggly Ump.
The Wuggly Ump is thinking about
you.

The Wuggly Ump is automatically placed in the Hallway
scene and the text describes the encounter

Fig. 1-23. In the Hallway

Type "east"

> You are moved to the Kitchen.

Type "open fridge"

> Since you didn't give the twine to the Wuggly Ump, you
just died of starvation.

Click OK in the Game Over box and select New from the

file menu.

> You're back in the bedroom again, at the start of a new

ame.
. Picgk up the robe and twine, and go east into the hallway.

31

» Type "offer ball of twine"

> The game responds "Your offer is accepted” and the
Wuggly Ump disappears.

« Type "east"
> Now you're in the Kitchen

» Type "drop robe"

> This is just to see what happens. The robe appears on the
kitchen floor, even though you did no coding for this
situation.

Type "open fridge"

> This time you are saved from starvation.

That's the game as you designed it, but there's more to it than
you wrote yourself, as you saw when you dropped the robe. Just
for fun, pick up the robe and go back to the Hallway (west); the
Wuggly Ump is probably there with his ball of twine. See what
he does with it.

Try some of the things that you did write code for: try
jumping out the window, or going into the hallway without the
robe. (Remember that you wrote code that only lets the player go
back to the bedroom to get the robe. If you leave the robe in the
kitchen, and move into the hallway, you'll never get out.)

32

Chapter 2
Creating New Worlds

World Builder can be used to modify existing adventure games
or to create new adventures. World Builder features:

» A graphics editor to draw the scenes, characters, and objects.

« A text editor to describe the scenes in words.

» A series of dialog boxes to create or change the
characteristics of your world.

This chapter explains how to use these various features of
World Builder.

Editing Existing Worlds

If you want to work on an existing adventure game, such as
Demo World, open World Builder and choose the file you want
to edit in the dialog box that appears (if the game is on another
disk, click the Drive button or insert the new disk into the Mac's
drive). Click Open.

Creating New Worlds

If you want to create a new world, make a duplicate of the
World Template icon. Give it any name you like. Start World
Builder and choose your new world in the dialog box that
appears. World Template is locked so that it can't be renamed,
thrown away, or edited directly with World Builder.

Note: When you are done editing, you must close all the
edit windows and select "Close" or "Quit" from the File menu.
If you just eject the disk or turn the machine off, your adventure
game will not be saved.

Caution: You should ALWAYS keep a backup copy of
the world you are editing or creating on a separate disk.

To create a new scene, first open your adventure game with
World Builder as described above. Four windows appear:

« Sound List » Character List

« Object List * Scene Map

The Scene Map exhibits the relative location of all the scenes
in the current world. In the example in Fig.2-1, the "Shack" is
west of the "Rocky Slope", and the "Forest Path" is north of the
"Forest Clearing." The scroll bars on the right and bottom of the
window can be used to scroll around on the map. The total area
provided is 50 by 50 scenes for a maximum world size of 2500
places. All of the scenes wrap around, so if a character moves
off one side of the map, he'll arrive at the other side.

33

Making A Scene

Press the Create button and a new "Untitled" scene will
appear on the map. The Create button is inactive if the window
is full, in which case you should use the scroll bars to find a

clear space for a new scene. You select a scene by clicking on it.

On the map below, the scene "Forest Clearing" happens to be

selected.
‘@ene Map:Adventure
Forest Shack Rocky

Path Slope

Fig. 2-1. Scene Map Window.

Moving Scenes

You can drag the selected scene to a new location with the
mouse. The selected scene can be cut or copied with the Edit
menu. Scenes can be pasted into any clear part of the window if
there is room.

Naming Scenes
Select a scene to change, and click the Name button located

on the side of the Scene Map window. A dialog box will appear.

Type in the new name. World Builder accepts just about any
combination of characters as scene names, but short names are
easier to work with.

Scene Information

Use the Info button to find out how much disk space the
selected scene takes up. Scenes will take much more disk space
if they contain a lot of bit-map graphics than if they contain
mostly objects.

Scene Design

The Window menu is used to open the design, text, code, or
data window for the selected scene. You may open any number
of windows at any time, and cut, copy, and paste between them
with freedom.

34

Open Scene Design

The scenes in a World Builder game act as a background for
characters and objects. The menu command Open Scene Design
displays the design window for the currently selected scene
(double-clicking on a scene in the Scene Map opens both the
Scene Design window, and the Scene Text window, described
below). The design window is the canvas where you draw the
scene using World Builder's drawing tools. Chapter 4 explains
how to use the drawing tools to create or edit scenes.

The Scene Design window can be resized and moved around
the screen. World Builder remembers the position of the Scene
Design window for game time, so you might want to arrange
some windows in a special way for some scenes.

The Scene and Text windows can also be positioned using
screen coordinates. Use the Align Window... command in the
Edit menu when the window is selected. If you want all your
windows to be in exactly the same place, jot down the
coordinates you use and make sure they are the same for each
Scene Design window or Scene Text window.

When you are done with the design window, close it by
clicking in the upper left corner, or by selecting the Close Scene
Design command from the Window menu. A dialog box will
ask if you want to save your work.

Open Scene Text

The menu command Open Scene Text displays the text
window for the currently selected scene. The text window should
give the player some information about the scene, including
which directions are open and which are blocked. You can type
text into the window and select text with the mouse. You may
change the font and size of the text with the Font menu. The
Edit menu lets you cut, copy, or paste text.

The Scene Text window can be resized and moved around the
screen. Use the Align Window... command to give it a position
with screen coordinates. Close the window when you want to
save your work.

Open Scene Code

If you would like your world to respond to special
commands, or if you want to do some simple animation, you'll
need to add adventure code to your scenes (worlds run just fine
without using any code at all). The menu command Open
Scene Code displays the code window for the currently selected
scene. The use of adventure code in World Builder games is
discussed in Chapters 5 and 6.

.

Open Scene Data

The menu command Open Scene Data displays the data
window for the currently selected scene. This window, shown in
Fig. 2-2, lets you fill in some more information about the scene.

Blocked Comment

[North | l
Osouth [|
X East [The fence is electrified!]
R Wwest (ANl doors to the west are locked) |
Scene Sound []
Frequency, Times/Minute (max 3600)
Sound type @® Periodic O Random

Fig. 2-2. Scene Data Window.

Blocked Compass Directions

Click in the North, South, East, or West box to block
movement in that direction. Ordinarily, the game responds with
a "Can't go in that direction" comment when the player tries to
exit the scene, but you can change the comment by typing a new
one in the comment box.

For example, you might check the "North" box and type "The
path to the north is blocked by a steep cliff.” in the comment
field. When the player tries to go to the north, she will not be
allowed to do so and she will get your message.

Scene Sounds

Scenes can be accompanied by digitized sounds, such as the
sound of dripping water for the bottom of a well, or the sound of
hoot owls for the dense woods behind a haunted house.

To include a sound for playback during any scene, type the
name of the sound in the Scene Sound box (for more information
on working with sounds, see Chapters 6 and 7).

Using World Data

At the bottom of the Window menu is the command Open
World Data. This command opens a dialog box with three fields.

36

fAibout box message

Sound Library #1 [
Sound Library #2 [|
Disable the weapons menu? @ No O Yes

Fig. 2-3. The World Data dialog box.

Field 1 asks for an "About Box Message." This message will be
displayed in your adventure game in the "About Box" under the
Apple menu. Use it to put your name or some other identifying
remark in your games. The radio buttons allow you to specify
that you do not want the Weapons menu to appear, in case you
are working on something other than a game.

Backup

World Builder is a resource-based program, very similar in
nature to Apple Computer's Resource Editor. The biggest
advantage to this is that you can make changes, save them, quit
World Builder, immediately go double-click on your newly
created game and the changes are there.

The one disadvantage to this is that if something goes wrong
while you're editing (e.g. a power failure, or an incompatible
desk accessory causes a system bomb), the file containing the
game that you are working on can be irretrievably corrupted.

It is absolutely essential that you periodically use the
Save Backup... command in the File menu while you're
working. As long as your game is still small, you can simply
save to the same disk under another name. If you do this, at the
end of your work session, back up the file to another disk.

When the file is too big for the same disk, save it to another
disk. When you finish your work session, do one last Backup
and you will already have your backup file on another disk.

Please get into the habit of making backups frequently!!

N

Chapter 3
Populating Your World

No world is complete without characters. World Builder lets
you create all sorts of interesting characters -- bank robbers,
monsters, ghouls, vampires, robots, wizards, spies, you name it.
World Builder characters are made with the help of the Character
List window and the Character commands in the Window menu.

This chapter deals with creating characters for your adventure
games, as well as adding objects that the player and your
characters can find and use.

Editing Existing Characters

Characters present in a complete or partially finished game are
shown in the Character List window. To look at or edit a
character, select it and choose one of the Character commands in
the Window menu.

Creating New Characters

Click the "Create" button located beside the Character List
window to create a new character. The scroll bar on the right
becomes active if there are too many characters to fit in the
window. To begin work on a new character, click on it.

Naming Characters

Select a character to change, and click the Name button
located on the side of the Character List window. A dialog box
will appear. Type in the new name. World Builder accepts just
about any combination of letters, numbers, and symbols as
character names, but short names are easier to work with.

Character Information
Click on the Info button to find out how much disk space
the selected character takes up.

Character Design

The Window menu opens the selected character's design
window or data window. You may open any number of windows
at any time, and cut, copy, and paste between them with
freedom.

38

Open Character Design

Characters in a World Builder game appear in front of the
scene backgrounds (discussed in Chapter 2). The menu command
Open Character Design displays the design window for the
currently selected character (double-clicking on a character in the
Character List window opens the Character Design window as
well). Chapter 4, "Using the Graphics Editor," goes into more
depth on how to design characters using World Builder's drawing
tools.

Open Character Data

The Open Character Data command displays a main dialog
box revealing important data about the currently selected
character. The behavior of each character is defined in the six
character data dialog boxes. You can change the behavior of any
character at any time simply by changing the values in the
character data boxes.

To advance through the boxes, click the Next button. To go
back, click the Previous button. When you're done defining the
character, click OK. If you don't want to make any changes,
click Cancel.

Boxes with slide bars: To increase or decrease the settings,
put the cursor in the slide bar and click or press the mouse
button. Clicking to the right makes the black indicator slide
further right. Clicking to the left makes it slide back. By
setting the bars farther to the right you indicate a higher level of
the given attribute.

Boxes with fields for sound names: Enter the name of the
sound. See Chapter 6, "Advanced World Building," for more
information on using sounds.

Box One

Name of initial scene -- The character's location when the
game is started. The default value is RANDOM@, which
means that the character will start out at a random scene.
You can also enter STORAGE@ as the initial scene, in
which case the character will start out in storage, which is
like limbo or no-man's-land. A character in storage will
never be found at a scene unless you use adventure code to
bring him to a scene. If you are not using code, don't use
the STORAGE@ option. If the name of the startup
scene is invalid or spelled incorrectly, the player will be
assigned to storage.

Character gender -- Click He, She, or It, as desired.

39

Is character a proper noun? -- Click Yes or No. This and the
preceding field helps World Builder put together accurate
sentences about the character.

Is character the player character? -- Click Yes or No. The
person who plays the game must have a character to
represent him. If you assign more than one character as the
player, one will be chosen at random as the player
character. The player may start at a particular scene or at a
random scene depending on the startup field. If no player
character is specified, a random character is selected to be
the player.

Number of objects character may own -- The maximum
number of objects the character (including the player) may
carry at once. A wild tiger, for example, will not own any
objects, while a miser might own a great many. No
character may own more than 255 objects.

Return used character to -- Characters that are killed in battle
are returned to this scene -- storage, a random scene, or
their initial scene. Generally, you will want to recycle
some characters while others will only live once. The
game ends if the player character dies.

Name of Initial scene [sToRAGE® 4
Character gender QO He QO She @It

Is character name a proper noun? @ No QO VYes
Is character the player character? ® No Q Yes

Number of objects character may own (max 255) E
Return used up character to

@ Storage O Arandom scene O The initial scene

Lo+ [Nent | [Preu | [cancel

Fig. 3-1. Box One -- Character Data.

Box Two

If your character is a magic user, he or she will tend to have
high spiritual settings. If your character is a fighter, he or
she will tend to have high physical settings.

Physical strength -- The measure of the ability to deliver
physical punishment.

40

Physical hit points -- The level of physical well being of the
character -- as battle continues, hit points will fall, and if
the physical hit points reach zero, the character will die.

Natural armor -- The natural resistance which the character has
to physical damage.

Physical accuracy -- The tendency of the character to use
weapons successfully.

Spiritual strength -- The measure of the ability to deliver
magical punishment.

Spiritual hit points -- The level of spiritual well being of the
character -- as battle continues, hit points will fall, and if
the spiritual hit points reach zero, the character will die.

Resistance to magic -- The natural resistance which the
character has to spiritual damage.

Spiritual accuracy -- The tendency of the character to use
magic successfully.

Physical strength [= " TR]
Physical hit points NN |
Natural armor |
Physical accuracy NN
Spiritual strength Lok = i]
Spiritual hit points GG —
Resistance to magic NG]
Spiritual accuracy L=y o]

[ok | [Nent] [prev | [cancer |

Fig. 3-2. Box Two -- Character Data.

Box Three

Running speed -- The speed at which characters can run away
when attacked. If Running speed is high, the character will
tend to escape characters who follow him and to catch
characters he runs after.

Rejects offers -- The tendency to turn down offers when
bribed. Each object has a different value and this is used to
determine if offers are accepted or rejected. If the value of
an offered object is greater than the Rejects offers field, the
character will accept the offer. Otherwise, the offer will be
rejected.

41

Follows opponent -- The tendency to follow when the player
character runs away.

Initial sound -- The name of the sound the character makes
when it is first encountered in a scene.

Scores a hit sound -- The name of the sound the character
makes when it strikes an opponent.

Receives a hit -- The name of the sound the character makes
when it is struck.

Dying sound -- The name of the sound the character makes
when it dies.

Running speed
Rejects offers

Follows opponent

Initial sound

|

Scores a hit sound [

Receives a hit Clank

L

Dying sound [crunch

[ox] [Newt] [Prev] [cancer]

Fig. 3-3. Box Three -- Character Data.

Native Weapon 1 pincer —t
Operative verb snap J
Damage i s]
operative sound [|
Native weapon 2 [pincer |
Operative verb W I
Damage [~ o e |
Operative sound r]

[ok] [Nent] [Prev]

Fig. 3-4. Box Four -- Character Data

42

Box Four

Native weapon -- Native weapons are things like fists or
teeth which are a physical part of the character. Native
weapons cannot be traded or dropped. For example, a giant
scorpion could have the native weapon "stinger."

Operative verb -- The verb used to describe the action of the
native weapon. The operative verb for the scorpion's
stinger might be "swing."

Damage -- The level of relative damage inflicted by the native
weapon.

Operative sound -- The name of the sound the native weapon
makes when it strikes an opponent.

Winning, weapons
Winni

3 9

Winning, run

Winning, offer

Losing, weapons

Losing, magic []

Losing, run L L

Loosing, offer e]
[ok] [Nent | [prev | [cancet |

Fig. 3-5. Box Five -- Character Data.

Box Five

Winning, weapons -- The tendency to use weapons when
winning a fight.

Winning, magic -- The tendency to use magic when winning
a fight.

Winning, run -- The tendency to run away when winning a
fight.

Losing, weapons -- The tendency to use weapons when losing
a fight.

Losing, magic -- The tendency to use magic when losing a
fight.

Losing, run -- The tendency to run away when losing a fight.

Battle strategy does not need to be set for the player character.
The average character will tend to fight and use magic if he
is winning; run or offer objects if he is losing. The native
weapons are automatically used if the character doesn't have
a weapon or spell to fight with, an object to offer, or a
direction to run.

Box Six

Initial Comment -- Text printed when the character is first
encountered.

Scores a hit -- Text printed when the character strikes an
opponent.

Receives a hit -- Text printed when the character is struck.

Makes an offer -- Text printed when the character makes an
offer.

Rejects an offer -- Text printed when the character turns down
an offer.

Accepts an offer -- Text printed when the characters accepts an
offer .

Dying words -- Text printed when the character dies.

Comments are not printed for the player character, who can
make his own comments.

Accepts an offer [

Initial Comment IThe robot raises his pincers! I
Scores a hit |The robot steps forward! |
Receives a hit |sparks fiy from the robot. |
Makes an offer | il
Rejects an offer [What would a robot do with it? |

|

|

Dying words [‘me robot crashes to the ground!
[LapkR] [Nent | [Prev] [cancer]

Fig. 3-6. Box Six -- Character Data.

44

Editing Existing Objects

Objects present in a complete or partially finished game are
shown in the Object List window. To look at or edit an object,
select it and choose one of the Object commands in the Window
menu.

Creating New Objects

Click the Create button located beside the Object List window
to create a new object. The scroll bar on the right becomes
active if there are too many objects to fit in the window. To
begin work on a new object, click on it.

Naming Objects

Select an object to change, and click the Name button located
on the side of the Object List window. A dialog box will
appear. Type in the new name. World Builder accepts just about
any combination of characters for object names, but short names
are easier to work with.

Object Information
Click on the Info button to find out how much disk space
the selected object takes up.

Object Design

The Window menu opens the selected object's design window
or data window. You may open any number of windows at any
time, and cut, copy, and paste between them.

Open Object Design

Objects in a World Builder game appear in front of the scene
backgrounds (discussed in Chapter 2). The menu command Open
Object Design displays the design window for the currently
selected object (double-clicking on an object in the Object List
window opens the Object Design window as well). Chapter 4,
"Using the Graphics Editor," goes into more depth on how to
design objects using World Builder's drawing tools.

Open Object Data

The Open Object Data command displays a main dialog box
revealing important data about the currently selected object. The
type, use, and property of each object is defined in the two (and
in one case, three) object dialog boxes. You can change the
property of any object at any time simply by changing the
values in the object data boxes.

45

To advance through the boxes, click the Next button. To go
back, click the Previous button. When you're done defining the
character, click OK. If you don't want to make any changes,
click Cancel.

Box Two varies, depending on the type of object selected.
Box Three is activated only when the Magical Object button is
pushed.

Box One

Name of scene or owner -- The location of the object when
the game first begins. The object can be placed at a scene,
or can be owned by any character. The object is
encountered when the character is encountered. You may
enter RANDOM@, which starts the object out at a
random scene, or STORAGE@ which starts the object
out in storage.

Is object name plural? -- Click Yes or No, as desired.

Value of object -- The relative value of an object, for use
when offering objects to other characters. Use the mouse
to increase or decrease the setting. By setting the bar
farther to the right you indicate a higher level of value. If
the value of an offered object is greater than a character's
tendency to reject offers, the offer will be accepted.

Object type radio buttons -- The object can be one of nine
types: regular weapon, throw weapon, magical object,

helmet, shield, chest armor, spiritual armor, mobile object,

or immobile object.

Name of scene or owner |stornge area I
Is object name plural? @® No QO Yes
Value of object i]
O Regular Weapon QO Throw Weapon (O Magical Object
@ Helmet Q Shield O Chest Armor

O Spiritual Armor O Maobile object O Immobile object

[ok | [Nent | [Peev] [cancet |

Fig. 3-7. Box One -- Object Data.

46

Box Two

Number of uses -- The maximum number of times the object
can be used. (Does not apply to mobile or immobile
objects.) Enter number or click Unlimited.

Return used object to -- The location that the object is sent to
after it has been used the maximum number of times.
Some objects can be re-circulated while others will be used
only once. Click Storage or Random Scene, as desired.
(Does not apply to mobile or immobile objects.)

Damage -- The amount of relative damage inflicted by regular
and throw weapons.

Accuracy -- Tendency for regular and throw weapons to strike
opponents. A cross bow, for example, might tend to do a
Iot of damage but have low accuracy. A sword might be
very accurate but do less damage.

Pickup message -- Text printed when a mobile object is picked
up by the player.

Operative verb -- The verb used to describe the action of the a
weapon (not mobile or immobile objects). This verb is
used in front of the object name, like "swing sword" or
"fire gun."

Failure message -- Text printed after an object is used the
maximum number of times (does not apply to mobile or
immobile objects).

Operative sound -- The name of the sound that the object
makes when used (does not apply to mobile or immobile
objects).

Number of uses (max 60,000) O Unlimited

Return used up object to @ Storage O A random scene
Damage I)
Accuracy = ==}
Pickup message [[l'he dagger is short but lethal! J
Operative verb = il
Failure message IThe dagger breaks! J
Operative sound [crank)

[ok | [Nent | | prev | [cencet |

Fig. 3-8. Box Two -- Object Data for Weapons.

47

Box Three (Magical Objects Only)

Spell Power -- The relative magical strength of the object.

Spell Accuracy -- Tendency for magical objects to have an
effect on opponents.

Cause physical/spiritual damage -- Click one or the other to
indicate the kind of damage inflicted by the magical object.

Cause physical and spiritual damage -- Click if the object
causes both physical and spiritual damage.

Heal physical/spiritual damage -- Click one or the other to
indicate if the object heals physical or spiritual damage.
Heal physical and spiritual damage -- Click if the object heals

both physical and spiritual damage.
Freeze opponent -- Click if the object freezes opponent. The
duration depends on the power of the spell.

spell Power | —
Spell Accuracy | .]
@ Cause physical damage QO Cause spiritual damage

O Cause physical and spiritual damage
O Heal physical damage O Heal spiritual damage
O Heal physical and spiritual deamage

QO Freeze opponent

[ox | [Newt] | Prev | [cancel |

Fig. 3-9. Box Three -- Object Data (Magical Object Only).

Regular and Throw Weapons

Regular and throw weapons are used to inflict damage on an
opponent. A regular weapon is held in the hand, like a sword or a
gun. Throw weapons can be used only once, after which they are
moved to the current scene where they must be picked up to be
used again (opponents can also pick up thrown weapons and use
them against the player).

Apparel

Helmets, armor, and shields are worn, but characters can wear
only one of each at a time.

48

Mobile Objects

Mobile objects can't be used as weapons but can be carried by
characters. They are often given a special purpose with
adventure code, discussed in chapters 5 and 6.

Immobile Objects

Immobile objects can't be moved or picked up, and they are
not described when the player arrives at a scene. Immobile
objects are often things like doors or a heavy desk that stays at a
certain scene. Adventure code must be used to move immobile
objects back and forth from storage to create simple animation,
such as doors opening and closing, etc.

Sometimes you will want to place an immobile object at a
certain position in a scene. You might, for example, want to
put a door on a building. To do this, just draw the object on the
Scene Design window (as described in Chapter 4) in the desired
position, then cut and paste it onto an Object Design window.
Set the "startup scene” for the appropriate scene, and click the
Immobile object button.

49

Chapter 4
Using The Graphics Editor

Once you have opened a scene, character, or object design
window you can draw in the window with World Builder's
graphics editor. The editor allows you to create individual
graphic objects like rectangles, round rectangles, ovals,
polygons, freeforms, and bit boxes.

These simple elements can be combined to form more
complex pictures. Individual objects can be selected and reshaped
with the mouse. You can change the patterns and line widths of
selected objects with the Pen and Fill menus. The Edit menu
allows you to work on selected objects in a variety of ways, as
you'll see in this chapter.

Opening a Design Window

There are three types of design windows: scene, character, and
object. Open a new or existing design window as described in
chapters 2 and 3. The design window below shows a character
being edited.

Character Design:Earth Demon

Fig. 4-1. Editing a Character in the Design Window.

Selecting an Object

You can select different parts of the picture with the mouse.
Selected objects appear bordered with a solid line that has square
"handles" on each corner. The head and arm of the Earth Demon
happen to be selected in the example in Fig 4-1. Holding down
the shift key and clicking allows selection of multiple objects.
You can drag a selection rectangle around a group of objects and
select many objects at once. Once selected, you can manipulate
the group as a whole (some editing functions won't work when
more than one object is selected at the same time).

50

Moving Objects
Selected objects can be dragged to a new location with the
mouse.

Resizing Objects

Objects can be resized by dragging the little handles at the
four corners of the selection rectangle when an object is selected.
Simply position the mouse over a comner handle and drag the
handle to a new location. The object will be resized to fit inside
the new rectangle.

The Tools Menu

New objects are created with the Tool menu. Normally the
Select item is active (shown by the checkmark beside the
command), which lets you select objects in the drawing
windows.

Rectangle, Round-Rectangle, Oval

Choose the desired tool from the Tools menu, and move the
mouse over to the design window. The mouse will change into
cross-hairs. Drag the mouse over the part of the window where
you want to create the object. Release the mouse button when
the object is the desired shape and size.

Polygons

To make a polygon, select the polygon tool and position the
mouse where you want the object to start, then click and drag the
mouse. A line will extend from the start point. Keep clicking
to continue lines in other directions. Click back to the start point
or double-click to close the polygon.

Freehand

To make a frechand object, select the freechand tool, and drag
the mouse around the window to construct the shape. The shape
is complete when you release the mouse button.

Bit Box

The bit box tool creates a floating plane of bits that can be
painted and individually edited like a MacPaint document. The
head of the Earth Demon in Figure 4-1 is a bit box. Bit boxes
are discussed in more detail below.

o1

The Fill and Pen Menus

The Fill menu lets you change the pattern of the selected
objects. The Pen menu allows you to change the pen width and
pen pattern of the selected objects. Notice that most of the
Earth Demon above has a white fill pattern, a black pen pattern,
and a pen size (or thickness) of one pixel. The last pattern in the
lower right of each menu is the clear pattern.

The patterns in World Builder and World Template are stored
as PAT# resources so that they can be edited with the Resource
Editor.

The Edit Menu

Among other things, the Edit menu lets you cut, copy or
paste graphic objects within World Builder, and with most other
Macintosh applications. The Edit menu also includes a number
of commands that allow you to manipulate objects in a variety
of ways.

Undo
Cancels the very last action.

Cut
Removes an object from the window and places it in the
Clipboard.

Copy
Copies an object and places the copy in the Clipboard.

Paste
Places the contents of the Clipboard onto the drawing.

Using the Cut, Copy, & Paste Commands

The Cut, Copy, and Paste commands are used most often to
trade graphics from one window to another. You may want a
character or object to appear at a certain position in the scene
window. To do this:

1. Draw the character or object in the scene window at the

spot you want it.

2. Select all of the character or object.

3. Choose Cut from the Edit menu.

4. Open a character or object design window.

5. Paste.

Whenever the character or object is called to the scene, it will
appear exactly where you originally drew it.

52

You can i_mport graphics from other applications and you can
export graphics. World Builder is compatible with the standard
Macintosh Clipboard. But because World Builder uses its own
internal format, most objects will be converted to bits when
pasted. Squares, rectangles, rounded rectangles, cirlces and ovals
are retained as objects.

One helpful shortcut when designing World Builder games is
to keep standard graphic elements in the Scrapbook. You could,
for example, keep trees, desks, and tables in the Scrapbook and
retrieve them when drawing new scenes.

Send to Back
World Builder stacks objects . The Send to Back command
sends the selected objects to the very back of the stack.

Bring to Front
Brings an object to the front of the stack.

Round Edges
Smooths the angles of polygons and freehand shapes.

Sharpen Edges
Unsmooths the angles of polygons and frechand shapes.

Flip Polygon
Flips a polygon side to side.

Rotate Polygon

Rotates a polygon any number of degrees clockwise or
counterclockwise. A handle appears beside the polygon; grab it
and drag back and forth to rotate the objects.

Reshape Polygon

Reshapes the sides of a polygon. When you choose the
Reshape Polygon command, a handle appears on every vertex of
t!le object. Drag a handle to the new location where you would
like that vertex.

Bit Commands

L When a single bit box is selected, you have the option to
paint bits," "zoom bits," or "capture bits." A bit box is a

floating field of bits, like a little MacPaint document. Bit boxes

are mainly used for details like faces and hands, and are limited in

Size because they take up a great deal of memory.

53

Capture Bits -- The Capture Bits command copies any
object (or portion of any object) under the bit box and transforms
it into a series of bits.

Paint Bits -- Choosing Paint Bits forms a rectangle around
the currently selected bit box, indicating that these bits can be
painted. Select various brush patterns and pen sizes from the
Pen menu, position the cursor over the bit box, and draw on the
bits directly. The Paint Bits command is often used for getting
the bits in correct proportion to the rest of the drawing. Once
the bit box looks good, use Zoom Bits to clean up the details.

Zoom Bits -- The Zoom Bits command brings up a large
window which allows you to edit individual pixels. At the
bottom of the window is a bar, which you can slide back and
forth to vary the amount of zoom magnification. When you get
the drawing right, click OK; to cancel changes, click Cancel.

After clicking OK, you can use the Undo command to undo
everything you did in Zoom Bits.

Each bit box has a mask drawn under it. If you draw a closed
shape on a bit box, the shape itself will be black, the interior of
the shape will be white and the bits outside the shape will be
clear. This is very useful for objects where you need a white
center. If a small break is made in the bits, the clear area will
"leak" in, just like the lasso in SuperPaint or MacPaint. Zoom
bits can be used to patch leaks in your bit boxes.

World Builder is Clipboard compatible. Bit boxes and other
graphic objects can be imported from other programs and can be
exported to other applications just as well. Certain types of
objects that World Builder does not recognize will be pasted in as
bit boxes.

Disk Space Considerations

An example of pasting in graphics is using digitized images.
You can capture the image of a friend or family member's face
with a digitizer and paste that into a scene (whether to make
them a monster or hero is up to you). This would be a bit box.
But you pay a price for using bit boxes, and that price is disk
space.

Bit boxes take up considerably more disk space and
memory than objects do. The best approach is to use objects as
much as possible and use bit boxes only when you need to do
detailed painting. Remember that you can check how much
memory a scene, character, or object takes by clicking on the
Info button of the selected window.

54

J Chapter 5
Writing Scene Code

Once you create scenes, characters, and objects i
Bmlder, the world you've created seems to takjgc Otfl ;nnzggltgnce f
its very own; the player character can wander around the world k
ﬁgl?tmg 1ts inhabitants and collecting treasures. World Builder i
designed to take care of these normal aspects of adventuring -~
When you create a scene, however, it is usually part of a}l
?vcrall story that you have in mind, and you may want the
;:gg:gal':' game gges to be altered or enhanced in some way. B
scene code," you ;
e you can program your world to behave the
Scene code is entered in the Code window for i
your game map. It consists of a limited, though 32,32?126 ;gt f
statements that tell the game what to do. Many of the S
§tatement§ you put in a Code window will be "conditional”; that
is, they will only be carried out if certain conditions exist ,This
gives you the opportunity to run the game according to wl'xat the
pla)'rer has already done--where she's been, what she owns, who
she's met so far, what physical condition she's in, and so ’on.

Syntax
Every programming language, like ev
: C 1 ; ery spoken language,
has its own "syntax --a set of grammatical rules that coﬁtro% how
‘c:gmrl;_lapds must be written. These rules include certain
constraints on spelling, capitalizati i
| g pea% P on, punctuation, and the order
The syntax of World Builder's code is relatively simple:
- gommangs must be typed in capital letters
- Lommands must be separated from other items j
statement by braces ettt
- There can be no space between a comm
and word and a bra
- Names of scenes, characters, and objects must be spelled -
exa_ctly as they are named when you create them
- Yanable names must use capital letters
The simple statement:

MOVE(PLAYER@) TO({ STORAGE@}

gives a lot of opportunities for incorrect Syntax--a missing brace
words in lowercase letters, extra spaces--any of these will make ;
the statement unacceptable.

35

Luckily, World Builder will catch most of your syntax errors
when you try to close the Code window; you'll be shown which
line the error is in so you can correct it.

‘World Builder doesn't check the syntax of MENU statements,
though, so be especially careful if you want to get fancy there.
Another thing World Builder can't catch is a misspelled scene,
object, or character name. If you've defined a Wuggly Ump
character and refer to the "Wuggy Ump" in the code window, the
mistake won't be detected.

Using MENU

You can configure the Commands menu to your liking in any
scene by using the MENU statement in the Code window for
that scene.

As soon as you use the MENU statement, all the usual
contents of the Commands menu disappear, although the
commands themselves can always be typed into the text window.
To put the command "Jump” in the menu, use:

MENU {Jump}
When you want to provide a command-key equivalent for a menu
command, you can do it like this:

MENU (Jump/J}
The Edit menu uses the letters Z, X, C, V, and B, so don't use
them in your Commands menu.

Multiple menu items in a MENU statement are separated by
semicolons:

MENU (Jump/J;Fly/F; Yel/Y}

When you want an item to appear dimmed in the menu--
perhaps you don't want "Fly" available unless the player has
swallowed the magic potion--use a left parenthesis in front of the
item:

MENU/((Fly/F}

You can add a dividing line to a menu by using the hyphen;
always precede the hyphen with a left parenthesis so the player
can't select the dividing line in the menu:

MENU((-)

You might want to use the dividing line to separate the
direction commands (North, South) from action commands
(Jump, Fly).

You can create fancier menus--and perhaps give subtle clues
to the player at the same time--by using different font styles in
the menu. There are five type styles available, and you use
them by typing the "<" sign and the style initial:

56

<B Bold

<I Ttalic

<U Underline
<O Outline
<S Shadow

The style definition follows the command i
statement: word in the MENU

MENU { Up<I}
= g MENU(North;South{-;Fly}
- R Run
North
Jump 3#J South AN
Fly F y
Fl
MENU(Run/R;Jump/J;Fly/F) . MENU(Run{Jump;Fly<)

Fig. 5-1. The MENU Command

Using PRINT
The PRINT command is the simplest and most obvi
RIN1 ous of
bWorld IfBlHlder s code statements. Anything you enter in the
races following PRINT will be printed in the text wind
the PRINT statement is executed. i
PRINT(It's getting colder}
PRINT(You'll live to regret that...if you're lucky}

The text you enter in the text window when you design a
scene is qsually what appears as soon as the player enters that
locann in the game. Using the PRINT statement as a
conditional comgnand in the Code window (by using the IF-
:I‘HEN construction described later), you can print additional
information in the text window based on what has happened so
fa'r; c(l)r, y.ouf can print something instead of the original text
window information, reserving that text for when the pl
the LOOK command. N

Regardless of how you type the information in PRINT's
braces, the text will automatically wrap to fit inside the text
window of the scene. Each time you use a new PRINT
statement, a new paragraph is started in the TEXT window.

Using MOVE

The MOVE commapd is used for two distinct activities: t0
move a chgracter or object from one scene to another, and to put
an object into someone's possession.

o7

MOVE for Location Change -
Move a character or object simply by naming it and the
destination:
MOVE {porpoise } TO(tank room }
MOVE {magic ring} TO{cellar} g ey
When a character or object is moved to a location, it will
appear in that scene when the player reaches that location. .
The player character is automatically moved to a new lqcaqon
when she types a direction command--as long as the direction is
not blocked, of course. There are times, however, when you'll
want to move the player character directly with the MOVE
statement. .~

You might have your character meet a magician who

transports her bodily to a different place: :
MOVE{PLAYER@ } TO{forest cleanng_} .

Or, the character might press a button in a ma}funcuonmg

orter and send herself to some random settting:

g MOVE (PLAYER@]TO{RANDOMSCN@}
Another time you'll want to MOVE the player yourself is
when you want the Up and Down direction commands to work;
these are the only commands in the standard menu that the game

doesn't handle automatically. :

To build a three-dimensional map, such as floors in a castle
with many rooms on each floor, create your scene map so that
there is no access from one group of scenes to another by
blocking the appropriate directions. Then, if Lh_e player types the
Up or Down command in the right scene--a stairwell, fo_r :
instance--you can move her up or down the stairs, and right into
the otherwise inaccessible section of the game map:

MOVE(PLAYER@ } TO{2nd Stair}

€irst level Second level

Solarium Music Room Bedroom Dark Room

15t Stair Library 2nd Stair Blue Room

.
No access
between levels

Fig. 5-2. Establishing Levels

58

MOVE for Possession

To "move" an object into a character's possession, name the
object and the character to whom it should belong:

MOVE {magic ring} TO (PLAYER@)
MOVE {mushroom) TO{ Alice}

When you move an object into the player's possession, it
becomes part of her inventory--when the Inventory command is
issued, the object will be part of the list.

An object that is moved into any character's possession no
longer appears in a scene; it has, in effect, been moved from the
scene to the character.,

World Builder performs automatic "moves" when an offer has
been accepted by a character. If the player offers an apple to a
gremlin and she accepts it, the apple is no longer in the player's
inventory, but is in the gremlin's possession. You don't have to
write the code for this transfer.

Variables

A variable is a word that stands for something--although that
something varies from one time to another. So, the special
World Builder variable PLAYER@ may be a fledgling
necromancer in one game, while it might stand for a valiant, if
inexperienced, warrior in another. Another World Builder
variable, LOOP#, stands for the number of commands given in a
scene--that number varies every time the player does something
or moves someplace.

World Builder variables can be divided into three general
groups: world variables, command variables, and numeric
variables. Variables are always printed in capital letters, with a
special character at the end to denote the type of variable that it
is.

World Variables
World variables use the trailing character @; they stand for
objects, scenes, or characters. There are seven world variables.

1) PLAYER@
PLAYER@ denotes the player character.

2) STORAGE@

STORAGEQ@ is the only variable whose meaning never
varies: it is a special place to store game elements when you
don't want them to be found at any scene, or in anybody's
possession.

59

When you create your world, you can specify STORAGE@
as the "initial scene" for any object or character that won't come
into play until later in the game. Then, during the game, you
can use MOVE to put the the stored object or character where
you need it.

During a game, you can also move objects or characters into
STORAGE@ to take them out of active play; moving
PLAYER®@ into STORAGE@ ends the game.

3 & 4) SCENE@ & MONSTER@

SCENE@ and MONSTER@ are variables that refer to the
current scene in the game, and the character (other than the
player) at the current scene. So, you can move an object into the
current the scene without having to know what that scene is:

MOVE ({emerald) TO{SCENE@}.

SCENE@ is obviously not a variable you would need to use
in scene code--you always know what scene you're in when
you're writing code for it. It is, however, an extremely useful
variable when you're writing global code--instructions for the
overall game, as described in the next chapter.

You can use MONSTER@ in scene code; you won't always
know which character is in a given location. Some characters
move around randomly, and some just follow the player around.
Referring to MONSTER@ in your scene code means any old
monster that's currently present. If the player casts the right
spell, you might want to move the current monster to a cage,
even though you don't know which monster that is when you're
writing the code:

MOVE{MONSTER@ } TO{cage}

5, 6 & 7) RANDOMSCN@, RANDOMOBI@, &
RANDOMCHR@

To keep the structure of a game loose, you have to be able to
introduce some random elements--like having an object disappear
into an unknown location, or having some random object show
up in the current scene, or having any one of your many
monsters show up in the attic.

You can use the random world variables to accomplish these
purposes:

RANDOMSCN@, RANDOMCHR@, and RANDOMOBIJ@

RANDOMSCN@ refers to a random scene. If the player
casts a less-than-perfect spell, you might want to move a
monster to some random location rather than kill him off or
capture him:

MOVE {ogre} TO{RANDOMSCN@ }

60

Or, you can move whatever the current monster is:
MOVE{MONSTER@ } TO { RANDOMSCN@)
You could even have the player transported to a surprise
location:
MOVE({PLAYER@ } TO(RANDOMSCN@)
If the fe_arless adventurer has pressed a button in the
transmutation room, you might want to make a random object or
monster character appear:
MOV]E{RANDOMCHR@}TO[transmutaLion
room
MOVE{RANDOMOBJ@)} TO{SCENE@ }
: You can even put a random object in the player's pack, or
give one of her possessions away to a random character:
MOVE{RANDOMOBJ@ } TO{PLAYER@ }
MOVE {canteen) TO{RANDOMCHR@ }

Command Variables

If you went through the tutorial in Chapter 2, you're already
familiar with the two "string" variables TEXTS$ and CLICKS. A
“string" is just a bunch of letters strung together to make words
and phrases: book of oaths is a string, as is apprentice.

_ CLICKS stands for the name of the object that the player has
clicked on in the scene's graphics window. By using code that
says:

IF{CLICKS$="0ld hat"}...
(};ﬁu can set up rules for what happens when the old hat is clicked
_ TEXTS stands for what is typed in the text window, or what
is selected from the Commands menu.

IF{TEXT$="north"}...
works whether the command was typed in, selected from the
menu, or issued by the Command-N equivalent.

TEXTS is usually a command, but since it stands for

anyth.mg typed in the Text window, you can let the player use
questions like "Why?" or "Who are you?" in some scenes.

Numeric Variables

N u{neric _variables represent numbers; World Builder's
numeric variables all end with the symbol #. There are three
basic numeric variables.
[LOQP# keeps track of how many commands the player has
1ssuefi in a scene. _If the player goes back to a previously-visited
location, LOOP# is reset to 0, so it can keep track of the
commands issued in the current visit.

61

You can use LOOP# to limit the player's moves in a scene,

or to "time" her visits in a location:
IF{LOOP#=5]}...
checks to see if five commands have been given at the scene.

VISITS# keeps track of how many scenes the player has
visited--not how many different scenes, but how many scene
changes all together. You can use this variable to keep track of a
time element, too:

IF{VISITS#=42}...
checks to see if the player has entered scenes 42 times during the
game,

VICTORY# is the number of characters killed so far in the
game. You might let the player take a certain action only if
she's bagged enough meanies:

IF{VICTORY#>5}...
Other numeric variables available in World Builder are
discussed in the Chapter 6.

Comparison Operators
Comparison operators are the symbols used to compare two
items. The comparison operators available in World Builder are:
=, >, <,
The operators have slightly different meanings depending on
whether you are using them with numeric items (numbers and
numeric variables), strings, or other items.

Numeric Comparisons
For numeric comparisons, the operators have their usual
mathematical meanings:

{VISITS#<5} means "VISITS# is less than 5"
{LOOP#>3} means "LOOP# is greater than 3"
{LOOP#=2} means "LOOP# is equal to 2"

There is no operator for "does not equal"; if the variable
you're working with might be higher or lower than the
comparison number, you'll have to set it up like this:

IF{ VISITS#<4}OR { VISITS>6}...

This construction boils down to the same thing as "VISITS#
does not equal 5." (There's more information about IF and OR
later in this chapter).

String Comparisons

The comparison operators have different meanings when used
with the TEXTS variable; you get lots of freedom in interpreting
a player's commands.

62

When you use the equals sign with TEXTS, it means "is a

substring of."

IF{TEXT$=eat sandwich}...
is true if the player's typed command included the string "eat
sandwich.” Being able to check for substrings can be handy. In
a scene where there is a tree you can use:

IF{TEXT$=climb}...
This is true if the player typed "climb tree," "climb," "climb the
tree" or "climb up it."

Sometimes you'll want the player's command to be compared

to an exact string--no substrings allowed. In that case, use a
double equals sign.

IF{ TEXTS$==ball of twine}...
means that TEXTS$ must exactly match "ball of twine" for the
comparison to be true. You can use the < symbol, and a double
version, <<, to mean "is not a substring of" and "does not
exactly match."

IF{TEXT$>open strongbox}...
is true as long as "open strongbox" is not included in the player's
command.

IF{TEXT$>>open strongbox}...
is true as long as the player did not type that phrase exactly.

Item Comparisons

Comparison operators are also used to check on the location
of objects and characters, and on the possession of objects.

If you say "object=character," you're checking if the object
belongs to the character; if you say "object=scene" or
"character=scene," you're checking if the object or character is in
that location.

IF{diamond=dwarf}... means "if the diamond belongs to the
dwarf"

IF {rapier=dungeon}... means "if the rapier is in the
dungeon”

IF{hobbit=hole}... means "if the hobbit is in the hole"

To check if an object is not owned by a specific character, or

if an object or character is not in a specific location, use the >
or the < sign:

63

IF{diamond>dwarf}... means "if the diamond does not
belong to the dwarf™

IF(rapier>dungeon}... means "if the rapier is not in the
dungeon”

IF (hobbit>hole}... means "if the hobbit is not in the hole"

Comparison Operators

- < > - » h
Numerio than is greater
1 equals is less X X
exactly does not
Strings :a:'trtn‘ of m::u of N toh matoh
Other |Dbelongs to or | does not belong to
| Items |is looated in | or is not located in e X X -

Fig. 5-3. Chart of Comparison Operators

Using IF-THEN

If you went through the tutorial in Chapter 1, you already
know the basics of IF-THEN programming. In fact, if you've
used English, you already know the basics of IF-THEN.

In writing scene code, you can give explicit commands, as
with MENU statements, or perhaps by moving a random
character to the scene every time the player visits it. However,
most of your code will be conditional--it will be executed only if
certain conditions exist. The conditions will have something to
do with the player's action so far--what she possesses, the shape
she's in, the places she's been--and what she does in the current
scene. You can set up your code to respond to a myriad of
situations by using IF-THEN. That, of course, is what variables
and comparison operators are all about: they are used to test if
certain conditions exist. : !

When you use IF-THEN, you type one or more conditions in
braces between the IF and THEN:

IF{ring=PLAYER@)THEN

Beneath that statement, you list the commands you want
carried out if the condition is true (in this case, if the player has
the ring):

IF{ring=PLAYER@ } THEN
MOVE(MONSTER@ } TO{STORAGE@ }
PRINT { Your magic ring has banished the
creature}

When you type commands under an IF statement, they are
automatically indented after you press Return.

64

You have to mark the end of the block of conditional
commands. There are two words that can do this--EXIT and
END--and each has a slightly different effect on what happens
next.

First of all, if the condition in the IF statement is not true,
the conditional commands are not executed, and it makes no
difference whether you use EXIT or END. The game goes right
past the whole IF-THEN block and on to the other code you put
in the Code window. If, however, the IF condition is true, the
commands are executed, and the use of EXIT or END controls
what the game does next.

EXIT means to exit the scene code. If you have other
commands in the scene code after the EXIT statement, the game
will not execute them. END means "this is the end of the
conditional commands." The game goes on to the other code
you wrote in the window.

(Each time the player issues a command in a scene, the game
reads through the scene code again.)

Multiple Conditions

You can make the game check more than one condition and
execute a block of statements based on the result of that multiple
check. Conditions in an IF statement are linked by AND or OR.

When you link conditions with AND, they both must be true
for the conditional statements to be executed:

IF{ring=player} AND{ VISITS#>5} THEN

means the conditional statements are executed if the player has
the ring and has been in more than 5 scenes.

When you link conditions with OR, if either one is true, the
conditional statements are executed:

IF{ring=player}OR { VISITS#>5} THEN

means if the player owns the ring or if he has been to more than
five places the statements are carried out. (With OR, at least
one of the conditions must be true--not only one. So if both
conditions are true when you use OR, the conditional statements
are executed.)

You can link more than two conditions in an IF statement by
using multiple ANDs or ORs, but you can't mix ANDs and ORs
in the same IF statement.

Nested IF-THENs

You can "nest" one IF statement inside another; the game
won't even see the inner one unless the condition in the outer
loop is true.

65

IF(VISITS#>50} THEN
PRINT(You've been wandering around a long
time now.}
IF{LOOP#>12)THEN
PRINT{ You seem to be wasting time here.}
END
END

In this nested construction, the game will print "You've been
wandering..." if the player has been to more than 50 locations.
If the player has been to more than 50 locations and has also
issued more than 12 commands in this scene, the additional
comment about wasting time is also printed. If the "wasting
time" statement had been set up in a separate IF-THEN, it would
be printed when LOOP# was greater than 12 regardless of what
VISITS# had reached.

Make sure that every IF statement in a nested structure has a
matching END or EXIT statement.

66

i

Chapter 6
Advanced Adventure Code

World Builder has three main categories of variables: string
variables, world variables, and numeric variables. The first two
categories were covered in the last chapter, as were the basic
numeric variables.

There are, however, many other numeric variables available.
Numeric variables can be divided into three categories: basic,
user-defined and player attributes.

User Variables

User variables stand for numbers, just like other numeric
variables. With user variables, however, you get to decide just
what number is stored in the variable, and what it stands for.

A user variable is a letter/number combination of a single
uppercase letter (A-Z) followed by a single digit (1-9); the usual
numeric variable sign (#) is also part of the variable name. The
following are examples of allowed user variable names:

Al# S5# Y7# G3#

To make a variable stand for a specific number, use the LET

statement:

LET{Al#=10}
assigns the value 10 to the variable A1#. Numbers assigned to
variables must be whole numbers in the range -32768 to 32767,
you can't use commas in the number.

You can make a variable equal to a "constant," an actual
number as in the above example, or you can make it equal to
another variable:

LET{Z2#=LOOP#}
LET{K4#=VISITS#}

You can also use the basic mathematical operators of
addition, subtraction, multiplication (*), and division (/) when
you assign a value to a variable. So, you can use:

LET{V1#=VISITS#+LOOP#}
LET (J2#=A2#+B2#)

‘When you want the value of a variable to change without
referring to any other variable--to increase it by 1, for instance,
you do it this way:

LET{Al#=Al#+1}

Referring to the variable itself when you are changing its
value means you want the new value to be calculated from the
old value. The last example adds 1 to the variable A1# because

67

it says "the value of Al# is now 1 more than what it used to
be." Cutting a variable value in half would be done like this:
LET{B2#=B2#/2)

Using User Variables

Now you know how to assign variable values...but why
would you want to? Any time you want to keep track of
something in your game, you can do it with numbers. When
you create the player character, you define how many objects she
is allowed to carry. But, what if you want another character to
interact with the player based on how much she owns? Maybe
the monster's greed is triggered by the sight of a full back pack.
In that case, you'd want to know how many items the player is
carrying.

Planning ahead, you set up a variable to be worth 0 in the
beginning of the game, in the initial scene code:

LET{P1#=0)}

All during the game, any time the player visits a particular

scene, you can keep track of this with:
LET{P1#=P1#+1}

If you put this in a scene, every time the player enters that
scene, P1# is increased by one. On the eleventh visit, you can
set up something special with this condition:

IF{P1>10}...

In programmer jargon, this is called a counter. Increasing a

counter like this is also referred to as "incrementing a variable."

Random Numbers

Using RANDOM# to set up randomly-occurring events adds
the element of chance to your world, beyond that provided by
using the random world variables of RANDOMCHR@,
RANDOMOBJ@, and RANDOMSCN@.

World Builder can generate random numbers for you when
you use the RANDOM# variable. RANDOM# gives a number
from 1 to 100. The statement:

LET{B1#=RANDOM#)}
assigns a random number to the variable B1#. If you then use
the statement:

IF{Bl#=1}....
the statements in the IF block will be executed only 1% of the
time.

68

| §

When you want to generate a random event with chances
higher or lower than 1%, there are two basic approaches. You
can assign a random number that you know is lower or higher
than 100 to a variable :

LET{Z3#=RANDOM#/2}
assigns a number from 0 to 50 to Z3#--the random number is
divided by 2, and if it is not a whole number, it's rounded down
to a whole number.

. LET{Q4#=RANDOM#+RANDOM#}
assigns a number from 2 to 200 to Q4#. (If you use
RANDOM#*2, you'll get only even numbers from 2 to 200.)

Or, you can use the RANDOM# variable directly in your IF
statement:

IF(RANDOM#>50} has a 50% chance of being true
IF(RANDOM#>66} has a 30% chance of being true
IF{RANDOM#<10} has a 10% chance of being true

When you use a statement like

MOVE {RANDOMCHR@ } TO{bedroom}
any old character or monster will appear in the bedroom. If you
want to randomly choose from a smaller pool of characters--say,
Just one of two--you can use RANDOM# to do the choosing,
like this:

LET{C1#=RANDOM#}

IF{C1#<51} THEN

MOVE {goblin} TO{bedroom}
EXIT

IF(C1#>50} THEN
MOVE {vampire} TO {bedroom }
EXIT

In this last example, note that you must first assign the
random number to a variable. If you use the two statements:
IF{RANDOM#<51}
IF{(RANDOM#>50}
a different random number will be generated for each condition,
and the statements will no longer be mutually exclusive.

Player Attributes Variables

The third type of numeric variable in World Builder is the
attribute variable that keeps track of the strength of the player's
attributes. Using these attribute variables, you can change the
physical and spiritual characteristics of the player character during
the course of the game, and you can use her current condition as

69

a test in an IF statement. (Note that the physical and spiritual
attributes are also changed automatically during the course of a
game, when the player is engaged in a battle with another
character.)

A player's attributes are rated from 0 to 255. You may want
to increase or decrease a specific attribute in response to
something the player does:

IF{ TEXT$="take magic ring"} THEN
LET{SPIR.STR.CUR#=SPIR.STR.CUR#+25}
END

Picking up the magic ring WOULD increase the player's
current spiritual strength by 25 points.

You might want to make the player's attributes a condition
for something else to happen. If you only want a particularly
difficult spell to work when her spiritual accuracy rating is at a
peak, you can start with:

IF{SPIR.ACC.CUR#>220} THEN...

Player attribute variables refer to the player's current ratings
as well as the base ratings set when you created the character.
So, if you want something done only when the player has
improved herself a certain degree, you can use something like:

IF{SPIR.ACC.CUR#>SPIR.ACC.BAS#+75} THEN...

A complete list of player attribute variables is in

Appendix B.

Global Code

World Builder is set up so it can run a game for which you've
designed scenes, objects, and characters, even if you haven't
written any scene code at all; this works because there are certain
default responses and activities that occur without your having to
do any programming.

You know that you can alter the automatic responses by
writing scene code, but there is still another level of coding
between the scene code and the default code--the global code.

There are some statements that you might want to have in
every scene code window because you want the game to
constantly check something. If you always want the player
warned when his strength is waning, you would need a
something like:

IF{PHYS.STR.CUR#<50} THEN
PRINT{You are very weary}

END

70 i

Putting this in every scene code window, however, would
take up a lot of memory, so World Builder provides a Global
Code option.

In order to utilize the Global code effectively, you have to
understand how a game works. After scene code is executed, the
game goes on to check the global code that you wrote; only after
that are the default commands (e.g. LOOK) used.

An EXIT statement executed in a scene code, however, not
only stops the game from reading the rest of the scene code, it
prevents the game from going on to the global code. The game
returns to the stage where it waits for the player to do
something. Then, the process starts again after the player gives
a cqmmand or clicks on an object--the scene code is scanned
again.

If the game gets through the scene code without an EXIT
being executed, it moves on to the global code. The same thing
happens here--if an EXIT is executed, the game loops back and
waits for the player to do something; it does not go on to the
default commands. Once the player does something, the code
scanning starts again at the scene level.

Coding on the global level is the same as on the scene level.
To write Global code, use the Open Global Code command
from the Window menu and enter the code you want to use.

LOOP Zero

Some scenes need to be set up before the player sees them.
You may want to make sure that certain characters or objects are
in place before the scene is drawn. You might also want to set
up a special Commands menu with the MENU command
discussed in the last chapter.

When the player arrives at a new scene the following things
happen:

1. The game sets TEXTS equal to "look" so that the scene
will be described with the text you entered in the Text window
when you created the scene.

2. The game sets the numeric variable LOOP# to zero
because it has to count the number of commands given in a
scene, and must start at zero.

3. The game scans the scene and global code, then the default
commands.

4. The scene and text windows are drawn and the game waits
for user input.

If you move characters or monsters into a scene during the
"zero loop"--when LOOP# is equal to 0--they will be there by
the time the scene is drawn on the screen, because the code is

71

scanned before the windows are drawn. You can put zero loop
commands in the scene or global code. :
If you want a random monster moved to the current scene if
the player is carrying a special lamp, you can use this IF-THEN
in the global code window:
IF{LOOP#=0} AND{lamp=PLAYER@ } THEN
MOVE{RANDOMCHR@ } TO{SCENE@}
END

The SOUND Statement :

Using the SOUND command in your World Builder code is
simple: use the command followed by the name of the sound:

SOUND({scream}

Names of sounds are also used when you create scenes,
objects, and characters; DATA windows for characters, for
instance, ask you to name the sound that is used when a character
first appears, when it dies, when it is losing a fight, and so on.
All you have to do is put the name of the sound in the data box.

That's easy --but how do you get the sounds into the ﬁle'that
you're creating? Well, read on, that's what the next chapter is all

about.

2z

Chapter 7
Working With Sound

The Sound List Window

The Sound List window displays all the sounds that are in the
open world. Sounds can be selected (one at a time) by clicking
on their names within the Sound List. When a sound is selected
the three buttons along the bottom of the Sound List Window
become active.

Clicking on the Play button will play the selected sound at
the current volume (set using the Control Panel desk accessory).

Sound list:Some New Sounds
twang
musical bones
magic spell 3
magic spell 2
magic spell |

knock knock
door bell

B_Pley [Name info Il

Fig. 7-1. The Sound List Window

Clicking on the Name button will bring up a dialog allowing
you to change the selected sound's name. Edit the name, then
click OK to record the name change, or click Cancel to retain the
old name.

Important Note: Sounds are accessed by name within a given
world. This means that when a sound's name is changed all
references to the sound within the game (for example in the
Character and Scene Data screens) must be manually changed to
the new name.

Clicking on the Info button will display the size of the sound
in bytes. This size is the amount of disk space used by the
sound.

Clipboard Operations with Sound

A selected sound in the Sound List Window can be cut or
copied using the standard editing commands found in the Edit
menu. When a sound is on the clipboard and the Sound List
window is selected the Edit menu's Paste command becomes
active. Pasting will cause the sound on the clipboard to be added

€3

to the end of the sound list. The newly pasted sound will be
named 'Untitled' and will be selected. You can then click the
play button to hear and identify the sound and then click the
name button and give it a new name.

The Scrapbook desk accessory can be used to transfer seve:ral
sounds at once between games. Sounds in the Scrapbook yvﬂl be
of type 'BSND' (see the lower right corner of Fig. 7-2). §mce
sounds aren't text or pictures, nothing will be displayed in the
Scrapbook window. The sounds can be identified by pasting
them into the Sound List window and then playing them.

(J=———=——= Scropbook

This item has no text or picture.

Fig. 7-2 The Scrapbook with a sound file

Sound Library Files

Since sounds are typically the largest objects in a World .
Builder game, there is a facility provided for storing sounds in
files separate from games. These files are called Sound Libraries.
A Sound Library, like a game, can contain one or more named

sounds.
©|

Demo Library

Fig. 7-3. Sound Library icon
Working With Sound Libraries

Sound Libraries are opened by World Builder in the same way
that games are: by choosing Open from the File menu. All

74

available Sound Libraries (as well as all available games) will be
included within the list of files displayed in response to the Open
command. After selecting a sound, a dialog will be displayed
informing you that the file is a Sound Library. Clicking OK
here completes the process of opening the file.

When a Sound Library is open a Sound List window
displaying the names of all the sounds in the Library appears on
the screen. The Scene Map, Character List, and Object List will
be absent and all menu commands applying to them will be
dimmed, since these elements are not present in a Sound Library.

The Sound List window for a Sound Library works exactly
the same as a Sound List Window for a game. You can Play,
Name, or get Info about a sound just as explained in "The Sound
List Window" section above. All clipboard operations with
sounds in a Sound Library also work the same as those for
sounds in games (see the "Clipboard Operations with Sound"
section above).

Sound Libraries can be opened within World Builder and their
sounds easily transferred to a game through the clipboard or
Scrapbook. But sounds in a Library don't have to be pasted into
a game to be used within that game, as explained below.

Using Sound Libraries From Games

About box message

[Welcome to Demo World. I

Sound Library #1 IMyDlhermsk:Sound Libs:Space Sounds I
Sound Library #2 | |
Disable the weapons menu? ONo ® Yes

Fig. 7-4. The World Data dialog box

A World Builder game can optionally designate one or two
Sound Libraries to be used by the game when it runs. These
Sound Libraries will be automatically opened by the game when
it is started, and the sounds within them will be used as though

13

they were in the game itself. Figure 7-4 shows the World Data
dia¥0g where thegSound Libraries can be specified. This dialog is
brought up by choosing '‘Open World Data...' from World
Builder's Window menu. ' ‘

To have a game automatically use a Sound Library simply :
enter the Library's name in the box labeled ‘Sopnd lera'ry #1,' or
for a second Library, the box labeled 'Sound Library #2." A
Sound Library can be on a separate disk and/or in a separate
folder from a game that uses it. If this is the case then a full
pathname to the Sound Library file must be specified. A full
pathname is the list of disk and folder names, separated by
colons, that must be traversed to find a file. For emple: in
Fig. 7-4, a Sound Library named "Space Sounds” isona d1§k
named "MyOtherDisk" in a folder named "Sound Libs," so '1'ts
full pathname is "MyOtherDisk:Sound Libs:Space Sounds.

Important Notes: ! , .

(1) The spelling of the file names 1n the World D_ata fixallog is
critical. If a Sound Library's name is misspelled or its disk is
not online at the time the game starts then the game will not
find and open the Sound Library. When this happens there is no
error message displayed by the game. The sounds are treated as if
they aren't available: the game will run normally, but where a
sound would occur nothing will be plaxed:)

(2) Sounds are accessed by name within Wprld Builder
games. This means that a sound in a Sound Library must not.
have the same name as any other sound in the game that uses it,
or the results will be unpredictable.

76

! Sounds in Scenes

You can link a sound to a particular scene by specifying a
"scene sound" in the DATA window for the scene.

Blocked Comment
[North [

[J South |
[JEast [
O west [

UL

Fig. 7-5. Sound in a Scene

Once you fill in the name of the scene sound, you can decide
whether it will occur at specific or random intervals while the
player remains in the scene. Use the radio buttons to select
Periodic (specific) or Random time intervals between sounds. If
you choose Periodic, you should also specify the exact time
interval by filling in the Frequency edit field; the number you
enter is how many times per minute the sound occurs, so
entering 4 means it will happen every 15 seconds.

There's a sample sound library on your World Builder disk
called (what else?) "Example Sound Library" that you can use to
experiment.

Sources of Sounds

There are many ways to obtain new digitized sounds for use
in your own World Builder games. Your World Builder master
disk contains a Sound Library called "Example Sound Library"
that contains several sounds.

Sounds can be copied from games created by others. This
includes the game "Enchanted Scepters,” published by Silicon
Beach Software, which contains over 30 sounds.

Silicon Beach Software also publishes disks containing
nothing but sounds. These Sound Library Disks each contain
one or more Sound Library files organized around a particular

17

theme. A flier which describes the contents of these disks and
gives ordering information is included with World Builder.

Owners of the MacNifty™ Audio Digitizer can use sounds
digitized with their MacNiftys. A utility program called Sound
Converter is included with World Builder. The Sound
Converter takes sounds stored in the MacNifty Digitizer format
and converts them to World Builder format for use in games or
Sound Libraries.

The MacNifty™ Audio Digitizer

Sounds digitized with the MacNifty Audio Digitizer are
captured and stored using the SoundCap™ application that is
included with the MacNifty hardware. The SoundCap application
is capable of storing sounds in many different formats. In order
for World Builder's Sound Converter to access them, the sounds
must be stored in a particular format. The sounds to be used by
World Builder must be stored at a Sampling Ratio of 2, with
SoundCap's Data Compression and Studio Session Instrument
settings turned off (refer to the SoundCap manual for
explanations of the SoundCap terms and settings).

Important Note: Sounds for World Builder cannot be longer
than 65,535 bytes (about six seconds playing time). The length
of a sound can be checked within SoundCap using the Buffer
Size command found in the Special menu.

3
- / Demo World
or

Demo Library

Fig. 7-6. Sound Conversion Process

Fig. 7-6 illustrates the sound conversion process. Once a
sound has been stored in the proper format using SoundCap, the
Sound Converter is run to convert the sound to World Builder
format and add it to a game or Sound Library.

78

A

Using the Sound Converter

To run the Sound Converter, double-click on its icon. It will
start up and display an initially empty desktop. Apple, File, and
Edit menus are available. i

B_efore a MacNifty sound file can be opened and converted a
desmaﬁon Game or Sound Library must be selected. To sele;ct
an existing game, choose "Open Game..." from the File menu
select a game from the list of files displayed and then click the’
Open button. To select an existing Sound Library choose "Open
Library..." from the File menu, select a Sound Library from the
list of files displayed, and then click the open button. To create
a new, empty Sound Library choose "New Library..." from the
F{le menu. A dialog will appear allowing you to name the new
Library and select a disk and/or folder for it to reside in. When
the file name and disk/folder are as you want them, click the New
button and a Sound Library will be created and selected.

W.hen a game or Sound Library has been selected, a window
containing the list of sounds already in the file will be displayed,
as shown in Fig. 7-7. A new Sound Library will have an empty
window, since it contains no sounds yet. The window title will
show the name of the file, and whether it is a game (Game) or a
Sound Library (Lib).

O} Sounds from 'Demo World' (Game)

boom

scraping noise
scream|

walking up stairs

Fig. 7-7. The Sound Converter Window

As sounds are converted and added to the game or library, their
names will be added to the end of the list of sounds. This list of
sounds is for reference only, it may be scrolled forward or
backward as appropriate to view all of the names, but sounds in
the list cannot be selected.

79

When a game or Sound Library is selected the "Convert
Sound..." command in the File menu becomes active. To
convert a sound, choose this command. A dialog will appear
allowing you to select a MacNifty sound file to be convertqd.

When you have selected the file you want to convert, click on
the Open button. The Sound Converter will thpn open the sound
file and verify that it is the proper format and size. If the sound
is compressed or too long, an appropriate error message will be
displayed and the file will be closed.

Important Note: Since SoundCap doesn't store the sampling
ratio when it saves uncompressed sounds, Sound Converter has
no way to verify that a sound that it converts was really at the
required sampling ratio of two. So you can accndently puta
sound with the wrong sampling ratio into a game or library. If
you ever have a sound which sounds too sloooowwww _when .
played in World Builder then it was recorded at a sarpphng ratio
of 1. Sounds that sound too fast (like munchken voices) were
recorded at sampling ratios of 3 or 4. When you find a sou_md)
like this in a game or library just delete it using World Builder's
Cut command found in the Edit menu.

If the file is in the correct format, a dialog will appear
allowing you to enter a name and repeat count for the sound.

The name will default to the name of the MacNifty file that
contains the sound. Remember that names must be unique
within a game or Sound Library.

The repeat count, which defaults to 1, is the numl?er of .
successive times that the sound will be played each time it is
requested by World Builder. For example: to geta drum beat
sound in a game you might record a single hit of a drum and then
use a repeat count of four to play four beats each time the drum
is requested. To preview how a sound will work when repeated
use the Set Repeat Count command in SoundCap, and then click
on SoundCap's speaker icon to play the sound with the repeat
count you have just set.

Important Note: Once a sound's repeat count has been set by
the Sound Converter it cannot be changed. You must re-convert
the sound, specifying the new repeat count you want.

When you are happy with the name and repeat count you have
entered for a sound, click the OK button. If you change your
mind about converting a sound, click the Cancel button to stop
the conversion and close the MacNifty file.

80

If you clicked OK, a progress dialog will appear. It will first
say "Reading MacNifty Sound...". When the sound has been
read it will display "Converting Sound..." and a graphical
progress indicator. When the sound has been converted it will be
added to the game or library while the message "Writing World
Builder Sound..." is displayed. After the sound has been
successfully converted and written to disk, its name will appear
at the end of the list of sounds in the window.

There is no Save command in the Sound Converter since the
Game or Sound Library is automatically saved each time a new
sound is added to it. When you are finished adding sounds to a
game/library, choose Close or Quit from Sound Converter's File
menu. Since the file has already been saved, closing and quitting
are very fast operations.

Sound Quality

Sounds are stored by Sound Converter and World Builder in a
compressed form that can significantly reduce the disk and
memory space required for many sounds. There is one drawback
to the compression scheme used in World Builder: some high
frequency (high pitched) sounds can be distorted by the
compression/decompression process.

If a sound sounds much worse when played by World Builder
than it did when played by SoundCap there are three possible
solutions. First, try slowing down the sound using SoundCap's
ScratchBar command found in the Sound Effects menu. This
will usually correct the problem, but may require slowing down
the sound to the point where it no longer sounds like what was
intended. Second, try reducing the sound's amplitude: choose Set
Amplify from SoundCap's Settings menu and enter 0.5 for the
Amplification Factor; now choose Amplify from the Sound
Effects menu to lower the sound's amplitude. If this fails to
produce better quality in World Builder, or becomes too faint,
there is a third option. Try to record or produce a similar sound
without all of the high frequencies found in the problem sound.

81

Appendix A
World Builder Specifications

Switcher Configuration

Preferred Memory Size: 512K
Minimum Memory Size: 250K
Save Screen: Off

Important Note: Do NOT run a game in Switcher at the same
time that you are editing it!

Compatibility

World Builder runs on Macintosh 512K, Macintosh Plus,
Macintosh 512 Enhanced, Macintosh XL (sounds can be
manipulated, but not played), and is compatible with all memory
upgrades. .

Games created by World Builder run on Macintosh 128K
(except very large games, greater than 400K in size), M_acintosh
512K, Macintosh Plus, Macintosh 512 Enhanced, Macintosh XL
(sounds not played), and are compatible with all memory
upgrades.

Limits

Game Size: 16 Megabytes
Sound Library Size: 16 Megabytes
Number of Scenes per game: 2,500

(Scene Map is limited to 50 x 50 scenes)
Number of Characters per game: 32,767

Number of Objects per game: 32,767
Number of Sounds per game: 32,767
Item Name: 255 characters
(Scene, Character, Object, or Sound) '
Design Size: 20,480 bytes of graphics
(per Scene, Character, or Object Design)
Text Size: 10,240 characters
(per Scene Text, per Scene Code, or Global Code per Game)
Text in Data Dialogs: 200 characters per field
(per field of Scene, Character, Object, or World Data)
Sound Size: 65,536 bytes uncompressed
(Played at 11,100 samples/second = 5.90 seconds playing
time)
82

Appendix B
Adventure Code Summary

Text Variables

CLICKS$ = The name of the object or character
the player clicked on
TEXTS$ = The command the player typed in or
selected from the Command menu
Numeric Variables
LOOP# = The number of commands the player
has given at the current scene
RANDOM# = A random, uniformly distributed
integer between 1 and 100
VICTORY# = The number of monsters killed
VISITS# = The number of scenes the player
character has visited

PHYS.ACC.BAS# = The base physical accuracy of player
PHYS.ACC.CUR# = The current physical accuracy of player
PHYS.ARM.BAS# = The base physical armor of player
PHYS.ARM.CUR# = The current physical armor of player
PHYS.HIT.BAS# = The base physical hit points of player
PHYS.HIT.CUR# = The current physical hit points of
player
PHYS.SPE.BAS# = The base physical speed of player
PHYS.SPE.CUR# = The current physical speed of player
PHYS.STR.BAS# = The base physical strength of player
PHYS.STR.CUR# = The current physical strength of player
SPIR.ACC.BAS# = The base spiritual accuracy of player
SPIR.ACC.CUR# = The current spiritual accuracy of player
SPIR.ARM.BAS# = The base spiritual armor of player
SPIR.ARM.CUR# = The current spiritual armor of player
SPIR.HIT.BAS# = The base spiritual hit points of player
SPIR.HIT.CUR# = The current spiritual hit points of
player
SPIR.STR.BAS# = The base spiritual strength of player
SPIR.STR.CUR# = The current spiritual strength of player
Al#.. . Z9# = 234 user variables, signed integers

83

World Variables
PLAYER@ = The player character
MONSTER@ = The current monster, if any
RANDOMCHR@ = A randomly selected character
RANDOMOBJ@ = A randomly selected object
RANDOMSCN@ = A randomly selected scene
STORAGE@ = A scene that can't be visited

IF-THEN Conditional Statement
IF{condition 1}THEN

EXIT or END s
IF{condition 1}OR{condition 2}...0R{condition n}THEN

EXIT or END X
IF{condition 1}AND{condition 2}...AND{condition n}
THEN

EXIT or END

PRINT Statement
PRINT{any text}

SOUND Statement
SOUND({sound name}

MOVE Statement
MOVE({charactername or variable}TO{scenename or variable}
MOVE({objectname or variable}TO{scenename or variable}
MOVE({objectname or variable}TO{charactername or variable}

LET Statement

LET{numeric variable=num variable, constant}

LET{numeric variable=num variable, constant+num variable,
constant}

LET{numeric variable=num variable, constant-num variable,
constant}

LET{numeric variable=num variable, constant*num variable,
constant}

LET{numeric variable=num variable, constant/num variable,
constant}

MENU Statement
MENU({item 1;item 2;...item n}

84

Index

A

About box message 36
Aim command 6, 7
AND 22, 65

B
making backups
Save Backup... 37
of the disk 4
of files 33, 37
blocking directions 36
bit box 53
braces 17, 55

C
Capture Bits 54
character
apparel 48
character data 25, 39
Character List window
24, 39
create 38
disk space used by 38
drawing one 39, 50
naming 38
CLICKS 17, 61, 83
Commands menu 5
modify with MENU 18,
56, 84
comparison operators 62
item 63
numeric 62
string 62
create a new World 33
cut and paste graphics 52

D
Demo World 5
disable Weapons menu 37

disk space
considerations 54
taken by a character 38
taken by an object 45
taken by a scene 34
Drop objects 6, 7

E

Edit menu 52

edit existing worlds 33
Enchanted Scepters 10
END 65

EXIT 65

F
Fill menu 52
freehand tool 51

G
Get objects 6, 7
global code 70
graphics editor
moving objects 51
resizing objects 51
selecting objects 50
tools 51

I

IF-THEN 22, 64, 84
EXIT vs. END 65
multiple conditions 65
nested 65

Inventory
command 5, 7
adding to player's 59
player's limits 40

item comparisons 63

L

LET 67, 84

limits on games 82
Look command 5, 7
LOOP# 22, 61
LOOP zero 71

M
MacNifty Audio Digitizer 78
map See Scene Map
MENU 18, 56, 84
MONSTER@ 60, 84
MOVE
for location 18, 58, 84
for possession 59, 84

N

numeric comparisons 62
numeric variables 61

0
objects (in games)
apparel 48
create 45
draw an object 28, 50
naming 45
Object Data dialog
boxes 29, 46
Object List window 28,
45
objects (in scene graphics)
moving 51
resizing 51
selecting 50
Offer objects 6
OR 65
oval tool 51

P

Paint Bits 54

Pen menu 52

periodic scene sounds 73
PHYS.ACC.BAS# 83
PHYS.ACC.CUR# 83

PHYS.ARM.BAS# 83
PHYS.ARM.CUR# 83
PHYS.HIT.BAS# 83
PHYS.HIT.CUR# 83
PHYS.SPE.BAS# 83
PHYS.SPE.CUR# 83
PHYS.STR.BAS# 83
PHYS.STR.CUR# 70, 83
Player

character 27

number of objects

owned 40

adding to inventory 59
PLAYER@ 18, 59, 84
polygon tool 51
PRINT 17, 57, 84

R

RANDOM# 68, 83
RANDOMCHR@ 60, 84
RANDOMOBJ@ 60, 84
RANDOMSCN@ 60, 84
random scene sounds 73
rectangle tool 51

Rest command 5, 7
rounded rectangle tool 51

S

SCENE@ 60

Scene Code
edit 17
braces in 17, 55
open 17
similar to BASIC 17
spaces in 17, 55
syntax 55

Scene Data
dialog box 16, 36
open 16, 36

Scene Design
drawing 13, 55
open 13, 35, 50
window location 35

86

|t L]

L P

— e

Scene Map

creating 12, 34

three-dimensional 58
Scene Text

editing 15, 35

open 15, 35
SPIR.ACC.BAS# 70, 83
SPIR.ACC.CUR# 70, 83
SPIR.ARM.BAS# 83
SPIR.ARM.CUR# 83
SPIR.HIT.BAS# 83
SPIR.HIT.CUR# 83
SPIR.STR.BAS# 83
SPIR.STR.CUR# 70, 83
SOUND command 72, 84
SoundCap 78
Sound Converter program 78
Sound List window 73
sound library 74
sounds

check size 73

cut and paste 73

naming 73

quality 81

recording sounds 78

repeat counts 80

transfer via Scrapbook 74

with scenes 77
string comparisons 62
Status command 5, 7
STORAGE@ 20, 59, 84
SuperPaint 54
Switcher 82

T
TEXTS$ 17, 61, 63, 83

U

user variables 67

87

\4

variables
command 61
numeric 61, 67
player attributes 69
RANDOM# 68
user 67
World 59
VICTORY# 62, 83
VISITS# 62, 83

w
Weapons menu

disable 37

use 5
windows

resizing 35

screen location 35
World Data dialog 36, 75
World Template 11, 33

Z
Zoom Bits 54

comparison operator 62

comparison operator 63

<
comparison operator 62

>
comparison operator 62

