
PROGRAMMER'S HANDBOOK
or

Quilling the Great Adventure

by John Olsen

The Visionary Programmer's
Handbook

or

Quilling the Great Adventure

by John Olsen

Copyright© 1991 , John R. Olsen
All Rights Reserved Worldwide

Printed in the USA
First Edition , September, 1991

ISBN 0-938385-28-3
UPC No. 0-10225-91150

The Aegis Visionary program cited in this book Is Copyright © 1991, Kevin Kelm.
All Rights Reserved Worldwide.

Published by
Oxxi, Inc .
P 0 Box 90309
Long Beach, CA 90809-0309
USA

Phone (213) 427-1227 FAX (213) 427-0971

Dedication

To Ron, who first introduced me to adventure gaming way back in
1978.

and

Th Kevin, who designed V1Sionary from the ground up, who answered
over a thousand of my most stupid questions without a complaint, and
who opened up a new world of adventure programming to computer
users.

Table of Contents
Preface

Introduction

Chapter 1: The Plot
Get to Know Vlalon.ry ... 1 - 1
Plotting Your Course •...............•............•••...••.•••...•••..••••.........••......•......•...•.... 1 - 1

What's the Story? 1 - 2
The Plot ... 1 - 2
The Tone 1 - 2
The Target Audience .. 1 - 3
The Map 1 - 3

Chapter 2: The Puzzles
The Purpose of Puzzles ..••••...•....••.....•.....•.•............•....••....••••...•..................•• 2 - 1
Designing Your Puzzlea ... 2 - 2

Layer the Goals .. 2 - 2
Allow False Solutions ... 2 - 2
Make Puzzles Consistent .. 2 - 3

Types of Puzzles 2 - 4
Obtaining and Using Puzzle Objects 2 - 4
Death Traps 2 - 5
Obstacles 2 - 7
Inventory Limits 2 - 8

Design Guidelines for Puzzles 2 - 9
Keep Them Logical 2 - 9
Provide a Possible Solution .. 2 - 10
Provide Clues 2 - 10
Give Objects Several Uses .. 2 - 11
Mislead the Player about Objects 2 - 12
Vary the Types of Puzzles 2 - 12

Chapter 3: The Places
The Room •••••••••••••••••••••••••••••••.....•....••.....••..•.••••.••••••.••••••••••••••••••••••••••••••••••••••• 3 - 1

Descriptions .. 3 - 1
Exits 3 - 1
The Rest of the "Room" 3 - 2
Things That Change 3 - 2
Use Descriptions to Enhance the Game 3 - 3

Connecting the Rooms 3 - 5
The Store Room 3 - 6

Game Graphics ... 3 - 6

Chapter 4: The Variables
Variable Valuea••••...•.......•.•................................•..•......•............................. 4 - 1
Inventory Varlables•.•......•.•.••..•••.•••••.•••••••••••••....••....•••••..•••••••••••••••••••• 4 - 1
The State of Objects .. 4 - 3
Counting Moves•.•..••........•••••••.•.............•.••.•••.••••••.•.•••.•.•.••••••••.••••••••• 4 - 4

Limiting Player Turns 4 - 5
Keeping Count•... 4 - 6

Non-Player Character Section and Variables 4 - 6
Keeping Score•...........•.......•...............•.................•..•.•.•......•....••... 4 - 7

v

The Visionary Programmer's Handbook

vi

Keeping Tn1ck .•.........••.••••••••••.••••••••..•.••.....•..........................•.......•.•............... 4 • 8
Handle ~ndom Events••.••.•.••••.••••••••••••••••••••••.•••••••.••........••••. 4 • 9
Flags•........•......................................••.•••..•......•.•.....•.•...••...•..................••....• 4 • 10

Chapter 5: The Objects
Ob)ect Types ••••.••••.........................••.••••...•••.•••••••••.•••••••••••.••..........••••••.•••.••••.• 5 • 1
The Ob)ect Fil"•••.•.••••••....•...•••...••..•.•.•.•• 5 • 2

Objects in Multiple "Roles " 5 - 3
Ob)ect Descriptions ...••••••.•••.•..•..•.•.•.••....................•.....•...••..........•.....•.•.•••••.•. 5 • 5

Allow Object Manipulation 5 - 7
Let the Player Examine Objects 5 - 8
Let Movable Objects Be Picked Up 5 - 8
Let Movable Objects Be Dropped 5 • 8
Anticipate the Action of Play 5 - 9
Let Objects Be Put Inside Other Objects 5 - 10

Some Tips for Using Ob)ecta•• 5 • 1 O
When Objects Change 5 - 11
Invisible Objects 5 - 12

Chapter 6: The Vocabulary
Vocabulary In a Graphic-Only Game ... & • 1
Text Adventure Gam" .. & • 2

Object Vocabulary 6 - 2
The Object Name 6 - 2
Synonyms 6 - 2
Adjectives 6 • 3

Object Action 6 - 4
Look 6-4
Get 6 - 5

Drop 6-6
Wear 6 - 7
Subroutines for Actions 6 - 9
Object-Dependent Actions 6 • 10

The Vocabulary Action Fiie ... 6 • 11
Reserved Words 6 - 13

Chapter 7: Messages
Action M g .. 7 • 1
Clu.. and Help Mnaag" •.......................•...••..•.....•...••.•••••••.•••..•....•............ 7 • 2

Default Message 7 - 3
Timed and Random Messages 7 - 3
Message Style 7 • 4

Messages in Subroutines 7 - 5
Messages With Variables 7 - 5

Text Styles 7 - 6
Spelling and Grammar 7 - 7

Chapter 8: Subroutines
M g.. from Subroutln" ... 8 • 1
Action Subroutln" ... 8 • 1

Nested Subroutines 8 • 2

Chapter 9: Automatic Actions
Automatic Events .. 9 • 1

Counting Time 9 - 1
Counting Backward 9 - 2

Special-Circumstance Counters .. 9 - 4
Counting Forward .. 9 - 4
Timed Events 9 - 6
Random Counts 9 - 6

Special u- for Automatic Actions .. t · 8
One-Time Events 9 - 8
Text Formatting .. 9 - 9
Single-Location Movable Objects .. 9 - 9
Automatic Creation of Objects ... 9 - 10
Automatic Movement of Objects 9 - 10

Chapter 1 O: Sounds and Pictures
Basics of Game Graphics and Sounds ... 1 O - 1

The Title Screen .. 10 - 2
Title Sound Effects .. 10 - 3
Game Graphic Screens 10 - 3
Sounds and Music .. 10 - 4

Memory Use ... 10 • 5
Mouse-Responsive Graphics ... 10 - 6

Chapter 11: Dungeon Adventures
Game Graphics ... 11 • 1

Hidden Screens .. 11 - 1
Player's Directional View .. 11 - 2
Multiple-Character Control ... 11 - 2
Player Attributes .. 11 - 3
Player Inventory .. 11 - 3

Game Anlmatlon .. 11 - 4
Double-Buffering ... 11 - 4

The Graphic Interface .. 11 • 5
TheGoal .. 11-5

Chapter 12: _Artificial Intelligence in Non-Player Characters
Level of lntelllgence ... 12 - 1

The Effect of Intelligence Level .. 12 - 2
Sophisticated Interaction .. 12 - 3

NPC Movement ... 12 • 3
Random NPC Actions .. 12 - 4

Player and NPC Interaction .. 12 • 5
NPC People 12 - 5

Chapter 13: The Finishing Touches
Fine-Tuning .. 13 - 1
Play-Testing ... 13 - 2

Play to Win .. 13 - 2
Play to Lose .. 13 - 2
Play All the Options .. 13 - 3
Outside Testing ... 13 - 3

Flnallze the Thie .. 13 - 4
Copyright Notices ... 13 - 4

Final Checks .. 13 - 5
Game Distribution ... 13 - 5

Copy Protection .. 13 - 5
Distribution Methods 13 - 6
Contacting a Publisher ... 13 - 6
Shareware and Public Domain .. 13 - 7

vii

The Visionary Programmer's Handbook

viii

.
Chapter 14: I Was a Cannibal for the FBI

Play the Game ... 14 • 1
A Text Edltor .. 14 • 2

Graphic Interface 14 • 2
The Game Interface •..•..••••••••.•.•.•..••••••••.....•.••...••.•••••••••••.••••...•••••••••••••••••••••• 14 - 2

Objects and Inventory 14 - 2
Command lnput 14 - 3
The Compass 14 - 3
Graphic Technlques 14 - 4
Visible and Invisible Features 14 - 4

Source Code•.•.....•..........................••...........•...........•.........•.•.•••.•••••••••••.•.• 14 - 5

Chapter 15: The Idea
The Concept ...•.......•......••..•.•.•.••......... 15 - 1
The Plot, Setting and Game Goals ...•.••••••..•.....•.• 15 - 2

The Programming Process 15 - 4

Chapter 16: The Graphic Interface
Plannlng the Graphic Interface •..•...•..•.•...•...••.•............••...••••..•.•••••••••..•.•.•.. 18 - 1

The Location Window 16 - 1
The Text Window 16 - 1
Inventory Handling 16 - 2
Command Buttons 16 - 2
Designing the Compass 16 - 3
Handling the Examine Command 16 - 4
The Get and Drop Actions 16 - 4

Resolution and Palette Problems ..••.••.............•..•••..•.•••..••••••.•...••••••.••••••••• 18 - 8

Chapter 17: Sound and Graphic Files
The Graphics •.••..•.••.•.•..•••••.•••..........••••••.••••.•....•••••••••••.•...•....••.•.•••.••••••••.••.••• 17 - 1

The Window Template 17 - 2
Coordinates 17 - 2
The Hidden Screen 17 - 3

Object Edges 17 - 3
The Buttons 17 - 4

The Game Graphics 17 • 5
Counting Pixels 17 - 6

Sound Effects and Music ••••..•••..•.••••••••......•••••••••••••••.••.•••••••••••••••.•.••.••••••••. 17 - 6
Finding or Making Sound Effects 17 - 7
Playing Sounds 17 - 8
Music 17-9

Chapter 18: The Cannibal.ADV File
Pauword ••••••.••.•..••••..••. .••..•••••.•••• •. •••...••••.••....•••••.•••••••••••••.•••••.•••••••••••••••••••••• 18 - 1
The Varlables •••••••••••.....•.•••••.••.•.•• •••..••••••••••••••••..••.•••••••••••••.••••••••••.•••.••••••••••• 18 - 2
Object Flies•..............••................•••.•••••••.•..•...•.•.••••••.......•..•......•...........•.•. 18 - 2
Subroutines •• ••••••.....•......•......••••..••••.••••..••••.•.•.•.•.••.•••••••••••••••••••••.•••••••••••••••.•. 18 - 3
Vocabulary •• .••••.•..........•.•••...•..••.•.•.••..••••.....•.......•...•..••••••••••••••••••..••.••••••...•••• 18 - 3
The lnltlal Room ...•.••...•.•..•...••..•.. 18 - 3

Chapter 19: The Cannibal.ROOMS File
Hidden, Unused and Special-Purpose Rooms•........•.••••....••.••.•.. 19 - 1
The lnltlal Room ••••.............••••.••.•.•..•..•......•.....••••....•..•...•••.....•••••••....•..•........ 11 - 2

Room Attributes 19 • 3
Automatic Attributes 19 - 3
Default Directions 19 - 4
The Code Block 19 - 4

Click Zones 19 - 5
Nonmovable Object Placement 19 - 6
Initial Variable Settings 19 - 6

The StartUp Call 19 - 7
Sound Effects 19 - 7
Room Descriptions 19 - 7
Check for Player lnput 19 - 8
Special-Purpose Rooms 19 - 9

A Typk:.91 Room Fiie ... 11 - I
Handling Diagonal Click Zones 19 - 10
Handling Multiple-Scene Rooms 19 - 10

Chapter 20: The Startup.SUB File
The Text-only Screen ... 20 - 1

Text Colors 20 - 1
Scrollbar Handling 20 - 2

Loading the Game .. 20 - 2
Using the Ram Disk 20 - 3
The Saved Game Handler 20 - 3
Loading Graphics and Sounds 20 - 4
The LoadingError Subroutine 20 - 5
Buttons 20 - 5
Sounds and Music 20 - 5
The Game Screen 20 - 6
Hidden Buffers 20 - 7

Retidy to Pt.y .. 20 - 8
Setting the Scene 20 - 8
The StartUp2 Subroutine 20 - 9
Calling Mainloop and LoadingError 20 - 9

Chapter 21: The NonMovable.OBJ and NPC.OBJ Files
The NonMovable.OBJ Flle .•••.•.•••••••••••••••••••••..••••• 21 - 1

The "OOnothing" Object 21 - 2
Typical Nonmovable Object Files 21 - 3
Actions 21 - 3
Moving NonMovable Objects 21 - 5

When the Game la Won ... 21 - 8
Non-Winning Actions 21 - 9

The NPC.OBJ Flle ... 21 - I

Chapter 22: The Movable.OBJ Files
The Numbered Obfect Names .. 22 - 1
A Typical Object Flle .. 22 - 2

The Code Block 22 - 2
The Action Blocks 22 - 2

More-Complex Object Deflnltlona .. 22 - 4
Object Attributes 22 - 4
Specialized Object Actions 22 - 4

Handling Prepositions ... 22 - 5
Placing Objects Inside Other Objects 22 - 5
Prepositions in Action Commands 22 - 7

Handling Adjectlvea ... 22 - 7
Anticipating Player Actlona ... 22 - 8
Combining Obfecta ... 22 - 8
An Example of Poor Programmlng .. 22 - 11

ix

The Visionary Programmer's Handbook

x

Chapter 23: The Mainloop.SUB File
A Gener•I OYervlew••.....•••••••••••••••••••.•.•.......•.••.••••••.....••.••..••••••••••••••.••..••. 23 • 1
Checking the Input Window •••••••••••••••••••••••••.•••••••.••••..••.••••••.••••••••••••••••••..•. 23 - 2

Setting Up for Special Characters 23 - 2
Text Color 23 - 3
The Prompt Character 23 - 3
Handling Unwanted Keystrokes 23 • 4
Checking for Mouse lnput 23 - 4

Text Input •••.•.••••••••••••••••• 23 • 7
The (Return) Character 23 • 7
The (BackSpace) Character. 23 • 8
Adding to the Text Input 23 - 9

Mouse lnput .••...••..•••••.••.••.••..••• 23 - 10
Echoing Mouse Commands to the Text Window 23 • 10
Ending the Input Loop 23 • 11

Executing the Comm•nd• ... 23 - 11
The LOAD Command 23 • 12
The SAVE Command 23 - 12
Error-Trapping 23 • 13
Back to the Graphics Screen 23 • 13

Using RAM: .. 23 • 14
Exiting the M•lnLoop ... 23 - 14

Chapter 24: The GetDrop.SUB File
Get •nd Drop Subrou11nes .. 24 - 1

G etObject 24 - 1
When the Player Enters a Room 24 • 2
Arrays 24 • 2
Pixel Arrays 24 • 3

The GetObject Action 24 • 3
Moving the Object Graphic 24 • 5
Releasing the Object 24 • 7
Click or Drag? 24 • 7
Moving Objects to Inventory 24 - 8
Updating the Scrollbar 24 • 9

Drop Object 24 - 11

Refreshing Windows efter • Move ... 24 - 12
ReDrawScrollBar 24 • 13
DisplaySB 24 • 13
AddObject 24 • 14
The Scrollbar Arrow Subroutines 24 - 14
DestroyObject 24 • 16

Chapter 25: The Cannibal.SUB File
C.nnlbelsArrlve ... 25 - 1
End-Geme Actions .. 25 • 1
Before Exltlng .. 25 - 2

The Print Routine 25 • 3
Line Feed 25 - 3
Button Subroutines 25 • 4
GoNorth 25 • 5

ReDrewScreen ... 25 - I
Changed Options 25 • 7
Removing Unused Click Zones 25 • 7

Common-M...-ge Subrou11nes ... 25 - 8
Bre•klng Objects .. 25 - 9

NoSwlm .. 25 - I
The Dig Subroutine .. 25 - 10
BreakCoconut .. 25 - 11
ElltCandy .. 25 - 11
Examine Shack .. 25 - 12

Chapter 26: The Cannibal.voe File
Debugging Actions ... 26 - 1

Endgame 26 - 1
Status 26 - 1
View Hidden Scenes 26 - 2

Help ... 21 - 2
Supplementing Game Action• .. 21 - 3
Some Other u.e. ot .voe Fllea ... 21 - 5

Chapter 27: Putting It All Together
Initializing ... 27 - 1
The Malnloop ... 27 - 1
The NPC.OBJ Flle ... 27 - 3
The Call Schedule .. 27 - 3

Chapter 28: Additional Tips and Tricks
ASCII Codes .. 28 - 1
Debugging .. 28 - 2
Odd• and Evena .. 28 - 2
External DOS Commanda .. 28 - 3
Saving Memory .. 28 - 3
Encoding Fll ... 28 - 4
The Title Screen .. 28 - 4
Changing the MouH Pointer .. 28 - 4
PAL and NTSC .. 28 - 5
The Mualc Editor ... 28 - 5

Appendix A: Source Code for the Cannibal Game
The .ADV Fiie .. A - 1
The .ROOMS Fiie ... A - 4
The Startup.SUB Fiie .. A - 15
The NonMovable.OBJ Fiie .. A - 18
The NPC.OBJ Fiie .. A - 33
The Moveable1.0BJ Fiie ... A - 34
The Movable2.0BJ Fiie ... A - 31
The Malnloop.SUB Fiie .. A - 48
The GetDrop.SUB Fiie ... A - 52
The Cannibal.SUB Fiie .. A - 61
The Cannlbal.VOC Fiie .. A - 76

Appendix B: The Solution to Cannibal

Appendix C: Bibliography

Index

xi

The Visionary Programmer's Handbook

xii

Preface

What makes a great adventure game? What makes it fun to play?
Why do some games become famous and others not? What makes one
game sell thousands of copies, another sell just a handful, while others
can't even get published? How can you create an adventure game that
will be fun to play? How can you make it challenging but not too
hard? And how can you use VISionary to create your game? All these
things will be revealed in this book.

We'll look at how to get started. We'll examine the different kinds of
puzzles. We'll look at the special literary skills required to make the
adventure come alive in the mind of the player. We'll see a variety of
techniques and tips culled from over ten years of experience in writing
and playing adventures. We'll see how to create the game-play logic
that ties it all together. And we'll see how to use the specific com
mands and various features of Visionary to your best advantage.

If you've never written an adventure before, this book will be an invalu
able aid in completing your first game. If you are an experienced ad
venture author, this work will help you hone your skills to produce a
superior game.

This book is designed for users of Visionary, the Aegis Interactive
Gaming Language. Using VISionary is certainly not a requirement for
writing adventures, but it is recommended for all but the hardiest
programmers.

Even if you plan on writing your adventure "from the ground up" in
BASIC or assembly language, the first half of this book will be most
helpful. The second half will give specific routines and examples of
how to use the V1Sionary commands. It will give you the skills neces
sary to create the great adventure that has been inside you just waiting
to get out!

Keys, Commands and Source Code

I have attempted to present information in a consistent manner
throughout the manual. Certain type faces are reserved for specific
kinds of information. This is designed to help you quickly decide
which material is important to you.

Keys
Where single keys on the keyboard have names longer than one charac
ter, the name is enclosed in square brackets: [Esc]. This means press
the [Esc] key. Multiple-keypress sequences are presented with a

xiii

The Visionary Programmer's Handbook

hyphen between each key and the next: [Ctrl]-C. This means "hold
down either of the [Ctrl] keys and press the [C] key before releasing
the [Ctrl] key."

Styles
Below is a guide to the style standards in the manual.

General Information and Hints

» General information Is presented in boxed format. The »

character means you can skip this discussion without
seriously affecting your use of the program.

Commands and Other User-Entered Text

If you enter text from a line formatted like this:

Text in this format is to be entered as shown

you should type it character-for-character, including all spaces and
punctuation.

Source Code Listings

Source code listings in Appendix A are presented with line numbers.
These numbers do not appear in the actual source code which is in
cluded on the Cannibal disk, but are shown with the source listing for
your reference only.

l This line of source runs over the end of the printed page
line, but the overlapping portion is not numbered

2 while this begins the actual second line of the source
3 and the line following this one is blank
4
5 etc.

xiv

Introduction

I first played a computer adventure in 1979, less than a year after I had
purchased my first computer. That game was AdventureLand by Scott
Adams, a true classic. It was my first experience with an adventure
game, and it was wondrous!

Looking back at it now, I can see its warts. It took over eight minutes
to load from a cassette, and completely filled the entire 16K memory of
my TRS-80. The parser was primitive; only two words were allowed
per command: GET KEY. CHOP TREE. KILL DRAGON. Input
was strictly limited to verb and noun. There were no graphics. The
display was split with the room description at the top of the screen, and
all other input and output shown on the lower portion of the screen.
The messages were short and frequently cryptic. And there weren't a
lot of rooms or plot by today's standards. But I was entranced.

The plot, for those of you who never had the pleasure of enjoying this
adventure, involved gathering thirteen treasures in a fantastic land of
dragons, forests, and caverns. There was a wild assortment of objects
in the land that defied logic. Paul Bunyan's blue ox Babe, jeweled
crowns, Aladdin's lamp, and the magic mirror from Snow White were
just a few of the things found in AdventureLand. You could visit vol
canic chasms, blue lakes, and smelly swamps. If you took a wrong tum,
you could even find yourself lost in a computer memory chip. When
playing this adventure, you frequently had to give logic a vacation, and
just go with the situation.

A year later, when I first tried my hand at writing my own adventure, I
began to appreciate the immense task that Scott Adams had ac
complished. Into a mere 16K of memory, he had squeezed the adven
ture interpreter and the data necessary for an entire adventure game.
The interpreter had to contain all the routines for loading and saving
games in progress, the parser for dealing with the player's input, the
screen routines for the split-screen window, as well as the logic for
moving to different rooms, getting, dropping, and using the variety of
different objects. The data had to contain all the programming steps,
the messages, the location descriptions, and the vocabulary list.

Scott Adams went on to produce a total of thirteen adventures, with
titles such as The Count, Ghost Town, Golden Voyage, Mission Impos
sible, Mystery Fun House, Pirate Adventure, Pyramid Of Doom, Savage
Island, Strange Odyssey, and Voodoo Castle. These games were later
converted for use on Apple and Atari computers, and a few were final
ly made available on the Commodore 64.

None are available today for the Amiga. And perhaps it is just as well.
They were products of an earlier and more innocent age. They would

I-1

The Visionary Programmer's Handbook

1-2

not stand up well in their original text-only state, with their limited
vocabulary and shorter storylines.

Still, I remember with pleasure the arrival of each new adventure.
Usually the playing of a new game was a group process. About five of
us would get together for a long evening of adventuring. With one per
son doing the typing, and the others all yelling out suggestions, we
would play until the wee hours of the morning. Usually we would get
stuck every hour or so. Then we would sit around and toss around a
variety of more and more outlandish suggestions. Sometimes, by sheer
luck or accident, we would strike the lucky combination and solve one
of the puzzles.

I loved adventures. I loved playing them. But my mind kept toying
with plots for my own adventures. These adventure stories were fre
quently inspired by the juvenile radio programs of the 1940's like Jack
Annstrong, Fu Manchu, and I Love a Mystery. I was yet to be born
when these programs aired over the radio, but I had heard audio tapes
of them. The fantastic stories were perfectly suited to computerized
adventures.

Then there were the Saturday afternoon serials at the movie theater.
Although they also played before I was born, I had watched 16mm film
prints of some of them. 1\velve and fifteen chapter serials like Captain
Marvel and Daredevils of the Red Circle were a perfect inspiration for
the type of computer adventures that I had in mind.

I decided that I was going to write an adventure game. But I had no
idea of how to go about it. There were no adventure authoring lan
guages like V1Sionary at that time. My only choice was to write in the
BASIC language. And that meant that I had to write everything: the
parser, the input routines, the output routines, as well as the movement
and other logic. But I had a pretty good knowledge of BASIC, and so
undaunted I began writing my first adventure during my Christmas
vacation of 1980.

The plot of my inaugural adventure was taken from the old horror
movies. Its working title was Frankenstein Adventure. The plot had you
as the player, discovering you were the long lost relative of Dr.
Frankenstein. As his only heir, you had inherited his mansion. When
you arrived, you found a letter from him telling you that he wanted you
to complete his creature and bring it to life. The story was set in and
around the old mansion. There was the obligatory graveyard and crypt.
And of course, there was the windmill out in the center of the foggy old
bog.

The plot twists in this first adventure are as effective today as they were
ten years ago. You had to place a heart and liver in the creature. To
do this required a visit to the cemetery, where you removed the organs
from a corpse. But a hungry wolf barred your way as you attempted to
leave the cemetery, and your only recourse was to give up the liver.

Introduction

The wolf snatched it up and ran off. This left you with a creature in
the cellar laboratory without a liver. But at a later time, the wolf ap
peared again, and this time you were able to kill it. You discovered
that it was a werewolf, and in death it reassumed its human form. It
was from this second human corpse that you obtained the liver you
needed.

Another plot twist was the ending of the adventure. Throughout the
entire story, you were under the impression that your goal was to com
plete the creature and bring it to life. You spent a great deal of time
finding the various tools, instruments, and organs in order to complete
the creature. Yet when you finally connected the electrodes and threw
the electrical switch, the creature came to life in a shower of sparks
and started toward you with murderous intent. It was at this point that
you discovered your adventure was not over. Your final goal was to
destroy the creature and save your own life. The way in which this task
was accomplished was taken directly out of one of the Frankenstein
movies. You lured him into the swamp, as seen in the climax of The
House of Frankenstein.

The adventure was completed and debugged during my two-week
Christmas break in 1980. It was my intent to submit it for publication,
and sell it. But first I gave a copy to a friend to play. He loved it. But
he did ask, "Why can you keep killing the wolf?" Sure enough, he had
found a bug. I had the wolf appearing when the player visited the far
comer of the cemetery. But I forgot to stop creating the wolf after you
had killed it. Hence, the wolf kept reappearing and reappearing. It
was a lesson well learned: always have someone else play your game
after you are finished writing it- no matter how sure you are that all
the bugs have been eliminated, someone else is sure to find one that
you missed!

I submitted my first adventure to CLOAD, a cassette-based magazine
for the TRS-80. They had previously bought some of my other, non
adventure games, and they snapped up Frankenstein Adventure. Several
months later, it appeared in one of their issues. My first published
adventure! Within a matter of days I started getting letters. Everyone
loved it. I got letters from all over, even from other countries. Some
were in foreign languages that I couldn't read, but had to have inter
preted. Some people would ask for help. Others would simply write
expressing their appreciation for the thrilling experience. And al
though the volume of letters dwindled, I still received letters for many
years after that, as copies of my program continued to be circulated.

I was captivated. Writing adventures was more fun that playing them!
I immediately started plotting other adventure stories. First there was
one based on the jungle settings of the Tarzan novels, entitled The
Elephant's Graveyard Adventure. Then followed a sequel using a few of
the same locations, King Solomon's Mines Adventure. Both were pub
lished by CLOAD magazine in 1981. Others followed. The Lost City

1-3

The Visionary Programmer's Handbook

1-4

adventure was so big, it had to be done in two parts. Keep in mind,
these games were all written in BASIC to run in a maximum of 16K
memory. The Arabian Nights adventure took place in Baghdad.
Shipwrecked took place on a desert island. All of these were published
by CLOAD magazine, or SOFTS/DE magazine, a printed magazine
with a companion disk. For a time, adventure games were so popular
that SOFTS/DE offered an Adventure of the Month Club. Several of
my adventures saw their first publication as an Adventure of the Month
Club offering.

I continued writing several new adventures each year on the TRS-80
through the early 1980's until the TRS-80 stopped production and the
demand for software tapered down to a trickle. The Commodore 64
was the new kid on the block, so I upgraded my computer to a Com
modore 64. I spent some months converting the first of my adventures
over to the C-64. The BASIC languages used by Commodore and
Tandy were similar but had substantial differences. I prepared to con
vert the rest of my adventures to run on the C-64, but before the task
was completed, a wonderful thing appeared- an adventure-authoring
system for the Commodore 64.

In early 1984, Adventure Writer was released. This adventure-authoring
system allowed anyone to write adventures, with no programming
knowledge. Not only that, the adventures you wrote with it were not in
BASIC-they were in machine language. All messages were encoded
so that even examining the disk sectors wouldn't reveal any clues. The
parser was still somewhat limited, but with proper programming you
could parse more complicated sentences. For example, you could say:
"PUT THE ENVELOPE IN THE MAILBOX", something you could
never do with Scott Adam's adventures, or with my BASIC ones. But
best of all, the adventures could be much larger and still run with the
instantaneous speed of machine language. No more pauses after the
player typed his input. The adventures now reacted immediately.

Adventure Writer actually originated in England. It was written in 1983
by Graeme Yeandle and released by Gilsoft under the name The Quill.
It was released under the name Adventure\\nter in the U.S. by Code
Writer Corp. who also released Apple, IBM, and Atari conversions of
it under the same name. One of the nice things about this spread of
products was that once an adventure was written using Adventure
Writer or The Quill, it was relatively simple to convert it to run on an
Apple, IBM or Atari. From a marketing standpoint, this was a big
plus - for a small investment in time, the same adventure could be sold
on four times as many computers. And that translated into larger
royalties.

At that point that I tossed out all further plans to convert my adven
tures to the Commodore 64 in BASIC. I started using Adventure
Writer immediately to convert my old BASIC adventures over to the
C-64. The program was a joy to use. It allowed me to create a pro-

Introduction

gram much more sophisticated than I was previously able to write. My
first conversion was the two-part Lost City Adventure. Since
Adventure Writer allowed so much bigger adventures, both parts were
combined into one giant adventure and given the title Revenge of the
Moon Goddess.

I re-wrote my original Elephant's Graveyard Adventure and its sequel
King Solomon's Mines Adventure, combining them into another giant
adventure under the title of Perils of Darkest Africa. Then I sat down to
write my first original story on Adventure Writer. I took my inspiration
from an old radio mystery in which the dead apparently came to life
and walked at night. My story took place in a Louisiana cemetery on
the edge of a bayou. The result of several month's work was Night of
the Walking Dead. It was to become one of my most critically ac
claimed works. One reviewer wrote that he actually felt chills run
down his spine when playing the game late at night. He even went so
far as to write that it compared with Stephen King's novels. (I was
flattered, but realized he was exaggerating).

All three adventures were published by CodeWriter Corp., the com
pany that also published AdventureWriter, in a package called The
Thriller Series. The software package was released in time for the
Christmas rush of 1984, and could be found in the software section of
all the major toy stores. Because of demand for a sequel, I converted
of some of my old stories from the TRS-80 days. By the following sum
mer a second package was released, called Thriller 11. It contained
Shipwrecked, Son of Ali Baba, and Frankenstein's Legacy. This last was
my very first adventure, upgraded and expanded and now available on
the Commodore 64.

There were more adventures and other publishers in my future. My
next adventure was born from a desire to write an adventure that was
so big, that it would tax the limits of Adventure Writer. From this in
spiration came Three Hours to Live. It had 254 rooms, the maximum
that AdventureWriter allowed. The completed adventure was so big
that I could not convert it for the Apple computers, since the Apple
has a lower memory limit on Adventure Writer than does the C-64.

And the adventures kept coming and coming. A few were written
especially for use in my computer classes. Most were written with
commercial possibilities in mind. There was Eye of the Inca, a treasure
hunt inside an ancient Central American temple. The Sea Phantom
was a ghost story that took place on the stormy New England coast.
Merlin's Gold had you searching through Camelot looking for the
wizard's gold. The Magic Forest was a "prequel" to Merlin's Gold. In
it, you released Merlin from a magic spell. And then there were the
two "sampler" adventures entitled I Was a Cannibal for the FBI and
The Secrets of Fun/and. These were smaller adventures meant to be a
sample of what an adventure is. The puzzles and plots of both were
rather simple as adventures go.

1-5

The Visionary Programmer's Handbook

1-6

I bought my Amiga in 1986, but had to wait until 1990 to write my first
adventure on it. Until that time, there was no adventure-authoring lan
guage available on the Amiga. At least, there was none I found
suitable. Oh, there were glimmers of hope-in 1986, AmigaVenture
was released, but it was a BASIC adventure framework rather than an
adventure language. In 1987 two similar programs, AOL and
ADVSYS, were released. Both were adventure-authoring languages,
but were complicated and didn't allow for anything more than pure
text. Each was originally written for the IBM and ported over to the
Amiga. And none of the above were released commercially. They
were either public domain or shareware.

In 1988, Sunrize Industries advertised the first commercial adventure
creation program called Adventure Workshop. I got to try it out, when
the company contacted me to do the beta-testing for the program. It
offered some sound and graphics capabilities, as well as a language that
was easy to understand and use. Unfortunately, the program was never
released commercially. If I wanted to write adventures on the Amiga, I
would haveto use one of the systems I found lacking, or do it "from
scratch" in BASIC. Then along came T.A.C.L., 1be Adventure Construc
tion Langua~ This was the early precursor and "baby brother" to
VISionary.

I first saw T.A.C.L advertised in December of 1989. The following
morning I was on the phone ordering it. I was told the program wasn't
quite ready. The manual hadn't come back from the printers yet. But
I put in my order anyway. It arrived during my Christmas break, and I
spent most of my free time getting acquainted with the language.

During the first three months of 1990, I wrote three brand new adven
tures using T.A.C.L. The three adventures were all horror stories, and
made up the Nightmares from the Crypt trilogy. The first was Rings for
Bony Fingers. In it, you had to find the ten rings and replace them on
the fingers of a skeleton. In Ghostriders of El Diablo, the second in the
trilogy, you lifted an Indian curse from the old ghost town of El Diablo.
The third and final adventure was entitled Dr. Death's House of Hor
rors, set in a large Victorian mansion that housed a wax museum. All
three adventures were tied together by a central theme. In each, you
were asleep having a nightmare. Each nightmare was different, but in
each you had to find the way to awake before you died in your sleep.

In the summer of 1990, I heard the first whisperings of a new adventure
language called Visionary. It would have its roots in T.A.C.L., but was
to be much more extensive, with full graphic and sound capabilities. I
was called upon to beta-test the software before its release, and found
it to be a superb language. This is the language I use today.

VISionary's ease of use is the reason for this book- I foresee that many
new adventure-game writers are out there, simply waiting for the tools
to start creating. I hope this book wit be one of those tools.

Introduction

There are many more adventures brewing in my imagination. As com
puters evolve and become more sophisticated, so will my adventures. I
have no idea what computer I will be using years from now. But one
thing I do know- I will be writing adventures on it.

John R. Olsen

August, 1<)91

1-7

The Visionary Programmer's Handbook

1 - 8

Chapter 1: The Plot

You have an idea for an adventure. And that's where it all starts-with
an idea. A suggestion. A thought nagging at your mind. "Gee, I'd like
to see an adventure set in ancient Egypt." Or maybe a wish to see
something that you've never seen before. ''Why don't they ever make
an adventure where you get to travel around in time?"

Whatever gets you starting to think about an adventure story, it's the
first step. For many people it goes no further than that. But not you.
You actually want to write an adventure. And you can. Using the in
teractive gaming language Visionary, you can write your own adventure
with relative ease. The technology has arrived.

Get to Know Visionary

So how do you start? How do you actually make a computer game out
of the story that you have in your head? First of all, get to know
Visionary. Know its capabilities. Know what it can do, and what it
can't. Do this before making any maps or writing out any location
descriptions. By knowing what this adventure authoring system is
capable of before you start planning your adventure, you can work
around the limitations inherent in any system. It saves you the time
required to go back and redesign parts of your adventure later.

Plotting Your Course

The next step in writing your adventure is the plot. Grab a pencil and
some paper and start jotting down notes as you plot out your story.
Let's say you want to write a story about ancient Egypt. Start making a
list of things that will give the feel of ancient Egypt. Guards. Chariots.
Pyramids. Flowing Nile. Barge on the Nile. Mummy. Thnna leaves.
Hot sun. Sand. Full moon shining at night. Jackals baying at the
moon. Oasis. Temple of Osiris. Slaves. Rock quarry.

Let your imagination run wild, as you search for things to give the feel
of ancient Egypt. Use any memories you have of old movies. Maybe
pictures. Stories you heard years ago. TV shows. Check out some
books from the library. Non-fiction books. Fiction books. What you
are doing is making a list of things that you can put in your adventure.
Things that will make it fuller and richer, and give the player the feel
ing of really being there, in ancient Egypt.

1 - 1

The Visionary Programmer's Handbook

1-2

What's the Story?
Now it's time to start pulling the story together. You must decide
where the adventure will start and how the story will progress. Perhaps
you will place the adventurer in the waterfront district of the port city
of Alexandria. Or perhaps you want the player to begin out in the
desert in the Valley of the Kings. Usually the plot of the story will help
dictate where the player will begin.

Every adventure must end, and you must choose a suitable ending to
your adventure. The player must have a final goal. And when this goal
is reached, the player should be rewarded with a congratulatory mes
sage, telling him that she has completed the adventure. But you as the
author must decide what constitutes the adventure's end. Does it end
when she has collected all thirteen treasures? When he has awakened
the princess? Or maybe when he has destroyed the last of the infidels?
Sometimes making this decision is one of the hardest. You may have a
great idea for an adventure story, but you must also choose a suitable
final goal.

The Plot

Then there is the story- the plot. You need to do more than just
decide the adventure will be about ancient Egypt. You must carefully
craft a story. Perhaps this is a love story about the search for a kid
naped princess. Or maybe it's a treasure hunt, where the player is a
grave robber trying to collect the treasures of the ancients. Or maybe
the player is trying to prove he is the long lost son of the Pharaoh. As
soon as you have decided, come up with a plot outline.

A plot outline will tell the story as you want the adventure player to
experience it. For example: the player is fishing on the river bank of
the Great Nile, trying to catch his dinner. He snags a bottle, which
when opened releases a genii. Instead of granting him three wishes,
the genii tells him that he is the true son of Pharaoh, stolen away at
birth. It tells him that proof can be found in the House of the Dead,
where the embalmers ply their craft. He visits there and is sent on a
series of quests, finally resulting in finding a papyrus document proving
his claim. He takes it to the palace, where he is welcomed with open
arms by his long lost mother, the wife of Pharaoh. He has finished the
adventure and won.

The Tone

You must also set the tone of your adventure. Is this a dark and som
ber adventure? A light romantic one? Perhaps a frivolous escapade.
Or a pun filled comedy? Whatever you choose, you must be consistent.
You should not change tone in the middle of an adventure. Imagine
this. You are playing a scary adventure, lost deep within the ancient
pyramid with a living mummy close on your heels. Suddenly Bozo the

•

•

Chapter 1: The Plot

Clown jumps out of a sarcophagus and hits you in the face with a
cream pie. You've lost the mood. As the author, it is your respon
sibility to tell a smooth and even toned story. Of course, if you were
playing an adventure set in a Fun House with rolling floors and squirt
ing air hoses, then having Bozo jump out and hit you in the face with a
pie would be most appropriate.

The Target Audience

The tone of your adventure and indeed even the plot itself will be fre
quently dictated by your targeted audience. Before you get too far into
the planning of your adventure, you must decide who you intend to
play the game. Is this going to be an adventure for kids? Or mainly for
adults? For beginning adventure players? Or experienced adven
turers? If your adventure is mainly intended for the first time adven
turer, you will probably want to keep your plot simple, and the tone
light. If your game is aimed at the intermediate to advanced player,
then you may want to darken the tone, and certainly extend the plot.
Everything you do in creating your adventure should reflect your target
audience. As you will see when we start designing the challenges and
describing the rooms and objects, this target audience will continue to
have a major effect on what you choose.

The Map

At the same time you are doing all of this, a map should be drawn. At
first, it may be a rough and incomplete map. But as you start to form
the story, you will find the map will start to fall into place. And it will
prevent you from making serious logical errors later when doing the
actual programming. If you intend to allow the player to go north from
the temple antechamber into the great hall, then going south from the
great hall should take him back to the antechamber. Drawing a map as
you plan your adventure will make sure these obvious directions don't
become confused. Without a map it is amazingly easy to start inserting
conflicting directions into your adventure.

Of course, you may want to make logical errors intentionally. A maze
is a good example of that. Many adventures make appropriate uses of
mazes. Originally, mazes were part of "cavern" type adventures. The
player wandered through the maze trying to find her way to the other
side and some objective. Traveling north in the maze would take her to
some room, but traveling from there back south might not return her to
the first room. The lack of logic was acceptable, because she was in a
maze.

The use of mazes has since been expanded to be used in many other
contexts. They can even be in wide open spaces. Perhaps the player is
lost out in the desert. The sun beats down on the sand dunes, confus
ing him until he can't tell which way is which. He goes north and then

1-3

The Visionary Programmer's Handbook

1-4

south. But he finds he is not back where he started. Under normal
circumstances, this would not be logical. But since he has lost all sense
of direction, the illogical becomes logical.

You've started with an idea. Then you fleshed it out with a plot.
You've set the tone and chosen your target audience. Finally, you have
a rough map sketched. The next step will be designing the puzzles that
are at the heart of every adventure. This may be the single most im
portant aspect of writing an adventure, and will be fully discussed in
the next chapter.

Chapter 2: The Puzzles

The next step in creating your adventure game will be to design the
various puzzles that will intertwine with your plot. You have designed
your plot, set the tone of the adventure, chosen your target audience,
and sketched a map. Now you will design the puzzles.

The Purpose of Puzzles

At this point in the creation of your adventure game, you have not
touched your computer. Be patient. You are still laying the
groundwork for your adventure. It's always tempting to just sit down at
your computer and start writing your game. But if you do, you will find
yourself going back and making changes to a story that was not com
pletely thought out. Experience has shown that you will end up wasting
less time if you finish your plan first. It could easily take twice as long
to complete your adventure if you rush into it without proper planning.

The most satisfying part of playing an adventure is solving the puzzles.
Overcoming challenges. Arising victorious despite overwhelming odds.
Showing cleverness in solving the puzzles. A great feeling of ac
complishment is felt when successfully completing each phase of an ad
venture.

On the other hand, a feeling of great frustration is felt when playing a
poorly designed adventure with impossible puzzles. You want the
player to feel good, not bad, about your adventure. That doesn't mean
making the puzzles easy; the player wants to feel she has worked to
accomplish something. It means making the puzzles a challenge. The
player wants to feel that the glory which comes with solving the puzzles
was earned, not that an easy solution was provided.

Adventure games rely on puzzles or challenges. The game should con
stantly make the player ask himself, "what do I do next?" or "how do I
do that?". There is always some task to accomplish. There should be a
variety of smaller goals to achieve on the way to the reaching the larger
final goal. For example, the player's final goal might be to release the
princess from a magic spell. One smaller goal might be to find the
ancient manuscript which lists the ingredients for an antidote to
awaken the princess. Other goals could be gathering the necessary in
gredients to make the potion. The player might have to find the
feather of the giant Roe. Or collect sand from the Kalahari. Or obtain
the web from a black widow spider.

2-1

The Visionary Programmer's Handbook

2-2

Designing Your Puzzles

Once you have listed the goals on paper, try to design a variety of dif
ferent ways to reach achieve them. Don't make them all the same.
You would not want the player to simply travel to the bird's nest to find
a feather, then simply travel to the Kalahari desert to get the sand, and
fmally simply travel to a damp cave to get the web. Make the solution
to each puzzle different. Make getting the feather harder. Perhaps the
player will have to capture the bird in a trap first. Maybe traveling to
the Kalahari is usually difficult. And the black widow might always bite
the player causing death, unless he has the foresight to drink an anti
venom potion first.

Layer the Goals

The small goals should have further goals beneath them. To make your
adventure more real and more exciting, you should have layers and
layers of goals. Take the example of obtaining the feather from a giant
Roe. Try to make it more difficult by splitting the task into further
small goals. Let's say the player cannot fmd a feather that has been
shed from the bird. She can only pluck one from the bird itself. So she
builds a giant trap. But building the trap requires a lot of netting. She
has to get this somewhere. Perhaps there is a stand in the bazaar that
sells netting. But she has no money. So she has to get a job hauling
animal carcasses to the glue factory. See how there are several dif
ferent goals she must reach in order to get the feather. Get a job. Get
money. Buy the netting. Build the trap. Trap the bird. And then
pluck the feather. Small goals like these make reaching the larger goal
more fulfilling. Upon obtaining the feather, the player experiences a
real feeling of accomplishment.

Allow False Solutions

Let the player do things that serve no purpose in the final solution to
the adventure. If looking for money, allow the player to get a job tend
ing bar. Allow him to steal it from a shopkeeper. You may wish to
have her caught for stealing and thrown in jail. You may wish to have
him fired from her bartending job. In this way, you will force the
player to get the money by hauling the carcasses. But provide various
options. An adventure in which nothing can be done unless it is part of
the solution, becomes a narrow, limited and boring adventure.

By allowing the player to do more than the bare minimum, you keep
her on her toes. When she succeeds in some task, she never knows if it
is an important part of the solution or not. By allowing the player to
get a job tending bar, the player is under the impression that money
can be earned that way. It is only later that she fmds out there was
another way to earn the money she needed. And she may even go back

Chapter 2: The Puzzles

and try to regain the job tending bar, figuring that she wouldn't get
fired the second time.

Let's see how you can further enhance the problem of the Roe feather.
You're not just going imply that players need to trap the bird. Make
the players come to that conclusion alone, without prompting. Perhaps
the first instinct will be to kill the bird. By all means you should design
your adventure to allow the attempt. Provide weapons. Perhaps a
sword or a spear. Make getting these weapons additional goals. Per
haps the sword has to be purchased with the money earned somewhere
else. Or you could have players win weapons in an arm-wrestling con
test. When they try to use the weapons on the Roe, they fail. Perhaps
the bird is too agile-it avoids all sword thrusts. Or its feathers act as
armor; the sword bounces off. The important thing here is that you
have given several false solutions to this goal, and allowed the adven
ture players to find the correct one on their own.

Let's see how these techniques can be used in obtaining sand from the
Kalahari. Offer the player several ways to travel to the Kalahari. Let's
say the designed way is by magic carpet- but you also offer a camel
caravan and a fast horse as other means of travel. Allow the player to
discover the fast horse can't finish the journey. Perhaps it expires from
heat when only halfway there, and she is returned to the city by friendly
Bedouins. If you don't wish to allow the player to reach the Kalahari
by camel caravan, find some way to prevent it. The important thing is
to at least let the player try.

If you intend to allow the player to reach the Kalahari by magic carpet,
there are a variety of smaller goals you can design. One is finding the
magic carpet. Another is figuring out how to use it. You might have
the carpet hidden in a locked trunk. A further goal would be to find
the key. Then once the carpet has been found, somehow you have to
let the player know it is a magic carpet, not just a normal one. Perhaps
you could place a dim aura glowing about it. Or a small voice might
tell the player that the carpet is magic. There might even be a small
message embroidered on the bottom. Once the player realizes the car
pet is magic, the magic words to operate it must be found. You might
have these words revealed by a ragged seer sitting cross-legged in the
sand, telling fortunes. You could have the words be written in an old
book. You could even have them appear inside a fortune cookie! The
important thing is that the player has had a fun time in the quest.

Make Puzzles Consistent

You want to make these puzzles consistent with the plot of your adven
ture. There is no sense in finding an aspirin listed in the ingredients of
the magic potion. It's inconsistent with the historical setting. You
wouldn't have the player travel to the north pole to find the feather of
the Roe. It's inconsistent with the geographical setting. Releasing the
princess from her magic spell by the use of an antidote potion is consis-

2-3

The Visionary Programmer's Handbook

2-4

tent. Releasing her from the spell by winning the Great Roman
Chariot Race is inconsistent. Make your puzzles consistent with the
setting, the time frame, and the tone of your adventure.

Your puzzles should move the plot along. Each time one goal is
reached, the player should feel he has come a little closer to the final
goal. When the player has finally obtained the Roe feather, he knows
he is now one third of the way to making the potion necessary for the
revival of the princess. This leaves him motivated to continue playing
your game. He feels success, and sees he is making progress.

Likewise, when your player returns with sand from the Kalahari desert,
she knows she is two thirds of the way to the ultimate goal. Without
this system that allows players to evaluate their own progress, players
will frequently just give up playing the game. However, if the puzzles
keep taking them closer and closer to his final goal, the players will
keep playing your game all the way to the very end.

Types of Puzzles
There are different types of puzzles that you can place in your adven
ture. Some are built around the avoidance of death. Some are
designed around acquiring or using some object. Some are created to
get past an obstacle. And some puzzles are simply based on choosing
the correct items to carry. You should place a variety of these types of
puzzles in your game.

Obtaining and Using Puzzle Objects

The puzzles described so far have been about acquiring an object. The
player was trying to get money, or some netting, or a sword, or a
feather. Puzzles of this type are probably the most common ones in
adventures. You will probably use them more frequently than any
other. Whether your player is trying to obtain a treasure or is trying to
obtain a tool to reach the treasure, seeking some object is the most
frequently used type of puzzle found in adventures.

There are several different ways to make an object difficult to obtain.
One is to make the object visible, yet difficult to reach. For example,
you could have a gem visible inside a cage of tigers. The player can see
the object, but he can't obtain it. The advantage to this type of puzzle
is that the player knows what he must get.

Another way to make an object difficult to obtain is to hide it. You
force the player to search a variety of places, seeking the correct hiding
place. In some cases, you will let the player know what he is looking
for. In other cases, the player won't know what he is looking for. You
may let the player know he is looking for a key that will unlock a door.
You might do this by simply stating " the door is closed and locked,
and you don't have the key." In this case, the player will begin to
search for the key, knowing what he is looking for.

Never Kill the
Player Without
Warning!

Chapter 2: The Puzzles

In other cases, you might have the player searching for some way to
avoid the tigers. In this case, the player doesn't know what she is look
ing for. She only knows that she wants to get the jewel without being
killed by the tigers. So she searches for some means to accomplish
this, whether she finds a gun, some poison, a suit of armor, or even a
long string with a wad of bubble gum on the end.

Discovering how to use objects can be a related type of puzzle. For
example, the player may have a flashlight, but no batteries. The player
can't use the flashlight until he finds some batteries. You might even
give the player dead batteries, and then require him to find and use a
battery charger before he can turn on the flashlight. Or you might
present the player with a broken object, say a broken-down old pump
organ. It can't be played until the bellows are repaired. The player
will have to find some glue or a needle and thread before he can fix the
bellows and play the organ. Remember that finding objects isn't always
the end of a goal. Sometimes the player must discover how to use the
object as well.

Death Traps

Some puzzles are built around the avoidance of death. Many adven
tures have one or more death traps. There may be a trap door that
drops the player into a pit of alligators. A poison dart may be shot
from a small hole in the wall. A giant boulder may come crushing
down. Anyone who is familiar with the old movie serials or the more
recent blockbuster adventure movies will be familiar with the concept
of death traps. These are always fun to have in your adventure. They
add a little spice, a thrill, and a taste of danger.

If you intend to use any death traps in your game, there are several
things you will need to remember. Never kill the player without warn
ing. Never. It's unfair to the player. Let's say the player is walking
down a long tunnel when suddenly a huge sword drops down from
above and kills him. The player will now have to start the entire game
over, or pick up from the last position he has saved. And the player is
justified in feeling unfairly cheated. Death that is a complete surprise
marks a poor adventure, one which will usually be abandoned without
being completed.

The player should always be able to complete your adventure game
without ever being killed, if he is prudent. That doesn't mean you have
to place obvious warnings before every death trap. There's not much
fun to an adventure if every death trap has a bright red neon sign
pointing to it. But you have to give the player some type of warning,
even if it is vague. The player should be able to look back and realize
his mistake and know that he was warned but failed to recognize the
warning. You might have a cave drawing, depicting someone being
slain by a sword dropping from the ceiling. You might have a fortune
teller earlier in the game who warned him to "beware of dark places

2-5

The Visionary Programmer's Handbook

2-6

where death falls from above." You might just have a message appear
on the screen as he is a step away from the death trap, warning that
"you hear a scraping sound from above." The warnings don't have to
be obvious. But there should always be some type of warning.

Once you have designed your death trap, try to find some unique way
to get past it. Give your player a long spear so she can pole vault over
the pit of alligators. Let her carry a wax dummy that can be pushed in
front of her and be struck by the dropping sword. Look for unusual
ways to solve the problems. You could even turn a death trap into a
means of escape. A pit in the floor of the underground maze could
drop the player hundreds of feet to a swirling underground river, in
which she drowns. But if she had worn a life preserver, the current
would have carried her out of the underground maze to the valley
below. What appeared to be a death trap actually turned out to be the
only safe exit.

Don't over-use death traps. You could design a maze filled with death
traps-one room might have a trap door, the next room might have a
dropping sword, the one after that might have an electrified floor, and
so on. Although they are fun and exciting, death traps can quickly be
come boring, especially if the player has been in that part of the adven
ture before and is trying to move on to the next part. It is usually best
to spread them out in your adventure. If you choose to use death
traps, use them sparingly, and find clever and unique ways to avoid the
trap.

Similar to death traps are various ways of dying by hunger or thirst.
Sometimes you may want to make the player hungry or thirsty. Perhaps
the player wanders out into the desert. You might wish to make sure
he takes water with him, or else perish. If you plan on keeping track of
time as your adventure is played, you may wish to require the player to
eat at least once a day. The puzzles here could be to find a source of
food or water. You might even force the player to find a way of carry
ing the water out into the desert with him.

As mentioned before, though, always give the player some warning.
Never have him suddenly die from thirst or hunger. Give several warn
ings, such as "You are starting to get thirsty'', "You are parched!", "You
are dying from thirst" and "You won't be able to make more than three
moves without some water." Try to allow the player enough moves to
go back and get water at the first warning. One advantage to these
types of puzzles is that they frequently require the player to carry food
or water along, and that adds to the inventory, forcing the player to
carry fewer other items. As will be shown later, limiting the number of
items in a player's inventory can result in another type of puzzle to
solve.

Sleep can be used in similar ways to eating and drinking. Just as you
can make the player feel hungry, you can make him sleepy. This can be
done by keeping track of time passing, and making your player sleepy

Chapter 2: The Puzzles

at night time. There might be a variety of reasons to want your player
to fall asleep. Perhaps you will have him die from the cold, unless he
sleeps indoors. You could have him robbed of his valuables while as
leep, unless he locks the door. You could make him weaker if he
refuses to sleep, thus causing him to lose an arm wrestling contest.

Here are some of the things to consider when you use sleep in your
adventure. When do you want the player to sleep? Every night for six
hours, or just after drinking a mysterious potion? What will be the
consequences if she doesn't sleep? Will she fall asleep anyway after so
many turns, or will she stay awake but just be weaker? Must she do
anything special before going to sleep? Does she need to lock herself
in the house, or wear a crucifix to ward off a vampire? Do you want
any positive consequences if she sleeps? Perhaps she will have a dream
giving him some vital clue? Or do you just want to avoid negative con
sequences by sleeping? Will she simply avoid theft, weakness or death?
Using sleep in your adventure is not required, but it can enhance your
game.

Obstacles

Some puzzles are based on getting past an obstacle. These are similar
to death traps, but death is not involved. Instead, something non-fatal
is in your way. It could be something as simple as a locked door. Or
perhaps you have to find a way across a river. These puzzles are not
like a death trap. You won't die if you try to swim across. Usually in
cases like this, the adventure game simply won't let the player cross. It
might give a message like "You can't swim, and decide against trying,"
or "The current's too swift, so you turn back." It's a non-fatal obstacle
that the player has to overcome. Try to place several of these types of
puzzles in your adventure.

As with any puzzle, your job in creating the solution to an obstacle
puzzle is to try to mislead the player. The player might be trying to get
inside a castle. The obstacle is perceived to be the drawbridge. The
player can't seem to find a way to lower it. As the author, you place
various "red herrings" in the player's path. There could be a horn to
blow, but no one responds. Maybe a bell to ring, but again no one
answers. Perhaps even a rope to pull on, which unfortunately still
doesn't lower the drawbridge. However, the perceived obstacle is not
the true obstacle. Perhaps the drawbridge can never be lowered. You
have used the "red herrings" to mislead the player into thinking that
the drawbridge is the way to enter the castle. Actually, the solution to
entering the castle could be as simple as building a ladder to scale the
walls.

2-7

The Visionary Programmer's Handbook

2-8

» Clues Always give the player a hint, some clue as to
the solution to the problem. Never leave the player
totally frustrated as to the solution to any problem, or the
player may give up and leave the adventure. You don't
want to make the clues too obvious; you can be subtle.

In the example, perhaps the top of a ladder is just visible, sticking
above the walls of the castle. Or perhaps the player saw a small ladder
out in the forest earlier in the adventure. You could even have a band
of elves run giggling through the woods carrying a tall ladder, after the
player has tried the more obvious "red herrings." However you choose
to have the player get past your obstacle, make sure that you have left
some clue.

Inventory Limits

Some puzzles are built around the player selecting the right objects to
carry along. What should he take into the castle? What will he need?
What won't he need? The reason that this can be considered a puzzle
is that usually the player can only carry a limited number of items. In
ventory limits are frequently an integral part of puzzles. The player
needs to choose carefully what he will carry. You can make it impos
sible to complete the adventure without using six items even though he
can only carry five. This requires taking some of the items to one loca
tion dropping them, and going back for the rest.

As mentioned previously, if one of the items in the player's inventory is
a required item like food or water, then it cuts down on the number of
other items that can be carried. This is one way to make solving a
puzzle a bit trickier. As the game designer, you know how many items
are required to solve each puzzle. So you may decide to set the inven
tory limit in such a way that carrying the required food or water neces
sitates making a second trip to carry all the other required objects.

You could even make the second trip more difficult, by placing
obstacles in the player's path. For example, a troll might stop the
player each time she crosses a bridge, and demand payment before the
player is allowed to continue. You might create enough gold to allow
payment only once, yet require the player to make two trips across the
bridge to carry all of the items she needs to complete some goal. That
forces the player to find some alternate way of bringing back the
second batch of objects. Perhaps she will have to swim across the river,
kill the troll, or find a second source of gold. All of this became neces
sary because there was one extra object that the player needed but
couldn't carry due to the inventory restriction.

Chapter 2: The Puzzles

We've covered the basic types of puzzles you can put in your adventure.
There are death traps, obstacles, objects, and inventory related puzzles.
These four general types can frequently be combined and modified.
For example, the avoidance of a death trap in the form of a pit of
alligators might require the building of a trampoline. To do this, the
player needs to acquire the necessary parts and tools. And since he is
limited to carrying no more than a certain amount, he must carefully
manage his inventory.

Don't be afraid to try something new. Use your imagination-be in
ventive.

Design Guidelines for Puzzles
Regardless of what type of puzzle you design, there are several
guidelines to follow. Keep puzzles logical. Don't make them impos
sible. Give clues. Allow objects to have several uses. Mislead the
player regarding the value of an object. And finally, vary the types and
difficulties of the puzzles you choose. Following each of these
guidelines will make your adventure a more rewarding game to play.
Let's examine each guideline further.

Keep Them Logical

Keep the puzzles logical. You expect the player of your adventure to
behave logically. You expect him to try to solve your puzzles logically.
So don't throw puzzles at him that defy logic. If you had designed a
medieval adventure, it would not be logical to create an obstacle in the
form of a futuristic metal robot. It would be even more illogical to
solve the puzzle of getting past the robot by feeding it a cheeseburger,
since robots don't eat. You shouldn't expect the player of your adven
ture to attempt illogical things to solve your puzzles.

If you were designing a time travel adventure, a robot would be a logi
cal obstacle to create. But using a cheeseburger to get past it is still
not a logical solution. You don't want to force the player to guess solu
tions from thin air. It would not only take forever to find the right
combination, it would also be extremely frustrating. It would be better
to have some other way of getting past the robot; some way that is
tricky but more logical. Perhaps the player could short it out with
electricity. Or rust it with water. Or lure it into a death trap meant for
the player. When the player overcomes the robot, he will feel much
more satisfied if he has used logic to do it, than if he relied on pure
luck.

You can use solutions to puzzles that seem illogical, if you later show
that they are indeed logical. It's best if you have given the player some
clue before he encounters the problem. Take the problem of the bear
that was encountered in Scott Adams' classic AdventureLand. The
player stood on a narrow ledge, confronted by a bear. The bear

2-9

The Visionary Programmer's Handbook

If your game
has multiple
solutions, one
answer should
be better than
the others

2 -10

wouldn't let the player pass. The solution to the puzzle was to scare
the bear by yelling. The bear was so startled that it fell off the ledge.

At first this solution seems illogical. No player could be expected to
solve the puzzle in such an unexpected manner. But in this case, the
player was given a clue: "Don't waste honey, get mad instead." So al
though the solution was illogical, it was still acceptable. The player had
been given a clue, and was not expected to find such an unusual solu
tion by himself. To have expected him to solve it without any help
would have been unfair to the player.

The above mentioned hint "Don't waste honey, get mad instead" il
lustrates another technique in designing your puzzles. You can design
a puzzle with several solutions, but only one that is best. In the ex
ample taken from AdventureLand, there were two solutions to the bear
puzzle. The player could scare the bear, or he could feed it the honey.
After the bear ate the honey, it went to sleep allowing the player to
pass. But this alternate solution was not the best one, because it re
quired the player to give up the honey. And in that adventure, the
honey was one of the thirteen treasures the player was supposed to
collect. Keep this technique in mind when you design your adventure.
Allow several solutions to some puzzles, but make each have draw
backs except one.

Provide a Possible Solution

Don't make your puzzles impossible. Don't get so tricky in your design
that even an advanced player couldn't figure out the solution. Remem
ber who your audience is. If you are designing an adventure for begin
ners, keep the puzzles easier. If you intend for it to be played by
seasoned adventurers, then make the puzzles harder. But remember
that it is easy to get carried away and make them too hard. Any adven
ture that is too hard is an adventure that won't get played.

Provide Clues

That doesn't mean you have to throw out a good idea, just because the
puzzle is too hard to solve. You'll just make it easier to solve by giving
the player clues and hints. Let's say you have a terrific idea for an
obstacle; a wolf bars the player's way out of the graveyard.

You want to make the solution a tough one. The wolf can't be fed or
killed. The secret is that this is no normal wolf, but a werewolf. It can
only be killed by a silver headed cane. To make the puzzle harder, you
provide the player with "red herrings." The player finds some raw
meat which she can try to feed the wolf. She finds a revolver with
which she can try to kill the wolf. Of course, neither works.

The puzzle as it stands is too hard. The player would probably never
attempt to strike the wolf with the cane on her own, after failing with
the revolver and raw meat. It would not be logical. So as the game

----- •

You can use
the HELP
command to
provide clues
and hints

- ------~~ -

Chapter 2: The Puzzles

designer, it is your responsibility to make the puzzle a bit easier by
providing some clues to the solution. Make sure the player knows the
cane has a silver head. Go further and describe it as a "silver head
fashioned into the shape of a wolf's head." You might even have the
wolf snarl and glance uneasily at the cane, if the player carries it. All
of these clues and hints can lead the player to discover the solution to
your puzzle.

Another way to give clues and hints is by the use of the HELP com
mand. This is one of the few traditional commands you will find in
nearly every adventure. Just as a player can type "inventory'' to find
out what she carries, the player can usually type "help" to get some
clues. When the player does request help, your game should respond
with some appropriate clue.

Don't just come out and give the solution to the current problem.
Don't say "Strike the werewolf with the cane." There's no fun in simp
ly being told what to do. It's much more satisfying for the player to
figure it out for herself, after reading the hint. Make it a clue which
must be deciphered. More appropriate would be, "This is not a nor
mal wolf. It appears afraid of your cane." This type of clue would not
be given in the normal description of the wolf. It should only be given
if the player asked for help. And naturally, it should only be given
under the proper circumstances, when the player carried the cane and
was confronted by the wolf.

When you design the helps in your game, be sure they occur at the
proper time. If the player stands by a locked door and asks for help,
your game should not give the response about the wolf. It should in
stead give some clue to the whereabouts of the key to the door. Plan
ahead where you feel the player will need help, and make hints avail
able that will assist the player without giving too much away.

Always have a "default" help. Remember that the player may ask for
help any time during the playing of your adventure. And you frequent
ly may not want to give him any help. But you need some response for
his request. You need a default response, like "Sorry, you get no help
right now. Maybe later. Just remember to examine everything." That
way the player knows that there may be helps later, and not to stop
asking for them. It also reminds him of the basic adventure playing
strategy of examining all objects.

Give Objects Several Uses

Another suggestion to follow in creating a great adventure game, is to
give objects several uses. A flashlight, for example, has the obvious use
of providing light. But don't stop there. Surprise the player by giving
the flashlight other uses. It could be used as a weapon, to knock out a
guard. It could scare off wild animals in the night. It might have a
secret message engraved on the lens, which would only show up when

2 -11

The Visionary Programmer's Handbook

2 -12

the flashlight is turned on. Perhaps the player could remove the bat
teries to use for some other purpose. The important thing is that you
have created other uses for the flashlight, in addition to the expected
one. Use this concept frequently in your adventures.

Mislead the Player about Objects

Mislead the player as to the value of an object. All too often, adven
ture games give the player objects which have only one purpose. And
once that purpose has been served, the object is no longer needed. For
example, the player may find a key which she uses to unlock a door.
Usually the player will assume that the key has no further value, since it
has been used to solve a puzzle. But as the game designer, you could
fashion other uses for the key. Perhaps later it will be used to open a
padlock, be fed to a metal eating monster, or be melted down and
fashioned into a magic ring. You have tricked the player into thinking
the object is not needed any more, when it really has further value.
This is a clever technique that should be used whenever possible.

Vary the Types of Puzzles

Vary the types of puzzles you choose. Don't make your player find
object after object after object, with no other type of puzzle offered.
He will all too quickly become bored. Toss in a death trap. Limit the
number of items that can be carried in the player's inventory. After the
player finds an tool, force him to discover a way to use it. Then create
some obstacle to overcome. Keep giving the player a variety of ex
periences. It will keep him interested.

Give your game lots of puzzles, and vary them. Not only vary their
type, but vary their size. Space the small puzzles in between large ones.
Some goals have many other smaller goals beneath them. These are
large puzzles. Others have very few smaller goals. Mix these smaller
puzzles in with the larger ones. Getting past a closed drawbridge may
consist of many small goals. The player must get an axe, chop down
some trees, purchase hammer and nails, and build a ladder, all before
she can scale the castle walls and get past the closed drawbridge. Get
ting past a locked door, on the other hand, could have very few small
goals. The player finds the key hidden in an um and opens the door.
To keep your adventure fresh and enjoyable, put smaller puzzles in be
tween the larger ones.

If you follow all these guidelines in creating the puzzles for your adven
ture, you will have designed a more interesting and playable game.
Remember that there are few hard and fast rules. Use your own best
judgement when you create your game design. When the game is
finished and tested, if you find some of the puzzles just don't work, you
can always go back and modify them.

Chapter 2: The Puzzles

One final word of caution. Don't get carried away with your puzzles.
Don't make them too hard Don't make them too complicated. Don't
require so many steps to reach one goal that the player forgets what he
is after. Don't make the answers to each puzzle so complicated, illogi
cal or unusual that the player gives up, or can't find it. Remember that
you are creating a work of entertainment, not frustration. You want to
design something that people will enjoy and want to play.

The puzzles are probably the main part of any adventure game. As
such, there has been a lot to write about them. If you design them well,
they will fit into your plot smoothly and make a wonderful adventure.
They will become the things your game is known for.

2 -13

The Visionary Programmer's Handbook

2 -14

Chapter 3: The Places

In the previous chapters, we have discussed designing your adventure
story, choosing your target audience, sketching a map, and creating the
puzzles or challenges. All this was done without even touching your
computer. You were laying the groundwork for your adventure. The
next steps in creating your adventure game will involve using Visionary.
Boot it up and let's begin putting your adventure into the computer.

The Room

When playing an adventure, the first thing the player sees is the loca
tion, frequently just called the "room." As such, these become one of
the most important parts of the game.

If you are designing a classic text adventure, the room will be described
in words of your choice, and these room descriptions will set the mood
of the story. If you are designing a graphics adventure, the artwork will
describe the room for you - illustrating the old saying, "a picture is
worth a thousand words".

As the game author, you control what the player experiences. If the
location is well described or drawn, the entire game is more exciting
and fun to play. Although much of what is important to a text descrip
tion also applies to a graphic adventure, most of this chapter will focus
on text descriptions of the rooms and how to get the most out of them.
The way you describe these locations in words is of vital importance to
a text game.

Descriptions
When you start describing each room-remember, we'll call it a room
even if it's an outdoor location - there are a variety of things you need
to consider. The first is accuracy. You want nothing that is unclear or
ambiguous.

Exits

Start with the obvious exits. Be sure you describe them all in your
room description. If there are doorways to the north, east and west, be
sure you describe them in a way that the player can understand where
they are and what they look like. It isn't fair to the player to have
obvious exits that aren't mentioned. If the player can freely go north,
make sure he knows he can go north. Don't make him discover it by
chance or experimentation. However, this only applies to obvious exits
from which you can leave without any special action.

3-1

The Visionary Programmer's Handbook

3-2

If there are bidden exits, then you won't want to list them in the room
descriptions. You would never say, "There is the entrance to a tunnel
hidden beneath the statue." Part of the fun for the adventure player is
finding that tunnel for himself using the clues that you leave him. But
if the exits are only partially hidden, you may want to hint at their exist
ence in the room description. "Standing in the temple, you feel a
breeze coming from above. It may indicate a tunnel entrance on the
ledge." This notifies the player that if he can get up on the ledge, he
will find an exit.

The Rest of the "Room"

You not only need to make sure the exits are accurate, you also need to
make sure the rest of the room is accurately described, too. Let's take
for example the description of an Egyptian temple room. You must
accurately describe the entire room. Describe the smooth stone floor,
the skylight in the high ceiling, and the etchings covering the marble
walls. Describe the wide altar, the statue behind the altar, and the
stone benches lining the walls. Historical accuracy is important. Don't
describe the benches as plastic; it wasn't invented yet. You want a com
plete and accurate description of the room.

If something in the room can change, then it should not be listed in the
room description. Doors are a good example. If there is a wide open
doorway to the east, then include it in your room description. It won't
change. You might describe it as "an open archway leading east." The
important thing is that the player knows it is open and will stay that
way. On the other hand, if you design the room with a door that can
be closed and locked, then you must be careful when describing it in
the room description. If you describe it as a closed door, the room
description will no longer be accurate when the player has opened the
door.

Things That Change

There are several ways to deal with objects that can change. In the
case of doors, you have two choices. One way is to describe the door
in the room description as simply a door; not open, not closed, just a
door. The player can then examine the door by typing "LOOK AT
THE DOOR" and you can have your adventure give an appropriate
description like, "the door stands open" or "the door is closed and
locked." Of course, you will design your game so that the player will
see a similar message, if he tries to travel through a door that is closed.

A second way to deal with a changing object (like the door) is to not
include it in the room description, but rather make it an object instead.
You could actually have two objects in your program: "a closed door to
the east" and "a door standing open to the east." In this way, when the
adventure describes the room followed by the objects, the player will

Chapter 3: The Places

not only be aware of the door, but also will automatically know if it is
open or closed. Only one of the two objects will appear in the room at
any one time, and will be swapped for the other when the player opens
or closes the door.

This second method has other uses as well. It can be used with any
thing that is stationary in a room and can not be picked up. It can be
used to show "a stone statue with its arm raised" or "a stone statue
with its arm at its side." It can be used to show "a wide altar" or "a
wide altar with a trap door leading downward." This method can also
be used with objects that are movable. You could have two objects, "a
dry torch" and "a burning torch" which can be carried around. When
you either light your torch or douse it, the object in your possession is
swapped for the other one.

A third method that Visionary has made possible, is to have a single
object and make use of its attributes. The object "door" could have the
attribute of "open." Each object can have up to 32 attributes, which
are either "yes" or "no." If the door is open, you can set the door
"open" attribute to "yes." Likewise, if the door is closed, you can set
the door "open" attribute to "no." When the room is described, the
proper description of the door can be given, depending on whether the
"open" attribute is "yes" or "no."

Similarly, the object description for the door can be modified depend
ing on the status of the attribute. This method will work equally well
with other objects, both movable and nonmovable. A single nonmov
able object like an altar can be either described as "a wide altar" or "a
wide altar with a trap door leading downward" depending on one of
the altar's attributes. The torch mentioned above could have a "burn
ing" attribute, which could be checked before describing the torch as
either "a dry torch" or "a burning torch." And the statue mentioned
previously could be a single nonmovable object with a "arm" attribute.
Further details on attributes will be discussed later, when we begin to
work with the adventure objects and their descriptions.

Use Descriptions to Enhance the Game
Be sure not to limit your descriptions to only those items that are an
important part of the game. Perhaps the stone benches are an impor
tant part of the game because sitting on them opens a trap door. Then
naturally they should be described. But don't stop with just those
items. Include things that are purely for "window dressing." Describe
the altar even if it actually plays no part in your game. Describe the
steps leading up the altar, even if they serve no purpose. Doing so
helps make a fuller and richer adventure and makes the room seem
more real and exciting.

The way in which you describe a room is another important factor.
Remember that you are creating a new world for the game player. So

3-3

The Visionary Programmer's Handbook

3-4

don't leave your descriptions short and bare. Make the player feel the
tone, the mood. Make him feel what you want him to feel. Here's a
description barren of mood: "You are standing in a long tunnel." Now
compare it with this: "You stand bent over in a low tunnel that leads
into darkness. The flames of your torch cast flickering shadows on the
glistening wet rock walls." The second description makes the player
feel more like he is actually there. It's certainly going to make the ad
venture a lot more fun to play.

Similarly, if you plan on designing a graphic adventure, don't make the
room graphics sparse. Make them rich in detail, to enhance the mood
of your game. Don't just draw a long dark tunnel. Add a flickering
source of light. Put shadows in the corners of the tunnel floor. Show
the masonry between the rocks in the rough walls. Give your drawings
texture. Your final game will look so much better, and create a much
more impressive image in the players' minds.

Don't describe only what the player can see, but also include the things
he can hear and smell. "The sound of dripping water echoes in the
distance. A musty smell fills your nostrils." Each time you add
another of the senses to your description, you make the world of your
adventure seem more real. We have five senses: sight, hearing, smell,
taste, and touch. Yet it is surprising how frequently adventure authors
only use the single sense of sight. Try to fit sight, sound, and smell into
every room description. Tell the player what he sees, and also tell him
what he hears and smells.

Usually taste and touch are not appropriate for room descriptions. But
they are certainly desirable when the player takes some action, like
eating food or wearing gloves. There are times when you can include
the sense of touch in a room description. "You stand outside the
temple in the hot desert sun. The burning rays bake against the back
of your neck. A light breeze cools your skin." On the other hand, taste
is nearly always absent from a room description, since it requires a
specific action from the player (such as "eat the wafer" or "drink the
potion"). Taste can be an important part of any adventure, so don't
forget to use it as you design the other sections of your adventure.

You may wish to add some hints to your room descriptions. These
hints could warn the player of certain potentially dangerous actions. In
a text game, tell the player that "Etchings on the wall depict an Egyp
tian being struck by a sword as he opens the small north door." In a
graphics game, actually show the etching on the wall. You may want
the player to examine the etching further (usually by clicking the mouse
button on the appropriate part of the scenery) before he is shown the
picture, but he should be shown it. This would serve as a warning to
the player that a death trap is ahead, and that perhaps wearing a suit of
armour would be advisable.

Or you could add hints to the room description that tempt the player
to try some action. "You see handprints on the dusty statue, as though

Chapter 3: The Places

someone had been pushing against it." In a graphics game, show the
handprints, and allow the player to examine them more closely, at
which time you print out a message similar to the one above. You
might include this type of message in a room description if you wanted
to suggest that the player push the statue aside. The room descriptions
and drawings are certainly not the only places to leave hints for the
player, but many times they can be appropriate ones.

Don't put things in your room descriptions or show things in your room
graphics, unless you plan on allowing the player to take at least the
most rudimentary actions with them. You should allow the player to
attempt to get them, examine them, and use them. H you have a
temple room containing a stone bench, then you must be prepared to
allow the player to get it. Or at least try to. You might wish to simply
reply, "The bench is too heavy, and won't budge." But you have at
least acknowledged the player's attempt.

Likewise you must plan ahead to allow the player to examine an object,
even if the response is "You see nothing special." And you must plan
to allow the player to use it. In the case of a stone bench, anticipate
the player will try to "SIT ON THE BENCH." Even if all you are
going to do is to reply "OK", you must plan on some appropriate
response. If you don't plan on allowing the player to at least examine
an object, then don't show it in your room graphic or mention it in your
room description.

Connecting the Rooms
The next thing to do when designing your locations is to connect them.
On your original map, you had them connected. Traveling north from
the anteroom moved the player to the great hall. You have finished
carefully describing the obvious exits in your room descriptions. Now it
is time to make sure your game will allow the player to travel in those
same directions. Using Visionary, this job becomes very easy. Just
above your room descriptions, you can list any default directions.
These are the directions in which the player can go when the adventure
begins. They may change as the game progresses, but for now you will
list which rooms connect which other rooms as the game begins.

As you list which rooms can be reached from the current one, do not
connect the current room to any other room that has a hidden entrance
or other closed passage. Only include the obvious exits that can be
used. For example, if there is an open archway to the north that leads
to the temple, then be sure to connect the anteroom to the temple by
going north. However, if there is a secret panel that allows the player
to travel south into a hidden room, do not include it in your room
connections. You do not want to allow the player to travel south into
the hidden room. Until the player finds and opens the secret panel,
the rooms are not connected. Keep these types of things in mind as
you connect your rooms.

3-5

The Visionary Programmer's Handbook

3-6

Room connections can be changed as the adventure is being played.
You will always have the option of connecting or disconnecting rooms
in the middle of the game. There will always be passageways that open
and close. Perhaps locked doors become unlocked, connecting two
previously unconnected rooms. Or there may be a cave-in in a pre
viously open tunnel, disconnecting rooms that were previously con
nected. All of these things will take place after the adventure has
started, and will depend on the actions of the player or on some ran
dom event. They will be dealt with separately, so don't include them as
you are creating this part of your adventure. Just keep them in mind
for later reference.

When creating your locations with VISionary, you will use text files.
You can use one or more files to hold all the locations in your adven
ture. For each room in a VISionary text game, you will probably want
to include two room descriptions. One is a complete description of the
room that the player will see when first visiting the room. The second
is a short description for the player to read when the room is visited
any time after that. In a Visionary graphics game, the shorter descrip
tion should be sufficient, since the player has the room graphic to look
at. The room file will also contain the default directions that the player
may travel to exit the room. And it may contain certain attributes for
each room, such as if the room is dark or if the room is flooded. The
next chapter will explain more about these variables called attributes.

The Store Room

When you design your rooms, be sure to include one that cannot be
visited. It will be used as a store room for objects that are not current
ly being used in the game. For example, if the player will eventually
find a diamond buried in a mine, the diamond is stored in this store
room until it is found. When the player first enters the mine, he
doesn't see the diamond, because it is not stored in that room. It is
stored in the special room you have designed for just that purpose.

After the player has dug in the mine, you will move the diamond from
the storage room to the mine, and will tell the player he has found the
diamond. Since this special room is only used to store objects that are
not currently being used, it will have no exits. Likewise, no room will
exit to the store room. And it is not necessary to give the room any
special description, since the player will never visit there. But even
though the room has no description and no exits, it is still a vital part of
any adventure and should not be forgotten.

Game Graphics
Graphics can play a part in any adventure. You may or may not plan
to use graphics in your adventure. If you don't plan on using any
graphics, then the text is even more important. Textual descriptions are
all you have to create a thrilling adventurous experience.

Check your
grammerand
spelling in
the room
descriptions

Chapter 3: The Places

Probably the best-known company for creating strictly-text adventures
is Infocom. They knew the value of creating a complete world in the
imagination using only the power of the printed word. They did a su
perb job of describing the rooms of their adventures so that the player
would create a mental picture that was extremely complete. You may
not be able to approach their reputation for excellence, but it is a wor
thy goal to reach for.

Even Infocom eventually surrendered to the increasing popularity of
graphic adventures, and finally began releasing their adventures with
visual depictions of each location in addition to the text descriptions. If
you choose to add graphics to your adventure, then it is imperative that
the art work for each room match the text description you gave it. If
your text describes a temple complete with altar, statue, and stone
benches, then be sure your graphics include the altar, statue, and stone
benches. And watch the small details. If your text describes a green
slime on the wall, make sure the graphics don't show a yellow slime.

You may wish to have more than one graphic for each location. In the
event you have a door which can be open or closed, it would be ad
visable to have two graphic pictures of the room, one showing the door
open and one showing the door closed. Depending on whether the
door is open or not, you would choose the appropriate graphic screen.
Granted, this takes more work, but by planning your adventure ahead
before you even sit down at the computer, the amount of work is les
sened. And the effort will certainly be worthwhile. It will result in a
nicer, more professional looking adventure game.

1\vo final things to watch carefully when describing your rooms are
spelling and grammar. Nothing can be more distracting than poor
grammar or spelling. "The only two things you can see is an altar and
some stone benches." This is an example of one of the most common
grammatical errors. The word "is" stands out as a grating error. It not
only breaks the mood, but also gives your game an amateurish look.
Similarly, spelling is important. Keep a dictionary handy by your com
puter, and use it whenever in doubt. If you are going to use exotic
words and objects that you are unfamiliar with, look them up in a dic
tionary or encyclopedia first. It may take a little extra time, but it is
time well spent.

When it comes to the room descriptions, there are a variety of things
you must consider. Accuracy is important; historical accuracy as well
as accuracy in depicting objects and room exits. Fill the room with well
described objects that make the game richer. Use the the five senses in
each room description to set the tone of the adventure. And check
your spelling and grammar. Once you have finished all the room
descriptions in your game, you will be ready for the next step.

You have now completed the room descriptions and the room connec
tions. If someone were to play your game at this point, he could walk
around in the world you have created, and read the room descriptions

3-7

The Visionary Programmer's Handbook

3-8

or view the room graphics. But he couldn't do anything else. He could
not see most of the objects, unless they happened to be included in the
room description or graphic. And he certainly couldn't manipulate any
objects at this point. That's the next step in creating your adventure.
In the next two chapters you will learn about variables which affect all
objects, and then begin adding the objects to your game.

Chapter 4: The Variables

Variables are an integral part of any adventure. They will not only be
used in conjunction with objects but also with messages and program
logic. So before we go any further with our discussion of creating ad
venture games, it is appropriate to spend some time examining the pur
pose and many varied uses of variables. This chapter will look at the
different ways you can get the best use out of the variables in your
adventure.

Variable Values

A numeric variable is a single letter or a short word that has a numeri
cal value. For example, this line of Visionary code:

HOT := 10

sets a variable named HOT to a value of ten. Notice the symbol ": ="
is the way Visionary assigns values to variables. Your adventure can
assign that value, change the value, print the value, and even compare it
to other values. Depending on the value of the variable, your game can
then do different things. If the player says "eat the pie", your game can
give different replies depending on the value of certain variables. The
player might be told that "it tastes delicious" or ''you burn your tongue
and drop it" depending on the value of a variable.

A string variable is a variable that contains words or other alphabetical
and numerical characters. For example, this line of Visionary code:

$MISTAKE : = "You have made some error here."

sets a variable named $MISTAKE to stand for the sentence above. As
with numeric variables, string variables can be assigned, changed,
printed, and compared. Let's examine many of the ways that numeric
and string variables can be used in your adventure.

Inventory Variables

The most common use of a variable is in the player's inventory limit.
Generally in any adventure, the player is limited in the number of items
that can be carried. As the game writer, you choose a variable name,
say INVENTORY to stand for the number of objects currently in the
player's inventory. When the player starts out, he carries nothing, so
you set INVENTORY to zero at the start of the game. Each time the
player picks up an object, you add one to INVENTORY (called in
crementing the variable). And each time he drops an object, you sub
tract one from INVENTORY {decrementing the variable). Before

4-1

The Visionary Programmer's Handbook

A built-in
ITEMS
variable is an
easy way count
the items
carried

4-2

allowing the player to pick up an object, your game can check the vari
able to see if the player is carrying too much. If he is, you can refuse to
let him pick up any more.

Visionary already has a built-in variable called ITEMS which keeps
track of the number of objects in the player's inventory. It automat
ically increments and decrements as objects are picked up and
dropped. All you have to do is decide on an inventory limit and com
pare it to ITEMS before allowing the player to pick up an object. The
following example shows how this can be done with an axe.

IF ITEMS 6 THEN
T You can't carry any more.

ELSE
GRAB AXE

END IF

A related use of variables is to set the maximum number of objects
allowed in the players inventory as a variable, not as a number. In the
above example, the inventory limit is six. You could accomplish the
same thing by replacing the constant "6" with a variable "MAXIMUM",
as shown below.

IF ITEMS MAXIMUM THEN

Then you would define MAXIMUM at the beginning of your adven
ture as being equal to six- this is usually done in the .ADV file. The
above line will then act exactly as the previous one. The advantage to
using a variable is that it makes it easier to modify the game later. If
you change your mind, and want the maximum inventory to be five
items, you have much less work to do. You need only change the one
line at the beginning of your adventure where you set MAXIMUM to
six. If you chose to use the constant "6" instead, then you would have
to go back and change every occurrence of the "6" in the entire pro
gram. Using the variable saves you time.

Another reason to use a variable in the above example is that MAXI
MUM can then be changed while the game is in progress. Perhaps the
player finds a magic pill of strength. You could increase the value of
MAXIMUM allowing him to carry more. Or perhaps he must carry
less if he is weakened in a fight with a giant. In this case, you would
decrease the value of MAXIMUM. By comparing the ITEMS variable
with another variable like MAXIMUM, you can make your inventory
limits more versatile.

In addition to using the reserved variable ITEMS, you may want to
keep track of the player's inventory in a second variable as well. You
could use it to differentiate between the items carried and the items
worn. Let's say your adventure game allows the player to wear glasses,
a hat, boots and gloves. It isn't logical to count these items as carried.
If you did, then limiting the player to six objects would allow only two
additional items to be carried. Logically, the glasses, hat, boots, and

Chapter 4: The Variables

gloves don't fill the player's arms when they are worn, so they should
not be included in the inventory limit. If you define a variable WORN
to be used together with the variable ITEMS, it would nicely solve the
inventory problem. Remember that ITEMS is automatically incre
mented whenever an object is picked up or dropped. You, as the game
writer, have to do nothing to ITEMS. However, whenever one of the
four objects is put on, you would need to increment WORN, as shown
below:

WORN := WORN + 1

And likewise, whenever one of the four objects was removed, the vari
able WORN would be decremented. To check for the inventory limit,
you simply subtract the two variables and compare the result with the
MAXIMUM allowed limit. An example of the Visionary code follows.

IF ITEMS - WORN MAXIMUM THEN
T You can't carry any more.

ELSE
GRAB AXE

END IF

In the above example, let's suppose the player is wearing the boots, the
hat, the glasses, and the gloves. Let's further suppose the player also
carries a compass, some flint, and a steel knife. As each of the items
was originally picked up, Visionary automatically incremented ITEMS.
So at this point, the value of ITEMS is seven. As the hat, boots, glasses
and gloves were each worn, you incremented WORN. That means
WORN is now equal to four. In the above example, we subtract the
value of WORN (4) from the value of ITEMS (7) and compare it with
MAXIMUM. It means that the player actually carries three items
(since the other four are worn). So when ITEMS - WORN is com
pared with MAXIMUM, the player is allowed to pick up the axe. By
keeping track of a player's inventory in two variables ITEMS and
WORN, you can allow a more sophisticated adventure, where objects
that are worn don't add to the inventory limit.

There is one pitfall of which you need to be aware. When the player
chooses to remove his hat, be sure to check MAXIMUM again. You
wouldn't want to allow him to remove his hat if he already carried the
maximum number of objects. To do so would leave him carrying more
objects than your limit. Assuming this limit has not been exceeded, be
sure to decrement WORN when the hat is removed, so to keep an
accurate count of how many objects are still worn.

The State of Objects

Variables have many other uses in addition to inventory limits. You can
use them to describe the state of an object. Let's say for example that
the player carries a goblet. If she examines the goblet, she may see
various things inside it. You can use a variable, say GOBLET, to tell

4-3

The Visionary Programmer's Handbook

4-4

what it contains. If GOBLET is zero, then it is empty. If GOBLET is
one, then it contains sand. If GOBLET is two, then it contains
poisoned water. And if GOBLET is three, then it contains good water.
When the player says "EXAMINE THE GOBLET" you can then give
the correct description, depending on the value of the variable
GOBLET.

A variable could be used to describe the state of a non-movable object,
as well as a movable one. Perhaps the player stumbles across a large
old treasure chest that can't be carried. You could define a variable,
say CHEST, to describe the state of the chest. Zero could mean that
the chest is locked shut. One could mean it is unlocked but shut. And
two could mean that it is unlocked and open. Then if the player said
"OPEN THE CHEST", you could give him the proper response
depending on the value of the variable CHEST. If the value of CHEST
is two, you could say "IT ALREADY IS." However, if the value is one,
you would say "OK" and change the value of CHEST to two, indicating
that the chest is now open. On the other hand, if CHEST equalled
zero, you would reply "SORRY IT'S LOCKED." If the player simply
asked to "LOOK AT THE CHEST" then you could accurately
describe it as closed or open by checking the value of the variable.

Doors and open doorways can be easily checked using variables. A
door can be open or closed, locked or unlocked. Using a variable, you
can respond appropriately to any command the player makes. Similar
ly, you could have an open doorway for the player to pass through.
Perhaps there is a magic spell that keeps the player from entering the
next room. You could use a variable to determine if the spell had been
cast yet, or if the spell had been removed. The player could be allowed
or denied access to the room depending on the value of the variable.

The types of variables discussed above are called attributes in VISion
ary. They are special variables that can have only two values, zero and
one. Attributes will be explained in more detail later in this chapter,
but first let's look at other ways to use variables.

Counting Moves

Variables can be used to keep track of the player's turns. Frequently,
you will want to keep a record of how many moves the player has
taken. In a text game, a move is considered to be made any time the
player types a command and the computer gives some response. In a
graphic game, a move is considered to be made when the player clicks
on a mouse button.

Even if the computer doesn't understand what the player wants to do, a
move has been made. You may want to count these moves. Perhaps
the player is merely curious to know how many moves have been taken.
By creating a variable MOVES, you can increment it in the automatic
logic section of your adventure (as part of a Non Player Character).

Visionary
provides a use
ful pre-defined
variable called
MOVES

Chapter 4: The Variables

That way, each time a move is made, the variable MOVES is increased
by one. The player can ask "HOW MANY MOVES HAVE I
TAKEN", and your game can then print out the value of the MOVES
variable.

The concept of counting moves is an important one in adventures.
V1Sionary has reserved a special variable called MOVES that automat
ically keeps track of the number of moves a player has made. You as
the game writer don't have to define the variable or increment it. It is
automatically taken care of. When you wish in your adventure, the
value of MOVES can be printed out for the player.

Many times, the adventure player will want to complete your game in
the fewest moves as possible. At the end of the game, therefore, when
the player has achieved the final goal and won, you should tell him how
many turns it took to complete the adventure. This can frequently lead
a player into trying your game a second time, even though he has al
ready completed the adventure. He may want to try to beat his old
score, and reach the goal in as few turns as possible.

Limiting Player Turns
There can be various reasons you might want to limit the number of
turns in your game. Perhaps the player must escape from a giant alien
maze within three hours. If you choose to count each turn as one
minute, you will allow the player 180 moves in which to complete the
adventure. By checking the MOVES variable, you can stop the game
after 180 moves, and declare that the player has lost.

Another reason that you might want to limit the number of turns in
your game, is that it can permit a potential publisher to sample your
program without being able to complete the game. If when you have
finished your adventure you decide to send a copy to a publisher for
approval, you might feel more secure if you do not send a complete
working version of your game until you have signed a contract. That
way if for some reason your program falls into the wrong hands, a
pirated version of the full game will not be released. Your game could
only be played for, say, 100 turns, before it stops with some message
advising the player that it is a submission copy, not an officially licensed
one.

You might also use this technique if you decide to release your game as
"share-ware". You could then release into public domain copies of
your completed game that would only allow 200 turns. An an
nouncement at the beginning of the game would caution players that
the share-ware version of the game is a sample of the full and complete
game, and that the game cannot be completed in 200 moves. After 200
moves, the game would stop and tell the player that the complete game
can be obtained by sending you an appropriate fee for a fully working
version. In this way the player can get a taste of your game and decide
if he wants to purchase a share-ware copy from you.

4-5

The Visionary Programmer's Handbook

You should be
sure to reset
variables
whenever
appropriate

4-6

There are other reasons to keep track of the number of player's moves
in your game. You can use a variable to count the turns backwards,
from some set amount down to zero. For example, if your adventure
included a desert, you could use a variable to keep track of the turns
that the player spends out in the desert until she dies from thirst. You
could define a variable THIRST which starts with a value of ten.
Whenever the player is in a desert location, you would decrement
THIRST. If it reaches zero, then you stop the game and pronounce
that the player has died from thirst. If the player drinks from the can
teen, then you would reset THIRST back to ten. If the player leaves
the desert, you would also reset THIRST to ten. If you didn't reset
THIRST, it would be conceivable that the player could leave the city
and enter the desert for nine moves, then re-enter the city. When leav
ing the city the second time, she would die immediately upon entering
the desert. To prevent such things from happening, always check to see
which variables need to be reset.

As mentioned in the chapter on creating an adventure plot, if you plan
on permitting your player to die from thirst, be sure you give adequate
warnings. Never kill the player abruptly without advance notice. Use
variables to accomplish this. For example, when THIRST equals five,
you might tell the player, "You are getting thirsty." Then again when
THIRST equals three, "You are dying of thirst." And at one, "You are
about to expire from thirst." These warnings give the player plenty of
time to drink from his canteen. And in case he has forgotten to take
the canteen into the desert with him, always give the first warning in
time for him to return to safety, if he acts promptly.

Keeping Count

Using variables that count backwards can be a useful technique in con
structing your adventure. You might wish to count the turns until a
magic potion wears off. Or you might wish to keep track of the num
ber of moves until the cannibals arrive on the island. Perhaps you will
allow the player to stay in a room full of crocodiles for only five turns
before they attack. Or maybe the player dives under water, and can
only hold her breath for eight turns. You will find many ways to use
variables that decrement. They can be as varied as the adventures you
will create.

Non-Player Character Section and Variables
Variables are not automatically incremented or decremented, except
for the reserved variables like MOVES that are built into Visionary.
The others, you must deal with yourself. You should place the
programming code for these variables in the Non-Player Character
portion of your adventure. This section is executed after every move
the player makes.

Chapter 4: The Variables

It doesn't matter what the player says or does, this section of the pro
gram is always executed. It is here that you should check to see if the
player is in the desert, and if necessary, decrement TlllRST. It is here
that you should check to see if a player is under water, and if so, decre
ment AIR. And it is here that you must check the variables after
decrementing them, to see if the player has died and if the adventure is
over.

You may wish to increment a variable to act as a clock. The concept is
similar to decrementing a variable as described above. But in this case,
you will constantly increment the variable and use it to tell time. If the
player finds an old pocket watch, he can look at it and tell the time.
Let's say you choose a variable called TIME. When the player says
"WOK AT THE WATCH" your adventure can tell him the current
time of day. Just be sure you don't allow the clock to run past 12.
Remember to reset your variable to one, when it reaches thirteen. You
could even define a second variable to keep track of morning or after
noon.

There are more reasons to use a clock than strictly cosmetic ones. Of
course, it is nice to have a watch that the player can use to tell time.
But you can also use the time feature to cause specific things to happen
in your game. Perhaps the ghosts disappear at dawn. Or the tower
clock strikes at midnight. Maybe the player won't die of thirst in the
desert if he travels through it at night. As you can see, a time variable
or two can be used in a variety of ways.

Keeping Score

Not all variables should increment or decrement on every turn. You
will want some variables to change only after certain actions by the
player. For example, a variable could be used to keep track of the
player's score. Let's say that every time the player achieves some
smaller goal on his way to the final one, the score is increased. Maybe
ten points are awarded for every new room that is visited. Or the
player may get 50 points for each treasure found.

As the game writer, you define a variable at the beginning of the game,
such as SCORE. When the game starts, it has a value of zero. Each
time the player finds a treasure, a certain number of points is added to
SCORE. You might wish to have some treasures worth more points
than others. At any time, if the player asks for the SCORE, your game
can announce how many points have been earned.

Some adventures restrict where the SCORE can be given. You might
want the player to be standing in a certain location before he can find
out his score. In Scott Adams' classic AdventureLand, the player could
only find his score when he stood in the root cellar. The treasures
weren't added to his score if they were carried. They had to be

4-7

The Visionary Programmer's Handbook

Let the player
knowhow to
find out the
SCORE

4-8

dropped in the room. A sign in the root cellar said, "Leave treasures
here and say SCORE."

You could do something similar in your game. But if you do, be sure to
let the player know what is expected. Somehow, let him know what he
has to do to get his score. A frequent device is a sign, such as the one
in the root cellar of AdventureLand. It tells the player exactly what to
do in order to gain points. In the above example, he had to drop them
in the root cellar. Carrying them in the root cellar didn't count. Tu
find out his score, he then had to say the word "SCORE." Feel free to
vary this in any ways that you wish. Perhaps you won't require the
player to be in any certain room to increase his score; the score could
increment as soon as a treasure is found. Perhaps you want him to ask
for his score in a different way, say by talking to a magic mirror.

Whatever you choose, make sure the player knows what you expect.
This could be done with a sign. A genii could pop out of a bottle and
tell the player the proper way to determine his score. You could simply
put the information in an announcement at the beginning of your ad
venture. Just be sure the player knows.

Keeping Track

A variable can be used to keep track of the bullets left in a gun. Let's
say the player finds a loaded revolver. She can use it to kill jungle
animals, or perhaps signal someone far off. But you can't let her keep
shooting the gun forever, when logically it should eventually run out of
bullets. Using a variable like BULLETS, you could set the number of
BULLETS to six when the gun is first found. Each time the player
gives the command to shoot something, your adventure should check to
make sure the player holds the gun, and that BULLETS is not zero.
You then print some appropriate message such as "BANG" and decre
ment BULLETS. If BULLETS equalled zero, you would print some
alternate message telling the player, "YOU ARE OUT OF BUL
LETS."

Depending on the reason for shooting the gun, you might want to use
further variables here. If, for example, the player was shooting at
crocodiles, you might want to change some variable that keeps track of
the number of crocodiles still alive. Or you might wish to reset a vari
able that was being decremented, counting the turns the player had left
with the crocodiles before they ate her.

Variables can also be used to keep track of the weight of the player's
inventory. In many adventures, the player has a certain limit to the
number of objects he can carry. But it doesn't matter how much they
weigh. If the player can carry a maximum of six objects, they could all
be light objects or all be heavy objects. This is not the most realistic
method of limiting the player's inventory. An alternative method is to

Chapter 4: The Variables

assign weight to each object. In this way, you can allow the player to
carry a maximum number of pounds, not objects.

If you choose this method, you can no longer use the built-in variable
ITEMS. But you could easily define a variable WEIGHT to keep track
of the weight that the player carries. You could assign each object a
number, which indicates its weight. Before allowing the player to pick
up an object, you should see if it would make the player's total weight
exceed your chosen maximum.

As mentioned earlier, if you use a variable like MAXIMUM, instead of
a constant like 50, then the maximum weight can be changed in the
middle of the game. The following Visionary code shows how the pro
gram might look if the player wanted to pick up an axe weighing ten
pounds.

IF WEIGHT + 10 MAXIMUM THEN
T You can't carry that much weight.

ELSE
GRAB AXE
WEIGHT := WEIGHT + 10

END IF

Let's see how it works. When the player gives the command to pick up
the axe, the axe's weight is temporarily added to the weight the player
already carries. If the new temporary total exceeds the maximum
weight allowed, the player is prohibited from picking up the axe. If
not, the player is allowed to take the axe. Not only is this more realis
tic, it also prevents the player from putting objects in a back pack or a
suitcase, which would allow more to be carried. Putting objects inside
other objects is a common way for players to carry more than the maxi
mum number of objects. If you wish to prohibit this, assigning weight
to all objects is an excellent method.

Handle Random Events

Another use for variables is to provide random messages or sound ef
fects to the player as the game progresses. A variable can be set to
some random number, rather than some specific value. If it is then
decremented each turn, a message or sound effect of your choice can
be given when it reaches one.

For example, sounds and messages that help set the stage and help
create a mood can be set randomly. After a random number of turns,
a text game can say things like, '1\ bird chirps in the distance." A
graphic game could actually play the sound of a bird chirping after that
random number of turns. Every once in a while the player may hear,
"the wind as it whips through the tree tops."

These types of random sounds and messages really enhance an adven
ture. They add realism and depth to your game. They shouldn't always
occur at the same time and in the same place. Set a variable at ran-

4-9

The Visionary Programmer's Handbook

4 -10

dom, and decrement it on each turn. When it reaches one, the mes
sage is printed or the sound is played. You don't want the message to
be printed when the variable is :rero, or the message or sound will con
tinue to be given on every successive move, since the variable will stay
at :rero. By presenting it when the variable is one, it will only appear
once. You can then either let the variable remain at :rero, or reset it for
another time.

Variables can not only control random messages and sounds, they can
also control random events. You may wish to have a rain shower occur
randomly. In that case, you must decide what the random parameters
are (say somewhere between 25 and 35) and assign the proper value to
your variable. The following example shows how this can be ac
complished in VISionary.

RAIN : = RANDOM 10
RAIN := RAIN + 25

This assigns a random number between zero and ten to RAIN, then
adds 25 to the result. In the Non Player Character files (the ones that
execute after every move) you can decrement RAIN until it reaches
one, at which time you create the rain shower for the player. In a text
game, you could simply print a message telling the player that it is rain
ing. In a graphic game, you could overlay some rain clouds and falling
rain over the current picture. You could even add some sound effects,
including thunder and splashing raindrops. You might wish to write
your adventure so that RAIN is only decremented when the player is
outdoors, ensuring that it won't rain when he is indoors (it rarely rains
indoors).

Flags

Let's examine some special variables called flags. Generally, a flag is a
variable that has only two values, :rero or one. A flag can be set to one
or "unset" back to zero. A flag can tell you if the player has done
something. It can signal if the player has dug in the sand. A flag can
indicate an event has occurred. It can indicate if a magician has placed
curse on the player. A flag can also describe the state of some object.
It can tell you whether a door is open or closed. Even though flags
may be limited to only two values, on or off, set or unset, zero or one,
yes or no, they are extremely valuable in any adventure.

In Visionary, there are 32 flags assigned to each object and to each
room. These flags are called attributes. If you have an object called
DOOR, you could name one of the attributes CLOSED. Each at
tribute can be set (meaning yes) or unset (meaning no). If the attribute
CWSED is set, then the door is considered to be closed. If the at
tribute is unset, then the door is considered to be open. By using these
flags, you can tell if the player is permitted to travel through the door
way or not. If you use a second flag named LOCKED, you can make

'IWo-valued
attributes like
DARK and
VISITED are
called flags.
You can add
your flags
quite easily

Chapter 4: The Variables

sure the door is not WCKED when the player attempts to open it. As
discussed earlier, this same logic can be duplicated with a single vari
able that has three values. Using two attributes instead, is simply
another way of accomplishing the same thing.

One of the most practical uses of flags is to tell if a room is dark or not.
If a room is dark and the player doesn't carry any source of light, then
you don't want him to see the room, or see any of the objects in the
room. In a text game, you want the normal room description to be
replaced with something like "YOU CAN'T SEE ANYTHING IN
THE DARK" In a graphics game, a simple black screen can suffice.
On the other hand, if the room is not dark, or if the player carries a lit
torch, you want the game to show the location and the objects. This is
accomplished with a flag. It is such a useful flag that Visionary has
built it into each room as an attribute. Each room has an attribute
named DARK that starts unset (in other words not dark) unless the you
specify otherwise. You can always control whether the room is dark or
not, and by appropriate programming, you can control what the player
can see under any given circumstances.

Another use for a flag is to tell if a room has been visited or not. In
this way, a text adventure game can give a full description of the loca
tion when it is first visited, and give a shortened description thereafter.
Visionary has also included this flag as one of the attributes available
for each room. The attribute is named VISITED.

If it is set (in other words, if the room has already been visited) you can
give the player a brief reminder of what room he is in. If it is unset,
then the entire room description is given and the attribute is set. If the
player says "LOOK", the full room description is given again. The
Visionary program automatically takes care of this by onsetting the
VISITED attribute temporarily so that the player is given the full room
description.

In addition to the 32 attributes available for each object and room, you
can create as many more flags as you wish. The only difference is that
attributes are defined along with the object or room definitions, while
the other flags must be defined at the beginning of the adventure. Just
remember to treat a flag as any variable, and give it a name and a
value. Let's examine some different uses of flags.

Let's say in your adventure, a dead body lies on an autopsy table. The
abdomen has been opened, allowing the player to look inside the
corpse. Flags can be used to indicate which organs remain inside. You
might have three flags, HEART, LIVER, and SPLEEN. If the player
looks inside the corpse, your game could describe the organs as present
if the appropriate flags were set. If the player chooses to remove one
of the organs, then the associated flag is unset. This assures that when
the body is described, the missing organs will not be described too.

4 -11

The Visionary Programmer's Handbook

4 -12

Sometimes, picking up an object can set a chain of events in motion. A
flag can be used to make sure the chain of events does not occur a
second time. Let's say for example that you want Moby Dick to appear
far out to sea, after your game has been played for a while. But you
want to make sure the player has found the harpoon and has the means
to kill the whale before you make it appear.

The easiest way is to make the whale appear in the ocean when the
player picks up the harpoon on the ship. But if the player succeeds in
killing the whale, you don't want it to appear a second time if the
player should happen to drop the harpoon and pick it up again. That's
where a flag is used. Create a flag called WHALE. If the flag is unset
(meaning the whale has not appeared) then create the whale and set
the flag, when the player gets the harpoon. If the player should ever
pick up the harpoon again in the game, the flag would be found set and
the whale would not be created a second time.

If dropping an object causes something to happen, check a flag first. If
dropping a sacred skull in the pygmy village causes the natives to run
scared and disappear into the jungle, then set a flag. You don't want
the same thing to occur if the player should pick up the skull and drop
it a second time. It would not make sense to tell the player that the
pygmies run scared again, since the pygmies had already left. By
checking a flag to make sure the skull had not been dropped yet, you
can make sure the appropriate message appears only once.

Digging in the ground and finding treasures requires the use of flags.
Perhaps there is a magic ring buried in the sand dunes. When the
player digs in the dunes, you want the ring to appear - but only if it is
still buried. You don't want the ring to appear if it has already been
found and has been used.

The easiest way to deal with this is to give an attribute to the ring
called FOUND. If the player says "dig" and the ring is FOUND, your
game will respond "You find nothing." Otherwise, it will reply "You
find a ring in the sand." In this case, be sure you not only place the
ring at the current location, but also set the ring's FOUND attribute so
that it can't be found a second time.

You can even have something happen only after you have visited a cer
tain location. Let's say that after the player has visited the grave in the
far corner of the cemetery, a wolf appears at the gate to the cemetery.
He is required to kill the wolf. Use a flag to prevent the wolf from
appearing every time he visits the grave. Once it has been killed, you
don't want it to continue to appear whenever he visits that grave.

Flags are especially useful in giving the player "help". When the player
types "help", you want to present him with some clue to help him get
past the current puzzle. You may wish to have several helps for the
same problem. Flags will tell you which clues have been used, and
which ones are available.

Flags can also
be used to
keep track of
previous
player actions

Chapter 4: The Variables

Perhaps the player is stuck trying to open a safe. If he asks for "help'',
you may wish to respond "You have held the combination in your
hands." But the question is, has the player really held the combina
tion? You can't know that for sure, unless you use a flag. If the com
bination was written in invisible ink on a piece of notebook paper, then
set a flag if the player picks up that paper. If there is a later request
for help, you can check the flag and give that clue if the flag is set.
Perhaps you want to give a second clue, if the first one is not sufficient.
Use another flag. When the first clue is given, set the flag. Then when
the request for "help" is made a second time, check the flag. If the flag
is set, don't give the first clue. Give the second clue instead.

By setting flags after certain events have happened, you can give more
appropriate clues to the player. Let's say that one of the first puzzles
the player must solve is to figure out how to get inside a house. Per
haps there is little she can do until she is inside, but the door is locked.
When the player asks for "help", you want to give her a clue such as
"check inside the envelope." Once she has found the key and entered
the house, this clue is longer of any value.

Perhaps the player will ask for a hint on what to do next - for example,
you may want to advise him to "visit the kitchen." Use a flag to deter
mine which clue to give. Once the front door has been unlocked and
opened, set a flag. When the player asks for help, check that flag. If it
is not set, then you know he has not yet entered the house, and you
should give the first clue. If on the other hand, the flag is set, then you
know he has solved the first puzzle, and you should skip the first clue
and give him the second one instead. If you use flags for each of the
major turning points in your adventure story, you will always be able to
give the appropriate hints.

There are many other uses for variables, flags and attributes. They are
only limited by your imagination. They provide a vital method of
checking program logic to prevent things happening that you don't
want to happen, and to cause other things to happen that you want to
occur. They can prevent the player from traveling in certain directions,
and from seeing things you don't want him to see. They can cause
messages to appear at random, and objects to appear as the result of
the player's actions. As you write your adventure, you will use many
variables. You won't be able to avoid it.

4 -13

The Visionary Programmer's Handbook

4-14

Chapter 5: The Objects

As you write your adventure, the next step is to describe the objects.
Some of the objects have already been described, as they were part of
the location descriptions. But for the most part, the objects in your
game have yet to be created.

Object Types

Objects can be manipulated in various ways. A sword can be picked
up. A candy bar can be eaten. A hammer can pull nails. A door can
be opened. A boulder can be rolled aside.

Not all objects can be picked up by the playe::-. Some, like the door,
are stationary, but can still be manipulated. Others, like the boulder,
are too heavy to carry. But the one thing all objects have in common is
that they can be used. The player can do something to them. They can
be picked up, dropped, examined, or used in a variety of other ways.

There are two basic types of objects in adventure games, movable ob
jects and nonmovable objects. Movable objects can be picked up by
the player and carried along. Nonmovable objects cannot be picked up
by the player, but may be manipulated in other ways.

A hammer is a good example of a movable object. The player can pick
it up, and put it down. He can carry it with him from one location to
another. He can manipulate it in various ways. He can pull nails with
it. He can break a window with it. He might even find it to be a magic
hammer that sings when stroked. Whatever its uses, the hammer is
considered to be a movable object because it can be moved from one
location to another.

A giant boulder is an example of a nonmovable object. Although the
boulder cannot be carried by the player, it is still considered an object,
because it is part of the game that the player can refer to. It can be
manipulated. The player can examine it. She can write on it. She can
climb it. Perhaps she can even roll it aside, to reveal a treasure
beneath it. The only functional difference between the boulder and the
hammer is that the boulder cannot be picked up by the player and the
hammer can.

When you design movable objects for your adventure, you should con
sider an inventory limit. Perhaps you will place no limit on the number
of objects that the player can carry. Most adventures, however, have
some inventory limit to make solving the puzzles more of a challenge.

As mentioned in the previous chapter, there are two basic ways of
limiting a player's inventory. You can allow no more than some set

5-1

The Visionary Programmer's Handbook

5-2

number of objects to be in the inventory at any one time. Or you can
limit the total weight that the player can carry. If you choose the latter,
you must choose the weight of each movable object in your game. You
must decide if you will limit the player's inventory, and if so in which
manner. This decision must be made before you start programming
the objects into your game.

As the player attempts to pick up each object, you must evaluate if the
limit has been exceeded. Insert a routine to perform this evaluation,
into the action section of each object. An example of a Visionary
routine to do this given in Chapter 4.

The Object Files

In Visionary the objects, both movable and nonmovable, are listed
together in one or more text files that you create. These files must
contain the description of each object, as well as the name and any
attributes you wish lo assign to the object. Some objects may need no
attributes. But most will require at least one attribute.

For example, if a pearl lies locked inside a box, you would create an
object named "pearl". You could give it an attribute called FOUND.
Before the player has opened the box, the pearl is not in the room with
him. It is stored in the storage room. The concept of a storage room
was mentioned in the previous chapter on rooms. When the player
first opens the box, the pearl is moved to the current room and the
attribute FOUND is set. In that way, if the player should close the box
and open it again, he would not find another pearl. You accomplish
this by checking the flag each time the box is opened, and only creating
the pearl if the flag is unset.

A sample piece of Visionary code shows how this routine could be in
cluded in the file for the box.

ACTION OPEN
IF PEARL NOT FOUND THEN

PLACEOBJ PEARL, THISROOM
T A pearl drops out of the box.
SET PEARL, FOUND

ELSE
T It is open and empty.

ENDIF
ENDACT

Another common attribute you will give to many objects is WORN.
Anything like a hat, shoes, a wrist watch, glasses, a ring, a necklace or
gloves can be worn. You want the player to be able to wear these
items, since it would be illogical to prohibit it. Yet when you give a
description of the object, you want that description to indicate if the
item is worn or not.

Chapter 5: The Objects

Let's say the player has found a set of ear plugs. When she takes in
ventory, she should see "a pair of ear plugs." After she has put them in
her ears, the inventory should show "a pair of ear plugs worn securely
in your ears." When the player puts the ear plugs in her ears, you
should set the attribute WORN. Then when you write the inventory
descriptions, be sure that you check the WORN attribute and print the
correct description. These inventory descriptions are included in the
code block for the object PLUGS, as shown below:

CODE
IF PLUGS WORN THEN

T a pair of ear plugs worn securely in your
ears

ELSE

T a pair of ear plugs
END IF

ENDCODE

In addition to the object descriptions, the WORN attribute will be used
at other times in your adventure. Perhaps wearing the ear plugs is the
only thing that can save the player from the seductive song of the mer
maids. When the player gets to that part of the story, you need only
check the WORN attribute for the ear plugs to see if he is drawn to his
doom or not.

The object files also contain any adjectives that describe the objects.
This allows the player to say "look at the old photograph" rather than
"look at the photograph". The difference may not seem important to
you now, but it adds a touch more depth and realism to your adven
ture.

A second important reason to use adjectives for your objects is that
these adjectives differentiate between objects that have the same name.
Perhaps there are two photographs, an old one and a new one. If the
player holds both of them, he can examine either by specifying the ad
jective. He can say, "look at the new photograph," or "look at the old
photograph." To give another example, you might have two boxes
placed in a room, one a red box and the other green. You can tell
which one the player wants to open by checking the adjective. If be
asks to "open the box", Visionary will ask him to be more specific,
since there are two different boxes. The adjectives "red" and "green"
allow the player to specify which box he means.

Objects in Multiple "Roles"
There is an useful variation on the above situation, if the objects being
described are nonmovable. Let's say the boxes are large and nailed
down. If they are in different rooms, you might want the player to be
able to say "open the box" without receiving a request to be more
specific. It's logical that if there is only one box in the room, then the
player should not have to say "open the red box."

5-3

The Visionary Programmer's Handbook

5-4

A simple way around this problem is to create only one object named
box. When the player enters the first room, place the object ''box'' in
that room. Since there is only one box in the adventure, the command
"open the box'' will not require using an adjective "red." VtSionary will
not be unsure which box is meant, since there is only one box in the
game. When the player moves to the second room containing the other
box, you will place the object "box'' in the second room. To the player,
it will appear to be a second and separate box. But to your program, it
will be the same box. The player can once again say "open the box''
instead of "open the green box." Visionary will accept this command,
since there is only one box.

If you choose this alternate method of having a object playing two
roles, eliminating the need for different adjectives, you are then
presented with additional problems. You may need to keep track of
which box is locked and which is unlocked, or which is open and which
is closed. Maybe it's important to keep track of which box is empty,
which contains a pearl and which contains a ruby.

The solution to these problems lies in using attributes. Give the box
various attributes such as RED-LOCKED, GREEN-LOCKED, RED
OPEN, GREEN-OPEN, RED-EMPTY, and GREEN-EMPTY. If the
player asks to open the box, determine which box he means by check
ing which room he is in, and then examine the appropriate attribute
RED-LOCKED or GREEN-LOCKED to see if he can open it.

If he asks to "look inside the box'', you again determine which room he
is in when he made the request. If he is in the room with the red box,
check the attribute RED-EMPTY. If the attribute is set, tell the player
that "the box is empty." Otherwise, tell him that "it contains a giant
pearl." Although it sounds as though it takes a lot of extra work to
avoid the necessity of using an adjective, it actually isn't. You still
would need the same type of attributes and would have to write similar
amounts of code, whether you used two separate boxes with adjectives
to differentiate them, or a single box which will be moved from one
room to another.

The concept of placing a nonmovable object in several different rooms
can be used for other purposes as well. Let's say in your adventure,
there is a stretch of beach along which the player can explore. You
may have several different locations, all at the water's edge. You might
anticipate that the player would try to "drink the water" or "get some
water" or "swim in the ocean" at the various locations. An easy way to
permit this, is to create a single object called "water". Give it some
synonyms, like "ocean" and "sea". Then move that object to each of
the water front locations as the player moves into them. This is done
by placing the following line into the code block of each room file.

PLACEOBJ WATER, THISROOM

Chapter 5: The Objects

When the player enters the room, the water is automatically placed
there too. The player can then try to get some water, drink the water,
or swim in the water. You can anticipate those requests and program
the appropriate responses into the object file for WATER.

Let's look at another example of where this technique comes in handy.
Let's say you have a thirty room adventure that takes place out in the
desert. The player may want to "look at the sky" to see if it looks like
rain, or to see if the buzzards have returned to circle above him. "Sky''
must be an object, or the player will not be able to look at it. An easy
way to deal with this is to create one object called "sky'' and to move it
to the player's current room. Simply put the following line into the
code block of each room file:

PLACEOBJ SKY, THISROOM

When the player asks to look at the sky, this object file is executed and
the appropriate description is displayed. Attributes can be checked
and the description of clouds, rain, or buzzards can be given if they
exist.

It's to your advantage to place the movable objects in a separate file
from the nonmovable objects. If there is an excessive amount of ob
jects, you may want to split the file into several smaller files. But it is
still advisable to keep the movable objects together in files separate
from the nonmovable objects.

There are several reasons for keeping the two types of objects in
separate files. First, it makes each object easier to find when you need
to go back later and make modifications to it. You will frequently need
to change parts of an object file. Perhaps you discover the need to add
an attribute to an object. Or you may decide to change an adjective. If
you have kept the nonmovable objects separate from the movable ones,
it speeds up the search for the object you want to find.

Object Descriptions

In a text adventure, there are three times that an object is described.
One is when the player first sees the object after entering a room.
When he first enters a room, a full complete description of the room is
given followed by any visible objects. He might be told that "you see a
brass key lying on the floor."

The second time an object is described is when the player asks for
"inventory". This is usually a brief description, unlike the first one. It
usually consists of a few words, like "a brass key."

The third time a player will see a description of the object is when he
specifically asks to "examine the key." Usually this is the most detailed
description of the three. The player might be told that "the key is
small and ornate, the brass is tarnished." In some cases, the player
may see a further description. If, for example, he holds a letter, he can

S-S

The Visionary Programmer's Handbook

Build Your
World With
Words

5-6

"read the letter" to receive a further description. He might be given as
much as several paragraphs to read.

When you create the file for each object, you decide on the different
kinds of descriptions. If the player has the object, then give the short
description that will only be seen in an inventory list. If the player does
not have the object in his possession, then give the full sentence
description that he will see when first entering the room. These two
descriptions must be included in the CODE section of the object file.
The third, longer description would be placed in the ACTION section
of the file. The player will be given the longer description, only if he
asks to "examine" the object.

Always remember that in your text adventure game, you are building a
world with words. Even when you write a graphics adventure, you will
usually want to describe objects with words, since the picture alone
may not be sufficient. For example, a picture of a bottle doesn't tell the
player as much as a description like "the brittle glass bottle is empty."

Even graphic adventures will frequently rely on word descriptions.
When you describe the objects in your world, make sure you bring
them to life with your words. Spend some time carefully describing
each object. When designing an inventory description, you want to
keep it short. Limit it to one line on the video screen.

But choose your words carefully so that the player will feel the mood
and tone of this new world. Don't just say "a strange old knife." You
could call it "an antique knife with an ornately carved handle." When
designing an object description to be seen when the player first enters a
room, again try to limit yourself to a single line on the video screen. It
will look more aesthetically pleasing if, when there are several objects
in the room, the object descriptions don't exceed one line.

However, when giving a full complete description of the object after
the player requests to "look at the knife," then don't feel the need to
limit yourself. Give a full detailed description of the knife. The game
is going to be a lot more exciting and fun to play if the object descrip
tions are more complete.

When designing the description for each object, keep in mind both the
difficulty level of your game and its target audience. If you have
designed your adventure to be for the beginner, your object descrip
tions may be bolder and more obvious. A futuristic ray gun might be
described as, "a sturdy ray gun with a large trigger just begging to be
pulled." If instead the game is designed for an experienced adventure
player, the objects can be described differently, in a more subtle man
ner. The same ray gun could be "a long metal rod with a small stud on
one end."

Likewise, if your game is intended for more knowledgeable adults, you
may not have to describe an object as closely as if it were intended for
younger adventurers. In an adventure targeted at adults, an object

The "Nothing"
Variable

Chapter 5: The Objects

could be simply described as "an old scimitar." Objects like these may
not be familiar to younger players, so you might want to change the
description to make the nature of a scimitar more obvious. You could
describe it as, "a sharp old scimitar, its wide curved blade gleaming."
What you have done is to change the description of the object, depend
ing on the experience of the target audience. Always keep this in mind
as you create your object descriptions.

When the player takes "inventory," your adventure game will list all the
objects she carries. If she doesn't carry anything, it will not list any
thing. To make this look a bit nicer, make one movable object called
OONOTHING. Place it in the player's inventory, but don't allow her to
drop it. When the player asks for the inventory, check the ITEMS vari
able. If it is equal to one, then the only thing the player carries is
OONOTHING. In that case, use an object description that says, "You
carry nothing."

If the variable ITEMS is greater than one (indicating the player carries
something else), then use an object description that says "You are car
rying:". Since OONOTHING starts with a double zero, it will come al
phabetically before any of the other movable objects. Visionary always
lists objects alphabetically, hence the words "You are carrying:" will
appear first above the other items in the player's inventory. By creating
OONOTHING as the first object, you have made the inventory listing
look more attractive. The object OONOTHING serves no other pur
pose. The player cannot get it, drop it, examine it, or use it in any
fashion. It's only there to make the inventory listing look better.

Allow Object Manipulation
When writing your adventure, you should allow the player to manipu
late each object in all the obvious ways, as well as any special ways that
you have designed. The obvious ways of manipulating an object in
clude examining it, taking it, and dropping it.

The player should further be allowed to use the object in any other
obvious ways. Let's say the player finds a candy bar. He must be al
lowed to pick it up, assuming he has not reached his inventory limit.
He must also be allowed to drop it. That may sound obvious, but it can
be easily overlooked. The player must be allowed to examine the
candy bar. He needs to know if it "looks fresh and tasty'' or if it "is old
and stale."

In addition to these three actions, which you should allow for every
movable object, the player should be allowed to use the object in any
appropriate manner. In the case of the candy bar, he should be al
lowed to eat it, feed it to a goat, or use it as bait. Even if these actions
serve no purpose in the solution of your adventure, they should be al
lowed. Otherwise, your adventure will seem too limited and boring. A
guideline to follow is that if you have placed something in your adven-

5-7

The Visionary Programmer's Handbook

5-8

ture, then allow the player to manipulate it. If you aren't going to allow
him to manipulate it, then don't put it in the game.

Let the Player Examine Objects

Always allow the objects to be examined. This includes both movable
objects as well as nonmovable objects. When describing an object at
the player's request, it is an opportune time to give the player some
hints. If the player has asked to "look at the boulder", you could
respond that "it is quite large and heavy." If you want the player to
discover something sitting on top of the boulder, you could go further
and give the player a hint by saying, "it looks like you could climb on
top of it." If there is something beneath the boulder, you could tell
him, "It is much too heavy to carry, but you might be able to roll it
aside."

Remember that when the player asks for a longer description of an
object, you are given an excellent opportunity to nudge the player in
the right direction.

Let Movable Objects Be Picked Up

Always allow the movable objects to be picked up, even if the object is
simply part of the "window dressing." Sometimes you will place an
object in your adventure, not because it serves any purpose in the ul
timate solution, but rather because it is appropriate to find the object
at some location.

For example, let's say the player has entered an old prospector's shack.
You would not want the shack completely empty. It would seem ap
propriate to have a few objects inside, like an old lantern on the table,
or a blackened fireplace poker on the hearth. The lantern might play
an important part in the adventure, being instrumental in the solution
to some puzzle later. The fireplace poker, on the other hand, might be
strictly there to give the shack a richer tone. But you must allow both
objects to be picked up. Even though the poker is unimportant to the
solution of the adventure, it is part of the game and you must allow the
player to acquire it.

Let Movable Objects Be Dropped

Always allow the movable objects to be dropped. Even when, for the
best solution of the puzzle, an object should not be dropped, allow it to
be dropped anyway. Perhaps you have left a pile of clothes on the
floor for the player to find. You want them to be found, picked up, and
put on hangers. Dropping the clothes back on the floor really has no
place in the final solution to your adventure. But it should be per
mitted anyway. If you don't permit the player to drop the clothes, it
only makes your adventure easier to solve, because the only other alter
native is to hang them up. However, if you do allow the clothes to be

Chapter 5: The Objects

dropped, then you not only cloud the solution to the puzzle a bit more,
but you make the world of your adventure a little more realistic. A
general rule of thumb is, if an object is movable, always allow it to be
dropped.

Anticipate the Action of Play

There are many ways for objects to be manipulated in addition to being
examined, picked up, and dropped. Thy to anticipate what the player
will try, and create actions for each of them. If the player has a bottle,
anticipate he will try to open it, put things inside it, seal it closed again,
or even break it. Allow the player to manipulate the object in all the
normal ways. Let him open the bottle, even if it is empty. Let him put
a rolled-up note in the bottle, even if it has nothing whatsoever to do
with the solution of your adventure. Give him the means to seal it back
up again. Allow him break it, or at least try to break it. You must
allow him to manipulate the bottle in all the normal ways.

If you don't want the player to manipulate an object in some normal
expected fashion, then you must devise some logical reason to prevent
it. If the player has found a glass bottle, it is logical to expect him to
try to break it. If you wish to prevent this, you must find some reason
why he can't succeed. In a poorly-designed adventure, if the player
tried to break the bottle, he would receive a response, "You can't."
But in a well-designed adventure, you will tell him the reason that he
can't. You may reply that "You don't have anything hard enough to
break the bottle." Or you could simply say, "You don't feel destructive
at the moment." Either way, you have done more than just deny the
player the ability to break the bottle. You have explained why he can't
break it.

Don't be concerned about the player trying unusual or illogical things.
You needn't anticipate he will try to eat the bottle. You don't have to
include anything in your game to prevent him from eating the bottle.
Feel free to ignore the more outlandish actions. Just be sure you don't
overlook any of the more obvious and logical ones.

On the other hand, if you want the player to actually eat the bottle,
then provide the necessary programming code to accommodate that
action. But at the same time, be sure you let the player know that she
is expected to eat the glass bottle. Don't expect her to try such an
unusual and bizarre action on her own. If you want her to eat it, give
some clue. This can be done in a "help" message, or in the object
description. If she asks for help, you could respond, "You are so
hungry, you could eat glass." If she asks to examine the bottle, you
could reply that "it appears to be a Hollywood stunt prop made of
sugar." The important thing to remember is that if you require the
player to treat an object in an unusual way, you must lead her to do it,
not just expect her to try it on his own.

S-9

The Visionary Programmer's Handbook

5 -10

Let Objects Be Put Inside Other Objects

As mentioned above, you should allow objects to be put inside other
objects. Allow the player to put a note inside the bottle. Require him
to put batteries in flashlight before he can use it. To hear a recording,
make him put a cassette in a recorder and then push "play." To keep a
gun dry, he should put it in a plastic bag. The player will feel a much
truer sense of being actually able to manipulate things in your make
believe world, when he is allowed to put some things inside others.

When you allow objects to be placed inside other objects, be sure to set
flags, so you can determine the correct descriptions to give. For ex
ample, if the player asked to "examine the flashlight", you would want
to respond that either "it needs batteries" or "it contains batteries." By
using an attribute named FULL for the flashlight, you could easily give
the proper response depending on whether the flag was set (and the
flashlight is full of batteries) or if the flag was unset (and the flashlight
was not full of batteries). Look at the following lines that produce this
result:

ACTION LOOK, EXAMINE, SEARCH
IF FLASHLIGHT IS FULL THEN

T It contains fresh batteries.
ELSE

T Bad luck ••. no batteries!
END IF

ENDACT

Likewise, if the player tried to turn on the flashlight, you would either
tell him he was successful if the flag was set, or tell him that nothing
happened if the flag was unset. When you permit objects to be placed
inside other objects, use flags keep track of their status.

If you don't allow all the objects in your adventure to be manipulated,
regardless of their importance, then the player will soon learn to dis
regard any objects that can't be manipulated in most normal fashions.
This will make the puzzles in your adventure much less challenging,
and the game much less interesting to play. By adding non-essential
objects to the game and allowing the player to manipulate them, you
make the puzzles more difficult. The player will not be able to tell the
important objects from the unimportant ones.

Some Tips for Using Objects

When you create objects in your adventure, it is important to include
objects that are nonmovable as well as the more common movable
variety. One reason you should include them is that they can change in
some way. A door, for example, is a nonmovable object. The player
cannot pick it up and take it along. But it still needs to be included as
an object, since it can change from an open door to a closed door. By
making the door an object, the player can examine it, and see if it is

Chapter 5: The Objects

open or closed. The most common way to accomplish this is with an
attribute. Name an attribute for the door, called OPEN. IT the at
tribute is set, tell the player that the door is open, and allow it to be
used as an opening. IT it is unset, tell him it is closed, and deny him

I

access.

Another reason to include nonmovable objects is if you anticipate that
they will be referred to by the player. Take for example the bottle. IT
the player said, "drop the bottle" then Visionary would be able to
respond properly and place the bottle at the current location. If on the
other hand, the player said "drop the bottle on the floor," Visionary
would not be able to understand it.

The reason is the word "floor." Your Visionary game would not be
able to understand that sentence un,less you had defined FLOOR as an
object. It is obviously a nonmovable object. The player will not pick it
up and carry it around. You may not even include any attributes,
descriptions, or actions for the object. But by creating it, and placing it
in the current room, the player is allowed more ways of expressing
game commands. It makes the adventure more user-friendly, and as
mentioned before, it makes for a better game.

Some nonmovable objects are not optional, they are mandatory. Con
sider the objects necessary if the player wants to "push the boat into
the water." You must have created a boat and also created water. Un
less you make "water" an object, Visionary will not be able to under
stand the player's request, and will respond "I don't know what a water
is." To allow the player to succeed, you must create "water" as an ob
ject.

When Objects Change

Sometimes, a movable object will change. Just as a nonmovable object
like a door can change from closed to open, a movable object like a
torch can change from unlit to lit.

There are several ways you can change the condition of an object in
your adventure. One way is to actually create two objects. Let's say
you create a dry torch and a burning torch. Place the dry torch at the
location at which you intend it to be found by the player. The second
object, the burning torch, should be stored in the store room. When
the player lights the torch, place the dry torch in the store room and
place the burning torch in the current location.

An alternative to using two separate objects and swapping one for the
other is to use a single object and one attribute. Design an object
"torch", and name one of its attributes BURNING. The proper
description could be given by checking the attribute. Likewise, a
darkened room could be fully described if the attribute is set, or it
could only be described as "You can't see in the dark" if the attribute is
unset. Using two objects, or one object and an attribute, are equivalent

5 -11

The Visionary Programmer's Handbook

s -12

methods to achieve the same result. Both work quite well and the
choice can be left up to you, the author.

Invisible Objects

There are special cases where you will have to create two versions of
an object. One version will be a nonmovable object and the other will
be movable.

Let's say for example that the player is walking through sand dunes
filled with tall beach grass. You may want the player to use some of the
beach grass for a certain purpose, to be able to take some of the grass.
Not all of it; just some of it. When you write the room description,
don't mention the grass. It will be more obvious that the grass can be
used, if you list it after the location description as an object. If the
grass was only listed in the location description, the player would
probably not attempt to take any of it. Remember, you don't want to
make your adventure impossible to figure out. Listing the grass as an
object is a subtle hint that it is to be used in your game.

The first thing to do in this case is to create a nonmovable object that
will appear immediately after the room description. You might say,
"You see bunches of tall beach grass growing throughout the sand
dunes." When you create this object, do not call it GRASS. You want
to save that specific name for the second object. Give the first object a
slightly different name, say GRASSl.

Then create the second object. This one will be a movable object
called GRASS. Place it in the current room. When you write the room
description of this object, check to make sure the movable object is not
in the sand dunes. If the location is anywhere else you could say, "You
see a handful of beach grass lying here." If however the GRASS is at
the sand dune location, then print nothing. The first nonmovable
object's description will be sufficient, and the movable object GRASS
becomes invisible at this location. When you write the description for
GRASS in the player's inventory, you could simply say "a handful of
beach grass."

Now let's see how this works. When the player stands in the sand
dunes, she sees beach grass growing all over the place. When she says
"get the grass", give her the movable object GRASS which was in the
room at the time, but was invisible. When she takes inventory, she sees
"a handful of beach grass." When she looks at the room description
again, she still sees "beach grass growing all over the place." If she
takes the handful of grass and drops it in any other location, it will
show up as "a handful of beach grass lying here." If however she drops
it in the sand dunes, it will not show up separately. Rather, it will be
included by the statement, "You see bunches of beach grass growing all
over the place."

Chapter 5: The Objects

This same technique of an invisible object can be used if the player is
standing on a gravel path, and wants to pick up some of the gravel.
You create two objects. Place a nonmovable object GRAVELl in the
room, which is described as·~ gravel path beneath your feet." Place a
movable object GRAVEL in the same room. Make sure the movable
object GRAVEL is described only when it is not in this location. When
it is in the same location as the GRAVELl (the gravel path) it becomes
invisible. In that way, the player can take some of the gravel without
affecting the object description. And if he drops it back in the original
location, it blends back in with the rest of the gravel, becoming in
visible.

Let's examine another variation on the invisible object. Let's say you
have a snack bar in your adventure. The player can visit the snack bar
and buy any of twenty different items available there. Rather than list
all twenty objects as visible objects, make them invisible. Rather than
say, "You see a bag of popcorn on the counter," "There is some cotton
candy here," ·~ ice cream bar lies here," and so on, make the objects
invisible. That way, they will not clutter up the screen when the loca
tion is first described. They will remain invisible when they are at this
location, as long as they have not yet been purchased. Let's see exactly
how this can work.

Use one attribute called SOLD for each object at the snack bar. If
SOLD is unset for any object, then make it invisible. That is, don't give
it any description. When the player buys the object, set the attribute
SOLD and place the object in the player's inventory. Of course, you
must take care of additional things. Be sure the player has the ap
propriate money, and remove it from the inventory. And always check
the inventory limit before completing the sale, to make sure the player
doesn't carry more than you want him to.

Let's say the player wanders up to the snack bar. Since the twenty
objects available for purchase are invisible, he must have some way of
knowing what he can buy. One way is to place a sign on the wall of the
snack bar, listing what's available and at what price. Another way is to
have the player talk to the clerk behind the counter. She can give him
a quick list of what's still available. If he asks for peanuts, check his
inventory limit. If it hasn't been reached, then remove the appropriate
amount of money from his inventory, give him the peanuts, and set
SOLD for peanuts.

When you write the descriptions for the peanuts, check the SOLD at
tribute. If it is set, describe "A bag of peanuts lies here" for the room
description or "a bag of peanuts" for the inventory description. If the
attribute is unset, then print nothing. Jn this way, you will have the
peanuts and all the other objects available and present in the current
location, but they will be unseen and unobtainable until they are sold.

You can use the concept of invisible objects in other similar situations
as well. When the player goes up to a ticket booth to buy a concert

5 -13

The Visionary Programmer's Handbook

5 -14

ticket, the ticket can already be at the location, but invisible. It will
become visible only when she buys it with a twenty-dollar bill. In a
jungle adventure, a python can lie hidden in a tree. It will be invisible
until the player examines the tree, at which time an attribute for the
python is set and it becomes visible. As you design your adventure, you
will find many situations where it is advantageous to use invisible ob
jects.

The main reason for having an invisible object, in addition to those
mentioned already, is that the player is permitted to manipulate the
object even though it is not visible. That's because the object is actual
ly at the current location. The player can refer to it, and VISionary will
understand him. If you chose not to place the object at the current
location, then the player could not refer to it. If, for example, the
player went up to the ticket booth and said "buy a ticket", VISionary
would respond "I don't know what a ticket is." That's because there
was no ticket at the location. In VISionary, if the object is not present,
it cannot be referred to without additional programming-you can
refer to an object that is not present if you want to use the special
vocabulary file, but that usually takes more programming steps, and
slows down the execution of the program. For further details on the
vocabulary file, see the next chapter.

By having the object present but invisible, the player can ask for it,
examine it, and otherwise refer to it. You can easily write the code to
permit these actions as long as the object is present. The use of in
visible objects is a powerful technique for you to use in your game.

As you have seen, there are a large variety of things that can be done
with the objects you place in your adventure. Objects are the comer
stone of any adventure. Without them, there's nothing to do but
wander through the rooms. With them, your program finally becomes a
real game. We have now completed the major portions of your adven
ture. In the next chapter, we will examine your adventure's vocabulary
and how it affects the objects.

Chapter 6: The Vocabulary

When choosing your adventure's vocabulary, you must take special
care. By judicious use of verbs, nouns, and their synonyms, you will be
able to anticipate almost any normal input from the player. You don't
want to make the player search for some specific word, when any one
of several will do. There is nothing more frustrating to an adventure
game player than playing a guessing game, trying to find the exact
words to do some simple task. Don't force the precise words, "climb
the stairs" to be used-design your vocabulary to permit the player to
use variations such as "climb the steps," "climb up the steps," "climb
up'', or even simply "up." It will make your game much more playable.

Vocabulary refers to the words in your adventure. It includes the
nouns, and verbs, as well as the adjectives and prepositions. When you
write your adventure, you need to be constantly concerned about using
the appropriate vocabulary. It is through the vocabulary that the player
will interact with your game, and come to feel a part of the new and
exciting world that you have designed. The player should be able to
easily move about in your world, manipulate objects, and solve the puz
zles you have set out. A well-chosen and carefully thought-out
vocabulary makes for a smooth playing and a thoroughly enjoyable
game. A poorly-chosen, carelessly-planned vocabulary makes a
frustrating game that won't get played.

Vocabulary in a Graphic-Only Game

If you are designing a pure graphic adventure with no typing allowed,
you will be concerned with selecting a limited number of verbs, on
which the player can click the mouse pointer. Because no typing is
accepted in such a game, you must anticipate every normal request
from the player, and provide a list of the verbs on the screen.

You may find that selecting some vague words will allow you more
freedom. For example, if the word "use" can be clicked on, the player
can then click on the picture of the gun to "shoot", click on the picture
of the shovel to "dig", or he can click on the picture of a key to "un
lock." In this case, you do not have to provide the verbs "shoot", "dig'',
or "unlock." The one word "use" satisfies the need for the three more
specific ones.

For this reason, there is little need for taking further care with the
game vocabulary in a graphics-only game. There is no need to choose
adjectives. The player will not be typing in "red box" or "blue box,"
but simply click on the picture of the desired box. And similarly, there
is no need to worry about prepositions. If the player wants to put an

6-1

The Visionary Programmer's Handbook

6-2

object "in" someplace, or "on" something, a click on the first object
and then the second object is all that is needed. Likewise, there is no
need to anticipate special commands, since no typing is allowed in a
pure graphics game.

Text Adventure Games

But in a text-only game, or a combination graphics and text game, the
subject of vocabulary is a vital one. The remainder of this chapter will
examine more closely the special care you must take in designing the
vocabulary for a text game, or text-graphics hybrid.

As you write your text adventure game, you will design the vocabulary
in several areas. One of those is a special vocabulary file, which we will
examine later in this chapter. Another is in subroutines. But the most
common place where you will work with the vocabulary is with objects.
Let's examine a sample file for an object and see how the vocabulary is
integrated into the game.

Object Vocabulary
In each object file, you will choose the nouns that represent the object.
You will also decide if any adjectives are necessary to describe each
object. But the most important role for vocabulary is in the actions
programmed for each object. It is here that you decide what manipula
tions will be permitted with each object and what verbs will be ac
cepted to initiate those manipulations. It is here that you will decide if
a candy bar can be eaten, and if so which verbs will be accepted. You
may only wish to accept "eat the candy bar." Or you may wish to ac
cept additional variations such as "swallow the candy bar," "chew the
candy bar," or "enjoy the candy bar."

Let's examine an object file, step by step, and see in which parts you
need to be concerned about the vocabulary.

The Object Name

When you first define an object, you must choose its name. This is the
name that you will refer to when writing the game. Then you must
select the nouns that the player will use when referring to the object.
Usually, these two words are the same. The difference is that there is
only one name given the object for the game to refer to. There can,
however, be many names that the player refers to. This is where
synonyms are used.

Synonyms

For each object in your adventure, synonyms are important. It is im
portant to list as many synonyms as possible. For example, if one of the

Avoid Using
Double Adjec
tives

Chapter 6: The Vocabulary

objects in your adventure is named "pistol," you should also include the
alternate words "gun" and "revolver" as synonyms.

Synonyms allow the player to be a little looser in what he says as he
plays your game. He can say, "get the gun," "shoot the pistol," or
"load the revolver." Granted, it is not as precise to accept so many
different words for the pistol, but it is certainly more user-friendly.
And that's important in any adventure. You don't want to frustrate the
player with a search for the exact word. You must allow a little leeway
in the words he chooses.

When you begin to design the object of the gun, you give it the name
"pistol" for the purpose of writing the adventure. Use only this noun,
no others. Whenever you want your game to check to see if the gun is
present, you refer to it as "pistol", not as "gun." After you have given
the object its name, then list all the names the player can use. Include
"gun" and "revolver" as well as any other appropriate synonyms like
"firearm." This list of nouns is checked when the game is being played.
When the player has typed a command involving the gun, your game
will match his noun with one of the several nouns that stand for the
pistol. It won't matter if he calls it a "pistol", a "gun", or a "revolver,"
the game will understand what he means. Be sure you list all other
logical synonyms for the name of the object.

Adjectives

After selecting the object name and its synonyms, the next thing is to
list any adjectives. If you have used adjectives in your object descrip
tions, then they must be included in the list of adjectives. If for ex
ample, you have described a knife as "a sharp knife" then you must
include the word "sharp" in the adjective list. If you fail to include the
word "sharp" then the adventure will fail to understand the player if he
commands "pick up the sharp knife." Visionary would respond, "I
don't know what sharp means."

Since you included the word "sharp" in your object description, expect
the player to use it. That means it must be included in the adjective
list. If your adjective list doesn't match your object descriptions, then
the game will not respond smoothly, and the player will encounter
frustrations in playing your game. And this is the kind of frustration
you want to avoid.

Beware of double adjectives in your objects. Visionary can't handle
more than one. For example, let's say you create a broom that is
described as "a dusty old broom." It would seem logical to then in
clude both words "dusty'' and "old" in the adjective list. In that way,
the player could say "get the old broom," "get the dusty broom," or
"get the dusty old broom." Unfortunately, if you attempt this you will
create more problems for the game player than you will solve.

6-3

The Visionary Programmer's Handbook

6-4

The difficulty is that Visionary cannot handle more than one adjective
at a time. It would respond properly if the player commanded "get the
old broom" or "get the dusty broom." However, if the player at
tempted to use both adjectives exactly as she saw the object described,
VISionary would not be able to comply with her request. If she said,
"get the dusty old broom," Visionary would reply "You can't see a
dusty old here."

The best solution then, is to use single adjectives to describe the ob
jects. If more than one adjective becomes absolutely necessary, use
them all in the adjective list and create a special vocabulary file for the
command that uses the double adjectives. This special vocabulary file
will be covered later in this chapter.

The next three parts of every object file do not involve vocabulary.
They take care of attributes of the object, starting location for the ob
ject, and descriptions of the object. All three are important to your
adventure, and have been examined in previous chapters. But since
they are not affected by the player's input, they are of no concern to
our discussion of vocabulary. For the purposes of this chapter, we will
skip these three parts of the object file, and move on to the actions,
where vocabulary plays its biggest role.

Object Action
The action section of each object file is the largest. It is the last section
of the file and contains all the actions that can be taken with the object.
This is where the verbs are listed.

Prepositions will also be used here. This section is where the player
tries to manipulate the object. This is where you decide what will hap
pen when he says "look at the ring" "get the ring," "drop the ring," and
other phrases as he attempts to manipulate the ring.

Look
Generally the first action you should include is "look," since it applies
to all objects. Always allow objects to be examined. This includes both
movable objects as well as nonmovable ones. The player will be able to
learn much about the object by asking to "look at the ring." Don't
forget to include the synonyms "examine," and "view." All synonyms
are listed after the verb "look", on the same line separated by commas.

Some additional synonyms may also be appropriate depending on the
object. Consider the word "search." "Search the ring" is not
synonymous with "look at the ring," "examine the ring," and "view the
ring." However, if the object is a book, then "search the book" is
synonymous with "examine the book." By searching or examining the
book, the player might find a flower pressed in between the pages. In
this case, "search" is a synonym for "examine."

Chapter 6: The Vocabulary

When working with objects that contain writing, you must decide if you
want "look" and "read" to be synonymous. If the player asks to "look
at the book," you might want to show him what the book says, just as if
he asked to "read the book."

Or you may choose to treat the two verbs as totally separate actions. If
the player asks to "look at the book," you might want to describe the
cover and mention that "there's plenty to read inside." She would have
to ask to "read the book," to see the exact words contained in it.
Whichever you decide, be consistent in your adventure. neat all ob
jects that can be read in the same manner, whether they are books,
newspapers, advertisements, signs, or stone tablets.

Depending on the object being examined, you might also want to in
clude additional synonyms for "look," such as "frisk," "observe,"
"scrutinize," "scan," "inspect," "check," "study," or "analyze." If for
example, the player is playing detective in your game and has caught a
thief, he might expect "frisk" to be synonymous with "examine." On
the other hand, if the player is a scientist who has discovered some
laboratory rats, he might expect "observe" to be synonymous with "ex
amine." The point is that when you list the synonyms for "look", vary
the list depending on the nature of the object being looked at. Use any
that are appropriate for that object. Remember that the more
synonyms you include, the more user-friendly your adventure will be. It
makes for a better game.

Get
The next action after "look" is usually "get." This is where the player
can take the object. In the case of nonmovable objects, this is where
the player attempts to take the object, only to be told that "it's too
heavy," or "it's nailed down."

In the case of movable objects, this is where you will check to see if he
already carries the object, and if not, if he can carry it without exceed
ing his inventory limit. When you choose your vocabulary for this sec
tion, be sure to include the synonyms "take," and "grab."

As with "look" and all other actions, the synonyms for the verb are
listed after it, on the same line separated with commas. Other
synonyms like "steal," "lift," and "carry'' may be appropriate depending
on the game you are creating. If your player is a jewel thief, it would
be appropriate to include "steal" as a synonym for "get." Don't expect
to use the same synonyms for "get" for every object. They will vary,
depending on the nature of the object that the player is trying to take.

When the player attempts to "get" or "take" a nonmovable object, you
can use a larger selection of synonyms. You can use words that nor
mally are not synonymous with "get" but which all result in the same
response. Let's say a large boulder blocks the player's path. If the
player tries to move it, he is told, "it weighs tons, and won't budge."

6-5

The Visionary Programmer's Handbook

6-6

Since this response is appropriate for any attempt to move the boulder,
feel free to list many verbs which normally would not be considered
equivalent to the word "get." Include the words "get," "take," "grab,"
"push," "pull," "slide," "move," "roll," and "lift." No matter which of
these verbs are used by the player, he is told that the boulder won't
budge.

» A general rule: When you deny the player the ability to
do something, Include many more synonyms for the
action than would usually be used.

Drop

The next logical action after "get" is usually "drop." In this section, the
player is allowed to drop any object she is carrying. It is here that you
check to make sure the object is not already dropped. It is also in this
area where you decrement the player's inventory if necessary. (It is not
necessary if you are using the built-in variable ITEMS to keep track of
the number of items in the player's inventory). You will not find a lot
of synonyms for the word "drop" so the vocabulary for this section of
your game will be limited.

Be careful when choosing the few limited synonyms for "drop." Some
times it depends on the player's location. When you are programming
the actions to drop each object, you must decide if "throw" should be a
synonym for "drop." If the player is standing in a meadow and says,
"throw the bottle," then you would want your game to respond as if he
had said, "drop the bottle." In this case both words are synonyms and
you would reply, "OK," remove the bottle from the player's inventory,
and place it at the current location. If, however, the player was stand
ing on a cliff overlooking the ocean, then the situation would be dif
ferent, and "throw" no longer has exactly the same meaning as "drop."
In this situation, if the player said "drop the bottle," you would expect
it to fall at his feet and remain at his location. If on the other hand he
said, "throw the bottle," you would expect it to fly over the cliff and no
longer be at his location.

The way to deal with cases like this is to decide what you want to hap
pen to the bottle. If you want identical things to happen, then make
"throw'' a synonym for "drop." Otherwise, make them two separate
actions. One action, "drop," would always drop the bottle. The other
action, "throw," would sometimes drop the bottle and other times move
it to the base of the cliff. Using conditional statements, you could have
the bottle stay at the current location or move to a different one,
depending on whether the player stands in a meadow or on a cliff.

Chapter 8: The Vocabulary

The word "remove" may or may not be equivalent to "drop." It
depends on how you wish you design your game. Let's say that the
player is wearing a hat. You have an attribute for the hat called
WORN, and it has been set. If the player asks to "drop the hat," then
he obviously wants to remove the hat from his head and drop it on the
ground. In this case, you would drop the hat and unset WORN. If,
however, he asks to "remove the hat" then he probably intends to
remove the hat from his head but continue to carry it.

If you want to permit this, then you must not make "remove" a
synonym for "drop." You must make it a separate action. The prob
lem here is that you will then have to create a separate action for
"remove," in which you check his inventory limit to ensure that remov
ing the hat doesn't cause his inventory limit to be exceeded. One way
to avoid this is to make "remove" a synonym of "drop." If you choose
to do this, then when the player says, "remove the hat" you will drop
the hat at the current location, check WORN and if it is set, unset it
and tell the player that the hat "falls to the floor." In this way, you
don't have to worry about his inventory already being at the limit
before removing the hat.

If the player still wishes to carry the hat, he is able to say "get the hat"
after removing it. If it exceeds his inventory limit, it will be caught at
that time. You may choose to make "remove" a synonym for "drop,"
or you may wish to treat it as a separate action. Both methods have
their own advantages, and the decision is yours to make.

Wear
The next action that you should deal with is ''wear." Of course, it only
applies to a few of the movable objects in your adventure, but this is an
appropriate place to include it if it applies. Designing the proper
vocabulary for ''wear" is a bit tricky. The reason is that the only com
mon alternate ways to say ''wear the hat" are "put the hat on" or "put
on the hat." List "put" as a synonym for "wear." Visionary will treat
them the same, and allow all three statements to be used synonymously.
Since "on" is a recognized preposition, all three commands will work.

The problem, however, arises if the player should want to "put the hat
on the mannequin." If the mannequin is not an object presently in the
player's location, Visionary will give an error message, "I don't know
what a mannequin is." If the mannequin is an object that you have
defined to be in this location, then the player will end up wearing the
hat instead of the mannequin. To prevent this from happening, you
must anticipate which objects the player may try to put the hat on, and
separate those actions with the OBJNOUN command. An example of
VJSionary code below shows how this is done.

6-7

The Visionary Programmer's Handbook

6-8

ACTION WEAR, PUT
IF OBJNOUN IS MANNEQUIN THEN

T You can't put it on the mannequin.
ELSE

T It looks nice on you.
SET BAT, WORN

END IF
ENDACT

In this example, if the player types any preposition such as "on," and
uses "mannequin" as the object noun, she is prohibited from putting
the hat on it. Of course, there is nothing to prevent you from making
this an important part of your game. Perhaps it is required that the
player put the hat on the mannequin. In that case, you would change
the example, and set an attribute called ON-MANNEQUIN. You
would change the descriptions of the hat and the mannequin depending
on the status of the attribute.

An important thing to remember when making "put" a synonym for
''wear" is that you must anticipate the player may try to use the hat
with other objects as well. She may try to "put the hat on the shelf" or
"put the hat in the box." Both will result in the hat being worn by the
player unless you specifically program around them as shown above.
All this can make for a large amount of programming, but allows the
player a wider range of actions.

An alternate method that is not as user-friendly but is easier to pro
gram, is to make "put" and "wear" separate actions. Don't make them
synonymous. Program the verb "wear" to put the hat on. Program the
verb "put" so that only a simple message is given, such as "Try to
WEAR the hat." In this way the player is prompted to use a verb
different from "put," if indeed he wishes to wear the hat. And if he
was trying to do something different, he then knows he can't do it.
This alternate method is not the recommended one, but may be
preferred if your game has too many objects for the hat to be put in, or
put on, or put between, or put under. It does make things a lot
simpler.

An action associated with wearing objects, is removing objects. If the
player can wear a hat, she must be able to remove the hat. As dis
cussed earlier, you may wish to make the verb "remove" synonymous
with "drop." In this way, when the player removes the hat, she not only
stops wearing it, she also stops carrying it.

Frequently, however, you will wish to keep the verb "remove" as a
separate action from "drop." You will usually want the player to be
able to remove a hat, some gloves, or other objects while still carrying
them in the inventory. As also mentioned previously, this places upon
you the additional responsibility to check the player's inventory limit
before allowing her to remove the hat. If you choose to keep "remove"
separate from "drop," then it is appropriate to place it after ''wear" in
the object file.

Chapter 8: The Vocabulary

There are problems in designing the vocabulary for "remove" that are
similar to those encountered with ''wear." In addition to asking to
"remove the hat", the player may also ask to "take the hat off'' or "take
off the hat." We are now presented with a situation where the verb
"take" has a meaning exactly opposite from normal. The preposition
"off'' is what makes the difference. So you will have to go back to the
action containing "get, take, grab" and modify it.

First, write the necessary code to "remove" the object. Make this a
separate action from the others, with no additional synonyms. Be sure
to include the necessary inventory checks when taking this action.
Once you have finished writing all the code for the verb "remove," then
go back and modify the "take" action. At the beginning of the "take"
action, check for the preposition "off." If it appears, then insert a
duplicate copy of all the code that appeared under the "remove" ac
tion. An example of the Visionary code follows.

ACTION GET, TAKE
IF PREPOSITION IS OFF THEN
insert duplicate code here

ELSIF PLAYER HAS HAT THEN
T You already have it.

ELSE
GRAB HAT
T OK.

END IF
ENDACT

In the above example, if the player says "take off the hat" then Vision
ary recognizes that he has used the preposition "ofP' and it executes
the same code that would have been executed if the player had said
"remove the hat." If the player doesn't use the preposition "ofr', the
you assume he wants to take the hat, and you continue with the normal
actions for "take." The above example was intentionally kept simple.
Don't forget to always check the inventory limit before allowing the
player to take anything.

Subroutines for Actions

Since having duplicate sections of code, one set under the "take" sec
tion and the other under the "remove" section, is not only redundant
but takes up extra space, you may prefer to use a subroutine. You may
prefer to place the code for removing an object in a subroutine, and
then call the subroutine from the two separate places. This saves you
time, and keeps the program smaller.

We haven't said much about subroutines until now. For more informa
tion on subroutines and how to use them, see Chapter 8, Subroutines.

6-9

The Visionary Programmer's Handbook

6 -10

Object-Dependent Actions

We have discussed the most common vocabulary words that the player
will use. She will try to examine objects, take objects, and drop objects.
Some objects, like a book, she will try read. Others, like sunglasses,
she will try to wear and remove. In addition to these, you should allow
other common actions as well. Allow every object to be manipulated in
normal ways.

Before completing the object file, be sure you include some actions that
respond to normal anticipated vocabulary words. If the object is book,
allow the player to bum it, if fire is present in your adventure. If the
object is a bottle, allow the player to put something inside it. All these
actions are normal and should be anticipated. Design your vocabulary
accordingly. Remember to use as many synonyms as you can to make
the game easier to play. Let the player say "light the book" as well as
"burn the book." Let the player "insert the note in the bottle" as well
as "put the note in the bottle," "place the note in the bottle," and "stick
the note in the bottle."

Let's examine the example of a note in a bottle further. The
vocabulary involved in the command to put a note in a bottle is a bit
more complicated than usual. Let's see the best way to accomplish it.
Obviously, the verb is "put." It is less obvious which noun to use. Is it
"note" or "bottle?" Should this action be included in the file for the
object "note" or for the object ''bottle?" Both objects must be present
in order for the feat to be accomplished, so the programming code will
be executed regardless of which object file contains the action. How
ever, you will find it a bit easier to write the code if you include it as an
action on the note, rather than the bottle. This is because the note is
the direct object. The bottle is the indirect object, acted upon by the
preposition "in."

Now that we have decided to place the action in the file for the note,
we need to start by listing all the synonyms. As stated repeatedly
before, always include as many synonyms as possible. In this example,
it is appropriate to use "insert," "place," "stick," "push," and "shove."
After listing the synonyms, you must check to see if the player wants it
placed in the bottle, rather than in something else. Don't bother
checking to see what preposition was used. It doesn't matter whether
the player said "put the note in the bottle" or "into" or "inside." The
only thing you need to check is that "bottle" was used after some
preposition. Look at the following Visionary code.

------------ --- --- ----~

Chapter 8: The Vocabulary

ACTION PUT, INSERT, PUSH, STICK, PLACE, SHOVE
IF OBJNOUN IS BOTTLE THEN

T OK, the note is in the bottle.
PLACEOBJ NOTE, STORAGE
SET NOTE, IN-BOTTLE

ELSE
T You can't put it there.

END IF
ENDACT

Remember, this section of code would appear in the object file for the
note, not the bottle. As you can see above, if the player asked to place
the note inside the bottle, he was told he had succeeded. The note was
removed from the current location and placed in the storage room (a
concept that was discussed previously). Then a flag was set. An at·
tribute named IN·BOTILE was created for the note.

By checking this flag, you can later give the proper description for the
bottle. You can say "the bottle is empty" if the attribute is unset, or
"the bottle contains a note" if it is set. You can do a variety of other
things as well, if you know that the note is either in the bottle or not.
Perhaps the player is rescued only if the note is inside the bottle.

The Vocabulary Action File

You want to create an adventure with a complete vocabulary, one that
will permit more sophisticated sentences. By using prepositions and
object nouns, you can do much more than the simple two word com·
mands of primitive adventure games. The player is not limited to
saying things like "get bottle" and "write note." The enhanced
vocabulary allows him to make more complex requests. He can "put
the hat on the mannequin" or "insert the note into the bottle."

However, there may be times that you want to permit even more com·
plex commands. You may want to let the player ask for things that
even Visionary could not normally do-and you can. You can even
exceed Visionary's vocabulary limits, and understand special commands
from the player that normally would not be possible. The secret is in
the vocabulary action file.

The vocabulary action file is a special file, separate from the object
files. Jn this file, you can include any anticipated input from the player
that might not normally be picked up by V1Sionary in the actiom of an
object file. As mentioned before, using two adjectives is not permitted
in Visionary. The player can't refer to "the dusty old broom." The
vocabulary action file is a way around this limitation.

Normally, the player cannot refer to two objects at once. He cannot
say, "place the note and the ring inside the bottle." But you can permit
it, if you include it in the vocabulary action file. There are some
reserved words like JUMP and WAD, which normally cannot be used
by the player. But they can if you program them into the vocabulary

6·11

The Visionary Programmer's Handbook

6 -12

action file. The vocabulary action file is a unique place to deal with
special vocabulary problems. Let's examine it further.

The vocabulary action file is made up of actions, and programming
code to be executed if the actions are requested. This looks much like
the action sections in each object file. The difference is that the action
sections of object files are only checked if the object is present with the
player, either in his location or in his inventory. The action sections of
the vocabulary file are checked after every move, regardless of where
the player is or what he carries.

VISionary will check here before anywhere else, so that a player's re
quest to "place the note and the pencil inside the bottle" can be acted
upon, if it is included in the vocabulary file. When you add anticipated
sentences into the vocabulary section, you must include the verbs,
nouns, adjectives and pronouns. You may leave out only words like
"a," "an," and "the."

Let's see some of the special ways the vocabulary action file can be
used. Thke the example of the note in the bottle. The way in which
this example was designed will not allow the player to take the note out
of the bottle. If he said, "take the note out of the bottle," VISionary
would say "I don't see any note here." Remember that the note was
placed in the storage room.

One way around this problem would be to make the note invisible, as
discussed in the last chapter. The problem with that is, it would re
quire that you continue to move the invisible note from one location to
another as the bottle also moves. It would have to follow the bottle, so
it could be removed when the player requested it.

A much simpler solution is to use the vocabulary file. Include an ac
tion for "take the note out of the bottle." When the player makes this
request you only have to check to see if the player has the bottle and if
the attribute IN-BOTTLE is set. If so, take the note from the storage
room and place it in the current location. This is an example of how
the player can refer to objects that are not at his location. Normally,
such a thing cannot be done. But with the vocabulary action file, it can.

Another time you will need to use the vocabulary action file is when
there is no object referred to. Remember that when the player inputs a
command, VISionary checks through all the objects present to find a
matching command. If the player simply asked to "wait", Visionary
would not find an object present with a matching command. Put
"wait" in the vocabulary file. Since Visionary checks the vocabulary file
first, it will find "wait" and will give the response you chose.

This "wait" command would be an excellent way to make time pass
quicker, if your adventure used a clock. Similarly, if the player wanted
to "sleep" the vocabulary file could intercept that command and deal
with it appropriately. If the player said, "sit down," you could set any
necessary flag and respond "OK." The vocabulary file is an excellent

Reseved words
like WAD and
JUMP must be
defined in the
.voe me if
they might be
used in player
commands

Chapter 6: The Vocabulary

place to insert single word commands and other commands that are
not actions made upon an object.

Reserved Words
There are several reserved words in Visionary which normally cannot
be used with an object. The vocabulary action file allows their use.
The word "load" normally signals Visionary that the player wishes to
load a saved game, and causes a window to appear for selection of the
proper saved position. This causes problems if you have a gun that
needs ammunition. ff your player finds an empty rifle and later finds
some shotgun shells, he would logically respond "load the gun". If you
try to place the verb "load" in an action inside the object file for "gun"
you will find that it doesn't work. If the player types "load the gun,"
the window appears so he can load a saved game. By using the
vocabulary action file, loading the gun is simply accomplished. Make
the action, "load the gun" and use exactly the same code that you
would have used in the "gun" object file.

The word "jump" is another reserved word in Visionary. If the player
is standing on a high diving board and types "jump off the diving
board," Visionary will respond "ILLEGAL COMMAND." This is be
cause the word "jump" is used in debugging. But your player can still
jump off the diving board, if you use the vocabulary action file. Create
an action called "jump off the diving board" and program whatever
response you wish. Perhaps you will have the player die when he hits
the dry bottom of the drained pool. Perhaps he will find a treasure
under the water. Whatever you decide, you can make it happen in the
vocabulary file.

We've spent a lot of time examining the vocabulary of your adventure.
We've looked at the common commands like "look," "get," and "drop."
We've looked at synonyms and how they can change. We've looked at
how to use more sophisticated commands with prepositions and in
direct objects. And we've looked at how the vocabulary file can in
crease the sophistication of your adventure. But through all these
things, there has been one common thread. When you create the
vocabulary for your adventure, make it easy for the player to find the
right words. If she has the right idea, don't make her go searching for
an exact phrase in order to try her idea. Use synonyms and alternate
phrasing to permit as wide a variety of commands as possible. Remem
ber, your game will only be enhanced by allowing the player many
equivalent ways to express commands. The better the vocabulary, the
better the game.

6-13

The Visionary Programmer's Handbook

6 -14

Respond to
each player
command

Update player
or game status

Chapter 7: Messages

In your adventure, you must constantly keep the player informed of
what is happening. You do this by presenting messages telling what is
occurring as the plot unfolds and changes take place in player status
and in the surroundings of the make-believe world. Messages are an
important part of any adventure game, whether a text or graphic adven
ture. Without them, the player would have only the room and object
descriptions or graphics as a guide. The player would have no idea
what else is taking place in the game.

There are a variety of purposes for messages in your adventure - most
apply to graphic adventures and all apply to text games. This chapter
will examine these messages and see how to best make use of them.

Action Messages

A message must appear when the player takes any action. Regardless
of what action the player chooses, your game must reply with some
message. Even a short reply like "OK" is acceptable, in response to
some simple command like "get the axe." But some reply is required.
In a poorly-designed adventure, if the player asked for "inventory'' and
carried nothing, there would be no reply. In your well-designed adven
ture, the same situation would be met with the message, "You aren't
carrying anything." Make sure you respond to any command made by
the player, regardless of the nature of the command or the brevity of
your response. You must let the player know you recognize the com
mand.

Whenever the player takes some action, your game must give a message
updating the current situation. If the player asks to "chop down the
tree," you must program some response. You might reply, "the tree
falls with a crash," to let him know he succeeded. In a graphics adven
ture, you could show the tree falling, accompanied by the sound of the
crash. Alternately, you might tell him, "You can't. You don't have an
axe." Either way, you have printed some message to advise the player
of the result of his request.

The message can go farther and give the player additional information
as well. The request to chop the tree might be met with, "as the tree
falls to the earth, you see something fly out of the treetop and sink into
the swamp." This type of message is doubly important in a graphics
adventure, since the player might not notice it in the graphics. This
message has not only told the player that he succeeded in chopping
down the tree, but that there was something in the tree top, and per-

7-1

The Visionary Programmer's Handbook

Inform player
of unexpected
results

7-2

haps he should have climbed the tree and found it, before cutting the
tree down.

A message can also tell your player of some unexpected result from her
action. After requesting to cut down the tree, you could tell her that
"It falls across the river, creating a natural bridge to the other side."
Here, the message not only tells the player that she has been successful
in his bid to chop down the tree, but that she has solved the problem of
how to cross the river. In a graphics adventure, this type of message
would be less important, since the tree could be actually shown span
ning the river. It never hurts, though, to give some response, even in a
graphic adventure. Chopping down a tree is just one example of the
actions a player can take. Keep in mind that whatever the request, a
message must always be given, acknowledging the request and updating
the current status of the world.

Clues and Help Messages

Another time that your game will print messages, is when the player
specifically requests them. There are times when the player will ask
the computer for information. Your game must be prepared with an
appropriate message. The player might ask for "help." Generally, you
will have a variety of messages available giving clues when the player
has requested them. Choose the proper message depending on the
current situation, the player's location and which puzzles have already
been solved.

Another way that the player may specifically ask the computer for a
message is, "What time is it?" This is a common request in an adven
ture in which time is an important factor. You must have some reply
ready, whether it is a specific time on a clock or a general time of day.
Depending on the plot of your story, you may wish to answer the player
with "It is 2:10 PM" or "It is mid-afternoon." This specific example
best applies to a text game. In a graphics game, it would be simpler to
have a picture of a clock on-screen at all times. But even in a graphics
game, there are many times that the player will ask the computer for
information.

The most common way in which the player will specifically request a
message from the computer is by asking to examine an object. It is a
standard behavior to examine an object as soon as it is found. In a text
game, this is usually accomplished by typing "look at the bottle." In a
graphics game, the player usually only has to click on the picture of the
bottle.

Most experienced adventurers are wary and will ask to examine an ob
ject even before picking it up. You must be ready with the appropriate
message to describe every object in the world of your creation, whether
it can be picked up or not. The message must tell the player everything
important about it, unless you have a reason for hiding something.

Clues
shouldn't tell
too much

Provide more
than one clue
per situation

Chapter 7: Messages

Even then, be sure you play fair with the adventurer. As mentioned
before, don't spring any fatal surprises on the player without some hint
or clue first.

Another way a player will specifically ask the computer for a message
is when he asks for "help." In return, he expects a message that will
give him a clue. The request for help is made when the player is stuck
and can't figure out how to accomplish a certain task. It may even
come from overall frustration, and be a general cry for help.

There are several things to consider when you design these messages.
First, don't blatantly tell the player what to do. Don't simply say, "pry
the door open with the crowbar." You want to make it a bit of a puzzle
or a riddle, so that the player will feel the glow of success and a sense
of accomplishment. Reply instead, "You may need some leverage
here." When he figures out how to open the door, he will feel good
about himself. He was smart enough to figure it out, even if it did take
a clue from the computer. By telling him exactly what to do, you make
him feel dumb. But giving him a clue and letting him decipher it makes
him feel smart. The player will enjoy playing your game a lot more if
you don't make him feel dumb.

A second thing to consider when you write your clues is to design more
than one per situation. If the puzzle is especially tricky, you may want
to split the solution into several parts, and give separate messages for
each part. You might even want to mislead the player at first . If she
has encountered a padlock and has asked for help, you might reply,
"Check the keys in the pantry." After you have verified that she has
tried unsuccessfully to use the keys to unlock the padlock, you could
have a second clue available. The next time she asks for help, you
could give her the message, "If the keys don't work, try breaking it with
something." Remember to be a little vague. Don't be too specific, or it
will take a lot of the fun out of the game.

Default Message

When you design your clue messages, have a default message. This is a
message given to the player when you want to give no help. If you can
tell from the player's location, from the puzzles already solved, or from
flags set, that the player has not currently encountered any difficult
puzzle, you may wish to simply respond, "Sorry, you don't need any
help here." You may wish to encourage the player to "examine every
thing" or to "try again later." But as stated before, you must give some
reply to the player's request, even if that reply is a standard default
message.

Timed and Random Messages
Messages can not only appear when the player takes some action or
asks for a message, but they can also appear at some set time. In this

7-3

The Visionary Programmer's Handbook

Random mes
sages can add
realism

Give the player
adequate warn
ing of danger
ahead

7-4

case, it will not matter what the player has or has not said or done.
The message appears because it is time for the message to appear.

At the stroke of midnight, "the skeleton rises from its coffin and stalks
into the night." This message advises the player of some important
event taking place in the game. This can be especially important in a
graphics game, when the action takes place off-screen. If the player is
depending strictly on the graphics to provide him with information, he
will miss important events. In such cases, giving the player such a mes
sage is vitally important.

Some messages don't advise of any important event, rather they add a
touch of realism to the game. These messages frequently appear at
random. At various times, the player is given messages like, "a bird
chirps in the trees" or "a tumbleweed rolls by in the hot wind." Mes
sages like these, whether occurring randomly or at set times, appear
without any specific action by the player. They are not given in
response to some action, or as a response to his request for informa
tion. They usually have no place in a graphics game, since such ran
dom occurrences can be better presented graphically, showing an
animated sequence with a tumbleweed rolling past, or they can be
presented with digitiz.ed sounds of birds chirping on cue. But in a text
game, this type of message can help make the game seem more realis
tic.

Warning messages should appear in both graphic and text adventures,
when the player is about to encounter danger. These are usually trig
gered by some action the player has taken or some location he has
reached. Remember, you should never allow the player to die without
warning. Give some warning messages. When the player reaches a
center of a cave, print a message that "you feel a strange foreboding
wind coming from the north." If the player picks up a half-buried
shovel in the cave, the message might be "you hear a rumbling sound,
as though the rocks above your head were about to cave in."

Arriving at locations and using objects aren't the only way to trigger a
warning message to the player. You can also have subtle warnings in
the object descriptions. You could describe the cave opening with "a
boulder, teetering on the edge above your head." Just make sure the
player knows of the danger and is allowed to avoid it. Never kill the
player without some type of warning first.

Message Style
Make your messages clear and explanatory. If she asks to "open the
door," don't just say "You can't." Tell her why she can't. Say, "You
can't. It's locked, and you don't have a key." Or, "You can't. The key
you have doesn't fit." Or even, "You can't. It's locked." But at least
give the player some explanation.

Give the player
some explana
tion when a
requested ac
tion is not
allowed

Use sub
routines for
commonly
used messages

Chapter 7: Messages

If you don't allow your messages to be explanatory, the player will be
come frustrated. Don't expect her to be able to figure out how to open
the door, unless she knows why it won't open. Without an explanation,
she is left trying to guess. Is it locked? Is it nailed shut? Is there a
magic spell on it? Is the doorknob missing? The player won't know
unless you provide the information.

Humor is appropriate if you are designing a funny adventure. In that
case, make your messages humorous. Go all out. Use puns, jokes, and
humorous situations. Look for various ways to enhance your messages.
Don't just say "a clown jumps out and hits you in the face with a pie,
and then closes the door again." Embellish it, "Bonzo the clown
springs from behind the door and smacks you in the face with a cream
pie, then pulls the door closed again while chuckling heartily." An ad
venture game with lots of laughs can be most enjoyable to play. If you
choose a light tone for your game, don't pull any punches. Feel free to
let yourself go.

Messages in Subroutines

As you write the messages for your game, you will find yourself using
some of the same messages over and over. "You don't have it."
"Sorry, you are carrying too much." "It already is." These messages
appear frequently in adventures, whenever the player tries to use some
thing he doesn't have, tries to pick up something that can't be carried,
or tries to do something that already has been done.

To save yourself the effort of typing them over and over, and to save
memory as well, use subroutines for commonly used messages. Every
time you check a new object to see if it can be picked up, you must first
see if the player already carries it. If he does, you will respond, "You
already have it." You will fmd yourself writing this message over and
over, for each object you define. How much easier it is to simply call a
subroutine instead of typing the message each time, and have the mes
sage in the subroutine. You will save time, and the resulting game will
be smaller.

Subroutines are an excellent place for commonly used messages, and
will be examined in the next chapter.

Messages With Variables
Some messages will need to include a number. For example, "You
have taken 56 turns." The number 56 will change, as the game is
played. Luckily, it is easy to print messages containing variables. The
"@" symbol in front of a variable name is the way in which Visionary
allows the printing of variables. Look at the following example of
Vasionary code.

T You have earned @SCORE points.

7-5

The Visionary Programmer's Handbook

7-6

When the player asks for her score, the above message tells her how
many points she has earned. Similarly, you can print out the value of
other variables in your messages. You can tell the player that "the time
is 10:30 AM" or ''you can hold your breath only 4 more minutes."

Sometimes you will have a message that is going to appear several
times with minor variations. To save space, as well as time spent typing
all the variations, split the message into several parts and make the
unchanging part a subroutine. Let's say the player has a magic lamp,
and can get various treasures by rubbing it. A sample message is
shown below.

Poof! A red genii appears in a puff of white
smoke. It smiles and hands you some gold coins.

If the player rubs the lamp again, let's say he gets a ring. The third
time, he gets a necklace. The fourth time, some jewels. And so on.
Each time he rubs the magic lamp, the above message must be
repeated, with the appropriate changes. To save typing, split the mes
sage into two parts. The first part, which never changes, can be placed
into a subroutine. When the player rubs the lamp, call the subroutine,
followed by the second half of the message that describes what the
genii gives him. This not only saves you a lot of typing, it also saves
memory. The longer the message, the more memory you will save.

Text Styles

Consider the "look" of your messages. There are a variety of things you
can do to affect the way a message is presented. The type style can be
changed in your messages. You can change the fonts that you use. The
default font on your Amiga is Topaz. It is an easy matter to switch to a
different font.

In a text game, you can use the Fast Fonts program found on your
Workbench disk to change fonts. Follow the directions in your Amiga
manual and modify your startup sequence so that a different font will
be used after your game disk is booted. In a graphic game, where text
is printed to the graphic screen, use Visionary's three "font" com
mands. You are allowed to load as many as eight different fonts into
memory at once, and use them on the graphic screen. Using a dif
ferent font will give your messages a special look.

Other ways to change the look of your messages include use of italics,
bold print, underlining, and reverse characters. All of these styles can
be accessed from within Vtsionary. It gives a nicer look to your pro
gram if you will use some of these features. Don't overuse them, or the
game will take on a cluttered look. But when appropriate, use italics to
place stress on a word or phrase. Bold print can be used to emphasize
words in a different way. You might want to emphasize a certain word
in a help message by placing it in bold letters. Reverse characters
would be appropriate as part of your adventure title.

Chapter 7: Messages

Don't overlook the various ways to use these changes in type style.
Your messages will take on a whole new appearance, and your game
will be enhanced.

Spelling and Grammar
The final point to be made about your messages, is a reminder to check
your spelling and grammar. You should have been checking the spell
ing and grammar of your location and object descriptions as they were
written. Don't forget to watch your messages as well. Nothing can
make an excellent game look amateurish as easily as errors in spelling
and grammar. They are so easy to fix. Don't overlook this simple yet
important task.

Both text and graphic adventures rely heavily on messages. They keep
the player updated on what is happening in the game. Use lots of
them. Make them descriptive. Add humor if appropriate. Remember,
you are building a world with words. Even if you plan on using
graphics, the messages in your game are vital in creating a world that is
alive, vibrant, and exciting. Take great care in creating your messages.
Your efforts will be rewarded many times over.

7-7

The Visionary Programmer's Handbook

7-8

Chapter 8: Subroutines

Subroutines are the sections of your game that can be used over and
over by various portions of your program. By using subroutines, you
will speed up your work as you write your game, and also will keep the
memory size of your game down. Subroutines are important to adven
ture game creating, and will be examined in this chapter.

Messages from Subroutines

The simplest use of a subroutine is in a single-line message. As men
tioned in the last chapter, you will frequently find certain messages ap
pear over and over throughout your program. You may find the phrase
"You already have it" used many times. "Sorry, you are carrying too
much" is another common message you will use frequently. By placing
messages such as these in subroutines, they can be called when needed,
without taking up as much space. Your resulting adventure takes less
memory, and this leaves you more room for a larger adventure.

Keep a separate file of these subroutines. Give each of them meaning
ful names. You might give the name "DoorlsClosed" to the subroutine
containing the message, "The door is closed and securely locked."
When the player tries to open the door or examine the door, call
"DoorlsClosed." By using meaningful names like this, it's easy to
remember them as you write your program. Whenever you come
across a place where the message is appropriate, you can easily recall
its name without effort.

Not only is it easy to remember the name as you are writing the code,
but it's also easy to recognize the purpose of the subroutine when you
are looking at the code a year later. You may not anticipate the need
to look at the program code after the game is finished, but it occurs
more frequently than you might expect. By using meaningful sub
routine names, you will make that future job easier.

Action Subroutines

Often your subroutines will be composed of more than a single line.
Entire blocks of code can be placed in a subroutine. Let's say for ex
ample, that the player asks to "dig." If he wanders out into the desert,
he might type "dig in the sand." If he returns to the jungle, he might
ask to "dig in the ground." Or if he runs across a native burial ground,
he might want to "dig up the grave."

If all three situations occur in a single game, you must place the "dig"
action in more than one place. You must create an object "sand" and

8-1

The Visionary Programmer's Handbook

Avoid jumping
out of the sub
routine

8-2

allow for the action "dig." You must create an object "ground" and
again allow for the action "dig." A "grave" must be created, and you
must permit the action "dig." You should also anticipate the player will
type the single word "dig." In this case, the action "dig" should be
included in the vocabulary file. A relatively large block of code is
necessary to take care of the action "dig."

Rather than duplicate the "dig action" block of code four times, once
for the sand, once for the ground, once for the grave, and once for the
single word command "dig," place the code in a subroutine and call the
subroutine each time it is required. Give the subroutine an easy-to
remember name like "DIG." In the object file for "sand," under the
action "dig" you only need to "CALL DIG." Likewise in the object
files for "ground" and "grave" you only need to call the subroutine.
And finally, in the vocabulary file, if the player types the single word
"dig," you again "CALL DIG." By using a subroutine in this example,
you have saved a large amount of memory.

Nested Subroutines
You can call a subroutine from within another subroutine. In program
ming, this is called nesting: the call for the second, nested subroutine
is included in the subroutine code activated by the first subroutine call.

Perhaps there are several different locks to be opened in your adven
ture. As the player discovers the special method to open each lock,
you call a subroutine. The subroutine would increment a variable, to
tell you how many total number of locks have been opened. It would
print out a message, letting the player know he succeeded in opening a
lock. And it could call another subroutine, one which would play the
digitized sound of a key turning in a lock. In this case, a subroutine has
called another subroutine.

You can nest subroutines in this fashion up to 128 deep. That's a limit
which you will likely never even approach. Be careful, however, not to
jump out of the middle of a subroutine. For example, never go to a
room from within a subroutine. Always exit with the "ENDSUB" com
mand.

A common use of subroutines is when you have an game action which
the player can phrase in two different ways. You would place the code
for that action in a subroutine, rather than duplicating the entire block
under each different way of phrasing.

For example, "remove the hat" and "take off the hat" are two different
ways that the player could ask to do exactly the same thing. Rather
than write the necessary code for removing the hat and placing it both
under the "remove" action and the "take" action, call a subroutine
from both those places. If you use this method consistently in your
adventure, you will save an appreciable amount of memory.

Chapter 8: Subroutines

Let's look at a very handy subroutine that checks to see if a room is
dark or not. There are times when some of the rooms in your adven
ture will be in the dark. Not all the rooms will be dark, just some of
them.

Let's say you have designed an island that has a volcanic mountain on
it. The player can visit a cave in the mountain. When the player is
outside, it is light and she can see. When the player enters the cave, it
is dark and she cannot see unless she has a lit torch. When you design
the files for each room, you need to decide whether to print the loca
tion description, or print "You can't see in the dark." The following
VISIONARY subroutine accomplishes this task.

SET THISROOM, DARK
IF PLAYER HAS TORCH OR TORCH IN THISROOM THEN

UNSET THISROOM, DARK
ENDIF

Notice that the IF statement is in two parts. The room is first set to
dark. If the player carries the torch, it is then considered lighted. If
the torch is in the room but not carried, the room is also considered
lighted. Otherwise, the room remains dark.

The above subroutine is placed in the code section of any room file
that should be dark. Whenever the player enters a room, the code
section of the room file is executed. You would call this subroutine
first, before you describe the room. After the subroutine has been ex
ecuted, then describe the room as the player will be able to see it, if the
DARK attribute is unset. Describe the room as "You can't see in the
dark." if the DARK attribute is set. By calling this subroutine, you can
easily determine which normally darkened rooms should be described
and which should not.

» A subroutine which tests for darkness would not placed
in a "room" location which would normally be lit at all
times. For example, the above subroutine is not used to
test for darkness at any of the outdoor locations on the
island In the sample game, but is needed only in the
cave locations.

You will find a variety of uses for subroutines as you complete work on
your game. The general rule is to use a subroutine for any piece of
code that is needed more than once. It will pay off in time and effort
saved, as well as making a more memory-efficient game.

8-3

The Visionary Programmer's Handbook

8-4

Chapter 9: Automatic Actions

Automatic
actions and
events that
happen no
matter what
the player does
are also
"characters"
in your game,
defined in the
NPC Files

Automatic actions are those pieces of code that need to be executed
after each move the player makes. By using automatic actions, you can
easily keep things happening in the background of your game. In a text
game, you can modify the way the text is formatted with automatic ac
tions. You can even keep track of timed events in your adventure.
This chapter will examine these and other ways that automatic actions
can be used in your game.

Automatic Events

There are times when you want your adventure to take certain actions,
regardless of the player's input. Instead of waiting for the player to
type a certain command or click on a certain item, you want the game
to act in a certain way no matter what the player types. It doesn't even
matter if the player's input is understood, you will want certain things
to take place. Even if the game responds, "I don't understand that,"
you want some special actions to continue uninterrupted.

Time is a good example. You want time to continue regardless of what
the player does. It doesn't matter if your timer is a sophisticated one
that marks hours, minutes, and AM/PM, or if it is a simple turn
counter. Whatever type of clock you have designed, you want it to con
tinue incrementing on each turn, regardless of any player actions. You
want this action to automatically take place on every turn, hence the
name automatic action.

Automatic actions should be placed in the non-player character or
NPC file sections of your program. It is here that they will be executed
after every turn. NPC files are similar to normal object files. They
include title, name, attributes, initial room, code sections, and actions.
The basic difference between these files and the usual object files is
that they are executed after every turn. Object files, on the other hand,
execute only when each particular object is in the player's current loca
tion or in his inventory. The particular importance of NPC files is that
the player's location is disregarded, and the files are executed on each
turn. This makes them invaluable for holding actions that you want
constantly executed.

Counting Time
Since time is the most frequent use of NPC files, let's examine a simple
timer that you might use in your adventure. Keep in mind that Vision
ary already uses a simple timer that keeps the number of turns updated
in the MOVES variable. Each time the player makes a move, the vari-

9-1

The Visionary Programmer's Handbook

9-2

able MOVES is incremented automatically. The necessary code is not
placed in an NPC file, it is all done internally by VtSionary. If this is
the only timer you need, then you don't need to create a special one.

However, you will frequently find the need for special timers. You may
want one that counts backward. You may want one that starts counting
after a certain action has taken place. You may want one that keeps
track of "fake" hours and minutes, one minute per move. Let's see
how to implement these ideas in an NPC file.

Counting Backward

When you design the NPC file that will hold your timer, choose a title
you will easily remember. Usually you will want to use an identical title
and name like TIMER. Place the NPC in the storage room location
that you have created for unused objects, a room which the player
never visits.

For the purpose of automatic actions, there is no need to define at
tributes. All these actions will take place in the CODE section of the
file to ensure they are executed upon each move the player makes. As
such, there will be no actions following the CODE section. The CODE
section itself, however, will be large. It will contain all the timers and
other automatic actions for your game.

There is no need to define more than one NPC file. All the automatic
actions for your entire game can be placed in the CODE section of one
NPC.

Let's see how a timer that counts backward would work. You will be
using a variable, which we will call TIMER. Be sure you define this
variable at the beginning of the game, in the ADV file. Since TIMER
will count backwards, you will have to choose at what number you want
it to start, and include that in the definition at the beginning as well.
Let's say that you will give the player exactly 100 moves to escape from
a maze before dying. In that case, you must define TIMER to be 100
in the ADV file. In the CODE section of the NPC file, you would
place lines as shown below.

TIMER := TIMER - 1
IF TIMER = 10 THEN

T You only have ten minutes left.
ELSIF TIMER = 5 THEN

T You will die in five minutest
ELSIF TIMER = 0 THEN

T AARRGI You are dead.
QUIT

END IF

As you can see above, the timer is decremented, each time this section
of your program is executed. And since this is in the CODE section of
a NPC file, it is executed after each move the player makes. On each
move, the variable TIMER is reduced by one. The player dies when it

1imers can be
used to limit
total number
of moves al
lowed

Chapter 9: Automatic Actions

reaches zero, after a warning at ten and again at five. Perhaps if the
player escapes the maze before the timer reaches zero, he wins the
game. Or perhaps he goes on to other challenges. In this case, you
should set the variable TIMER to negative one, so it will never reach
zero and kill him after he has escaped.

The basic idea of a timer that counts backward has many uses. Per
haps you wish to keep your game limited to a maximum number of
moves. In this way, part of your adventure puzzle is not only to find
some treasures but to do so within a set time limit. If you allow the
player 200 moves to find five treasures, you have added to the chal
lenge of the game.

You may also wish to limit the number of moves the player can make,
to ensure no player will be able to finish the game. As mentioned in
the chapter on variables, you may want to submit a partially working
copy of your finished game to a publisher. By choosing a time limit
that is too small to complete the game, you allow the potential publish
er to test your game and try it without being able to complete it. This
concept can also be used for share-ware demos.

The basic idea in all the above is to limit the number of moves the
player can make when playing your adventure. Regardless of the
reason, the player is only permitted a certain number of turns before
the game terminates. To do this, you place a decrementing timer in an
NPC file.

Let's look at another timer that counts backward. Suppose your player
is swimming in a lagoon, and can dive beneath the surface to explore
the lagoon's bottom. You want to create a timer that will keep track of
her turns beneath the water, since she can only hold her breath so long.

Let's say we have two locations, SURFACE and UNDERWATER, and
a variable BREATH. Both SURFACE and UNDERWATER will be
defined in the room files, and BREATH will be defined in the ADV
file at the beginning of your game. The following Visionary code per
mits the player to stay underwater for six turns.

IF PLAYER IN UNDERWATER THEN
BREATH : = BREATH - 1
IF BREATH = 2 THEN

T You are running out of air.
ELSIF BREATH = 1 THEN

T You better surface!
ELSIF BREATH = 0 THEN

T You die from lack of oxygen.
QUIT

END IF
ELSE

BREATH := 6
END IF

Notice that this section of code only executes when the player is under
water. When the player is not underwater, BREATH is made equal to

9-3

The Visionary Programmer's Handbook

Some timers
operate only
in specific
conditions

9-4

six, she breathes normally, and most of this code is skipped. When the
player moves underwater, you start decrementing BREATH. The
player dies after six turns underwater. Notice that two warnings are
also given before the player dies. As mentioned frequently, warnings
are vital to any adventure where the player can die.

Special-Circumstance Counters

The concept of a timer that only counts under certain circumstances is
a valuable and frequently used one. It is considered an automatic ac
tion, even though it doesn't count automatically on every turn. The
important thing is that it counts automatically under certain conditions.
In the above example, the timer counted only when the player was
under water.

There are many other possible uses for this type of counter. You may
design your adventure character to be claustrophobic who can only
spend a certain number of turns inside a cave before going mad.
Maybe the player accidentally drinks poison and has only twenty turns
to find the antidote. Perhaps your player has cast a magic spell that
wears off after ten turns. Or the quick energy of a candy bar may wear
off after eight moves.

In each of these examples, you will set up a timer in an NPC file and
decrement a variable only under certain conditions. You only decre
ment the variable if the player is inside the cave, or has drunk the
poison, or has cast the spell, or eaten the candy bar.

Counting Forward

The types of timers discussed so far have been decrementing ones.
They count backwards. The first one described, constantly decre
mented as the game progressed. The second type decremented only
under the condition that the player was in a certain location. The
specifics of each of the previous routines above can be modified so that
the timers count forward, with similar results. Whether you design the
timer to increment or decrement, the concept remains unchanged. It is
an automatic action that must be placed in an NPC file.

Let's see how a different type of counter can be designed. This
counter will still be automatically incremented in the NPC file, but will
do more than just count turns. It will keep track of hours, minutes, and
AM/PM. In the following example of Visionary code, we need three
variables: HOUR, MINUTE, and AM. Each of these must be defined
in the ADV file at the beginning of your adventure. They will each
start at zero. Now look at the routine to keep track of time.

MINUTE := MINUTE + 1
IF MINUTE = 60 THEN

MINUTE := 0
HOUR := HOUR + 1
IF HOUR = 13 THEN

HOUR := 1
AM := 1 - AM

END IF
END IF

Chapter 9: Automatic Actions

In the above routine, a minute is added to the clock for every move the
player makes. When the minute hand reaches (,(), it increments the
hour hand and reset the minute hand to zero. When the hour hand
reaches 13, it resets to one and changes the AM flag to one if it was
zero, or zero if it was one. We may decide to let it be morning when
AM equals zero, and afternoon when AM equals one. That way, if
your adventure starts with all three variables equal to zero, then the
game starts at midnight.

The clock routine shown above automatically ticks away invisibly on
every turn the player makes. A clock like this isn't much use by itself.
It serves no purpose unless somewhere within the game, the player is
appraised of the time. Perhaps your adventure provides a pocket
watch that can be examined. Perhaps there is an old clock in the town
square that can be seen. The way you can use the results from a clock
routine to report the time to the player in a text adventure is shown
below. When the player asks to look at the clock, your game can ex
ecute this code.

IF AM = 0 THEN
T The time is @hour @minute AM.

ELSE
T The time is @hour @minute PM.

END IF

Notice that two cases are necessary, since the time can be morning or
afternoon. The "@" sign is required to print out the value of the vari
ables "hour" and "minute". See Chapter 7, Messages, for more details.

In a graphics game, the above code could be replaced with lines which
will draw a clock on the screen and update the hands on the clock.
Since having so many different drawings for the hands in different posi
tions would take up a lot of space in your graphic file, you might prefer
to use a digital clock. In this way, you could draw the clock face on the
screen, and then using Visionary's TEXT command, write the digits on
the face of the clock. The second method would take much less
memory and be easier to program. But the first method would be
more appropriate in a game set in a time period before the invention of
digital watches. It's a matter of taste and programming ability.

9-5

The Visionary Programmer's Handbook

9-6

Timed Events

If you plan on having certain events occur in your game at specific
times during the day, use a clock routine. If you want a corpse to rise
from the grave at midnight, place the code in the same NPC file, after
the clock routine. After the clock has incremented, check to see if all
three variables are zero. If so, midnight has struck, and it is time for
the corpse to rise.

At this point, you may want to print some warning message to the
player, or place the object of a moving corpse at the graveyard loca
tion. You could even start a new timer into action, counting the moves
until the corpse stalks and eventually catches up with the player. Since
you want all this action to take place specifically at midnight regardless
of what moves the player is in the process of making, you must place
the code for these actions in an NPC file. They are automatic actions
that you want to take place automatically at midnight, regardless of
what else is currently happening in the game.

Many different events can be programmed to take place automatically,
depending on your clock. That's why the concept of a clock or timer is
to vital to most adventures. In a text game, informational messages can
appear at different times of the day. At six o'clock in the morning, you
can print "It's dawn." At noon, you can remind the player that, "the
sun is directly overhead." And when it's eight at night, you can say,
"the sun is slowing sinking in the west." In a graphics game, the same
thing can be done by changing your graphics to show the daylight pass
ing. By checking the clock, you can create messages and graphics that
reflect the time of day.

Random Counts

You may wish to place random messages in the NPC files. These are
generally messages that have no bearing on the actual game play of
your adventure. They don't help the player in any way. They don't
affect any objects, locations, or actions. Rather, they are presented to
create a more realistic atmosphere in your make-believe world. You
may wish to tell the player ''you hear the crackle of a campfire in the
distance." Perhaps "there is the shadow of a bird passing over your
head."

Messages such as these do a lot to add to the tone of your adventure.
They are controlled by setting a variable with a random number and
using a counter to decrement the variable. Examine the following ex
ample.

COUNTER := COUNTER - 1
IF COUNTER = 0 THEN

T A cricket chirps away merrily.
COUNTER := RAND / 500

END IF

Random
messages
can be used to
indicate time
or day, or
give other
information

Chapter 9: Automatic Actions

When you define your variables at the beginning of the game, you
might assign COUNTER to be 15. With every move the player makes,
this routine is automatically executed and the variable is decremented.
When the counter reaches zero, the message is given and the counter is
randomly reset to a number between 0 and 19. Remember that RAND
will always generate a random number between 0 and 9999, so dividing
by 500 yields a whole number between 0 and 19.

The above example is intentionally kept simple. You would probably
want to select one message from a variety of messages. You might also
want to ensure the random number is not too small to prevent the mes
sages from coming too close together. You might want to further check
the clock to print random messages that reflect the time of day. If the
clock indicates it is dark, you might use a random message like, "in the
distance you hear a coyote howling at the moon." If it's daytime, "a
bird's chips fill the morning air." If it's around noon, you might tell the
player "the hot sun bakes down from directly above."

Each of these messages make the your adventure fuller and richer in
detail. They add a touch of realism to your world and make the game
more interesting to play.

Many automatic actions are not dependant on your clock routine. But
they are frequently dependant on their own timer. An example pre
viously mentioned was that of the corpse that rises from its grave at
midnight to chase the player. One way of handling the chase is with a
separate timer. As the timer increments automatically after each turn,
the corpse gets closer and closer until either the player destroys it or it
destroys him. You could set up the timer as shown below.

IF CORPSE > 0 THEN
CORPSE := CORPSE - 1
PLACEOBJ CORPSE, THISROOM
IF CORPSE = 9 THEN

T The corpse is after you!
ELSIF CORPSE = 3 THEN

T He's nearly upon you!
ELSIF CORPSE = 0 THEN

T He's got you! You're dead!
QUIT

END IF
END IF

In this example, we have a variable and object with the same name.
The variable CORPSE is normally zero. When it is in that state, the
routine is skipped on each tum. But when it is midnight and you bring
the corpse to life, you set the variable CORPSE to 10. At this point,
the above routine will be executed automatically on every tum and
allow the player nine moves to destroy the corpse.

Notice that the object CORPSE will follow the player from room to
room, as a result of the PLACEOBJ command. Placing the object in
the room with the player is important so that the object can be referred

9-7

The Visionary Programmer's Handbook

9-8

to. The player can say "look at the corpse," "talk to the corpse," "hit
the corpse," or "destroy the corpse." None of these commands will be
understood if you fail to place the object CORPSE in the current
room. If the player fails in destroying the corpse, he dies on the ninth
turn. If he succeeds, you must set the variable CORPSE to zero as
part of the action that destroys it. In that way, the above routine will
no longer be executed. If you forget to zero the variable, the player
will be killed even though he destroys the walking corpse.

An interesting variation on the above situation is having the corpse
continue to stalk the player without any time limit. As long as the
player keeps moving and stays out of the corpse's way, he will remain
alive. If he stops in any room and allows the corpse to catch up with
him, he will be caught and the adventure will end. Examine the follow
ing Visionary code and see how this is accomplished.

IF CORPSE IS CHASING THEN
IF CORPSE IN THISROOM THEN

T It has caught youl You're dead.
QUIT

ELSE
T Look outl It's coming!
PLACEOBJ CORPSE, THISROOM

END IF
END IF

In this routine, we have used an attribute for the object CORPSE that
was defined in the object file as CHASING. When the corpse is
brought to life at midnight, this attribute is set. The above routine is
only executed if the attribute is set. Before moving the corpse into the
player's current room, check to see if it is already there, indicating that
the player was in this room during the last move. If so, the player is
caught and dies. If not, the corpse is moved to the current room in
preparation for the next turn.

Special Uses for Automatic Actions

Clocks and counters are not the only uses for automatic actions. With
a little forethought, you can find many uses for actions that occur inde
pendent of the player's input.

One-Time Events
Some messages should not be random. You want them to appear only
once, at a specific time. Perhaps when the player first enters a room,
you want to tell her "You smell something delicious coming from the
kitchen." This can't be put in the room description, because it would
appear more than once. Make it an automatic action, and keep it from
repeating by using a flag.

Chapter 9: Automatic Actions

IF PLAYER IN DININGROOH ANO SHELL = 0 THEN
T You smell something delicious.
SHELL := 1

ENO IF

As usual, be sure to define all variables like SMELL first in the ADV
file. In the above example, the message will be given when the player
enters the dining room, and has not seen the message. After it is given,
the variable SMELL is set to 1 so that it will never be printed again.

Text Formatting
A special use of automatic actions is in text formatting. Let's say you
are writing a text adventure and want to place a blank line before the
player types her line of input. The easiest way is to place it at the end
of the NPC file. After everything else in the file is done, and all mes
sages given, the blank line will be printed just before the program
returns to the player's control.

If at times you want the blank line suppressed for various reasons, use
a conditional statement and a variable. The following shows how this
can be easily accomplished with V1Sionary.

IF BLANK = 1 THEN
BLANK := 0

ELSE
T

ENO IF

In this example, the variable BLANK is normally zero, and a blank line
is normally printed. If for some reason you wish to suppress this for
one turn, simply set the variable to one in the appropriate place. When
this routine is encountered at the end of the NPC file, the blank line
will not be printed, but the variable will be reset to zero for the next
turn.

Single-Location Movable Objects
Occasionally you may want an object to be manipulated only at one
location. You may want the player to be able to pick up the object, but
not take it to another location. Let's say the player is at a shooting
gallery. A rifle is chained to counter. The player can pick it up and
put it down, as well as shoot with it. But it's chained down, and the
player is not allowed to leave the shooting gallery with it. Use an auto
matic action to make sure that if she leaves, the rifle doesn't leave too.

IF PLAYER IN GALLERY THEN
ELSE

IF PLAYER HAS GUN THEN
DROP GUN
PLACEOBJ GUN, GALLERY

END IF
END IF

9-9

The Visionary Programmer's Handbook

9 -10

If the player is in the gallery, this routine does nothing. If she isn't in
the gallery, you check to see if she carries the gun. If so, you make her
drop it and place it back in the gallery. The command DROP GUN is
necessary to keep the inventory variable ITEMS accurate. Without this
command, the gun would still be put back in the gallery, but ITEMS
would not be decremented properly.

Automatic Creation of Objects
Let's look at another use for automatic actions. In your adventure,
perhaps you want a good fairy to appear after the player has found ten
treasures. Since you don't know which treasure will be found last, you
can't place the code to create the good fairy in the object fde for a
treasure. Use an automatic action in the NPC instead. Each time a
treasure is first found, set an attribute like FOUND and increment a
variable like TREASURES. Only increment the variable if the
FOUND attribute is unset, to prevent the variable from being incre
mented additional times as the player repeatedly picks up and drops
any one treasure. Then make the following an automatic action in an
NPC file.

IF TREASURES = 10 THEN
T A good fairy appears before you.
PLACEOBJ FAIRY, THISROOM

TREASURES: = 11
END IF

This section of code will be checked after every move the player makes.
When all ten of the treasures have been found, you print a message to
the player, place the object of a fairy in the current room, and change
the variable TREASURES to eleven so that the routine will not be
executed again and again on every successive turn.

Automatic Movement of Objects
In some cases, objects must be moved from room to room automat
ically. Automatic actions are quite useful in these situations. Let's say
the player finds a vase with a magic ring in the bottom of it. You must
have two objects defined, VASE and RING. In this way, the player can
remove the ring, discard the vase, or even wear the ring. But as long as
the ring remains inside the vase, you are presented with a problem.
When the player gets the vase, you don't want to add the ring to his
inventory. Yet, when he moves from one room to another, you want
the object of the ring to follow the vase.

This is important. The ring must be in the same location as the vase, or
else when the player asks to "get the ring" he would be told "I don't
know what a ring is." This is due to the fact the only objects that are in
the player's location or inventory are checked for actions such as
"GET." For these reasons, you want the ring to stay in the same room
as the vase, as long as it is inside the vase. The problem is easily solved

Chapter 9: Automatic Actions

by defining an attribute for the vase called "FULi..:' and placing the
following routine in the NPC file.

IF PLAYER HAS VASE AND VASE IS FULL THEN
PLACEOBJ RING, THISROOM

END IF

Notice that this routine is only activated when the player carries the
vase and the vase also carries the ring. If both situations are true, then
the ring is placed in the current room. As long as the vase is full, you
will want the ring to remain invisible, and not be listed among the items
that can be seen at this location. To do this, place the following lines in
the code block of the object file for the ring.

IF PLAYER HAS RING THEN
T a gold ring

ELSIF VASE IS FULL THEN
ELSE

T There is a gold ring lying here.
END IF

Remember, the code block of the ring file is only executed under two
circumstances, when the player takes inventory and when the room
containing the object is described. The lines in the above example take
care of all three of these situations. The ring will be described if the
player takes inventory. The ring will also be described if it is in the
room with the player, but not if the vase if full.

You've been given many different examples of automatic actions.
You've seen timers that count forwards and those that count back
wards. You've seen timers that count every move, and those that count
only under certain circumstances. You've seen actions that have been
initiated by counters, and counters that have been initiated by actions.
You've seen how blank lines can be inserted into the text automatically.
You've seen how objects can be automatically created and moved from
one location to another. These are only a few of the many ways you
can use automatic actions in your adventure game. The more you use
them, the more uses you will find for them.

9 -11

The Visionary Programmer's Handbook

9-12

Chapter 10: Sounds and Pictures

Until now, little has been said specifically about graphics and sound in
your adventure. Perhaps you want to design pure text adventures, like
the old Infocom-style games. If this is your intention, you may want to
browse quickly through this chapter, since most of it doesn't apply to
pure text games.

But in today's market, more and more adventures support graphics and
sound. You are encouraged to use both in your game, even if in the
most rudimentary sense. You will find they can enhance almost any
adventure. This chapter will examine various ways to use graphics and
sound in your game, from the simplest to the most sophisticated.

Basics of Game Graphics and Sounds

At their simplest, graphics and sound can be viewed as icing on a cake.
They can make your game look more appealing and play nicer. You
can design a graphic screen for each room in your game, and display it
either when the player first enters the room or whenever it is specifical
ly requested. You can design a main title screen, and have music play
ing while it is displayed. You might include some sound effects to be
used at appropriate times. This by itself, might be all you need in the
way of graphics and sounds in your game. But more is available, if you
wish. Before we look at the more sophisticated uses, let's start with the
basics.

One of the first things you need to do is get a paint program and learn
how to use it. This can be a time-consuming task. Don't expect to
master the techniques of creating computer art in a weekend. If you
are not an artist, don't despair. Work together with others who have
more artistic ability. Let the artists know what you want, and work with
them to design the graphic screens the way you want them to look.

If you don't know any computer artists, contact your local computer
club or user group. They frequently have special interest groups for
computer art, and can put you in contact with someone who has the
skills you lack. Another possibility is your local computer store. They
may know of some budding computer artists who would be willing to
work with you on your adventure. Additionally, you may wish to leave
a call for art work on a local BBS or on larger telecommunications
services like PLink, BIX and CompuServe. Whether you do the art
work yourself or have others do it, the next step is to add the graphic
screens to your adventure.

10 -1

The Visionary Programmer's Handbook

Title graphics
create the
player's first
impression of
your game

Give the player
a way to skip
the opening
credits

10 -2

The Title Screen
Let's consider the title screen. This is the first thing the player will see
when starting your adventure. It should have your game title in the
foreground along with your name as the author. The background
should be something generally descriptive of your adventure. If your
adventure takes place in a haunted castle, you might wish the graphic
to show a night time scene with a castle sitting on a high cliff with a full
moon shining down on it. If your adventure takes place in a jungle city,
you could show the vine-covered stone walls of a lost city. Choose your
background carefully, as this title screen will tell the player a lot about
your game before play even starts.

Pick an effective way of displaying the title and the credits over the
background. If you wish to have the title screen showing while your
VISionary game loads, you can use the utility program WADSCREEN
that comes on the Visionary disk.

In addition to showing a standard IFF graphic screen, this utility also
allows color cycling which you can use for various effects including
simple animation.

You may wish to have the title fade onto the screen, then scroll upward
as your other credits appear. To do this, you will have to let the VISion
ary game load, and then take over the scrolling of the credits. Scrolling
credits give your game a nice professional look, and can be easily ac
complished using the Visionary graphics commands.

Game credits should include your name, as well as the names of any
others who helped in the creation of your adventure. If an artist as
sisted you with the graphics, include the artist's name. If others helped
you with the story, with play testing, or with digitizing any sounds, be
sure to include them as well.

When the credits are completed, you may wish to allow them to scroll
off the top of the screen. You could fade them out. Or use your im
agination and design your title screen in other ways.

Animation is another thing to consider. You may wish to have
animated titles or backgrounds in your opening screen. Luckily,
Visionary makes it easy to do all of these things. With a full assortment
of graphics commands, Visionary allows you unlimited ways to create
your graphics screens.

Although you are justifiably proud of your opening graphics and want
your name to be seen in the credits, don't force the player to sit
through the entire opening sequence every time your game is booted.
Allow the sequence to be aborted in the middle, so the player can jump
directly to the beginning of your adventure.

Think about other games you have played. Most allowed you to skip
all the opening credits and get down to the business of playing the
game. You may have run across a few that forced you to wait until all

Chapter 10: Sounds and Pictures

the credits were finished, and you undoubtedly found it very frustrating.
Don't force the players of your game to view all the credits. Allow
them to abort by pressing either a mouse button or a key on the key
board.

Title Sound Effects
A silent title screen is a dead screen. You need some music or sound
effects playing in the background. With VtSionary, you can play music
several different ways. The music can be digitized, and you can have
your game play the sound sample. Sound samples take an extraordi
nary amount of memory, and thus are not recommended for title music.

VtSionary also supports songs written in the MED format. MED, which
stands for Music Editor, is a freely-distributable program that allows
you to create music for your Amiga, by using an electronic keyboard
and MIDI interface, by using the Amiga keyboard as a music keyboard,
or by entering musical notes.

You can probably find MED on a local BBS, as well as most sources of
freely-distributable software like the Fred Fish disks. VtSionary has a
built-in MED player which is superb for title music or any other music
needs in your adventure.

If for some reason you wish to use a different music program, you can
use it by calling it from Visionary's external DOS function. You can
use this DOS function to call a SMUS player or other music player.

If you are competent to create your own music, MED will produce a
nice score. Otherwise, you may want to enlist the aid of a musician
who can assist you in creating the music for your adventure. As men
tioned above, if you need to find someone capable of writing music on
the Amiga, your local user's group, BBS, or computer store should get
you started.

Game Graphic Screens
At the very least, you will need three graphic screens in your adventure.
In addition to the opening title screen, you will need a "win" and a
"lose" screen.

When the player falls into a death trap, she loses and the game is over.
At this point, you will want some type of graphic screen. Perhaps you
will design a simple skull glowing in the dark, and play a funeral dirge
in the background. You may want to extend it further with animation.
Perhaps the skull will slowly smile. But at the simplest, you need to let
the player know she has died.

You also need a "win" screen which your player will see when he suc
cessfully completes your game. If you want something simple, use the
same graphic as the opening screen and superimpose "THE END" in
large letters. Compose some upbeat music to play over the graphic. If

10 -3

The Visionary Programmer's Handbook

In a text-and
graphic hybrid
game, general
ly show only
nonmovable ob
jects in the
graphic room
screen

Display the
room graphic
only on the
first visit

10. 4

you want to get more complicated, feel free to design a completely
different screen, animate it, or add some digitized sound effects.

These three screens - title, game won and game lost- are important.
The only time they should be skipped is if you plan on a strictly text
adventure with no graphics at all.

You may be satisfied with only three graphic screens in your adventure,
or you may wish to expand the graphics further. The next logical step
is to add graphics for each room in your game.

Every time the player enters a new location, a graphic showing what he
sees should be available. This graphic screen should include all the
nonmovable objects as well. Don't include movable objects, since the
player may very well pick them up and remove them from the room.

The exception to this rule is if you plan on having an entirely graphic
oriented game, where the player can point the mouse and click the
button to pick up an object. This is certainly possible to do with
VISionary, as the sample game that came with this book illustrates. Al
though it is possible, it is much more sophisticated and requires addi
tional programming skill. If all you want is a graphic scene pictured for
each location the player enters, follow the general rule that suggests
you only show nonmovable objects in your graphic room screens.

Don't show a room graphic each time the room is visited. Remember it
takes a small amount of time to load the screen from the disk. As the
player moves through previously visited rooms, it would slow the game
down appreciably to force him to see the graphic each time he passed
through the room. The best way to display room graphics is to show
them when the player first visits a room. Thereafter, do not display the
graphic when the player enters the room.

But you should also provide a command to see the graphic again, if for
some reason the player wishes to. A typical command to accomplish
this is "VIEW." You could use "WOK" for this purpose, but that verb
is usually reserved for the text description of a room. It is usually best
to have two separate verbs, one to redescribe the room location in
words, and one to re-display the room scenery graphics. As the game
designer, you have to make that choice.

Sounds and Music
Sound can be a true enhancement to your adventure. Music during the
opening and closing titles is most effective. Usually you will not want
music playing during the game, but only during the opening and closing
titles. If you choose to have music in the background during the game,
lower the volume so it blends in better. Additionally, digitized sound
effects can add a lot to your game.

Sound effects can be used in many places in your adventure. When the
player opens a door, you might want the sound of squeaking hinges.
And the sound of a door slamming shut would be appropriate if the

Use Visionary
commands to
manage sounds

Chapter 10: Sounds and Pictures

player asks to shut the door. If the player finds a whistle, he should
hear something if he tries to blow it. Likewise if starting a car, he
should hear the engine. And he should hear the horn honk if he tries
that action. There are many actions which could have sounds as
sociated with them.

Some sounds will not be connected to any specific action by the player.
Some will be used in the background regardless of the action a player
takes. If the player stands in an old study, you might want the sound of
an old grandfather clock ticking in the background. If the player is on
a sandy beach, the sounds of waves crashing on the shore should run in
the background. A background of birds chirping would be appropriate
for a meadow, and machine noises would be excellent if the player was
in a factory. Whether the sounds are part of the location background,
or are in response to some player action, you should add digitized
sounds to your game whenever memory limitations make it possible.

Visionary has a full range of commands to manipulate and play
digitized sounds, making your job easy. You can load up to 50 different
digitized sound effects into memory at once. You can then choose to
play any one of them, through either the left or right channel. You can
determine how many time the sample plays, from once to continuously.

The volume is also at your control, which can be a very useful feature.
If the player in your game is standing on the beach, you may have the
sound of waves playing continuously in the background. As she walks
inland, away from the ocean, you can reduce the volume of the crash
ing waves. And when you wish, you can completely turn off the sound
of the waves.

If you don't know much about digitized sounds, you don't need to
worry. They are generally straight-forward to work with, and require a
lot less time and effort than graphics or music creation. You can ob
tain digitized sounds from a variety of sources, including library disks
from the Visionary Users Group, local BBS's as well as public domain
disks.

You can even make your own sound effects, if you purchase a sound
digitizer. A wide variety of sound digitizing hardware is available for
well under $100. Digitizers are easy for a beginner to use, and will
allow you to capture any sounds you wish. You can digitize live sounds,
or choose sounds from TY, video tape, or records. Check your local
library for an excellent assortment of sound-effects records, which you
can borrow and digitize.

Memory Use

As you use graphics and sounds, watch the memory usage of your pro
gram. It is easy to create a program which requires large amounts of
memory. If possible, you will want your program to run on any 512K
Amiga. In this way, it is playable by many more people.

10 - 5

The Visionary Programmer's Handbook

A second of
digitized sound
can take up to
10K of Chip
RAM to play

Use the CHIP
MEM variable
to monitor the
available
graphics
memory

10 - 6

To achieve this limit, you may have to curb your graphics or sounds.
Thy to keep as few graphics screens in memory as possible. Each one
can easily eat up SOK or more of memory. Watch the length of your
digitized sounds. These types of sounds are the most impressive and
realistic, but also require the most memory. A second of digitized
sound can take nearly lOK of memory. You could easily fill lOOK with
a single ten-second sample.

If you are digitizing your own sounds, you can alleviate this problem by
changing the sampling rate. Unfortunately, this lowers the fidelity of
the sound and generally is a poor solution. A better solution is to keep
the samples short, and repeat them. A single chirp of a bird will take
less than one second. Repeating the one second sample at random
times gives the effect of a bird chirping without the additional memory
consumption. And to save as much memory as possible, always free up
a graphics or sound buffer when it is no longer needed.

Although adding digitized sounds to your game makes it much more
enjoyable to play, you should keep close track of the amount of chip
memory you have available. Remember that all graphics and digitized
sounds must reside in chip ram. If you want your game to be playable
on all Amiga computers, then you must design all the graphics and
sounds to work with a half-megabyte of Chip RAM. Admittedly, some
Amiga computers have a full megabyte of Chip RAM, even two
megabytes. But to be compatible with as many Amiga computers as
possible, you should choose the lowest common denominator, a half
megabyte of Chip RAM.

The best way to keep track of how much chip ram you are using, is to
use Visionary's built-in variable CHIPMEM. As you are play-testing
your game, you can have the value of CHIPMEM be printed out either
continuously, or when you issue a special command. By closely
monitoring the amount of chip memory you have left, you can design
your game to use as many graphics and sounds as possible, while still
maintaining full compatibility with all Amiga computers.

Mouse-Responsive Graphics
Let's examine a more sophisticated use of graphics. Imagine a screen
that is mostly graphics. There are several lines at the bottom of the
screen for the input of text, but the majority of the screen is taken up
by a room graphic. On the right side of the screen is a compass and a
list of common verbs. In such a game, the player could use the mouse
to click on the compass to go north, instead of typing "GO NORTH."
The player could use the mouse to click on the verb "EXAMINE" and
then move to the room graphic and click on the picture of a sofa, in
stead of typing "EXAMINE THE SOFA."

In each case, the adventure would respond in the same manner as if
the player had actually typed the words. This type of adventure is pos
sible with Visionary. In fact, the sample Visionary game that comes

Chapter 1 o: Sounds and Pictures

with this book is designed in this fashion. Admittedly, it takes more
work to write this kind of adventure, but it can be done if you are
willing to spend the time and effort. The second half of this book will
examine exactly how to create such a game in great detail, and explain
many special techniques to make the creation easier.

An adventure such as the one described above, or the game which
results from the source code in this book, is more graphic than text, but
is becoming quite popular among game players. If you choose to
change a mainly text adventure to this type of game, you will have to go
back and make extensive changes to your program.

You will first have to create the room graphics, then go back and add
commands that check to see if the mouse has been clicked on one of
the fifty allowable zones within the graphic screen. These zones could
be compass buttons, buttons that say HELP or INVENTORY, or they
could contain part of your scenery graphics. If your location graphics
contain a sandy beach, the ocean, and the sky, you could have a zone
for each.

In this way, if the player clicks anywhere on the beach, your game will
know it and can respond with a description of the sand. Likewise, if
the player clicks anywhere on the water, you may want to know that
and have your game respond in some way. Naturally, you won't know
exactly where these zones are until the graphics are completed. You
won't know the exact location of the beach, or the sky, or the HELP
button on the screen until it has been drawn.

After the graphics are finished, you can measure the location of each
object on the screen and write the routines for the mouse to click on
them. It takes a lot of extra work to create this type of adventure.
Visionary takes as much of the work out of it as possible, but you still
have to create the graphics and decide which areas on the screen will
give some response when clicked upon. It won't be easy, but the pur
pose of this book is to make it easier. You can see a sample game, with
the same features as described above. You can look at the source code
and see just how it was accomplished. It may take extra work, but the
end product will be much more professional and will be worth all the
effort.

Both graphics and sound can add a lot to your adventure. That's not to
say they are required. Pure text adventures have been around for
years, and continue to be enjoyed by adventure gamers all over the
world. If you choose to enhance your game with graphics and sound,
you may wish to start cautiously with only a minimum of screens and
sounds. After you have been successful, you may wish to increase the
graphics and sounds in your game. You could even create a game that
requires no text input at all! With Visionary, time and talent, you can
do wondrous things to your game.

10 - 7

The Visionary Programmer's Handbook

10- 8

Chapter 11: Dungeon Adventures

This chapter will taJce a look at how you can design a totally-graphic
dungeon adventure similar to Dungeon Master"' and other maze
games. These are very popular types of games, and can be easily
programmed using Visionary. We'll see how to use some shortcuts in
graphics to maJce the game taJce less memory and run faster. And we'll
examine the methods you can use in creating your characters, their per
sonal attributes, and the interaction between them.

Game Graphics

Let's start with the graphics that show the dungeon tunnels. These
location scenes can be created in memory from a set of tunnel pieces,
which means you can save a lot of disk space and the game will execute
faster. If you have a 400-room dungeon, it would taJce many disks to
contain all the location scenes if the scene for each room was saved in
a separate disk file.

Not only that, but it would taJce you a very long time for you create all
those scenes with your paint program. And the resulting game would
play sluggishly, since each time the player moved to a new room in the
dungeon, a new file would have to be loaded from the disk.

A much better way to design your dungeon game is to create a few
graphic files with tunnel pieces and then combine them in memory to
create each dungeon room. You might want to create a series of walls
in one file, showing variations of openings and solid walls on both the
left and right side of the tunnel. You might also have several different
scenes of the ceiling, one unbroken, and another showing an opening
for a staircase. Similarly, you might design several different scenes
showing the floor of the tunnel, one showing an unbroken floor and
others showing stairs leading downward in different directions. These
pieces can then be combined in any way you want to create the proper
look for each room in the tunnel system of your adventure.

Hidden Screens
When the game is being played, the pieces can be put together in a
hidden screen and then be displayed on the visual screen that the
player sees. This is easily done with Visionary's COPY command.
Your game can run through a series of conditional statements that
build the floor, the walls, and the ceiling of the current room based
upon what doors and staircases are present. Each piece can be copied
onto a blank space, as the scene of the room is built up. Then when

11-1

The Visionary Programmer's Handbook

With COPY,
objects appear,
room graphics
shift as the
palyer moves

Adjust the view
point of the
game graphics
to the direction
of the player's
gaze

11 - 2

the room scene is finished, you can copy the final result to the screen
for the player to see.

Graphic copying is executed within VJSionary very quickly, and the
player will notice only the smooth movement of your game. A techni
que known as double buJTering is used to eliminate any trace of flicker
ing that would otherwise occur during the copy process.
Double-buffering is explained below.

Let's next look at how to create the maze of tunnels that are always
found in dungeon-type games. A simple approach is to use an array.
This array can keep track of not only which rooms lead where, but also
which rooms contain monsters, weapons or treasures.

You can use VJSionary's "pixel" and "rectangle" commands to simulate
the reading and writing of the array elements, then the actual array
itself will be displayed as a picture on a graphic screen. It will picture
the maze as a bird's-eye view. In this overhead view of the maze, each
pixel represents a single room in the maze. You can read the pixels
surrounding the current room, to see which directions are open to the
player.

In addition, you can have the color of the pixels tell you things about
the room, such as which monsters, weapons or treasures are in the
room. In that way, when the player moves into a new room, your pro
gram can check the pixel color of that room to determine what to place
in the room, and can check the pixel colors of the adjacent rooms to
see where to draw the exits. All of this can be done extremely fast
when using a pixel array to keep track of the rooms and their contents.

Player's Directional View
Another consideration is the directional view of the player. The above
mentioned array will tell you which rooms are connected, so you can
draw the proper view of the tunnels. But consider that there are four
views of every room. If the player stands facing north, a different view
is seen than if the player faces south, east or west.

When your game draws the current room, and the view down the
hallway of the maze, you need to take the direction of the player's view
into consideration. There are a variety of methods you can use in your
programming. You can keep track of the directions in variables, and
use conditional statements to draw the sides and end of the hall cor
rectly. Or you can use an array to keep track of the surrounding rooms
and the direction that the player is viewing them. Just be sure you
don't forget to adjust the view to the direction the placer faces.

Multiple-Character Control
Next, we should consider how many characters you will want your
player to control. Will the player control a single player who explores
the dungeon, or a team of three or four hardy adventurers? Control-

Chapter 11: Dungeon Adventures

ling a single character is obviously the easiest, but permitting a team of
several characters can be accomplished with a bit more effort.

If there will be more than one character, you need to design some way
for the player to switch characters. You could show graphic repre
sentations of each character at the top of the game screen, and define a
click zone about each one. When the player clicks on any of the zones,
a subroutine should be called which will clear the variables used, and
set them properly for the various attributes for the new character.

By having several characters in your game, you can allow one character
to be killed but permit the party to continue with the game. Allowing
more than one character to take part in the game is a nice addition to
these types of games.

Player Attributes
Next, we should consider what attributes you want the player's charac
ter or characters to have. A half-dozen or so should be sufficient, al
though there is actually nothing to limit to your creativeness. The
values for these attributes can be saved in standard numeric variables.
If you plan on having a team of several characters be in your game, you
may prefer to save your individual characters' attributes in arrays, to
make it easier to call up the individual values.

Let's say you decide on attributes for "strength", "stamina", "intel
ligence" and "experience", which are standard player attributes in role
playing games. With a single character in the game, you could simply
use numeric variables with these names. As the player vanquishes each
monster, you can increase the "experience" variable. If it's a tough
fight, you can decrease the "strength" variable, and so on.

However, if you plan on allowing several characters to be in the game,
you may find it easier to use an array, where the values of each element
are colors in your graphic screen. Jn that way, when the player
switches to a different character, your game can simply switch to a dif
ferent line in the array.

Player Inventory
Now that you have designed the player's attributes, there some other
things you need to design for the player. Inventory is one of these.
You need to create some method for the player to pick up objects,
whether they are treasures or weapons. Can the player simply walk
over them and pick them up automatically? You could require the
player to click on them in some manner, in which case you need to
define some click zones.

Then you must decide how to show the character's inventory. Will it be
by means of graphic pictures, or simply a list of words? Depending on
what you design here, you will have to provide some way to drop the
objects again. If you choose to show objects graphically, you will need

11-3

The Visionary Programmer's Handbook

11 - 4

to design some way to click on the pictures to drop them. If a list of
words is shown instead, you may want to design a list that scrolls, so
the player can press return to select the one to drop.

Whatever you choose, you need to design an easy-to-use way of taking
objects, showing the objects held, and dropping the objects.

Game Animation

Animation is always desirable in any dungeon adventure. This can in
clude doors which are be shown opening as well as monsters shown
moving about.

The easiest way to accomplish monster movement is to have the various
poses for the monster in a graphic file that is loaded from disk and
saved in a hidden screen. When the player encounters a monster, your
program would copy a picture of the monster onto the dungeon room,
then keep copying different poses onto the dungeon room until the
player kills the creature.

One way to do this is to copy the section of the background where the
monster is to be placed into a hidden graphics buffer. Then copy the
picture of the monster onto the game screen. To show the monster
moving, you then copy the background back to the game screen, copy
the new section of background where the monster will move to, into the
hidden buffer, then copy the new pose of the monster on the game
screen.

Double-Buffering
The problem with the method described above is that, while it is easy
to program, it also shows the monster flickering, since the monster is
not being shown for the part of the time while the background is being
restored and the new section is being copied.

A better way to show the animated monster is to use a method called
double-buffering. You will basically do the same thing as described in
the previous paragraph, but it will all be done on a hidden graphic
screen. When the picture is complete, the game then flips to view that
buffer. The process is then repeated, with the new pose for the
monster being created as described above, but again in the hidden
buffer, and then the view is flipped to this buffer when it is ready. In
this way, no flickering is seen. The game may move a trifle slower,
since an extra step is taking place, but at the speeds which VISionary
copies graphics, this will never be noticeable.

Items other than monsters can be animated in a dungeon-type game.
A large stone door can swing open with a grinding sound. A studded
iron door can screech open. Or a drawbridge can be lowered with a
thud. The basic methods of animation as described above can be used

Chapter 11: Dungeon Adwntures

to create moving doors, as well as mice running across the floor,
shadows flickering against the wall, or water bubbling in a pool.

The Graphic Interface

Designing the game interface, the way the player interacts with your
game, was one of your first tasks, even before the programming started.
The game interface developed from the map you devised, the plot you
created, and the puzzles you included in your adventure design. Now
it's time to translate that concept into the graphic interface.

Let's see what you will need in the graphic interface for a dungeon
adventure. You will need a place for the player to click the mouse in
order to move. Usually, some type of compass is used for such move
ment. It need not be an actual compass with "north", "south'', "east"
and "west", but should at least consist of arrows pointing the way that
the player can go. Or the player might simply click on the picture of
the dungeon itself: clicking in the center to move forward, on the left
side to turn left, on the right side to turn right, and on the bottom to
move backwards.

If you plan on having more than one character in the adventure, you
will need some way for the player to choose which character is current
ly being controlled. As mentioned above, this can be easily done by
showing a picture of the character, and allowing the player to click on
the one desired.

Also as mentioned above, you will need to design some way to get,
display, and drop objects. And then you will also have to design some
way to use the weapons that the player finds. You may wish display a
rectangle on the screen that shows the player's weapons. If the player
clicks on one of the weapons, that is the object currently in use. The
player can then choose either to fight with it, or drop it.

The Goal
What is the goal in your game? Perhaps the final goal is to reach the
bottom-most level of the dungeon and kill the ultimate monster.
Usually in this type of game, the monsters are harder and harder to kill
as you descend deeper into the dungeon. However as your character
gains more experience, more strength, and more powerful weapons,
these monsters can be overcome. That means your player's sub-goals
will be to complete each level of the dungeon, to vanquish all the
monsters there and find all the treasures, weapons and magic potions
in that level.

You might change the goal of your game, and have the player reach the
bottom of the dungeon in order to rescue the princess. Then you can
repopulate all the upper levels of the dungeon with even more powerful
monsters, weapons, and magic potions and make the player fight all the

11 - 5

The Visionary Programmer's Handbook

11 - 6

way back to the surface with the princess. The plot design is up to you.
Just make sure you have it designed on paper before you start your
programming.

This chapter certainly hasn't encompassed every single problem you
may encounter in creating a dungeon-type maze game. Others may
crop up as you write your game. But it has perhaps given you some
insight in~ the type of things you need to consider when you use
Visionary to make your dungeon to end all dungeons. As with any ad
venture game, a dungeon game that is well-designed on paper first, is a
dungeon game that is much easier to program.

Chapter 12: Artificial Intelligence in
Non-Player Characters

VtSionary allows the inclusion of non-player characters in your game.
These are characters other than those the player control.

In a standard adventure game, usually the player is transported to a
new world and started upon a quest. In this case, the player is the
character. In role-playing adventures, the player assumes a new iden
tity, that of a special character with individual special attributes. In
such games, the player can sometimes assume the persona of several
different characters, all of whom may make up a party of hearty adven
turers who will work together to complete their quest.

But in both types of adventures, you will find other characters who are
not controlled by the player. These will be characters the player en
counters in the game, and interacts with. This chapter will examine
ways in which you can create and use non-player characters in your
adventure games.

Let's start with a simple example. In the game Frankenstein's Legacy,
written over ten years ago by this author, Dr. Frankenstein's creature
was brought to life by the player. With a shower of electrical sparks,
the creature jerked to life and started toward the player with a lumber
ing gait. The murder in its eyes convinced the player that some way
must be found to lure the creature to its doom, or else the player would
fall victim to its violence. The creature followed the player from room
to room until the player stopped and was caught, or the creature was
destroyed.

This is an example of a non-player character, or NPC, at its simplest.
The creature started out as a nonmovable object, and changed to an
NPC when it was brought to life. If this game were written in VISionary
today, the creature would be considered an NPC after it came to life,
and the NPC file would program its moves.

Level of Intelligence

All NPC's have artificial intelligence. The level of that intelligence is
up to the game programmer. The programmer can choose to give each
NPC a low level of intelligence, or he can choose to make its intel
ligence quite high. As you can imagine, the higher the level of intel
ligence, the more programming is required. More decisions have to be
made for the intelligent NPC, and this requires additional program
ming of conditional statements.

12 -1

The Visionary Programmer's Handbook

For intelligent
NPC actions,
anticipate bow
the player will
try to interact
with the NPC

12 - 2

The level of intelligence of Dr. Frankenstein's creature in Frankenstein's
Legacy was very low. The creature just followed the player from room
to room. If the player kept on the move, he was safe. If he stopped for
any reason, he would be captured and killed. The only intelligence the
creature possessed was the ability to follow the player. If the player
spoke to it, the creature would not respond. If the player tried to at
tack the creature, it would not respond. If the player tried to interact
with the creature in any way, it would not respond. It was only
programmed to follow and kill.

This is the simplest kind of intelligence to program into any NPC. In
this case, a routine in the NPC file was checked to see if the creature
was in the same room with the player. If it was, the player was killed.
If it was not, then the creature was placed in the current room, and the
game continued. This level of intelligence was appropriate for
Frankenstein's creature, but may be inappropriate for other NPC's in
your adventures.

The Effect of Intelligence Level
Let's consider other levels of intelligence. Consider a hypothetical
game where the player buys some canvas sails from a shopkeeper. The
shopkeeper only needs a low level of intelligence. At the simplest, the
shopkeeper will greet the player as she enters the shop, ask her what
she wants to buy, and then ignore any further attempt to converse un
less the player asks to buy sails. This is simply programmed by placing
the routine in either the action section of the NPC or the vocabulary
action file.

The next level of intelligence would be to have the shopkeeper respond
to requests to buy other items. Perhaps a list of items for sale is placed
on the wall of the shop, and the player can ask for any of them. You
can program the NPC to check for the item that the player requests,
and reply "Sorry, fresh out" to all requests except the request for the
sails.

A still-higher level of intelligence would involve creating those other
items as objects, and allowing the shopkeeper to sell any of them. At
another level you could check what the player is asking the shopkeeper,
and have the shopkeeper programmed to respond appropriately to
some anticipated questions. You might additionally program the NPC
to allow the shopkeeper to move about. This might force the player to
track down the shopkeeper, who is somewhere in the back of the shop.

Let's see some ways that you can program greater intelligence into the
shopkeeper in the example above. You must first anticipate how the
player will try to talk to the shopkeeper. If you want him to directly
address the shopkeeper, you must still anticipate he may try some
general command like "talk to the shopkeeper." In this event, you
might program your game to respond "go ahead and talk to him." This

For greater
realism, hide
objects until
the player's ac
tion reveals
them

The more
limited your
NPC's respon
ses are, the
less intelligent
it will appear

Chapter 12: Artificial Intelligence In Non-Player Characters

would be best programmed into the object file for the shopkeeper,
under the action for "talk."

When the player says "I want to buy some sails" your game must be
able to understand what the player has requested. You can enter the
desired actions in both the object file for the sails, as well as the
vocabulary action file, for variations that won't be caught elsewhere.
Then you can program the shopkeeper to give the player the sails in
return for a bag of gold, or refuse to sell them if the player lacks the
gold.

If you want the player to be able to select from several items, use a
slightly different technique. Place all the objects that can be sold in the
shop. But make them invisible. That means in a graphic adventure,
don't show pictures of them. And in a text adventure, don't describe
them in each object's code block. In that way, when the player refers
to any of the items, the appropriate object file is executed and the ac
tion entry for "buy" is executed. Each action entry might first check
for the presence of the shopkeeper, and tell the player "there's no one
here to buy from" if the shopkeeper is absent. Then it might have the
shopkeeper make various replies, depending on whether the player can
afford the particular item he has requested.

By using V1Sionary's "rand" variable, you can even have the shopkeeper
give different responses randomly. Each random response should have
the same final meaning, but should be phrased differently.

Sophisticated Interaction
If you want to permit more sophisticated game action between the
player and the shopkeeper, you might wish to allow the player to talk to
the shopkeeper about other things than his purchases. The non-player
character of the shopkeeper isn't a very interesting person, if it only
talks to the player in order to sell something.

You may wish to design your game to allow other verbal interaction.
This will require additional code to anticipate and respond to common
dialog. If you want the player to be able to say "What's new'' to the
shopkeeper and receive a specific response, you will have to program it
into your vocabulary action file. Similarly, you can permit the player to
say things like "Nice weather" or "Hello" to the shopkeeper, and have
the shopkeeper respond in some appropriate way. Since none of these
commands act upon a specific object file, you should place them in the
vocabulary action file.

NPC Movement

It was also suggested that perhaps the shopkeeper be allowed to move
about, rather than stay in one place. This movement is programmed
into the NPC file. First, you as the programmer must decide what

12 - 3

The Visionary Programmer's Handbook

Check to make
sure NPC
movement
actually
resulted from
a random NPC
move

Monsters can
move random
ly, and have
random effects
on the rooms
they pass
through

12 - 4

rooms the shopkeeper will be allowed to move into. Let's say, you
decide to limit movements to the shop itself, the back room, the alley
behind the shop, and the upstairs apartment.

There are several ways to move the shopkeeper randomly, but a simple
one is to use the "moveobj" command to move the shopkeeper in a
random direction. Then check the "error" variable or the "objectPOS"
variable to see if the shopkeeper was successfully moved. This is
necessary, since "moveobj" will not allow an object to be moved in an
illegal direction. U the move was not made, keep the routine in a loop
until some move is actually accomplished.

Random NPC Actions
Let's examine some other techniques that can be used with non-player
characters. The "rand" variable has some uses other than the above
example to choose a random direction for the shopkeeper. A non
player character's response to the player can be randomized, to give a
more intelligent feel to the NPC. If every time the player says "hello"
to the shopkeeper, the shopkeeper responds back "hello" it's like talk
ing to a robot. If you are feeling ambitious, you can program several
similar replies to each action the player makes. Your NPC can then
respond differently, every time the player takes that action.

Let's say for example that the player says "hello" to the shopkeeper.
The shopkeeper might have a list of possible replies that included
"hello", "howdy'', "greetings", "mornin"', "hello yourself" or "come on
in." Each time the player greets the shopkeeper with "hello" the shop
keeper could give a different reply. You could keep track of which
reply had been used already in a variable. Then you could either have
the shopkeeper give a reply in some predetermined order, or you could
choose it randomly, using the "rand" variable.

If you are creating a dungeon-type maze game, you might want to have
monsters roaming around in the maze of tunnels. In some maze games,
the monsters are always at one location. After the player becomes
familiar with the game, she knows exactly where to go to fmd the
monster. You can make your game more difficult by varying this.
Make the monster move about randomly throughout the maze. In this
way, the game becomes more challenging for the player, who never
knows when the monsters will appear. The programming for this type
of movement is again done in the NPC file. Since the NPC file is ex
ecuted after every tum, the monsters can be moved one room per turn.
This can be done in the same way described above for the shopkeeper,
by using the "moveobj" command and the "rand" variable to move the
monster randomly.

You can not only have your monsters move randomly, but they can also
take other actions randomly, while out of the sight of the player. You
might decide to have the monsters steal any treasure they come across
in their random movements. Or if two monsters randomly happen to

Keep track of
both player's
and NPC's at
tributes during
and after
interactions

People NPCs
are usually
expected to be
able to talk
with the player

Chapter 12: Artificial Intelligence in Non-Player Characters

enter the same room, you might want them to magically join to become
a "super monster."

Moving monsters could destroy objects that they encounter. Imagine
how the player will feel if she enters a new room in the dungeon and
finds a magic shield that has been smashed by a visiting ogre earlier.
This adds a bit of realism that will not be found otherwise.

Player and NPC Interaction

Interaction with non-player characters like monsters usually takes the
form of either casting magic spells or fighting. Although you want your
non-player characters to be able to move about in other rooms without
the player's knowledge, you will usually want them to come face to
face, eventually. And when they do, you must program your game to
permit some type of interaction.

Magic spells are the easiest type of interaction to program, because
they are only used once. If casting the spell doesn' t work for the
player, that's it.

Fighting is different. If the player thrusts with his sword and it fails the
first time, he usually is given additional chances to stab the monster.
Use the NPC object files to create the programming that will check to
see how the player fares in his battle. Remember to use variables to
keep track of the monster's attributes as well as the player's attributes.
In this way, you can make the battle seem more real. After each move
of the player, your NPC file can check the variables and print out the
result to the player, telling him how he fared and how the monster
reacted, before the player's next turn.

NPC People
Using people instead of monsters can make the interaction of your
non-player characters more difficult. People are usually expected to be
more intelligent than monsters, so you must do more programming to
give your program the artificial intelligence that these NPC's require.

You will probably want to allow the player to talk to other people,
something usually not permitted of monsters. This means your pro
gram must anticipate the most common verbal interactions, and give
appropriate responses. Of course, the player can still fight with people,
as he does with monsters. Your NPC files should include programming
to allow the people to fight back. But in addition, the NPC files should
allow the player to talk to the non-player character and give some type
of response in return.

As with monsters, when people are used as non-player characters they
should be allowed to move about in the background and take actions
that affect the game. And frequently they will be permitted more ac
tions than monsters. You should program your NPC files so that the

12 - 5

The Visionary Programmer's Handbook

12 - 6

people can wander about in the adventure and move objects. They can
pick up things in one room, and then leave them in another room.
They might attack the player and steal some objects, which could be
left elsewhere. They might also change things, like lock doors that had
been left open, cause cave-ins to seal passageways, or leave clues writ
ten in blood on the mirrors.

There is really no limit to what the non-player characters in your ad
venture can do. The more time you spend in programming. the more
sophisticated actions they can take. Just be sure to use easy-to-under
stand variables to keep track of the characters and their attributes.
And use the "rand" variable to vary the directions the characters move,
as well as the responses they make. By adding non-player characters to
your game, it can be a fuller and more exciting experience.

Chapter 13: The Finishing Touches

Add unneces
sary objects to
mislead the
player and
enhance the
game's atmos
phere

You're finally done. Your adventure is finished and completely play
able. You've written the source code, you have compiled it, and you
have fixed all known bugs. You can play it and win, or play it and die.
But you're not quite done, yet. You still must go back and fine-tune
your game. Then there is play-testing. And you have to make a final
decision on the distribution of your masterpiece. In this chapter, we
will look at these final steps as you prepare your game for release.

Fine-Tuning

Now is the time to go back and add those unnecessary messages. Add
the ones that weren't necessary and thus were probably overlooked. As
mentioned in previous chapters, these add detail to your game and cre
ate a more realistic make-believe world. So now is the time to add the
bird chirps, the coyote howls, the scent of pine, and all the other ran
dom messages that add richness to the tone of your game.

If you have a graphic game, consider replacing the random messages
with random sound effects. It is much more impressive to actually hear
the coyote howl than just to be told it howls.

You might also consider adding objects at this final stage. Up to this
point, you may have been focusing on the objects necessary to the solu
tion to the various puzzles in your game. You may not have spent
much time considering extraneous objects which serve no purpose ex
cept to mislead the player and add to the game's atmosphere. Now is
the time to add these unnecessary objects. Add the candy wrapper
found lying on the floor. Include the six-inch piece of cotton thread
found in the dirt. Make sure that these objects can be picked up,
dropped, examined, and manipulated in any normally-expected way.
Always consider how the player might try to use these new objects.

Think through the possible actions with the new objects. You wouldn't
want to create something which could unwittingly be an alternate solu
tion to some puzzle. If you intend for the player to cut down a tree
with a chain saw, don't create an axe at the last minute to act as an
extra unnecessary object. If you do, you must be prepared to allow the
player to use it instead of the chain saw. Adding new objects at this
point should be for the purpose of enriching your game, but not alter
ing the solutions to the puzzles.

13 -1

The Visionary Programmer's Handbook

The more ways
an object can
be used, the
more program
ming is
required to
add it to the
game

13 - 2

Don't create an object that can be manipulated in too many ways. For
example, it is a lot easier to add a candy wrapper than it is to add
matches. There are a limited number of ways to manipulate the candy
wrapper. There are many more things you can do with matches, how
ever. If you add matches to your adventure, you will have to go back
and modify the action sections of every object, in anticipation that the
player will try to burn the objects. Add things like matches only if you
are willing to spend the additional time to properly modify all the ob
jects that can be affected by them.

Play-Testing

Naturally, you have been playing your own game as it has grown. As
you have made additions and changes, you have played and tested
them. But now is the time to go back and play the entire game again.
In fact, play it several times. Each time you play the game, you will be
checking for different things.

Play to Win
First, play the game to win. Make sure that all the treasures can be
obtained, all the puzzles solved, and all the challenges met. Don't
worry about all those other things you added to your game. Ignore the
parts that are unnecessary to the ultimate solution.

The first time through, you want to make sure that the game can be
won. Since you know exactly what it takes to win your adventure, this
run-through is the fastest one. If you find any errors, mark them down.
Keep a written record of them. Then use this record to go back and fix
the errors you have found. After you are sure the game can be won,
you are ready to play it again.

Play to Lose
The second time you play your own game, you want to intentionally
lose. You want to test out all the ways that the player can die. There is
probably more than one way to die in your adventure. The player
could run out of time and be caught by cannibals. He might fall into a
pit of army ants. He might die of thirst in the desert. Whatever ways
you have designed, you must now test.

Play the adventure and intentionally try to die. Tust each death trap to
see if you die where you should. When dying from thirst, check to
make sure you die after the appropriate number of turns only. Make
sure you don't die if you drink water barely in time.

This second run-through will take appreciably longer than the first.
But as with the first, keep a written record of any errors you find.
When done, go back and fix them. That leaves you ready for the third
and final reason for play-testing your game.

Try every game
option-use
the unneces
sary objects,
argue with the
talking NPCs,
try all the
synonyms

A fresh eye
may see things
you're too
close to the
game to spot

Chapter 13: The Finishing Touches

Play All the Options
By now, you are probably sick and tired of playing your own game. But
the third run-through is perhaps even more important than the first
two. This is the one that will take the longest. This time, try every
thing. Whatever you have written into your game, you must test. Make
sure that all movable objects can be taken and dropped. Check to
make sure your inventory is correctly being incremented and decre
mented. Make sure you can't exceed any inventory limits you created.
Examine every object, to make sure it gives the correct description.
Use every object in all the ways you programmed. If you can think of
alternate ways that a player might ask for something, go back and add
it as a synonym.

If you suddenly think of something that a player might try that you
didn't anticipate, now is the time to go back and add that action to
your game. When you have finished trying every possible action and
combination of actions that a typical adventure player might try, you
are done with the run-throughs.

Outside Testing
The next step is to have someone else test your adventure. You may
think your game is ready to go, but other players will find things you
have overlooked. Choose some people you trust, players who like ad
ventures. You need to trust these people not to hand out copies of
your game without your permission. And there is no sense in having
them test your game if they hate to play adventures. Ask them to keep
a written record of anything that seems wrong. Note spelling errors.
List errors in logic. If something just doesn't seem right, have them
write it down.

Be prepared for criticism. It can hurt to hear bad things about your
game, especially after you have spent so much time on it. But don't
take it personally. Remember, it is going to make your game even bet
ter.

Spend the time to go back and fix the things your testers listed. If one
tester suggests things you disagree with, discuss them with all the
testers. The suggestion may be right, considering that the tester is
looking at your game with the same fresh eyes as your future players
will have. You, on the other hand, are looking at it through the eyes of
its designer. You may feel some emotional attachment, and may resent
any question about the way you designed it. Trust your testers. Listen
to their advice, and fix the problems they discover. Then ask your
game testers to play the revised game one more time. Get a final
report and make any last-minute changes.

13 -3

The Visionary Programmer's Handbook

The final title
should entice
the user to
play your game

13. 4

Finalize the Title

Since the start, when your game was in the planning stages, you have
probably had a working title for it. Now is the time to select the final
title. The title is a very important part of your game. If you intend to
commercially release your game, the title along with the artwork on the
box is the first thing a customer will see. If your game is released to
public domain or as shareware, the title will again be the first thing the
customer sees. The title could be the thing that sells your game. It
could be the one thing that makes someone decide to try your game
instead of some other. So choose your title accordingly.

Make the title descriptive of the adventure story. Make it sound excit
ing. A title like "Monster Adventure" may be fine for a working title,
but "Monster Island" will sell more copies. Likewise, a working title of
"Jungle Adventure" could be changed to "Lost City of the Jungle."

Whatever you choose for your title, make sure it not only tells the
prospective player the general setting of the story, but entices him to
want to play it. Once you have selected the title, put it at beginning of
your adventure. Place it in bold print. And don't forget your name
beneath it. If you are using an opening graphics screen, it must go
there too. You certainly expect credit for all your hard work.

Copyright Notices
Along with the title and author's credits, you should include any
copyright notices. To ensure your legal rights, you should include
copyright notices in several places. Put one at the beginning of your
adventure before the title, and perhaps one on the graphics title screen
as well. Use both the word and symbol for copyright, followed by your
name and the current year. Even if you plan on releasing your game as
shareware or public domain, you should still include the copyright
notices.

You should also include the identical copyright notice in a remark line
in your code before compiling the game. Although this will never been
seen by the game player, its inclusion in the code qualifies as "legal
notice" of your intention to retain your copyright. You are allowed to
retain copyright even for materials released without charge, as freely
distributable software. Only if you release your game into the public
domain will a copyright notice not be needed.

The legal format for copyright notices is

Copyright (C) {year}, {copyright holder}

For a game produced in 1992 by a programmer named V. I. Sionary,
this copyright notice would appear thus:

copyright (C) 1992, v. I. sionary

Use a different
password for
each game you
develop

Chapter 13: The Finishing Touches

The copyright symbol © is usually substituted for the text string (C) in
this copyright notice in printed material, but either notation is accept
able.

Final Checks

Now that you're done, go back and take one last look. Yes, again!
Check the entire program for spelling and grammar. Look at your
room and object descriptions. Are they complete? Are your helps
clear enough without giving away the solution to a puzzle? Did you
keep the player from doing things at the wrong time or in the wrong
place? For example, can she shoot the gun if she isn't holding it?

Check the saved game feature. It's important to make sure that your
game only allows saved positions to be loaded if they were from your
adventure, not some other Visionary game. Again, Visionary has an
ticipated this problem and has taken care of it for you. Each adventure
you create will have a unique code that is included in each saved game,
to prevent saved places from other games from being loaded into your
game. This unique code is based on the password of your adventure,
so be sure you use a different password for each adventure you write.

Game Distribution

Now that the game is finished, debugged, and fine-tuned, the next step
is distribution. You wrote the adventure so other people could play it,
not so it could sit on your shelf. What does your game need before it is
released? Will you release it as public domain, as shareware, or try to
get it published?

Copy Protection
If you haven't given any thought to copy protection up to this point,
now is the time. How do you feel about it? Most users are against it,
but many publishers still use it to help prevent loss of revenue due to
piracy. Software piracy is less prevalent in business and productivity
software, but is more of a problem with game software. If you are
thinking about selling your game, you should think about copy protec
tion.

Disk protection is possible, but tough to do unless you are an expert.
You have to decide which method you will use to make the disk un
copyable but still playable. Disk protection also makes duplication har
der for a publisher. If you intend to sell your program through a
publisher, it may increase duplication costs to use disk protection. A
final consideration is that disk protection is not that effective. There
are a variety of software programs available which permit the user to
copy disks even though they are protected. There are even hardware
systems available that permit the user to copy protected disks. You

13 - 5

The Visionary Programmer's Handbook

Manual-style
protection
requires that
your game
have a manual

13 - 6

may not wish to go to a lot of trouble designing a protected disk, if that
protection is relatively easy to defeat.

A method of program protection that seems to be gaining popularity is
manual-style protection. In this method, your game asks the player to
answer a question based on the game manual or the game box. If she
answers the question correctly, you can assume she has a legitimate
copy of your program, and permit her to play it. If she answers incor
rectly, you may give her a second chance or simply assume she has a
pirated copy. In that case, you can lock up the game, denying access to
this player.

One advantage of manual-style protection is that it is easy to insert into
your adventure. Put the question at the beginning of the story, and
again in the middle. The player can't continue with the game until the
correct answer about something in the user manual is given. Another
advantage for the publisher is that there is no additional cost for spe
cial duplication. The advantage to the customer is that the game disk
can be backed up as many times as needed.

This method of protection is not infallible, especially since it is so easy
to photocopy any manual. It also assumes that you will write and print
an manual to go with your game. Considering this, you may wish to use
no protection at all. The program is your own creation, so the decision
is yours.

Distribution Methods
If your game is good enough, you may find a publisher who wants to
put it on the market and pay you royalties. But that's not the only way
to distribute an adventure. Another possibility is to submit it to a
magazine. Several Amiga magazines come with a companion disk, and
others are strictly on disk with no companion magazine. They are al
ways looking for programs to fill their disks. Another possibility is to
release your program as shareware, and allow your program to be dis
tributed through those channels. Of course, you can always release it
into public domain for the enjoyment of every Amiga owner.

Contacting a Publisher
If you decide to try a publisher, pick one you trust, one who can best
sell your game. Don't feel you must choose the one who offers the
largest royalty. Pick the one who will give your game the widest
market. Remember, it's better to have 15% of a big pie than 30% of a
small one.

There are questions to ask, as you choose which publisher to submit
your program to. Does the firm advertise in appropriate places? Does
it have overseas sales? Has it been around for a while? You may not
want a publisher who is new and doesn't have the contacts to get your
game distributed into the stores. You should try to avoid a firm which

For shareware
releases, use
an address
that will not
change

Chapter 13: The Finishing Touches

has overextended itself with advertising and may be in danger of
bankruptcy.

As soon as you have decided on the publisher you intend to contact,
write a letter to the firm. Don't send your program yet. You letter
must convince the publisher that you have a product he can use. Let
him know what your program is, what it does, and any special features.
Thy to get a signed non-disclosure agreement which ensures both your
rights as well as the publisher's, before sending him your disk.

Then go ahead and send the program via insured mail. Be prepared to
wait. Publishers get a lot of submissions, and it takes time to review
them all. If the publisher likes your game, expect that changes will be
requested. Rarely- if ever - is a program accepted without at least
some slight revisions.

If you are offered a contract, read it carefully. Understand what you
are being offered. Will your royalties be 15% of gross, or retail, or
wholesale? Will you receive a set dollar amount per unit sold, regard
less of the selling price? Can the contract be cancelled? If so, how
and by who? Is there a provision for an audit of sales if you request it?
If you are unsure or uncomfortable, see a lawyer, who can explain any
parts of the contract which you question. If all goes well, you will find
a publisher who likes your adventure and with who you are comfortable
doing business. Then work with him to polish the program and get it
ready for to market.

Shareware and Public Domain
Instead of selling your adventure to a software or magazine publisher,
you may wish to release it as shareware. Encourage users to copy your
disk and give copies to their friends. If they play it and like it, you ask
them to send you a fee for it.

If you choose this route, include your name and address in an easily
accessed area. Usually, it is best to place this information at beginning
of the game. It can also be printed in the adventure manual, if your
game includes one. Mention that the program is shareware, is
copyrighted, and how much money you expect if they should decide to
use your program. Tell the user what she gets in return for mailing you
the fee. You may wish to offer a map or hints, or even a complete
solution in return for the fee. You may wish to send the user an entire
ly new adventure game. Shareware seems to be a lot more effective if
you offer something else for the fee, not just the game the user already
has.

Be sure to use an address that will not change for several years. The
post office will only forward your mail for one year, and you may con
tinue to hear from users for years and years as your program continues
to circulate.

13 - 7

The Visionary Programmer's Handbook

Release to
public domain
is giving your
game away for
free

13. 8

You could even give your game away for free. That, in essence, is what
you do when you release your game into public domain. It means you
are giving it away. You give up all rights to the program. Anyone can
copy it for no charge. Anyone can resell it, if they wish. By putting
your program in public domain, you are giving anyone the right to do
anything they want with it. This is not recommended unless you are
extremely philanthropic.

Your game is done. You have finished writing it, debugging it, and
have decided on its final distribution. Now what? Sit back and enjoy
the accolades from the players who love your professionally-designed
adventure. Bask in the glow from the applause and the cheers. Read
the magazine articles by reviewers who love your game. And start
thinking about your next epic. Now that you've discovered how much
fun it is to write adventures, you won't want to stop. You probably
already have ideas in your head for several more adventures. Jot them
all down, pick one, and start on your next game. Happy adventuring!

Chapter 14: I Was a Cannibal for the
FBI

Still haven't
looked at the
game? Read
no further
play it now!

The second half of this book will is about the example game I Was a
Cannibal for the FBI which is on the disk included with this book. The
source code for the game can be found on the disk, and it is also
printed in Appendix A in the back of this book, for your reference.

The game was written specifically for this book, and uses a variety of
special routines which will be explained in detail. After you have read
Part 2 of this book and have read through the source code for the
game, you will have acquired a wealth of tricks, tips, and other techni
ques that you can use with Visionary to create even better adventures.

Play the Game

By now you should have booted up the disk and played the game. If
for any reason, you still haven't looked at the game, you should try it
out before reading any further. Put the disk in drive dfO: and reboot
your computer. The game will automatically start, first displaying the
title screen and then loading and executing the game itself. You can
exit the game by winning, dying, or clicking on QUIT.

It is not necessary that you win the game. It is only necessary that you
have tried the various features, and will understand what we are talking
about as we go on. Winning the game, or even knowing how to win,
are not required for the rest of this book.

The adventure was designed to be an easy one to solve. It was
designed for a beginning level adventurer. However, don't feel bad if
you haven't solved it yet. At this point, you are probably more inter
ested in learning how to write a game, than you are in learning how to
solve this specific one. If you can't solve the adventure at this point,
you have several options. You can look at the source code on the disk,
and track down the solution. Or if you prefer, you can look in Appen
dix B for the complete (and simple) solution.

» If for some reason you have a defective disk that won't
load, please contact Oxxi/Aegis for a replacement disk.
The address is in the Technical Support Appendix.
There is a nominal charge for a replacement disk.

14 -1

The Visionary Programmer's Handbook

Simple mouse
drags are used
for the GET
and DROP ac
tions

14 - 2

A Text Editor

The second half of this book assumes you are using a text editor like
ED or TurboText to create your source code, and then using VCOMP
to produce the two .GAM and .WRD files.

Available separately from Oxxi/Aegis is a graphic editor called VIE. If
you are using the VIE program, you don't need to use a text editor or
VCOMP, since VIE combines them to make it easier to write your pro
gram and catch and correct errors.

Whichever you use, the source code listed in Appendix A of this book
will produce the same game. It is also assumed you have some general
ability in using CLI or Shell. If you feel you need additional help with
CU/Shell commands, please see your AmigaDOS manual.

Graphic Interface
If you use the Visionary graphic interface to develop your games, you
are limited by the choices offered in the interface. Even if your first
games were developed using this utility, chances are good that you'll
now want to try some tricks the graphic interface doesn't provide. For
this, you'IJ need to use a text editor and develop your own object,
room, NPC and other CODE files.

The Game Interface

Now that you have looked at the Cannibal game, you know it combines
both text and graphics. It is not a pure text game, and it is not a pure
graphics game. It is a hybrid combination, combining the features of
both.

The game was intentionally designed in this fashion. Text games are
the easiest to write. Graphic games are harder. But hybrid games are
the hardest to write, because they must allow dual input. The player
must be able to type "Save" and have the game respond the same way
as if he had clicked on the SAVE button. In theory this may sound
rather simple, but as you will see later in this book, it is more compli
cated than it sounds.

Objects and Inventory
Let's examine some of the specific features of the game, and explain
why they were used instead of other methods that would achieve the
same goal. Picking up and dropping objects is accomplished by simply
dragging them from the location window to the inventory window, or
back. Notice that the player's inventory is limited to six items. Once it
is full, the player cannot pick up any additional items.

Also notice that there is no limit to the number of items that can be in
a room. Each item in the room appears on the side of the location

EXAMINE
actions use a
single mouse
click

Direction of
movement is
handled with a
intuitive click
on a compass
button

Chapter 14: I Was a Cannibal for the FBI

window. If there are more than five objects in the room, the window
will scroll to show the rest of them. Because of this feature, the win
dow containing the objects is usually referred to as the scroll-bar win
dow. The scrolling of the window and the moving of objects by
dragging them are both very important techniques you may want to use
in your adventures. Later in this book, an entire chapter will be
devoted to the routines that accomplish these feats.

Command Input
The player can input commands to the game either by typing them in
the text window or by clicking on the buttons. The most common com
mands can be accomplished by clicking on buttons. Less-common
commands must be entered from the keyboard. For example, examin
ing the boulder can be easily accomplished by simply clicking on the
picture of the boulder. But moving the boulder cannot be done with
the mouse. The player must type "MOVE THE BOULDER" from the
keyboard. When you write your own game, you may wish to do away
completely with the text input. In this case, you would need a
"MOVE" button in order to move the boulder.

In this game, examining objects is done by simply clicking on them. If
the player wishes to examine the ladder, he only bas to click on the
picture of the ladder, and he is given a more detailed description of it.
If he wishes to examine the bottle or the boulder, he only has to click
on their picture.

Notice that this works with both movable objects in the scroll-bar win
dow and the inventory window, as well as nonmovable objects in the
location window. Although this is intuitive for the player of the game,
it is not simply accomplished in one section of the source code. Ex
amining objects by clicking on them is actually handled in three
separate areas of the source code. We will be examining exactly how
this is done in a future chapter.

The Compass
Another feature of the game which deserves mention is the compass.
There are six buttons on the compass, one each for north, south, east,
west, as well as up and down. When the player is permitted to travel in
any of those six directions, the letter on the button is highlighted in
orange. When the player can't travel in a certain direction, the letter is
"ghosted" in gray. This provides as easy way for the player to tell
which directions can be travelled, without having to display the infor
mation in the text window. Presenting the information to the player in
this fashion is more difficult to program, but results in a game that is
more user-friendly and easier to understand. The routines to ac
complish this feature are fully explained later in this book.

14 - 3

The Visionary Programmer's Handbook

Visual feed
back is
provided by
changing how
the button
looks when
clicked

Color cycling
can provide an
illusion of
animation,
without the
memory re
quirements

14 - 4

Also notice that when the compass buttons and any other buttons are
pressed the letters on them change to yellow, and the button appears to
be pressed inward. When the mouse button is released, the button ap
pears to pop back out again. This is another cosmetic nicety. It isn't
required. The game could have been designed without this feature and
would have played just as well. But it looks better. It gives the player
some visual feedback that the computer really did accept his click on
the button. Writing a game without visual changes in the buttons is
certainly much easier to do. But taking the time to add the feature
makes your game more professional. The way to make the buttons
change as they are pressed in will also be explained in a later chapter.

Graphic Techniques
If you played the game long enough, you may have been captured by
the cannibals and killed. At that point, the location window held a
scene of you in a pot of boiling water. The picture was animated, with
bubbling water, dancing flames, and rolling clouds of smoke. This was
accomplished with color cycling.

Color cycling is something that can be automatically built into each IFF
graphic, using most paint programs. V1Sionary supports color cycling,
but care must be taken in using it. Without taking great care, the il
lusion would have been broken, and other colors in the scene would
have cycled as well. The whole idea would have failed, if while the pot
boiled, you also saw the buttons changing colors, or the mouse pointer
changing colors.

Using color cycling takes careful design, and planning ahead. A later
chapter will go into more detail on how the animation via color cycling
was accomplished in this game.

Visible and Invisible Features
There are many other features in this game. Some are visible features,
like different colored fonts in the text window, and others are invisible
features which you didn't see.

One example of an invisible feature is the loading of the location
scenes into RAM for faster display, if the computer you are using has
enough memory. When this game loads, it checks the memory of the
computer to see if there is enough unused memory. When there is, all
15 of the location scenes are loaded into RAM. As the player moves
from location to location, new scenes are loaded and displayed each
time. If these scenes are in RAM, the game plays much faster and
smoother. If the computer doesn't have enough free RAM, the scenes
will load from disk instead.

This is just one example of an invisible feature that the player won't
even be aware of. But using this feature in your own adventure will
make it play much smoother and give it a more professional feel.

Chapter 14: I Was a Cannibal for the FBI

Source Code

If you examine the game disk from CLI (or SHELL), you will find a
directory named Soun:eCode. Inside this directory, you will find all
eleven text files that were compiled with VISionary to create the game I
Was a Cannibal for the FBI. These same eleven files are also printed in
Appendix A in the back of this book.

Looking at these files will show you all the routines and techniques that
were used to make the game into the hybrid text-graphic adventure that
you have played. The rest of this book will refer to various parts of
these files, as we look at how the game was created, and how it ac
complishes the displays, the animated buttons, and all the other game
features.

Starting in the next chapter, we will begin to dissect the game, look at
the source code, and reveal more of the secrets of writing adventures in
Visionary.

14 - s

The Visionary Programmer's Handbook

14 - 6

Chapter 15: The Idea

As discussed in the first three chapters, any adventure starts as an idea
in your mind. That's how I Was a Cannibal for the FBI began. Several
years ago, when I was writing adventures on the Commodore 64, I had
been writing full-length adventures for average and advanced game
players, and decided to take a break by writing a small simple adven
ture for beginners.

Since a game of this nature obviously would not attract a publisher
wishing to pay money for it, I decided to use it as an advertisement for
the BBS I was running. It would be a program that could be uploaded
to any BBS for its users to download. When the BBS users played the
game, they would find several notices about my own BBS in various
locations. This would encourage them to use my BBS and would in
crease my user base. This was my original motivation for writing I Was
a Cannibal for the FBI.

The Concept

Next I had to ask myself, why would someone calling a BBS want to
download my game? I decided that if the title was catchy, people
would be interested enough to spend the time to download it. But a
title that is catchy to one person is dull and uninteresting to another.
The important thing here is to know your audience.

I knew that a large part of my audience would be between the ages of
10 and 25. This target audience would have older if I had been writing
for IBM's, but remember this was during the time that the Commodore
64 was at its peak. The majority of BBS users for the Commodore 64
were in the younger age bracket.

I needed a title that would catch the eye of such a person, and make
him want to download the game. I decided on something that would
appear gross and disgusting, a sure-fire attention-grabber for this age
group. Cannibalism jumped into my mind. Having the player forced
into cannibalism as part of his job seemed like the makings of a fun
adventure.

Of course, now that you have played the adventure, you realize there is
nothing gross or disgusting about it. But that was not the point. The
purpose was to "hook" the BBS user into downloading my program.
Hence, I chose my title based on the similar movies of the 1950's, like I
Was a Communist for the FBI. I just changed "Communist" to "Can
nibal" and I had a title that I felt would attract my audience into
downloading it.

15 -1

The Visionary Programmer's Handbook

15 - 2

The Plot, Setting and Game Goals

So in this case, the title came first. Then I had to decide what I could
do in a game with such a title. The word "cannibal" conjured up im
ages of African jungles. But since I was resolved to write a small game
with limited locations, I discarded Africa in favor of a south Pacific
island. In Africa, it would be difficult to find a reason for limiting the
number of locations the player could visit. However, on an island, the
limited number of locations would seem logical, and would not present
a problem.

After I had settled on an island locale, I had to choose the goal of the
adventure. The rest of the plot would have to wait until I had chosen a
goal. Then the plot could be written with that goal in mind. Since the
game had cannibals in the title, a obvious goal seemed to be to escape
death from the cannibals. I decided to limit the number of turns the
player could make before ending the game in a loss. For the player,
this would remove the luxury of casually wandering around the island,
trying to escape. Since I was trying to program a simple, uncompli
cated game, I decided not to have the cannibals present on the island
until the very end. After appropriate warnings to the player, they
would show up after about 100 turns, and the game would end.

The next step was to choose the solution. How was the player to es
cape the cannibals? How was she to win the game? My choice was to
make the solution constantly visible, if the player knew where to look.
The answer was in the old tramp freighter slowly steaming its way past
the island. If only the player could get out to the ship, she would be
rescued from the island. Allowing the player to swim out to the ship
would have presented little challenge, so although I decided to allow
the player to swim, I made her become fatigued and return to shore.
To solve the adventure, I decided the player would have to paddle out
to the ship. And to make it more difficult, I hid the oars.

Once I had the basic solution in mind, I then began modifying it to
make the game more challenging. I replaced the oars with a shovel.
The player would never find any oars, but would find a shovel. And
this shovel could be used in place of oars to paddle out to the ship.
And to make that part even harder, I made the shovel in two parts, the
blade and the handle. The player had to put them together to create a
working shovel.

The next step in making the puzzle harder, was to hide both parts of
the shovel. The handle was buried in the sand dunes, and the player
had to dig with his hands in the sand to find it. The blade was made
more difficult to find, by placing it in a rock room inside a cave. The
room could not be entered without using a ladder, since it was high off
the ground. And entrance to the cave was barred by a large boulder
that the player had to move.

Plenty of false
solutions make
the game more
challenging

The advertis
ing messages
were made an
integral part or
the game

Chapter 15: The Idea

And to complicate things further, the player could not push the
boulder out of the way with her normal strength. She required a burst
of energy from a candy bar to achieve this feat. And finally, I hid the
candy bar in the top of the palm tree. So even though the solution was
simply in the shovel, I made it difficult to obtain.

Of course, I didn't want the shovel to be too obviously the solution, so I
allowed the player to treat it as an ordinary shovel, and dig up the
ground. By allowing him to dig and find various buried items, I mis
directed his attention away from using the shovel as a paddle.

At the same time, allowing the player to dig and find buried items al
lowed me to introduce other "red herrings" to further misdirect the
player. I knew it wouldn't take the player long to figure out that his
salvation lay in the old tramp steamer, so I planted a variety of false
solutions which would mislead the player into believing he had found a
way to signal the freighter.

I planted a flare gun in the adventure, but it contained no flares. It was
my intent that the player might search in vain for some flares so she
could signal the ship. I also planted some wet matches on the beach,
along with some driftwood in the hope that the player might try to start
a signal fire. But I made sure that the matches never dried out, and
wouldn't burn anything. I created a two-way radio for the player to
find. But she couldn't use it to radio the ship, because it lacked bat
teries. I even placed a radio battery at a different location, but the
battery was dead. It was my intention to fool the player into trying to
contact the ship in a variety of other ways, and forget about the some
what obvious method of rowing out to the ship.

I decided that by adding other objects, I could further confuse the
issue. I created a rowboat in addition to the canoe. Both lacked oars,
but the rowboat had a hole in the back and wasn't seaworthy. I put
wooden planks on the rooftop of the old shack, encouraging the player
to try to remove them and build a raft. I presented the player with a
message that the boards were nailed down, so that he would assume a
hammer should be able to pull them up. Then I hid a hammer in the
cave so that the player would find it and think he had finally found the
way to get the boards. But when he tried it, he found the nails were
driven in too securely, and would not come out.

I also designed three different messages for the player to find. These
messages would advertise my BBS and encourage players to call. I
even told them that the solution to the game was to be found in the
bulletins on the BBS, in case they got stumped. The first message was
the easiest to find. I left an advertising flyer on the roof of the shack.
To find it, the player only had to climb the ladder and find it lying on
the roof. The second message was chiseled into the stone walls of the
rock room in the cave.

15. 3

The Visionary Programmer's Handbook

Unnecessary
objects add
flavor to the
game

15 - 4

This was a bit trickier to find, since the player bad to solve the problem
of moving the boulder in order to enter the cave. The third message
was left inside a bottle found on the beach. It couldn't be removed
until the player broke open the bottle. And I made sure that any of the
hard objects that the player found would break the bottle. The
coconut, the hammer, the chise~ or the shovel would all break the bot
tle. When the player succeeded, a piece of paper would flutter to the
ground, containing the third message. When I rewrote the adventure
for the Amiga using V1Sionary, I replaced these three messages with
advertisements for Visionary and this book.

And there were other items that I added to the game, which really
served no purpose other than to create a fuller adventure, make it a bit
more realistic, and give the player more objects to manipulate. There
was a candle, which the player could try to light. There was a human
skull, which the player could assume was left behind by the cannibals.
A dead sea gull was found on top of the boulder, perhaps where it had
built a nest. And a coconut was found in the top of the palm tree. All
of these objects gave the player something to find, something to
manipulate, and something to try using to assist in the quest to be res
cued.

The Programming Process
At this point, after deciding on the plot, the goal, the location, and the
puzzles, I finally sat down and entered the game into the Commodore
64 computer. Since the game was completely thought out in advance, it
look very little time to actually do the programming.

The text game was completed, sent to one BBS after another, and it
served its purpose very well. When I found I was going to be writing a
book on V1Sionary, I decided that this same game would make an excel
lent example. So the same plot was used again, but this time with an
entirely new approach. This time the game was going to be graphically
oriented.

The first steps had already been completed. The next one was to
decide on the exact format of the graphic game, and make any neces
sary modifications to the plot to accommodate them. The next chapter
will discuss the designing of the graphic interface, how it would look
and how it would work from the player's perspective.

Chapter 16: The Graphic Interface

Look for game
ideas in other
games

Tuking a graphic approach to the adventure presented me with some
new and unique problems. These problems had to be addressed and
solved before I could even start any programming.

Planning the Graphic Interface

The first decision I had to make was exactly how I wanted the game to
look. What would players see when they played the game? What
would they do? How would they use the mouse to play the adventure?
Looking at other graphic adventures provided some answers. Others
were of my own invention, born of special needs that I had not seen
addressed elsewhere.

When you write your own adventures, don't be afraid to look at other
state-of-the-art adventure games for ideas. Often they not only give
you ideas you will want to use, but also show you things you will want
to avoid. You may like the way another game presents buttons for the
player to click on, for example, but dislike the way it hides windows
and pulls them out only when requested. Your adventure can use the
features you like, and avoid the ones you didn't.

The Location Window
In my adventure, I knew that I wanted several windows, each with a
different function. I knew that I wanted a large window to show the
graphic representation of the current location. When players entered
the shack, I wanted them to be able to see the interior. In all cases, I
wanted them to be able to see where they were. So a location window
was mandatory. It seemed that since this was probably the single most
important window on the screen, that it should be the largest. I chose
to put it in the upper left corner of the screen.

At this point, I needed to decide if I wanted the game to be all graphic,
or allow text input as well. I knew allowing text input would be more
difficult to program, but at the same time it would serve as an excellent
example for this book. I decided that most commonly used commands
should be on buttons that could be pressed, removing the need for
typing them. But still, a text window would be necessary.

The Text Window
The need for a text window was obvious. There would be many times
when I would want the game to tell the player things. The game would
have to warn the player before the cannibals arrived. It would have to

16 -1

The Visionary Programmer's Handbook

16 - 2

respond to various commands from the player. When the player tried
to push the boulder, the game needed a place to report, "it moves
slightly, but rolls back."

Of course, since I intended to accept text input as well as mouse input,
I also needed a place for the player to type commands. So I decided to
design a text window that would lie beneath the location window, and
would have room for six lines of text. That would leave five lines of
text for messages, and one line for the player to type on. It seemed like
a reasonable compromise.

Inventory Handling
The next logical step for my game design was to create an inventory
window. This was logical for what I wanted to create- don't feel that
when you write you own adventure that you need one. In your game,
perhaps the player could easily find out what is in the inventory by
clicking on a button and reading a text list of the items carried.

In my case, I wanted to have movable objects visible at the location
window, and that seemed to lead to the conclusion that there should be
a small window for inventory. That way, the player could see what ob
jects were in the inventory as well as what objects were in the room. I
envisioned the player picking up objects by using the mouse to drag the
objects out of the location window into the inventory window.

To drop an object, the player would simply drag it back out of the
inventory window and into the location window. Having decided that
this was the way I wanted my adventure to look, I knew that I would
need a smaller inventory window in addition to the larger location win
dow.

Command Buttons
I knew that some buttons would be required, since I didn't want to
force the player to type all the commands. The most common com
mands would be placed on buttons that could be simply clicked to ac
complish that command. I placed these buttons on the right side of the
screen under the inventory window.

The next decision I had to make was to decide which common com
mands I would include on buttons, and which ones would need to be
typed. If the player could get and drop objects by moving their pic
tures with the mouse, I would not need a GET or DROP button. At
this point I had not clearly defmed exactly how the player would get
and drop objects by using the mouse, but I knew that was what I
wanted.

With GET and DROP out of the way, there were some obvious
choices. I created buttons for LOAD, SAVE, and QUIT. The player
might want to save the game at its current state, and later load it again.
Hence the need for the WAD and SAVE buttons. And although the

Active buttons
give the player
feedback that
the button
commands are
being processed

Chapter 16: The Graphic Interface

player could quit at any time simply by turning off his computer, I
figured having a special button for quitting would allow the player to
return to CLI. The QUIT button also made the game look more
professional.

I decided HELP would be appropriate, to remind the player that help
was always available. And DIG would encourage the player to dig,
which I wanted him to do. Remember that by encouraging the player
to dig, I was misdirecting him away from the true purpose of the
shovel. And in sandy locations, the shovel wasn't even required for
digging. These five buttons seemed sufficient for the common com
mands, and they were placed in the area to the right of the text win
dow.

Designing the Compass
While I was concentrating on buttons, I knew that a compass would
have to appear somewhere on the screen. I wanted the compass to
serve two purposes, to indicate to the player which directions were
available for travel, and to allow movement in those directions by click
ing on the direction buttons rather than typing the directions on the
keyboard.

In my adventure I did not use the directions of north-west, north-east,
south-west or south-east. That left only six directions for my compass:
north, south, east, west, up and down. To tell the player which of those
directions he could travel, I decided to "ghost" the directions which
were inactive. I did this by making "ghosted" directions a dull gray, in
contrast to the normal bright orange color of the other buttons. Final
ly, I placed the entire compass between the inventory window and the
other action buttons.

Then there was the matter of how I wanted buttons to look and behave
when pressed. Visionary let me easily design zones on the screen that
could be recognized when the player clicked inside them. This is, in
general, how all buttons work. But I wanted to make the buttons look
like they were actually moving when they were clicked. It certainly
wasn't necessary. The buttons didn't need to change appearance in any
way, when they were used. But I decided that the player needed the
additional feedback, showing him the buttons moving, and reassuring
him that his mouse clicks had been recognized by the computer. So I
decided to make the buttons appear to move inward when the mouse
was clicked.

Along with this, I decided that the words on the button should "light
up" when the button was depressed, to additionally reinforce the no
tion that the button was being activated. I wanted the button to stay
depressed as long as the mouse button was depressed, and then to pop
back out when the mouse button was released. This then, was the
design for the buttons, how they would look and behave.

16 - 3

The Visionary Programmer's Handbook

16 - 4

Handling the Examine Command
One of the most common commands that any adventure player makes
is to examine the various objects in the game. I wanted to design a
simple way to accomplish this in my game, so that the player would not
have to do any typing.

I decided that if the player simply clicked on any object, the text win
dow should give a description of the item clicked on. So instead of
typing "Examine the Ladder", the player only had to click on the pic
ture of the ladder. Instead of typing "Read the Letter", the player
would simply click on the picture of the letter.

I decided that nearly everything should be examinable, so I planned to
allow the player to click on any movable object or non.movable object
even any part of the scenery- and still receive some description. As
you may have noticed in playing the game, you can examine the sand,
the water, and the sky in addition to the movable and nonmovable ob
jects.

The Get and Drop Actions
The next decision I made was how to get and drop objects. I knew I
wanted them to appear on-screen so the player could see them, and I
wanted the player to be able to move them from the location to his
inventory and back, simply by using the mouse to drag them out of one
window and into the other.

But if I made these objects appear in the location window, there was a
problem with making them look right. There were nineteen movable
objects, and I had to consider the possibility that the player might carry
all these objects into one location. The question I had to resolve was,
"how will this look?" I couldn't overlay each one on top of each other,
or the player wouldn't be able to see what was at the bottom of the
pile.

I considered assigning each one a spot on the screen, so that if it was
dropped, it would appear in one specific place. But while a certain
spot was fine for one location, say the sand dunes, it was not acceptable
for another location, say the meadow. Perhaps the position I chose was
taken up by the shack in the meadow. Then dropping the bottle in the
sand dunes would look normal, but dropping it in the meadow would
make it look like it was sitting on the side of the shack.

Another possibility was to have different spots for each location. I
could assign a specific place on the screen so that dropping the bottle
in the sand dunes might place it on the left side of the location window,
about half way down. And when in the meadow, a different place
could be assigned for the bottle to appear, say in the center of the
location window, near the bottom. This method would require
nineteen different spots to drop the nineteen objects in the game. And

Ir objects will
be placed in
your a screen,
consider how
perspective
and position
may change
from screen to
screen

Chapter 16: The Graphic Interface

each location scene would be required to have its own special spots for
the objects.

I knew the amount of programming to accomplish this would be stag
gering. It would require setting up arrays for each location, to give the
x and y coordinates for each of the nineteen objects. Even though this
approach would take an enormous amount of programming, I con
sidered it. But after some testing, I found there were other problems
with placing objects on the scenery in this manner.

One of the problems with placing objects in the location scenery was
that sometimes the sizes were inconsistent. Most of the location scenes
would be shown from the same perspective and distance. Most of the
scenes would be what in the movies is called a "long shot." This means
the perspective would be as if the player were standing back looking at
a large area. But several scenes would be a "medium shot", seen from
a closer distance, and one scene needed to be a "close up." When the
player sits in the top of the palm tree, the view is a close-up view.
When the player stands by the canoe, the view is a medium shot.

Now consider an object, such as a bottle, being placed in the location
scenery for these places. A bottle that would look normal-sized by the
shack would look too small by the canoe, and far too small in the tree
top. By placing the objects in the scenery, the perspective was off.
There were several ways around this problem.

To make objects in the locations look normal size, I could either change
the scenery or change the objects. I could change the scenery art so
that it all was a "long shot." But this would require all locations be
drawn as if they were being viewed from the same distance. While this
was acceptable for many locations like the sand dunes and the
meadow, it would force the beach scene with the canoe to look distant
and bare. The canoe would have to be much smaller and way off in the
distance. It would not longer appear that the player was standing by
the canoe, and therefore would not make sense that the player could
reach down and push it into the water.

The close up shot of the tree top would be even worse. To show the
tree top from the same perspective would require the eye of the viewer
to be away from the tree top by quite some distance. It would make
any dropped objects look the right size, but wouldn't appear as though
the player was sitting in the tree top. Instead, it would appear that the
player was suspended in mid-air in back of the tree top. So changing
the scenery was not the solution.

The other possibility was to change the objects. I could have three
different-sized objects in memory, and place the appropriate one on
the scenery when it was supposed to be there. For example, I could
have three different bottles that all looked alike, but were different
sizes. When the player dropped the bottle in the meadow, the game
would place the small drawing of the bottle in the appropriate spot on

16- 5

The Visionary Programmer's Handbook

16-6

the screen. If the player dropped the bottle on the beach, the program
would put the medium sized bottle on the sand beside the canoe. And
if the player was sitting in the top of the palm tree, the large sized
bottle would appear sitting on the palm fronds beside you.

All of this was possible, but it was starting to grow exceedingly large for
such a simple game. To use this approach would require 57 drawings
for the nineteen movable objects, three drawings for each object. And
each of these drawings would have to be assigned to one of 228 pos
sible X, Y coordinates-each of the nineteen objects needed to be as
signed to special places on twelve different location scenes. Even
though my goal of putting movable objects on the location scenes was
getting way too complicated, I still was considering trying it. But fur
ther problems arose with the concept.

Resolution and Palette Problems

The low-resolution screen is 320 pixels across by 200 pixels down in
NTSC, 320x256 in PAL, and allows 32 colors. I chose this over a higher
resolution because I wanted the additional colors that only low-res
could give me.

Another reason I chose low-res was that a screen in low-res takes less
chip memory, and I knew I was going to be using a lot of chip memory
for the various screens that would be in memory all at once, as well as
the digitized sound effect that I wanted to include. All of these things
use chip memory, and I needed to make sure my game would run on a
minimum Amiga with 512K of Chip RAM.

But when using low-res, aliasing can be a problem. I discovered anti
aliasing problems with the low-resolution screen. Aliasing refers to
edges of curved and diagonal lines looking jagged because the pixels
are larger than in other resolutions, and anti-aliasing is the technique
used to reduce these "jaggies".

One way to reduce them is to add colored pixels in the corners of the
jagged edges that are a mixture of the object color and the background
color. Doing this makes the curves and diagonals look much smoother.
But the problem I encountered was that while an object would look
fine in one location, it would look awful in another location. If the
bottle were drawn so it would look good on the sand, then it would
look terrible on the tree top. The sand-colored pixels added to reduce
the jagged edge when the bottle lay on the sand made the bottle look
horrible on the green background of the tree top, even though the bot
tle looked wonderful against the tan background of the sand.

There was a solution for this problem too, but it got even more compli
cated. I could have different drawings for each location that would
properly match the colors of the backgrounds. This would mean at
least six different pictures of each small-sized object, six more of each
object in the medium size, and six more in the large size. That way I

Chapter 16: The Graphic Interface

could have the program draw the correct object if it existed in any
room. It would be the correct size to match the perspective, it would
have the correct anti-aliasing colors to reduce the jagged edges, and it
would be placed in the correct position on the screen to appear in the
location properly.

As I considered all the dizzying possibilities of eighteen different draw
ings for each of nineteen different objects, which could be placed in
228 different places on the screen, I realized there was an easier way.
Such a simple idea, having the movable objects appear in the location
scene, couldn't be that hard. And by now you have played the game,
and you've seen how I resolved the problem.

I decided to place all the movable objects for any given location on the
side of the location in a white area that would scroll upwards or
downwards if necessary to show all the objects in that place. This
solved all of my problems and still accomplished my goal of showing
the objects on-screen for the player to view. Using this method, only
one drawing of each object was necessary. No different-sized objects
were required. All the objects could be anti-aliased toward a white
background, so no different colored objects were needed. And since
each object appeared in a given area, no special coordinates were
needed for each specific location.

The white bar has room to show up to five objects that are in the cur
rent room. If more than five are present, the bar can be scrolled to
show the rest. By taking this approach, all the movable objects would
appear on the screen, and could be moved by the player from the room
location to the inventory or back. With this, the hardest nut to crack,
resolved, I was finished designing the graphic interface.

Now I had the game completely designed on paper and in my head. I
knew what I wanted it to look like, and how it would play. The next
step was to create the graphics. This had to be done before any
programming, because much of the programming depended on know
ing exactly where on the graphic screen various things were. In the
next chapter, I'll cover the graphics, music and sound effects that went
into Cannibal.

16 - 7

The Visionary Programmer's Handbook

16. 8

Chapter 17: Sound and Graphic Files

Since I was creating a graphics adventure, I knew the graphics would
have to come next. I needed to know exact pixel locations, so that as I
wrote the rest of the adventure, I could correctly refer to them, and get
things moving properly. For example, to pick up the bottle, I wanted
the player to simply click on the bottle and drag it over to the inventory
window. This required the use of Visionary's COPY command.

To use the COPY command, I had to know which of the 25 possible
screens contained the picture of the bottle. Then I had to know the
coordinates of the upper left corner and the lower right corner of a
rectangle that contained the picture. I also had to know which screen
the picture of the bottle was to be drawn. And I needed to know the
coordinates of the upper left corner of the rectangle where the bottle
was to be drawn. I also had to know the coordinates of the scroll-bar
window and the inventory window, so I would know if the player was
clicking on the scroll-bar window, the inventory window, or neither.

Before I could start writing the source code for the adventure, I
needed to know the precise pixel coordinates of all the graphics that
would be used in the game. For these reasons, the graphics were
necessarily the next step in the creation of the game.

The Graphics

Lacking all but the most rudimentary artistic skills myself, I was lucky
to find an excellent artist to do my art work for the game. I discovered
Erik Hermansen by leaving a notice on some of the larger Portland
area bulletin board systems.

If you also lack artistic ability, I can recommend this as one of several
ways to find someone do help you with your game. You will be looking
for a rare combination of talents, someone who has artistic ability as
well as a person familiar with computer art, and with paint programs.
If you have a telephone modem and can call a local BBS or two, this is
an excellent way to seek artists for your game.

You can also check with local colleges and universities who frequently
have computers in their art departments. They may be able to put you
in contact with some art students who possess the skills you need.
Other sources include your local computer user groups and computer
stores. They will frequently be able to put you in touch with someone
who does computer art work.

17 -1

The Visionary Programmer's Handbook

Keep track of
coordinates as
you create the
game graphics

You may need
to correct for a
discrepancy
between the
coordinates in
your painting
program and
those in Vision
ary

17 - 2

The Window Template
Erik worked closely with me in designing the graphics screens for use
in Cannibal, using Deluxe Paint III. Our first task was to design the
window template that would be the screen the player saw. This screen
contained three windows, the location window, the inventory window,
and the text window. It also contained the buttons that the player
would click on to move or take other action. This screen, named "win
dow.pie'', can be found on the disk, in the Video directory.

As we were designing the window template, we were also taking into
consideration the possible sizes of the movable objects. They had to be
big enough to be recognizable, but at the same time small enough to
easily fit in the scroll-bar window and in the inventory window. We
finally settled on a size of 15 by 17 pixels. Erik would design each of
the nineteen movable objects to fit inside an invisible rectangle that was
15 pixels across by 17 pixels down.

Having settled on this size, we were then free to correctly size the in
ventory window to hold six of these objects, with 1 pixel width in be
tween. We were also able to design the scroll-bar window on the side
of the location window to permit up to five objects be displayed, again
with a 1-pixel border.

Coordinates
The next step was to keep a written record of coordinates for each
window and button on the window template. In Visionary, the COPY
command needs three sets of X, Y coordinates each time you use it. It
needs the upper left comer and lower right corner coordinates for the
rectangle containing the part of the screen to copy from, and the coor
dinates for the upper left corner only, for the screen it will copy to.
Since all the graphics would be copied to window.pie, not from win
dow.pie, it was only necessary to record the X and Y coordinates of the
upper left comer of the location window, the inventory window, the
text window, the scroll-bar window, and all the buttons. These num
bers would be vital later in programming, to make sure that the
graphics would be drawn on the window template correctly.

Depending on the paint program you use, there may be a discrepancy
in the way in which the y coordinate is measured. Visionary uses the
standard "over-down" method of figuring coordinates, where the upper
left corner is (0,0). Earlier versions of Deluxe Paint UI, the paint pro
gram we used, force you to use the "first quadrant" approach of a
mathematical coordinate plane, where the lower left corner is (0,0). To
give an example, the upper left corner of window.pie would have coor
dinates of (0,0) in Visionary, but would have coordinates of (0,255) in
Deluxe Paint III.

Object
locations on
the hidden
screen were
designed to be
a simple
multiple of the
object number
to make
programming
easier

Chapter 17: Sound and Graphic Files

Normally, a low-res screen like window.pie would have 320x200 resolu
tion, and the upper left comer would have coordinates of (0,199) in
Deluxe Paint. However, in an effort to make this game more visually
pleasing when played on a PAL computer, I added an extra 56 pixels of
length to the screen, making the resolution 320x256. So the corrected
coordinates for the upper left comer in Deluxe Paint III are (0,255).

The Hidden Screen
We had now designed the main screen, the window template, and knew
exactly where everything was located. The next step was to design a
screen which would remain hidden from the player's eyes, but would
contain the pictures of the objects and the pictures of the buttons in
both states: pushed in and popped out. Parts of this screen would be
copied to the visible screen when the player moved objects or clicked
on the buttons.

If you look on the disk in the Video directory, you will find this screen
as a file named buttons.pie. It can be viewed with any graphics viewer
or paint program. What you will see is all nineteen objects sitting in a
line across the bottom of the screen. Above them are pictures of the
buttons. Above that is a blank rectangle that is used for a hidden buff
er, and beside that is a larger picture of the ladder. Let's look at each
of these and I will point out some of their special features.

In placing the object pictures at the bottom of the button.pie screen, I
had to plan ahead. I knew that I would eventually want to refer to each
object by a number, so that I could run that number through a simple
formula and come up with the X and Y coordinates of the object's
location on the button.pie screen. I placed the left edge of each object
exactly 15 pixels from the left edge of the previous object. In this way,
the X-coordinate would be a multiple of 15 of the object number. For
example, object number one was the ladder and its location would start
at zero. Object number two was the bottle, and it began at fifteen.
Once I knew the object's number, I could subtract one, and multiply
the result by fifteen to obtain the X-coordinate. Since the objects were
all drawn in a line from left to right, the Y-coordinate for each would
always be 183. By designing the button.pie screen in this fashion, I was
paving the way to make future programming easier.

Object Edges

While you are looking at the objects, notice that the edges of the ob
jects may look strange. This is because all the objects sit against a
black background. During the game play, however, the objects will be
placed upon the white background of either the scroll-bar window or
the inventory window. When placed against a white background, the
objects will look normal.

17 - 3

The Visionary Programmer's Handbook

17. 4

The reason for the strange appearance on the black background of the
hidden screen is the pixels added to the edges of the object for the
purposes of anti-aliasing. By adding pixels in the corners that are a
combination of white and the object border color, the object talces on a
smoother and less jagged look. The result looks strange when viewed
against black, but looks fine against the white background where it is
intended to be displayed.

The Buttons

Next, notice the buttons. Each action button has a twin. They come in
pairs, such as two versions of the HELP button: one shows the button
in its normal position, and the other shows it in the depressed position.
All buttons except the direction buttons have two pictures, one showing
the button out, the other showing the button in.

Again planning ahead, I placed the depressed button picture immedi
ately below the normal button picture. This was done in anticipation of
the future programming required to malce the button look like it was
being pushed inward. When using the COPY command, the X-coor
dinate would not have to be changed. The Y-coordinate would only
change by 13 each time.

The only exception was the direction buttons. Since I had completely
planned out the graphic interface in advance, I knew that each direc
tion button could take on three possible shapes. I designed three but
tons for each direction button. If the player was allowed travel in the
indicated direction, the button would appear in the normal "out" dis
play with the direction in orange. If the player could not travel in that
direction, the button would still appear out, but the direction would be
"ghosted" in gray. The third picture would show the button as it would
appear if depressed, with the shadows on the edges reversed, and the
direction in yellow.

By positioning the depressed version of the button in between the nor
mal and ghosted versions, I knew I would later be able to easily return
the button to its previous condition by adding either 13 or -13 to the
Y-coordinate of the button. This value, which I called an offset, could
be set depending on the current status of the button and the directions,
as soon as the mouse click was detected. Then it would only talce a
single routine to return the direction button to normal when the player
released the mouse button. I'll explain more about this routine in a
later chapter on the MainLoop.SUB file.

Above the buttons to the right is a larger picture of the ladder. I knew
that in certain locations, I would want the ladder to appear in the loca
tion window propped up against the shack, the tree, the boulder, or the
cave. This would be in addition to the smaller picture showing in the
scroll-bar window. So the ladder was placed here, where it could be
accessed at any time, to overlay it on the location scenery.

A hidden
buffer lets the
ladder appear
in appropriate
screens
without notice
able delay

Chapter 17: Sound and Graphic Files

The large white rectangle in the upper left corner of buttons.pie was
designed as a hidden buffer for overlaying the ladder on the scenery
before the scene was copied to the window template.

I designed the sequence of events to be as follows. When the player
entered the meadow, the meadow scenery was loaded from the disk
into screen buffer 1. Players wouldn't see this happen, because they
would be looking at the window template on screen number 0. After
the meadow scenery was loaded into screen buff er 1, I copied it to the
white buffer in the buttons.pie file, which was in screen number 2. If
the ladder was present at the current location, I did an overlay of the
ladder onto my hidden buffer. Then I copied the hidden buffer to
screen number 0, into the location window. All this took place rapid
ly- from the player's perspective, after South was clicked, the meadow
with the ladder against the shack was immediately displayed.

I could have eliminated the middle step, and the need for the white
rectangle on buttons.pie. I could have loaded the meadow scenery into
screen buffer 1, and then copied the meadow directly into screen buffer
0 and the location window. Finally, I could have copied the ladder
directly onto the scenery if it was present. The end result would have
been the same, but it would not have looked as smooth. The meadow
would have appeared in the location window first, and then the ladder
would have appeared a fraction of a second later. It would have been
noticeable, and would have looked less professional.

So I chose to do my overlays in a hidden buffer first, and then copy the
final scene onto the location window. The end result looked nicer, but
took extra programming steps and took some space on the buttons.pie
file. For a more detailed look at how objects like the ladder are over
laid on the scenery, see the complete explanation for the subroutine I
called ReDrawScreen, in Chapter • •.

The Game Graphics
At this point, Erik had presented me with two completed graphic files
exactly to my specifications. I knew the X and Y coordinates of every
window, object, and button in both files. The next step was to design
the art work for each of the location scenes. Each room would have at
least one location scene- some would have two. I needed two dif
ferent versions of the east beach scene. One showed the canoe
beached on the sand, and the other shows the canoe floating at the
surrs edge. Similarly, I needed two versions of the scene by the
boulder, one showing the boulder in front of the cave and the other
showing the boulder rolled aside.

In addition to the scenes for each of the rooms, I also needed a scene
when the player won and when the player lost. The winning scene
would show the player having left the island, and on his way to safety.
The losing scene would show the player caught by the cannibals, sitting
in a large iron pot filled with boiling water.

17 - s

The Visionary Programmer's Handbook

Use the
VCOORD
utility to make
pixel-counting
easier

17 - 6

Each of these scenes were designed to be exactly '127 pixels long by 120
pixels wide. Once they were completed, it was time to do some more
measuring.

Counting Pixels
Counting pixels is tedious work, but it had to be done if I wanted the
player to be able to click on the scenery and receive a description for
that part of the scene. Remember, it was my intent that the player
would be able to examine things by simply clicking on them.

That not only meant the movable objects in the scroll-bar window and
the inventory window, but the nonmovable objects in the location win
dow as well. If players were standing on the beach by the rowboat, I
wanted them to be able to click on the picture of the rowboat and
receive some description of the vessel. So for the scene showing the
west end of the beach by the rowboat, I had to keep a written record of
the X and Y coordinates for the upper left corner of a rectangle con
taining the rowboat, and similar coordinates for the lower right corner
of the rectangle containing the rowboat. I would need these numbers
later when I started programming the click zones for the room files.

In case the player wanted to examine other parts of the location, I had
to measure pixels for all the other things in the scenes. Standing by the
rowboat, for example, I wanted the player to be able to click on objects
other than just the rowboat. I needed to find the double set of coor
dinates for the sky, the sand, and the ocean. Or if the player was
standing in the sand dunes, I wanted to allow a click to examine any of
the four plants present, the ocean as seen between the sand dunes, the
sky, or the dunes themselves. Again, this meant I needed to know the
coordinates for each of these areas. In that way, when the time came to
program these click zones into the room files, I would have the exact
numbers available for each examinable object.

A utility program named VCOORD that comes with VJSionary makes
counting the pixels much easier. It allows you to load your graphics
and find the coordinates by simply clicking the mouse button on the
picture. The coordinates are then displayed in the upper left corner of
the screen, or can be written to a file or sent to your printer. When
using the optional VIE editor, available separately, the coordinates will
be recorded by simply clicking the mouse on the graphic.

Sound Effects and Music

Having completed the graphics, the sound effects were next. These
were easy, fun, and a nice change of pace from counting pixels. I had a
short list of sound effects that were required. I would need some
ocean sounds for the two beach scenes. I wanted some bird sounds for
the meadow. And I wanted some sort of cave sounds for inside the

-

Repeated
sounds can be
randomized to
avoid "broken
record" repeti
tion

Chapter 17: Sound and Graphic Files

cave. This last one was a bit difficult, until I finally settled on a hollow
dripping sound that I felt was typical of a damp cave.

These would be the main sound effects in the game. In addition, I
wanted two more sound effects for when the cannibals captured the
player. I wanted the sound of a bubbling pot, and the sound of a man's
scream. This completed my list of sound effects. The next task was to
find them.

Finding or Making Sound Effects
My first step was to look at sound effects that already existed as
digitized sounds available from a variety of public domain sources. It
was from these sources that I found a good dripping sound, and an
excellent death scream.

When you can't find the sound effects you need, it is easy to make your
own. That's what I eventually did for several of them. Since I could
not find some of the sounds I needed already digitized, I used an audio
digitizer to create the rest. Audio digitizers are readily available in the
$75 range, and are very easy to use. You simply plug them into the
back of your computer, connect to your audio source, and run the
software. Many digitizers come with their own software, which may be
limited to digitizing the sound. After sounds are captured by the
digitizer, they often need to be edited. For this purpose an audio
editor is needed. I recommend AudioMaster III because of its excel
lent sequencing abilities as well as full editing capabilities.

For the sounds that I personally digitized,, I used several sources. For
the birds chirping, I found a record containing chirping birds. I
digitized a short sample, and then looped through various parts using
the sequencing of AudioMaster III. This made a short sample lasting
only a few seconds into one that played for several minutes. By ran
domly choosing the bird chirps in the sequencing, I was trying to avoid
the "broken-record" sound of birds chirping in exactly the same way,
over and over.

For the ocean waves, I used a "white noise" generator on a clock radio,
that was supposed to lull you to sleep with the sound of the ocean.
Using a microphone, I digitized the white noise while manually adjust
ing the volume to give the effect of crashing waves. Then I processed
this sample with AudioMaster III to add sequencing of the waves, to
make the sample run longer and make the waves crash more randomly,
and less in a recognizable pattern. That left me with the bubbling pot
sound.

Creating the digitized sample for the bubbling pot was one of the high
points of that week. I couldn't find the sample already in existence, so
I decided to create my own sound effect from scratch. The basic con
cept was that I would blow bubbles in water with a straw while holding
a microphone above the water to catch the bubbling sound.

17 - 7

The Visionary Programmer's Handbook

With some
inventive ex
perimentation,
you can often
create the
sound effects
you need

17 - 8

The first thing I discovered was that different containers create dif
ferent sounds. Using a glass of water created bubble sounds that were
too high pitched and had a "ringing" sound as though someone were
lightly tapping on the glass. I switched to a large metal pan and found
that the bubbles had a lower pitch, but there was still a metallic "ring
ing'' sound to the bubbles. I finally settled on a large soft plastic buck
et that eliminated the "ringing" sound while it kept the lower bubbling
sound.

I next discovered that blowing into a single straw didn't give enough
bubbling action, so I put two straws in my mouth. Blowing lightly
didn't give me the big bubbles and the necessary large "plopping''
noises, so I found the best result was obtained by blowing hard and
getting large splashy bubbles. Of course, I wasn't able to maintain
blowing air out at that rate for very long, but I knew I could loop a
short sample to make it appear much longer.

So away I blew, microphone held above the plastic bucket, water bub
bling like crazy and splashing all over the place, and me probably look
ing like the big bad wolf trying to blow down one of the little pigs
houses. And when I was done, I had it! I had a perfect digitized
sample of a bubbling pot. I also had a kitchen that was wet from top to
bottom and a microphone that is still drying out to this very day. It was
so funny I had to laugh - but it was also a laugh of triumph. I had
created the perfect sound effect for my game.

The point of this story is that you ought to try your own hand at creat
ing sound effects, too. It's easy to do, and often a lot of fun as well.

Playing Sounds
Except for the death scream, I wanted all the sound effects to play
continuously. I didn't want the player to hear fifteen seconds of ocean
waves, and then no more. As long as he stood at the ocean, I wanted
him to hear the waves. And when he moved away from the beach
toward the meadow, I wanted the sounds of the waves to diminish as he
moved farther and farther away. Likewise, I wanted the player to hear
the birds chirping in the distance as he approached the meadow, and
then hear the volume increase as he reached the meadow by the shack.

To keep the sounds running continuously, I knew I could set the Vision
ary PLAY SOUND command to a continuous setting. But to avoid the
"broken-record" sound, I processed the digitized sounds with Audio
Master III first, so various parts of the short samples could be played in
a sequence that would appear random, and would last long enough so
that when my game started them a second time, no one would notice.
While I had done this with the sounds I personally digitized as I was
working with them, I now went back to the drip sound that I had found
on a public domain disk and sequenced it so the drip would sound a bit
more random.

Chapter 17: Sound and Graphic Ries

Music
With the sound effects finished, that left me with music. There were
two places in my game that I wanted music. I wanted some title music
to be played while the game was loading and the main title was being
displayed. I also wanted some music to be played at the game's con
clusion, when the player won and was being transported back to
civilllation.

VISionary supports music modules created with MED (Music Editor),
and using this type of music saves an enormous amount of memory
compared with digitized music of the same length. Erik Hermansen,
who did such a nice job with my graphics, created two musical scores
for me using MED. The first one, as you have by now heard, was the
native drums that plays at the game loads. The second one, which you
have only heard if you have won the game, is played when you have
reached the safety of the old freighter. The first piece with the drums
was so effective, that I also decided to put it at the end of the game,
when the cannibals arrive on the island.

With all the graphics and sounds completed and out of the way, the
next step would be to start the actual programming, using Visionary.
The first thing to program would be the Cannibal.ADV file. The next
chapter will take a look at how it was constructed.

17 - 9

The Visionary Programmer's Handbook

17 -10

Chapter 18: The Cannibal.ADV File

Use a unique
password for
each Visionary
game

When I sat down at the computer, I knew that the Cannibal.ADV file
would be the first one I needed to create. The Visionary manual
covers the format of the {game}.ADV file, so I needn't explain it again
here. But if you will look at the source code for the Cannibal.ADV file,
either in Appendix A or on the disk, you will notice a large number of
variables.

These were not all entered when I started the game - in fact, very few
were entered at that time. But as the game was being written, I came
back here and added variables as I needed them. When you write your
own game, you will find yourself doing much the same thing. You will
be coming back to the Cannibal.ADV file many times to make additions
as your game grows.

Password

The first entry in the Cannibal.ADV file is your personal password.
This has several purposes, and hence should be chosen carefully. One
of the purposes of the password is to correctly decode your encoded
graphics and sounds. Many of you will want your graphics and sounds
encoded (using the VCODE program found on your Visionary disk) so
that after your game is finished and released, others cannot make
modifications to your pictures.

When you encode your graphic and sound files, you must use the same
password as in the Cannibal.ADV file. Without this password, your
game will not be able to correctly decode those files. If you choose an
obvious password, anyone with the VCODE program could unscramble
your files, modify them, and encode them again. So for the sake of
security, be sure your password is unusual.

Your password should also be unique. That is to say, you should not
use the same password on two different adventure games. This is be
cause the password is also used in identifying saved game positions.
Consider what would happen if there was no way of identifying the
game the positions were saved from. Let's say you were playing a game
called Magician and saved your place, and then started playing a
second game called Jungle. If you tried to load your place using the file
saved from Magician there would be nothing to stop you. But the game
would crash, because all the screens would be different, the variables
would be different, and the objects would be in the wrong places.

To keep that from happening, Visionary checks the saved game with the
password in the {game}.ADV file. If they don't match, the saved posi
tion will not be loaded. This important safeguard would be com-

18 -1

The Visionary Programmer's Handbook

18 - 2

promised if you used the same password in both games. By having a
different password for each game you write, you will ensure the only
previous positions that can be loaded into your games are ones that
really belong there.

The Variables

The variable block follows the password in the Cannibal.ADV file. It
may look intimidating when you look at the source code for Cannibal,
but remember that it started out small, and grew as the need for vari
ables arose.

If you are writing a strictly text adventure, your variables will probably
be few. Since Visionary has built-in variables for SCORE, MOVES and
ITEMS, you might not even need to declare any variables at all. In a
graphic adventure, however, there is a need for a wide assortment of
variables. If you examine the source code for the Cannibal.ADV file,
you will see comments beside each variable. These comments give you
some general idea of what the variable is used for. As I go through the
development of the game, I will expand on these comments when
necessary. For now, just look over the list and you will see that vari
ables are used mostly for graphics purposes. Many of the variables
keep track of positions on the graphic screens for buttons, objects,
scenes, and text placement.

When I began the writing of this game, I filled in the Cannibal.ADV file
with only the barest of information. I chose a password. I knew I
would need three variables, so I inserted them. I knew I would have to
write a .ROOMS file, so I entered it into the ROOM block. Then I
had to make some decisions about the object files.

Object Files

I knew I wanted to have three different types of object files. There
would be some actions that I wanted to take place on every turn. I
wanted to check my timer on every turn and see if it was time for the
Cannibals to land, or time for the player to be captured. To ensure
that this check for time occurred at the end of every move, I had to
place them in an NPC file. As the Visionary manual points out, there
is a special object file called NPC which always executes at the end of
each tum. So I would need an NPC file.

I have found that all the other objects in my adventures can be split
into two groups, one for nonmovable objects and one for movable ob
jects. There is no reason you cannot use a single file, but I have dis
covered that it's easier to find things later if I have the files kept
separate.

It may help to
have separate
files for mov
able and non
movable objects

Chapter 18: The Cannibal.ADV File

In addition, the nonmovable object files are usually shorter because the
objects can't be manipulated as much. The movable object files are
longer because they permit the getting and dropping of objects as well
as other uses of the objects like burning, opening, reading, breaking,
locking and unlocking.

I put the three different file names in the OBJECT block of the Can
nibal.ADV file. As you can see from the source code, I later split the
movable objects into two separate files because the single file was get
ting too big.

Subroutines

Subroutines play an important part in any adventure, especially a
graphics one. When I started writing the adventure, I only saw the
need for a single file of subroutines. I entered the file name Can
nibal.SUB in the subroutine block.

Some time later, I decided it would be easier to place some of the
subroutines in separate files. I created a GetDrop.SUB file of sub
routines that were involved in making objects appear in the scroll-bar
window and the inventory window. These subroutines also took care of
things like moving the objects around the screen behind the mouse
pointer, redrawing the scrollbar as items were scrolled upwards or
downwards, and making the scroll-bar window arrows appear when
necessary.

I created a Startup.SUB file for the subroutines that were only called
once at the beginning of the game, to load the initial graphics and
sounds. And I created a MainLoop.SUB file for the large subroutine
that checked for any keypress or mouse click, took any appropriate
action, and then started over again.

Vocabulary

The next step was to fill in the VOCAB block. I knew there would be
many special commands that would not fall elsewhere in my source
code, and so I created a file Cannibal.VOC to take care of these situa
tions. Tuke a quick look at the source code for this file, and you will
see the types of commands it includes. A detailed explanation of what
they do and why they are there instead of someplace else will be given
later.

The Initial Room

The last thing I had to do in the Cannibal.ADV file was fill in the name
of the room where my game started. Since the game was completely
designed on paper before sitting down to the computer, this was easy.
I knew the player would start on the beach by the rowboat. All I had

18 - 3

The Visionary Programmer's Handbook

Choose
descriptive
room names

18 - 4

to do was to choose an official name for the room and place it after the
INITROOM line.

Since this room was at the west end of the beach in my game map, I
picked the name "west_end_of_beach" to make it easier to remember.
Having completed as much of the Cannibal.ADV file as I could, I was
ready to go on to the next step in creating my adventure game.

Chapter 19: The Cannibal.ROOMS File

The next step was to create the actual rooms or locations that the
player would visit, like the beach, the shack, and the cave. All the
rooms went in the Cannibal.ROOMS file. I designed twelve rooms,
plus two "fake" rooms.

Hidden, Unused and Special-Purpose
Rooms

The first fake room was the one I wrote first. I named the room "Un
used" to remind me that the purpose of this room was to store objects
that were currently not being used. For example, I had buried some
driftwood in the sand by the rowboat. I would place the driftwood
object in this unused room until the player dug it up. At that time, I
would move the object from the unused room to the player's current
location. This room was also used for the storage of objects that were
destroyed, like the bottle when broken, or the candy bar when eaten.

At a later time, I decided that I could use the "Unused" room for
another purpose as well. I wanted to allow the player to attempt to
swim out in the ocean. It would not have been logical to deny the
player access to the ocean, especially when standing at the edge of the
surf with the water stretching before him. What excuse could I have
used for refusing to let the player try to swim? Tell him he didn't know
how to swim? Pretty lame. Tull him he couldn't go that way? Not
logical; he could see it before him. But at the same time, I didn't want
swimming to lead the player anywhere, especially not out to the
freighter where the game would have been won.

I chose to allow the player to swim about in the ocean a bit, then tire
and return to shore. To do this, I had to create a new room. Since
there was no need to actually show this room graphically, I knew I
could use the "Unused" room for this purpose. I added the code to
the "Unused" room so that when the player stood by the rowboat and
tried to go north, he would be moved to the "Unused" room, and im
mediately be sent back to the location by the rowboat, where he would
be given a message telling him that after swimming a bit he had tired
and returned to shore.

If you will examine the source code for the Cannibal.ROOMS file,
lines 4-9 show how simple the "Unused" room file really is. The file
consists of a two-line code block that sets a room attribute and then
forces the player back to the "west_end_of_beach." The room at
tribute, called ForcedReturn, is for the purpose of returning the player
to the beach without printing the room description again.

19 -1

The Visionary Programmer's Handbook

Repeated code
is often a good
candidate for a
subroutine

Descriptive
room names
will make your
task easier

19 - 2

When the player is sent back to the "west_end_of_beach", the lines
starting at 53 unset the attribute so that it won't be activated normally
again, and call a subroutine to print the message telling him he returns
to shore after a swim. If you're curious about the subroutine that prints
the message, feel free to look it up in the Cannibal.SUB file, starting at
line 628. Be warned, however, that many subroutines call other sub
routines which call other subroutines. It can get a bit dizzying unless
you know why things were set up in that fashion. We will be looking at
subroutines in a later chapter, and you may wish to wait until then.

The "Unused" room is the simplest type of room file, consisting only of
a very small code block. The only other room like it in my adventure is
"Ocean2" found at line 78. "Ocean2" serves a similar purpose to "Un
used" - it is where a player is sent when he attempts to swim out from
the east end of the beach by the canoe. As soon as the player arrives
here, a similar attribute is set for the "east_end_of_beach" and he is
sent back to the beach by the canoe.

When the "ocean2" room file is executed, that attribute is cleared and
the message about swimming is given. Since the same message was
given from two different rooms, "west_end_of_beach" and
"east_end_of_beach", a single subroutine was used to save space. The
alternative was to place the same message in both rooms, however that
was less efficient. Whenever you find yourself writing the same block
of code more than once, remember you can make it a subroutine and
you will save a lot of space.

The Initial Room

The second room that I wrote was the "west end of beach." This was - - -
probably the largest of the room files. Since it is the room the player is
in when the game starts, it must also contain the necessary code to set
up the game. This set-up includes such things as loading the various
graphic screens, loading sound effects, loading the fonts, and defining
the click zones for the buttons.

Since this was such a large amount of code, I decided to make it a
separate subroutine which could be called from the room file only
once, when the game first started. In the next chapter, we will take a
complete look at the StartUp.SUB file and see what it includes. For
now, let's look at the rest of this room file, and the other room files.

The first part of the room file is the room name. I chose
"west_end_of_beach" because it was descriptive. You could just as
easily call your rooms by names such as "Rooml" and "Room2", but it
is easy to lose track of which room is which when the names are less
descriptive. You may be able to remember them by numbers today, but
in six months when you go back to look at your source code again, you
will have forgotten which room number is which. With descrptive room
names, you will make your job easier in the long run.

The same
name can be
use for an at
tribute in dif
ferent rooms

Chapter 19: The Cannibal.ROOMS File

Room Attributes
The attribute block comes next in the room file. Remember that these
attributes are simply variables with only two possible values, Y(es) or
N(o). For those of you familiar with other programming languages,
they are essentially flags. But they are more user-friendly, and they are
"attached" to a room. By that, I mean that they are values associated
with a particular room.

For example, look at the first attribute for this room, called Started. I
created this attribute to describe whether the game had just been
started or not. Since this room is the first one executed when the game
begins, this is the logical place for such an attribute. Since the at
tributes are attached to the rooms, you can have several attributes with
exactly the same name, each attached to a different room.

The attribute ForcedReturn is a good example of this. I have used the
name ForcedReturn as an attribute for both the "west end of beach" - - -
and the "east_end_of_beach." There is no conflict in using identical
names for these attributes, since each will only be checked against the
room name that I specify. If you will examine lines 53 and 122 in the
Cannibal.ROOMS file, you will see how each is used with the room
name.

Notice that both attributes are set to N, meaning "No." Remember
that these are set to either Y or N the very first time the room file is
executed, and never again. The second or third time the player visits
the room, the attribute block will be skipped. In this way, if any at
tribute has changed value, say from N to Y, it will stay changed when
the room is re-entered. I set both values to N to indicate that the game
had not yet been initialized (started) and that the player had not been
forced to return to this location after a swim in the ocean. These were
the only attributes that I needed, but remember that you can use up to
32 attributes if you wish.

Automatic Attributes
Before I move on to the default block, let me remind you of some
attributes that are automatically set in Visionary without the need for
you to do anything. Each room has the attributes VISITED and
DARK. Both start out set to N unless you specify otherwise, and
neither needs to be listed in the attribute block unless you want to set
the initial value to Y. The VISITED attribute always starts at N and
automatically switches to Y after the room has been first visited.

By checking this attribute, you can decide whether to print a complete
room description, or a short summary of the description. The DARK
attribute also starts at N, and can be used to tell if a source of light (a
burning torch or a flashlight) is needed in order to give the room
description. You might use this if you have a dungeon, where you want
the player to have a torch before she can see where she is.

19. 3

The Visionary Programmer's Handbook

19 - 4

In my Cannibal adventure, I didn't need the DARK attribute. I used
the VISITED attribute in nearly every room, but since I was satisfied
with the default value, I didn't declare it in the attribute block. For
more information on the VISITED and DARK attributes, see your
Visionary manual.

Default Directions
The next block in this room file is the default directions. As you can
see, starting at line 20, there are three ways the player can exit this
room. She can move south to the sand dunes, east to the east end of
the beach, or north to the unused room. Remember that the player
thinks she can move north into the ocean, but actually is moved to the
unused room just long enough for an attribute to be set, and then is
sent back to the beach.

Here is another case where descriptive room names will make your job
easier. It's much easier to tell where the player will end up when
moving south if the room is named "sand_ dunes" than if it is named
"room3." It's not only easier for you to keep track of your game as you
write it today, it is also much easier when you look at it months from
today.

As is pointed out in the Visionary manual, the default directions are
only executed once, when the room is first visited. That means if the
directions are changed later in your game, they will not be re-initialized
back to these default values when the player comes back into this
room. A good example of this feature in the Cannibal game is the use
of the ladder. When the game starts, the player can climb the ladder
that is against the shack to reach the roof of the old shack. You will
see in line 202 that the default for up is "top_of_the_shack." That
means if the player tried to go up, he will be taken to the roof top.

But consider what happens when the ladder is moved. The player
should not be able to go up to the shack roof if the ladder is not
present. When the ladder is moved, the directions available for the
player are modified so that up is no longer a viable action. And that's
the way you want it to stay, even if the player walks to the sand dunes
and then back to the meadow by the shack. When the player returns to
the shack the second time, the default directions block is not executed.
The up direction remains unmodified, so that if the ladder has been
removed and the up direction is no longer available, it will remain that
way when re-entering the room.

The Code Block
The next, and final, block of this room file is the code block. It is the
largest block and contains a wide variety of things.

Remember that the code block is always executed any time the room is
entered, whether for the first time, or the twentieth time. This is the

Some areas of
your screen
may be as
signed a lower
priority than
others

Chapter 19: The Cannibal.ROOMS File

appropriate place to put your room descriptions, define your click
zones, and set variables. Let's examine the code block for the
"west end of beach." - - -

Click Zones

The first thing I did in the code block was to clear the click zones for
all buttons used in any previous room, then define the click zones for
the current location. Line 28 calls a subroutine ClearButtons which
clears the click zones for button numbers 34-44. If you wish to examine
the subroutine, you will find it in the Cannibal.SUB file starting at line
144. We'll examine this subroutine in a later chapter, but for now let's
just look at the reason for clearing the buttons.

Note that not all the buttons are cleared. I used button numbers 0-14
for such things as clicking on the compass, clicking on action buttons
like HELP, DIG and QUIT, and clicking in the scroll-bar window and
the inventory window. I wanted these always active, and did not clear
them when the player moves from room to room.

However, there were items that would appear in the graphic scenes of
each room that I wanted the player to be able to examine by clicking
on them. For example, I wanted the player to be able to click on the
picture of the canoe and receive a description of it. But when standing
in the cave and clicking on the same screen location, I didn't want the
player to read the description of the canoe. So in the code block, I
first cleared the buttons that were assigned to nonmovable objects in
the scenery.

After clearing the old click zones, I defined the new zones for the boat,
the sand, the ocean and the sky. Each was assigned to a particular
button number. The numbers are important, because they are
prioritized. The location window's coordinates are 6,6 for the upper
left corner and 231,71 for the lower right corner. Notice that I defined
the sky to take up the whole location window, but I also defined it to be
the lowest priority of the four zones. In that way, anywhere the player
clicks which is not otherwise defined will display the description for the
sky.

If you examine the coordinates for the four click zones carefully, you
will realize that the four rectangles they define overlap each other. By
taking advantage of the priorities, I could save a lot of programming
time.

For example, let's look at the rowboat and the sand. I defined a large
rectangle that contained the sandy beach. Part of it also included the
rowboat, but that was unintentional. Then I defined a smaller rec
tangle for the rowboat, which was overlaid on the other rectangle. By
using a smaller button number, I knew that clicking on the portion of
the screen that was defined to be both rowboat and sand would only
describe the rowboat.

19 - s

The Visionary Programmer's Handbook

19 - 6

If the click zones were not prioritized, I would have had to define the
click zone for the boat in the center of the screen, then define a click
zone for the sand to the left of the boat, another zone for the sand to
the right of the boat, and a final zone for the sand below the boat.
Visionary's feature of prioritizing buttons makes defining click zones
much easier. Keep this in mind when you design your adventures.

Nonmovable Object Placement

Having finished defining click zones, I next placed some nonmovable
objects in the room. These objects, the ocean, the sand, the sun, and
the sky, have to be in the room so that they can be described.

When Visionary's parser sees the command "examine the sand" it looks
to the object file for "sand" and prints out the description I gave it.
That means the object "sand" has to be in the current room. And
since there is sand in more than one room, I just keep moving it to the
current room as the player enters it. That means if the player was else
where, perhaps in the sand_ dunes, and enters this room next to the
rowboat, I place the object "sand" in this room so that if the player
tries to examine it, get it, or otherwise manipulate it, my game will find
the object and respond appropriately as I wish.

Any object that would appear in only one location, the shack for ex
ample, would not need to be placed in the room in this fashion. The
single object location could be specified in the INITROOM part of the
object file.

We'll be looking at the object files in much more detail in a future
chapter, so I'll say no more here. But this is the place to define objects
that appear to be stationary but in reality need to move from one room
to another.

Initial Variable Settings

In line 39, I set the variable DIG to zero. There are four things that
can happen when the player tries to dig. If he is in a sandy area, he
can dig without any tools. If he is in a dirt area, he needs a shovel to
dig. And if he is in a rock or wood area, he will never be able to dig. I
used the variable DIG to tell which type of area the current room was.

The code block of each room contains a line defining DIG. When the
player attempts to dig, I only have to check the value of the variable
and give the proper response. Just remember, if you use this type of
technique you must go back to the .ADV file and include DIG in your
list of variables. If you try to compile your game without it, you will
receive an error message.

In line 41, I set a variable called RoomNumber to one. This number
actually refers to the graphic picture that the computer will show in the
location window. This variable is added to the graphics filename, so

Tum off sound
on entering a
new room, if
the player can
enter from any
room with
sound effects

Chapter 19: The Cannibal.ROOMS File

the computer will load the correct file from disk and display it. If you
wish to see how this is done, look at the file called Cannibal.SUB at
line 308. If it looks confusing, don't worry. The entire routine will be
explained later in the chapter on subroutines. For now, you need only
remember that the RoomNumber variable stands for which picture to
show for the current room.

Some rooms, like the "east_end_of_beach" by the canoe, have two dif
ferent values for RoomNumber depending on whether the canoe is on
the sand or in the water. When the player enters this room, the com
puter will know which picture to display depending on the value of the
variable.

The Startup Call
The next seven lines make up a conditional statement checking to see if
the game has started. If the game has not started, a subroutine called
StartUp is called, and various things are done to get the game started.
In the StartUp subroutine, the title music is played, the graphic scenes
showing the windows and buttons are loaded, the sound effects are
placed into memory, and the permanent buttons are defined.

We'll be looking at this subroutine in detail later, but if you want to
take a quick look now, look at the file called StartUp.SUB to see the
entire routine. This StartUp only takes place once, at the beginning of
the game. After the game has begun, this section of the room file will
always call a subroutine called ReDrawScreen, which draws the new
scenery in the location window, draws any objects in the scroll-bar win
dow, and updates which of the compass buttons should be active and
which should be ghosted. This subroutine will also be examined later.

Sound Effects
After drawing the scenery in the location window, I turn on the sound
effects for the ocean and turn off the sound effects for the birds. It
should be pointed out that it is important to turn off the birds, even
though the sounds may not be running anyway. I needed to consider
that the player could have entered this room from several different
directions, and if she entered from the sand dunes, the bird sounds
would be playing and would need to be stopped.

Also notice that I set the volume for the ocean sounds to 40, rather
than full volume to 64. I wanted the ocean to be in the background, so
kept the volume down a bit. At the same time, I wanted the death
scream at the end of the game to stand out, so I had to keep all the
other sounds proportionally softer.

Room Descriptions
The next section of the code block gives one of three possible descrip
tions of this room. If the player was swimming in the ocean, she is told

19 - 7

The Visionary Programmer's Handbook

A subroutine
with no return
checks for
player input

19 - 8

that he tires and returns to the beach. Notice that in line 54, the at
tribute Forced.Return is unset back to N so that the swimming message
will not be given when the player next enters the room from a different
direction. The subroutine NoSwim prints out the actual message.

If the room has not been visited yet, a full description of the room is
given. Lines 57-062 show how this is accomplished. A string variable,
$tx, is set to the line of words that I want printed out on the screen,
and then I call a subroutine print which actually puts the text on the
screen.

The print subroutine also takes care of some mechanical tasks such as
changing the color to blue and scrolling the other lines up one line to
make room for the new line of print. It checks to see if more than five
lines have been recently printed, and if so, pauses while the player
reads the text before clicking the mouse button to continue. This print
subroutine is a very important subroutine to the game, and will be ex
amined later.

Finally, if the room has already been visited, the game prints out a
shorter room description in line 64.

Check for Player Input
The next lines from 68-70 jump to a subroutine from which the game
never returns. It is at this point that I wanted the game to start check
ing for input from the player. The input would either be made by
typing on the keyboard or by clicking on the mouse. This input would
be accepted, acted upon, and then start checking for input again. I
wanted the game to continue in this loop forever, until the game was
ended.

So the subroutine I was jumping to here, would never return again. Of
course this room might be visited many times during the game play,
and I never wanted this section of code to execute again, or it would
send the player into a never-ending loop. So the subroutine StartUp2
is only called when the room attribute started is unset. And the first
thing I did in the subroutine was to set the started attribut~ to make
sure it would never be called again. You can see this in the file Start
Up.SUB in line 119 if you wish to jump ahead.

This completes the end of the code block and the room file for the
"west_end_of_beach." As you have seen, this room file is not a typical
one, because it contains additional code for getting the game started
and properly initialized. When you create your own adventure, it is
probably easier to write normal room files and then come back to the
starting room and add the extra code for initializing your game later.
In this way, you can get the feel for how the game is coming together,
by seeing each of the rooms as they are created to fit into your plot.

The actual details of getting the game started can come after you have
finished the room files and the objects files. That was what I did, and

Chapter 19: The Cannibal.ROOMS File

it seemed to work smoother that way. However, I have described the
initialization here (out of order), since I wanted to give a complete
explanation of the room files. To get a clearer picture of room files,
let's look at some of the other rooms in the file.

Special-Purpose Rooms
The next room is the special-purpose room "ocean2" This room is
similar to the "unused" room which was discussed at the beginning of
this chapter. Its only purpose is to force the player back to the beach
when he tries to swim in the ocean. In this case, this location forces
the player back to the beach by the canoe. This room file is not a
typical one, but rather can be viewed as a special-purpose room file.

A Typical Room File

The next room file, "east_end_of_beach" is a good example of a typical
room file. It starts with an easy-to-remember, descriptive name. There
are some attributes, in this case to see if the player has been forced
back to this room from the ocean. Default directions are chosen, al
lowing the player to travel to other rooms.

The code block contains the necessary information to clear the buttons
and redefine them for the current scene. Some objects, like the sand
and ocean, are placed at this location, so they can be easily examined.
The DIG variable is set to indicate that this is a sandy location where
the player can dig without tools. And finally, one of three possible
room descriptions is given, depending on whether the player has
entered the room from the ocean, has entered for the first time, or has
been there before.

One noteworthy point about this room file is the fact that the canoe
can be either on the beach or in the water. When the player visits this
section of beach by the canoe, the canoe can be pushed into the water.
When that happens, an attribute attached to the canoe is set. While
the canoe is on the beach, the attribute InWater is set to N, but it
changes to Y when the player pushes it into the water. Look at lines
107-116 and you will see that the RoomNumber and click zones are
changed according to where the canoe sits.

If according to the attribute IoWater, the canoe sits in the water, then
location picture 4 is displayed, showing the canoe out in the ocean.
The click zones are defined to fit the location of the canoe, which is a
bit higher on the screen. If the canoe sits on the beach, however, loca
tion picture 2 is displayed where the canoe is on the sand, and the click
zones are defined lower on the screen to match the canoe position.

After defining which picture to show, and where the canoe will be lo
cated, the subroutine to redraw the screen is called.

19 - 9

The Visionary Programmer's Handbook

Conditions can
be tested to
determine
which view of a
room will be
displayed

19 -10

Handling Diagonal Click Zones
You might notice that I used two click zones for the canoe, instead of
one. The reason is that the canoe runs diagonally. To enclose it in a
single large rectangular zone would mean that large triangles in the
upper left corner and lower right corner would show up as water, but
would respond to clicks like they were the canoe.

To prevent that problem, I chose to use two smaller click zones which
encompassed most of the canoe without taking up too much of the
water. I used the same principle with the ladder, elsewhere in this
game. It also was a long shape that ran diagonally, and required two
smaller click zones rather than a single larger one. This is a technique
you may find useful in your own adventures, depending on the par
ticular shape of an object.

Since the rest of the room files are similar in construction, I'll skip over
most of them, pausing only for those that contain special features that
will be of interest. Some rooms have no attributes listed, because none
are necessary beyond the automatic ones of VISITED and DARK.
The code block of each room file generally starts by clearing the but
tons for the click zones, and then re-defining them for that scene. The
room number is then set, and the screen is drawn for that number.

Frequently, sounds are either started, stopped, or changed in volume at
this point. If entering a particular room doesn't change the sound ef
fects no matter how you enter that room, then sound commands are
not necessary.

The sounds are generally followed by objects that are to be placed in
the room. These are background objects that the player may want to
examine or otherwise refer to. At this point I also define the variable
DIG in order to determine whether to allow the player to dig in this
room or not.

Handling Multiple-Scene Rooms
The last part of the code block gives the two variations on the room
description. Look at the room file for "by_the_boulder" starting at line
345, and you will see another case where two different scenes can be
shown for the same room. If the boulder is moved, scene number 11 is
shown, and the click zone for the boulder is adjusted sideways a bit.
An additional click zone for the cave opening is added, and the object
for the cave opening is added to the room, allowing the player to ex
amine it. If the boulder is still in front of the cave, then scene number 9
is shown, and the single click zone for the boulder is defined.

This is another example of where a conditional statement can help you
display different views of a single scene. In your own adventure, you
might use a similar routine to show a front porch with the door closed
or with the door open. Routines similar to this one can be very power
ful, and you will find many uses for them.

Chapter 19: The Cannibal.ROOMS File

When you have finished your room files, you are ready to move on to
the next step in writing your adventure. But don't feel you have to
complete the whole room file as you see it in my source code. You will
probably do as I did, and write the general rough outline first. Then as
the need arises, you can come back and add thjngs to your room files.
Your room files do not have to be complete before you can go on to
the next part of adventure writing. But at least you should get the
rooms defined with their default directions and the room descriptions.
As the game starts to take form, you can always come back and make
modifications.

With the room files completed, it's time to look at the StartUp.SUB
which was mentioned previously. This is the subroutine that is called
from the first room the player enters, in this case
"west_end_of_beach." In the next chapter, I'll explain how I created my
StartUp.SUB file and why each part plays an important part in the
game.

19 -11

The Visionary Programmer's Handbook

19 -12

Chapter 20: The Startup.SUB File

Even in a
graphic adven
ture, you may
need a text
screen

There are a variety of things that must be done at the beginning of any
game. In Cannibal, I had to load some graphics, sound effects, songs,
fonts, print some opening text, and define some click zones. To make
this source code easier to find and deal wilh, I put it all in a subroutine
called StartUp.SUB that would only be called once. This chapter will
take a detailed look at this special one-time-only subroutine. It will
also look at some of the special features of Visionary that this sub
routine affects.

The Text-Only Screen

As you are aware, Visionary has two screen modes. The screen can be
in the text or graphics mode. The text mode shows a text-only screen.
The graphics mode is the one that I chose for Cannibal, so that I could
show scenes of each location, and so that the player could click on
buttons.

But there are still times when Cannibal will switch to the text mode.
This is primarily done when the player loads or saves his position in the
game. At that point, Visionary automatically switches to the text mode
and presents the player with a requester window to choose the device
and filename for the saved position.

Another time the game will use the text screen instead of the graphics
screen is when Visionary is forced to pop up any other requester. For
example, if Visionary is trying to access a disk named Cannibal in order
to load a location scene, but you have taken the disk out of the drive, it
will switch to the text screen and put a requester box asking you to
insert Cannibal in any drive.

So there are times that the player will see the text screen, even though
the game was designed to use the graphics screen only. And since the
player will occasionally see the text screen, I wanted to customize its
look.

Text Colors
I wanted to control what the player saw on the text screen. To do that,
I wanted to control the four colors of the text screen. These four
colors are numbered 0-3 and can be adjusted using the TextPalette
command.

Color 0 is used for the background and is normally gray, having RGB
(red, green, blue) values of 8,8,8. Color 1 is used for the text the game
prints back to the player. It is normally black, with RGB values of

20 -1

The Visionary Programmer's Handbook

Visionary auto
matically
creates text
screen menus

20 - 2

0,0,0. Color 2 is used for text the player types, and is also used in the
layering gadgets in the upper right corner of the screen. It is normally
white, and has RGB values of 15,15,15. The final color, Color 3, is
used for the scrollbar at the top of the text screen and for the text
prompt. It is normally red, and has RGB values of 8,0,0.

Scrollbar Handling
Since neither the scrollbar or the prompt were required during my
game, I decided to hide them by making them the same color as the
gray background. I did this in line 6 of the source code for Start
Up.SUB.

The next two code lines, 8 and 9, also control the visuals on the text
screen. The main purpose of the command scrollbar ofT is to prevent
the player from grabbing the scrollbar with the mouse and dragging it
downward to see the screen behind the text screen. But there are two
additional features as well. When Visionary turns off the scrollbar, it
also eliminates the layering gadgets in the upper right corner and
eliminates the printout of the room name in the upper left corner.

If I had not turned off the scrollbar, my attempts to hide it by changing
its color to the background gray would have been thwarted. Although
the bar would have blended into the background, the white of the
layering gadgets would have still appeared, and the black title of the
room would have appeared on the left. By turning off the scrollbar, I
eliminated all three problems at once.

The other command, menus ofT, serves the purpose of defeating the
default pull-down menus Visionary provides to allow the player to quit,
load, and save a game, or start a new game. I wanted all these options
in my game to be controlled from the graphic screen, not by pull-down
windows from the text screen. However, please note that both of these
are very powerful features of Visionary, and you may wish to leave
them enabled in your game, to save you a lot of extra programming.

Loading the Game

I knew that when my game was finished, I would want to put it on a
disk that would boot in drive dfO: of an Amiga. I planned on having a
title screen show while the game loaded, and wanted some music to
play in the background while the title showed and the rest of the game
loaded. To achieve that goal, I loaded the music and played it as the
next step in the loading sequence. Lines 11-13 show how easily this is
accomplished.

Erik Hermansen did the music for Cannibal as well as all the graphics.
Once I had his MED module containing the song, I only had to load
the song into buffer 0, switch VtSionary from digitized sounds to MED
songs, and play the song in buffer 0.

Your game can
check for
enough RAM
space to pre
load graphics
and sounds

Chapter 20: The Startup.SUB File

V1Sionary's default condition is set up to play digitized sound samples
when the game begins. Since it can't play both MED modules and
digitized samples at the same time, I had to use the EnableMusic com
mand to switch it to playing MED music.

Also notice that although the music was simply named title.mus I had
to specify the path name for the file. I planned on placing all my audio
effects, both digitized sounds as well as MED modules, in one direc
tory called Audio. That directory name had to be included in the file
name. I also specified the disk by name, so that if the player had
booted to Workbench first, and then started the game by clicking on an
icon, the game would still be able to find the music. For these reasons,
as well as others which will be explained later, all files loaded by
Visionary were given very explicit path names.

Using the Ram Disk
Lines 15-20 show a special routine that I wrote to speed up the game
play where possible. One thing that could slow a game down is the
time it takes the computer to load location scenes from a disk drive.
For example, when the player moves from the beach to the sand dunes,
the computer must load the scene of the sand dunes from the disk
drive into the computer before it can display it on the screen.

If the player had installed my game on a hard drive, this time would
have been negligible. However, I realized that many players of the
game would not be using a hard drive. The next-best thing would be to
store all the scenes in RAM, so they would load instantly and would
not require any slow disk access. That's what this special routine does.
It first checks to see if there is room in RAM, by accessing the Fast
Mem variable. If there is at least 200K of fast RAM available, then all
the location scenes are loaded into RAM before the game begins.

To make sure that the game knows the location scenes are currently
available in RAM, I set a variable $DEVICE to the proper pathname
which would be added to the front of any location scene filename. If
there was enough room in RAM, the variable was set to "RAM:" and
all the screens were loaded into RAM. Otherwise, the variable was set
to "Cannibal:Video/", which refers to the disk and directory where the
scenes are lo be found.

There were two other parts to making this technique work. I had to be
sure I used this $DEVICE variable when loading the scenery files, and
I also had to be sure to recheck this variable after any game position
had been saved. The loading of scenery files takes place in line 308 of
the file caJled Cannibal.SUB. I'll be describing this file in detail later.

The Saved Game Handler
The saved game feature of Visionary was the other place where I
needed to check the value of the $DEVICE variable. The values of all

20 - 3

The Visionary Programmer's Handbook

20 - 4

variables are saved when the player position is saved, and that includes
the value of $DEVICE.

While normally this will cause no problem, there are special cases
where this could cause a serious problem. For example, if the player is
using a machine that has plenty of free memory, the scenery files are
loaded into RAM and $DEVICE tells the game that the scenes are in
RAM. If the player's place is saved, then loaded back in again, the
game will think the scenes are in RAM. And usually they will be.

But the player may come back to the game while multi-tasking some
other programs, so there is no longer enough free RAM to hold the
scenes. When the game loads, scenes are not placed in RAM, and
$DEVICE is set to "Cannibal:Videof'. After the player's saved posi
tion has been loaded, $DEVICE will be set to "RAM:" as it was when
the position was originally saved. When the game tried to fetch the
scenery file from RAM: it would not find it, and the game would then
crash.

This type of problem could also occur if the player started the game on
a computer with lots of free RAM, then saved it and took it elsewhere
to play on a system with minimal free RAM. Again, when loading the
saved position, the game would expect to find scenes in RAM when
they were not, and the game would crash.

To keep this problem from happening, a check needs to be made im
mediately after a saved game position is loaded. You will find such a
check in the MainLoop.SUB file, in lines 174-179. I'll be describing
this check routine in detail later, but for now just notice that I attempt
to load the current location scene from RAM, and then check the
ERROR variable. If it is set, I know the files are not in RAM, and set
$DEVICE accordingly. Likewise, if no error is detected, I know the
scenes are safe in RAM and properly adjust the value of the $DEVICE
variable. It takes a bit of extra effort to place the scenery location files
in RAM and use them properly, but the game runs much faster that
way, and the effort is well worthwhile.

Loading Graphics and Sounds
The next parts of the StartUp.SUB file involve loading graphics and
sounds. First I load the current scenery file, Locl, into screen buffer 1.
Screen buffer 1 is where I decided to load all the location scenes. I
wanted to refer to each of them by number, so that a single routine
could load any scene just by changing the value of a variable.

Notice that each file is loaded with three lines of code. The first sets
the "$filename" variable. The second line loads the filename into the
correct buffer. The third line calls a subroutine to check for any load
ing error.

Special error
bandling
routines will
make your
game more
user-friendly

Chapter 20: The Startup.SUB File

The LoadingError Subroutine
Look at the end of the StartUp.SUB file at line 127 for the subroutine
that checks for errors. In general, it checks the ERROR variable and if
it finds no error, simply returns to the loading of files. On the other
hand, if it finds an error has occurred, it prints an error message on the
text screen, closes the graphic title screen and shows the text screen,
and then waits for the player to press [Return] before quitting.

To specifically accomplish this, the routine first switches to Pen 2 by
typing on the text screen the commands in line 130, changes the color
of Pen 2 to white in line 131, clears the screen of all other text in line
132, moves the cursor down to the center of the screen and prints the
error message in line 142, and finally changes back to Pen 1. All of
these commands are done with "T" lines, the normal text output com
mand for the text screen.

Then the title screen is closed, using the DOS command to call up the
CloseScreen utility program that comes with Visionary, and the text
screen is displayed with the ScreenMode text command. Since I pre
viously chose to disable the scrollbar and change the color of Pen 3 to
the background color, the only thing the player will see at this point
will be a totally gray screen with a white message displayed in the cen
ter. The game then waits for the player to press [Return] in line 146
before aborting in line 147.

Buttons
After checking for a loading error, line 26 of this routine then loads a
file called buttons.pie into screen buffer 2. This screen will never be
seen in its entirety; rather pieces of it will be used as required. It con
tains pictures of all the buttons that can be pressed in the game. It
contains two of each action button, one as it looked pressed inward
and the other as it looks normally. It also contains three versions of the
compass buttons, one normal, one pushed in, and one ghosted.

All the objects that will show up in the location window and the inven
tory window appear in this screen, and will eventually be copied from
here onto the visible screen. It also contains a large picture of the
ladder and rectangular area where graphic overlays will take place.

Sounds and Music
The next four files loaded are all sounds. The sounds of bubbling
water is placed in sound buffer 0. This is the sounds that the player
hears when he is eaptured by the cannibals and thrown into a large iron
pot of boiling water. The ocean sounds are loaded into sound buffer 1.
These play constantly in the background when the player is at the
beach or nearby. The sounds of birds chirping in a meadow are loaded
into sound buffer 2. These will be played at the meadow and surround-

20 - s

The Visionary Programmer's Handbook

20 - 6

ing locations. The sound of water dripping is loaded into sound buffer
3. This sound will be heard in the cave.

There is one other sound, a man screaming, which is not loaded into
memory yet. This sound is used only when the player loses, and I
decided to conserve valuable Chip RAM by not loading it at this time.
It will be loaded and played once, only if the game is lost. The fact
that there will be a delay while this sound file is loaded from disk is
negligible, since the sound of bubbling water will be heard while the file
is loading.

The Game Screen
After the sounds, the graphic file window.pie is loaded into screen buff
er 0. This is the screen the player will see. It contains the text window,
the location window, the inventory window and the compass and action
buttons. I designed this screen to stay in front, always before the
player's eyes, while text is printed to it and scenery is copied to it. All
the other graphic screens will be forever hidden, only used to help in
the display of the game screen in screen buffer 0.

The next lines take care of loading a specially designed font, the Ar
tesian font. The first three lines look similar to the other file-loading
lines discussed above, in that they set the filename, load the file, and
check for an error. Since Visionary is capable of using any size font on
the graphic screen, it is necessary to specify not only the name of the
font, but the size as well. Jn this case, the font loaded into font buffer 0
is size 8. The fourth and final line of this routine tells the game to use
the font in font buffer 0 on screen 0, the screen that the player will see.

I designed the Artesian font for use with the low-res screen of 320x200
pixels (or 320x256 in PAL). Remember that the reason for choosing
low-res was to allow more colors while at the same time taking up less
Chip RAM. An unfortunate side effect of this choice was that normal
fonts looked too fat. They took up so much space, there was room for
only 30 characters in the text window. I solved the problem by design
ing my own font to be thinner, allowing 40 characters across the text
window.

If you also find the need to design your own font, the simplest way is to
use the font editor found on the Extras disk that came with your
original 1.3 Workbench disk. It will be found in the tools drawer under
the name FED, which is short for "font editor." A variety of other
commercial and freely distributable font editors, all of which will allow
you to easily design your own fonts, are also available.

After loading the font, I was ready to print out some text in the text
window. To do this, I started by setting the color that the text would
appear in. In line 55, I set the color of any text printed to screen 0 to
blue.

For easy refer
ence. define
color numbers
as variables
with the same
name as the
color

A mask butler
is needed for
overlay copy
mode

Chapter 20: The Startup.SUB File

Visionary takes the colors from the palette of the currently-displayed
screen. In this case, it means that the colors of the palette for screen 0,
the file called window.pie would be chosen. I could have just as easily
have set the color to 13, which is the palette number for blue. But it
might be hard to remember at a later date what color 13 was. So I
defined a variable in the .ADV file called "blue" and assigned the value
of 13 to the variable. In that way, when I wanted to refer to the color
blue, I could say "blue" instead of "13". At the same time, I also
defined some other variables for white, red, green, and brown. All of
these were colors that I knew I would be referring to later, and defining
them now would save me time, effort, and confusion later.

As mentioned previously, I created a subroutine to type my text on the
graphic screen. It would take care of scrolling the five lines of text
above it upward and printing the currently desired text on the sixth
line. Another subroutine called Linefeed would simply move the text
upward and print a blank line. These were the routines I used to print
out the opening messages of text in the text window. As you can see in
lines 56-63, I simply set the value of my text string and call the print
subroutine. This print subroutine is a very important part of the game,
and will be examined in great detail in a later chapter.

Hidden Buffers
After printing the copyright notice and the title in the text window, the
next thing was to create several hidden graphics buffers. To quickly
recap the Visionary manual, there are three types of copies that can be
done with graphics: draw, overlay, and XOr.

Copying in the overlay mode requires a "mask" buffer, where the ob
ject to be overlaid can be temporarily placed while a mask is created.
In this way, only the object to be overlaid will appear, and not its back
ground. Only one mask buffer is required, so I chose to make it screen
number 24.

To conserve Chip RAM, I created the screen to be as small as possible
and still hold any object that would need to be overlaid. Since the
large picture of the ladder was the largest overlay copy that would be
required, I used coordinates of 55 pixels by 78 pixels. Notice this is
done in line 65, and I also had to specify that there five bit planes in
the graphics (meaning 32 colors, which is 2 to the 5th power) and that
the screen was in lo-res (meaning 320x200 NTSC or 320x256 PAL).
Then after creating the screen, I had to tell Visionary that this was the
one I wanted used as the mask buffer.

Not all graphic screens are loaded from disk. The mask buffer is one
example. I created it in memory from scratch. My scrollbar (to hold
the objects that appear in the location window) is another example. It
was also created in memory. In lines 68-71 you will see that I created
another screen numbered 23 for my scrollbar. Since I wanted it to be

20 - 7

The Visionary Programmer's Handbook

Screens can be
larger than the
normal display
limits of the
monitor

20- 8

large enough to contain 20 objects, each 15x17 pixels with one pixel in
between, I created screen 23 to be long and thin.

It is quite possible to create screens larger than the player can see on
the normal screen, and that's exactly what I did in creating screen 23 to
be 15 pixels across and 361 pixels down. Then I filled the entire screen
with white, by setting the mode to "draw'' for that screen, setting the
color for screen 23 to white, and drawing a rectangle from the upper
left corner to the lower right corner. The scrollbar screen was now
ready for use. We'll see exactly how it is used when we examine the
GetDrop.SUB in a later chapter.

Ready to Play

Although it has taken a long time to explain all this, the computer has
executed the code and loaded all the files, printed out the text, and
created the screens in about 30 seconds. If the game is being played
from a hard drive, it would take less than five seconds. And it is now
that the game is ready to present itself to the player's eyes.

In the next five lines, I tell Visionary that I want screen 0 (the pre
viously loaded window.pie file) to be the one shown. Then I set the
screenrnode to graphics, which forces the screen to the front where it
can be seen. The title picture which has been showing all this time, is
now forced to the back and is hidden. Next, I turn off the MED music
that has been playing with the DisableMusic command, and start up
the sound effects in sound buffer 1. The second zero tells the game to
keep playing the sound effects in a continuous loop, so until the player
visits another room and another sound command is received, the ocean
waves will continue to crash.

Then I close the title screen which has been hidden behind screen 0, in
order to free some Chip RAM. This is done by using the versatile
DOS command and the small CloseScreen utility program which comes
with Visionary.

Setting the Scene
The next lines of code print some additional text in the text window,
which has been waiting for the player to press the mouse button to
continue. These six lines of text are in the standard form of a text
string followed by a call to my print subroutine. Their purpose is to set
up the plot of the game, give players a quick background on who they
are and what they is trying to do.

Following this section, fifteen permanent click zones are defined. I
used low numbers for the buttons, 0-15, so that they would have top
priority over all other button clicks. When the mouse is pointed inside
the click zone coordinates indicated and the button is clicked, the
named subroutine is called. Notice I chose simple names for that sub-

Chapter 20: The Startup.SUB File

routines that would help me remember their purpose. I only varied
from simplicity in button 7, and used the name DIG2 since there was
already a subroutine named DIG when I got around to programming
this button.

The last thing I did in this subroutine was to place an object called
"()()nothing" in the room, and have it placed in the player's inventory.
We'll learn more about this object when we examine the object files in
a future chapter. For now, it will be sufficient to say that "()()nothing"
is an invisible object that the player always carries. The double-zero at
the beginning of the name forces it to be the first object in the list of
objects.

The StartUp2 Subroutine
At this point, the game has basically started. The program jumps back
to the "west_end_of_beach", where the subroutine was originally called
from. At this point the room description is given. Since the room has
not been visited before - specifically, the VISITED attribute is not
set- the full room description is given. Then the program is told to
jump to the next subroutine in the StartUp.SUB file, the one called
StartUp2.

The subroutine StartUp2 is short but important. It first sets the at
tribute "started" for the "west_end_of_beach" where the game starts.
With this attribute set, the program will not jump to the StartUp sec
tion of the code again whenever the player visits "west_end_of_beach",
locking the program up into an endless loop.

Next, this subroutine sets the VISITED attribute for the room. This
attribute is set automatically when the player leaves a room in the nor
mal way. But in this case, the player has not left the room normally;
the ENDROOM statement has not yet been executed. So in this one
special case, the VISITED attribute must be set manually by my pro
gram. If I hadn't done that, the next time the player entered the room,
the full room description would have been printed instead of the shor
tened one.

Calling Mainloop and LoadingError
The third and last thing the subroutine does is to call the subroutine
named MainLoop. In this routine, the game will check to see if the
player has typed something or has pressed the mouse button, and if he
has, it will try to do whatever the player has requested. Then it will
loop back and check again. This will continue until the game ends with
the player winning, losing, or quitting. The MainLoop subroutine is the
heart of the adventure, and as such deserves a chapter all of its own.
We will be looking at it after the next chapter.

20 - 9

The Visionary Programmer's Handbook

20 -10

The third and last subroutine in this file is the LoadingError sub
routine, which was examined previously and needs no further explana
tion. This completes the explanation of the StartUp.SUB file.

With the StartUp.SUB file completed, the next step is to write the ob
ject files. Without these object files, you can still wander around in
your game, but nothing can be manipulated, not even examined. In the
next chapter I'll cover the different types of object files that I used in
Cannibal, and how they were constructed.

Chapter 21: The NonMovable.OBJ and
NPC.OBJ Files

Object names
that begin with
numbers will
appear at the
start of the
alphabetized
object list

There are three basic types of object files, nonmovable objects, mov
able objects, and non-player-character objects. When I had so many
movable objects in my game that the file became too large, I split the
file into two parts. So my source code for objects is actually in four
files, not three. This chapter will look at all four files, and see how
objects are created. We will also look at specialized routines for deal
ing with specific objects.

When Visionary compiles the source code for a game, it alphabetizes
the objects by name. In that way, its internal search for objects is op
timized. What I have done in Cannibal is to take advantage of this fact
to force many of the objects to be listed in a certain order of my
choice. In that way, when I know exactly where the object is in the list
of objects, I can not only refer to it by name, but I can also refer to it
by number.

Being able to refer to an object by number allows me to use a powerful
technique where many routines can refer to objects by a single variable
name. To make that routine act on any object I wish, I only need to set
the value of the variable to match the object, and then call the routine.
We'll be looking at some of these routines in the chapter on the Get
Drop.SUB, but for now, this will explain why some of object names
start with a two digit number. By starting them with such a number,
they will be placed at the start of the list of objects, when Visionary
alphabetizes the object list. Hence, I know that "()()nothing'' will be the
first object on the list, and "Olladder" will be immediately after it.

The NonMovable.OBJ File

Keeping this special trick in mind, let's begin by looking at the file
called NonMovable.OBJ. It contains all the objects that are normally
considered part of the background. These objects can not usually be
manipulated in more than the most rudimentary ways. Usually, they
can be examined, and that's about all. Normally speaking, they can not
be picked up, eaten, broken, or burned.

There is no reason that these types of objects must be kept separate
from the other types. Visionary places no restrictions on which objects
must be in which file. The restriction is one of my own making, to
allow me to keep my files structures a bit better. It also makes finding
things easier. It was my decision to place all these background objects
together in a single file called NonMovable.OBJ.

21 -1

The Visionary Programmer's Handbook

21 - 2

The "OOnothing" Object
When you look at the NonMovable.OBJ file, you will see that the first
object is named "()()nothing." There is very little to this object, and as
you can see, the object file is very small. Its purpose is probably more
valuable to a text adventure that it is to this graphic game. I originally
included it so that made the look of an inventory listing appear nicer.

Visionary's built-in INVENTORY command will list out all the objects
that the player carries, but it does no more. I wanted the inventory list
to start by saying, "You are carrying:" and then list the objects. In the
event that the player carried no objects, however, I wanted the game to
respond, "You carry nothing." Visionary's built-in "inventory'' com
mand does neither of these two things. It simply types a list of the
objects carried, and in the event that the player carries no objects, it
doesn't do anything. By adding the "()()nothing" object, I was able to
customize the look of the "inventory'' command.

Let me describe how the "()()nothing" object can help customize the
INVENTORY command in your Visionary game. Notice in the source
code for NonMovable.OBJ at lines 10-11 the code block is empty.
That's because in my game, I decided to use an inventory window on
the graphic screen to show the inventory. But let me describe how you
could add a few simple lines to the code block to customize your "in
ventory'' command in a text game. Look at the sample code below:

CODE
IF ITEMS > 1 THEN

T You are carrying:
ELSE

T You carry nothing.
END IF
ENDCODE

At the beginning of the game, I make sure that the player carries the
object "()()nothing." The player is never allowed to drop the object,
and actually is never even aware it is in the inventory. By giving the
object the name "OOnothing," when Visionary compiles your source
code, alphabetizing forces this object to be at the top of the list. Thus
if the player does not carry more than one item, the one object the
player carries must be the "()()nothing" object, and the game types "You
carry nothing." If the player carries more than one item, the line "You
are carrying:" is typed before the list of objects. Regardless of the
situation, the inventory list looks a bit nicer.

Even though I chose not to use the standard Visionary inventory
method, substituting a visual method on the graphics screen, I still left
in the "()()nothing" object so that the other objects that I intended to
number would start with 01 rather than 00. I did not need to number
all the objects in the game. Rather, I wanted to refer to all the mov
able objectsObjects;by number by number. So I left "()()nothing" and
made the other movable objects numbers 01 through 19. In that way, I

Expect the
player to try to
EXAMINE and
GET each ob
ject-other
typical actions
will depend on
the object

Chapter 21: The NonMovable.OBJ and NPC.OBJ Files

could refer to the movable objects either by name, or by number. I
could make a loop which could search for any of the nineteen objects
or I could use a variable to specify one particular object depending on
how I set the value of the variable. Therefore, the object "()()nothing"
played a small but important part in my adventure.

Typical Nonmovable Object Files
The file starting at line 17, which defines the object "sand'', is a more
typical object file for a nonmovable object. The file starts with the
name of the object, which the game and the programmer will use. Fol
lowing this is a list of names which the player can use, which are all
synonyms. This is followed by the room where the game should initial
ly place the object.

Since I planned on moving the "sand" object from room to room, as
the player entered any room containing sand, the initial room was ir
relevant. I could just as easily have placed it in one of the beach loca
tions.

The code block is empty, since I didn't want the game to print anything
special when the player saw the room description. I did place a com
ment in the code block reminding me that an addition reason that this
object existed was to permit the player to type "put the ladder on the
ground". If such a line is typed by the player, Visionary expects both
objects "ladder" and "ground" to be present, or it will respond with an
error message. Creating "sand" and the synonym "ground" allowed
such a command from the player. And even though later as the game
was being designed, I decided that the ladder would always be either
on the ground or against an object, and that the player would have no
choice in the matter, I left the object in the source code so that the
other actions could still be performed on it.

Actions
After the code block, three actions are listed. You should always allow
the player to examine the object, even if it is part of the background.
In this case, I allowed the player to use three different words with the
same meaning, "look," "search" and "examine."

Notice that if the player tried to examine the beach sand, I didn't give
much of a description. You don't have to either. But always give some
description, no matter how small. Even a response like "You see noth
ing special here" or "Looks like beach sand to me" is better than no
response at all. I then anticipated that the player might try to get some
of the sand, so wrote an action block that tells the player he can't get
any sand.

21 - 3

The Visionary Programmer's Handbook

To force player
actions, you
can define ob
ject synonyms
that are not
synonymous in
English

Deline two ob
jects for some
thing the
player sees as
one object, to
allow a change
its actions or
attributes in
the game's con
text

21 - 4

The third action that I anticipated the player would try would be to dig
in the sand. I created a final action block to take care of this situation.
I realized that the player might type "dig in the sand" or simply "dig."
The first case would be caught by this section of code. The second
would have to be caught by the vocabulary action file, a special file that
we will be examining in a later chapter. To keep from typing the exact
same lines of source code both here and in the vocabulary action file, I
made a DIG subroutine and called it from both places. And that com
pletes a look at the typical nonmovable object file.

Sometimes I didn't need to use even three simple actions. Other times,
I found the need to add extra actions. Look, for example, at lines 138-
173 which define the object "ocean." Jn addition to the standard ac
tions of look and get, I anticipated the player might try to drink from
the ocean or swim in the ocean. I gave a short message if the player
tries to drink the sea water. I had already anticipated that the player
might try to swim out to sea, and had taken care of that situation if the
player clicked on the North button. To disallow doing the same thing
by typing "swim in the ocean," I added the swim action and called the
same subroutine as would be called if the player clicked North on the
compass.

Since I wanted my game to permit text input as well as mouse input, I
occasionally used synonyms in my action blocks that really did not have
the same meaning. For an example of this, look at the "hole" object in
lines 231-245. This is the hole that is in the cave, the one that lead into
the rock room. I made look, examine and go all synonymous for the
hole. Obviously "look at the hole" and "go into the hole" have two
different meanings. But since I wanted to give the same response to
both commands, and deny the player the ability to enter the hole, I
listed them all in the same action block as synonyms. It's a good trick
to remember, when you have dissimilar words that you want to receive
the same response. It can save you some programming steps, and if
used consistently, can make your final game much smaller.

Another special case occurs in lines 408-431 where you will see an ob
ject called "ladderl." I found the need for two different ladders in my
game. Actually, there was only a single ladder, but I needed two dif
ferent objects for it. One object would be the ladder as normally seen.
This would be the one that the player would see leaning against the
shack. This would be the movable object that the player could pick up
and move into his inventory. But I needed to create a second object
for when the player was on the roof of the shack and could see the
ladder leading down to the meadow. I didn't want this to be the same
object which could be picked up. Not when the player was on the
shack.

So I created a second object called "ladderl" which could be put on
the shack roof, in the boughs of the tree, and on the top of the boulder.
This object would appear to the player to be the same object, but this

Chapter 21: The NonMovable.OBJ and NPC.OBJ Files

one could not be taken. Notice that when examined, the same descrip
tion as the other ladder is given. But when the player types "get the
ladder" he is told to leave it alone. This technique of using two objects
for what the player sees as only one object can be used in a variety of
ways. Keep it in mind when you create your own games.

Moving NonMovable Objects
Most nonmovable objects have no attributes. Let's look at several dif
ferent objects that do require attributes, and see the different ways that
attributes can be used with objects. The first object file we will look at
is for the boulder in lines 460-522. The boulder starts out in front of
the cave, and during the game is rolled aside to permit the player to
enter the cave. Since I wanted to know the status of the boulder in
order to give the proper description, among other things, I created an
attribute for the boulder called moved.

When the game starts, the boulder has not been moved, so the attribute
starts at N. Any time the player tries to examine the boulder, either by
clicking on the picture of the boulder or by typing "look at the
boulder" one of two descriptions can be given, depending on the status
of the moved attribute. As you can see in lines 743-487, if the boulder
is moved the description is different that if it is not. All of this is made
easy by creating an attribute and checking it before printing out the
description.

This status of this attribute must be changed when the boulder is
moved out of the way. When I designed the game, I decided that the
player would not be able to move the boulder away from the cave
entrance using his normal strength. He first had to eat the candy bar
to gain some temporary extra energy which to move the boulder. Let's
look at the source code from lines 494-515 and see the wide variety of
things that have to be done when the player moves the boulder.

First of all, I check to see if the player is strong enough in line 495. If
not, the game jumps down to the bottom of the action block and with
the message "the boulder shifts slightly but rolls back." The subtle
point of this message is that it tells the player that moving the boulder
is not impossible, but can't be accomplished just yet. In this way, the
player won't give up the idea as being something the game won't allow,
but will try to figure out some other way to move it.

In fact, after eating the candy bar, the player will be given a burst of
energy that lasts only four moves, enough to allow the boulder to be
rolled away. When the candy bar is eaten, the variable energy is set to
4. Each time the player makes a move, the energy variable is decre
mented by one as part of the NPC.OBJ file. We'll be looking at that
file later. But line 495 checks to see if the player has any extra energy
before permitting the boulder to move.

21 - 5

The Visionary Programmer's Handbook

21 - 6

If the player is strong enough, a message is printed telling the player
that the boulder rolls over. Then the attribute moved is set to Y so that
the game will always remember the boulder has been moved. The next
thing to do is to clear the energy variable to prevent a message from
being displayed when the energy runs out before the boulder is moved.
You'll see this message in the NFC.OBJ file later.

Now that the boulder has been moved, the game needs to change the
directions to allow the player to move east into the cave. Normally, this
would be a simple two line command, consisting of a DIRECTIONS
command followed by a LINK command. The possibility that the lad
der may be presently leaning against the boulder complicates this
slightly. As you can see in lines 500-504, the directions leading from
this location depend on whether the ladder, object "Olladder", is in the
room.

If the ladder is in the room with the boulder, there are three directions
that the player can go: North to the meadow, East into the cave, or Up
to the top of the boulder. If the ladder is not present, there are only
two directions the player can go, North and East. After setting the
directions, the rooms must be linked. After all, it makes no sense to
tell the computer that the player can go east, unless you also tell it
where the player will be, when he goes east. Line 505 links the inside
of the cave with the outside of the cave.

The next thing to do is to actually show the boulder rolled aside. Since
I was creating a graphics game, I didn't want to just tell the player that
the boulder had moved- I needed to show it had moved. To do this
required several steps. First I had to change the picture of the location
to the one showing the boulder moved out of the way. I numbered this
as picture 11, and set that value in line 506.

Then I needed to adjust some click zones. Since the boulder was no
longer in the same position on the screen, I redefined button 34 to the
new position. Since the opening to the cave was now visible, I defined
a new click zone for button 35 to be the cave opening.

Next I placed the object "cave" in the room, so that when the player
typed "look in the cave'', Visionary would be able to give a response. If
I had not placed the "cave" object in this room, asking to "look into the
cave" would have generated the response "I don't see a cave here."
And finally, since everything was now in readiness, I called my sub
routine to redraw the screen showing the boulder rolled away, and
show the compass button for east highlighted.

Changing the position of a nonmovable object, like the boulder, can be
an important part of any adventure. Just don't overlook any important
steps in doing so. As you have seen from this one example, you must
first check to see if the changing of the position is allowed. Then you
must print a message to the player, set an attribute, change the direc
tions affected by the change, redefine graphic picture numbers and

Chapter 21: The NonMovable.OBJ and NPC.OBJ Files

click zones, move necessary objects to the current room, and finally
show the new graphic scene.

A similar routine is used in my game when the player pushes the canoe
into the water. Let's take a look at how it is accomplished, and you will
see many similarities to the previous routine.

In lines 676-783 you will find the source code for the "canoe" object.
Just as the boulder had an attribute called moved, the canoe has an
attribute called InWater. The purpose is basically the same, in that it
keeps track of the status of the canoe. When the game starts, the
canoe is not in the water, so the attribute is set to N. Notice the stand
ard action blocks for examining and taking the canoe. The third action
block, however, has some unique features that deserve special mention.

Look at the action block for get and sit starting in line 701. If the
player says "get in the canoe" or "sit in the canoe", it is clear that the
player wants to sit down in the canoe. If, however, he leaves out the
word "in" and types "get the canoe" the command takes on an entirely
different meaning. This action block shows how to deal with the
double meaning of get. Notice that I checked for the presence of three
different prepositions "in," "into" and "inside." If any of these were
present, then I assumed that the player wanted to actually sit down in
the canoe, and called a subroutine to tell the player it is a comfortable
fit. If on the other hand, none of those three prepositions were used,
then I assumed the player was trying to pick up the canoe.

The next action block at line 714 shows how the canoe can be moved.
Unlike the boulder which could be rolled over but not back, the canoe
can be pushed into the water and pulled back on shore again. Since
verbs like "move" and "slide" can be used synonymously for both
"push" and "pull" I decided to use a single action block for both ac
tions. That's why you will see that I made "slide," "move," "push,"
"pull" and "put" all part of the same action. To determine which the
player wanted to do, I only had to check the status of the "In Water"
attribute. If the canoe was already in the water, I pulled it out. If the
canoe was out of the water, I pushed it in. In each case, I set the
RoomNumber variable so that the proper graphic scene would be
shown, redefined the click zones for the new position of the canoe
(notice I used two smaller click zones, rather that one large one - as
explained previously), called the subroutine to redraw the screen, and
either set the "InWater" attribute to Y or unset it to N.

The action block for moving the canoe into the water is similar to the
action block for moving the boulder away from the cave entrance. In
each case, an attribute is used. In each case, a different graphic scene
is shown, depending on the status of the object. And in each case,
click zones are redefined, and the screen is redrawn. But also notice
some differences. When the boulder is moved, the exits are affected.
Since the player can suddenly go in a new direction, the directions have

21 - 7

The Visionary Programmer's Handbook

21- 8

to be redefined and the new room linked with the old one. This isn't
necessary when moving the canoe, since the exits stay the same.

To win the game, the player has to row the boat to safety. The action
block starting at line 732 shows exactly how this is done. If the player
asks to "row the canoe" or "paddle the canoe," the game checks to see
if the canoe is in the water and the player has the shovel to row with.
If they are, then the game concludes with the player winning. If they
are not, then the game responds either that there are no oars or that
the canoe is beached on the sand. Let's look more closely at what
happens when the player wins.

When the Game Is Won

Starting in line 735, you can see all the things that the game does when
the player wins. The first thing is to clear the timer. The timer is a
variable that increments on every move the player makes. When it
reaches 90, the cannibals arrive on the island and the player is given a
warning message. After that additional warnings are given periodically
until the player finally is captured and loses after a total of 103 moves
on the timer.

If I had not cleared the timer, some embarrassing things could happen.
For example, the player could win, and then be told that the cannibals
have arrived. Or even worse, he could win right as the timer hit 103, be
told he won, only to be then told that he lost. Clearing the timer keeps
such things from happening.

Five lines of text are then printed to the text window telling the player
that he has escaped from the island and won. While the player reads
the message, the final scene showing the player safely being carried
away from the island is displayed on the screen. A MED song is
loaded from disk into song buffer 1, the sound effects are turned off
and MED is enabled in line 749, then played in the following line. At
this point, my print subroutine will automatically stop scrolling the text
and ask the player to press the mouse button to continue. We'll be
looking at the print routine later, so won't go into the mechanics of it
now.

While the final fanfare music plays and the player presses the mouse
button, the last four lines of text are displayed in the text window. At
this point, the variable CountLines is set to 1 to keep the message
"Press Mouse Button to Continue" from appearing. This is a feature
built into the print subroutine as we will see later. Then I change the
text color to brown and print out the message telling the player to click
the mouse button to exit the game.

The variable TuxtColor is one that I defined in the .ADV file and used
in my print subroutine so that I could change the color the text printed
in the text window easily. Likewise, "brown" was a variable defined in
the .ADV file so that I could refer to the color by name rather than by

Chapter 21: The NonMovable.OBJ and NPC.OBJ Files

palette number. By defining variables like these in your games, you will
find it much easier to change features in your game without having to
remember specific numbers.

Lines 764-767 show you one of several ways you can check for a mouse
click. Using the LeftButton command of Visionary, you can check the
status of the button. As you can see, I put it in a while loop which
would wait until the status of the button changed. First I used a while
loop to make sure the mouse button had been released from any pre
vious presses, just in case the player had pressed the mouse button
earlier and had not released it yet. Then I used a second while loop to
wait until the player pressed the button down.

At that point, I set the MainLoop variable to 1. Remember that the
concept of the MainLoop was discussed previously, although we have
not examined the subroutine in detail yet. Basically, the loop goes
around forever checking for player input and acting on it. The game
stays in this loop while the value of the variable MainLoop is zero. By
setting the value to 1 at this point, I am telling the game to exit the
main loop and stop. When we later examine the MainLoop.SUB file,
you will see that the game does a few other clean-up activities upon exit
before actually returning control to the computer.

Non-Winning Actions
Now that you have seen now the game is won, let's look at the last
action block for the canoe. This action starting in line 779, anticipates
that the player will try to burn the canoe with the matches. It jumps to
a standard subroutine to tell the player that the wet matches won't burn
anything.

One of the cardinal rules of adventure writing is that if you are going to
create an object, you must allow the player to use it in all normally
expected ways. Since I created some matches, I had to expect the
player would try to use them. And that meant that I had to anticipate
attempts to burn things. So you will find an action block similar to this
in many objects. If it was logical to expect the player to attempt to
burn something, I inserted this action block. I didn't insert it on all
objects, since I didn't expect the player to try to burn the sand, the
water or the battery. But I inserted the action into any object file that
could logically be burned, like the paper, the candle and the driftwood.

The NPC.OBJ File

Now that we've taken a fairly complete look at the NonMovable.OBJ
file, let's take a quick look at the NPC.OBJ file. We've referred to it
several times in this chapter as being the place where the timer checks
to see if the cannibals have arrived, as well as being the place where
the energy from the candy bar is slowly reduced. It's a very small file,
and can be quickly explained.

21 - 9

The Visionary Programmer's Handbook

21 -10

The non-player character file, called the NPC.OBJ file, is different
from other object files in that it always executes after every turn. So
when you want things to happen after every turn, this is where they
should be placed. If you have a second character in your adventure,
other than the player, this is where you would have it move. If, for
example, you were going to have a pirate appear and follow the player
around until he was given a bottle of rum, the NPC file is where you
would place the code to create the pirate, place him in the player's
current room, and make him beg for rum. Since this is a character in
the adventure who is not the player, it is called a non-player character,
and the actions governing it are placed in this special object file that
will always be executed after every tum the player makes.

You can have as many NPC objects as you want, just as you can with
other objects. But notice in line 4 of the NPC.OBJ file that instead of
calling them objects, they are referred to as NPC. For Cannibal, I
chose to have only one NPC object, and called it "status." As with
normal objects, you must specify name and initroom. The code block
is usually the main part of an NPC file, but in my game there are no
action blocks required. The code block I wrote had two functions: one
was to increment the timer and check to see if the cannibals had ar
rived on the island, the other was to check to see if the player had
eaten the candy bar, and if so to reduce the energy level for each turn
taken.

Originally, I placed the routines for incrementing the timer and check
ing its value here in the NPC. However, I wanted the timer to be in
cremented when the player moved an object from the location to his
inventory, or back. The picking up and dropping of objects was
programmed to by-pass the regular moves, meaning the NPC file was
not executed and the timer was not incremented for get and drop ac
tions. To solve the problem, I made the timer section into a subroutine
called CannibalsArrive and called it from both the NPC as well as the
get and drop parts of my source code. That way the timer was incre
mented and checked regardless of whether the player was making a
normal move, or picking up or dropping objects. We'll be looking at
the timer routine in the chapter on subroutines, so I won't go into the
details here.

Let's look at the second part of the NPC file. I only wanted to decre
ment the energy variable after the player had eaten the candy bar and
the variable had been set to 4. When the game starts, the value is
initialized to zero. I use a simple conditional statement that checks to
see if the energy is greater than zero. If it is, then I know the player
has eaten the candy bar, and I decrement the variable. Once it reaches
zero, I print a message to the player telling him that the quick burst of
energy has passed, and then never decrement the variable again.
Remember that when the player successfully moves the boulder, the

Chapter 21: The NonMovable.OBJ and NPC.OBJ Files

variable energy is cleared to prevent the message from being printed
after the boulder has been moved.

That concludes our look at the NFC.OBJ file and the Non
Movable.OBJ file. Both are constructed from simple concepts which
will help build your adventure. In the next chapter, we will examine the
other objects in Cannibal, the movable ones. Because these are
generally manipulated more than the nonmovable ones, they will take a
bit more explanation.

21 -11

The Visionary Programmer's Handbook

21-12

Chapter 22: The Movable.OBJ Files

There are two files of movable objects used in Cannibal. This chapter
will look at them both, and examine some of the ways that I used ob
jects in my game. I'll also be pointing out special routines that you can
modify for use in your own games.

The Numbered Object Names

One of the first things you will notice about these movable objects is
that I have given each object name a two-digit prefix. This is done so
each of the movable objects will be forced to the front of the list of
objects when the game is compiled. I used double digits, including
leading zeros where necessary, to ensure that the Visionary compiler
alphabetized the objects in the order that I intended.

Visionary commands allow objects to be referred to by number as well
as by name. This was originally intended to make it easier to create
loops to easily permit player commands like "drop all" or "get all." It
was not intended to permit the player to select one specific object by
number, due to the fact that the alphabetizing of the object names
could make an object's number change as other objects were added or
deleted from the game. What I did was to take advantage of the fact
that all object names are alphabetized, by creating names that would
force the objects to be certain numbers. In Visionary, object numbers
start with zero, not one, so I created the nonmovable object named
"()()nothing" to fill that spot.

The reason that I wanted to be able to refer to objects by number
mainly had to do with getting and dropping the objects. Other ways of
manipulating the objects, such as examining, reading, eating, breaking
and burning, could all be easily handled with the normal action blocks
within the object files. In my game, however, getting and dropping the
objects would be done strictly with mouse input, rather than text input.

I decided, for example, not to permit the player to pick up the bottle by
typing "get the bottle" on the keyboard. The mouse would have to
used to drag the picture of the bottle from the location window to the
inventory window. This routine must take place outside the object
files, which usually respond to text input. It was important that I be
able to refer to each movable object by number. In that way, I could
build a single routine to move any object from the location to the in
ventory, and use it by setting a variable to the object number and then
execute the routine. It was for these reasons that I chose to number
the movable objects, but not the other nonmovable ones. As we look at
the movable object files, notice all the objects are numbered from 1-19.

22 -1

The Visionary Programmer's Handbook

Even if there
are no text
descriptions of
an object, its
file must con
tain a code
block

22 - 2

A Typical Object File

Look at the source code for the file named Movablel.OBJ and you will
see that object number 01 is the ladder. As with any object file, mov
able or nonmovable, it starts with the name for the object that game
will use, "Olladder." This is followed by the name that the player will
use, and any synonyms. After this, comes adjectives that I anticipate
the player may use to describe the ladder. Next comes the attribute
block. I did not need any attributes for the ladder, so you will see the
attribute block is empty. It is not even necessary to include the at
tribute block if it is empty, but I placed it here to remind you where it
normally would go. The next line lists which room the object initially
begins in, when the game begins. In the case of the ladder, it will al
ways appear in the meadow when the game starts.

The Code Block
Notice the code block is also empty. In a text game, I might put some
text in the code block to tell the player that there is a ladder in the
room. This would also be the place to place the text that would be
printed when the player takes inventory. However, since I designed a
graphic game, neither of these things is necessary. The player can see
that a ladder is present in the room, and does not have to be told in a
text message. Likewise, the player can see the inventory and does not
need a text message about what it contains. For these reasons, the
code block is empty. If, however, you are designing a game where you
wish to use the code block, you could use some lines similar to these:

IF PLAYER HAS OlLADDER THEN
T You carry a ladder.

ELSE
T There is a ladder here.

END IF

Whether you choose to fill the code block or not, every object file must
have a code block. It is not optional, as was the case with the attribute
block. Even if it is empty, you must include it.

The Action Blocks
Starting at line 18, you will see five action blocks for the various things
the player can try to do with the ladder. The first thing that I an
ticipated the player might try is to get the ladder. Even though I have
provided the player with a simple way to get the ladder by using the
mouse to drag it into the inventory window, I have permitted the player
to input commands from the keyboard. So I had to anticipate an at
tempt to get the ladder by typing the command instead of using the
mouse. This action block simply calls a subroutine that reminds the
player to use the mouse for taking objects, rather than typing the com
mand. I could have allowed the player to pick up the object in either

Always provide
a way for the
player to ex
amine objects

1ry to an
ticipate how
the player may
rephrase allow
able actions

Chapter 22: The Movable.OBJ Files

way, but decided not to write the extra programming necessary since it
was unlikely that the player would choose this method of taking the
ladder.

The next action block, which starts at line 22, is a standard one that
allows the player to examine the object. This type of action block
should appear for every object you create in your game, whether it is a
movable object, or a nonmovable part of the background. As you can
see in this action block, the description that the player receives when
trying to examine the object does not have to be specific. But it can
occasionally give subtle nudges to the player. With the message "it
should hold you," the player is given a subtle push to try to climb the
ladder. Remember that if you want a player to take some particular
action, even if it is some misdirection not aimed at the actual solution
to your adventure, you can offer a variety of hints and clues in various
places in your game. The object description is an excellent place to
leave such hints.

The next action allows the player to type "drop the ladder." Again, as
with get, the game jumps to a subroutine which simply reminds the
player that objects should be dropped by using the mouse rather than
keyboard text commands.

An action similar to drop is put. I anticipated that the player might
type the command "put the ladder against the shack." I used synonyms
of put, set, lay and lean for this action. I also anticipated these verbs
might be used in a slightly different way, such as "put the ladder on the
ground." The action block starting at line 33 shows how both of these
possibilities were combined into one block.

I decided that if the ladder is placed in the meadow, it will always be
against the shack, and never on the ground. The player really has no
control over it. If the ladder is currently in the player's inventory, a
message to use the mouse to drag it is given. Then it won't matter
whether the player wanted to place the ladder on the shack or on the
ground, the computer will place it where it should be placed.

If the ladder is not in the player's inventory, the player will be told that
the ladder stays where it is, meaning it is not to be moved from the
shack to the ground or back. Of course, if the ladder is neither in the
player's inventory or the current location, Visionary will take care of it
automatically by giving the player a message that the ladder is not
there.

The last action block for the ladder starts at line 43. This action
provides the player with an alternate way to climb the ladder. Normal
ly I expect the player to climb the ladder by simply clicking on the Up
button. However, as repeated many times before, you must always an
ticipate what logical actions the player may try to do. And it is logical
to expect the player to move by typing rather than by clicking. This last
action block permits the player to type "climb the ladder" whenever

22 - 3

The Visionary Programmer's Handbook

22 - 4

the ladder is present in the room. Notice that I have used the variable
RoomNumber to check to see what room the player is currently in, and
then moved the player to the appropriate room. I could have just as
easily used the room name instead of the RoomNumber variable by
saying:

IF PLAYER IN MEADOW THEN

Both methods achieve the same result. However, if the player is not in
one of the rooms where the ladder can be climbed, the player is told it
can't be climbed because "it's not leaning against anything."

This completes our look at the first movable object. It was typical of
most movable objects in many respects. We will now take a look at
some of the other movable objects, skipping over the parts that are
somewhat typical and stopping at any special features for that par
ticular object.

More-Complex Object Definitions

Starting in line 66 you will see the object file for the bottle. Notice that
it will be number 02 in Visionary's list of objects. Also notice that I
provided several synonyms for the word bottle, as well as two adjec
tives.

Object Attributes
This object has an attribute attached to it. I created an attribute sealed
to indicate that when the game starts that the bottle is sealed shut. It
was my original intent to allow the bottle to be opened later in the
game, at which time the attribute would be set to N. I later decided it
would be easier to open the bottle simply by smashing it with a hard
object like the coconut or the hammer. At that point, the attribute was
no longer necessary, since as long as the bottle survived intact, it would
always remain sealed. The attribute code was left in the object file as
another example of how attributes can be given to objects.

The initroom command places the bottle at the east end of the beach
when the game begins. Notice that, again, there is nothing in the code
block for this object. You will find that all the code blocks for the
movable objects are empty, since Cannibal is a graphic game and
doesn't use that feature of Visionary. And after the code block come
the action blocks.

Specialized Object Actions
Nearly all movable object files will start with three basic action blocks
for get, drop and examine. You'll find these here in the file for the
bottle, followed by some actions that are more specialized and specific
to the bottle.

Chapter 22: The Movable.OBJ Files

Since the bottle is sealed, I had to anticipate that the player would try
to open it. I allowed three different verbs to be used in attempting to
open the bottle, open, unseal and uncork. If the player has the bottle
in the inventory, a message that the bottle won't open is given when any
of these three actions is attempted. If however, the bottle is simply at
the location and not in the player's inventory, a subroutine is called
which gives the standard response "You don't have it."

The only way to open the bottle is to break it open. This action is
accommodated in the final action block. If the player tries to break,
smash, or hit the bottle, a subroutine is called that checks to see if the
player holds any of the six objects that are hard enough to break the
bottle, then breaks it and replaces the bottle with the paper that is
inside. We will be looking at the subroutine used to swap the intact
bottle with its contents in greater detail in Chapter 25.

Handling Prepositions

The object file for the battery which starts at line 151 has some inter
esting features that deserve a closer look. An attribute is used to make
sure the battery doesn't appear more than once in the course of the
game. The object file has another interesting feature, concerned with
handling two different uses of prepositions in commands.

An attribute called found is defined in line 158. This is necessary be
cause the battery is hidden when the game starts. The battery is stored
in the Unused room until the player digs in the meadow with the
shovel.

When the player stands in the meadow with the shovel and says "dig" I
check the found attribute to see if the battery has been found yet. If
the attribute is set to N, I tell the player a battery has been found, place
the battery in the meadow, show it in the location window, and finally
set the attribute to Y. If the player should try to dig in the meadow any
further, checking the attribute reveals that the battery has already been
found, so the message the player receives is "you find nothing."
Without an attribute like found, the battery would keep popping up
every time the player dug in the meadow.

Placing Objects Inside Other Objects
Let's next look at how some objects can be placed inside other objects.
In Cannibal, the player can try to put the battery inside the two-way
radio. Look at the source code starting at line 181. Notice there are
three conditional statements. First I check to see if the player has the
battery, since the object file will also be executed if the battery is at the
player's location but is not being held. Next I check to see if the player
specifically asked to put the battery in the radio, as opposed to in the
bottle or on the roof. This is done by checking the object noun. The

22 - s

The Visionary Programmer's Handbook

An attribute
like InRadio is
useful when
you anticipate
one object
being "stored"
inside another

22 - 6

last thing I check is to make sure that the player is actually has the
radio in the inventory, and it is not simply at the current location.

If all three conditions are met, the game prints out a message that
reminds the player that the battery is dead, and such an action is use
less. If all three conditions are not met, one of three subroutines is
called. The subroutine called will give the player one of three mes
sages: "you don't have the radio," "you don't have the battery" or that
the battery can't be put into the non-radio object.

This action block could have been written differently. To create an ac
tion block that would allow the player to successfully put the battery in
the radio, the source code would have to be modified. Let's look at
how that could be accomplished. First, you would want to create an
attribute for the battery called InRadio. The action block might look
like the one below:

ACTION PUT, INSERT
IF PLAYER HAS 04BATTERY THEN

IF OBJNOUN IS 05RADIO THEN
IF PLAYER HAS 05RADIO THEN

SET BATTERY, INRADIO
T OK.
DROP BATTERY
PLACEOBJ BATTERY, UNUSED

ELSE
T Pick up the radio, first.

ENDIF
ELSE

T You can't put the battery there.
ENDIF

ELSE
T Pick up the battery, first.

ENDIF
END ACT

With this code, there is no need to check to see if the battery is already
inside the radio. If it is, the battery would not actually be in the cur
rent room, and Visionary would automatically respond that "There is
no battery here." Since we know that the battery is not in the radio, we
only need to check to see if the player holds the battery, whether the
command specified putting it into the radio and not elsewhere, and
whether the radio is in the player's inventory.

If these conditions are met, the InRadio attribute is set, the battery is
dropped from the inventory, and moved to the unused room where
such objects are stored. If you leave out the line "DROP BATTERY,''
the action block will appear to work properly, but Visionary's built-in
ITEMS variable will not be properly decremented. Also, if any of the
three conditions are not met, an error message can be printed.

When you choose to allow the player to put objects inside other ob
jects, like the battery in the radio, be sure to use an attribute like the
InRadio one used above. In that way, when the player examines the

If you allow an
object to be
put inside
another, plan
whether you
will allow for it
to be taken
back out again

Chapter 22: The Movable.OBJ Files

radio, your game can check the battery's attribute and tell the player
either that the radio has no battery or that there are batteries inside.

Other ramifications of such actions, include taking the batteries out of
the radio. You must allow the player to remove the batteries, by creat
ing an additional action block. Since the game will not find the bat
teries in the current room when the player tries to remove them, the
action block cannot be included in the action block for the battery ob
ject file. You will have to place it in the special vocabulary file that
Visionary permits for just these reasons. More details on the
vocabulary file will be given in Chapter 26. Just remember that when
the player successfully removes the batteries from the radio, you must
unset the InRadio attribute back to N.

Prepositions in Action Commands
Let's next look at the object file for the radio, starting with line 204.
It's pretty much a standard object file, except for the last action block.
There are several ways for the player to ask to turn on the radio, with
the commands: "use the radio," "play the radio," "turn the radio on,"
or "turn on the radio."

The command "turn on the radio" will not be caught by the action
block you are looking at, since the word "radio" comes after "on" and
thus is viewed by Visionary as an object noun. By making turn
synonymous for use and play, "turn the radio on" will be accepted. To
make "turn on the radio" acceptable to Visionary, you must add a
similar routine to the special vocabulary file mentioned above. This file
would specifically include the action "turn on radio" and have the same
lines of code follow it that occurred in the object file for the radio.

Handling Adjectives

The object file for the candy bar starts at line 241, and contains a spe
cial situation. When defining this object, I ran up against a problem
with the name. I wanted the word "candy" to be both an adjective and
a noun. I wanted the player to be able to say "eat the candy bar" as
well as say "eat the candy." In the first case, the word "candy'' is an
adjective that describes the noun "bar." In the second case, "candy'' is
the noun.

Visionary won't allow you to use the same work for both adjective and
noun, so this caused a problem. I solved the problem by making
"candy'' an adjective and then adding a special vocabulary action entry
to take care of the other variation on the command.

In this way, the object file for "06bar" will catch the command "eat the
candy bar" as well as "eat the Snicker," "eat the Snicker bar," and "eat
the Snicker candy bar." The final variation "eat the candy'' was added
to a vocabulary action entry, so that the game would understand the

22 - 7

The Visionary Programmer's Handbook

Your game may
require two
objects to be
combined to
create a third,
single object

22 - 8

player regardless of the choice of words. Since the actual code for
eating the candy bar was rather lengthy, I put it in a subroutine rather
than duplicate it both here and in the vocabulary file. We'll be looking
at that subroutine in Chapter 26.

Anticipating Player Actions

Let's move on to the second group of objects found in the file called
Movable2.0BJ. The first object in this file defines the dead sea gull. I
included an entry that anticipates the player may try to eat the dead
bird. This is the last action block in the object file. It is doubtful that
the player will try to eat a dead bird, but the precedent has been set.
The player was allowed to eat the candy bar, and was permitted to
drink the salt water of the ocean. So it is only logical to assume that
some player may extend the concept to consuming the bird.

I had to anticipate and make an appropriate response for that action.
Remember, you must allow the player to take any logical action with
the objects in your adventure. It would not be fair for the player to ask
to eat the sea gull only to be told that "You can't" or "I don't under
stand you." Usually the best way around this problems is to tell the
player in a short message that the action can't be performed, and also
why. In this case, the player is told the sea gull can't be eaten it be
cause it is "too disgusting".

Combining Objects

Next consider the object file for the shovel blade, starting at line 78. It
contains a routine for putting the shovel blade on the shovel handle to
make a complete shovel. I want to examine this routine in detail, since
it is an important part of the graphic interface.

What the player sees on the graphic screen is two objects in the inven
tory window which then become a single object. The player starts with
the two separate parts of the shovel, the handle and the blade. Both
parts will show in the inventory window. When the player asks to put
the shovel blade on the handle, both objects will disappear and be
replaced by the picture of a complete shovel. Let's see how the game
uses the Visionary commands to make this happen.

Look at the action block for the shovel blade, starting at line 104. The
first thing I did was to choose four different verbs which would allow
the player a wide variety of ways to express the command: "put the
blade on the handle," "connect the blade to the handle," "stick the
blade on the handle" or "push the blade onto the handle." Next, I
check to see that the player actually wants the blade to go on the hand
le, not somewhere else.

Once I have checked to see that the blade is the object noun of the
command, I check to see if the player has the shovel handle. If there is

Once two
objects are
combined, the
parts must be
removed from
the inventory
and replaced
with the new
object

Chapter 22: The Movable.OBJ Files

a problem with any of these things, the main part of the routine is
skipped, and a subroutine is called that either tells the player "you
don't have it," or "you can't put the blade there." If everything is in
readiness, the main section of the routine is executed.

Several things take place rapidly when the shovel blade is put onto the
handle. First a message is printed out that not only te11s the player that
the action was successful, but also suggests that the shovel could be
used. Next, the handle is destroyed. This is done by setting a variable
ObjNum to 12. This variable keeps track of the object number, which
for the shovel handle is 12. Then a subroutine which takes care of
placing the object in the Unused room is called. This subroutine,
which will be examined in detail in chapter 24, finds and erases the
picture in the inventory window, and modifies the array that keeps
track of which inventory spots are open. The shovel blade is then
destroyed in the same way. The variable ObjNum is set to 11, which is
the number of the blade, and the same subroutine is called. At this
point, both the blade and the handle have been removed, and the next
step is to place the entire shovel in the player's inventory.

Rather than hunt for an empty spot in the inventory window, I simply
use the spot previously vacated by the shovel blade. First, I write the
new object number in the inventory array.

Visionary does not support data structures like arrays directly. But
there is an easy way to read and write to arrays in an indirect manner,
using Visionary's ability to see and change individual pixels on any
graphic screen. This will be explained in more detail in Chapter 23
when we look at getting and dropping objects. But for now, we'll
quickly note that the array is created as a series of colored pixels on
graphic screen 2, where each color stands for a different object. There
are 19 objects, which means I had more than enough colors, since I was
using the 32 color mode. In line 114, I set the mode for graphic screen
2 to draw. In the next line, I set the color to be used on that screen to
the variable ObjNum. Finally, I drew a one-pixel rectangle on screen 2,
at the coordinates that stood for the empty spot in the inventory win
dow left by the shovel blade. The X and Y coordinates were obtained
previously by the DestroyObject subroutine used to remove the shovel
blade.

After adjusting the array on screen 2, the next step was to actually draw
the picture of the shovel in the inventory window. Remember that the
picture of the shovel, as well as all the other objects is found in the
graphic file called buttons.pie where they are all lined up neatly at the
bottom on the screen, each starting exactly 15 pixels from the start of
the previous one. And they are all in numerical order; that is to say the
ladder is first, the bottle is next, followed by the paper, the battery and
so on. Given the object number for the shovel, and using some simple
arithmetic, I could figure out exactly where the picture of the shovel
was. Given the X and Y coordinates of the inventory array, and again

22 - 9

The Visionary Programmer's Handbook

22 -10

doing some simple arithmetic, I could figure out exactly where to place
the picture of the shovel in the inventory window.

Before doing the actual copying of the picture, I set the mode for
screen 0 to overlay. In this way, the only the picture of the shovel
would be copied, not the background. Then in line 118 the actual copy
took place.

Let's look at the mathematics of the copy command in line 118. Once
you understand the principal of using simple expressions like these in
your copy commands, you will have a powerful tool for creating your
own graphics games at your disposal. Let me reproduce the line
below:

copy 2,objNum * 15 - 15,183,objNum * 15 -
1,199,0,x * 16 + 266,y * 18 + 17

Since I'm copying from screen 2 with all the object pictures to screen 0
with the visible game screen, the first number is 2. Next comes the
expression "ObjNum * 15 - 15" which gives the X coordinate for the
upper left corner of the shovel. I multiplied the ObjNum variable by
15, because each object picture started 15 pixels from the previous one.
From this, I subtracted 15 since I started the first object (the ladder) at
0, not 15.

The number 183 indicates the Y coordinate of the upper left corner of
the shovel. Since all the objects lie in a straight line, they all share this
coordinate. The expression "ObjNum * 15 - 1" gives the X coordinate
of the lower right corner of the shovel. Again, I multiplied by 15 since
each object was 15 pixels wide, and subtracted one to get to the last
pixel for the object. The number 199 refers to the Y coordinate for the
lower right corner of the object. All objects lie on the bottom of the
screen, and share this coordinate. At this point, all information to tell
the computer where the picture of the shovel currently is is present.

The second part of this line tells the computer where the picture of the
shovel should be copied. The zero tells the computer to copy the pic
ture to screen 0. The expression "x * 16 + 222" takes the array value
for X and changes it into an X coordinate for the upper left corner of
where the shovel will be placed. I multiplied by 16 because each object
was 15 pixels wide and I wanted one extra pixel between the objects.
Adding the 222 slid the object over from the left edge of the screen
into the inventory window.

The expression "y * 18 + 17" takes the array value for Y and changes
it into the Y coordinate for the upper left corner of the place where the
shovel will be copied. I multiplied it by 18 because each object is 17
pixels long, and I wanted an extra blank pixel between the objects. By
adding 17, I slid the object down from the very top of the screen to
within the inventory window. With the completion of this single line of
code, the picture of the shovel was placed in the inventory window.

Use a
subroutine
to handle
code that is
repeated
several times

Chapter 22: The Movable.OBJ Files

After copying the picture of the shovel from screen 2 to the visible
game screen, there were only two things left to do. The last two things
were place the object in the current room and grab it. By doing this,
the internal workings of Visionary knew that the object was in the
player's inventory, and the built-in ITEMS variable was correctly incre
mented. Without these two steps, the picture of the shovel would have
appeared on the screen, but the game would have not always known it
was there.

The above routine for putting the shovel blade on the handle has taken
quite some space to explain, but it is an important routine and deserves
the effort you have given to understanding it.

An Example of Poor Programming

There are actually three different ways of putting the shovel together.
The player can say "put the blade on the handle," "put the handle in
the blade," or simply "make a shovel." In the first example, the word
"blade" is the object noun and so the action should take place in the
object file for the blade. In the second example, the word "handle" is
the object noun, and the action should be placed in the object file for
the handle. In the third example, the word "shovel" is the object noun,
and since the object is not present when the command is given, the
"make a shovel" action must be placed in the vocabulary action file in
order for the V1Sionary game to understand it.

This routine to put the shovel together will be used in three different
places, in the "blade" file, in the "handle" file, and in the vocabulary
action file. If you will look at the source code, you will see that I have
placed it in all three locations.

This is an example of poor programming, intentionally done to show
you what not to do. Since the exact same routine is used three times, it
would have been much better to write the routine only once, as a sub
routine. This subroutine could then have been called from the three
separate places where it was needed. By leaving such a large routine in
the program three times, a lot of space was wasted unnecessarily.
Remember to use subroutines to make your game more efficient.

Looking through the rest of the movable objects in this file reveals little
new about their construction. They are all pretty routine, and have no
special features that need additional attention. We have finished now
looking at the way movable objects are used in Cannibal. Next, we will
be looking at the main loop, which is the heart of the game. In Chap
ter 23, we will see how it controls actions, and allows the player to
access the rooms and objects that were created so far.

22 -11

The Visionary Programmer's Handbook

22 -12

Chapter 23: The MainLoop.SUB File

Once my game has started, it continues in a loop checking for the
player's input and acting on it. This is the heart of my adventure, and
can be found in the MainLoop.SUB file. This chapter will look at how
the player can input commands from either keyboard or mouse.

Although this file is the small compared to the ones examined in pre
vious chapters, it is vitally important. For that reason, I intend to go
through each section slowly and in detail. Follow each step as closely
as you can, and you will be rewarded with some powerful and valuable
routines you can use in your own games.

A General Overview

Before starting our microscopic examination of the main loop, let's
take a more general look at the entire routine overall. It basically
provides a small word processor, to allow the player to input com
mands from the keyboard. This would not be necessary in a text game,
since text commands are handled by Visionary's internal routines. But
I planned a graphic game, which meant that I needed routines to would
allow the player to type on a graphic screen.

To be more specific, I had to write the source code that would check to
see if the player had pressed a key, then print that letter on the graphic
screen. I had to build words from the individual key presses, taking
into account that the player might use the [BackSpace] key to remove
errors. I also had to notice when the player pressed [Return], and send
the finished line of text to Visionary to be acted upon.

The design of the main loop is split into two sections. The first section
is the text input section. This is where the game watches the keyboard
for the player's input, and also checks the mouse for any button clicks.
Once a command has been entered either by a mouse click or by press
ing [Return], the program moves to the second section of the main
loop.

In the second section, the computer executes the command given by
the player and reports back to the player any errors that have occurred.
The second section also takes care of some special situations that occur
if the player requests to load or save a game position. Once this is
done, the program jumps back up to the start of the loop and continues
the process all over again.

One of the first things you will notice when you look at the Main
Loop.SUB file is that it contains a single subroutine. Admittedly, this is
a rather large subroutine, but it is composed of only one subroutine

23 -1

The Visionary Programmer's Handbook

23 -2

called MainLoop. The while loop at line 8 is the beginning of the main
loop. The loop, which ends at line 186, is only exited when the player
wins, loses, or quits. If that should happen, then the lines 190-192 are
executed, which empty RAM: of the location scenes that were stored
there and then quit. Quitting exits the program and returns the player
to the computer's operating system. But until this happens, the game
continues to loop through lines 8-186.

At the beginning of the main loop in line 8, you will see that I chose a
variable named MainLoop. Since I set no value in the .ADV file for
the variable, it defaults to zero. And it stays zero throughout the whole
game, ensuring that the game keeps repeating the loop over and over
again. Only when the game is won, lost, or quit is the value of Main
Loop set to one, so that the loop will be exited and the game will be
stopped.

Checking the Input Window

The beginning of the loop contains some initialization steps necessary
before going into the loop that will check for the player's input from
the keyboard.

When the initialization loop begins, I need to move up any existing text
in the text window by one line, and leave a blank line for the player to
type on. A subroutine is called to move up the text and create a blank
line at the bottom of the text window. Part of this subroutine will check
to see if six lines have been printed, and if so it will stop in order to
permit the player to read the text before it scrolls out of the window. It
will print a message prompting the player to click the mouse button to
continue. The number of lines printed so far is kept in a variable
called CountLines.

In order to initialize this routine for the next time around and at the
same time to keep the message from being displayed in place of a
blank 6th line, I first set the variable to -1 in line 10. Then the Linefeed
subroutine is called, which takes care of sliding the text up and blank
ing the sixth line.

Setting Up for Special Characters
The next five lines from 13-17 set up some variables that will be used in
the next loop. The next loop will check for keypresses and build up
these keystrokes into words and eventually a full sentence. It will exit
when the [Return] key is pressed. For this reason, I have created a
variable called Return which will be the trigger for the next loop. In
line 13, I set this variable to 1, and it will stay this value until the player
presses [Return], at which time it will be set to zero and the loop will
be exited.

[Return] and
[BackSpace]
characters are
handled
differently
than other text

Text color can
be used to
provide extra
information

Chapter 23: The Mainloop.SUB File

I next set a variable called TuxtPosition to 9. When each move starts,
the cursor will be on the left side of the text screen, exactly 9 pixels
from the edge of the entire screen. As the player types, this variable
will increase, until the player threatens to leave the boundary of the
text window, at which time the game will stop accepting keystrokes.

The next variable in line 15 is the string variable $sentence. This will
contain the sentence that the player types, as it is built up letter by
letter. Since the player's move has just started, I have set the value of
the string variable to null.

The next two variables are used to check for certain special keystrokes.
In line 16 I define a string variable $return to be the [Return] charac
ter. This is done by using the back-slash key followed by "r". As docu
mented in the Visionary manual, there are several special characters
that can be accessed by using the back-slash. In this case, I want to
have the keystroke stored in a variable so that I can compare it with the
player's keystroke. In that way I will know when [Return] has been
pressed, and it is time to exit this input loop.

In line 17 I define another string variable for the [BackSpace] charac
ter. Again, notice that I use the back-slash method of defining the
character. This will be used to compare the player's keystroke with the
backspace, so that when the player makes a mistake it can be cor
rected, and my input routine will respond properly. Having defined
these five variables, we are nearly ready to enter the input loop.

Text Color
Before entering the input loop, there are two more lines, 19 and 20, to
consider. I decided that the text that appeared in the text window
should be different colors. As you have seen, the text input by the
player is green. The computer sends its messages in blue. Warnings
about cannibals landing are printed in red, and "prompt" messages tell
ing the player to "press the mouse button to continue" are in brown.

In line 19, I set the color for the pen on screen 0 to green. Remember,
green is actually a variable that I had previously set to 28 in the .ADV
file. In the palette for screen 0, color number 28 is the green. By
doing this, I know that all successive text printing on the graphic screen
will be done in green. The next command actually prints some text to
the graphic screen.

The Prompt Character
The text command in line 20 prints a single text character to the
graphic screen. In a normal font, the character would be the " - " sym
bol. However, I decided that the " - " would become the cursor. I
wanted a cursor to show in the text window where the text input oc
curs.

23 -3

The Visionary Programmer's Handbook

The prompt
character can
be changed
from the
default tilde

You need to
provide for
keys which will
not add to the
text command
string

23 - 4

Rather than draw a small solid rectangle using Visionary's graphics
commands, I chose instead to change the font so an otherwise-unused
character could become the cursor. So when I designed the special
font for this game, I changed the shape of the " - ", in the font file
itself, to a solid rectangle. Thus, what line 20 really does is to print a
rectangular cursor on screen 0, at coordinates 9, 192. Line 20 is the
way that I set the cursor to the beginning of the bottom line in the text
window, in anticipation of the player's typed input.

The while loop in line 24 is the beginning of the input loop. This loop
checks for keystrokes as well as mouse clicks, and ends at line 96. It
continues looping while the value of the variable return is not zero,
finally exiting when the variable is set to zero.

In line 26, a character is accepted from the keyboard, and stored in the
string variable, $letter. Whether a key has been pressed or not, the
routine continues to the next line. The next line detects whether a key
was pressed or not, by checking the length of the string variable. The
variable temp will be 1 if any key was pressed, or 0 otherwise. The line
after that stores the ASCII value of the character input, into the vari
able val.

Handling Unwanted Keystrokes
Line 29 masks out unwanted keystrokes. The method used is the
simple logic statement "val > 127". Remember that val contains the
ASCII value of the character input by the player. If it the ASCII value
is less than 127, then the character is one I want the game to accept.
Otherwise, it could include unwanted characters such as the function
keys or cursor keys. I don't want my input routine to accept those, so
this line will help me eliminate them. If the keystroke is one that I
want to accept, then val will be less than 127 and the expression "val
127" will be true, and evaluate to 1. Otherwise, the expression is false,
or 0.

What I am actually doing in line 29 is multiplying temp by either 0 or 1.
So now, temp will be 1 only if a key is pressed and it is an acceptable
key.

In line 30, the character typed by the player is compared with the vari
able $return to see if the player pressed [Return]. And in line 31, the
character typed by the player is compared with the variable $backspace
to see if the [BackSpace] key was pressed. At this point, I have four
variables to use. I have stored the character in the variable $letter, I
know whether it is an acceptable character by checking $temp, and I
know if it is either a [Return] or a [BackSpace].

Checking for Mouse Input
Jn lines 33-46 I temporarily disregard the keyboard and concentrate on
any mouse clicks that were recently made. Later on in the MainLoop

Chapter 23: The Mainloop.SUB File

routine, at line 90 to be exact, the readbuttons command is given.
When that happens, the computer checks to see if any buttons have
been clicked on, and if so jumps to the routine named in the associated
click command, then it jumps back to the line immediately after line 90.

The lines of source code from line 33-46 will act on any mouse click
caught on the previous pass through the while loop. These lines will
make the button appear to move inward on the graphic screen, as
though it had been actually pushed in. Then they will cause the button
to pop back out again, as soon as the player's finger is lifted from the
mouse button. Let's see exactly how this happens.

The line at 33 checks to see if a button on the game screen was
pressed. It does this by checking a variable called ButtonUsed. This
variable is set in any subroutine that is accessed by a click zone. If no
button was used in the previous pass through the while loop, the vari
able will be 0.

If an object was moved from the location window to the inventory win
dow or back, the ButtonUsed will be set to 9. If the player clicked on
the LOAD button, the variable would be set to 4. If the player chose
SAVE instead, the ButtonUsed variable would be set to 5. By pushing
any of the other action buttons or compass buttons, the variable will be
set to 1. And if any part of the scenery located in the location window
was clicked on, the variable will be set to 2. You can now see that line
33 will catch any time the player pressed on one of the buttons, but
ignores clicks that move or examine objects. Once the routine detects
that a button has been used, it executes the next eight lines of code.

The first part of this routine, found in line 34, sets the return variable
to 0 in order to fool an upcoming routine into thinking the player has
typed the command and pressed [Return]. In this way, commands such
as help or N can be input from either the keyboard or the mouse.

In line 35, the button is actually shown pressed inward. This is done by
copying the picture of the button in the down position from screen 2 to
the proper spot on screen 0. The copy command expects the X and Y
coordinates for the upper left corner and lower right corner of the ob
ject to be copied, and the upper left corner of the place it is to be
copied to. Each of these coordinates in line 35 is a variable. The
values of the variables are set in the subroutines that were called as
soon as the click zones were activated, and reflect the location of the
button that was pressed as well as the location of its alter images on
screen 2.

After the button has been pressed inward, I didn't want it to pop up
again until the player's finger is lifted from the mouse button. To ac
complish this, I use a simple while loop to check the status of the
mouse button and keep going around in the loop as long as it is being
held in.

23 - 5

The Visionary Programmer's Handbook

A pause after
COPY maybe
needed to
prevent brief
mouse
"freezes"

23 - 6

However, I discovered a strange quirk in the Amiga that required a
short pause before this while loop. It has something to do with the
blitter being busy with the previous copy command, and briefly locking
up the computer before the while loop. The symptoms of the problem
were that the mouse pointer would occasionally freeze up for a second,
immediately after clicking the mouse button. It only happened oc
casionally, and never for more than a second. But it was annoying to
have the mouse temporarily freeze up while I was trying to move it, and
then finally to have it jump across the screen to the current location of
the mouse.

I discovered that a simple solution to the problem was to place a brief
pause after the copy command, but before the while loop. A pause of
10 or 15 is sufficient to completely eliminate the problem, while at the
same time being short enough to escape human notice. It apparently
gives the blitter enough time to complete its work with the copy com
mand and avoid any freeze-up, but the pause is not noticeable by the
player. Keep this tip in mind when you write your own games. If you
notice an occasional brief freeze-up in the mouse pointer, track down
the copy command that is being executed when the freeze-up occurs,
and place a short pause after it. It can make the game run smoother.

Lines 37 and 38 keep the game in a while loop until the player's finger
is removed from the mouse button. Then the routine moves on to the
last three lines. These lines adjust the two Y coordinates for the button
that is about to pop back up again. Usually, the picture of the button
in its "up" state lies immediately on top of the picture of the same
button in its "down" state. So when preparing to show the button pop
ping back up again, only the Y coordinate of the button on screen 2
needs to be changed. Each button is exactly 13 pixels tall, so usually it
is only necessary to add -13 to the Y coordinate, and then use the same
copy command as in line 35.

However, the compass buttons are the exception to this. When the
compass buttons pop back up, they can be either highlighted, or
ghosted. They are highlighted if the directions are active and the
player can go that way. If the directions are inactive and the player
can't travel in that direction, they are ghosted. When drawing the but
tons on screen 2, I placed three nearly-identical buttons on top of each
other. For example, the top button might show N in the highlighted
state, the middle button shows N as it appears when pushed in, and the
bottom button shows N in the ghosted state.

When the player presses a compass button, I want it to pop back up to
its proper state. I do this by adding -13 to the Y coordinate to return
the button to the highlighted state, and by adding 13 to return it to the
ghosted state. The variable offset is set to either 13 or -13 in the Re
DrawScreen subroutine which we will be examining in a later chapter.
Lines 39 and 40, then, set the new Y coordinate for the picture of the
button, in preparation for showing the button popping back up. Line

Chapter 23: The Mainloop.SUB File

41 sets the variable offset back to the standard default of -13, since the
popped-up version for most buttons is 13 pixels above the pushed down
version. At this point, the button has been shown pushed down, and
preparation has been made to show it popping up again.

In lines 44-46, the button is shown popping up again. Only if the vari
able ButtonUsed equals 1 does the button pop up. This means that if
the player pressed the WAD or SA VE button, their popping up is not
handled here. Their pop-up display is handled elsewhere, since I felt it
was more appropriate to show them popping up after the load or save
operation had been completed. Line 45 shows the same copy com
mand as in line 35. Since only the two Y coordinates have been
changed, the copy will place the proper picture of the button back on
the graphic screen.

In the last two sections of code, if it was discovered that a button had
been pressed, that button was shown being pushed inward and then
popping back out again. The variable return was also set to 0. The
reason for setting it to 0 is shown in the next routine.

Text Input

The next routine, going from line 48-77 is a long one, and comprises
the actual text input routine. Before looking at each line individually,
let's get a general understanding of what the routine does.

First it checks the most recent keypress. If it finds the [Return] key
was pressed, it erases the rectangular cursor from the line. If the key
was the [BackSpace] key, it either shortens the sentence and adjusts the
text showing, or in the event that the cursor is at the left border, it does
nothing. If this routine finds that the keypress threatens to extend
beyond the right border of the text window, it also does nothing, and
ignores the keypress.

Finally, if this routine finds that an acceptable keypress was made, it
adds it to the sentence, both on the screen and in memory. That's
basically the substance of this routine. Let's look at each part in more
detail.

The [Return) Character
The keyboard input routine starts at line 48 by checking to see if the
[Return] key was pressed. This could happen either by the actual
keypress being caught back in line 30, or by the mouse clicking on one
of the action or compass buttons being caught back in line 34. Either
way, I want the cursor to disappear.

To do this, I will simply draw a small white rectangle on top of the
green rectangular cursor. As you can see, this takes four simple steps.
First the color for screen 0 is changed to white. Don't forget it is ac
tually being changed to color number 8, but I defined the variable white

23. 7

The Visionary Programmer's Handbook

A special
routine is
needed to
handle charac
ter deletion in
a text window

23 - 8

back in the .ADV file so that I wouldn't have to remember the num
bers.

Then I set the mode for screen 0 to draw. In line 51, I actually draw
the small rectangle at the current text position. The variable Tuxt
Position was initialized earlier in line 14 and has been kept current as
each key has been pressed, as will be seen in the next few lines.

Finally in line 52, I place the screen in the overlay mode in preparation
for future text commands. And that's all that this routine does when it
detects that [Return] has been pressed. More action will be taken
later, but for now my game only requires that the cursor be erased.

The [BackSpace] Character
If the player has pressed the [BackSpace] key, the next lines of code
starting at line 53 will be executed. First I check the length of the
sentence that I have been building with each keystroke the player
makes. If I find the length of the sentence is 0, then I know that the
cursor is at the left border of the text window, and I do absolutely
nothing; I ignore the [Backspace] key. Otherwise, I start the process of
deleting the previous character.

To delete a character takes several steps. First, in line 57 I shorten the
length of the sentence by one. This only affects the variable that keeps
track of the length of the sentence. Then I adjust the variable Tuxt
Position backwards by 6 pixels. This variable should always point to
the position where the next character will be printed. The next line
actually shortens the sentence itself, by using the newly-modified vari
able sentence that tells the current length of the sentence. It takes the
left portion of the variable $sentence, which is left when the line string
is shortened by one, and stores it back in the same variable again. This
may not be clear, so let's take a look at a specific example.

Let's say the player presses [BackSpace] after typing the sentence
"EAT BIRT". The sentence is stored in the string variable $sentence
and the length of 8 is stored in the numeric variable sentence. When
[BackSpace) is pressed, the variable sentence is changed from 8 to 7.
Line 59, the left 7 characters of the string variable $sentence are stored
back in the variable again. The variable $sentence will now hold the
shortened words "EAT BIR".

After the actual string variable is shortened in line 59, I erase the letter
from the graphic screen along with the cursor that follows it. This is
done in line 60 by changing the color for screen 0 to white, to match
the text window background. I switch to the draw mode, so the white
rectangle I am about to draw will cover the deleted text. Line 62 ac
tually draws a double wide rectangle to erase both the character and
the cursor.

Then I must move the cursor back to the new position. This is done by
switching to the overlay mode, to prevent any of the black background

Erase the
cursor before a
new text
character is
added to the
line

Chapter 23: The Mainloop.SUB File

color showing through on the white text window. The color is set to
green, and the cursor is placed at the current text position. That's all it
takes to backspace in the text input routine.

Adding to the Text Input
If the player has typed something and it is not [Return] or [BackSpace],
I know that the character should be added on to the current text in the
text window.

In line 67 I check to see if the text position has exceeded the width of
the text window. Without a check of this sort, the player could easily
keep typing past the end of the text window and onto the buttons on
the right side of the screen. It is at this point in the text input routine
that I need to check to see if the keystroke will be allowed. If the text
position exceeds 240, the keystroke is ignored. It is important to note
that this part of the routine comes after the check for [Return] and
[Backspace]. If this part of the routine were placed earlier, the player
could type into a corner from which there would be no escape.

The last section of the text input routine checks to see if an acceptable
keystroke was made, and if so it adds it both to the string variable
$sentence as well as to the graphic text window. Line 68 checks to see
if a keypress has been made that is acceptable. Line 70 adds the char
acter to the sentence. Remember that to connect two string variables
together- technically called "concatenating two strings" -you simply
place both string variables inside quotes, each preceded by a "@" sym
bol.

I can't just place the letter on the screen, on top of the cursor. In the
draw mode, it would give the letter inside a black rectangle (the black
background showing through). In the overlay mode, it would give the
letter inside a green rectangle (the green cursor showing). So I have to
erase the cursor first, then place the letter on the screen, then place the
cursor in the new position.

You can see how easy this was in lines 70-75. I set the color to white,
the mode to draw, and draw a white rectangle over the cursor to erase
it. Then I set the color to green, set the mode to overlay (to overlay
the green letter on the white text window without letting any of the
black background show through), and place both the letter and cursor
in the text window. The last thing to do in line 76 is to update the new
text position variable. Each letter in my specially designed font is five
pixels wide, with one pixel extra between letters. That's why I add 6 to
the variable TextPosition.

Keep in mind that all the above code for the text input is executed in a
split second as the game looks for a single keypress and processes it
correctly. When no key was pressed, but a mouse click was detected
instead, remember that the above routine was tricked into believing
that [Return] had been pressed, and it erased the cursor. The next

23 - 9

The Visionary Programmer's Handbook

Text that will
be echoed after
a mouse click
is set up in the
subroutine
called by the
click command

23 -10

routine checks for such an eventuality and prints the text to the screen,
just as if the player had used the keyboard instead of the mouse.

Mouse Input

The routine at lines 79-88 prints the command that comes from any
mouse click into the text window. If for example, the player wants to
examine the rowboat, the command can either be typed, "examine the
row boat'', or it can be executed by simply clicking on the picture of the
rowboat.

When the player clicks on the picture of the rowboat, I want the words
"examine the rowboat" to appear in the text window exactly as if the
player had typed them. In this way, the player knows exactly has been
done by the mouse-click on the rowboat - it has been examined.

Echoing Mouse Commands to the Text
Window
The routine starting at line 79 takes care of this echoing of the com
mand to the text window.

In the example of the rowboat, I have defined a click zone that contains
the rowboat. I specified the exact pixel locations of the invisible rec
tangle that contain the rowboat. I also specified the name of the sub
routine that should be calJed when this zone was clicked in. If you
want to jog your memory, you can look back at the Cannibal.ROOMS
file at line 30, and you wilJ see the name of the subroutine called is
SeeBoat. This is a very simple subroutine that only does two things. It
sets a string variable $tx to contain "examine the row boat" and sets the
ButtonUsed variable to 2. Then it jumps back here to the main loop
and lets this routine take care of the rest.

This text echo routine first blanks out the last line in the text window.
This covers the case when the player may have been in the middle of
typing something, but decided to use the mouse instead. This routine,
in lines 81-83, will erase any such partial text input.

The mode is set to draw, although it would also work with overlay. The
color is set to a matching white, and a long thin rectangle is drawn in
line 83 which blanks out the last line in the text window. Line 84 sets
the color to green, and line 85 calls a subroutine which actually prints
the text stored in the $tx variable.

In preparation for actually sending the command to the game to act on,
the string variable $sentence is set to the same string as the $tx vari
able. Finally, the variable return is set to 0 in line 87. It may or may
not already be set to 0 depending on whether a button was pressed, or
an object was clicked on.

Chapter 23: The Mainloop.SUB File

The readbuttons command in line 90 is all that is required to make the
computer check for any mouse clicks. Everything else was set up pre
viously, by defining the click zones in the room file and by writing the
subroutines called by them in the subroutines file. We will be looking
at the subroutines called by the click commands later, but they are
generally very simple. Since everything else is set up, the only thing
that the main loop's input routine needs to do, is this one command to
see if any click zones have been activated recently. If any click zones
have been activated, the assigned subroutine is called and the program
jumps back here to line 91.

In line 91, I empty the queue in case more than one button was pressed
while the computer was processing. Because of the speed of the com
puter, it is very unlikely that more than one mouse click will occur
during the split second that the computer executes the subroutine and
returns here, but it is wise to include such a line just in case.

The last thing I do before ending the input loop is to check to see if an
object was moved from the location window to the inventory window or
back. If it was, then the variable ButtonUsed will be set to 9, and I'll
force the input loop to exit by setting the return variable to 0. I do this
because I want the getting and dropping of objects to count as a turn.

Ending the Input Loop
Line 96 marks the end of the input loop. At this point, the loop either
jumps back up to line 24 and starts all over again, or it exits and con
tinues onto the next section where the sentence input will be acted
upon. If [Return] has not been pressed, it will loop over and over until
either a button is pressed or a sentence is typed. The game spends
most of its time here, waiting for the player to do something. But once
the player's input occurs, the game moves on to the next section.

Executing the Commands

The next section uses Visionary's powerful GHOST command to take
what the player has requested and make the game act on it. The
GHOST command makes the Visionary game do exactly the same thing
that it would do if the player typed the command onto the text screen
and pressed [Return]. But since I designed a graphics game, not a text
game, I could not use the normal text screen and the built-in text input
routines. The GHOST command gives me an easy way to accomplish
the same thing. But first, there are a few housekeeping chores to take
care of.

If the player has simply moved an object from the inventory to the cur
rent room, there is no need to ghost any command. So in line 100 I
check to make sure the player didn't get or take any object. Otherwise,
the ButtonUsed variable would be 9, and this whole section would be

23 -11

The Visionary Programmer's Handbook

The LOAD
button pops up
only when the
load function
is complete

You don't
usually need to
save a mask
buffer with a
saved game

23 -12

skipped. As long as the variable is less than 9, the lines from 102-180
will be executed. Let's look at the four different routines in that area.

In line 102, the color is changed to blue. This is done so that any text
that is printed to the text window will now be blue. I wanted these
messages from the computer to be a different color than text typed by
the player. Line 102 takes care of this color change.

The LOAD Command
In the next section, I check to see if the player has typed or clicked on
WAD. If so, I will switch to the text screen, and use Visionary's built
in requester system for selecting drives and filenames.

In line 104 I check to see if the sentence typed was WAD, and if it
was, the variable dummy will be set to 0. Then I check the variable
and if it is 0, I start by setting the ButtonUsed variable to 4. This may
already be 4, if the player clicked on the LOAD button, but I must
consider that perhaps the player used normal text input instead. Either
way, the variable is now set to 4.

Then using the T command to type on the text screen, I clear the
screen in line 107 using one of Visionary's special "back-slash" charac
ters mentioned previously. I move down to the center of the screen
and type "Please Wait for Loading."

Remember that if the LOAD button was depressed above in lines 33-
42, it was not shown popping back up again in lines 44-46. The reason
is that I want the button to stay down while the load takes place. Now
is the time I set the three sets of X and Y coordinates necessary to
show the LOAD button popping back up, which will take place later in
line 173. The fmal part of this routine is to switch control over to the
text screen in line 124.

The SAVE Command
The next section of code from lines 127-149 does exactly the same thing
for saving as the above section did for loading. There are some neces
sary differences, however.

The ButtonUsed variable is set to 5, to indicate what command was
given. The X and Y coordinates are different, since a different button
will be shown popping back up. And there is a special command in
line 147. By unloading screen 24 before saving the player's position, I
have saved some time and memory. Screen 24 is my mask buffer,
originally defmed in the StartUp.SUB file. It contains nothing that
needs to be saved when the game position is saved, so by unloading this
one screen before the game is saved, the time it takes to save the game
is shortened. And the saved game file is smaller.

However, the mask buffer is important to the working of the game, and
I make sure to open the mask buffer again after the saving or loading

TURN lets you
count each
command as a
turn, even if
player location
doesn't change

Chapter 23: The Main~op.SUB File

of any game position. We'll see exactly how that is accomplished in
line 170, to be explained a few paragraphs below.

At this point in the game, I am ready to GHOST the player's command
to the computer. First, I check to see if the player has typed or clicked
on QUIT in line 151. If the temp variable is 0, then all I have to do is
set the variable MainLoop to 1 and I know the main loop will exit and
the game will end. If the player has input anything other than QUIT, I
ghost that command to the computer at line 155. Since I am ghosting
the value of a variable, I need to place the "@" sign in front of the
variable.

Also notice that I use the TURN option at the end of the GHOST
command. This forces the Visionary code to take a complete tum after
receiving the ghosted command. It forces the game to check the
vocabulary action file and the NPC file. Since I am forcing the game
into a never-ending loop, these files would not be properly executed as
they would otherwise. The reason I am forcing the game into a never
ending loop is so that I can allow text to be input and printed to a
graphics screen.

Error-Trapping
After ghosting the player's command to the computer, it is important to
check for any errors. If for example, the player asked to "EXAMINE
THE ROWBOAT" while in the meadow, Visionary would report an
error to the text screen. I want to echo that error to the graphic
screen.

In line 156 I check the error variable for any error. If I find one I next
see if the player was trying to load or save a game position. If that is
the case, I print out a special error message in line 158. Otherwise, I set
the $tx variable to the $LastError variable and call the usual print
routine.

Back to the Graphics Screen
Remember that if the player was trying to load or save a game position,
my game switched to the text screen before ghosting the command.
Now that the command has been successfully ghosted and any error
reported, I need to switch the player back to the graphic screen.

In line 166 I check to see if the command was to load or save a posi
tion. If so, I start by clearing the text screen in line 167, just to make
sure that the load/save message is removed. It should be noted again
that if Visionary has to pop up any requester windows, it always
switches back to the text screen to show them.

For example, if Cannibal tries to load a MED song from the disk and
the disk has been removed from the drive, the game will switch to the
text screen and present a typical requester box telling you to put the
disk in the drive. By clearing the text screen after a load or save, as I

23 -13

The Visionary Programmer's Handbook

Clear the text
screen when
you switch
back to the
graphics screen

Check for use
of RAM: after
a game posi
tion is loaded,
and reset the
appropriate
variables

have done in line 167, I make sure that the text screen will be empty in
case any unexpected requesters pop up.

I next switch the game back to the graphics screen in lines 168 and 169.
Having unloaded the mask buffer before saving in line 147, I now put it
back in place in lines 170 and 171. If you use this technique to save
memory and time in your adventures, don't forget these two lines of
code. It's easy to remember to create the screen, but forget to assign it
as a mask.

Lines 172 and 173 show the LOAD or SAVE button popping back up,
by setting the mode for screen 0 to draw and the copying the button
using the X and Y coordinates set just before the command was
ghosted. At this point the game is nearly ready to go back into the
input loop again. But there is one more vital routine to include.

Using RAM:

The routine that runs from lines 174-179 is vital, since my game will
sometimes load the location scenes into RAM.

In the StartUp.SUB file I checked the available RAM in the computer.
If there was enough room, I loaded the location scenes into memory.
The game can play with the location scenes either on disk or in
memory, but it plays much faster if they are in memory, due to the
absence of disk-access time.

After loading a previously-saved game, it is important to once again
check to see if the location scenes are in RAM or not. If it tries to
load them from RAM, and they aren't there, the game will crash. You
can't trust the $device variable that was saved with the game, because
the status of the computer memory may have changed since the game
was saved. The technique of keeping files in RAM is a valuable one,
and I recommend it to create a better game. But if you are going to
use it, you must also check RAM again after a game is loaded.

Let's look at lines 174-179 and see how they work. The idea is really
quite simple. I just look into RAM to see if the location scenes are
there, and then set the $device variable accordingly. In line 174, I try to
load the current location scene from RAM into screen buffer 1. Then I
check the error variable in the next line.

If an error has occurred, then I assume the screen does not exist in
RAM, and I set the string variable $device to the disk pathname "Can
nibal: Videof'. If no error occurred when I tried to load the screen
from RAM, then I set the $device variable to RAM:.

Exiting the Mainloop

The last step in the entire main loop is to set the ButtonUsed variable
back to 0. In this way, when the input loop is entered again, the but-

Chapter 23: The Mainloop.SUB Rle

tons won't be activated unintentionally. The main loop ends in line
186, and as long as the MainLoop variable remains zero, the loop con
tinues forever. The MainLoop variable is only set to 1 when the player
wins, loses, or quits. When that happens, the game passes out of the
main loop.

When the main loop is exited, there is one last thing I do before actual
ly quitting. Since I may have placed all the location scenes into RAM
for faster access, I need to delete them again. In line 190, I remove all
the files using Visionary's DOS command. I send any system messages
to NIL: so the player won't receive a message like "deleting LOCl" on
the screen. By using the"#?" wildcards, I can delete all the files with a
single statement. And then with the QUIT command, the game stops
and sends the player back to the operating system.

» Always clean up memory! Never end a game with
memory tied up for any reason.

This has been a long chapter to describe a short subroutine. Because
of the importance of the subroutine, it was necessary to go into great
detail. I hope you have found many routines you will be able to use in
your own Visionary games. Some of the concepts presented may have
sounded complicated at first, but once examined in detail, should have
proven to be actually quite simple.

The next chapter will cover another subject that also appears compli
cated at first. We will be looking at the movement of graphic objects
from the location window to the inventory window. Again, these
routines will be very valuable in your own games.

23 -15

The Visionary Programmer's Handbook

23 -16

Chapter 24: The GetDrop.SUB File

Remember when you played the Cannibal game, how easy it was to get
objects and put them in your inventory? You only had to point the
mouse at it, grab it by holding down the mouse button, and drag it over
into the inventory window. Dropping objects from your inventory back
to the current location was just as easy.

However, accomplishing this apparently simple task required creating
some specialized V1Sionary routines for my game. I placed all these
routines in a separate subroutine file called GetDrop.SUB, and this
chapter will examine that file. With a few modifications, you should be
able to use these routines in your own game to make the moving of
objects fast and easy.

Get and Drop Subroutines

The first two subroutines in the GetDrop.SUB file are very simple ones.
They are called whenever the player tries to get or drop an object by
using keyboard input. In this way, when the player types "get the lad
der", the game will provide a reminder to use the mouse to move the
picture of the object to the inventory window. It is important to note
that I could have allowed the player to get and drop objects by using
text input, but chose not to. If you want to permit text commands for
these operations in your games, it is a simple matter to grab the object
and then call a subroutine which will remove the object from the loca
tion window and display it in the inventory window.

In fact, there's nothing that says you must even have an inventory win
dow or a location window. Remember, with Visionary you are in con
trol of the game, and you can make it play any way you want.

GetObject
Starting in line 30, you will find the GetObject subroutine. This is a
major subroutine. It's large, and takes care of a variety of tasks. This is
the subroutine that is called when the player clicks the mouse button
anywhere within the scrollbar window on the side of the location win
dow.

The routine checks to see which object was clicked on, if any. It then
allows that object to be moved around on the screen, following along
after the mouse pointer. And when the mouse button is finally
released, the routine decides whether the object should be placed in
the inventory window or back in the scrollbar window. The routine will
give a description of the object if the player was not attempting to
move the object, but was rather just clicking on it for a description.

24 -1

The Visionary Programmer's Handbook

Having object
numbers in an
array makes
them easy to
retrieve

24 -2

And finally, the routine takes care of some general housekeeping mat
ters such as incrementing the timer and checking to see if the cannibals
have arrived during this move.

When the Player Enters a Room

Before we start to examine the GetObject routine more closely, it will
be necessary to get a general understanding of what happens when the
player enters a room.

Let's say the player starts the game and moves east to the other end of
the beach by the canoe. The game not only displays the location scene
for the beach, but also displays any objects at that location. In order to
display any such objects, the game runs through a loop that checks for
the presence of each movable object. As they are found, their pictures
are copied to a long white strip in memory, on screen 23. This screen
is created in memory and is not loaded from a disk file. And the
screen is never seen in its entirety, since it is long enough to allow all
nineteen movable objects to be displayed one below the other.

However, the scrollbar window shows a section of screen 23 that can
hold the pictures of five objects. Should there be more than five ob
jects in the room, the scrollbar window can display them all by copying
different parts of screen 23 to screen 0, the screen that the player sees.
The building of screen 23 to hold all the movable objects, and the dis
playing of part of screen 23 in the scrollbar window, is all done nearly
instantaneously as part of the routine that redraws the screen. One of
the things that GetObject must do is to determine which of the 19 pos
sible objects that could be on screen 23 has been selected by the
player's mouse click.

Arrays

I've also used several arrays in Cannibal. One array is used to keep
track of the objects that are currently drawn on screen 23. Remember
that I can refer to any of the movable objects by number as well as by
name. Object 1 is the ladder, object 2 is the bottle, and so on.

Each time a new room is entered by the player and screen 23 is freshly
drawn showing all the objects present, I write the object numbers to an
array so that I know which objects are on screen 23, and in what order.
This is necessary because I allow the player to slide the scrollbar win
dow up or down to show any of the objects in the room, and then allow
the selection of any object displayed, regardless of its position within
the scrollbar window. When the player clicks on somewhere in the
scrollbar window, I need to know what object number was selected in
order to make the correct picture follow the mouse pointer around on
the screen. By placing the object numbers for the objects in an array
as they are being drawn on screen 23, I have the important information
saved in a manner that can be easily retrieved when I need it.

Chapter 24: The GetDrop.SUB File

I created a second array to keep track of which locations within the
inventory window are empty and which are full. There are two reasons
for doing this. First, when the player tries to move an object into the
inventory window, I need to know where the picture of the object can
be placed. By using a simple 3x2 array, I can check to see if a par
ticular spot is empty. If the value of the array for that spot in the
inventory window is 0, I know it is empty and I can place the object
picture there.

The second reason for using an array for this task is that when the
player tries to drop an object, by moving it from the inventory window
to the location window, I need to know what object was clicked on. To
do that, I simply check the array for that spot. It is 0, I know the player
clicked on an empty spot. Otherwise, the object number is in that
array element, and I know which object the player wants to move. The
second array, then, is a simple array that is three across and two down,
just like the inventory window.

Pixel Arrays

As pointed out previously, Visionary does not directly support data
structures like arrays. However, it is quite easy to create arrays using
the colored pixels on any hidden graphic screen. I can check the color
of any pixel, and change it if I wish. Hence, if I use pixels to create an
array, I can read the values from the array by using the PIXEL com
mand, and write the values to the array by using the RECTANGLE
command.

Using this method of creating arrays creates extremely compact data
storage. In my Cannibal game, I only needed a small unused space in
the upper left corner of graphic screen 2. This is the screen that con
tains the pictures of the buttons and the movable objects. I use a small
amount of space, 3 pixels long and 2 pixels wide, to create my inventory
array. And I use a space below that, that is 19 pixels long and only 1
pixel wide, to create my scrollbar array.

As we look at the GetObject subroutine, we will see how the arrays and
the long scrollbar on screen 23 fit together to allow objects to be
moved from the scrollbar window to the inventory window.

The GetObject Action
The GetObject subroutine is called when the player clicks anywhere
within the scrollbar window. In the first three lines from 32-34, I find
which position within the scrollbar window was chosen, which position
on screen 23 corresponds to that, and what object number lies at that
position.

In line 32, I define a variable Pie which will be 0 if player clicks on the
top position within the scrollbar window, on down to 4 if the player
clicks on the bottom position. This is done by checking the Y coor-

24 - 3

The Visionary Programmer's Handbook

A special
variable keeps
track of
scrollbar
position

24 - 4

dinate of the mouse pointer, subtracting 21 since the window is down
21 pixels from the top of the screen, and dividing by 18 since each
object is 17 pixels long with one extra pixel between objects. Since
Visionary variables are integer variables, I don't have to worry about
any decimal remainders after dividing by 18. I know they will be
dropped off.

In line 33, I find the position on screen 23 that corresponds to the
position on the scrollbar window. Remember that if more than five
objects are in the room, the player is allowed to scroll the scrollbar
window to see the rest. That doesn't mean, for example, that just be
cause the player clicks on position 0, he is also clicking on position 0 on
screen 23. The scrollbar window may have been moved downward, and
the actual position could be something else.

To keep track of such possibilities, I created a variable SBPosition
which always contains the current scrollbar window position. For ex
ample, if the variable is 0, the scrollbar window is at the top of screen
23. If the variable is 1, the scrollbar window has moved down one ob
ject, and shows the next five objects on screen 23. I use this variable
SBPosition in line 33 by adding it to the variable Pie to find the exact
position on screen 23 that the player has selected, and store it in the
variable ChosenPic.

But adding the two variables together, I can expect ChosenPic to have
a value anywhere from 0 (if the player picks the top picture and the
scrollbar window is moved all the way to the top) on down to 18 (if the
current room contains all 19 of the movable objects and the player
moves the scrollbar window all the way to the bottom and then clicks
on the bottom picture).

In line 34, I look at the array and see what object number is stored in
the position that player chose. Using the PIXEL command to find the
color of the pixel, I can find the value of the array element.

Notice that I must specify screen 2, the X coordinate of ChosenPic,
and the Y coordinate of 2. This is because I chose to create my array
as a series of colored pixels that run from left to right, that is 2 pixels
down from the top of screen 2. Also notice that I must specify the
name of a variable into which the color value of the pixel is to be read.
I chose the variable name ObjNum because the values stored in the
array are the object number.

At this point in the routine, the player has clicked somewhere in the
scrollbar window, and I now know the number of the object selected.
Again, ObjNum could contain any number from 1-19. If it is 1, I know
the player has clicked on the picture of the ladder. If it is 2, I know the
player chose the bottle, and so on.

In line 36, I check to see if the player clicked on a picture instead of a
blank spot. As I manipulate the objects and arrays, I am careful to
keep all empty spots set to 0 in the array. In this way, I can check the

Chapter 24: The GetDrop.SUB File

variable ObjNum and see if the player clicked on an object in the
scrollbar window, or clicked on an empty position. In line 36, I check
the value of the variable, and if I find it is 0 the program will skip the
rest of the subroutine and exit at line 136. If however, the value is not
0, I start preparing to move the picture of the object around the screen,
following after the mouse pointer.

Moving the Object Graphic

Let's take a general look at how the picture of the chosen object is
moved about the screen. Understanding the general idea of how it
works will make it easier to explain the mechanics of actually doing it.

As long as the mouse button is held down, I want the picture of the
object to follow the mouse pointer around the screen. In this way, the
player can drag the picture anywhere on the screen, before letting go of
it by releasing the button. That means I need to check to see where the
mouse currently is pointing, and draw the object picture at that posi
tion. Then I'll loop back and check to see where the mouse is pointing
again, and draw the picture there.

The only problem with doing this is that it will keep drawing pictures of
the object on the screen without erasing them. If the player slides the
object to the left, it will leave a whole line of duplicate objects pictured
on the screen. To prevent this from happening, I need to memorize the
graphics in the background, so that they can be restored as the object
is moved around.

It is not necessary to memorize the entire graphic screen. Only the
section that the object overlaps need be remembered. In this case,
since all my objects lit in a 15-by-17 pixel rectangle, only a box of this
size needs to be memorized. The 15x17 rectangle is copied to a hidden
area in memory, and then copied back again after the object has moved
on.

So in general, the loop will find out where the mouse points, copy the
screen section to a hidden buffer, and copy the picture of the object to
where the mouse points. Then when the mouse pointer moves, the
routine will copy the background from the hidden buffer back to the
screen to erase the picture of the object, and start the loop over again
by copying a new section of the screen to the buffer and placing the
object picture at the mouse pointer's location. This will continue until
the mouse button is released.

Because the picture of the object will not stay on the screen the whole
time, it will tend to flicker. This is because the picture is drawn in one
spot, the erased and moved to another spot. And after it is erased, but
before it is redrawn, the computer will be copying the old background
to the screen, and copying the new background to the buffer. During
this brief time, the object will not be shown on the screen at all. That's

24. s

The Visionary Programmer's Handbook

Reduce flicker
as objects
move by only
redrawing
them when re
quired

why the object will appear to flicker very rapidly while it is being
moved.

To keep it from flickering while it is held stationary on the screen, I
have saved the old X and Y coordinates of the mouse pointer. These
are compared with the new X and Y coordinates of the mouse pointer,
and if they are the same, the redrawing of the background and object
are skipped. This means that when the player temporarily stops sliding
the object around on the screen, it reassumes its normally solid look. I
did this because I thought it looked nicer that way. When you create
your own games, it is certainly not necessary if you wish to save a bit of
space and don't mind the constant flicker.

Lines 38-40 start by placing a white rectangle in the hidden buffer men
tioned above. The hidden buffer is in the lower right comer of screen
2, right after the pictures of all the objects. By placing a white rec
tangle here, I make sure that when the player picks up an object by
grabbing the picture, a white area will be left behind in the scrollbar.

In lines 42-46 I save the coordinates from where the picture is being
dragged. These are the coordinates in the scrollbar where the picture
originates. Lines 42 and 43 save the X and Y coordinates in variables
that will change as the mouse is moved about the screen. Line 44 saves
the old Y coordinate in a variable that will not be changed as the
mouse moves about, in case it is necessary to place the object back in
the scrollbar window when the player releases it. Lines 45 and 46
check the current mouse coordinates and subtract a little from them so
that the mouse pointer will point to the center of the object rather than
the comer.

Lines 50-62 contain the loop that was described above. This loop con
tinues as long as the mouse button is held down, and keeps memorizing
the background and drawing the picture of the object wherever the
mouse is currently pointing. Line 51 checks to see if either the X or Y
coordinate of the mouse pointer has changed. If not, the whole draw
ing routine is skipped and the loop is started over again. Otherwise,
the drawing routine is executed.

The drawing routine for the picture of the object is just as described in
general terms above. Jn lines 52 and 53, the current mouse coordinates
are stored, after adjusting them to keep the pointer in the middle of the
picture rather than the corner. In lines 54 and 55, the old background
is restored from the hidden buffer on screen 2 to the game screen 0 at
the old mouse coordinates.

Remember that the first time this routine is executed, the white rec
tangle created in line 40 will be the background copied to the old coor
dinates in the scrollbar window. Then a rectangular 15xl 7 pixel piece
of the background is copied from screen 0 to the hidden buffer. In this
way, when the object has moved past this spot, the background can be
properly restored.

Sometimes the
object will
move slightly
when the
player clicks to
examine it

Chapter 24: The GetDrop.SUB File

Line 56 actually copies the picture of the object to the screen. Since
each object can be referred to by number, and since they were drawn
all nicely lined up in my buttons.pie file, it's easy to now move the right
one to the screen. Line 56 takes the object number, as stored in the
variable ObjNum and copies it from screen 2 where buttons.pie was
loaded, to screen 0 at the current mouse coordinates. Then in lines 57
and 58, the old mouse coordinates are updated and the loop starts all
over again. As you can see, once the concept has been explained, the
whole routine is really quite simple.

Releasing the Object

Now let's see what happens when the player lets up the mouse button,
and the object is released.

Generally speaking, I check for four different possibilities. If the
player intended not to move the object, but to simply click on it for a
description, I check to see if the object was not moved more than a few
pixels, and in this case, I give the player the object's description.

If the object was moved more than a few pixels, I know the player was
trying to do something else. If the mouse was pointing in the inventory
window when the button was released, I either place the object in that
window, or if it is full I place it back in the scrollbar window. And if
the mouse was not in the inventory window when the button was
released, again I move the picture of the object back to the scrollbar
window. In any case, before doing one of these four things, I must
erase the picture of the object one last time, before moving it to the
exact location I want it in. This is done in lines 64-66.

Click or Drag?

I first will consider the possibility that the player clicked on the object
only in order to examine it. In this case, the object would not actually
be moved at all, or at least very little. In lines 68-71 I subtract the
mouse coordinates when the object was released, from the original
coordinates of the object. These amounts are stored in the variables xl
and yl and tell how far, in pixels, the object was moved.

Depending on whether the player moved the object to the left or the
right, it is possible these values could be negative as well as positive.
To make it easier to compare the values, I found the absolute values of
the two variables in lines 69 and 71. These lines may look a bit strange,
but they will effectively strip off the negative sign from any negative
number. Since Visionary does not have a command to determine the
absolute value, I used the short routine you see here.

In line 73, I check to see if the change in movement in either direction
is less than 8. If it is, I assume the player was attempting to examine
the object, not move it. An alternative to using the absolute value
routines at line 69 and 71 would be to write line 73 as follows:

24. 7

The Visionary Programmer's Handbook

Getting some
objects may
change other
game options

24 - 8

IF Xl < -8 and Xl > 8 and Yl < -8 and Yl
> 8 THEN

It may be simpler to understand, and if so you may prefer to use it
rather than do absolute values. Both accomplish the same task but in
different ways. The choice is yours.

If the movement was less than 8 pixels, lines 74-77 are executed. Line
74 recopies the picture of the object back to the correct spot in the
scrollbar window, just in case it was moved slightly. Line 75 places the
name of the object in a string variable $temp. Remember that all this
time, I have been referring to the object by number, not by name. At
this point, I want to send a command to the main loop that will be
ghosted. This means I have to refer to the object by name, not by
number.

Line 75 uses Visionary's ObjName command to make this possible.
Line 76 sets the text string variable to "examine the bottle" or "examine
the ladder" or whatever the $temp is set to. Finally line 77 sets the
ButtonUsed variable to 2, in order to signal to the main loop that a
button has been clicked, and a command needs to be echoed to the
text window and then ghosted to Visionary. Setting the variable to 2
also lets MainLoop know that there is no picture of a button that needs
to be drawn either pressed inward or popping back outward.

Moving Objects to Inventory

In line 78, I check to see if the object was released inside the inventory
window. If the most recent mouse coordinates indicate the player
wanted to add the object to the inventory, I need to see if there is room
or not. If there is, I need to find an empty spot in the window where I
can draw the picture of the object. Otherwise, I need to draw the pic
ture of the object back in the scrollbar window.

Line 79 checks the ITEMS variable to see if the inventory limit has
been exceeded. If it has, the program skips down to line 127 where the
picture is copied from screen 2 back to the scrollbar window section of
screen 0. If there is room in the inventory, the game starts executing
the next rather large routine.

The routine that actually places the picture of the object in the inven
tory window runs from lines 80-126 and is in basically three sections.
The first part is to find a blank spot in the inventory window. The
second part is to draw the object there. And the third part is to adjust
the directions the player can move, in the event that the object picked
up was the ladder. Remember that picking up the ladder changes the
possible directions. When the ladder is in the meadow, for example,
the player can go up to the roof of the shack. When the player picks
up the ladder, it can no longer be climbed to get up onto the shack
roof. Let's examine each of these three parts.

Chapter 24: The GetDrop.SUB File

The lines from 80-95 loop through the 3x2 array and find the first avail
able empty inventory spot. Since this is a two dimensional array, two
nested loops are used. Line 84 actually reads the array element and
stores the value in the variable Slot. Line 85 checks to see if the array
element is 0, and if so saves the variables in X and Y, then sets the loop
variables to their maximum in order to immediately exit the loop.

Once an empty spot in the inventory window is found, line 96 actually
does the copy of the picture from screen 2 to screen 0. Notice the use
of the variables in this line. Knowing the object number saved in the
variable ObjNum makes finding the coordinates for the object on
screen 2 a simple mathematical task.

Knowing the X and Y values for the empty inventory spot, the exact
coordinates on screen 0 for placement of the picture in the inventory
window can be easily computed. The X coordinate is multiplied by 16,
since each object takes up 16 pixels in width (15 for the object and 1
blank space). To this, 266 is added since the inventory window starts
266 pixels from the left edge of the screen. Similarly the Y coordinate
is multiplied by 18, since each object is 17 pixels long, plus one for a
blank line. And 17 is added to the result, since the inventory window is
17 pixels down from the top of the screen.

Once the picture has been drawn in the inventory window, the 3x2 in
ventory array needs to be updated. Lines 98 and 99 set the mode and
the value of the array element. Line 100 writes the value to the array
by drawing a one pixel rectangle on screen 2. And line 101 places the
object in the player's internal Visionary inventory, so that the items
variable will be kept current.

In line 102, I check to see if the ladder was the object just placed in the
inventory window. Remember that in certain rooms, such an action
will affect the directions the player can travel. A series of conditional
IF-THEN statements occur between lines 103-118 which check the
room number, modify the directions if needed, and call the subroutine
to redraw the screen.

It's necessary to redraw the screen because once the ladder is picked
up and placed into the inventory window, it should no longer appear
propped up against the shack, the tree, the boulder, or the cave
entrance. The ReDrawScreen subroutine is one that we have not ex
amined yet. It takes care of redrawing the location scene, the scrollbar
window, as well as the status of the compass buttons.

Updating the Scrollbar

The next thing is to update the scrollbar array, to take into account the
fact that the object has been removed from the room and should no
longer be placed in the scrollbar. Line 120 sets up the mode for draw
ing, and line 121 uses a COPY command to slide the whole array to the
left one pixel.

24- 9

The Visionary Programmer's Handbook

24 -10

The variable MaxMov in line 121 is used to keep track of the maximum
number of movable objects that exist in the game. In this game, it was
defined in the .ADV file to be 19, since there are 19 movable objects. I
use it in the COPY command to make sure that enough pixels are
moved to account for any number of objects regardless of what room
the player is in, and regardless of how many objects are in that room.

After updating the scrollbar array, the scrollbar itself must be updated.
Line 123 shows how Visionary's COPY command is used to move the
pictures of the movable objects on screen 23 up, in order to eliminate
the object just placed into the inventory window.

Notice that by multiplying the variable ChosenPic by 18 and then ad
ding 18, we will be starting with the object just below the one chosen to
be moved. I continue down to the very bottom of the long thin screen
23, in order to assured that there will be a white spot at the end, and
not two pictures of the last object. This section is copied onto itself, so
that the chosen picture is covered up. In this way, it disappears from
the scrollbar, and the other objects move up into the void.

Line 124 decrements the variable ObjTotal which keeps track of the
total number of objects in the current room. Then the subroutine
DisplaySB is called which copies the correct part of the scrollbar on
screen 23 to the scrollbar window on screen 0. Since this routine is
called from several places in my program, I decided to make it a sub
routine to avoid duplicating large sections of code in several areas of
the source code.

After updating the visual display, the subroutine CannibalsArrive is
called in line 126, in order to increment the timer and properly check
to see if the cannibals have arrived and if the player has lost the game
yet. This subroutine is also called when an object is moved from the
inventory window back to the scrollbar window, and also when the
player makes other moves which are ghosted to Visionary and which
are caught by the NPC file.

Line 128 shows the COPY command that is used if the program was
unable to place the object in the inventory window because it was al
ready full. Line 132 shows the same line of code, this time used to
place the picture of the object back in the scrollbar window if it was
mouse button was released when the object was outside the inventory
window. Since the same piece of source code was used more than
once, I could have make it into a subroutine. I chose not to, since it
was only a single line and it made the program easier to follow this
way.

That ends the GetObject subroutine to move an object from the loca
tion window's scrollbar window to the inventory window. Remember
the whole thing started in the MainLoop file. After checking for
keypresses, the routine checked to see if any of the click zones defined

Chapter 24: The GetDrop.SUB File

in the StartUp.SUB file had been clicked in. If the player clicked in
the scrollbar window, this GetObject subroutine is called.

DropObject
Next we will look at the DropObject subroutine. It is very similar to
the one above, but works backwards. This is the subroutine that is
called if the player clicks inside the inventory window.

This subroutine checks to see what object has been clicked on, and
then allows the player to grab that object by holding down the mouse
button. If the object is moved only minimally, the object description is
given to the player. If the object is moved outside the inventory win
dow, it is placed in the scrollbar window, otherwise it is placed back in
the inventory window where it originated. We'll look at this subroutine
next, but in less detail.

Since the DropObject subroutine is similar to the GetObject sub
routine, we won't need to spend so much time explaining the fine
details. As before, I started by finding the number of the object clicked
upon. This time, I checked the mouse coordinates and did some sub
tracting and dividing to give me the inventory array coordinates. In
line 146, I then read the value of the array element into the variable
ObjNum using Visionary's PIXEL command. If this value is 0, I know
the player has clicked on an empty spot, and the program jumps from
line 148 to line 244 and skips the entire routine.

The initial white background is saved in lines 150-152. The old and
new mouse coordinates are defined in lines 154-159 in preparation to
allow the object to move about on the mouse pointer. Notice in lines
156 and 157 both original X and Y coordinates are saved in temporary
variables so that the object can be put back in the inventory window in
the exact spot from which it came, in the event it is necessary.

Lines 163-175 show the loop which draws the picture of the object on
the screen, following the mouse pointer wherever it does. It restores
the previous background, saves the background at the new location of
the mouse, and then draws the object there.

If the object has been moved since the last time through the loop, the
game continued to restore the background, save the new background,
and draw the object. This continues as long as the mouse button is
held down. When the player's finger is lifted from the mouse button, I
then have to decide whether to place the object back in the inventory
window or place it in the scrollbar window.

Lines 177-179 restore the background to normal, one last time before
placing the picture of the object in its final resting place. If the player
has moved the object anywhere over into the location window, line 181
will start the section of code to place it in the scrollbar window, other
wise the code jumps down to line 211 where the object is put back in
the inventory window.

24 -11

The Visionary Programmer's Handbook

24 -12

If the object is to be placed in the scrollbar window, there are several
things to be done. First, I free up the inventory array where the object
used to be. This is done in lines 182-184 by drawing a black pixel at
the previously computed X and Y coordinates in the inventory array.

Then the object is officially dropped from the player's internal Vision
ary inventory, in order to keep the variable ITEMS accurate. If the
object moved back to the room location is the ladder, I have to check
to see if this is one of the rooms where the ladder creates a new direc
tion available for the player to take. Lines 178-207 show the places
where this can happen. In each case, the directions have to be
changed, the room must be linked with the new direction, and the
screen needs to be redrawn.

After the object has been officially moved from the inventory window, a
subroutine called AddObject is called in line 209. This subroutine will
be examined in detail later in this chapter. For now, it need only be
pointed out that this subroutine takes care of adjusting the scrollbar
array, adjusting the scrollbar on screen 23, and displaying the proper
part of the scrollbar to the scrollbar window on screen 0. In line 210,
the CannibalsArrive subroutine is called again, which increments the
timer and checks to see if the player has lost yet.

Starting at line 211, you will see the section of source code that is ex
ecuted if the object was not dragged into the location window. In that
case, I place it back in the inventory window. This is done in line 212,
by using the COPY command to copy the picture of the object from
screen 2 to the old coordinates (temporarily saved in the tempt and
temp2 variables) in the inventory window on screen 0.

Lines 213-216 check the distance that the object was moved, making
sure it is not a negative number. Line 217 checks to see if the object
was moved less than 8 pixels. If that was the case, the variable $temp is
defined to be the name of the object which I have only been referring
to by number. This name is added to the text string in line 219, and
line 220 will force the main loop to ghost the previously defined text
string. In this way, the player can "examine the hammer" by clicking
on the picture in the inventory window.

We have now concluded our examination of the GetObject and Drop·
Object subroutines. These are the main parts of getting and dropping
any object by using the mouse. There are still some smaller support
routines which need explaining, and these will be covered next.

Refreshing Windows after a Move

The next few routines take of such tasks as copying the proper part of
the scrollbar on screen 23 into the scrollbar window on screen 0. They
will also allow easy adding of objects to the .scrollbar, and removing
objects from the inventory window. Routines will also create the ar
rows on the ends of the scrollbar window that only appear when there

Chapter 24: The GetDrop.SUB File

are more than 5 objects in the current room, and the scrollbar window
can be scrolled. Let's start with the ReDrawScrollBar subroutine.

ReDrawScrollBar
The purpose of the ReDrawScrollBar routine is to check the movable
objects when the player enters a new room. It runs through all the
movable objects, and places any of those present in the scrollbar on
screen 23. It also creates the scrollbar array which contains the object
numbers that correspond to the pictures shown in the scrollbar win
dow. Then it displays the objects in the scrollbar window on screen 0.

The first thing to do is to blank out the pictures on screen 23. This is
the long thin screen where all the objects present in the current room
will be drawn one above the other. Lines 232-234 draw a long white
rectangle on screen 23. 1\vo variables are then initialized in lines 235
and 236. The variable ObjNum is set to 1, so that the search for mov
able objects will start with the ladder (object number 1). The variable
ObjTotal is set to 0, to indicate that there are currently no objects
found in the room.

The loop from lines 239-251 will be executed 19 times, and will check
each object to see if it is in the current room. Remember that the
objects will be referred to by number, not by name. That was one of
the important reasons in giving the objects such strange names. The
two digit prefix forces Visionary to alphabetize the objects in the order
indicated by the numbers.

If the object is in the room, line 242 copies the picture from screen 2 to
the scrollbar in screen 23. Notice the COPY command uses the vari
ables ObjNum and ObjTotal to find where the picture is on screen 2,
and where it should be copied to on screen 23. Then the object num
ber is written to the scrollbar array in line 245. Line 243 sets the mode
to draw, and line 244 sets the color to be the object number.

Finally, the ObjTotal variable in incremented, to indicate the addition
of an object to the room. Lines 248-249 clear the rest of the array, and
line 250 increments ObjNum for the next pass through the loop. At the
end of the subroutine, another subroutine is called in line 253 which
does the actual displaying of the scrollbar into the scrollbar window.

DisplaySB
The subroutine DisplaySB takes care of actually copying the correct
part of the scrollbar into the scrollbar window, and activates the arrow
buttons if they should exist. The reason that I made this a separate
subroutine is so I could call it when an object was dropped or when a
new room was entered.

Lines 261-266 make sure the variable SBPosition is correctly adjusted.
Remember that this variable keeps track of which position on screen
23's scrollbar is currently being shown at the top of the scrollbar win-

24 -13

The Visionary Programmer's Handbook

24 -14

dow. These lines make sure that as many of the objects are seen as
possible, to prevent objects being off the scrollbar window to the top
while white unused spaces are shown at the bottom (as could occur
when taking objects out of the scrollbar window).

Another purpose of these lines is to ensure the scrollbar window is
never scrolled upwards past 0. Then the subroutine DrawArrows is
called to draw the arrows at the top or bottom of the scrollbar window,
if necessary. Finally, lines 270-271 copy the correct portion of screen
23 to the scrollbar window on screen 0.

Add Object
The AddObject subroutine is used when an object is added to the
scrollbar window. This can occur when an object is moved from the
inventory window back to the location window, and can also occur
when the player digs and finds something.

In either case, the object is always placed at the start of the list. Every
thing else is moved down one to make room, and the object is inserted
at the beginning. Then the top of the scrollbar window is displayed to
show the newly-added object. Lines 279-12,2 show how the scrollbar
array is moved down one, and the new object is added to the front of
the list.

The variable ObjTotal is increased to keep track of the total number of
objects in the current room. Lines 2B5-290 take care of sliding the ob
jects down on screen 23 and adding the new object to the top of the
list. Notice that before drawing the object at the top of the scrollbar in
line 290, I have to erase the top position with a white rectangle in line
288.

Before displaying the new object in the scrollbar window, the variable
SBPosition must be set to 0. The DrawArrows subroutine is called to
draw the arrows if necessary, and then the top of the scrollbar is ac
tually copied to screen 0 in line 279. This is a short but helpful sub
routine.

The Scrollbar Arrow Subroutines
The ClickUpArrow subroutine is the one used when the player clicks
on the up arrow on the scrollbar window. It slides the objects upward
as long as the mouse button is held down, or until the end of the ob
jects is reached. First, in lines 307-308, the picture of the arrow is
changed to show it depressed. After a short pause to keep the mouse
pointer from temporarily freezing up, the scrollbar window is moved up
one full picture.

Rather than move it in a single jerk, I decided to show it smoothly
moving, pixel by pixel. So instead of doing a single copy, I did 18
copies, each one moving the scrollbar up just one pixel. You can see

A variable
value of 1 also
means "true"

Chapter 24: The GetDrop.SUB File

how this was done in the loop from lines 311-314. It takes a little extra
programming, but looks much nicer.

As soon as the scrollbar has been moved up one full position, the
SBPosition variable is updated in line 315. Line 316 calls a subroutine
to see if the up and down arrows should still be shown, or if either
should be blanked and deactivated. This updates the current status of
the two variables UpArrowActive and DownArrowActive.

At the end of the loop, the queue is emptied with the readbuttons
empty command, in the rare event that extra mouse clicks have taken
place during the loop.

Lines 305 and 306 are good examples of some shortcuts you can use in
your programming. Shown below are two different ways of writing
each line:

WHILE LEFTBUTTON
WHILE LEFTBUTTON 1 DO

or

IF UPARROWACTIVE or
IF UPARROWACTIVE = 1 THEN

Since the value 1 means "true", you can use the shorter version. This is
useful any time you are checking for a value of 1. When the Draw
Arrows subroutine (to be described shortly) is called, the variable Up
ArrowActive is set to 1 if the up arrow on the scrollbar window can be
seen and pressed. The shortcut shown above is a slightly faster way to
detect if the arrow is present.

The ClickDownArrow subroutine at line 325 is nearly identical to the
previous ClickUpArrow subroutine. It checks to see if the variable
DownArrowActive is set to 1, and if so allows the scrollbar window to
scroll downward. Notice that the routine to smoothly scroll the window
is in a while loop that goes from 18 down to 0, instead of 0 up to 18.
This is because the window will be moving in the opposite direction
from the previous subroutine. Other than that, the two subroutines are
nearly identical.

The DrawArrows subroutine at line 347 checks to see if there are more
than 5 objects in the room. If so, it draws arrows at the top or the
bottom of the scrollbar window, depending on whether the extra ob
jects are off the top of bottom of the window.

The subroutine also sets two variables UpArrowActive and Down
ArrowActive so that the other subroutines will know if the arrows are
drawn or not. Lines 349-351 initialize the two variables and set the
drawing mode in case the arrows need to be drawn. Line 353 checks to
see if there are objects below the scrollbar window, by adding the cur
rent scrollbar position in SBPosition to the size of the scrollbar win
dow.

The size of the scrollbar window is always 5, and is set in the variable
SBSize in the .ADV file. If this is less than the total number of objects

24 -15

The Visionary Programmer's Handbook

24 -16

in the room, I know there are more objects below. In that case, the
DownArrowActive variable is set to 1 and the picture of the arrow is
copied from screen 2 to screen 0. Otherwise, a blank spot is copied to
where the arrow should be.

If the scrollbar window is not at position 0, I know in line 360 that
more objects appear above. In this case, I set the appropriate variable
and draw the appropriate picture of the arrow. This subroutine is
short and simple, but needs to be called whenever the object pictures
are scrolled or whenever a new room is entered.

DestroyObject
The last subroutine in this file is the DestroyObject subroutine. This
subroutine will take any object number it is given in the ObjNum vari
able, and will search the inventory window for that object. It will
destroy it and make the necessary corrections to the inventory array.

Lines 376-389 show two nested loops which check the top and bottom
level of the inventory window. This is done by checking the inventory
array, stored on screen 2. Notice it is very similar to the search routine
at lines 82-95 in the GetObject subroutine discussed earlier in this
chapter. The value of the array element is read in line 378 and com
pared with the object being searched for in line 379. When it is found,
the coordinates are saved and the loop is exited by forcing both loop
variables to their maximum.

In lines 391-393 the array element is changed to 0, to reflect the fact
that the object no longer is in the inventory. Lines 395-397 draw a
white rectangle over the picture of the object in the inventory window.
Finally the object is officially dropped in line 399, and is placed in the
Unused room where objects are stored when they are not currently
needed.

In the Cannibal adventure, this DestroyObject subroutine is used three
times. When the player eats the candy bar, it must first be in the inven
tory, and then must be destroyed.

When the player breaks the bottle open, it must also be destroyed using
this subroutine. In addition, a piece of paper is created at that point,
using the AddObject subroutine described above.

The other place where this subroutine is used is when the player puts
the shovel handle into the blade and makes a complete shovel. Before
making the shovel, the player must be holding both pieces. This sub
routine is called twice, once to destroy the handle and then to destroy
the blade. Finally, the shovel is placed in the inventory window at the
same coordinates as the last destroyed object.

Chapter 24: The GetDrop.SUB File

» All of the subroutines examined in this chapter are vital
to the mouse control of objects. The beauty of
subroutines is that once written, they can be called from
anyplace in your game. And they can be used over and
over again in future games, saving you appreciable
amounts of development time. If you are still having
trouble understanding any part of these subroutines,
come back to this chapter after you have finished the
rest of the book. Perhaps after you have a clearer
picture of how things fit together In the whole game, you
will have a better feel of how these subroutines are used,
and can be used by you.

In the next chapter, I will explain many of the general subroutines that
I used in the Cannibal game. These will include the print routines that
allow text to be printed on a graphics screen, and the redraw screen
routines which are called whenever the player enters a new room.
Both play an important part in the creation of a graphic adventure
game.

24 -17

The Visionary Programmer's Handbook

24 -18

Chapter 25: The Cannibal.SUB File

Subroutines play a large part in any adventure. As you will see in this
chapter, I used a large variety of subroutines extensively in the creation
of Cannibal. We'll be looking at them in detail, in the hope that you
will find many that you will be able to apply to your own adventures.

CannibalsArrive

The first subroutine in the Cannibal.SUB file is the subroutine named
CannibalsArrive. The first thing the subroutine does is to increment a
timer. Visionary has a similar timer that automatically increments the
variable "moves" after every move. I chose not to use this one, since it
increments after normal moves, and my special methods to permit the
mouse to get and drop objects bypass the normal moves. So I found it
more convenient to use my own timer.

After incrementing the timer in line 6, I set a variable TuxtColor to red,
so that any messages printed about the cannibals would stand out.
Then I checked to see if it was time for the cannibals to land in line 8.

After 90 moves, the game will print out a warning message that the
cannibals are about to land on the island. Warning messages continue
to be printed periodically until the player is captured when the timer is
103, as you can see in line 42 of the source code.

Until then, each of the sections of code is very similar. A linefeed is
generated by calling a subroutine, then the message is printed, and
finally the ButtonUsed variable is set to 9. By doing this, the main
loop's input routine is restarted after the message is printed.

When the cannibals actually arrive on the island in line 25, the jungle
drums originally heard at the opening of the game are started up again.
This is a MED music file that was originally loaded into memory when
the opening title was being displayed. When the game started, the
music was turned off, but was not removed from memory. In this way
it could be used again later. And finally, notice that in line 40 the text
color is always set back to blue after any cannibal messages are given.

End-Game Actions

Let's take a look at what happens when the player loses the game.
When the timer hits 103 in line 42, the room number is changed to 15
and the subroutine to redraw the screen is called. Scene 15 is a special
one that is shows the player sitting in a pot of boiling water. This scene
was carefully drawn so that the colors could be cycled to give the ap
pearance of animation. The bubbles, the flames, and the smoke are all

25 -1

The Visionary Programmer's Handbook

Color cycling
requires spe
cial handling
of screen and
button colors

25 -2

animated. But the colors were carefully chosen to avoid any conflict
with the colors used elsewhere on screen 0. When the colors are
cycled, all colors will cycle. I didn't want the player to see any colors
in the buttons to change, or have the mouse pointer changing colors.
So it was important to keep certain colors that were used on screen 0
outside the cycling range.

The other colors were then changed using Visionary's PALETIE com
mand to match the special palette of colors required to create the
animation. Lines 47-49 blank out the scrollbar window, the inventory
window and the text window by drawing white rectangles. This is done
so that the colors in objects and text will not be seen color cycling.
Then the new colors for this scene are set in lines 50-66. And finally,
the color cycling is turned on in line 67.

At this point, the animated death scene is showing in the game. The
next step is to turn on the sound effects for the death scene. Line 68
disables the music, and returns control of the audio device to digitized
sound samples. Line 69 plays the sound of the bubbling water that was
loaded when the game began, and has been sitting unused all this time.

Before printing out a closing message, the CountLines variable is set to
-1. This prevents my text printing routine from printing the usual
"Press mouse button to continue" message. The message is printed,
telling the player the game is lost, and one last sound sample is loaded
into the computer. Line 82 loads a digitized sample of a scream. This
is played as loud as possible in line 83.

Notice that the volume is set all the way up, and the command is set to
play the scream only once. Because of the time taken by the disk ac
cess, the death scene shows along with the sound of the bubbling water,
then there is a brief pause before the scream. This was done intention
ally to create a pause before the scream, and also to save memory by
not requiring the sound sample to be in memory until the end of the
game.

Before Exiting

The game is now over, but it has not yet closed down the screen and
returned to the operating system. I decided to wait for the click of a
mouse button before exiting the game. I first cleared all click zones by
calling the subroutine ClearButtons in line 84. I did this so that no
matter where the next click was, there would be no response. Then in
lines 85-86 I wait until the player's finger has been lifted from the but
ton, just in case it is still being held down from a previous move. Lines
87-88 then wait until the player clicks on the mouse button before set
ting the MainLoop variable to 1, which will force the game to exit when
it returns to the main loop of the game.

Chapter 25: The Cannibal.SUB File

The Print Routine
The next print subroutine is the one that I call whenever I want text to
be printed on the graphic screen, in the special text window that I
created. First I call a subroutine that creates a line feed. This is the
subroutine that also checks for more than 6 lines of print, and then
pauses so the player can read it. The second thing I do is to call the
subroutine that actually prints the text. By keeping these two sub
routines separate, I can call them individually in other places, as well as
together for general text purposes. The last thing the print subroutine
does in line 99 is to clear the queue of button clicks, in case any but
tons were pressed during the printout of text to the text window. The
print subroutine is short and simple.

Linefeed
The next subroutine is the LineFeed subroutine that is called by the
print subroutine and is also called from other places. This routine
moves up five lines of text in the text window, and makes room for a
new line to be printed on the bottom line. If more than five lines have
been printed successively, then this routine will pause and wait for the
player to read the message and then press the mouse button to con
tinue. Let's look into this subroutine in more detail.

The first thing that the LineFeed subroutine does is to copy a large
section of the text window to a slightly higher position. Lines 106-107
move the bottom five lines of text upward 9 pixels distance. Each line
of text takes 9 pixels, 8 pixels for the font, and a one pixel wide blank
line in between lines of text. Lines 108-109 blank out the sixth line by
drawing a white rectangle over it. Then the color of the text is set to
whatever value TextColor was given when the subroutine was called.
This is done in preparation of printing out the text, even though this
subroutine doesn't actually do any of the printing itself.

The next thing that this subroutine does is to count the number of lines
of text that have been printed recently. It increments the count in line
112, by incrementing the CountLines variable. Then it checks this vari
able against MaxLines which was set to 5 in the .ADV file. If it's not
time to pause, the subroutine is ended. Otherwise, the routine prints a
message in line 117 and waits for further input. Notice that line 115
sets the drawing mode to "overlay." This is so that the text will appear
properly on the white text window. If it were set to "draw", the text
would appear in the same place, but would be set against the black
background. Line 116 sets the color to brown, so that the text prompt
ing the player for mouse input will be brown, and contrast with the blue
and green text usually seen. Line 117 actually shows how text is written
to the graphic screen. The command is TEXT followed the screen
number, the X and Y coordinates, and the text to be printed. The
prompting message will always be printed at this location.

25 - 3

The Visionary Programmer's Handbook

25 - 4

When I designed this routine, I wanted the game to wait until the
player either clicked on the mouse button or pressed a key on the key
board. The next routine shows how this is done. I first make sure the
mouse button is released, by using the while loop in lines 118-119.
Then I enter another while loop from lines 121-126. In line 122 I check
the status of the mouse button and save it in the variable templ. This
variable will be 0 if the mouse button is up, and 1 if the button is down.
Next I get a character from the keyboard in line 123 and check it's
length in line 124. The length is saved in the variable temp2. This
variable will be 0 if no key was pressed or will be 1 if some key was
pressed. In line 125 I add these two values together, knowing that the
sum will only be 0 if nothing was pressed, either mouse or key. Since
the sum is saved in the variable temp and the loop variable is also
temp, the loop will continue until either the mouse or a key is pressed
to change the value of the variable.

Once the player presses the mouse button or presses a key, the routine
goes on to line 127. Here, I change the color to white and draw a
white rectangle on the bottom section of the text window to blank out
the previously displayed message. Then I change the color in line 129
back to the normal text color, as saved in the TextColor variable. The
variable keeping track of the lines printed is reset back to 1, and the
subroutine is exited.

The PrintText subroutine does the actual printing of the text to the
graphic screen after the other text has been scrolled upward to make
room for it. As you can see, it only takes two lines. Line 138 sets the
mode to overlay, to keep the letters showing up properly on the white
text window. Line 139 then prints whatever is contained in the text
string $tx at coordinates (9,192) on the screen. These are the coor
dinates for the last line of text in the text window. Notice the specific
syntax that I use to print the value of the string variable. I enclose the
string variable in quotes, and place the "@" symbol in front of it.
Without the "@" symbol, this line of code would print out $tx to the
text window, instead of things like "examine the ladder".

Button Subroutines
The ClearButtons subroutine is another short but useful routine. It is
called when entering a room, to clear all the click zones assigned to
buttons 34-44. These are the zones for the nonmovable objects, and
allow the player to click on them for a description. This prevents acci
dents from happening like the player receiving a description of grass
after clicking on the picture of the boulder. Of course buttons can
always be redefined when entering a room, but sometimes there are
buttons that are not needed in some room. These buttons won't be
redefined, and unless cleared will contain the name of the subroutine
assigned in the previous room. This subroutine is a simple loop that

Chapter 25: The Cannibal.SUB File

uses Visionary's REMOVE command to clear the subroutines assigned
to the buttons from 34 to 44.

The next eleven subroutines are called when the player clicks on one of
the buttons on the screen. Six of them are for the compass buttons,
and the other five are for the larger action buttons. They are all similar
in content. Let's look at the first one, GoNorth, which will serve as an
excellent example for these eleven buttons.

Go North
The first line in the GoNorth subroutine is to define the value of the
offset variable. It will be either -13 or 13. Remember, as described in
a previous chapter, the N button will be shown pushed in and then
popping back out again. The offset variable will tell my main loop
routine whether to look 13 pixels above or 13 pixels below the picture
of the pushed-in button, to find the pushed-out button. Usually the
offset is -13, and the pushed-out button will be 13 pixels above the
pushed-in picture. However, if the direction north is ghosted, then the
offset is set to 13, and my main loop routine will find the proper pic
ture of the pushed-out button 13 pixels below the pushed-in version.
For more information on this design, go back and check the chapter on
the MainLoop.SUB for additional details.

In line 155, the offset variable is set to GoN. This variable is either -13
or 13, and will be set by the ReDrawScreen subroutine described later
in this chapter. Part of that subroutine is go check to see if the player
can go north, and if so set the GoN to -13, so as to show the highlighted
N button. U the player can not go north, then it will set the GoN to 13,
so as to show the ghosted N button.

After setting the offset variable, three pairs of X and Y coordinates are
defined. These are used in the COPY command to copy the picture of
the pushed-in button to the same position as the current button.
Remember that the COPY command needs three sets of coordinates in
order to work. It needs the upper left coordinates and lower right
coordinates of a rectangle that will be copied from. It also needs the
upper left coordinates of the position that will be copied to. After set
ting the proper coordinates, the text string that will be ghosted to the
interpreter is defined. In this case, it is the single letter N. Finally the
ButtonUsed variable is set to 1, to let the main loop know that a com
mand has been given from the mouse, and that a screen button needs
to be shown moving in and then back out again.

The other ten button subroutines all follow the same pattern. Only the
compass button routines need the offset variable, since they are the
only ones that can have two different pushed-out pictures. You will
notice that the last five button subroutines do not have the offset vari
able assigned. This is because I designed it to always default to -13
unless otherwise set. All of these button subroutines have the six coor
dinates defined, followed by the string variable defined that will be

25 - 5

The Visionary Programmer's Handbook

25 - 6

ghosted by the main loop, and finally the ButtonUsed variable is set to
1, so that the command will be ghosted and the button will be shown
moving. The only exceptions are the Load and Save subroutines, which
use different values for the ButtonUsed variable so that the main loop
will show them pushed-in, but will not show them pushed-out again
until after the game position is loaded or saved.

ReDrawScreen

The next subroutine after all the button subroutines is the ReDraw
Screen subroutine in line 303. This is the subroutine that has been
previously mentioned throughout this book. Now it's time to see how
this important subroutine works. Let's take an overall look first, before
getting down to specifics.

In general, the subroutine loads a disk file that shows the new location,
then checks the compass directions to see which way the player can
move, then copies the location scene into a special overlay buffer where
the ladder can be added if necessary, and then finally displays the
scene in the location window and draws the proper compass buttons in
their places. Now let's go back and see how all this is done.

The first part of the subroutine from lines 306-316 loads the disk file
containing the location scenery. Line 306 checks to see if the player
has moved to a new room, so that the new disk file can be loaded.
Remember that this subroutine is also called other times than when the
player moves to a new room, which means it may not be necessary to
load the location scene from disk. It may already be in memory.

This section of the ReDrawScreen subroutine only loads the scenery
from disk if a new room has been entered. The routine starts by clear
ing the text screen, in case any disk error causes a requester window to
pop up on the text screen. If for example, the disk has been removed,
the game will switch to the text screen and show a small window re
questing that the player place the disk in the drive. In the event one of
these types of requesters is displayed, I don't want any previous text
messages to be displayed. TYJ>ing "\r' to the text screen prevents it.

The file name is set in the variable "$filename" in line 308. Remember
that all the location scenery is in individual files named "Locl", "Loc2",
and so on. Line 308 sets the file name to "loc" with the device name in
front of it, and the room number behind it. Depending on the value of
the two variables $device and RoomNumber, the final value of the
string variable "$filename" can be things such as "ram:locl2" or "Can
nibal!Video:loc6". In line 309, the file is loaded into screen buffer 1,
and the subroutine LoadingError is called which checks for any error
and prints out an error message if necessary. The LoadingError sub
routine was described earlier in the chapter on the StartUp.SUB.

In line 311, the LastRoomNumber variable is updated, so that when the
ReDrawScreen subroutine is next called, I will know what location

Chapter 25: The Cannibal.SUB File

scene is currently in memory. The next line starts preparing to show
the objects in the scrollbar window. The scrollbar position variable
SBPosition is set to 0, in order that the top of the scrollbar be dis
played first.

The "show screen O" and "screenmode graphics" commands in line 313
and 314 will force the graphic screen back to the front in the event that
a requester window moved the text screen to the front. Then the sub
routine is called in line 315 that shows the objects that are in the new
room displayed in the scrollbar window. Remember that all this code
is only executed when the player actually moves to a new room, not
when the screen is redrawn without loading a new scenery file.

Changed Options
The next six sections of code check to see what directions the player
can move, and properly sets the offsets so that each compass button
will be either highlighted or ghosted. In line 319, the direction for
north is checked to see if the player can go that way. If so, the offset
variable GoN is set to -13, which means that the picture of the pushed
up button will be found 13 pixels above the pushed-in button.

If the player cannot go north, the variable GoN is set to 13, indicating
that the picture of the pushed-up button will be found 13 pixels below
the picture of the pushed-in button. This routine is then repeated for
each of the compass buttons, in lines 325-353. At the end of these six
routines, all the offsets are set for the compass buttons, but it's still not
time to draw anything on the visible game screen yet.

Before copying the location scenery into the location window, I must
check to see if the ladder needs to be shown laying against the shack,
the tree, or some other place. This will be done in a hidden screen
buffer, and the final result will be moved to the visible game screen.
The first step is to copy the location scene from screen buffer 1, into
which it was loaded, over to screen buffer 2, where the ladder can be
overlaid if necessary. Lines 355-357 do the copy, and prepare to do an
overlay copy.

Removing Unused Click Zones
Line 359 removes the click zone for the ladder since it will likely be
missing from the location scene. If the player is in one of the rooms
where the ladder can be seen propped up, the click zone will be
defined next. The conditional statement at line 361 jumps down to line
378 if the ladder is not in the room. If the ladder is present, then the
room numbers are checked one by one, the larger picture of the ladder
is copied from one part of screen 2 onto the location scenery in
another part of screen 2, and the click zone is defined. In each room
where the ladder is visible, it will be placed at different coordinates,
and the click zone will be defined accordingly. You will see five similar

25 - 7

The Visionary Programmer's Handbook

25 - 8

sections of source code in lines 362-377, each doing a copy and defin
ing a click zone for a different room.

The final section of the ReDrawScreen subroutine does the actual
copies, moving the location scene to the visible screen's location win
dow and drawing the proper six compass buttons in their places. These
lines of code can be seen from lines 380-387. The mode is set to draw,
then the location window is copied to screen 0 in line 381, and the
compass buttons are copied to screen 0 in lines 382-387.

Notice that when copying the compass buttons, the proper offset vari
ables are added to the Y coordinates for the source of the copy, so that
the highlighted picture of the button or the ghosted picture of the but
ton will be shown, whichever is accurate.

Common-Message Subroutines

Some common messages are contained in the next five subroutines.
These are messages that are used so frequently that it was easier for
me to place them in subroutines to be called when needed. They are
used in nearly every movable object file, and as you will see in the
source code from lines 393-424 simply use the print subroutine to dis
play messages to the text window. The messages are "it already is",
"you can't do that", "you don't have it", "you already have it" and
"OK."

The next group of subroutines from line 428 all the way down to line
585 are all called when nonmovable objects are clicked on. When the
player wants to examine part of the location scene, the mouse button
can be clicked when the pointer is on the object in question. The click
zones defined in each room file send the game to these subroutines.
The subroutines are simple in the extreme.

The exact text string is set in the variable $tx so that it can be echoed
to the screen and ghosted to the parser, just as if the player had typed
the words instead. Then the ButtonUsed variable is set to 2, to notify
the main loop that a line of text waits to be input. The value of 2 also
tells the main loop that no button on the screen needs to be shown
being pushed in or popping back up.

Remember that when the main loop checks for keypresses, it checks
once each time through the loop for mouse clicks. If a defined zone
has been clicked in, the program jumps to one of these subroutines and
then returns to the main loop, in order to process the information.

Breaking Objects

When the player tries to open the bottle, it won't open. Chances are
the next action will be an attempt to break it, in which case this next

Even a
graphics adven
ture sometimes
needs text to
explain things
that happen.

Chapter 25: The Cannibal.SUB File

subroutine is called. The BreakBottle subroutine at line 589 permits
the player six different ways to break the bottle.

The player needs to be holding something hard in order to break the
bottle - the bottle will be broken only if the inventory contains the
coconut, the shovel handle, the shovel blade, the complete shovel, the
hammer, or the chisel. If the player holds even one of these objects,
the subroutine SmashBottle is called which does the actual breaking.
Otherwise lines (,()3-606 tell the player "you have nothing hard enough"
to break the glass bottle. Now let's look at the next subroutine and see
how the bottle breaks.

The SmashBottle subroutine at line 612 calls a subroutine to destroy
the bottle, then calls a subroutine to add the paper found inside the
bottle to the room, and then prints a message to the text window. Line
613 sets the ObjNum variable so that the call to the subroutine
DestroyObject will know which object to search the inventory window
and the inventory array for. The DestroyObject subroutine was ex
amined in the chapter on GetDrop.SUB.

When the bottle is broken, a paper bearing a message will be found
inside. Line 615 places the paper in the current room. Line 616 sets
the value of ObjNum in preparation to call the next subroutine. Line
617 calls the AddObject subroutine which places the picture of the
paper at the top of the scrollbar, and also adjusts the scrollbar array on
screen 2.

Once the picture of the bottle has been destroyed and the picture of
the paper has been displayed, lines 618-623 print a message in the text
window explaining to the player what has happened. Without this mes
sage, the player wouldn't know what happened to the bottle that was in
the inventory window, and why a piece of paper suddenly appeared in
the scrollbar window.

NoSwim

The NoSwim subroutine at line 628 is called whenever the player tries
to swim out from either section of the beach. Remember there were
two special room files in the Cannibal.ROOMS file that are briefly
visited when the player tries to swim in the ocean. Both rooms set an
attribute and then send the player back to the beach. Upon returning
to the beach, this subroutine is called and the attribute is cleared. The
reason for the attribute is to keep the room description from being
displayed again when being forced back to the beach.

If the player should attempt to sit down in the rowboat or the canoe,
nothing really happens except that a message is printed. No attributes
or variables are set, when the player sits down. They aren't needed in
the game, since the view of the location and everything else remains the
same whether the player is standing or sitting. The only thing that
needs to be done is to recognize that the player has asked to sit, and to

25 - 9

The Visionary Programmer's Handbook

25 -10

acknowledge that the command has succeeded. The two subroutines at
lines 641 and 650 are called when the player tries to sit in the rowboat
and canoe. As you can see, they simply say in different ways that the
player is sitting.

The Dig Subroutine

The dig subroutine starts at line 657 and is called whenever the player
clicks on the DIG button or types the command from the keyboard.
The subroutine is a large one, because the player must be permitted to
dig (or at least attempt to dig) in every location.

There is a variable dig tset in each room file, that tells the game about
the ability to dig in the room. If the dig variable is 3, then the player
can't dig in the room under any circumstances, and the message
doesn't really say why. This is used if the player should try to dig in
illogical places like inside the wood shack, on the roof of the shack, or
in the top of the tree.

If the variable dig is set to 2, the player can't dig again, but is told
instead the reason is that the rock is too hard. This is used in the two
cave locations. If dig is 1, then the player can dig only if the complete
shovel exists in the inventory. This applies to the meadow, the ground
by the tree and the ground by the boulder. Finally, if dig is 0, then the
player can dig without any tool. These are places where the player can
dig in the sand by hand, such as the sand dunes and the two beach
locations.

The first six lines of this subroutine deny the player the ability to dig
under any circumstances. They are called when the player either has
tried to dig in rock, or somewhere more bizarre. But starting at line
665, the player can dig if the shovel is in the inventory. Just having the
shovel handle or the shovel blade isn't good enough. Even having both
parts isn't enough- the player must put them together to make the
complete shovel before digging in the active areas.

If the player is in the meadow by the shack, digging uncovers the radio
battery. Digging by the boulder finds the flare gun. By the palm tree,
digging reveals the chisel. The lines from 667-700 make up the source
code for these three areas. The code is divided into three similar
routines, one for each location.

The lines from 667-677 are executed when the player digs in the
meadow. If the found attribute is set for the battery, then I know the
player dug here previously and already found the battery. In that
event, line 669 calls a subroutine that tells the player nothing further is
found when digging. If the found attribute is not set for the battery,
then a message is printed telling the player what has been found, the
object technically known as "04battery'' is placed in the room, the
found attribute is set so that the battery won't be found a second time,

The wet
matches are a
misdirection
used to make
the game solu
tion a bit trick
er to find.

Chapter 25: The Cannibal.SUB File

and the AddObject subroutine is called to show the picture of the bat
tery in the scrollbar window.

A similar routine is then executed from lines 678-688 which permits the
player to find the flare gun by the boulder. And in lines 689-700
another routine is executed which checks to see if the player finds the
chisel by the palm tree. Line 702 is the default that is executed if the
player does not carry the shovel.

Starting in line 705 the program checks to see if the player is standing
in a sandy area and can dig without any tools. Again, there are three
similar routines for the three sandy locations. The routine at line 706
creates the matches when the player digs at the east end of the beach,
in the same manner as described above. The section starting at line
717 finds the driftwood buried in the sand by the rowboat. And the
part of the subroutine starting at line 721!, makes the shovel handle ap
pear when the player digs in the sand dunes. All three of these
routines work in the same way as described above.

The next subroutine is called DigNothing and is called from several
places within the dig subroutine. It simply prints a message that noth
ing is found when digging. The subroutine after that is even shorter. It
is called whenever the player attempts to burn any of the objects, and
prints a reminder that nothing can be burned with wet matches. The
matches, you will remember, always remain wet in the adventure. They
never dry out, even though the player is not supposed to know that, and
will hopefully try to dry and use them.

BreakCoconut

The BreakCoconut subroutine is called in case the player tries to open
the coconut with the hammer or chisel. It's purpose it to simply deny
the player the ability to break the coconut. But notice that it doesn't
simply say "You can't" - it tells the player why the coconut can't be
broken. It's important to remember in designing your own adventure
games that you must always telJ the player why something can't be
done. It not only reduces the player's frustration but also can be used
to give clues and hints for what you want the player to try.

EatCandy

The next to the last subroutine in the Cannibal.SUB file is the Eat
Candy subroutine at line 773. This is called from the movable object
file and the special vocabulary action file. When called, it destroys the
candy bar, gives the player temporary energy and prints a message to
the screen. Line 774 checks to make sure the player actually has the
candy bar in the inventory. This is important, because the subroutine
can also be called if the candy bar is simply in the same room as the

25 -11

The Visionary Programmer's Handbook

25 -12

player. But if the candy bar is in the same room, the DestroyObject
subroutine won't work properly.

So I first need to check to make sure the player actually holds the
candy bar, and print out a message saying "you don't have it" other
wise. Then the energy variable is set to 4. Remember that this is
decremented in the NPC.OBJ file, to make sure the player pushes the
boulder soon after eating the candy bar. The object number is set, and
the subroutine to destroy the candy bar is called. Finally, the player is
given a message that eating the candy has made the player stronger - a
hint to try again to move the boulder.

Examine Shack

The last subroutine is a straightforward message subroutine that is
called when the player attempts to examine the floor of the shack. And
with that routine the entire subroutine file is completed. As you have
seen, a large variety of subroutines are present in this one file.

I have also separated out some specialized subroutines that I wanted to
be able to find easier. These included the GetDrop.SUB, StartUp.SUB
and MainLoop.SUB files. When you create your own games, feel free
to split up your subroutines in any way that makes your job easier. Un
less you are writing a book like this, no one else is going to see your
source code, so your only consideration should be what is easiest for
you.

We have now examined nearly all the source code for Cannibal. The
only file left untouched is the special vocabulary action file. This is
where I have added commands that would not be picked up elsewhere
by the parser. The next chapter will take a close look at what types of
things are considered vocabulary action file entries.

Chapter 26: The Cannibal.V OC File

You can easily
expand the
abilities of the
Visionary
"parser"

The vocabulary action file is a specialized file where you can anticipate
commands from the player that will not be caught elsewhere. Usually
they are not caught elsewhere because they are not actions made on a
recognizable object.

These may be single word commands like "dig" or "jump" which are
verbs without a noun. They may be commands that would confuse the
parser with directions, like "get up" or "look down". They may also be
variations on a single command, like "turn on the radio" or "turn the
radio on". This chapter will take a close look at what types of com
mands go in this file, and why.

Debugging Actions

The first three vocabulary actions in this file are special ones. They are
never intended to be used by the player, but are to help me keep track
of things as I debug the program.

Endgame
The first action is endgame and serves to jump to the end of the game.
If I am testing the game, and want to check to make sure the ending
works properly, I can simply type "endgame" and the .VOC file will
find this action and set me at the end of the game. The timer will be
set so that the cannibals are about to arrive. I am placed on the east
end of the beach. The canoe is set in the water, and the shovel is
placed in the room.

At this point I can either choose to wait a few turns and allow the game
to end in a loss, or I can paddle the canoe and end the game in a win.
This command came in handy many times as I was checking the anima
tion of the death scene, the loading of the music, and other things at
the end of the game.

Status
The next vocabulary action is status. When I am debugging Cannibal I
can type "status" to find out the value of some important variables. It
tells me how much fast memory and chip memory is left, as the game
plays. This is important to check, in order to make sure that the game
is compatible with all Amiga computers, even those with only a half
megabyte of chip RAM.

The routine also prints out the current device name, which will let me
know if the computer has properly copied the screens into RAM and is

26-1

The Visionary Programmer's Handbook

26 -2

loading them from there. The timer and items held are also printed
out, since there are times I need to know how soon the cannibals will
arrive, or if the inventory window is correctly displaying the same num
ber of items that the game is keeping track of.

View Hidden Scenes
The third action is one that I created to allow me to see the screens
that are normally hidden from the player's eyes. By typing "cycle" I
can be shown graphic screen buffer 1, which contains the location
scenery as loaded from the file.

Then I can next see screen buffer 2, which contains the "buttons.pie"
file which contains all the buttons and movable objects. Screen buffer
23 shows me the top part of the long thin scrollbar. Screen buffer 24
shows me the small overlay buffer that Visionary uses to create masks
for overlays. Then the text screen is shown, and finally I am cycled
back to the game screen at screen buffer 0.

Movement between the screens is done by pressing the mouse button.
Notice that between each "show screen" command are two ''while"
loops to make sure the button has been pressed and released. This
"cycle" routine has come in handy many times, when things weren't
working right and I wanted to view the various screens to help pin
point the problem.

» Normally, all debugging routines would be removed
before releasing the game. You don't want a player
accidentally stumbling across these undocumented
features that were only intended for your use. But I have
left them in the program so that you can see examples
of routines that you can create to help you In the
programming of your own game.

Help

I have strongly recommended earlier in this book that you always in
clude "helps" for the player. When the player gets stuck, typing a
HELP command should produce some pertinent clue about getting
past the trouble spot.

The action in line 57 shows how these helps are programmed into your
game. Since the word "help" is a single verb and acts on no defined
object, it must be defined here in the vocabulary action file. Notice
that I have also listed some alternate ways to ask for help, such as
"hint", "clue", and others.

Define context
sensitive help
messages in
the .voe me

Handle
directions
used as
prepositions

Let the player
refer to an
object which
does not yet
exist

Chapter 26: The Cannibal.VOC File

In Cannibal, I have only used a single help message, given any time the
player asks for help. In a full-sized adventure, a single, repeated help
message would not be recommended- it would be better to check the
room the player is currently in, and give separate hints that are
designed specifically for the current room or the present puzzle. "Con
text-sensitive help" is easy to do by checking the current room number,
or by checking for the presence or absence of certain objects.
Whatever you decide for your own game, remember that all "helps" go
here in the vocabulary action file.

Supplementing Game Actions

The next vocabulary action is one that supplements the action "sit in
the canoe." The action entry for this command can be placed in the
file for the "canoe" object and will execute properly. But if the player
chose to type "sit down in the canoe", the word "down" will cause the
parser problems and will generate an error.

In order to make the game more user-friendly and permit the use of
this exact wording, I placed the possible variations on this command in
the vocabulary file. Notice that there are variations on this command,
all of which will not be caught by the parser in the "canoe" file. All of
them can be listed here, and help make the game play smoother
without requiring the player to find a specific combination of words to
accomplish the act of sitting down in the boat.

Usually, I would expect the player to try digging by clicking on the DIG
button on the screen. On a DIG command, the dig subroutine is
called, and the game checks to see is found. However, I also an
ticipated that the player might try typing the word "dig" instead of
clicking the button. The vocabulary action dig at line 95 will catch such
keyboard input and call the proper subroutine.

Building a shovel can be accomplished three ways. 1Wo of them refer
to an existing object, and can be placed in those object files. The third
method refers to a non-existent object, the shovel. Since the object
does not exist, the vocabulary action file must be used to allow this
third type of input to be accepted.

If the player types "put the shovel handle in the blade'', the object file
for the handle will be searched for the verb "put" and the shovel will
be properly created. If the player types "put the blade on the handle",
the object file for the blade will be searched for the verb "put" and the
shovel will again be properly created. But if the player types "put the
shovel together", the program will search object file for the shovel, and
find that the shovel is not present in the current room. It will then
return an error to the player.

To keep this from happening, I have designed this routine to be used
when the player enters any of several commands that refer to the as
sembling of the shovel. The routine used here is the same as found in

26 -3

The Visionary Programmer's Handbook

Allow
commands
that imply
some other
action in the
context of the
game

Permit
expected player
actions

Use noun
words as
adjectives

26 - 4

both the "handle" and "blade" files, and need not be explained again
here. For more information, go back to the chapter on Movable.OBJ
files.

I anticipate the player will try to swim to freedom. So I permit it in the
game, and tell the player that ''you tire and return to the beach." I
even encourage the player to try it, by highlighting the N compass but
ton when the player is standing on either end of the beach. I would
normally expect the player to use the mouse to click on the compass
button, but there is always the chance the player will type the command
to swim on the keyboard. The vocabulary action in line 132 anticipates
three different variations on the keyboard input, and gives the same
response as if the player were to use the mouse and compass buttons
instead.

Adding the "get up" command in line 147 was done for the sake of
completeness. Since I have allowed the player to sit down in the canoe,
I must also allow the "get up" action. Since nothing was really done
when the player sat down, other than acknowledging the command,
nothing need be done for "Get up" either. A simple "OK" is all that's
needed.

The object file for the bottle permits several ways to state the com
mand to break the bottle. There are two variations on the command
which would not be caught by the object file, due to the word "open."
For that reason, I have added these two variations to the vocabulary file
in lines 154-156. The reason again is to make the game more user
friendly and give the player more leeway to phrase the command.

For exactly the same reason, I have added two more ways to try to
break the coconut in lines l(i()-162. Again, the word "open" is per
mitted in "break open the coconut" and "break the coconut open."
Notice that you can leave the word "the" out of the vocabulary action
and it will be accepted if used.

The entry at line 166 was required because I wanted to use the word
"candy" as an adjective in the movable object file. The object was
referred to as "bar" to permit the player to type "candy bar". That
meant that the action to "eat the candy bar" could be placed in the
object file for the "bar", but the action to "eat the candy'' would have
to be placed here in the vocabulary action section. For more details,
go back and read the part of the Movable.OBJ chapter on the candy
bar.

The word "jump" is another one of those verbs that has no accompany
ing noun. Since there is no object file in which to place it, the com
mand to jump should be placed here in the vocabulary action file.
Since there were a variety of places in Cannibal where the player might
try to jump, it was important to include the command "jump" and not
leave it out of the game.

Provide a
response to
player actions

Include your
credit and/or
copyright notice

Chapter 26: The Cannibal.VOC File

The command to "jump" will never get the player anywhere in the
game. But that's no reason to ignore it. You must always anticipate
any logical action the player may make and plan an appropriate
response to it. So even though jumping does the player no good, I felt
it important to include it here.

You can see from the source code listed in this section, that a variety of
responses are given, depending on the location where the player tries
to jump. All of the responses tell the player that nothing happens, but
they tell it in different ways.

From the top of the palm tree, the player can see an ocean going
freighter far out to sea. This will be the source of eventual rescue. If
the player should either click on the picture of the ship, or type "look
out to sea" the routine at line 197 will be executed. It will give the
player a hint to help find the solution to the game.

The "look around the shack" command in line 208 will be given if the
player either types it, or clicks on the inside of the shack. In either
case, the "ExamineFloor" subroutine is called and the description is
given. The command is included here in the vocabulary action file be
cause the word "around" makes it difficult for the parser to catch it
elsewhere.

The action at line 214 will allow the player to identify the author of the
game, by typing "author author" or simply "author." It is doubtful that
most players will even be aware of this possibility, but is included just
in case. Its presence in the compiled code of the game with a
copyright notice may also be used to satisfy the legal requirement for
including a copyright notice within the compiled code of a software
product.

If the player clicks on the "quit" button, I must also anticipate that the
QUIT command may also be entered from the keyboard. If it is, the
action listed in line 227 will catch it and make the game end.

Since the inventory window always is visible and shows the player what
is carried, it is doubtful that any player would ever try to take inventory
the "old" way by typing on the keyboard. But I always try to anticipate
the player's unusual moves, and so the routine at line 233 will catch the
inventory request and remind the player the inventory can be seen by
looking in the inventory window.

Some Other Uses of .voe Files

Before we quit our examination of the vocabulary action files, let's look
at some other possible uses of this special file. If I had designed my
Cannibal plot just a bit differently, there would be additional reasons to
use the vocabulary action file. Let's consider what would happen in
some of those hypothetical situations.

26 - 5

The Visionary Programmer's Handbook

Handle actions
involving one
object placed
inside another
object

Provide for all
the nonnal
ways or
phrasing a
command

26 - 6

In the chapter on movable objects, we discussed the possibility of put
ting the batteries in the radio and removing them again. Although this
is not allowed in Cannibal, it serves as an excellent example of why
there is a need for the .VOC file. When the player asks to remove the
batteries from the radio, Visionary would normally reply "There are no
batteries here." This is because when the player uses the subject noun
of "batteries", Visionary checks the object file and finds that the bat
teries are not in the current location. Remember, that when the bat
teries have been placed inside the radio, they are no longer actually in
the same room with the radio. Instead, they have been moved to the
"unused" room that stores such objects. The only way your game
knows the batteries are in the radio, is that you have set an attribute for
the batteries, such as "InRadio."

So in this example, the player's command to "remove the batteries from
the radio" will not be successful if the action block is placed in the
object file for the batteries. It should be placed instead in the
vocabulary file. This file is checked after every move, so if the game
can't find a way to respond to the request, it will be caught here.

Another example of where the vocabulary file can come in handy is
when you have a radio or a flashlight that the player can turn on. There
are basically two different ways the player can make this request: "turn
the radio on" or "turn on the radio." Only the first way will be accept
able when used in the radio's object file. In the second way, the word
"on" comes before "radio" and changes the way Visionary sees the line.
The simplest way to solve the problem is to add a vocabulary action
entry that allows the player to say "turn on radio." In this way, you
have allowed the player more variety in command phrasing in your
game, and it becomes more user-friendly.

As you gain more experience designing adventures, you will find more
and more occasions to use the vocabulary action file. Some will be
subtle differences, while others will present an obvious need. This is an
excellent file to finish your game. When everything else is done, always
go back to the vocabulary action file and check to see if there are any
special commands that have not been covered elsewhere. If so, this is
the place to put them.

We've now completed our look at all the source code files that went
into the creation of the Cannibal adventure. The next chapter will try
to pull everything together and see how the entire game is constructed
of these parts.

Chapter 27: Putting It All Together

Now that we've taken an individual look at each file of source code that
makes up the Canmoa/ game, let's take a step backwards and see how
it all fits together to form a complete game. We will be taking a more
generalized view of the game that we have in the last few chapters.

Initializing

Each of the files has a specific purpose to the final game. When the
game first starts, it executes the Cannibal.ADV file which among other
things tells it in which room the game will start. The program then
executes that room file. In Cannibal, the initial room is the
"west end of beach". - - -
When the program reaches there, I take care of all the initialization
routines. All the graphics, music and sound are loaded into the game,
and the basic click zones that will be used throughout the entire game
are defined. To make sure that this initialization routine is never called
again, I create and set a room attribute. Whenever the room is entered
again, through the normal play of the game, the attribute will be check
ed and the initialization routine will be skipped.

The Mainloop

The next step is to jump to the main loop of the game. Since Visionary
is only able to jump to subroutines, this main loop was made into a
subroutine, even though it will only be called once and will never be
exited until the game is over. The file MainLoop.SUB is split into two
sections. Each section is loop itself. The two sections consist of a loop
within a loop. The larger outer loop gets a player command and then
ghosts the command to the Visionary parser. The inner loop checks
for individual keypresses and builds the player's command one letter at
a time. This inner loop also checks for mouse clicks on any defined
click zone, and if it finds any, it acts as if a command was typed from
the keyboard.

All the other files are ones that are called after either a click zone is
selected with the mouse, or after a typed command is ghosted to the
Visionary parser. If the player picks up and object from the location
window and puts it in the inventory, the parser in the main loop is
bypassed, and the action is handled strictly within the routines found in
the GetDrop.SUB file. Otherwise, all mouse clicks are dealt with by
subroutines and then the parser acts on the string variable passed to it
by the subroutine.

27 -1

The Visionary Programmer's Handbook

27 -2

Except for getting and dropping objects, all mouse clicks will eventually
be handled by the parser. When click zones are defined, they specify a
subroutine to be called when the zone is activated by clicking the
mouse button. Generally the subroutines called in this way only need
to set a string variable $tx that contains the command to be parsed and
need to set a numeric variable to tell the main loop that a command is
ready to be parsed. Then the inner loop that accepts the commands is
exited, and the command is ghosted to the parser.

Visionary's parser takes care of splitting the command into separate
words and acting on them. If the command is to move in a specific
direction, the program first checks to make sure the move is a legal
one. If the direction has been defined, and the rooms properly linked,
the program executes the room file for that particular room. Other
wise, it will report an error to the text window. It also sets an error
variable and the $LastError string variable.

After ghosting the command to the parser, I check this error variable,
and print the contents of the $LastError variable to the graphic screen,
so that the player can see what was wrong. If the room file is executed,
my program forces a new scene to be displayed in the location window,
and redraws the scrollbar that contains the objects present in the new
room. Then the NPC.OBJ file is called, since it is called after every
move. And finally control is returned to the main loop immediately
after the ghost command that was just performed.

If the command input by the player was not a direction command, the
parser splits it into parts so that it will know how to properly act on the
command. It weeds out the articles, like "a", "an" and "the". It iden
tifies the verb, which tells the parser what action is requested. It iden
tifies the subject noun, which tells the parser the object file to execute.
In the simplest cases, like "break the bottle" this is all that is necessary.
The parser identifies the verb "break" and the subject noun "bottle."
Then it checks the room to see if the object is present, either in the
room or in the player's inventory.

If the object is not present, an error is set and reported back to the
player. Otherwise, the object file is searched for the action that
matches the verb. If it is found, the action block is executed, taking
whatever action the programmer designed. If the action is not found,
another type of error is reported to the player.

It is important to note that after the object file is checked, the special
vocabulary action file is checked. In this way, special actions are
caught that would otherwise produce an error. If the command typed
by the player is found in the vocabulary action file, any previous errors
set in the object file are cleared, and whatever is programmed into the
specific action in the vocabulary action file is executed. For example, if
the player said "break the bottle open" and the exact action is not
found in the object file for the bottle, the entry in the vocabulary action
file will be executed and no error will be generated.

Chapter 27: Putting It All Together

The NPC.OBJ File

And finally, after both the object file and vocabulary action file have
been checked, Visionary will execute the NPC.OBJ file. Remember
that this file is always checked after every move, so that characters in
the game other than the player, can be moved to new locations. It is
also an excellent place to check for timers and create random events.

After the NPC.OBJ file is executed, then Visionary passes control back
to the programmer. Notice that everything described in these last four
paragraphs is done internally by Visionary after the command is
ghosted. As a programmer, you don't have to do anything. But as a
programmer, you are responsible to understand the inner workings of
VISionary so you can write your programs more efficiently.

After Visionary has returned control of the program back to my pro
gram, it jumps back up to the start of the main loop again, and starts
checking for further input. When you look at the general construction
of the game from a wider viewpoint, it really is a simple idea.

The Call Schedule

Let's summarize how the files are used, one last time. The Can
nibal.SUB file is first called. It then jumps to the Cannibal.ROOMS
file. Then I take control and make it jump first to the StartUp.SUB file
and then to the MainLoop.SUB file, where the game is actually played.
While the game is being played, any use of the mouse to get and drop
objects calls the GetDrop.SUB file. If the player moves to a new room,
the Cannibal.ROOMS file is called again.

Any other input is parsed by Visionary's parser, and the Nonmov
able.OBJ, Movablel.OBJ and Movable2.0BJ files are called depending
on what object was used in the command. These files often call the
Cannibal.SUB file. Then the Cannibal.VOC file is automatically called
by Visionary, and likewise the NPC.OBJ file is also automatically ex
ecuted. Then the game picks up back in the MainLoop.SUB file where
it left off. This accounts for all eleven of the source code files used in
the Cannibal game.

The next and final chapter will remind you of some shortcuts and spe
cial techniques that I used in Cannibal. It will also introduce some
additional tricks that I didn't use in my game, but which you may find
useful in your own creations.

27 - 3

The Visionary Programmer's Handbook

27 - 4

Chapter 28: Additional Tips and
Tricks

This chapter will list some special tips on using Visionary, and will in
clude some techniques I decided not to use in the final version of Can
nibal, but which you may find useful. Keep them in mind as you write
your own games. They can make your job as a programmer easier.
They can also make your game look nicer, play smoother, and react
faster.

ASCII Codes

Check the Visionary manual for more information on in-line formatting
of ASCII codes. The "\F", "\R" and "\B" codes used in the Main
Loop.SUB file are examples of these codes. Although they were
originally intended to be used with the text screen, they can be used
elsewhere in your programs.

You may remember I used some of them in my main loop to see if the
player had pressed the [Backspace] or [Return] keys. Not only can
they be printed to the text screen, they can also be included in string
variables, as I did to check for the [BackSpace] and [Return].

I found the "\F" form-feed command useful in clearing the text screen
of unwanted text, so that any requester windows would look cleaner.
And finally remember that any ASCII character can be printed, by
using the back-slash followed by a three digit number. I was able to
put a quotation mark in some of my messages by using "\034", some
thing that I would have been unable to do any other way. Keep these
special ASCil codes in mind as you create your own games.

You can use the back-slash key to send an escape code, in order to
change pen numbers. What are pen numbers, and why would you want
to change them? The text screen has four colors. Color 0 is the gray
color of the background, and defaults to RGB values of 8,8,8. Color 1
is the black color of the text that the game prints, and defaults to RGB
values 0,0,0. Color 2 is the white color of the text that the player types,
and defaults to RGB values of 15,15,15. Color 3 is the red color of the
bar at the top of the text screen, and defaults to RGB values of 8,0,0.
You can change these using Visionary's PALE'ITE command. You can
also change the normal game output from color 1 to color 2 by using
this simple line:

T \027[32m

28 -1

The Visionary Programmer's Handbook

28 -2

This switches the output pen from 1 to 2, by printing an escape code
and the code to switch pens. In this way, the color of the game output
will be white, the same as the player input. You can switch to any pen
you want, by using the numbers 30-33 for pens 0-3. This technique was
used in the LoadingError subroutine found at the end of the Start
Up.SUB file.

Debugging

The next tip has to do with the cross-reference file Visionary can
produce. It is very useful in finding errors reported to you by DBUG.
When you are testing your game, errors are bound to appear. When
they do, they will be printed in the special DBUG window, that you can
see by using the layering gadgets. These errors will also be written to
the .ERR file, so you can examine them later.

Each error will tell you three things: the error number, a brief descrip
tion of the error, and the line in which the error occurred. To check
the line number, you will need to use the .XRF file. This is a file which
VCOMP will create when compiling your code into the .GAM and
.WRD files. It will only be created if you specifically request it as a
compile time option. My advice is to always request it. It only in
creases the compile time marginally, and is well worth it. The .XRF
file will list your entire source code, with line numbers. When errors
are reported, you can check the .XRF file and easily find the exact line
which caused the problem. Using this information along with the error
number and description will make correcting the error a simple task.

Odds and Evens

This next technique involves odd and even. If for some reason you
want to know if a variable is odd or even, there are two simple, short
routines that do the job different ways.

or

IF VARIABLE AND 1 THEN
T This number is odd.

ELSE
T This number is even.

ENDIF

IF 1 - (VARIABLE AND 1) THEN
T This number is even.

ELSE
T This number is odd.

ENDIF

Either one can be used in a variety of ways, not restricted to their use
in conditional statements.

Don't write to
a screen unless
you have to

Unload un
wanted screens
from memory
before a SA VE

Chapter 28: Additional Tips and Tricks

External DOS Commands

What if you are multi-tasking some other program, and want to stop it
with a [Ctrl]-C command? This may happen if you are using an exter
nal animation player or sound player -you find that if it was being
played normally from CLI, you could exit by holding down the [Ctrl]
key and pressing C. But how do you stop the external process from
within your Visionary game?

The answer lies in Visionary's DOS command. You need to know the
process number. This refers to the number that appears on the CLI
screen from which the external program was run. It usually looks
something like "2" except the number may be different. In this ex
ample, the DOS command would be:

DOS "break 2 c"

This line will send the command to CLI and stop whatever process 2
was executing.

Saving Memory

Let's next consider ways to make your saved game files smaller, so they
will take less disk space and will load faster.

When Visionary saves a game position, it saves all graphic and sound
files as well as the values of all variables, attributes, rooms, etc. How
ever, if the graphic screens have not been modified since they were
originally loaded, they are NOT saved. When the game is loaded
again, the unmodified graphic files will be loaded from their original
files.

The fact that all modified graphic screens are saved in the .SAV file,
allows you to use techniques to keep the .SAV file size at a minimum.
First, don't write to a graphic screen in memory unless you have to. In
that way, it won't be included in the .SAV file. For example, in Can
nibal I place my overlay buffer on screen 2. That means screen 2 (the
screen containing the file buttons.pie) must be included in the .SAV
file. A better way would be to create special screens in memory to do
the overlay.

Then just before a game is saved, unload that screen from memory so
that it won't be saved. Remember, it doesn't actually contain anything
that must be saved anyway. Then after the save is over, create the
screen again. Remember to create the screen again after a load. In
this way, your .SAV file will be appreciably smaller.

28 - 3

The Visionary Programmer's Handbook

Don't encode
your title
screen

Close the title
screen when
the game starts

28 - 4

Encoding Files

As long as we are talking about graphic files, let's look at the techni
ques of encoding your graphic and sound files.

It's wise to encode them in your game, so that when it is released for
others to play, no unauthorized changes can be made. Without the en
coding, anyone could load the graphics files into a paint program and
make any modifications they wished. Or they could change the
digitized sounds with a sound editor.

It's important to remember that the password used in the ADV file
must match the password you use when you use the VCODE program
to encode your graphics and sounds. It's also important to use a dif
ferent password on each game you write. In this way, each set of
graphics and sounds have their own password and they are much more
secure. VCODE is an important utility program available on your
Visionary disk, and I recommend that you use it.

The Title Screen

The LoadScreen utility program that is on your Visionary disk is useful
for displaying your title screen. It can be displayed while your Vision
ary game is loading and getting set up to start. Notice that it allows
some options like color cycling, which permits a type of animation in
your title screen if you wish it.

Since LoadScreen is a separate program from Visionary, it will not
decode graphic screens that have been encoded with VCODE. For
this reason, your title screen should be the only one that is not en
coded. The best way to keep your title screen visible until the right
moment is to link your game with VLINK using the -g option. This
keeps the game's graphic screens in the background, while the title
screen is displayed.

When your game is ready to be seen, you can force it to the front with
a ScreenMode Graphics command from within your Visionary game.
That puts the title screen in the background out of the way. Then to
free up the Chip RAM that is no longer needed, you should use the
DOS command to call the CloseScreen utility. It will close the graphic
screen and give your game more chip ram to use.

Changing the Mouse Pointer

While we are on the subject of graphics, here is another tip regarding
the color of the mouse pointer. In a Visionary game, the mouse
pointer is in the shape of a hand. You can change the color of the
hand by changing the colors of your palette. Color 17 controls the
main color of the hand. Color 18 controls the highlights in the hand.

Changes in a
32~olor screen
palette may af
fect the mouse
pointer

Your game
should work
with both
NTSCand PAL

Chapter 28: Additional Tips and Tricks

If you are using a 32-color screen, be careful which colors you use in
your palette for colors 17 and 18, or the hand may not show up well
against your graphics. You want it to contrast with the rest of the
screen, no matter where the mouse is pointed. It may take some ex
perimenting to find the correct colors. When you are working in the
high-resolution mode, you only have 16 colors in your palette, so you
need not worry about any conflict with colors. You can still set the
colors of the hand, by using Visionary's PALETIE command. But you
won't have to worry about any "hand" changes also changing your
other graphics.

PAL and NTSC

Another subject related to graphics is the NTSC standard as compared
to the PAL standard. A low-resolution screen in the NTSC standard is
320x200 pixels. In PAL standard, a low-resolution screen is 320x256
pixels. Higher-resolution modes vary proportionally.

Visionary can tell which type of system your game is being played on,
and makes that information available in the VideoMode variable. If the
variable is equal to 0, the mode is NTSC. If the variable is 1, the mode
is PAL. You should try to design your game to work with either stand
ard. This can be done by checking the VideoMode variable and then
modifying the names of the graphic files you load, to load the ones of
the proper length. You can also check the VideoMode variable in
order to modify your click zones, to accommodate the longer PAL
screen. Admittedly, this will all take more work, but it will result in a
more compatible game. Visionary gives you the proper tools, and it is
up to you to use them.

The Music Editor

Finally, let's take a quick look at MED, the music editor which can be
used to create music for your Visionary game. Using MED, you can
create music that has a high-quality sound, but takes only a fraction of
the space needed by a digitized sound sample.

The beauty of MED is that it is freely distributable and easy to learn to
use. You don't have to buy any music software, you can just obtain if
for free from a wide variety of sources. If you decide you like MED,
and intend to keep and use it, you should register with the author and
send in a small fee.

MED is easy to use. It comes complete with instructions for use, in a
text file that accompanies the MED program. Even a novice can learn
to write music with MED. I know, because I did. I am not a musician.
I've never played a musical instrument in my life- unless you count a
record player! But within a day of receiving MED and going through
the directions, I had created my first piece of music. It may not have

28 - s

The Visionary Programmer's Handbook

28 - 6

been a masterpiece, but it did use all four voices and several different
instruments. And it sounded good to my ears.

Since Visionary supports MED songs, I recommend you obtain a copy
and use it. It is available from any source of public domain material,
including Fred Fish disks and bulletin board systems.

This is not a complete list of shortcuts and techniques for use in
Visionary. But it lists some of the things I have used in the games I
have written. If you discover others, document them in your source
code, so you won't lose track of them.

And write me at Oxxi. I'd love to hear about your clever solutions,
neat tricks and imaginative uses of Vtsionary's abilities-I might even
publish them in my regular column The Sorcerer's Den in every issue of
Enchanted Realms magazine.

Visionary has opened a new world of interactive games programming.
Let's all take advantage of that fact and use this new language to its
fullest.

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16

17
18

19
20
21
22
23

24
25

26
27
28
29
30
31
32
33
34
35
36
37
38

Appendix A: Source Code for the
Cannibal Game

The .ADV File

ADVENTURE

PASSWORD jroj

VAR
timer
energy
dig

cannibal.ADV

0
0
0

keep track of moves
becomes 4 when you eat the snicker
ability to dig in O=sand l=dirt 2=rock

3=wood/tree

RoomNumber
LastRoomNumber
$device

space
$filename
chosenPic

to move
pie
ObjNum
obj Total
SBPosition
SBSize

max.
MaxMov
Slot

inventory
Newx
NewY
OldX
OldY
$tx
temp
templ
temp2
$temp
$letter
$sentence
sentence
TextPosition

1
1

5

19

0
0
0

room number 1-16
to see if a new scene needs to be loaded
will be null, or "ram:" if enough ram

filename variable for loading files
0-18 for picture in room array chosen

0-4 for position on scrollbar
1-19 for movable objects
total movable objects in this room
0-14 for scroll bar position
scroll bar size, will hold 5 objects

maximum movable objects = 19 (1-19)
temporary variable for openings in

new MouseX position
new MouseY position
old mousex position
old mouseY position
text string to be printed
temporary variable for various uses
temporary variable for various uses
temporary variable for various uses
temporary string for various uses
single character for getstring
built up sentence of input
length of the $sentence
position text on graphic screen

A-1

The Visionary Programmer's Handbook

39 MaxLines 5
pause

40 countLines
window

41 $return
42 return
43 $backspace
44 backspace
45 MainLoop
46 Textcolor 13
47 white 8
48 blue 13
49 red 9
50 green 28
51 brown 18
52 dununy
53 val
54 UpArrowActive
55 DownArrowActive
56 ButtonUsed
57 xl
58 yl
59 x2
60 y2
61 x
62 y
63 GON 13
64 Gos 13
65 GoE 13
66 GOW 13
67 GoU 13
68 GOD 13
69 offset -13
70
71 END VAR
72
73 ROOM
74 cannibal.rooms
75 END ROOM
76
77 OBJECT
78 NonMovable.obj
79 Movable! .obj
80 Movable2.obj
81 NPC.obj
82 ENDOBJECT
83
84 SUB
85 cannibal.SUB
86 GetDrop.SUB
87 MainLoop.SUB
88 Startup.SUB
89 ENDSUB
90
91 VOCAB
92 cannibal.voe
93 ENDVOCAB

A-2

maximum lines in text window before

counter for lines displayed in text

RETURN cannot be defined here
=1 when RETURN is pressed
BACKSPACE cannot be defined here
=1 when backspace is pressed
main loop while variable
default text color (blue)
palette color for white
palette color for blue
palette color for red
palette color for green
palette color for brown
dununy variable
value of the input character

0 =l if scrollbar up arrow shows
0 =l if scrollbar down arrow shows

;
; \

\
\ variables for block copies
I showing buttons depressed

; I
;I

offset to add to N button, (lighted)
offset to add to s button, (lighted)
offset to add to E button, (lighted)
offset to add to w button, (dark)
offset to add to u button, (dark)
offset to add to D button, (dark)
off set to pop button up

Appendix A: Source Code for the Cannibal Game

94
95 INITROOM west end of beach
96
97 ENDADVENTURE
98
99

100

A-3

The Visionary Programmer's Handbook

1
2
3
4
5
6

7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

The .ROOMS File

cannibal.rooms

Room unused ; where unused objects can be temporarily stored
code
set west end of beach,

he goes- -
ForcedReturn

go west end of beach
beach - -

endcode
Endroom

room west end of beach

attrib
started N
ForcedReturn N

endattrib

default
s sand dunes
e east-end of beach
n unused

enddefault

code

call clearButtons

click
click
click
click

34,
35,
36,
37,

140,63,
6,74,
6,45,
6,6,

225,105,
231,124,
231, 71,
231,71,

placeobj ocean, thisroom
placeobj sand, thisroom
placeobj sun, thisroom
placeobj sky, thisroom
dig := 0

RoomNumber : = 1

seeBoat
sees and
seeOcean
see sky

If west end of beach not started then
call startup

else
call ReDrawscreen
play sound 1, 0,0,40,0 ocean
stop sound 1 birds

endif

A-4

if player tries to swim,

here and is forced back to

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

Appendix A: Source Code for the Cannibal Game

if west end of beach is ForcedReturn then
unset west-ena of beach, ForcedReturn
call Noswim - -

elsif thisroom not visited then
$tx := "You are on the west beach, by a battered"
call print
$tx := "rowboat. The warm waters of the Pacific "
call print
$tx := "gently lap ashore."
call print

else
$tx : = "You are on the west end of the beach. "
call print

endif

if west end of beach not started then
call startUp2-

endif

endcode

endroom

room ocean2 ; used if player tries to swim out from
east end of beach

code
set east end of beach, ForcedReturn
go east end of oeach

endcode - - -

endroom

room east end of beach

attrib
ForcedReturn N

endattrib

default
w west end of beach
n ocean2

enddefault

code

call clearButtons

click 36, 6,6,
click 37, 6,82,

231,82, SeeOcean
231,124, seesand

if canoe is InWater then

A· 5

The Visionary Programmer's Handbook

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

RoomNumber ~= 4
click 34, 70,39,
click 35, 118, 23,

else ; if canoe is
RoomNumber : = 2
click 34, 33,68,
click 35, 87,53,

140,63, seecanoe
170,50, seecanoe
beached

113,107, seecanoe
137,88, seecanoe

endif
Call ReDrawscreen

placeobj sand, thisroom
placeobj ocean, thisroom
dig := 0

if east end of beach is ForcedReturn then
unset east-ena of beach, ForcedReturn
call Noswim - -

elsif thisroorn not visited then
$tx := "You are on the east end of the beach."
call print
$tx := "A shallow lagoon is north. A native"
call print
if canoe is InWater then
$tx := "canoe floats in the shallows."
call print

else
$tx := "canoe lies beached at your feet."
call print

endif
else

$tx : = "You are at the east end of the beach."
call print

endif

endcode

endroom

room sand dunes

default
n west end of beach
s meadow

enddefault

code

call ClearButtons

click 34, 55,6, 75,21,
click 35, 94,88, 126, 111,
click 36, 207,54, 231,74,
click 37, 217,89, 231,99,
click 38, 154,58, 191,65,
click 39, 6,22, 100,33,

A-6

seePlant
seePlant
seePlant
seePlant
seeocean
see Dunes

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

Appendix A: Source Code for the Cannibal Game

click 40, 6,34,
click 41, 6,57,
click 42, 6,6,

134,56, SeeDunes
231, 125, seeDunes
231,55, seesky

RoomNumber : = 3
call ReDrawscreen
play sound 1, 0,0,20,0
play sound 2 , 1, 0, 10 , 0

placeobj sand, thisroom
placeobj dunes, thisroom
placeobj plant, thisroom
placeobj sky, thisroom
placeobj ocean, thisroom
dig := 0

ocean
birds

if thisroom not visited then
$tx := "You are walking through the sand dunes."
call print

else
$tx := "You are at the sand dunes."
call print

endif

endcode

endroom

room meadow

default
n sand dunes
s by tne boulder
w in-the-shack
e top of-the cliff
u top-of-the-shack

enddefault -

code

call ClearButtons

click 34, 6,35,
click 35, 23,49,
click 36, 39,76,
click 37, 112,68,
click 38, 140,87,
click 39, 140,53,
click 40, 51,38,
click 41, 129,51,
click 42, 6,6,

RoomNumber : = 6
call ReDrawscreen

22,124,
44, 124,
115,119,
126,78,
231,124,
158,57,
128,124,
231,124,
231,52,

seeshack
seeshack
seePlant
seePlant
seePlant
see ocean
see Dunes
See Dunes
see sky

stop sound 0 ocean

A-7

The Visionary Programmer's Handbook

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

play sound 2, 1,0,40,0 ; birds

placeobj plant, thisroom
placeobj sand, thisroom
placeobj sky, thisroom
placeobj dunes, thisroom
placeobj ocean, thisroom
dig := 1

if thisroom not visited then
$tx := "You are standing in a meadow, by an old"
call print
$tx := "wooden shack. The door is missing, and"
call print
$tx := "no one is in sight."
call print

else
$tx := "You are in the meadow."
call print

endif

endcode

endroom

room top_of _the_shack

default
d meadow

enddefault

code

call clearButtons

click
click
click
click
click

34,
35,
36,
37,
38,

195,74,
216,80,
6,67,
156,38,
6,6,

RoomNumber : = 5
call ReDrawscreen

206,92,
226,105,
231,124,
185,58,
231,75,

placeobj plant, thisroom
placeobj ladderl, thisroom
placeobj sand, thisroom
dig := 3

seeLadder
seeLadder
see Roof
seePlant
sees and

if thisroom not visited then
$tx := "You are on the top of the shack. The"
call print
$tx := "weathered boards are nailed down"
call print
$tx : = "securely, to form the roof."

A-8

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

Appendix A: Source Code for the Cannibal Game

call print
else
$tx := "You are on the top of the shack."
call print

endif

endcode

endroom

room top_of_the_cliff

default
w meadow

enddefault

code

call ClearButtons

click 34, 97,76,
click 35, 153,96,
click 36, 190,59,
click 37, 61,74,
click 38, 96,61,
click 39, 190,82,
click 40, 115,13,
click 41, 78,6,
click 42, 6,106,
click 43, 105,59,
click 44, 6,6,

RoomNumber := 7
call ReDrawscreen

112,98,
162,113,
211,77,
102,108,
114,81,
218, 124,
137,74,
140,35,
190,124,
194,106,
231,124,

seePlant
SeePlant
seePlant
SeeRocks
seeRocks
SeeRocks
seeTree
seeBoughs
see sand
see sand
see sky

play sound 2, 1,0,10,0
play sound 1, 0,0,10,0

birds
ocean

placeobj sand, thisroom
placeobj boughs, thisroom
placeobj rocks, thisroom
placeobj plant, thisroom
placeobj sky, thisroom
dig := 1

if thisroom not visited then
$tx := "You find yourself at the top of a cliff."
call print
$tx := "Except for the palm tree, very little"
call print
$tx := •vegetation is found here. Far below, the"
call print
$tx := "waves crash against the cliff."
call print

else
$tx := "You are at the top of the cliff."

A-9

The Visionary Programmer's Handbook

336 call print
337 endif
338
339 endcode
340
341 endroom
342
343
344
345 room by_the_boulder
346
347 default
348 n meadow
349 enddefault
350
351 code
352
353
354
355
356
357
358
359
360

call clearButtons

click 36, 6,6,
click 37, 84,83,
click 38, 82,101,
click 39, 60,115,
click 40' 6,6,

94,63,
198,100,
130,114,
103,124,
231,124,

361 if boulder is moved then
362 RoomNumber := 11

see sky
sees and
sees and
see sand
SeeRocks

363 click 34, 57,35, 141,91, seeBoulder
364 click 35, 142,26, 172, 78, seecave
365 placeobj cave, thisroom
366 else ; boulder is in front of opening
367 RoomNumber := 9
368 click 34, 126,12, 185,82, seeBoulder
369 endif
370 call ReDrawscreen
371 play sound 2, l,0,10,0 birds
372 stop sound 0 drip
373
374 placeobj sand, thisroom
375 placeobj rocks, thisroom
376 placeobj sky, thisroom
377 dig := l
378
379 if thisroom not visited then
380 $tx := "You are standing at the south end of"
381 call print
382 $tx := "the meadow by the rock cliff. A giant"
383 call print
384 if boulder is moved then
385 $tx := "boulder lies beside the opening to"
386 else
387 $tx := "boulder lies in front of an opening to"
388 endif
389 call print
390 $tx := "a cave in the cliff wall."
391 call print
392 else

A-10

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

Appendix A: Source Code for the Cannibal Game

$tx := "You are back beside the boulder."
call print

endif

endcode

endroom

room in the tree

default
d top of the cliff

enddefaul t -

code

call ClearButtons

click
click
click
click
click
click

34,
35,
36,
37,
38,
39,

74,9,
93,100,
14,93,
112,61,
135,47,
6,10,

RoomNumber := 8
call ReDrawscreen

85,13,
123,119,
231,124,
138,76,
169,63,
231,124,

placeobj .boughs, thisroom
placeobj rocks, thisroom
placeobj ocean, thisroom
dig := 3

seeship
seeRocks
seeBoughs
seeRocks
seeRocks
seeocean

if thisroom not visited then
$tx := "You are sitting in the top branches of"
call print
$tx := "the tall palm tree. way out to sea, an"
call print
$tx := "old ocean freighter slowly makes its"
call print
$tx := "way east. Gray smoke rises from its"
call print
$tx := "smoke stacks."
call print

else
$tx := "You are in the top of the palm."
call print

endif

endcode

endroom

A-11

The Visionary Programmer's Handbook

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

room in the shack

default
e meadow

enddefault

code

call clearButtons

click 34, 125,6,
click 35, 35,44,
click 36, 6,6,

RoomNumber := 12
call ReDrawscreen

188,45, seewindow
205,55, SeeTable
231,124, seeinterior

play sound 2, 1,0,10,0 birds are softer inside shack

placeobj sand, thisroom
dig := 3

if thisroom not visited then
$tx := "You are standing inside the shack. It"
call print
$tx := "has been abandoned for years. oust has"
call print
$tx := "settled on everything. Light streams"
call print
$tx := "in the window, illuminating the inside."
call print

else
$tx : = "You are inside the shack."
call print

endif

endcode

endroom

room in the cave

default
w by the boulder

endderault

code

call clearButtons

click 34, 10, 11,
click 35 I 86 I 31 I
click 36, 6,6,

RoomNumber := 13
call ReDrawscreen

A-12

39,49, seeHole
114,59, seewall
231,124, seeRocks

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
551
553
554
555
556
557
558
559
560
561
562
563

Appendix A: Source Code for the Cannibal Game

play sound 2, 1,0,5,0 ; birds faintly heard in cave
play sound 3, 0,0,20,0 ; drip

placeobj sand, thisroom
placeobj cave, thisroom
placeobj rocks, thisroom
dig := 2

if thisroom not visited then
$tx := uThe small opening high in the wall of"
call print
$tx := uthe cave looks big enough to crawl"
call print
$tx := nthrough, but its ten feet off the"
call print
$tx := uground. Rough pictures are chiseled into"
call print
$tx := "the wet rock walls."
call print

else
$tx := uyou are inside the cave."
call print

endif

endcode

endroom

room rock room

default
d in the cave

endderault

code

call clearButtons

click 34, 11,6,
click 35, 92,39,
click 36, 6,6,

81,34, seeFissure
126,55, seewall
231,124, seeRocks

RoomNumber : = 14
call ReDrawscreen
play sound 3, 0,0,40,0
stop sound 1

placeobj cave, thisroom
placeobj sand, thisroom
placeobj rocks, thisroom
dig := 2

drip
birds

if thisroom not visited then
$tx := "You are inside a small rock room."
call print

A-13

The Visionary Programmer's Handbook

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

$tx := "There is writing carved into the wall."
call print
$tx := "The ladder leads down through the"
call print
$tx := "opening."
call print

else
$tx := "You are inside the rock room."
call print

end if

endcode

endroom

room top_of_the_boulder

default
d by the boulder

endderault

code

call clearButtons

click 34, 6,6,

RoomNumber : = 10
call ReDrawscreen

dig := 3

231,124, seeisland

if thisroom not visited then
$tx := "You are sitting on top of the large"
call print
$tx := "boulder. You can survey the entire"
call print
$tx : = "is land from here. "
call print

else
$tx : = "You are on top of the large boulder."
call print

endif

endcode

endroom

A-14

Appendix A: Source Code for the Cannibal Game

The Startup.SUB File

1
2 Startup.SUB
3
4 sub startup
5
6 TextPalette 3,8,8,8 ; change color of prompt & bar to gray
7
8 scrollbar off ; also prevents front/back gadgets from being seen
9 menus off

10
11 load song o, "Cannibal:audio/title.mus" ; load MED song
12 EnableMusic ; turn off digitized sound and turn on MED
13 play song 0 ; play MED song
14
15 if FastMem > 200 then ; if there's enough ram, put scenes in ram
16 $device := "ram:"
17 dos "copy >NIL: cannibal:Video/locf? to ram:" ; copy all loc's

to ram:
18 else
19 $device := "Cannibal :Video/"
20 endif
21
22 $filename := "Cannibal :video/locl"
23 load screen 1, $filename
24 call LoadingError
25
26 $filename := "Cannibal :video/buttons .pie"
27 load screen 2, $filename
28 call LoadingError
29
30 $filename := "Cannibal:Audio/bubbles.snd"
31 load sound 0, $filename
32 call LoadingError
33
34 $filename := "Cannibal:Audio/ocean.snd"
35 load sound 1, $filename
36 call LoadingError
37
38 $filename := "Cannibal :Audio/birds. snd"
39 load sound 2, $filename
40 call LoadingError
41
42 $filename := "Cannibal:Audio/drip.snd"
43 load sound 3, $filename
44 call LoadingError
45
46 $filename := "Cannibal:Video/window.pic"
4 7 load screen 0, $filename
48 call LoadingError
49
50 $filename := "artesian.font"
51 load font O, "artesian.font",8
52 call LoadingError

A -15

The Visionary Programmer's Handbook

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

font O,O ; use font O on screen 0

color 0, blue
$tx := " copyright @1991 by John Olsen"
call print
call Linefeed
$tx := " I WAS A CANNIBAL FOR THE FBI"
call print
$tx := " by John Olsen"
call print
call Linefeed

create screen 24, 55, 78, 5, lores ladder
mask 24

size

create screen 23, 15, 361, 5, lores . for scrollbar ' mode 23, draw
color 23, white
rect 23, 0,0, 14, 360 fill scrollbar with white

show screen 0
screenMode graphics shows screen w/ window, scenery, text
DisableMusic ; turn off title MED music
play sound 1, 0,0,40,0 ; ocean
DOS "run closescreen Video/title.pie"

$tx := "That's right, the FBI. They sent you"
call print
$tx := "undercover to a cult of cannibals. But"
call print
$tx := "you were discovered and imprisoned on"
call print
$tx := "this neighboring island. They will be"
call print
$tx := "coming for you soon. And they're hungry!"
call print
$tx : = "You must escape before they return."
call print
call Linefeed

click
click
click
click
click
click
click
click
click
click
click
click
click
click
click

o,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,

273,64,
273,97,
288,81,
259,81,
307,64,
307,97,
259, 115,
259,133,
259,151,
259,169,
259,187,
236,21,
266,17,
236,6,
236,113,

285,76,
285,109,
300,93,
271,93,
319,76,
319,109,
319,127,
319,145,
319,163,
319,181,
319,199,
250,109,
312,51,
250,17,
250,124,

GoNorth
Gosouth
GoEast
GoWest
Go Up
Go Down
Help
Dig2
Load
save
Quit
Getobject
Dropobject
ClickUpArrow
clickDownArrow

placeobj OOnothing, thisroom

A-16

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
123
133
134
135
136
137
138
139
140
141
142

143
144
145
146
147
148
149
150
151
152
153

Appendix A: Source Code for the Cannibal Game

grab OOnothing

endsub

sub startup2

set west end of beach, started
set west-end-of-beach, visited
call MaiiiLoop -

since room loop not completed

endsub

sub LoadingError

if error > 0 then
t \027[32m ; this changes text output to pen 2 (normally
TextPalette 2,15,15,15 ; this changes pen 2 to white
t \f
t
t
t
t
t
t
t
t

pen 1)

t
t ERROR: can't load file "@$filename "I Press RETURN to

abort.
t \027[3lm ; this changes text output back
DOS "Closescreen cannibal:Video/title.pic"
ScreenMode text
getstring $temp
quit

endif

end sub

to pen 1

A-17

The Visionary Programmer's Handbook

The NonMovable.OBJ File

1
2 NonMovable.obj
3
4 object OOnothing
5
6 name nothing
7
8 ini troom unused
9

10 code
11 endcode
12
13 endobject
14
15
16
17 object sand
18
19 name ground, sand, dirt
20
21 ini troom unused
22
23 code
24 ; so player can say PUT THE LADDER ON THE GROUND
25 endcode
26
27 action look, examine, search
28 $tx := "It's just normal beach sand."
29 call print
30 endact
31
32 action get, take, grab
33 $tx : = "Leave the sand alone I The next thing,"
34 call print
35 $tx := "you' 11 try getting the sun I,.
36 call print
37 endact
38
39 action dig
40 call Dig
41 endact
42
43 endobject
44
45
46
47 object floor
48
49 name floor
50
51 initroom in the shack
52
53 code

A-18

Appendix A: Source Code for the Cannibal Game

54 endcode
55
56 action look, examine
57 call ExamineFloor
58 endact
59
60 endobject
61
62
63
64 object sky
65
66 name sky
67
6 8 ini troom unused
69
70 code
71 endcode
72
73 action look, examine, search
74 $tx := "The sky is clear and blue, with only a"
75 call print
76 $tx := "few white puffy clouds floating about."
77 call print
78 endact
79
80 action get, take, grab
81 $tx : = "It' s too high. Why are you holding your"
82 call print
83 $tx := "hands up?"
84 call print
85 endact
86
87 endobject
88
89
90
91 object sun
92
93 name sun
94
9 5 ini troom unused
96
97 code
98 endcode
99

100 action look, examine, search
101 $tx := "It's so bright that you hesitate to look"
102 call print
103 $tx := "into it. But you can feel the warmth."
104 call print
105 endact
106
107 action get, take, grab
108 $tx := "Careful!, you'll burn yourself. You"
109 call print
110 $tx := "decide that the sun is out of reach."

A-19

The Visionary Programmer's Handbook

111 call print
112 endact
113
114 endobject
115
116
117
118 object island
119
120 name island, rock
121
122 initroom west end of beach
123
124 code
125 endcode
126
127 action look, examine, search
128 $tx := "This appears to be a small rock island"
129 call print
130 $tx := "out beyond the surf.,.
131 call print
132 endact
133
134 endobject
135
136
137
138 object ocean
139
140 name ocean, water, sea, lagoon
141
142 initroom unused
143
144 code
145 ; BO player can say PUSH THE CANOE IN THE WATER
146 endcode
147
148 action look, examine, search
149 $tx := "The sun sparkles on the blue waters of"
150 call print
151 $tx := "the Pacific as the waves gently lap"
152 call print
153 $tx := "ashore. You see a speck on the horizon."
154 call print
155 endact
156
157 action get, take, grab
158 $tx := "You get a small amount in your hands,"
159 call print
160 $tx := "but all it does is get your hands wet."
161 call print
162 endact
163
164 action drink, swallow
165 $tx := "Yeck, saltyl"
166 call print
167 endact

A-20

Appendix A: Source Code for the Cannibal Game

168
169 action swim
1 7 O call Noswim
171 endact
172
173 endobject
174
175
176
177 object plant
178
179 name plant, plants, grass
180
181 initroom unused
182
183 code
184 endcode
185
186 action look, examine, search
187 $tx := "The thin green beach grass waves about"
188 call print ~
189 $tx := "in the slight breeze."
190 call print
191 endact
192
193 action get, take, grab
194 $tx := "It is strongly rooted, and won't come"
195 call print
196 $tx := "up. You decide to leave it alone."
197 call print
198 endact
199
200 endobject
201
202
203
204 object dunes
205
206 name dunes, sanddunes
207
208 initroom meadow
209
210 code
211 endcode
212
213 action look, examine, search
214 $tx := "The sand dunes are tall and rounded."
215 call print
216 $tx := "They look like they would be fun."
217 call print
218 endact
219
220 action get, take, grab
221 $tx := "You're here, and they are over there."
222 call print
223 $tx := "Now, how do you expect to get them?"
224 call print

A-21

The Visionary Programmer's Handbook

225 endact
226
227 endobject
228
229
230
231 object hole
232
233 name hole, opening
234
235 initroom in the cave
236
237 code
238 endcode
239
240 action look, examine, go
241 $tx := "It's pretty high up. Too high to jump."
242 call print
243 endact
244
245 endobject
246
247
248
249 object roof
250
251 name roof
252
253 initroom top_of_the shack
254
255 code
256 endcode
257
258 action look, examine, search
259 $tx := "Nothing special about this roof. Seems"
260 call print
261 $tx := "pretty secure."
262 call print
263 endact
264
265 action get, take, grab
266 $tx := "Everything's nailed down!"
267 call print
268 endact
269
270 endobject
271
272
273
274 object window
275
276 name window
277
278 initroom in the shack
279
280 code
281 endcode

A-22

Appendix A: Source Code for the Cannibal Game

282
283 action look, examine
284 $tx := "The glass is missing from the windown
285 call print
286 $tx := "frame. Light streams through."
287 call print
288 endact
289
290 endact
291
292 endobject
293
294
295
296 object table
297
298 name table
299
300 initroom in the shack
301
302 code
303 endcode
304
305 action look, examine
306 $tx := "It's a plain table, of simple design."
307 call print
308 $tx := "You can see it's nailed to the floor."
309 call print
310 endact
311
312 action get, take, grab
313 $tx := "You can't. It's nailed down!"
314 call print
315 endact
316
317 endobject
318
319
320
321 object tree
322
323 name tree, palm
324
325 adj palm, tall
326
327 initroom top_of_the cliff
328
329 code
330 endcode
331
332 action look, examine
333 $tx := "It's slick brown bark leads upward to"
334 call print
335 $tx := "the green fronds at the top."
336 call print
337 endact
338

A-23

The Visionary Programmer's Handbook

339 action climb
340 $tx:="You try, but you slide back down."
341 call print
342 endact
343
344 action chop, cut
345 $tx:="You'll need something sharp to do that."
346 call print
347 endact
348
349 action burn, light
350 call NoBurn
351 endact
352
353 endobject
354
355
356
357 object boughs
358
359 name boughs, fronds
360
361 initroom unused
362
363 code
364 endcode
365
366 action look, examine, search
367 $tx := "The wide green fronds look smooth and"
368 call print
369 $tx := "feathery. Quite comfy!"
370 call print
371 endact
372
373 action get, take, grab
3 7 4 $tx : = "Leave the greenery alone."
375 call print
376 endact
377
378 endobject
379
380
381
382 object shack
383
384 name shack
385
386 adj old, wood
387
388 initroom meadow
389
390 code
391 endcode
392
393 action look, examine
394 $tx:="It is a strange old rundown shack. It"
395 call print

A-24

Appendix A: Source Code for the Cannibal Game

396 $tx := "has a single open doorway.#
397 call print
398 endact
399
400 action light, burn
401 call NoBurn
402 endact
403
404 endobject
405
406
407
408 object ladder!
409
410 name ladder
411
412 initroom unused
413
414 code
415 endcode
416
417 action look, examine
418 $tx:="It looks old and weather-beaten. But it"
419 call print
420 $tx:="should hold you."
421 call print
422 end act
423
424 action get, take, grab
425 $tx := "Leave it there, so you can climb back"
426 call print
427 $tx : = "down it. No sense bringing it up here."
428 call print
429 endact
430
431 endobject
432
433
434
435 object rocks
436
437 name rocks
438
439 initroom unused
440
441 code
442 endcode
443
444 action look, examine
445 $tx := "The rocks appear to be of volcanic"
446 call print
447 $tx := "origin."
448 call print
449 endact
450
451 action get, take, grab
452 $tx := "Sorry, they're stuck there."

A-25

The Visionary Programmer's Handbook

453 call print
454 endact
455
456 endobject
457
458
459
460 object boulder
461
462 name boulder, rock
463
464 attrib
465 moved N
466 endattrib
467
468 initroom by_the boulder
469
470 code
471 endcode
472
473 action look, examine
474 $tx := "It is big, over ten feet high. It sits"
475 call print
476 if boulder is moved then
477 $tx := "beside the opening to the cave.,.
478 call print
479 else
480 $tx := "directly in front of a cave opening,"
481 call print
482 $tx := "barring your way. But a good hard push"
483 call print
484 $tx := "might topple it over on its side."
485 call print
486 endif
487 endact
488
489 action get, take, carry
490 $tx := "It weighs tons! You can't carry it."
491 call print
492 endact
493
494 action move, slide, push, pull, move
495 if energy > 0 then
4 9 6 $tx : = "It rolls over, revealing the entrance."
497 call print
498 set boulder, moved
499 energy := 0
500 if Olladder in thisroom then
501 directions by_the_boulder, n e u
502 else
503 directions by_the_boulder, n e
504 endif
505 link by the boulder, e, in the cave
5 06 RoomNwnber : = 11
507 click 34, 57,35, 141,91, seeBoulder
508 click 35, 142,26, 172, 78, seecave
509 placeobj cave, thisroom

A· 26

Appendix A: Source Code for the Cannibal Game

510 call ReDrawscreen
511 else
512 $tx := urt shifts slightly, but rolls back."
513 call print
514 endif
515 endact
516
517 action climb
518 $tx := "You can't get a foothold."
519 call print
520 endact
521
522 endobject
523
524
525
526 object islandl
527
528 name boulder, rock, island
529
530 attrib
531 endattrib
532
533 initroom top_of_the boulder
534
535 code
536 endcode
537
538 action look, examine
539 $tx := 11All you can see is the boulder that you"
540 call print
541 $tx := "are standing on, and the island below."
542 call print
543 $tx := "Out on the ocean, you can see a speck on"
544 call print
545 $tx := "the horizon. Is it a ship?"
546 call print
547 endact
548
549 endobject
550
551
552
553 object cave
554
555 name cave, wall, pictures, picture, writing, writings, carving,

carvings, message
556
557 initroom unused
558
559 code
560 endcode
561
562 action look, examine, read
563 if player in in the cave
564 $tx := "The crude pictures depict men eating"
565 call print

A -27

The Visionary Programmer's Handbook

566 $tx := "raw human flesh. This disgusting"
567 call print
568 $tx := "display shows them chewing on human"
569 call print
570 $tx := "arms and legs. You feel sick to your"
571 call print
572 $tx := "stomach!"
573 call print
574 elsif player in rock room
575 $tx := "\34 Buy THE VISIONARY PROGRAMMERS HANDBOOK"
576 call print
577 $tx := "by John Olsen, and learn how to write"
578 call print
579 $tx := "games like this using VISIONARY, the"
580 call print
581 $tx := "Aegis Interactive Gaming Language. \34"
582 call print
583 else ; if player outside, looking in cave
584 $tx := "It looks like there's enough light"
585 call print
586 $tx := "inside to see fairly well. And you can"
587 call print
588 $tx := "easily fit through the opening now."
589 call print
590 endif
591 endact
592
593 endobject
594
595
596
597 object fissure
598
599 name fissure, opening
600
601 attrib
602 endattrib
603
604 initroom rock room
605
606 code
607 endcode
608
609 action look, examine
61 O $tx : = "It's too high up to reach, and too"
611 call print
612 $tx := "small to crawl through, but it allows"
613 call print
614 $tx : = "enough light into the room to let you"
615 call print
616 $tx := "see the writing on the wall clearly."
617 call print
618 endact
619
620 endobject
621
622

A· 28

Appendix k Source Code for the Cannibal Game

623
624 object rowboat
625
626 name rowboat, boat
627
628 adj battered, row
629
630 initroom west end of beach
631
632 code
633 : so player can say LOOK ROWBOAT
634 endcode
635
636 action look, examine, search
637 $tx := "The oars are missing, and there's a"'
638 call print
639 $tx := "gaping hole in the rear."
640 call print
641 endact
642
643 action take, grab, move, slide, push, pull
644 $tx := "It's too heavy to move."
645 call print
646 endact
647
648 action get, sit
649 if prep is "in"' then
650 call sitBoat
651 elsif prep is "into"' then
652 call sitBoat
653 elsif prep is "inside" then
654 call sitBoat
655 else
656 $tx := "It's too heavy to move."
657 call print
658 endif
659 endact
660
661 action row, paddle
662 $tx := "This boat has a hole in the back. It's"
663 call print
664 $tx := "not going to float."
665 call print
666 endact
667
668 action light, burn
669 call NoBurn
670 endact
671
672 endobject
673
674
675
676 object canoe
677
678 name canoe, boat
679

A-29

The Visionary Programmer's Handbook

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

adj native

attrib
InWater N

endattrib

initroom east end of beach

code
endcode

action look, examine, search
$tx := uThe oars are missing."
call print

endact

action take, grab
$tx : = "It's too heavy to carry."
call print

endact

action get, sit
if prep is "in" then
call sitcanoe

elsif prep is "into" then
call sitcanoe

elsif prep is "inside" then
call sitcanoe

else
$tx ; = "It's too heavy to carry."
call print

endif
endact

action slide, move, push, pull, put
if canoe is InWater then
call OK
RoomNumber := 2
click 34, 33,68, 113,107, seecanoe
click 35, 87,53, 137,88, Seecanoe
call ReDrawscreen
unset canoe, InWater

else
call OK
set canoe, InWater
RoomNumber : = 4
click 34, 70,39,
click 35, 118,23,
call ReDrawscreen

endif
endact

action row, paddle

140,63,
170,50,

if canoe is InWater then

seecanoe
seecanoe

if player has 13shovel then
timer := 0 ; so no further messages will be printed from

NPC.obj

A -30

Appendix A: Source Code for the Cannibal Game

736 $tx := "Using the shovel, you row the canoe out"
737 call print
738 $tx := "to the freighter. You are taken aboard"
739 call print
740 $tx := "and enjoy your leisurely trip back to"
741 call print
742 $tx := "civilization and your job at the FBI."
743 call print
744 $tx := "Congratulations on escaping the island I"
745 call print
746 RoomNumber := 16
747 call ReDrawscreen ; show EndTitle
7 4 8 load song 1, "Cannibal: audio/win .mus"
749 EnableMusic
750 play song 1 ; play music when you win
751 $tx := "You have won this sample adventure. Now"
752 call print
753 $tx := "start writing your own adventure games"
754 call print
755 $tx := "with VISIONARY, the Aegis Interactive"
756 call print
7 5 7 $tx : = "Gaming Language from oxxi Aegis."
758 call print
759 countLines := 1 ; to keep other mouse message from appearing
760 call Linefeed
761 Textcolor := brown
762 $tx := " Press mouse button to exit."
763 call print
764 while leftbutton 1 do make sure button is up first
765 endwhile
766 while leftbutton 0 do then if button is pushed down,

exit
767 endwhile
768 MainLoop := 1
769 else
770 $tx := "You have no oars."
771 call print
772 endif
773 else
774 $tx := "Not while it is beached on the sand."
775 call print
776 endif
777 endact
778
779 action burn, light
780 call NoBurn
781 endact
782
783 endobject
784
785
786
787 object boards
788
789 name boards, nails
790
791 initroom top_of_the_shack

A-31

The Visionary Programmer's Handbook

792
793 code
794 endcode
795
796 action get, take, grab, pry, remove, pull
797 if player has 14hammer then
798 $tx := "The nails are securely fastened deep in"
799 call print
8 0 0 $tx : = "the boards. They won't budge. "
801 call print
802 else
803 $tx := "You'd need a hammer for that job."
804 call print
805 endif
806 endact
807
808 action look, examine
809 $tx := "The wide old nails penetrate deep into"
810 call print
812 $tx := "the dry old boards."
812 call print
813 endact
814
815 action light, burn
816 call NoBurn
817 endact
818
819 endobject
820
821
822

A-32

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Appendix A: Source Code for the Cannibal Game

The NPC.OBJ File

NPC.obj

npc status

name status

ini troom unused

code

call cannibalsArrive
arrived

increment timer and see if cannibals have

if energy > 0 then
energy := energy - 1
if energy = 0 then
call Linefeed
$tx := "You feel a drain, as the quick energy"
call print
$tx := "from the snicker passes."
call print

endif
endif

endcode

endNPC

A-33

The Visionary Programmer's Handbook

Moveable1 .OBJ

1
2 Movablel.obj
3
4 object 0 lladder
5
6 name ladder
7
8 adj wood, wooden
9

10 attrib
11 endattrib
12
13 ini troom meadow
14
15 code
16 endcode
17
18 action get, take, grab
19 call get
20 endact
21
22 action look, examine
23 $tx:="The old ladder looks weather-beaten."
24 call print
25 $tx:="But it should hold you."
26 call print
27 endact
28
2 9 action drop
30 call drop
31 endact
32
33 action put, set, lay, lean
34 if player has Olladder then
3 5 $tx : = "Use the mouse to drag it over."
36 call print
37 else ; Olladder is at this location
38 $tx := "That's where it stays."
39 call print
40 endif
41 endact
42
43 action climb
44 if RoomNumber = 6 then
45 go top of the shack
46 elsif RoomNumber = 7 then
4 7 go in the tree
48 elsif RoomNumber 13 then
49 go rock room
50 elsif RoomNumber 9 then
51 go top of the boulder
52 elsif RoomNumber = 11 then
53 go top_of_the_boulder

A-34

Appendix A: Source Code for the Cannibal Game

54 else
55 $tx:="You can't. It's not leaning against"
56 call print
57 $tx := "anything."
58 call print
59 endif
60 endact
61
62 endobject
63
64
65
66 object 02bottle
67
68 name bottle, potion, liquid
69
70 adj glass, sealed
71
72 attrib
73 sealed Y
74 endattrib
75
7 6 ini troom east end of beach
77
78 code
79 endcode
80
81 action look, examine, search, view
82 $tx:="You can see something inside the bottle."
83 call print
84 $tx:="You can't quite make out what it is."
85 call print
86 endact
87
88 action get, take, grab
89 call get
90 endact
91
9 2 action drop
93 call drop
94 endact
95
96 action open, unseal, uncork
97 if player has 02bottle then
98 $tx := "The seal is tight, and the bottle won't"
99 call print

100 $tx := "open."
101 call print
102 else
103 call NoHave
104 endif
105 endact
106
107 action break, smash, hit
108 call BreakBottle
109 endact
110

A-35

The Visionary Programmer's Handbook

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

endobject

object 03paper

name paper

adj piece, old

initroom unused

code
endcode

action look, examine, read
$tx := "The old piece of paper says:"
call print
$tx := "Breaking this bottle will bring you"
call print
$tx := "luck. Maybe good; maybe bad."
call print

endact

action get, take, grab
call get

endact

action drop
call drop

endact

action burn, light
call NoBurn

endact

endobject

object 04battery

name battery

adj dead, radio

attrib
found N

endattrib

initroom unused

code
endcode

action look, examine
$tx := "It ' s a dead old radio battery."

A-36

Appendix A: Source Code for the Cannibal Game

168 call print
169 $tx := "It's really useless."
170 call print
171 endact
172
173 action get, take, grab
174 call get
175 endact
176
177 action drop
178 call drop
179 endact
180
181 action put, insert
182 if player has 04battery then
183 if objnoun is 05radio then
184 if player has 05radio then
185 $tx := "But it's dead. only put a charged"
186 call print
187 $tx := "battery in the 2-way radio."
188 call print
189 else
190 call NoHave
191 endif
192 else
193 call cantDoThat
194 endif
195 else
196 call NoHave
197 endif
198 endact
199
200 endobject
201
202
203
204 object 05radio
205
206 name radio
207
208 adj 2-way, two-way
209
210 initroom in the shack
211
212 code
213 endcode
214
215 action look, examine
216 $tx := ''This two-way radio looks to be in"
217 call print
218 $tx := "excellent shape. But unfortunately,"
219 call print
220 $tx := "there is no battery in it."
221 call print
222 endact
223
224 action get, take, grab

A -37

The Visionary Programmer's Handbook

225 call get
226 endact
227
228 action drop
229 call drop
230 endact
231
232 action use, play, turn
233 $tx := "It won't work without a battery."
234 call print
235 endact
236
237 endobject
238
239
240
241 object 06bar
242
243 name bar, snicker, snickers
244
245 adj candy
246
247 initroom in the tree
248
249 code
250 endcode
251
252 action look, examine
253 $tx := "Mmmmmm... A snickers candy bar I It"
254 call print
255 $tx := "looks fresh and tasty."
256 call print
257 endact
258
259 action get, take, grab
260 call get
261 endact
262
263 action drop
264 call drop
265 endact
266
267 action eat, chew, consume, swallow, enjoy
268 call Eatcandy
269 endact
270
271 endobject
272
273
274
275 object 07candle
276
277 name candle
278
279 adj half-burned
280
281 initroom in the shack

A-38

Appendix A: Source Code for the Cannibal Game

282
283 code
284 endcode
285
286 action look, examine
287 $tx := "The wax is hard, and the wick is black."
288 call print
289 endact
290
291 action get, take, grab
292 call get
293 endact
294
295 action drop
296 call drop
297 endact
298
299 action burn, light
300 call NoBurn
301 endact
302
303 endobject
304
305
306
307 object 08skull
308
309 name skull
310
311 adj bleached, human
312
313 initroorn top_of_the_cliff
314
315 code
316 endcode
317
318 action look, examine
319 $tx := "This bleached old skull could be a"
320 call print
321 $tx : = "rernnent of some past cannibal feast."
322 call print
323 endact
324
325 action get, take, grab
326 call get
327 endact
328
329 action drop
330 call drop
331 endact
332
333 endobject
334
335
336
337

A-39

The Visionary Programmer's Handbook

The Movable2.0BJ File

1
2 Movable2.obj
3
4 object 09seagull
5
6 name seagull, bird
7
8 adj dead
9

10 ini troom top_ of_ the_ boulder
11
12 code
13 endcode
14
15 action look, examine
16 $tx := "This dead old seagull is stiff and"
17 call print
18 $tx := "starting to smell a bit."
19 call print
20 endact
21
22 action get, take, grab
23 call get
24 endact
25
26 action drop
27 call drop
28 endact
29
30 action eat, consume, chew, swallow
31 $tx := "Yeck! No way! You'd rather starve!"
32 call print
33 endact
34
35 endobject
36
37
38
39 object lOcoconut
40
41 name coconut
42
43 adj hard, old
44
45 initroom in the tree
46
47 code
48 endcode
49
50 action look, examine
51 $tx := "The hard old coconut is probably not"
52 call print
53 $tx := "edible; it looks hard and dried out."

A-40

Appendix A: Source Code for the Cannibal Game

54 call print
55 endact
56
57 action get, take, grab
58 call get
59 endact
60
61 action drop
62 call drop
63 endact
64
65 action break, open
66 call Breakcoconut
67 endact
68
69 action eat
70 $tx := "Open it first ... "
71 call print
72 endact
73
7 4 endobject
75
76
77
78 object llblade
79
BO name blade
81
82 adj shovel
83
84 initroom rock room
85
86 code
87 endcode
88
89 action look, examine
90 $tx := "It's a wide shovel blade, without any"
91 call print
92 $tx : = "handle."
93 call print
94 endact
95
96 action get, take, grab
97 call get
98 endact
99

100 action drop
101 call drop
102 endact
103
104 action put, connect, stick, push
105 if objnoun is 12handle then
106 if player has 12handle then
107 $tx := "OK. The completed shovel looks useful."
108 call print
109 ObjNum := 12
110 call Oestroyobject

A-41

The Visionary Programmer's Handbook

111 ObjNwn := 11
112 call Destroyobject
113 objNwn := 13
114 mode 2, draw
115 color 2, objNum
116 rect 2, x,y, x,y put new object in inventory array
117 mode O, overlay
118 copy 2,0bjNwn * 15 - 15,183,objNwn * 15 - 1,199,0,x· * 16 +

266,y * 18 + 17
119 placeobj 13shovel, thisroom
120 grab 13shovel
121 else
122 call NoHave
123 endif
124 else
125 call cantDoThat
126 endif
127 endact
128
129 endobject
130
131
132
133 object 12handle
134
135 name handle
136
137 adj shovel
138
139 attrib
140 Found N
141 endattrib
142
143 initroom unused
144
145 code
146 endcode
147
148 action look, examine
149 $tx := "It's a long wood handle that will fit"
150 call print
151 $tx := "into a shovel blade."
152 call print
153 endact
154
155 action get, take, grab
156 call get
157 endact
158
159 action drop
160 call drop
161 endact
162
163 action put, connect, stick, push
164 if objnoun is llblade then
165 if player has llblade then
166 $tx := "OK. The completed shovel looks useful."

A-42

Appendix A: Source Code for the Cannibal Game

167 call print
168 ObjNum := 12
169 call Deetroyobject
170 objNum := 11
171 call Deetroyobject
172 objNum : = 13
173 mode 2, draw
174 color 2, objNum
175 rect 2, x,y, x,y put new object in inventory array
176 mode 0, overlay
177 copy 2,objNum * 15 - 15,183,objNum * 15 - 1,199,0,x * 16 +

266,y * 18 + 17
178 placeobj 13ehovel, thisroom
179 grab 13shovel
180 else
181 call NoHave
182 endif
183 else
184 call cantDoThat
185 endif
186 endact
187
188 action light, burn
189 call NoBurn
190 endact
191
192 endobject
193
194
195
196 object 13shovel
197
198 name shovel
199
200 initroom unused
201
202 code
203 endcode
204
205 action look, examine
206 $tx := "It's a pretty handy looking shovel."
207 call print
208 endact
209
210 action get, take, grab
211 call get
212 endact
213
214 action drop
215 call drop
216 endact
217
218 action use
219 $tx := "Do you mean dig? Please be specific."
220 call print
221 endact
222

A-43

The Visionary Programmer's Handbook

223 endobject
224
225
226
227 object 14hanuner
228
229 name hanuner
230
231 adj old
232
233 initroom in the cave
234
235 code
236 endcode
237
238 action look, examine
239 $tx := "It's a quite servicable old hanuner."
240 call print
241 endact
242
243 action get, take, grab
244 call get
245 endact
246
247 action drop
248 call drop
249 endact
250
251 action use
252 $tx := "Please be more specific. For example,"
253 call print
2 5 4 $ tx : = II PULL THE NAILS or BREAK THE BOTTLE . ,,
255 call print
256 endact
257
258 endobject
259
260
261
262 object 15chisel
263
264 name chisel
265
266 adj dull
267
268 attrib
269 found N
270 endattrib
271
272 initroom unused
273
274 code
275 endcode
276
277 action look, examine
278 $tx := "It's an old chisel, somewhat rusty."
279 call print

A· 44

Appendix A: Source Code for the Cannibal Game

280 endact
281
282 action get, take, grab
283 call get
284 endact
285
286 action drop
287 call drop
288 endact
289
290 action use
291 $tx := "Please be more specific. For example,"
292 call print
293 $tx := "BREAK THE COCONUT."
294 call print
295 endact
296
297 endobject
298
299
300
301 object 16driftwood
302
303 name driftwood, wood
304
305 adj dry
306
307 attrib
308 found N
309 endattrib
310
311 initroom unused
312
313 code
314 endcode
315
316 action look, examine
317 $tx := "It's weathered driftwood, quite dry."
318 call print
319 $tx := "It would make great kindling ... "
320 call print
321 endact
322
323 action get, take, grab
324 call get
325 endact
326
327 action drop
328 call drop
329 endact
330
331 action burn, light
332 call NoBurn
333 endact
334
335 endobject
336

A-45

The Visionary Programmer's Handbook

337
338
339 object 17gun
340
341 name gun
342
343 adj flare
344
345 attrib
346 found N
347 endattrib
348
349 initroom unused
350
351 code
352 endcode
353
354 action look, examine
3 5 5 $tx : = "It's an emergency flare gun, but there' s"
356 call print
357 $tx := "no flare in it."
358 call print
359 endact
360
361 action get, take, grab
362 call get
363 endact
364
365 action drop
366 call drop
367 endact
368
369 action use, shoot
370 $tx := "But it has no flare in it. You can't."
371 call print
372 endact
373
374 endobject
375
376
377
378 object 18matches
379
380 name matches, book, match
381
382 adj wet
383
384 attrib
385 found N
386 endattrib
387
388 initroom unused
389
390 code
391 endcode
392
393 action look, examine

A-46

Appendix A: Source Code for the Cannibal Game

394 $tx := "The book of matches is wet
395 call print
396 endact
397
398 action get, take, grab
399 call get
400 endact
401
402 action drop
403 call drop
404 endact
405
406 action burn, light, strike
407 $tx := #Nothing .•. wet matches don't burn."
408 call print
409 endact
410
411 action dry
412 $tx := "You might try leaving them somewhere"
413 call print
414 $tx := "in the sun for a while ••• "
415 call print
416 endact
417
418 endobject
419
420
421
422 object 19flyer
423
424 name flyer
425
426 adj advertising
427
428 initroom top_of_the shack
429
430 code
431 endcode
432
433 action look, examine, read
434 $tx := "The advertising flyer says:"
435 call print
436 $tx := "\34 For more information on how this game"
437 call print
438 $tx := "was made, read THE VISIONARY PROGRAMMERS"
439 call print
440 $tx := "HANDBOOK by John Olsen. Available from"
441 call print
442 $tx := "your computer store, or oxxi Aegis."
443 call print
444 endact
445
446 action get, take, grab
447 call get
448 endact
449
450 action drop

A-47

The Visionary Programmer's Handbook

451 call drop
452 endact
453
454 action burn, light
455 call NoBurn
456 endact
457
458 endobject
459
460

A· 48

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Appendix A: Source Code for the Cannibal Game

The Malnloop.SUB Fiie

MainLoop.SUB

sub MainLoop

;===
WHILE MainLoop = 0 DO

countLines := -1
call LineFeed

return := 1
TextPosition := 9
$sentence := ""
$return := "\r"
$backspace := "\b"

color O, green
text 0,9,192,"-"

make cursor green
character modified to be cursor

while return t 0 do

getchar $letter
length $letter, temp temp = 0 if NO letter pressed, temp 1

if letter
value $letter, val
temp := temp * (val < 127) ; temp is 1 only if keypress is

alpha/numeric
compare $letter, $return, return
compare $letter, $backspace, backspace

if Buttonused = 1 or Buttonused > 3 then
return := 0 ; set to zero so as to erase cursor and exit loop
copy 2, xl,yl,x2,y2, O, x,y ; draw button in down position

pause 15 ; to keep mouse pointer from temporarily freezing
while leftbutton = 1 do ; wait till button released
endwhile

yl := yl + offset
y2 := y2 + offset
offset := -13

endif

if Buttonused = 1 then
copy 2, xl, yl, x2, y2, o, x,y

end if
draw button popping up

if return = 0 then return was pressed
color 0, white
mode O, draw
rect O, TextPosition,184, TextPosition + 5,192 erase cursor

A-49

The Visionary Programmer's Handbook

52
53
54
55

56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88
89
90

91

92
93
94
95
96
97
98
99

100
101
102
103
104

mode 0, overlay
elsif backspace = 0 then ; backspace was pressed

length $sentence, sentence
if sentence = 0 then ; The sentence has length zero, so do

nothing!
else

sentence := sentence - 1
TextPosition := TextPosition - 6
left $sentence, sentence, $sentence
color 0, white
mode O,draw
rect O, TextPosition,184, TextPosition + 11,192 erase

letter & cursor
mode 0, overlay
color 0, green
text O,TextPosition,192,"-" ; type cursor

end if
elsif TextPosition > 240 then ; outside text window
elsif temp > 0 then ; accept the keypress

$sentence := "@$sentence @$letter" add letter to sentence
color 0, white
mode O, draw
rect O, TextPosition,184, TextPosition + 5,192 ; erase cursor
color 0, green
mode 0, overlay
text O,TextPosition,192,"@$letter -" type letter and cursor
TextPosition := TextPosition + 6

endif

if Buttonused > 0 then
; blank any previous input typed before typing button contents
mode O,draw ; or overlay
color 0, white
rect O, 9,185, 249,192
color 0, green
call PrintText ; echo the button name to the text window
$sentence := $tx
return := 0

end if

readbuttons ; check for mouse button presses between letters,
and go there

readbuttons empty in case further buttons were pressed while
away

if Buttonused = 9 then
return := O

end if

endwhile end of input loop, ie. return = 0

if Buttonused < 9 then

color 0, blue

compare $sentence, "load", dummy

A-SO

Appendix A: Source Code for the Cannibal Game

105 if dwmny = 0 then
106 ButtonUsed := 4 ; so that player can click or type LOAD
107 t \f
108 t
109 t
110 t
111 t
112 t
113 t
114 t
115 t
116 t
117 t Please wait for Loading
118 xl := 137
119 yl := 151
120 x2 := 197
121 y2 := 163
122 x := 259
123 y := 151
124 Screenmode text switch to black text screen with white

125 endif
126

writing

127 compare $sentence, "save", dwmny
128 if dwmny = O then
129 Buttonused := 5 ; so that player can click or type SAVE
130 t \f
131 t
132 t
133 t
134 t
135 t
136 t
137 t
138 t
139 t
140 t Please wait for saving
141 xl := 198
142 yl := 151
143 x2 := 258
144 y2 := 163
145 x := 259
146 y := 169
147 unload screen 24
148 screenmode text switch to black text screen with white

149 endif
150

writing

151 compare $sentence, "quit", temp
152 if temp = 0 then
153 MainLoop := 1
154 else
155 ghost "@$sentence" turn
156 if error > 0 then
157 if Buttonused > 3 then
158 $tx := "SAVE GAME ERROR: play at your own risk."
159 else

A-51

The Visionary Programmer's Handbook

160 $tx := $lasterror
161 endif
162 call print
163 endif
164 endif
165
166 if Buttonused > 3 and Buttonused < 9 then
167 t \f
168 show screen 0
169 screenMode graphics
170 create screen 24, 55, 78, 5, lores ; for ladder overlays
171 mask 24
172 mode O, draw
173 copy 2, xl, yl, x2, y2, O, x,y ; draw button popping up

(load/save)
174 load screen 1, "ram:loc@RoomNumberw try to load it, see

if it's there
175 if error > 0 then if it's not then
176 $device := "Cannibal :video/" set path name to video/
177 else otherwise
178 $device := "ram:" set path name to ram:
179 endif
180 endif
181
182 endif ; .. .
183
184 Buttonused := O
185
186 ENDWHILE ; end of main loop
187
188 ; ==
189
190 DOS "delete >NIL: ram:loct?" ; clear ram: after game ends
191
192 quit
193
194 endsub
195
196
197

A-52

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34

35
36
37
38
39
40

41
42
43
44
45

46

47

Appendix A: Source Code for the Cannibal Game

The GetDrop.SUB Fiie

Getorop.SUB

sub Get
$tx := Nuse the mouse to drag it over to the"
call print
$tx := Ninventory window. If there are more"
call print
$tx := "than 5 objects at this location, you"
call print
$tx := Nwill have to press the up and down"
call print
$tx := "arrows to scroll the objects."
call print

end sub

sub Drop
$tx := "Use the mouse to drag it out of the"
call print
$tx := "inventory window, and into the location"
call print
$tx : = "window. "
call print

end sub

sub Getobject

Pie := (MouseY - 21) I 18 ; returns value 0-4 for picture
chosen

chosenPic := Pie + SBPosition ; returns value 0 - (MaxMov - 1)
(0-18)

pixel 2, chosenPic,2,objNum ; read object number of chosen pie
into objNum

IF ObjNum > 0 THEN if the spot clicked on is not empty then

mode 2, draw
color 2, white
rect 2, 285,183, 299,199 ; copy white to background in hidden

buffer

OldX := 235 ; old x value from where object is coming
OldY := 21 + 18 * Pie ; old y value from where object is coming
temp := OldY
Newx := Mousex - 8 value set early, in case of a really

quick click
NewY := MouseY - 9 that bypasses the while

loop below

A-53

The Visionary Programmer's Handbook

48
49
50
51

52

53

54
55

56

57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74

75

76
77
78
79

80
81
82
83
84

85
86
87
88
89
90
91
92
93

pause 15 ; to keep blitter happy and avoid temporary freeze ups

While Leftbutton = 1 do ; while button is held down, move object
if OldX t Mousex - 8 or oldY t MouseY - 9 then ; if mouse

moved
NewX := Mousex - 8 offset by -8 so you are grabbing the

obj center
NewY := MouseY - 9 offset by -9 so you are grabbing the

obj center
mode O, draw
copy 2, 285,183, 299,199, O, OldX,OldY ; restore old

background
copy O, Newx, NewY, Newx + 14, NewY + 16, 2, 285,183 copy

bkgd
mode 0, overlay
copy 2, objNum * 15 - 15,183, objNum * 15 - 1,199, O, Newx,

NewY
oldX := Newx
OldY := NewY

endif
endwhile

mode O, draw
copy 2, 285,183, 299,199, O, oldX,oldY ; restore old background
mode 0, overlay

xl :=
xl :=
yl :=
yl :=

Newx - 235 ;
(xl > 0) * 2 * xl - xl
NewY - temp
(yl > 0) * 2 * yl - yl

x distance that
; absolute value
y distance that

; absolute value

object
of xl
object
of yl

was moved

was moved

if xl < 8 and yl < 8 then; moved very little, so player wanted
to EXAMINE

copy 2, ObjNum * 15 - 15,183, objNum * 15 - 1,199, O,
235,temp ; put it back

objName ObjNum, $temp ; put the name of ObjNum in $temp so we
can •••

$tx := "examine the @$temp"
Buttonused := 2

elsif Newx > 257 and NewY < 45 then ; inv window
if items < 7 then ; if there's room in inventory, add the

object
templ := 0 ; 3 spaces across inventory window
temp2 := 0 ; 2 spaced down inventory window
while temp2 < 2

A· 54

while templ < 3
pixel 2, templ, temp2, Slot ; see if inventory slot is
taken
if slot = O

x := templ
y := temp2
templ := 3
temp2 := 2

endif

then ; empty slot found
remember the location of
remember the location of
force the loop to exit
force the loop to exit

templ := templ + 1
endwhile
temp2 := temp2 + 1

the empty slot
the empty slot

94
95
96

97
98
99

100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123

124
125
126
127
128

129
130
113

123
133
134
135
136
137
138
139
140
141
142
143
144

Appendix A: Source Code for the Cannibal Game

templ := 0
endwhile

copy 2,objNum * 15 - 15,183,objNum * 15 - 1,199,0,x * 16 +
266,y * 18 + 17

; put object objNum in inventory window
mode 2, draw
color 2, objNum ; set value, before writing to array
rect 2, x, y, x, y; write ObjNwn to array
grab objNwn
if objNwn = 1 then ; if grab ladder we must also move the

BIG ladder
if RoomNwnber = 6 then ; by shack
directions meadow, n s e w
call ReDrawscreen ; so as to make the ladder disappear

elsif RoomNwnber = 7 then ; by tree
directions top of the cliff, w
call ReDrawscreen- -

elsif RoomNwnber = 9 then ; by upright boulder
directions by the boulder, n
call ReDrawscreen-

elsif RoomNwnber = 11 then
directions by the boulder, n e
call ReDrawscreen-

elsif RoomNwnber = 13 then ; by hole in cave
directions in the cave, w
call ReDrawscreen-

endif
endif
mode 2, draw
copy 2, ChosenPic + 1,2,MaxMov,2, 2, chosenPic,2 ; slide up

array
mode 23, draw
copy 23, O,ChosenPic * 18 + 18, 14,360, 23, 0,ChosenPic * 18

; slide up obj
ObjTotal := objTotal - 1
call DisplaySB ; show new scrollbar with object missing
call cannibalsArrive ; increment timer and check for cannibals

else ; if over inventory limit, put back in scrollbar
copy 2, objNwn * 15 - 15,183, objNwn * 15 - 1,199, o,

235,temp
; put object objNwn back in scrollbar at location pie

endif
else ; if object released outside inventory window, put in

scrollbar
copy 2, objNwn * 15 - 15,183, objNwn * 15 - 1,199, 0, 235,temp
; put object ObjNwn back in scrollbar at location pie

endif

END IF

end sub

sub Dropobject

x := (Mousex - 266) I 16 returns value 0-2

A-SS

The Visionary Programmer's Handbook

145
146

147
148
149
150
151
152

153

y := (MouseY - 17
pixel 2, x,y,objNum

ObjNum

IF ObjNum > 0 THEN

mode 2, draw
color 2, white

I 18 ; returns value 0-1
read object number of chosen pie into

if the spot clicked on is not empty then

rect 2, 285,183, 299,199 ; copy white to background in hidden
buffer

154 oldX := 266 + 16 * x old x value from where object is
coming

155 oldY := 17 + 18 * y old y value from where object is
coming

156 templ := OldX
157 temp2 := OldY
158 NewX := MouseX - 8 read these values early, in case player

clicks so
159 NewY := MouseY - 9 fast that the following while loop is

160
161
162
163

164

165

166

167
168

169

170
171

172
173
174
175
176
177
178

179
180
181
182
183
184
185
186
187

skipped

pause 15 ; so that temporary freeze ups are avoided

While Leftbutton = 1 do ; while button is held down, move
object

if OldX t Mousex - 8 or oldY t MouseY - 9 then ; if mouse
moved

Newx := Mousex - 8 offset by -8 so you are grabbing the
obj center

NewY := MouseY - 9 offset by -9 so you are grabbing the
obj center

mode 0, draw
copy 2, 285,183, 299,199, o, OldX,OldY ; restore old

background
copy O, Newx, NewY, Newx + 14, NewY + 16, 2, 285,183 ; copy

new background
mode 0, overlay
copy 2, objNum * 15 - 15,183, objNum * 15 - 1,199, O, NewX,

NewY
oldx := Newx
OldY := NewY

endif
endwhile

mode 0, draw
copy 2, 285,183, 299,199, O, oldX,oldY

background before •••
mode 0 , over lay

restore old

if Newx < 260 then ; put object in scrollbar
mode 2, draw
color 2, 0
rect 2, x, y, x, y; write zero (black) (empty) to array
drop objNum
if ObjNum = 1 then ; if dropped ladder
if RoomNumber = 6 then

A-56

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

214

215

216

217

218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237

Appendix A: Source Code for the Cannibal Game

directions meadow, n s e w u
link meadow, u, top of the shack
call ReDrawscreen - - -

elsif RoomNumber = 7 then
directions top of the cliff, u w
link top of the ciiff; u, in the tree
call Reorawscreen

elsif RoomNumber = 9 then
directions by the boulder, n u
link by the boulder, u, top of the boulder
call ReDrawscreen - -

elsif RoomNumber = 11 then
directions by the boulder, n e u
link by the boulder, u, top of the boulder
call ReDrawscreen - - -

elsif RoomNumber = 13 then
directions in the cave, w u
link in the cave,-u, rock room
call ReDrawscreen

endif
endif

call Addobject
call cannibalsArrive ; increment timer and check for cannibals

else ; put object back in inventory
copy 2,0bjNum * 15 - 15,183,objNum * 15 - l,199,0,templ,temp2
templ := Newx - templ x distance mouse

was moved
templ := (templ > 0) * 2 * templ - templ ; absolute value of

templ
temp2 := NewY - temp2 y distance mouse

was moved
temp2 := (temp2 > 0) * 2 * temp2 - temp2 ; absolute value of

temp2
if templ < 8 and temp2 < 8 then; moved very little, so

assume EXAMINE
ObjName objNum, $temp ; store name of objNum in $temp so we

can send msg
$tx := "examine the @$temp"
Buttonused := 2

end if
endif

END IF

endsub

sub ReDrawscrollBar

mode 23, draw
color 2 3, white
rect 23, O, O, 14, 360

bar
blank out previous contents of scroll

ObjNum := 1 ; start with object number 1 (ladder)
ObjTotal := 0 ; start with picture position O, top of scrollbar

A- 57

The Visionary Programmer's Handbook

238
239 while objNum < MaxMov + 1 do loop through all 19 objects,

put in scrollbar
240 if objNum in thisroom then
241 mode 23, overlay
242 copy 2, objNum * 15 - 15,183, ObjNum * 15 - 1,199, 23, O,

ObjTotal * 18
243 mode 2, draw save the ObjNum in an

array, so later
244 color 2, objNum when the player clicks on

an object in
245 rect 2, objTotal,2, objTotal,2 the scrollbar, we will know

which one
246 ObjTotal := ObjTotal + 1 it is. Works as long as

ObjNum < 32
247 endif
248 color 2, 0
249 rect 2, objTotal,2, MaxMov,2 ; zero out rest of array
250 ObjNum := ObjNum + 1
251 endwhile ; example: 7 objects, stored in 0-6, objTotal = 7
252
253 call DisplaySB
254
255 endsub
256
257
258
259 sub DisplaySB
260
261 if SBPosition > objTotal - 5 then ; makes sure scroll bar is

scrolled
262 SBPosition := ObjTotal - 5 to show as many objects as

possible
263 endif
264 if SBPosition < 0 then
265 SBPosition := 0
266 endif
267
268 call DrawArrows ; puts scrollbar arrows on screen if needed
269
270 mode O, draw ; draw scroll bar on screen
271 copy 23, O, SBPosition * 18, 14, SBPosition * 18 + 89, O,

272
273 endsub
274
275
276

235, 21

277 sub Addobject
278
279 mode 2, draw
280 copy 2, 0,2,objTotal,2, 2, 1,2 ; slide array down one
281 color 2, ObjNum
282 rect 2, 0,2,0,2 ; add object to front of list
283
284 objTotal := objTotal + 1
285 mode 23, draw

A-58

Appendix A: Source Code for the Cannibal Game

286 copy 23, O, O, 14, 342, 23, O, 18 ; slide down objects on
scrollbar

287 color 23, white
288 rect 23, O, O, 14, 17
289 mode 23, overlay
290 copy 2, objNum * 15 - 15,183, objNum * 15 - 1,199, 23, o, 0
291
292 SBPosition := 0
293
294 call DrawArrows ; puts scrollbar arrows on screen if needed
295
296 mode O, draw ; draw scroll bar on screen
297 copy 23, O, SBPosition * 18, 14, SBPosition * 18 + 89, O,

298
299 endsub
300
301
302

235, 21

303 sub ClickUpArrow
304
305 while leftbutton ; move scrollbar as long as the mouse button

is depressed
306 if UpArrowActive then
307 mode O, draw
308 copy 2, 275, 139, 287, 149, O, 236, 6 ; show up arrow

depressed
309 pause 5 ; to keep keep mouse pointer from freezing
310 temp := O
311 while temp < 18 do
312 temp := temp + 1
313 copy 23,0,SBPosition * 18 - temp,14,SBPosition * 18 + 89 -

temp,0,235, 21
314 endwhile
315 SBPosition := SBPosition - 1
316 call DrawArrows ; draws arrows if appropriate, blanks it

otherwise
317 endif
318 endwhile
319 readbuttons empty
320
321 endsub
322
323
324
325 sub clickDownArrow
326
327 while leftbutton ; keep scrolling while mouse button depressed
328 if DownArrowActive then
329 mode 0, draw
330 copy 2, 260, 139, 272, 149, O, 236, 114 ; show down arrow

depressed
331 pause 5 ; to keep keep mouse pointer from freezing
332 SBPosition := SBPosition + 1
333 temp := 18
334 while temp > 0 do
335 temp := temp - 1

A· 59

The Visionary Programmer's Handbook

336 copy 23,0,SBPosition * 18 - temp,14,SBPosition * 18 + 89 -
temp,0,235, 21

337 endwhile
338 call DrawArrows ; draws arrows if appropriate, blanks it

otherwise
339 endif
340 endwhile
341 readbuttons empty
342
343 endsub
344
345
346
347 sub DrawArrows
348
349 DownArrowActive := 0
350 UpArrowActive := 0
351 mode O, draw ; in case we need to draw arrows on scrollbar
352
353 if SBPosition + SBSize < objTotal then ; more objects are below
354 DownArrowActive := 1
355 copy 2, 260, 126, 272, 136, O, 236, 114 ; show down arrow

356
357

358
359
360
361
362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

normal
else

copy 2, 290, 126, 302, 136,
arrow

endif

if SBPosition > 0 then ; more
UpArrowActive := 1
copy 2, 275, 126, 287, 136,

normal
else

copy 2, 290, 126, 302, 136,
endif

end sub

o, 236 I 114 blank down

objects are above

O, 236, 6 ; show up arrow

o, 236 I 6 blank up arrow

sub Oestroyobject ; used for EAT SNICKER or BREAK BOTTLE

temp! := 0 ; 3 spaces across inventory window
temp2 := 0 ; 2 spaced down inventory window

while temp2 < 2
while temp 1 A 3
pixel 2, temp!, temp2, slot ; check contents of each slot
if Slot = ObjNum then ; object has been found

x := temp!
y := temp2
temp! := 3
temp2 := 2

end if
temp! := temp! + 1

endwhile
temp2 := temp2 + 1

A-60

388
389
390
391
392
393
394
395

396
397
398
399
400
401
402
403
404

templ := O
endwhile

mode 2, draw
color 2, O
rect 2, x,y, x,y

mode O, draw
painting

color 0, white
rect O, 266 + 16

drop ObjNum

Appendix A: Source Code for the Cannibal Game

zero (black) out the inventory array element

blank out object in inventory window by

; over it with a white rectangle
* X 1 17 + 18 * YI 280 + 16 * X1 33 + 18 * Y

placeobj objNum, unused

endsub

A· 61

Appendix A: Source Code for the Cannibal Game

The Cannibal.SUB File

1
2 cannibal.SUB
3
4 sub cannibalsArrive
5
6 timer : = timer + 1
7 Textcolor : = red
8 if timer = 9 0 then
9 call Linefeed

10 $tx := "The cannibals will land in only a few"
11 call print
12 $tx : = "minutes I"
13 call print
14 Buttonused : = 9
15 elsif timer = 97 then
16 call Linefeed
17 $tx := "The cannibals are nearly here."
18 call print
19 ButtonUsed := 9
20 elsif timer = 100 then
21 call Linefeed
22 $tx := "The cannibals have landed!"
23 call print
24 Buttonused : = 9
25 EnableMusic
2 6 play song 0
27 elsif timer = 101 then
2 8 call Linefeed
29 $tx := "Here come the cannibals I And they"
30 call print
31 $tx := "look hungry I"
32 call print
33 Buttonused := 9
34 elsif timer = 102 then
35 call Linefeed
36 $tx := "Those drums I They' re driving you mad!"
37 call print
38 Buttonused := 9
39 endif
40 Textcolor := blue
41
42 if timer = 103 then
43 RoomNumber := 15 ; sitting in pot of water
44 call ReDrawscreen ; SHOW THE DEATH SCENE
45 mode 0, draw
46 color O, white
47 rect O, 235,21, 250,109 blank objects, so they aren't seen

color cycling
48 rect O, 266,17, 312,51 blank inventory so color cycling

doesn't show
49 rect O, 8, 140, 248, 192 blank text window, so cycling isn't

seen in red
50 palette O, 2, 5, 8, 15

A-62

The Visionary Programmer's Handbook

51 palette o, 4, 7 , 7, 7
52 palette 0, 5, 6, 6, 6
53 palette O, 6,4,4,4
54 palette O, 7,3,3,3
55 palette O, 9,5,8,15
56 palette O, 11, 8, 13, 15
57 palette O, 12,5,8,15
58 palette O, 14,4,4,6
59 palette 0, 15,5,5,7
60 palette O, 16,6,6,9
61 palette O, 19,11,9,7
62 palette 0, 20,11,5,2
63 palette O, 21,8,3,2
64 palette 0, 22, 4, 2, 1
65 palette O, 23, O, O, 0
66 palette O, 25,14,11,9
67 cycle on
68 DisableMusic
69 play sound o, 0,0,24,0 ; play bubbling non-stop
70 CountLines := -1 ; so all 6 lines will print without "more"

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105

message
$tx : = "The cannibals have caught you I They"
call print
$tx := "tie you up and dump you in a large iron"
call print
$tx : = "pot. A red fog swims before your eyes"
call print
$tx := "and you lose consciousness."
call print
call Linefeed
$tx : = "The adventure is over. You are dead."
call print
load sound 1, "Cannibal:audio/death.snd"
play sound 1, 1,1,64,0 ; play scream once
call clearButtons
while leftbutton 1 do make sure button is up first
endwhile
while leftbutton 0 do then if button is pushed down, exit
endwhile

MainLoop : = 1
endif

endsub

sub print
call LineFeed
call PrintText
ReadButtons empty

a print
end sub

sub LineFeed

empties click queue to ignore clicks during

A-63

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123
124

125

126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

A-64

Appendix A: Source Code for the Cannibal Game

mode O,draw
copy O, 9,149,
color 0, white

249,193, o, 9, 140 : move

rect o, 9,185, 249,192 : blank 6th line
color O, Textcolor

countLines := countLines + 1

if CountLines MaxLines then
mode 0, overlay
color 0, brown

5 lines up

text 0,9,192," - press mouse button for more-"
while leftbutton = 1 do : make sure button is up first
endwhile
temp := 0
while temp = 0 do

templ := leftbutton templ = 0 if NO button was pressed, 1
otherwise

getchar $letter
length $letter, temp2 temp2 = 0 if NO key was pressed, 1

otherwise
temp := templ + temp2 temp = 0 if NO key and NO button

pressed
endwhile

color 0, white
rect O, 9,185, 249,192 : blank 6th line
color O, Textcolor
countLines := 1 : count 1 because this line is blanked and

used
endif

endsub

sub PrintText
mode 0, overlay
text 0,9,192,"@$tx"

endsub

sub clearButtons
temp := 34 ; clear the buttons for non-movable objects

while temp < 45 do
remove temp
temp := temp + 1

endwhile
endsub

sub GoNorth
offset := GoN
xl := 59
yl := 138
x2 := 71

The Visionary Programmer's Handbook

159 y2 := 150
160 x := 273
161 y := 64
162 $tx := "n"
163 Buttonused := 1
164 end sub
165
166
167
168 sub Gosouth
169 offset := Gos
170 xl := 72
171 yl := 138
172 x2 := 84
173 y2 := 150
174 x := 273
175 y := 97
176 $tx := "s"
177 Buttonused := 1
178 endsub
179
180
181
182 sub GoEast
183 offset := GoE
184 xl := 85
185 yl := 138
186 x2 := 97
187 y2 := 150
188 x := 288
189 y := 81
190 $tx := "e"
191 Buttonused := 1
192 endsub
193
194
195
196 sub GoWest
197 offset := GOW
198 xl := 98
199 yl := 138
200 x2 := 110
201 y2 := 150
202 x := 259
203 y := 81
204 $tx := "W"
205 Buttonused := 1
206 endsub
207
208
219
220 sub Go Up
211 offset := GOU
212 xl := 111
213 yl := 138
214 x2 := 123
215 y2 := 150

A· 65

216 x := 307
217 y := 64
218 $tx := uu"
219 ButtonUsed := 1
220 endsub
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

A· 66

sub Go Down
offset := GoD
xl := 124
yl := 138
x2 := 136
y2 := 150
x := 307
y := 97
$tx := "d"
Buttonused :=

endsub

sub Help
xl := 137
yl := 138
x2 := 197
y2 := 150
x := 259
y := 115
$tx := "help"
Buttonused :=

end sub

sub Dig2
xl := 198
yl := 138
x2 := 258
y2 := 150
x := 259
y := 133
$tx := "dig"
Buttonused :=

end sub

sub Load
xl := 137
yl := 164
x2 := 197
y2 := 176
x := 259
y := 151
$tx := "load"
Buttonused :=

1

1

1

4

Appendix A: Source Code for the Cannibal Game

The Visionary Programmer's Handbook

273 endsub
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

sub save
xl := 198
yl := 164
x2 := 258
y2 := 176
x := 259
y := 169
$tx := "save"
Buttonused :=

end sub

sub Quit
xl := 259
yl := 164
x2 := 319
y2 := 176
x := 259
y := 187
$tx := "quit"
Buttonused :=

end sub

5

1

303 sub ReDrawscreen
304
305
306 if LastRoomNwnber t RoomNwnber then : load new location scenery
307 t \f
308 $filename := "@$device loc@RoomNumber" : add device & RoomNumber
309 load screen 1, $filename
310 call LoadingError
311 LastRoomNumber := RoomNumber : update previous room number to

one just left
312 SBPosition := 0 : set scroll bar position (for movable

objects) back to top
313 show screen 0
314 screenmode graphics
315 call ReDrawscrollBar
316 endif
317
318
319 if player canGo 0 then
320 GoN := -13
321 else
322 GoN := 13
323 endif
324
325 if player CanGo 1 then
326 Gos := -13
327 else

A-67

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

357

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

A· 68

Appendix A". Source Code for the Cannibal Game

Gos := 13
endif

if player canGo 2 then
GOE := -13

else
GOE := 13

end if

if player canGo 3 then
GOW := -13

else
GOW := 13

endif

if player canGo 8 then
GOU := -13

else
Gou := 13

endif

if player canGo 9 then
GOD := -13

else
GOD := 13

endif

mode 2, draw
copy 1, O,O, 227,118, 2, 6,6 ; copy from scene buffer (1) to

buffer 2
mode 2, overlay ; prepare to overlay ladder on scene in buffer

2, if there

remove 15 ; remove click zone for ladder

if Olladder in thisroom then
if RoomNumber = 7 then ; by tree
copy 2, 235,1, 288,76, 2, 118, 12
click 15, 130, 21, 164,79, seeLadder

elsif RoomNumber = 6 then ; by shack
copy 2, 235,1, 288,69, 2, 28, 56
click 15, 36, 61, 75,124, seeLadder

elsif RoomNumber = 9 then ; by upright boulder
copy 2, 235, 1, 288, 76, 2, 156, 21
click 15, 166,28, 206,91, seeLadder

elsif RoomNumber = 11 then ; by overturned boulder
copy 2, 235, 1, 288, 76, 2, 108,24
click 15, 118,45, 151,84, seeLadder

elsif RoomNumber = 13 then ; by hole in cave
copy 2, 235,1, 288,76, 2, 15,36
click 15, 23,51, 64,98, SeeLadder

endif
end if

mode O, draw
copy 2, 6,6, 231,124, O, 6,6

in window (0)
draw location from buffer (2)

The Visionary Programmer's Handbook

382

383

384

385

386

387

388
389
390
391
392

copy

copy

copy

copy

copy

copy

endsub

2, 59,
button
2, 72,
button
2, 85,
button
2, 98,
button
2, 111,
button
2, 124,
button

393 sub Alreadyis

138 + GoN,

138 + GoS,

138 + GOE,

138 + GoW,

138 + GoU,

138 + Goo,

394 $tx:="It already isl"
395 call print
396 endsub
397
398
399
400 sub cantDoThat

71,

84,

97,

110,

123,

136,

401 $tx := "You can't do that."
402 call print
403 endsub
404
405
406
407 sub NoHave
408 $tx:="You don't have it."
409 call print
410 endsub
411
412
413
414 sub Haveit
415 $tx:="You already have it."
416 call print
417 endsub
418
419
420
421 sub OK
422 $tx := "OK."
423 call print
424 end sub
425
426
427
428 sub seeBoat

150

150

150

150

150

150

429 $tx := "examine the row boat"

+ GoN, O, 273,64 draw

+ Gos, o, 273,97 draw

+ GoE, o, 288,81 draw

+ Gow, o, 259,81 draw

+ GoU, o, 307,64 draw

+ GoD, o, 307,97 draw

430 Buttonused := 2 ; set to 2 so MainLoop.SUB will act as
conunand was typed

431 endsub

A-69

N

s

E

w

u

D

432
433
434
435 sub seecanoe

Appendix A: Source Code for the Cannibal Game

436 $tx := #examine the canoew
437 Buttonused := 2
438 endsub
439
440
441
442 sub seeLadder
443 $tx := "examine the ladderw
444 Buttonused := 2
445 endsub
446
447
448
449 sub seeTree
450 $tx := "examine the tree"
451 Buttonused := 2
452 endsub
453
454
455
456 sub seeBoughs
457 $tx := "examine the fronds"
458 ButtonUsed := 2
459 endsub
460
461
462
463 sub seeocean
464 $tx := "look at the ocean"
465 ButtonUsed := 2
466 endsub
467
468
469
470 sub seeship
471 $tx := "look out to sea"
472 Buttonused := 2
473 endsub
474
475 ;~~~~~~~~~~~~~~~~~-

476
477 sub seesand
478 $tx := "examine the sand"
479 Buttonused := 2
480 endsub
481
482
483
484 sub seePlant
485 $tx := "examine the grass"
486 Buttonused := 2
487 endsub
488

A-70

The Visionary Programmer's Handbook

489
490
491 sub seeDunes
492 $tx := uexamine the dunes"
493 Buttonused := 2
494 endsub
495
496
497
498 sub seeshack
499 $tx := uexamine the shack"
500 Buttonused := 2
501 endsub
502
503
504
505 sub seeWindow
506 $tx := nexamine the window"
507 Buttonused := 2
508 endsub
509
510
511
512 sub SeeTable
513 $tx := nexamine the table"
514 Buttonused := 2
515 endsub
516
517
518
519 sub seernterior
520 $tx := u1ook around the shack"
521 Buttonused := 2
522 end sub
523
524
525
526 sub seesky
527 $tx := "examine the sky"
528 Buttonused := 2
529 endsub
530
531
523
533 sub seeHole
534 $tx := "look at the hole"
535 Buttonused := 2
536 endsub
537
538
539
540 sub SeeWall
541 $tx := "look at the wall"
542 Buttonused := 2
543 endsub
544
545

A-71

Appendix A: Source Code for the Cannibal Game

546
547 sub seeFissure
548 $tx := "look into the fissuren
549 Buttonused := 2
550 endsub
551
552
553
554 sub seeRocks
555 $tx := Hlook at the rocksn
556 Buttonused := 2
557 endsub
558
559
560
561 sub Seeisland
562 $tx := "look over the island"
563 Buttonused := 2
564 endsub
565
566
567
568 sub seeBoulder
569 $tx := Hexamine the boulder"
570 Buttonused := 2
571 endsub
572
573
574
575 sub seecave
576 $tx := "look in the cave"
577 Buttonused := 2
578 endsub
579
580
581
582 sub seeRoof
583 $tx := "examine the roof"
584 Buttonused := 2
585 endsub
586
587
588
589 sub BreakBottle ; there are six ways to break the bottle
590 if player has lOcoconut then
591 call SmashBottle
592 elsif player has 12handle then
593 call smashBottle
594 elsif player has llblade then
595 call smashBottle
596 elsif player has 13shovel then
597 call smashBottle
598 elsif player has 14hammer then
599 call smashBottle
600 elsif player has 15chisel then
601 call smashBottle
602 else

A-72

The Visionary Programmer's Handbook

603 $tx := "You don't have anything hard enough to"
604 call print
605 $tx := "break it."
606 call print
607 endif
608 endsub
609
610
611
612 sub smashBottle
613 objNum := 2 ; bottle is number 2, hence the name 02bottle
614 call oestroyobject
615 placeobj 03paper, thisroom
616 ObjNum := 3 ; paper is number 3, hence the name 03paper
617 call Addobject ; place the paper in the scroll bar
618 $tx := "It smashes into a thousand splinters."
619 call print
620 $tx := "A piece of paper flutters to the"
621 call print
622 $tx := "ground."
623 call print
624 endsub
625
626
627
628 sub Noswim
629 $tx := "You splash about in the salty waters"
630 call print
6 31 $tx : = "for a bit, then return to the beach. "
632 call print
633 $tx := "You are too weakened to swim out"
634 call print
635 $tx := "farther."
636 call print
637 endsub
638
639
640
641 sub sitBoat
642 $tx := "It's not too comfortable, sitting in"
643 call print
644 $tx := "the splintery old rowboat."
645 call print
646 endsub
647
648
649
650 sub sitcanoe
651 $tx := "OK. It is a comfortable fit."
652 call print
653 endsub
654
655
656
657 sub Dig
658
659 if dig = 3 then

A-73

Appendix A: Source Code for the Cannibal Game

660 $tx := "You can't dig here."
661 call print
662 elsif dig = 2 then
663 $tx := "The rock's too hard."
664 call print
665 elsif dig = 1 then
666 if player has 13shovel then
667 if player in meadow then
668 if 04battery is found then battery was previously found

when digging
669 call DigNothing
670 else
671 $tx := "You find a dead radio battery."
672 call print
673 placeobj 04battery, thisroom
674 set 04battery, found ; so if you dig again, you won't

"find" it again
675 objNum := 4 ; battery is object 4, because it was named

04battery
676 call Addobject ; put battery in scroll bar
677 endif
678 elsif player in by the boulder then
679 if 17gun is found-then
680 call DigNothing
681 else
682 $tx := "You find an emergency flare gun."
683 call print
684 placeobj 17gun, thisroom
685 set 17gun, found
686 objNum := 17
687 call AddObject
688 endif
6 89 else ; if player in top of cliff
690 if 15chisel is found tnen-
691 call DigNothing
692 else
693 $tx := "You discover a dull old chisel."
694 call print
695 placeobj 15chisel, thisroom
696 set 15chisel, found
697 ObjNum := 15
698 call Addobject
699 endif
700 endif
701 else
702 $tx := "You need a shovel to dig here."
703 call print
704 endif
705 else ; if dig = 0
706 if player in east end of beach then
707 if 18matches is !ouna tnen
708 call DigNothing
709 else
710 $tx := "You find a book of wet matches."
711 call print
712 placeobj 18matches, thisroom
713 set 18matches, found

A-74

The Visionary Programmer's Handbook

714 objNum := 18
715 call Addobject
716 endif
717 elsif player in west end of beach then
718 if 16driftwood is found-then
719 call DigNothing
720 else
721 $tx := HYou find a piece of dry driftwood.,.
722 call print
723 placeobj 16driftwood, thisroom
724 set 16driftwood, found
725 ObjNum := 16
726 call Addobject
727 endif
728 elsif player in sand dunes then
729 if 12handle is founa then
730 call DigNothing
731 else
732 $tx := "You find the wooden handle to a shovel."
733 call print
734 placeobj 12handle, thisroom
735 set 12handle, found
736 ObjNum := 12
737 call Addobject
738 endif
739 else
740 call DigNothing
741 endif
742 endif
743
744 endsub
745
746
747
748 sub DigNothing
749 $tx := "You find nothing, even after digging"
750 call print
751 $tx := ufor quite a while."
752 call print
753 endsub
754
755
756
757 sub NoBurn
758 $tx := HNot without some good dry matches."
759 call print
760 endsub
761
762
763
764 sub Breakcoconut
765 $tx := Hit's hard as a rock. Maybe even"
766 call print
767 $tx := "harder! It won't break open."
768 call print
769 endsub
770

A-75

771
772
773 sub Eatcandy
774 if player has 06bar then
775 energy := 4
776 ObjNum := 6
777 call Destroyobject

Appendix A: Source Code for the Cannibal Game

778 $tx := "Ywnmmm. You get a sugar rush."
779 call print
780 $tx := "Talk about quick energy!"
781 call print
782 else
783 call NoHave
784 endif
785 endsub
786
787
788
789 sub ExamineFloor
790 $tx := "It's old and dirty, but you don't see"
791 call print
792 $tx := "anything unusual."
793 call print
794 endsub
795
796
797

A-76

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29

30
31
32

33
34

35
36
37

38
39

40
41
42

43
44

45

Appendix A: Source Code for the Cannibal Game

The Cannibal. VOC File

VOCAB ;-------

action endgame
timer := 95
set canoe, InWater

cannibal.voe

placeobj 13shovel, east end of beach
LastRoomNumber := 1 ; to force a ReDrawscreen
go east end of beach

endact - - -

action status
$tx := "@FastMem K FastMem @chipMem K chipMem"
call print
$tx := "$device = @$device timer = @timer"
call print
$tx := "items @items"
call print

end act

action cycle
show screen 1 ; location scenery
While LeftButton = 1 do ; waits to make sure mouse button is

down
endwhile
While LeftButton 0 do waits to make sure mouse button is

released
endwhile
Show Screen 2 ; button.pie
While LeftButton = 1 do ; waits to make sure mouse button is

down
endwhile
While LeftButton 0 do waits to make sure mouse button is

released
endwhile
show screen 23 ; scroll bar
While LeftButton = 1 do ; waits to make sure mouse button is

down
endwhile
While LeftButton = 0 do waits to make sure mouse button is

released
endwhile
Show Screen 24 ; overlay buffer
While LeftButton = 1 do ; waits to make sure mouse button is

down
endwhile
While LeftButton = 0 do waits to make sure mouse button is

released
endwhile

A-77

The Visionary Programmer's Handbook

46
47

48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

screenmode text
While LeftButton = 1 do

down
endwhile
While LeftButton 0 do

released
endwhile
screenmode graphics
show screen o

endact

waits to make sure mouse button is

waits to make sure mouse button is

action help, hint, clue, give me clue, give me help, give me hint
$tx := "Most common actions can be accomplished"
call print
$tx : = "With the mouse. To EXAMINE or LOOK AT"
call print
$tx := "an object, just click on it. You GET"
call print
$tx := "and DROP objects by dragging them from"
call print
$tx := "the location window to the inventory"
call print
$tx := "window, and back. But you can always"
call print
$tx := "use the keyboard to type commands. some"
call print
$tx := "less common actions (like EAT THE CANDY"
call print
$tx := "BAR) can only be achieved by using the"
call print
$tx := "keyboard. Enjoy yourself!"
call print

end act

action sit, sit down, sit down in canoe, sit down in boat
if player in west end of beach then
call sitBoat - - -

elsif player in east end of beach then
call Sitcanoe - - -

else
$tx := "You sit down and relax for a minute."
call print

endif
endact

action dig
call Dig

endact

A-78

Appendix A: Source Code for the Cannibal Game

101 action make shovel, build shovel, put shovel together, assemble
shovel

102
103 if player has 12handle then
104 if player has llblade then
105 $tx := HOK. The completed shovel looks useful."
106 call print
107 ObjNum := 12
108 call Destroyobject
109 ObjNum := 11
110 call Destroyobject
111 ObjNum := 13
112 mode 2, draw
113 color 2, objNum
114 rect 2, x,y, x,y put new object in inventory array
115 mode O, overlay
116 copy 2,objNum * 15 - 15,183,objNum * 15 - 1,199,0,x * 16 +

266,y * 18 + 17
117 placeobj 13shovel, thisroom
118 grab 13shovel
119 else
120 $tx := "You can't do that yet."
121 call print
122 endif
123 else
124 $tx := "You can't do that yet."
125 call print
126 endif
127
128 endact
129
130
131
132 action swim, swim north, swim n
133 if player in west end of beach then
134 t
135 call Noswim
136 elsif player in east end of beach then
137 t
138 call Noswim
139 else
140 $tx := "There's no water here."
141 call print
142 endif
143 endact
144
145
146
147 action get up, stand up
148 $tx := "OK."
149 call print
150 endact
151
152
153
154 action break open bottle, break bottle open
155 call BreakBottle

A-79

The Visionary Programmer's Handbook

156 endact
157
158
159
160 action break open coconut, break coconut open
161 call Breakcoconut
162 endact
163
164
165
166 action eat candy
167 call Eatcandy
168 endact
169
170
171
172 action jump, jump up, jump hole, jump tree, jump shack, jump

boulder
173 if player in in the cave then
174 $tx := "You can't reach the hole by jumping."
175 call print
176 elsif player in by the boulder then
177 $tx := "You can't-reach the top by jumping."
178 call print
179 elsif player in top of the cliff then
180 $tx := "Be careful-about)umping, when this"
181 call print
182 $tx := "near the edge of the cliff."
183 call print
184 elsif player in meadow then
185 $tx : = "You can't reach the top of the shack by"
186 call print
187 $tx := "jumping."
188 call print
189 else
190 $tx := "Wheee ... "
191 call print
192 endif
193 endact
194
195
196
197 action look out to sea
198 $tx := "The old freighter moves slowly, which"
199 call print
200 $tx := "gives you an idea. It's too far to swim"
201 call print
202 $tx := "but if you could row out to it •.• "
203 call print
204 endact
205
206
207
208 action look around the shack
209 call ExamineFloor
210 endact
211

A-80

Appendix A: Source Code for the cannibal Game

212
213
214 action author author, author
215 $tx := "written 8/15/91 by#
216 call print
217 $tx := "John Olsen"
218 call print
219 $tx := "Using Aegis Visionary"
220 call print
221 $tx := "From oxxi Inc. (213)427-1227"
222 call print
223 endact
224
225
226
227 action quit
228 quit
229 endact
230
231
232
233 action i, inv, inventory, take inventory, get inventory
234 $tx := "You can carry up to six items. They are"
235 call print
236 $tx := "shown in the Inventory window. Click on"
237 call print
238 $tx := "any item to examine it more closely."
239 call print
240 endact
241
242
243
244 ENDVOCAB
245
246

A-81

The Visionary Programmer's Handbook

A-82

Appendix B: The Solution to I Was a
Cannibal for the FBI

The True Solution

Use the shovel to row the canoe to safety-that's the solution in a nut
shell. Remember the spot you saw out to sea, on the horizon? It was
visible from various locations when you clicked on the ocean. And
when you were in the top of the palm tree, you could tell that the spot
was an old ocean going freighter slowly puffing its way along. By pad
dling the canoe out to the ship, you are picked up and rescued from
the cannibals, and returned to your job at the FBI and the safety(?) of
civilization.

That presents the question, "Where do you get the shovel?" Actually,
you find it in two parts, and put them together. You find the handle to
the shovel hidden in the sand of the dunes. When you dig there, you
will find the shovel handle. The blade to the shovel is in the rock room
in the cave.

When you put the blade on the handle, you have a fully functional
shovel. The shovel can be used to dig in the meadow, by the palm tree,
or by the boulder. And in each of these locations, digging with the
shovel produces some buried object. But none of them plays any part
in the ultimate solution to the game. They just provide a secondary
reason for the existence of the shovel, and help conceal its true pur
pose of acting as paddle for the canoe.

Entering the Cave
Perhaps this brings up another question, "How do I get in the cave?"
You have to push the boulder out of the way. And that requires the
extra strength that only the candy bar can temporarily give you. The
extra energy from the candy bar will only last four moves, so you need
to eat the candy bar immediately before trying to move the boulder.
Once the boulder is tipped over, you can enter the cave, put the ladder
against the hole in the wall, and enter the rock room.

The Optimum Path
Let's go through the solution in order, step-by-step from the very
beginning to the very end. We will ignore the many other things that
you can do, which play no part in the ultimate solution of the game.
They were included to enrich the playing experience, and to add some
"red herrings" intended to throw you off the scent of the actual solu-

B-1

The Visionary Programmer's Handbook

B-2

tion. But the only steps necessary to complete the adventure are ac
tually quite few. They can be listed in a short paragraph.

When the game starts, you are on the beach. navel south to the
meadow, and get the ladder. Tulce the ladder east to the palm tree, and
place it against the tree. Climb the ladder and take the candy bar that
you find up there. Climb back down, take the ladder with you, and go
west and south to the boulder. Eat the candy bar and push the boulder
aside. Enter the cave and put the ladder against the hole in the wall.
Climb the ladder and enter the rock room. Take the shovel blade that
you find there, climb back down, and head back to the beach. Stop at
the sand dunes on your way back and dig in the sand. You will find a
shovel handle buried there. Put the handle in the blade, to make a
complete shovel. Return to the east end of the beach, by the canoe.
Push the canoe into the water, sit down, and paddle your way to safety.
You have won.

The winning path took less than 40 moves, depending on what you
counted as a move-but remember, every action is also counted as a
tum, so each time you take an object you don't need, or give any action
command that doesn't move you toward the solution, it is also counted
as a turn.

There are many other things that you can find in the game. And there
are many things you can do with them. But they had nothing to do with
the actual solution. Each had a concrete reason for being there. Each
bad a logic of its own. For a more complete explanation of why they
were there, see chapter 15 on how the game was designed.

Appendix C: Bibliography

Books

The following books are recommended reading for adventure authors.
They are listed by title, author, publisher, and date of publication.
Some may be out of print, in which case you should check your public
library, your local user-group library, or used-book stores.

Adventure Gamewriters Handbook for the Commodore 64, J. Walkowiak,
Abacus Software, 1985.

Book of Adventure Games, The, Kim Schuette, Arrays Inc., 1984.

Book of Adventure Games II, The, Kim Schuette, Arrays Inc., 1985.

Capain 80's Book of Basic Adventures, Robert Liddil, 80 NorthWest
Publishing Inc, 1981.

Compute!'s Guide to Adventure Games, Gary McGath, Compute! Books,
1984.

Computer Adventures- The Secret Art, Gil Williamson, Amazon Systems,
1990.

Golden Flutes & Great Escap!S- How to \\Tite Adventure Games for the
Commodore 64, Delton T. Horn, Dilithium Press, 1984.

ie)'s to Solving Computer Adventures Games, M.K. Simon, Prentice Hall,
1988.

Quest for Oues, Shay Adamms, Origin Systems Inc., 1988.

Quest for Out'S 2, Shay Adamms, Origin Systems Inc., 1989.

Quest for Oues 3, Shay Adam.ms, Origin Systems Inc., 1990.

Shortcut Through AdventureLand, A, Jack Cassidy, Datamost, 1984.

Shortcut Through AdventureLand II, A, Richard Owen Lynn, Datamost,
1984.

\\Titing Basic Adventure Programs for the TRS-80, Frank Dacosta, Tab
Books, 1982.

Magazines

The following magazines are also strongly recommended for adventure
authors:

Enchanted Realms, Digital Expressions, P.O. Box 33656, Cleveland, OH
44133.

Questbusttts, P.O. Box 5845, Tucson, AZ 85703.

c -1

The Visionary Programmer's Handbook

C-2

Oxxi

The publisher of the Aegis Visionary program is Oxxi, Inc. By writing
care of them, you can communicate with me, as well as with the
creator of the Visionary program, Kevin Kelm.

Oxxi provides a technical support service for the Visionary language as
well as for all their other products. Check the instructions in your
Visionary manual for access to this service.

You can write to me at the Oxxi address:

John Olsen
C/0 Oxxi, Inc.
P 0 Box 90309
Long Beach, CA 90809-0309
USA

Address correspondence to Kevin Kelm at:

Kevin Kelm
C/0 Oxxi, Inc.
P 0 Box 90309
Long Beach, CA 90809-0309
USA

Index

OOnothing 5-7, 20-9 c Candy bar 22-7, 24-16, 25-11 , 26-4

A
Characters

Absolu111 values 24-7 multiple 11-2
Action block 5-2, 5-6, 6-8 - 6-9, Chip RAM 20-6

6-11, 22-3 ChlpMem 1()-6, 26-1
Action blocks 22-4 Click zones 11-3, 1~5. 23-5, 23-10,
Actions 22-S 25-7, 27-1 - 27-2

allowing 3-5 clearing 1~5. 25-4
automatic ~1. ~7. ~9- ~10 defining 1~. 20-8
dig 8-1 modifying 1~9 - 1~10, 21-6
NPC ~1 priorities 1~5
text formatting ~9 special techniques 1~10

Adjectives 22-7 Clock 9-4- 9-6
objects 5-3 Close Screen 20-5, 20-8, 28-4

ADV file 18-1 Coconut 26-4
Animation 10-2, 11-4, 14-4, 25-1 Code block 5-3, 5-6, ~ 11, 22-2

color cycling 14-4 Color cycling 10-2, 14-4, 25-1
Animations 11-4 Command format A-xiv
Asrays 11-2, 22-9 - 22-10, 24-2 - 24-4 Concatenating strings 23-9

'24-9, 24-11 , 24-13, 24-16 Copy command 11-1, 17-1 - 17-2,
Artists 22-10, 23-5, 24-7, 24-12, 25-3, 25-5

seeking 17-1 overlay 20-7
Artists, finding 10-1 Copy protection 13-5 - 13-6
ASCII codes 28-1 Copyrights 13-4
Attributes 4-4, 4-10, 5-10 - Cross reference file 28-2
5-11, 5-13, 6-11 - 6-12, 9-8, ~10 - ~11 , Cycle 26-2
11-3, 1~1. 1~3. 21-5, 22-2, 22-6, 26-6, D Dark 8-3 27-1

dark 4-11, 1~ DBUG 28-2

found 22-5, 25-10 Death

In Water 21 -7 various types 2-6

moved 21-5 Death traps 2-5

object 3-3, 5-4 Debugging aids 26-1

objects 5-2 Difficulty level 5-6

room 3-6 Dig 21-4

sealed 22-4 Digging 19-6, 22-5, 25-10, 26-1 , 26-3

started 19-8, 20-9 Directions command 21-6

visited 4-11, 1~. 20-9 DisableMusic command 20-8

worn 5-2 DOS command 20-8

Audience Double-buffering 11-4

adventure 1-3 Drop ~. 22-6

B
Drop vs Put 22-3

Bottle 24-16, 26-4 E EnableMuslc command Breaking control 28-3 20-3

Buttons 25-7 Encoding graphics & sounds 28-4

action 16-2, 25-5 Endgame 26-1

arrows 24-13 Endroom 20-9

compass 10-7, 14-3, 16-2, EndSub command 8-2

23-5 - 23-6, 25-5 ERR file 28-2

game 10-7 Error file 28-2

ghosted 25-5 Escape codes 28-1

movement of 23-5 - 23-6, 23-14 Exits

two versions 17-4 deSCl'iption of 3-1

Buttons.pie file 20-5, 22-9, 24-7 hidden 3-2

Index 1

The Visionary Programmer's Handbook

F FastMem 2()..3, 26-1
Graphics, cont

title ICl'Hn 10-2
Flags 4-10, 5-10, 9-6 tunnel scenes 11-1

digging 4-12 viewing hidden screens 26-2
help 4-12 Graphics ICl'Hn
objects appearing 4-12 mask buffer 23-14

Fonts 7-6, 23-3 Graphics, creating In memory 20-7
editing 20-6

H loading 20-6 Help 2-11, 7-3, 10-7, 26-2

G default 2-11,7-3
Game distribution 13-5 flags 4-12
Game testing 13-3 Hints 2-8, 3-4
Get vs Get In 21-7
Ghost command 23-11, 23-13, I Initialization 27-1

24-12, 27-1 lnitRoom 18-4
turn option 23-13 Input loop 23-4

Goal 11-5, 15-2 ln11111igenoe
adventure 1-2 artificial 12-1

Goals conversations 12-2 - 12-3
adventure 2-1 levels 12-2
layers of 2-2 movement 12-3, 12-6

Grab 22-11 purchasing 12-3
Grab command 6-9 Interface, graphic 11-5
Graphic adventure Inventory 5-7, 11-3, 21-2, 26-5

vocabulary 6-1 Inventory window 22-9 - 22-10,
Graphic interface 14-3, 16-1 24-8 - 24-9

buttons 16-2 Items 9-10
objects 16-4 Items variable 5-7, 22-6
text input 16-1 J Jumping 26-1, 26-4 windows 16-1

Graphic screen 23-13 L Ladder 25-7 Graphics 3-6, 10-1, 17-1
placement of 24-9 animation 10-2, 11-4

Leftbutton command 21-9
animations 11-4, 14-4

Legal Notices 13-4
anti-aliasing 16-6, 17-4

Link command 21-6 buffers 24-6, 25-7
Load game 23-12 buttons 17-4
Load Screen 28-4 chip ram usage 10-5
LoadScreen utility 10-2 color cycling 10-2, 25-1
Logic statements 23-4 coordinates 17-2, 17-5
Logical actions 22-8 double-buffering 11-4
Loops, nested 24-16 draw 25-3,25-8

encoding 18-1, 28-4 M Magic Spells 12-5
flicker problems 24-5 Main loop 23-1, 23-11, 25-8, 27-1
hidden screens 17-3 Map, adventure 1-3
interface 11-5 Mask buffer 20-7, 23-12, 23-14
loading 20-4 Maze, adventure 1-3
loading of 25-6 MED 10-3, 20-2, 2(}8, 21-8, 25-1, 28-5
location scenery 10-4 Menus command 20-2
mask buffer 23-12 Messages 7-1 - 7-2, 25-8 - 25-9
maze games 11-1 clock 9-5- 9-6
movable objects 17-4 fonts 7-6
NTSC 16-6 humor 7-5
object movement 24-5, 24-7, once only 9-6

24-11, 27-1 printing variables 7-5
objects 17-2 random 7-4, 9-6, 12-4, 13-1
overlay 23-8, 25-3 spelling 7-7
overlaying objects 17-5 split 7-6
PAL 16-6 subroutines 7-5
screens needed 10-3 timed 7-4

Index

Index

Messages, cont Objects, cont.
type styles 7-6 put inside other objects 5-10, 6-10
warning 7-4 put Inside others 22-5

Misdirection 22-.3 reading 6-5
Monsters 12-4 rem0\18 6-7 - 6-8
Mouse clicks 25-8 removing from others 26-6
Mouse coordinates 24-8 synonyms 21-3
Mouse input 23-1, 23-4 - 23-5, throw 6-6

23-10- 23-11, 24-1, 27-1 two versions 5-12
Mouse pointer 28-4 wear 6-7
Multi-tasking, break 28-3 ObjName command 24-8
Music Obj Noun 6-8, 6-11 , 22-5 - 22-8

MED 1~3. 17-9, 20-2, 20-8, ObjNum 22-9
21-8, 25-1, 28-5 p PAL standard 28-5 title 10-.3, 20-2

Palette command 25-2, 28-1, 28-4
N NPC 9-1 , 9-4, 9-6, 9-9-9-11 , 12-1 , Password 18-1 , 28-4

12-4 - 12-5, 21-10, 25-12, 27-.3 Pathnames 20-3, 23-14
intelligence 12-1 Pause 23-6
status 21-10 Pen numbers 28-1
timer 21-10 Pixel command 24-3- 24-4

NTSC standard 28-5 Pt ace Obj 9-9, 9-11, 22-6, 22-11

0 Objects 15-4
command 5-2, 5-4 - 5-5, 6-11,

9-7 - 9-8
OOnothing 5-7, 20-9, 21-2 Plot 15-2
action blocks 6-4 adventure 1-1 - 1-2, 2-4
actions 6-2, 22-2 - 22-4 Preposition 6-9
actions on 21-3 Prepositions 6-8, 21-7
adjectives 5-3, 6-3 Print, text 19-8
alphabetized 21-1 Publishing 13-5, 13-7
alphabetizing 22-1 , 24-13 Puzzles 5-10, 15-2
attributes 5-2, 5-4, 5-10 - 5-11, consistency 2-.3

5-13, 6-11 - 6-12, 21-5 death traps 2-5 - 2-6
burning 21-9 difficulty 2-1, 2-4
by number 21-1 , 22-1 illogic 2-9
change of state 5-11 inventory limits 2-8
changing 3-2 misdirection 15-3
code block 22-2 misleading 2-12
description 3-3, 5-2, 5-5 modifying 2-10
description by mouse click 24-7 moves 4-5
dropping 5-8, 6-6, 24-1 obstacles 2-7
examine 5-8 using objects 2-5
examining 6-4 varieties 2-4
files 18-2
getting 5-8, 6-5, 24-1 Q Queue 24-15, 25-3
initroom 19-6
inventory limit 5-1 R RAM
invisible 5-13, 9-11 , 12-.3 chip 10-6
ladder 24-9 deleting files from 23-15
manipulation 5-1 , 21-1 loading scenes into 23-14
manipulation of 5-7, 5-9 scene storage 20-3-~

mouse movement 24-1 Rand variable 12-4
movable 5-1 , 24-2 ReadButtons command 23-11, 24-15
movement of 23-11 , 24-5, 24-7, Remove command 25-5

24-11,27-1 Requester windows 23-13, 25-6
name 6-2, 21-3 Requesters 20-1 , 23-12
non movable 5-1 , 5-11 , 6-5, 19-6, Reserved words 6-13

21 -1, 25-8 Room
nouns 6-2 graphics 3-7
overlaying graphics 17-5 files 3-1, 19-1

Index 3

The Visionary Programmer's Handbook

Rooms Status 26-1
alternate views 3-6, 19-9 Store room 3-6
attributes 19-1, 19-3, 19-9, 27-1 Subroutines 6-9, 7-5, 8-1, 18-3,
click zones 19-9 21-10, 22-11, 23-10
code block 19-4 Add Object 24-12, 24-14,
connecting 3-5- 3-6 24-16, 25-9
default directions 19-4, 19-9 Break Bottle 25-9
descriptions of 3-3, 3-6 Break Coconut 25-11

19-4, 19-7, 19-9 CannibalaArrive 24-10, 25-1
different views 3-6, 19-9 - 19-10 Clear Buttons 25-2, 25-4
forced return to 19-1 CllckDownAtrow 24-15
graphics for 3-4 ClickUpAtrow 24-14
names 19-2, 19-9 dark 8-3
RoomNumber 19-9 OestroyObject 22-9, 24-16, 25-9
started 19-7. 19-8, 20-9 dig 25-10
startup 19-2, 20-1 Dig Nothing 25-11
unused 19-1 - 19-2, 22-9, DisplaySB 24-10, 24-13

24-16, 26-6 DrawAtrows 24-14 - 24-15
visited 20-9 Drop()bject 24-11

s Save game
EatCandy 25-11

23-12 GetObject 24-1, 24-3
Saved games 13-5, 18-1, 28-3 Linefeed 23-2, 25-3
Screen Mode Load 25-6

command 20-5, 25-7, 28-4 Loading Error 25-6
graphics 20-8 messages 8-1

Scroll-Oar window 16-7, 17-1, 20-7 names 8-1
Scrollbar command 20-2 nested 8-2
Scrollbar window 25-7 NoSwim 25-9
Scrolling, smooth 24-14 print 25-3
Senses PrintText 25-4

hearing 3-4 Re Draw Screen 25-6
smell 3-4 Re Draw Scroll Bar 24-13
taste 3-4 Save 25-6
touch 3-4 Smash Bottle 25-9

Set 6-8, 8-3, 22-6 Swimming 21-4, 26-4
Set command 5-2, 6-11 Synonyms 21-7, 22-7
Shareware 13-7
Shovel 22-8 - 22-9, 22-11 , 24-16, 26-3 T Testing game 13-2
Show screen command 25-7 Text
Sleep 2-6 clearing of 23-12
Sound effects 10-3 color 21-8
Sounds 10-1, 10-4, 17-1, 25-2 color of 23-12, 25-1

AudioMaster Ill 17-7 colors 20-1 , 23-3
background 10-5 command 23-3, 25-3
buffers 20-5, 20-8 cursor 23-3, 23-7
changing volume 19-10 editor 14-2
chip ram usage 10-5 formatting 9-9
continuous 20-8 mode 20-1
continuous play 17-8 on graphic screens 20-6-20-7
creating 10-5, 17-6 screen 23-12, 25-6
digitized 10-4 variables in 25-4
encoding 18-1, 28-4 Text input 21-4, 23-1, 23-5,
finding 10-5 23-7, 23-9, 27-1
loading 20-4-20-5 backspaoe 23-8
random 13-1 cursor 23-3, 23-9
sequencing 17-7 - 17-8 echoing mouse 23-10
sources 17-7 return 23-7
with actions 10-4 TextPalette command 20-1

Special characters This Room 9-8, 9-11
back-slash 23-3, 23-12, 25-6, 28-1 Timers 9-1 - 9-4, 9-7

Index 4

Index

Title selection 13-4 Variables, cont.
Tone of adventure 1-2 Main loop 23-2
Tunnel Max Lines 25-3

arrays 11-2 MaxMov 24-10
scenes 11-1 moves 4-6, 25-1

Tum option 23-13 num«lc 4-1

u Un Set 8-3
ObjNum 22-9 - 22-10, 24-4, 24-9,

Utilities, LoadScreen 10-2
24-11, 24-13, 24-16, 25-9

ObjTotal 24-10, 24-13
v Variable odd &even 28-2

worn 4-3 offset 23-6, 25-5

inventory limit 4-1 offsets 25-7
items 4-2 Pie 24-3

maximum 4-2 RAND 4-10, 9-7

state of object 4-3 random events 4-9 - 4-10

string 4-1 return 23-2, 23-4

Variables 9-10, 18-1 - 18-2, 19-5 Room Number 19-6, 22-4, 25-6

$backspace 23-4 SBPosltion 24-4, 24-15, 25-7

$Device 20-3 - 20-4, 23-14, 25-6 score 4-7

$filename 20-4, 25-6 sentence 23-8
$LastError 23-13 TextColor 21-8, 23-12, 25-1, 25-3

$letter 23-4 TextPosition 23-3, 23-8 - 23-9

$return 23-3-23-4 thirst 4-6
$sentence 23-3, 23-8 - 23-9 timer 21-8, 21-10, 25-1

$tx 19-8, 27-2 timers 4-6, 9-2 - 9-4, 9-7

absolute values 24-7 UpArrowActive 24-15

attributes 4-4 val 23-4

backspace 23-3 value of 23-4

bullets 4-8 Video Mode 28-5

Button Used 23-5, 23-7, 23-12, Variables, moves 4-4

23-14,24-8,25-1,25-5 VCODE 18-1, 28-4

Chosen Pie 24-4, 24-10 VCOMP 14-2, 28-2

clock 4-7, 9-4 VED 14-2, 17-6

color 20-6 Video Mode 28-5

Count Lines 21-8, 23-2, 25-2 Visionary parser 27-2

dig 19-6 VLINK 28-4

door 4-4 Vocabulary 6-1, 26-3, 27-2

DownArrowActive 24-15 Vocabulary Action File 6-11 - 6-12,

energy 21-6, 21-10 22-7

error 20-4 - 20-5, 23-13 VPOS 17-6

FastMem 20-3 w Wait for mouse click
flags 4-10, 5-10, 9-8

25-2, 25-4

GoN 25-5
While loop 21-9, 23-4 - 23-5, 25-4

inventory weight 4-8
Window.pie file 20-6

items 5-7, 9-10, 22-11, 24-9, 24-12 x XRFfile 28-2
L.astAoomNumber 25-6
length of 23-4
letter 23-4

Index 5

The Visionary Programmer's Handbook

Index 6

What makes a great adventure game?

What makes a game fun to play? Why do some games become famous
and others not? What makes one game sell thousands of copies, another
sell just a handful, while others can't even get published? How can you
create an dventure game that will be fun to play? How can you make it

challenging but not too hard?
re

John Olsen gives us an entertaining.view of adventure gaming from the
other side, sharing his experience and insight into the art of writing

games. If you've never written an adventure before, this book will be an
invaluable aid i·· c "rtpleting your first game. If you are an experienced
adventure aui . wr, this work will help you hone your skills to produce a

superior game.
re

Olsen covers how to get started, examines different kinds of puzzles and
reveals special tricks that will make an adventure come alive in the mind
of the player. You'll see how to create the gam~-play logic that ties it all
together. You'll learn a variety of specia~ techniques an{i. tips culled from

more than ten years of experience in writing and.playing adventures .
•

Thi§ book is designed for users of Visionary, the Aegis Interactive
Gaming Language. Using Visionary is certainly not a requirement for
writing adventures, but it is recommended for all but the hardiest pro
grammers. In the second half of the book, you'll learn use the specific
commands and various features of Visionary to your best advantage.

re
Included in this book is a disk containing source code for a complete
mini-adventure, "I Was a Cannibal for the F.B.I. ",plus all the sound
and graphics required to make this an entertaining illustration of the

· principles of designing an adventure game.
re

Whether you plan to use Visionary, or write your adventure "from the
ground up" in BASIC or assembly ·language, f ohn Olsen shows you the
skills you need to create the great adventure that has been inside you just

waiting to get out!

0 10225 91150

ISB 0-938385-28-3
PaperDisk Publishing

Signal Hill, CA

