The Software Toolworks

Walt “Bilofsky; Prop.
14478 GLORIETTA DRIVE
SHERMAN OAKS, CALIFORNIA 91423
ELIZA
Conversation Writing Language
with

DOCTOR "Psychiatrist" Script
Version 1.0 - September 1981
Walt Bilofsky

Copyright (c) 1981 Walter Bilofsky. Sale of this
software conveys a license for its use on a single
computer owned or operated by the purchaser. Copying
this software or documentation by any means whatsoever
for any other purpose is expressly prohibited. ELIZA
research paper and original DOCTOR script copyright (c)
1966 Association for Computing Machinery, i - (o
reprinted by permission.

1. WHAT IS ELIZA?

ELIZA is a program which allows you to converse with your
computer. It is a particularly good way to show your machine off
to friends, since most people find it fascinating to "talk" with
ELIZA.

ELIZA holds a conversation with you. You type a sentence to it,
and it replies. A prepared script is wused to determine its
responses. The two scripts supplied on your disk are variations
of DOCTOR, which makes ELIZA behave 1like a non-directive
psychiatrist.

IMPORTANT: ELIZA with DOCTOR is not a '"computer
psychiatrist". It is not intended to provide
psychiatric treatment or medical benefit of any kind.

ELIZA was originally written in 1965 by Dr. Joseph Weizenbaum at
MIT. The program soon became famous for 1its ability to make
people think they were talking not with a computer but with a
person.

This wversion of ELIZA 1is a faithful recreation h Dr.
Weizenbaum's original script interpreter, plus a few carefully
selected new features. You can change ELIZA's behavior by
modifying the scripts provided, or even writing completely new
ones. So ELIZA 1is not only a computer game, but also a
programming language.

Section 2 below tells how to run ELIZA. The remainder of this
document describes the ELIZA script writing language.

TELEPHONE
(213) 986-4885

ELIZA = 2 = WHAT IS ELIZA?

To give you the opportunity to understand ELIZA in depth, we have
also included a reprint of Weizenbaum's original paper on ELIZA,
from the Communications of the Association for Computing

Machinery, January 1966 (Vol. 9 No. 1).

As you converse with ELIZA, and become familiar with the scripts,
you will gain insight into just how much the program really
understands, and what methods it uses to give the appearance of
understanding. You may decide that ELIZA 1is not so much
"computer intelligence" as simply computer cleverness.
Regardless, you and your friends will find it an absorbing and
amazing program.

2. HOW TO RUN ELIZA.

Before doing anything else, you should copy all the files from
the ELIZA disk onto another disk, and store the distribution disk
in a safe place.

The ELIZA disk contains the following files:

ELIZA.COM (or .ABS) The ELIZA program.
DOCTOR.SCR The current DOCTOR script.
ODCCTOR.SCR The original DOCTOR script. -—

To run ELIZA, the ELIZA program and DOCTOR.SCR files should be on
the same disk. (ODOCTOR is the older, original DOCTOR script.
You can use it if you wish but it probably will not carry on as
good a conversation.)

ELIZA can run under CP/M and Heath/Zenith HDOS, and requires at
least 40K of RAM. If ELIZA complains of insufficient memory, and
you are using CP/M, be sure your system is configured for the
full memory capacity of your computer.

If you are using CP/M, set the default disk to the disk
containing the ELIZA files. For example, if they are on disk B:,
type the CP/M command

B:
Then execute ELIZA by typing the command

ELIZA
If you are using HDOS, and the ELIZA files are on SY0:, all you
need to do is give the ELIZA command. If the files are on
another disk, such as SYl:, type

SY1:ELIZA

ELIZA will 1load from disk, and then greet you. You should talk
to ELIZA using complete English sentences. Press the RETURN Kkey

)

»

ELIZA - 3 = HOW TO RUN ELIZA

when you have finished typing your response. Since ELIZA replies
in capitals you may find the dialogue easier to follow if you
type in lower case.

To complete your conversation politely, type the word GOODBYE.
(You may also leave abruptly by typing ctrl-C: that is, hold down
the CTRL shift key and press C.)

If you want to run a script file other than DOCTOR.SCR, use the
command

ELIZA scriptname

If no extension is specified for the script file, ELIZA assumes
the extension .SCR.

If you want to record your conversation, when you first run ELIZA
use the command

ELIZA >filename

where "filename" is any legal file name. On CP/M, "filename" can
also be the device name LST: or PUN:. Or you can use the ctrl-P
feature of CP/M to record the conversation on the printer. On
HDOS, "filename" can be a disk file name, or a device such as
LP%.

Sometimes you will be in the middle of a conversation and begin
to wish you had saved it. ELIZA remembers as much of the
conversation as can fit in the computer memory, so you can still
save much or all of it. To start saving while in the middle of
an ELIZA conversation, type the one word sentence

SAVE

ELIZA will ask you for a file name, on which it will save as much
of the conversation as it has stored, and everything from now on.
If your computer has a lot of memory, or if you have not been
talking 1long, you will probably be able to save the entire
conversation. Otherwise, only the most recent part of the
conversation will appear on the file.

3. THE SECRETS OF ELIZA

"It 1is said that to explain is to explain away," Weizenbaum says
of ELIZA. Although its behavior is remarkable, its effects are
produced by an inherently simple mechanism. As long as ELIZA
remains a mystery, you will marvel at its cleverness. Once we
explain 1its secrets to you, however, you may feel it is just a
gimmick.

Before reading further, therefore, we suggest you play with ELIZA
as much as you like. Once you have studied its workings, you may

ELIZA - 4 = SECRETS OF ELIZA

possibly find it less fun - or at least, a different kind of fun.

By showing you how it works, we provide the opportunity for vyou
to learn how easy it can be for a programmer to make computers do
marvelous things. In particular, you will be able to change
ELIZA's conversational habits, and even write completely new
scripts on whatever subject you like.

Once you decide to proceed, we recommend you first read the
introduction to Weizenbaum's paper, which is included at the end
of this manual. Although we have tried to explain the script
language simply and clearly in the following sections, it
contains some details that might be confusing. Weizenbaum's
paper, although written mainly for computer scientists, presents
the same material from a broader viewpoint. So you may find the
paper helpful after you have read the rest of this manual.

4. THE ELIZA PROGRAMMING LANGUAGE.

The behavior of the ELIZA program is based on a simple mechanism.
Each sentence you type is processed, using a prepared script,
according to the following four steps:

Step l. Loock _at the _sentence _and pick _out any kevwords
specified in the script.

Step 2. Replace each keyword by a replacement word, 1if the
script provides one.

Step 3. See if the sentence matches any of the patterns
specified in the script.

Step 4. If a pattern match is found, prepare a reply using
one of the rewriting rules associated in the script
with that pattern. If no match is found, use one of
the replies for "no match".

For example, suppose you tell ELIZA
YOU ARE REALLY HELPING ME.

The keywords in this sentence are YOU and ME. The script gives
the replacements YOU = I and ME = YOU, so the sentence is
rewritten

I ARE REALLY HELPING YOU.

One purpose of replacements is to "turn around" the sentences you
type to ELIZA, so it can repeat parts of them back to you.
Notice, though, that not all keywords have replacements. So at
this stage of the process, the rewritten sentence does not always
make sense, although the eventual reply probably will.

1))

)

ELIZA —= B = SECRETS OF ELIZA

Under the keyword YOU, the script contains the pattern

(0 I ARE 0)

"0" matches zero or more words, so this pattern matches your
sentence, with the first 0 matching nothing (zero words), and the
second 0 matching "REALLY HELPING YOU".

One of the rewriting rules for this pattern is
(WHAT MAKES YOU THINK I AM 4 ?)

The "4" means to insert 1in that place the 4th element of the

pattern: the word(s) matching the second 0. So ELIZA would
generate the response

WHAT MAKES YOU THINK I AM REALLY HELPING YOU?

This four step process, although simple 1in concept, can be
confusing when you first try to understand it in detail. ELIZA
itself can explain the process to you. If you invoke ELIZA using
the command

ELIZA -D

the program will print all sorts of information as it loads and
executes. In particular, it will print the keywords, patterns
and reassembly rules it uses as it generates each response. So
you may wish to first study the description below of ELIZA's
script 1language, and then, armed with a listing of the DOCTOR
script, run ELIZA -D, type sentences to it, and try to follow
along as it explains what it 1is doing. Remember that your
operating system allows you to use ctrl-S and ctrl-Q to suspend
printing so that you can read the output before it shoots off the
screen.

5. LISTS.

An ELIZA script is made up of lists. A list is simply a set of
words, numbers, and punctuation characters, enclosed in
parentheses. For instance,

(THIS LIST CONTAINS 5 THINGS)
But a list can also contain another list:

(THIS CONTAINS 4 (AND THIS IS ONE OF THEM))

When writing lists, you must be extremely careful to get all the
parentheses correct. The ELIZA -D command can help find
parenthesis errors; see "Debugging Hints" in Section 9.

ELIZA - B = SCRIPTS AND RULE LISTS.

6. SCRIPTS AND RULE LISTS.

An ELIZA script 1is a text file containing lots of rule lists.

You can prepare a script using any text editor program, such as
PIE, ED or EDIT. You may use upper and lower case in the script;
ELIZA translates everything to upper case.

The DOCTOR script provided with ELIZA contains many examples of

rule lists. You may want to study it while reading the following
sections.

First, we are going to show the most general form of rule 1list.
We will use braces {} to enclose items that may be either
included or left out. Ellipses (...) 1indicate that you can
include more than one of the preceding item. Then most rule
lists are of the form

(keyword {= replacement} {priority}
DLIST (/ listname ...)
(pattern reassembly ...) ... })

An example of a rule list containing all the above elements is

(You = I 3 DLIST (/ PERSON)

((0 X 1 YOU 0) (OH, YOU- 3 ME?))

((0) (WHAT ABOUT ME?) (TELL ME ABOUT YOU)))
This is complicated, but we will go through each part of the rule
list and explain it. As we do, you should keep in mind the four
steps (Section 4) which ELIZA uses to generate its response to a
user's sentence.

The first thing in a rule list is the keyword. This is the way
the script defines the keywords used in Step 1 of the ELIZA
conversation process. In the above example, the keyword is YOU.

If the next thing is the character "=" and a replacement word,
then every time the keyword 1is seen in a typed input, it is
immediately replaced by the replacement word (Step 2). In the
example, the replacement 1is I. Every YOU typed by the user is

replaced by I. If there is no "= replacement", the Kkeyword is
left as it was typed.

The next thing in the rule list is an optional priority for the
keyword. This is a number between 0 and 127. 1If no priority is
specified, 0 is assumed.

The priority is used in deciding which keyword in a sentence to
consider first. As ELIZA scans an input sentence, it places each
keyword it sees on a stack. If the keyword has a higher priority
than any of the ones already seen, it is placed on top of the
stack. Otherwise, it is placed on the bottom.

When the sentence has been read, ELIZA considers the keywords in
the order they appear on the stack. Thus, the highest priority

1))

1))

)

ELIZA -7 - SCRIPTS AND RULE LISTS.

keyword in a sentence is used first. If two keywords both have
the highest priority, the one on the left is used first.

If the next thing in the rule list is the word DLIST, then the
keyword is placed on one or more word lists. 1In the example, YOU
is placed on the word list called PERSON. Word lists provide a
way to define a category of words for use in a pattern, as
explained in the next section.

7. PATTERNS.

The 1last thing in a rule 1list is one or more transformation
rules. Each transformation rule consists of a pattern followed
by one or more reassembly rules. Once the highest priority
keyword has been selected from the user's sentence, an attempt is
made to apply each transformation rule for that keyword, in turn.
This is Step 3 of the response generation process.

The first transformation rule in our example is
((0 I 1 YOU 0) (OH, I 3 ?))

This consists of the pattern
(G I 1 YOoU 0)

and the single reassembly rule
(GH, I -3 .?)

The items in the pattern are used, left to right, to try to match

the user's sentence. Here are the things you can use in a
pattern:

0 The digit 0 matches any sequence of words, including
the "sequence" containing no words. If 0 is not the
last item in the pattern, it will match the smallest
sequence before a match for the next item.

number Any other number matches any sequence containing

exactly that many words. Thus, 3 will match any
three words.

word Any word will match just that word. Remember that
keyword replacement (Step 2) 1is performed before
matching (Step 3), so to match a keyword that is
replaced, you must use its replacement.

(* word ...)
A list beginning with "*" will match any of the
words in the list. For example, in the pattern

(0 YOU (* WANT NEED) 0)

ELIZA - 8 = PATTERNS

the third item in the pattern will match either WANT
or NEED.

(/list) This will match any element on the word list named
LIST. For example, in the DOCTOR script, the
keywords MOTHER, FATHER, SISTER, etc., are all
placed on the FAMILY word 1list wusing the DLIST
feature. Then the pattern element (/FAMILY) will
match any of these words.

Thus, the rule
(0 I 1 YoUu 0)

will match any sentence containing the phrase "I (one word) YOU",
with any number of words (including none) before and after.
Notice that, if the keyword replacements YOU = I and ME = YOU
were in this script, the user would actually have to type "YOU
(one word) ME" in order to match this pattern after replacement.

If the first element in a pattern is not 0, that pattern will
only match starting at the beginning of a sentence. 1If the last
element is not 0, the end of the pattern must come at the end of

a sentence in order to match. Thus,

(I 0 YOU)
will match any sentence starting with I and ending with YOU.
(Note that ELIZA treats commas Jjust like periods: what comes
after the comma is a new sentence.)

The pattern (0) is used often. It will match any sentence.

8. REASSEMBLY RULES.

Recall that a transformation rule consists of a pattern followed
by one or more reassembly rules. If the pattern is found to
match the wuser's input sentence, ELIZA applies the first
reassembly rule in order to generate a new sentence, which it
prints as its reply. The reassembly rule is then moved to the
end of the 1list. So if there are several reassembly rules for
one pattern, they are used in rotation as the conversation
progresses.

Most reassembly rules are simply lists of words and numbers. To
create the reply, ELIZA replaces each number in the rule with the
part of the input sentence that matched the corresponding pattern
element. For example, if the input was

SOMETIMES YOU BOTHER ME

and the transformation rule was our old friend

)

Y

)

ELIZA ~ 9 = REASSEMBLY RULES

((0 I 1 YOU 0) (OH, I 3 YOU?))
then, after rewriting the input sentence to

SOMETIMES I BOTHER YOU
the pattern gives a match, with the "1" matching BOTHER. In this
case, the reassembly rule would replace the 3 by the match,
BOTHER, for the third element in the pattern, "1". Then ELIZA
would reply

OH, I BOTHER YOU?

9. SPECIAL FEATURES.

The special transformation rule
(= keyword)

is like a GOTO in other programming languages. It tells ELIZA to
immediately begin trying to apply the transformations associated
with that keyword. For instance, suppose there is a rulelist for
the keyword WAS, and you want to treat WERE the same as WAS. You
could use the following rulelist for WERE:

(WERE = WAS (=WAS))

This replaces WERE by WAS in the input, and then starts checking
the patterns for WAS.

(=keyword) can also be used as a reassembly rule. Note that it

can be one of several reassembly rules following a pattern, or
the last of several transformation rules for a keyword. (It
should be the 1last because you'll never get past it to the
others.)

NEWKEY.

There are several other special reassembly rules. The rule
(NEWKEY)

tells ELIZA to give up on the current keyword and try finding

another one in the input sentence. It often appears as part of

the last transformation rule for a keyword:

((0) (NEWKEY))

ELIZA - 10 - SPECIAL FEATURES

PRE.
The reassembly rule
(PRE (reassembly) (=keyword))

is used to reassemble the input sentence, and then go back and
try pattern matching again. The input sentence is reassembled
according to the reassembly rule, and control is then transferred
to the rule 1list for the specified keyword, for attempted
matching on the transformed input.
For example, DOCTOR contains the transformation

(I'M = YOU'RE ((0 YOU'RE 0) (PRE (YOU ARE 3) (=I))))
If the input sentence is

SOMETIMES I'M VERY HAPPY.

it is rewritten to
SOMETIMES YOU'RE VERY HAPPY.

If I'M 1is the highest priority keyword in the sentence, the

pattern (0 YOU'RE 0) will always match. The PRE rule rewrites
the input as

YOU ARE VERY HAPPY

and the rule list for the keyword I is then used to try to match
this sentence.

NONE.

ELIZA breaks up the wuser's typed 1input into one or more
sentences, separated by any punctuation such as period, comma,
dash, and so on. Each of these sentences in turn is searched for
keywords, and a pattern match sought.

The reserved keyword
NONE

is invoked whenever ELIZA is unable to find a keyword in the
input, or to match any pattern for the keywords that do appear.
Every script must contain a rulelist for NONE.

EXIT.

If a reassembly rule begins with =EXIT, it has a special effect.
The remainder of the rule is printed as the output, without any
substitution, and ELIZA terminates its execution. (This feature
was not in Weizenbaum's original program.)

)

)

y

ELIZA = 11 = SPECIAL FEATURES

MEMORY.
A script may contain one or more rulelists of the form
(MEMORY keyword transformations ...)

These rulelists look just like any other, except for the addition
of the word MEMORY. The keyword must have a rulelist of its own
elsewhere in the script.

When the keyword is selected for transformation, before invoking
the keyword's own rulelist, an attempt is made to match the
patterns in the MEMORY rulelist. If a match 1is found, the
resulting output is not printed on the terminal, but is stored
away.

When five responses have passed since the last time a MEMORY
response was either stored or recalled, and no keyword match is
found, instead of using a NONE reply ELIZA will print the oldest
stored MEMORY response.

DEBUGGING HELP.

As mentioned in Section 4, running ELIZA with the command

ELIZA -D

produces debugging printout of various sorts. You can also use
ELIZA -D >file

to record the output on a disk file. Besides explaining the
pattern match process, ELIZA provides several other kinds of
output that may be useful in writing or modifying scripts.

The input rules are printed as they are read from the script
file. This can be helpful in finding missing or extra
parentheses.

After loading the script, ELIZA prints out the amount of memory
remaining. This memory is used to store the conversation for the
SAVE feature, and its size is also a clue to how much larger your
script can become before it can no longer fit in memory.

ELIZA

12

APPENDIX I

APPENDIX I

Following is Dr. Weizenbaum's research paper on ELIZA,
January
Association for Computing Machinervy.

by permission €from the

reprinted

1966 Communications of the

ELIZA—A Computer Program
For the Study of Natural Language
Communication Between Man

And Machine

JoserH WEIZENBATM
Massachuseits Institute of Technology,* Cambridge, 3 ass.

ELIZA is a pregram opercting within the MAC time-sharing
system at MIT which makes certain kinds of natural language
conversction between mcn and computer possible. Input sen-
tences are analyzed on the basis of decompaosition rules which
are triggered by key words appearing in the input text.
Responses are generated by reassembly rules associated with
selected decomposition rules. The fundamental technical prob-
lems with which ELIZA is concerned are: (1) the identification of
key words, (2) the discovery of minimal context, (3) the choice
of appropriate transformations, (4) generation of responses in
the absence of key words, and (5) the provision of an editing
capability for ELIZA “scripts”. A discussion of some psychologi-
cal issues relevant to the ELIZA approach as well as of future
developments concludes the paper.

Introduction

It is said that to explain is to explain away. This maxim
is nowhere so well fulfilled as in the area of computer
programming, especially in what is called heuristic pro-
gramming and artificial intelligence. For in those realms
machines are made to behave in wondrous ways, often
sufficient to dazzle even the most experienced observer.
But once a particular program is unmasked, once its
inner workings are explained in language sufficiently plain
to induce understanding, its magic crumbles away; it
stands revealed as a mere collection of procedures, each
quite comprehensible. The observer sauys to himself “I
could have written that”. With that thought he moves the
program in question from the shelf marked “intelligent”,
to that reserved for curios, fit to be discussed only with
people less enlightened than he.

Work reported herein was supported (in part) by Project MAC,
an MIT research program sponsored by the Advanced Research
Projects Agency, Deparrment of Defense, under Office of Naval
Research Contruzet Number Nonr-4102(01).

* Department of Electrical Engineering.

36

Communications of the ACM

The object of this paper is to cause just such a re-
evaluation of the program about to be “explained”. Few
programs ever needed it more.

ELIZA Program

ELIZA is a program which makes natural language
conversation with a computer possible. Its present imple-
mentation is on the MAC time-sharing system at MIT.
It is written in MAD-Suip [4] for the IBM 709+4. Its name
was chosen to emphasize that it may be incrementally
improved by its users, since its language abilities may be
continually improved by a ‘‘teacher”. Like the Eliza of
Pygmalion fame, it can be made to appear even more
civilized, the relation of appearance to reality, however,
remaining in the domain of the playwright.

For the present purpose it is sufficient to characterize
the MAC system as one which permits an individual to
operate a full seale computer from a remotely located type-
writer. The individual operator has the illusion that he is
the sole user of the computer complex, while in fact others
may be ‘“‘time-sharing” the system with him. What is
important here is that the computer can read messages
typed on the typewriter and respond by writing on the
same instrument. The time between the computer’s
receipt of a message and the appearance of its response is
a function of the program controlling the dialogne and of
such MAC system parameters as the number of users
currently corresponding with the syvstem. These latter
parameters generally contribute so little to the overall
response time that conversational interaction with the
computer need never involve truly intolerable delays.

When in conversation with ELIZA, the user types in
some statement or set of statements in natural language
using normal punctuation and sentence structures. Only
the question mark may not be used, because it is inter-
preted as a line delete character by the MAC system. The
user’s statement is terminated by a double carriage return
which serves to turn control over to ELIZA. ELIZA then
analyzes the user’s statement and generates some response
which it types out. Control is then again with the user.

A typical conversation is the following:

Men are all alike.

IN WHAT WAY

They’re always bugging ns abont something or ather.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

e says ['m depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED

Volume Y / Number | / Junuary, Y66

)y

)

It’s true. [am unhappy.

DO YOU THINK COMING HERE WILL HELP YOU NOT TO
BE UNHAPPY

I need some help, that much seems certain.

WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

Perhaps I could learn to get along with my mother.

TELL ME MORE ABOUT YOUR FAMILY

My mother takes care of me.

WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU

My father.

YOUR FATHER

You are like my father in some ways.

WHAT RESEMBLANCE DO YOU SEE

You are not very aggressive but I think vou don't want me to
notice that.

WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE

You don’t argue with me.

WHY DO YOU THINK I DON'T ARGUE WITH YOU

You are afraid of me.

DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

My father is afraid of everybody.

WHAT ELSE COMES TO MIND WHEN YOU THINK OF
YOUR FATHER

Ballies.

DOES THAT HAVE ANYTHING TO DO WITH THE FACT
THAT YOUR BOYFRIEND MADE YOU COME HERE

The capitalized lines are the machine responses.

The gross procedure of the program is quite simple; the
text is read and inspected for the presence of a keyword.
If such a word is found, the sentence is transformed
according to a rule associated with the kevword, if not a
content-free remark or, under certain conditions, an earlier
transformation is retrieved. The text so computed or
retrieved is then printed out.

In detail, of course, the procedure sketched above is
considerably more complex. Keywords, for example, may
have a RANK or precedence number. The procedure is
sensitive to such numbers in that it will abandon a key-
word already found in the left-to-right scan of the text in
favor of one having a higher rank. Also, the procedure
recognizes a comma or a period as a delimiter. Whenever
either one is encountered and a keyword has already been
found, all subsequent text is deleted from the input mes-
sage. If no key had yet been found the phrase or sentence
to the left of the delimiter (as well as the delimiter itself)
is deleted. As a result, only single phrases or sentences are
ever transformed.

Keywords and their associated transformation! rules
constitute the SCRIPT for a particular class of con-
versation. An important property of ELIZA is that a
seript is data; i.e., it is not part of the program itself.
Hence, ELIZA is not restricted to a particular set of
recognition patterns or responses, indeed not even to any
specific language. ELIZA scripts exist (at this writing) in
Welsh and German as well as in English.

The fundamental technical problems with which ELIZA
must be preoccupied are the following:

(1) The identification of the ‘“most important” keyword

! The word ‘“‘transformation’’ is used in its generic sense rather
than that given it by Harris and Chomsky in linguistic contexts.

Yolume 9 / Number 1 / January, 1966

occurring in the input message.

(2) The identification of some minimal context within
which the chosen kevword appears; e.g., if the keyword is
“you’, is it followed by the word “are” (in which case an
assertion is probably being made).

(3) The choice of an appropriate fransformation rule
and, of course, the making of the transformation itself.

(4) The provision of mechanism that will permit
ELIZA to respond “intelligently’” when the input text
contained no keywords.

(3) The provision of machinery that facilitates editing,
particularly extension, of the seript on the script writing
level.

There are, of course, the usual constraints dictated by
the need to be economical in the use of computer time and
storage space.

The central issue is clearly one of text manipulation,
and at the heart of that issue is the concept of the trans-
formation rule which has been said to be associated with
certain keywords. The mechanisms subsumed under the
slogan ‘“transformation rule’” are a number of Suip func-
tions which serve to (1) decompose a data string according
to certain criteria, hence to test the string as to wherther it
satisfies these criteria or not, and (2) to reassemble a
decomposed string according to certain assembly specifica-
tions.

While this is not the place to discuss these functions in
all their detail (or even to reveal their full power and
generality), 1t is important to the understanding of the
operation of ELIZA to describe them in some detail.

Consider the sentence ‘I am very unhappy these days’”.
Suppose a foreigner with only a limited knowledge of
English but with a very good ear heard that sentence
spoken but understood only the first two words “I am”.
Wishing to appear interested, perhaps even sympathetic,
he may reply ‘“How long have you been very unhappy
these days?” What he must have done is to apply a kind
of template to the original sentence, one part of which
matched the two words I am” and the remainder isolated
the words “very unhappy these days”. He must 2lso have
a reassembly kit specifically associated with that template,
one that specifies that any sentence of the form “I am
BLAH” can be transformed to “How long have you been
BLAH”, independently of the meaning of BLAH. A
somewhat more complicated example is given by the
sentence “It seems that you hate me”. Here the foreigner
understands only the words “you” and ‘““me’’; ie., he
applies a template that decomposes the sentence into the
four parts:

(1) It seems that (2) you (3) hate (4) me

of which only the second and fourth parts are understood.
The reassembly rule might then be “What makes vou
think I hate you”; ie., it might throw away the first
component, translate the two known words (“you” to
“I” and “me’” to “you”) and tack on a stock phrase
(What makes you think) to the front of the reconstruction.

Communications of the ACM 37

A formal notation in which to represent the decomposition
template is:

0 YOU 0 ME)
and the reassembly rule
(WHAT MAKES YOU THINK I 3 YOU).

The “0” in the decomposition rule stands for “an in-
definite number of words” (analogous to the indefinite
dollar sign of Comrr) [6] while the **3” in the reassembly
rule indicates that the third component of the subject
decomposition is to be inserted in its place. The decom-
position rule

(0 YOU 1 ME)

would have worked just as well in this specific example. A
nonzero integer “n’’ appearing in a decomposition rule
indicates that the component in question should consist
of exactly “n” words. However, of the two rules shown,
only the first would have matched the sentence, “It seems
vou hate and love me,” the second failing because there is
more than one word between “you’’ and “me”.

X

y.
/7| 7\

/ /
’ u WV / J
3 Ay RygeccRym 02 Ry RpztcoPaa, O Ry Mgt Fame

Fie. 1. Keyword and rule list structure

In ELIZA the question of which decomposition rules to
apply to an input text is of course a crucial one. The input
sentence might have been, for example, “It seems that
vou hate,” in which case the decomposition rule (0 YOU
0 ME) would have failed in that the word “ME” would
not have heen found at all, let alone in its assigned place.
Some other decomposition rule would then have to be
tried and, failing that, still another until a match could
be made or a total failure reported. ELIZA must therefore
have a mechanism to sharply delimit the set of decom-
position rules which are potentially applicable to a cur-
rently active input sentence. This is the keyword mecha-
nism.

An input sentence is scanned from left to right. Each
word is looked up in a dictionary of keywords. If a word
is identified as a keyword, then (apart from the issue of
precedence of keywords) only decomposition rules con-
taining that keyword need to be tried. The trial sequence
can even be partially ordered. For example, the decom-
position rule (0 YOU 0) associated with the keyword
“YOTU” (and decomposing an input sentence into (1) all
words in front of “YOU”, (2) the word “YOU”, and (3)
all words following “YOU”) should be the last one tried
since it is bound to succeed.

Two problems now arise. One stems from the fact that

38 Communiecations of the ACM

almost none of the words in any given sentence are repre-
sented in the keyword dictionary. The other is that of
“assoclating” both decomposition and reassembly rules
with keywords. The first is serious in that the determina-
tion that a word is not in a dictionary may weil require
more computation (i.e., time) than the location of a word
which is represented. The attack on both problems begins
by placing both a keyword and its associated rules on o
list. The basic format of a typical key list is the following:

(K (D) (Rry) Bus) - (Rum))
(D) (Bev) (Red) -+ (Ba.ms))

((Da) (Ru.1) (R o)+ (Ru.mi)

where K is the keyword, D, the ith decomposition rule
associated with K and R ; the jth reassembly rule asso-
ciated with the th decomposition rule.

A common pictorial representation of such a structure
is the tree diagram shown in Figure 1. The top level of
this structure contains the keyword followed by the names
of lists; each one of which is again a list structure beginning
with a decomposition rule and followed by reassembly
rules. Since list structures of this type have no predeter-
mined dimensionality limitations, any number of decom-
position rules may be associated with a given keyword and
any number of reassembly rules with any specific decom-
position rule. Surp is rich in functions that sequence over
structures of this type efficiently. Hence programmin
problems are minimized. S

An ELIZA script consists mainly of a set of list struc-
tures of the type shown. The actual keyword dictionary is
constructed when such a script is first read into the
hitherto empty program. The basic structural component
of the keyword dictionary is a vector KEY of (currently)
128 contiguous computer words. As a particular key list
structure is read the keyword K at its top is randomized
(hashed) by a procedure that produces (currently) a 7
bit integer “1”’. The word ‘“always”, for example, yields
the integer 14. KEY(2), i.e., the sth word of the vector
KEY, is then examined to determine whether it contains
a list name. If it does not, then an empty list is created,
its name placed in KEY(?), and the key list structure in
question placed on that list. If KEY (%) already contains a
list name, then the name of the key list structure is placed
on the bottom of the list named in KEY(7). The largest
dictionary so far attempted contains about 50 keywords.
No list named in any of the words of the KEY vector
contains more than two key list structures.

Every word encountered in the scan of an input text,
i.e., during the actual operations of ELIZ4, is randomized
by the same hashing algorithm as was originally applied to
the incoming keywords, hence yields an integer which
points to the only possible list structure which could
potentially contain that word as a keyword. Even then,
only the tops of any key list structures that may be found
there need be interrogated to determine whether or not a
keyword has been found. By virtue of the various list

>

Volume 9 / Number 1 / January, 1966

/%

sequencing operations that Scip makes available, the
actual identification of a keyword leaves as its principal
product a pointer to the list of decomposition (and hence
reassembly) rules associated with the identified keyword.
One result of this strategy is that often less time is required
to discover that a given word is not in the keyword dic-
tionary than to locate it if it is there. However, the location
of a keyword yields pointers to all information associated
with that word.

Some conversational protocols require that certain
transformations be made on certain words of the input text
independently of any contextual considerations. The first
conversation displayed in this paper, for example, requires
that first person pronouns be exchanged for second person
pronouns and vice versa throughout the input text. There
may be further transformations but these minimal sub-
stitutions are unconditional. Simple substitution rules
ought not to be elevated to the level of transformations,
nor should the words involved be forced to carry with them
all the structure required for the fully complex case.
Furthermore, unconditional substitutions of single words
for single words can be accomplished during the text scan
itself, not as a transformation of the entire text subsequent
to scanning. To facilitate the realization of these
desiderata, any word in the key dictionary, i.e., at the
top of a key list structure, may be followed by an equal
sign followed by whatever word is to be its substitute.
Tranformation rules may, but need not, follow. If none
do follow such 2 substitution rule, then the substitution is
made on the fly, i.e., during text scanning, but the word
in question is not identified as a keyword for subsequent
purposes. Of course, a word may be both subtituted for
and be a keyword as well. An example of a simple sub-
stitution is

(YOURSELF = MYSELF).

Neither “yourself” nor “myself” are keywords in the
particular script from which this example was chosen.
The fact that keywords can have ranks or precedences
has already been mentioned. The need of a ranking mecha-
nism may be established by an example. Suppose an input
sentence is “I know everybody laughed at me.” A script
may tag the word “I” as well as the word “everybody”
as a keyword. Without differential ranking, “I" occurring
first would determine the transformation to be applied.
A typical response might be ‘“You say you know everybody
laughed at you.” But the important message in the input
sentence begins with the word “everybody’’. It is very
often true that when a person speaks in terms of universals
such as “everybody”’, “always” and “nobody” he is really
referring to some quite specific event or person. By giving
“everybody’’ a higher rank than “I”, the response “Who
in particular are you thinking of”” may be generated.
The specific mechanism employved in ranking is that the
rank of every keyword encountered (absence of rank
implies rank equals 0) is compared with the rank of the
highest ranked keyword already seen. If the rank of the

Volume 9 / Number 1 / January, 1966

new word is higher than that of any previously encoun-
tered word, the pointer to the transformation rules
associated with the new word is placed on top of a list
called the keystack, otherwise it is placed on the bottom
of the keystack. When the text scan terminates, the key-
stack has at its top a pointer associated with the highest
ranked keyword encountered in the sean. The remaining
pointers in the stack may not be monotonically ordered
with respect to the ranks of the words from which they
were derived, but they are nearly so—in any event they
are in a useful and interesting order. Figure 2 is a simpli-

o T e
@)—1 .f'":',’;:‘ beBe0 = Read tent
N’

— .:""' : Endof test e VES Q
¥ 3 S —
T word | S / \
! =
NO
/ p N y i N\ | Detete W ana ail
We 0" ey E G — "m' Q) — 5uCCee0ING WOrdS
N / | trom rext
NO YES
o= l3Wa \

Deiete W and ail
rayword ng woras
from test.

YES

| Piace conter 1o ney | Prace powmter
e
| neystaex Revsiack

J

Fic. 2. Basic flow diagram of keyword detection

fied flow diagram of keyword detection. The rank of a
keyword must, of course, also be associated with the
keyword. Therefore it must appear on the keyword list
structure. It may be found, if at all, just in front of the
list of transformation rules associated with the keyword.
As an example consider the word “MY” in a particular
seript. Its keyword list may be as follows:

(MY = YOUR 5 (transformation rules)).

Such a list would mean that whenever the word “)MY" is
encountered in any text, it would be replaced by the word
“YOUR”. Its rank would be 3.

Upon completion of a given text secan, the keystack is
either empty or contains pointers derived from the key-
words found in the text. Each of such pointers is actually a
sequence reader—a SrIP mechanism which facilitates
scanning of lists—pointing into its particular key list in
such a way that one sequencing operation to the right
(SEQLR) will sequence it to the first set of transformation
rules associated with its keyword, i.e., to the list

((Dy) (Ri,y) (Ry2) ... (Ri, Rmy)).

The top of that list, of course, is a list which serves a
decomposition rule for the subject text. The top of the
keystack contains the first pointer to be activated.

The decomposition rule D; associated with the keyword
K, ie., {(Dy), K}, is now tried. It may fail however. For
example, suppose’the input text was:

You are very helpiul.

Communications of the ACM 39

The kevword. zay, iz “you”, and |(D,), you| is
(0 I remind vou of 0).

(Recall that the “you” in the original sentence has already
been replaced by ~I” in the text now analyzed.) This
decomposition rule obviously fails to match the input
sentence. Should |(D;), K} fail to find a match, then
! (Da), K} is tried. Should that too fail, |(D;), K] is
attempted, and so on. Of course, the set of transformation
rules can be guaranteed to terminate with a decomposition
rule which must match. The decomposition rule

(0 K0)
will match any text in which the word K appears while
()

will mateh any text whatever. However, there are other
ways to leave a particular set of transformation rules, as
will be shown below. For the present, suppose that some
particular decomposition rule (D;) has matched the input
text. (D;), of course, was found on a list of the form

((Dl)(R! 1)(Ri, 2) k44 (Rt m.’))-

Sequencing the reader which is presently pointing at
(D;) will retrieve the reassembly rule (R, ,) which may
then be applied to the decomposed input text to yield the
output message.

Consider again the input text

You are very helpful

in which “you” is the only key word. The sentence is
transformed during scanning to

I are very helpful

{(D1), you} is *(0 I remind your of 0)”” and fails to match
as already discussed. However, {(Da), you} is ““(0 I are 0)”
and obviously matches the text, decomposing it into the
constituents

1) empty 21 (3) are (4) very helpful.

{ (Ra, 1), you} is
(What makes you think I am 4)
Hence it produces the output text
What makes you think I am very helpful.

Having produced it, the integer 1 is put in front of (R, ;)
so that the transformation rule list in question now appears
as

((D2)1(Rs, 1)(R2, 2) « -+ (Ra, my)).

Next time {(D.), K| matches an input text, the reassembly
rule (R, ;) will be applied and the integer 2 will replace
the 1. After (R, m,) has been exercised, (R, ;) will again
be invoked. Thus, after the system has been in use for a
time, every decomposition rule which has matched some
input text has associated with it an integer which corre-
sponds to the last reassembly rule used in connection with

40 Communications of the ACM

that decomposition rule. This mechanism insures that the
complete set of reassembly rules associated with u given
decomposition rule is eveled through before any repetitions
oceur.

The system described so0 far is essentially one which
selects a decomposition rule for the highest ranking key-
word found in an input text, attempts to match that text
aceording to that decomposition rule and, failing to make
a match, selects the next reassembly rule associated with
the matching decomposition rule and applies it to generate
an output text. It is, in other words, a system which, for
the highest ranking keyword of a text, selects a specific
decomposition and reassembly rule to be used in forming
the output message.

Were the system to remain that simple, then kevwords
that required identical sets of transformation rules would
each require that a copy of these transiormation rules be
associated with them. This would be logically sound but
would complicate the task of script writing and would also
make unnecessary storage demands. There are therefore
special types of decomposition and assembly rules char-
acterized by the appearance of “="" at the top of the
rule list. The word following the equal sign indicates which
new set of transformation rules is to be applied. For ex-
ample, the keyword “what” may have associated with it
a transformation rule set of the form

((0) (Why do you ask) (Is that an important question) . . .)
which would apply equally well to the keywords “how”

and “when”. The entire keyword usé for “now’ may
therefore be

(How (=What))

The keywords “how”, “what” and “when” may thus be
made to form an equivalence class with respect to the
transformation rules which are to apply to them.

In the above example the rule “(=what)” is in the
place of a decomposition rule, although it causes no
decomposition of the relevant text. It may also appear,
however, in the place of a reassembly rule. For example,
the keyword “am” may have among others the following
transformation rule set associated with it:

((0 are you 0) (Do you beiieve you are 4) ... (=what) ...)

(It is here assumed that “‘are” has been substituted for-
“am” and “you’” for “I” in the initial text scan.) Then,
the input text

Am I sick
would elicit either

Do you believe vou are sick
or

Why do you ask

depending on how many times the general form had
already occurred.
Under still other conditions it may be desirable to

Volume 9 / Number 1 / Januaary, 1966

perform a preliminary transformation on the input text
before subjecting it to the decompositions and reassemblies
which finally yield the output text. For example, the
keyword ‘“you’re” should lead to the transformation rules
associated with “you” but should first be replaced by a
word pair. The dictionary entry for “vou’re” is therefore:
(you're = I'm ((0 I'm 0) (PRE (I AM 3) (=YOU))))

which has the following effect:

(1) Wherever “you’re’” is found in the input text, it is
replaced by “I’'m”.

(2) If “you’re” is actually selected as the regnant
keyword, then the input text is decomposed into three
constituent parts, namely, all text in front of the first
occurrence of “I’m’, the word “I'm” itself, and all text
following the first occurrence of “I’'m”.

(3) The reassembly rule beginning with the code
“PRE” is encountered and the decomposed text re-
assembled such that the words ‘I AM” appear in front
of the third constituent determined by the earlier de-
composition.

(+) Control is transferred, so to speak, to the trans-
formation rules associated with the keyword “you”,
where further decompositions etc. are attempted.

It is to be noted that the set

(PRE (I AM 3) (=YOU))

is logically in the place of a reassembly rule and may
therefore be one of many reassembly rules associated with
the given decomposition.

Another form of reassembiy rule is

(NEWKEY)

which serves the case in which attempts to match on the
currently regnant keyword are to be given up and the
entire decomposition and reassembly process is to start
again on the basis of the keyword to be found in the
keyvstack. Whenever this rule is invoked, the top of the
keystack is “popped up” once, ie., the new regnant key-
word recovered and removed from the keystack, and the
entire process reinitiated as if the initial text scan had just
terminated. This mechanism makes it possible to, in effect,
test on key phrases as opposed to single key words.

A serious problem which remains to be discussed is the
reaction of the system in case no keywords remain to
serve as transformation triggers. This can arise either in
case the keystack is empty when NEWKEY is invoked or
when the input text contained no keywords initially.

The simplest mechanism supplied is in the form of the
special reserved keyword “NONE” which must be part of
any script. The script writer must associate the universally
matching decomposition rule (0) with it and follow this by
as many content-free remarks in the form of transforma-
tion rules as he pleases. (Examples are: “Please go on”,
“That’s very interesting’”’ and “I see”.)

There is, however, another mechanism which causes the
system to respond more spectacularly in the absence of a
key. The word “MEMORY” is another reserved pseudo-
keyword. The key list structure associated with it differs

Volume 9 / Number 1 / January, 1966

from the ordinary one in some respects. An exampic
illuminates this point.
Consider the following structure:
(MEMORY MY
(0 YOUR O = LETS DISCUSS FURTHER WHY YOUR 3)
(0 YOUR 0 = EARLIER YOU SAID YOUR 3)

The word “MY” (which must be an ordinary keyword
as well) has been selected to serve a special function.
Whenever it is the highest ranking keyvword of a text oune
of the transformations on the MEMORY list is randomly
selected, and a copy of the text is transformed accordingly.
This transformation is stored on a first-in-first-out stack
for later use. The ordinary processes already described are
then carried out. When a text without keywords is en-
countered later and a certain counting mechanism is in a
particular state and the stack in question is not empty,
then the transformed text is printed out as the reply. It
is, of course, also deleted from the stack of such trans-
formations.

The current version of ELIZA requires that one keyword
be associated with MEMORY and that exactly four
transformations accompany that word in that context. (An
application of a transformation rule of the form

(LEFT HAND SIDE = RIGHT HAND SIDE)
is equivalent to the successive application of the two forms
(LEFT HAND SIDE), (RIGHT HAND SIDE).)

Three more details will complete the formal description
of the ELIZA program.

The transformation rule mechanism of Stip is such that
it permits tagging of words in a text and their subsequent
recovery on the basis of one of their tags. The keyword
“MOTHER” in ELIZA, for example, may be identified
as a noun and as a member of the class “family” as follows:

(MOTHER DLIST (/NOUN FAMILY)).

Such tagging in no way interferes with other information
(e.g., rank or transformation rules) which may be asso-
ciated with the given tag word. A decomposition rule may
contain a matching constituent of the form (/TAGI1
TAG2 - --) which will match and isolate a word in the
subject text having any one of the mentioned tags. If, for
example, “MOTHER” is tagged as indicated and the
input textv

“CONSIDER MY AGED MOTHER A8 WELL AS ME”
subjected to the decomposition rule
(0 YOUR 0 (/FAMILY) 0)
(remembering that “MY" has been replaced by “YOUR”),
then the decomposition would be
(1) CONSIDER (2) YOUR (3) AGED
(3) AS WELL AS ME.
Another flexibility inherent in the Suip text manipula-
tion mechanism underlying ELIZA is tha or-ing of
matching criteria is permitted in decomposition rules.
The above input text would have been decomposed

(4) MOTHER

Communications of the ACM 41

precisely as stated above by the decomposition rule:
(0 YOUR 0 (xFATHER MOTHER) 0)

which, by virtue of the presence of “x” in the sublist
structure seen above, would have isolated either the word
“FATHER” or “MOTHER?” (in that order) in the input
text, whichever occurred first after the first appearance of
the word “YOUR”.

Finally, the script writer must begin his script with a
list, i.e., a message enclosed in parentheses, which contains
the statement he wishes ELIZA to type when the system
is first loaded. This list may be empty.

Editing of an ELIZA script is achieved via appeal to a
contextual editing program (ED) which is part of the
MAC library. This program is called whenever the input
text to ELIZA consists of the single word “EDIT”.
ELIZA then puts itself in a so-called dormant state and
presents the then stored script for editing. Detailed
description of ED is out of place here. Suffice it to say that
changes, additions and deletions of the script may be made
with considerable efficiency and on the basis of entirely
contextual cues, ie., without resort to line numbers or
any other artificial devices. When editing is completed,
ED is given the command to FILE the revised script. The
new script is then stored on the disk and read into ELIZA.
ELIZA then types the word “START?” to signal that the
conversation may resume under control of the new script.

An important consequence of the editing facility built
into ELIZA is that a given ELIZA script need not start
out to be a iarge, full-blown scenario. On the contrary, ic
should begin as a quite modest set of keywords and
transformation rules and permitted to be grown and
molded as experience with it builds up. This appears to
be the best way to use a truly interactive man-machine
facility—i.e., not as a device for rapidly debugging a code
representing a fully thought out solution to a problem, but
rather as an aid for the exploration of problem solving
strategies.

Discussion

At this writing, the only serious ELIZA scripts which
exist are some which cause ELIZA to respond roughly as
would certain psychotherapists (Rogerians). ELIZA
performs best when its human correspondent is initially
instructed to “talk” to it, via the typewriter of course,
just as one would to a psychiatrist. This mode of con-
versation was chosen because the psychiatric interview
is one of the few examples of categorized dyadic natural
language communication in which one of the participating
pair is free to assume the pose of knowing almost nothing
of the real world. If, for example, one were to tell a psy-
chiatrist “I went for a long boat ride’’ and he responded
“Tell me about boats”, one would not assume that he knew
nothing about boats, but that he had some purpose in so
directing the subsequent conversation. It is important to
note that this assumption is one made by the speaker.
Whether it is realistic or not is an altogether separate
question. In any case, it has a crucial psychological utility

42 Communications of the ACM

in that it serves the speaker to maintain his sense of bel
heard and understood. The speaker further defends his
impression (which even in real litfe may be illusory) by
attributing to his conversational partner all sorts of back-
ground knowledge, insights and reasoning ability. But again,
these are the speaker’s contribution to the conversation.
They manifest themselves inferentially in the interpretations
he makes of the offered responses. From the purely technical
programming point of view then, the psychiatric interview
form of an ELIZA script has the advantage that it elimi-
nates the need of storing erplicit information about the
real world.

The human speaker will, as has been said, contribute
much to clothe ELIZA’S responses in vestments of
plausibility. But he will not defend his illusion (that he is
being understood) against all odds. In human conversation
a speaker will make certain (perhaps generous) assump-
tions about his conversational partner. As long as' it
remains possible to interpret the latter’s responses con-
sistently with those assumptions, the speaker’s image of
his partner remains unchanged, in particular, undamaged.
Responses which are difficult to so interpret may well
result in an enhancement of the image of the partner, in
additional rationalizations which then make more com-
plicated interpretations of his responses reasonable.
When, however, such rationalizations become too massive
and even self-contradictory, the entire image may crumble
and be replaced by another (“‘He is not, after all, as smart
as I thought he was”). When the conversational partner
is.a.machine (the distinction betiween machine and program
is here not useful) then the idea of credibility may well be
substituted for that of plausibility in the above.

With ELIZA as the basic vehicle, experiments may be
set up in which the subjects find it credible to believe that
the responses which appear on his typewriter are gener-
ated by a human sitting at a similar instrument in another
room. How must the script be written in order to maintain
the credibility of this idea over a long period of time?
How can the performance of ELIZA be systematically
degraded in order to achieve controlled and predictable
thresholds of credibility in the subject? What, in all this,
is the role of the initial instruction to the subject? On the
other hand, suppose the subject is told he is communicating
with a machine. What is he led to believe about the
machine as a result of his conversational experience with
it? Some subjects have been very hard to convince that
ELIZA (with its present script) is nof human. This is a
striking form of Turing’s test. What experimental design
would make it more nearly rigorous and airtight?

The whole issue of the credibility (to humans) of
machine output demands investigation. Important de-
cisions increasingly tend to be made in response to com-
puter output. The ultimately responsible human inter-
preter of “What the machine says” is, not unlike the
correspondent with ELIZA, constantly faced with the
need to make credibility judgments. ELIZA shows, if
nothing else, how easy it is to create and maintain the
illusion of understanding, hence perhaps of judgment

Volume 9 / Number 1 / January, 1966

deserving of credibility. A certain danger lurks there.
The idea that the present ELIZA secript contains no

information about the real world is not entirely true. For

example, the transformation rules which cause the input

Everybody hates me
to be transformed to
Can vou think of anyone in particular

and other such are based on quite specific hypotheses about
the world. The whole script constitutes, in a loose way, a
model of certain aspects of the world. The act of writing a
seript is a kind of programming act and has all the advan-
tages of programming, most particularly that it clearly
shows where the programmer’s understanding and com-
mand of his subject leaves off.

A large part of whatever elegance may be credited to
ELIZA lies in the fact that ELIZA maintains the illusion
of understanding with so little machinery. But there are
bounds on the extendability of ELIZA’s “understanding”
power, which are a function of the ELIZA program itself
and not a function of any script it may be given. The
crucial test of understanding, as every teacher should
know, is not the subject’s ability to continue a conversa-
tion, but to draw valid conclusions from what he is being
told. In order for a compurter program to be able to do
that, it must at least have the capacity to store selected
parts of its inputs. ELIZA throws away each of its inputs,
except for those few transformed by means of the
AMEMORY machinery. Of course, the problem is more
than one of storage. A great part of it is, in fact, subsumed
under the word “selected” used just above. ELIZA in its
use so far has had as one of its principal objectives the
concealment of its lack of understanding. But to encourage
its conversational partner to offer inputs from which it
can select remedial information, it must reveal its mis-
understanding. A switch of objectives from the conceal-
ment to the revelation of misunderstanding is seen as a
precondition to making an ELIZA-like program the basis
for an effective natural language man-machine com-
munication system.

One goal for an augmented ELIZA program is thus a
system which already has access to a store of information
about some aspects of the real world and which, by means
of conversational interaction with people, can reveal both
what it knows, i.e., behave as an information retrieval
system, and where its knowledge ends and needs to be
augmented. Hopefully the augmentation of its knowledge
will also be a direct consequence of its conversational
experience. It is precisely the prospect that such a program
will converse with many people and learn something from
each of them, which leads to the hope that it will prove an
interesting and even useful conversational partner.

One way to state a slightly different intermediate goal is
to say that ELIZA should be given the power to slowly
build a model of the subject conversing with it. If the
subject mentions that he is not married, for example, and
later speaks of his wife, then ELIZA should be able to

Volume 9 / Number 1 / January, 1966

make the tentative inference that he is either a widower
or divorced. Of course, he could simply be confused. In
the long run, ELIZA should be able to build up a helief
structure (to use Abelson’s phrase) of the subject and on
that basis detect the subject’s rationalizations, contra-
dictions, etc. Conversations with such an ELIZA would
often turn into arguments. Important steps in the realiza-
tion of these goals have already been taken. Most notable
among these is Abelson’s and Carroll’s work on simulation
of belief structures [1].

The seript that has formed the basis for most of this
discussion happens to be one with an overwhelmingly
psychological orientation. The reason for this has already
been discussed. There is a danger, however, that the
example will run away with what it is supposed to illus-
trate. It is useful to remember that the ELIZA program
itself is merely a translating processor in the technical
programming sense. Gorn (2] in a paper on language
systems says:

Given a language which already possesses semantic content, then
a translating processor, even if it operates only syntactically,
generates corresponding expressions of another language to which
we can attribute as “‘meanings’’ (possibly multiple—the translator
may not be one to one) the ‘‘semantic intents’’ of the generating
source expressions; whether we find the result consistent or useful
or both is, of course, another problem. It is quite possible that by

this method the same syntactic object language can be usefully
assigned multiple meanings for each expression . . .

It is striking to note how well his words fit ELIZA. The
“given language” is English as is the ‘“‘other language”,
expressions of which are generated. In principle, the given
language could as well be the kind of English in which
“word problems’” in algebra are given to high school
students and the other language, a machine code allowing
a particular computer to “solve’” the stated problems.
(See Bobrow’s program STUDENT (3].)

The intent of the above remarks is to further rob ELIZA
of the aura of magic to which its application to psycho-
logical subject matter has to some extent contributed.
Seen in the coldest possible light, ELIZA is a translating
processor in Gorn’s sense; however, it is one which has
been especially constructed to work well with natural
language text.

REFERENCES

1. ABeLsoN, R. P., axp Carrorr, J. D. Computer simulation
of individual belief systems. dmer. Behav. Sci. 9 (May 1965),
24-30.

. Gory, 8. Semiotic relationships in ambiguously stratified
language systems. Paper presented at Int. Collog. Algebraic
Linguistics and Automatic Theory, Hebrew U. of Jerusalem,
Aug. 1964.

3. BoBrow, D. G. Natural language input for a computer prob-
lem solving system. Doctoral thesis, Math. Dept., MIT.
Cambridge, Mass., 1964.

4. WEzeNBavM, J. Symmetric list processor. Comm. ACI 86,
(Sept. 1963), 524-544.

5. Rogers, C. Client Centered Therapy: Current Practice, Impli-
cations and Theory. Houghton Mifflin, Boston, 1951.

6. YNGvE, J. COMIT Programming Manual. MIT Press, Cam-
bridge, Mass., 1961.

(]

Communications of the ACM 43

-

APPENDIX. An ELIZA Seript

(HOW DO YOU DO. PLEASE TELL ME YOUR PROBLEM)

START

(SORRY ((0) (PLEASE DON'T APOLIGIZE)

(APOLOGIES ARE NOT NECESSARY) (WHAT FEELINGS

DO YOU HAVE WHEN YOU APOLOGIZE) (I'VE TOLD YOU

THAT APOLOGIES ARE NOT REQUIRED)))

(DONT = DON'T)

(CANT = CAN'T)

(WONT = WON'T)

(REMEMBER 5

((0 YOU REMEMBER 0) (DO YOU OFTEN THINK OF &)

(DOES THINKING OF & BRING ANYTHING ELSE TC MIND)
(WHAT ELSE DO YOU REMEMBER)

(WHY DO YOU REMEMSER & JUST NOW)

(WHAT IN THE PRESENT SITUATION REMINDS YOU OF &)

(WHAT 1S THE CONNECTION BETWEEN ME AND 4))

((0 DO | REMEMBER 0) (DID YOU THINK | WOULD FORGET §5)
(WHY DO YOU THINK | SHOULD RECALL 5 NOW)

(WHAT ABOUT 5) (eWHAT) (YOU MENTIONED 5))

((0) (NEWKEY)))

(IF 3 ((0 IF 0) (DO YOU THINK ITS LIKELY THAT I) (DO YOU WISH THAT 3)
(WHAT DO YOU THINK ABOUT 3) (REALLY, 2 3)))

(WHAT DO YOU THINK ABOUT 3) (REALLY, 2 3)))

(DREAMT & ((0 YOU DREAMT 0)

(REALLY, &) (HAVE YOU EVER FANTASIED 4 WHMILE YOU WERE AWAKE)
(HAVE YOU DREAMT & BEFORE) (=DREAM) (NEWKEY)))
(DREAMED = DREAMT &4 (=DREAMT))

(DREAM 3 ((0) (WHAT DOES THAT DREAM SUGGEST TO YOU)
(DO YOU DREAM OFTEN) (WMAT PERSONS APPEAR (N YOUR DREAMS)
(DON'T YOU BELIEVE THAT DREAM HAS SOMETHMING TO NO WITH
YOUR PROBLEM) (NEWKEY)))

(DREAMS = DREAM 3 (=DREAM))

(HOW (=WHAT))

(WHMEN (=wHAT)]

(ALIKE 10 (=DIT))

(SAME 10 (=DIT))

(CERTAINLY (=YES))

(FEEL DLIST(/BELIEF))

(THINK DLIST(/BELIEF))

(BELIEVE DLIST(/BELIEF))

(WISH DLIST(/BELIEF))

(MEMORY MY (0 YOUR 0 = LETS DISCUSS FURTHE® wMY YOUR 3)
(0 YOUR 0 = EARLIER YOU SAID YOUR 3)

(0 YOUR 0 = BUT YOUR 3)

(0 YOUR 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3))
(NONE ((0) (1 AM NOT SURE | UNDERSTAND YOU FULLY)
(PLEASE GO ON)

(WHAT DOES THAT SUGGEST TO YOU)

(DO YOU FEEL STRONGLY ABOUT DISCUSSING SUCH THINGS)))
(PERHAPS ((0) (YOU DON'T SEEM QUITE CERTAIN)

(WHY THE UNCERTAIN TONE)

(CAN'T YOU BE MORE POSITIVE)

(YOU AREN'T SURE) (DON'T YOU KNOW)))

(MAYBE (=PERMAPS))

(NAME 15 ((0) (I AM NOT INTERESTED IN NAMES)

(I'VE TOLD YOU BEFORE, | DON'T CARE AROUT NAMES -
PLEASE CONTINUE)))

(DEUTSCH (=XFREMD))

(FRANCAIS (=XFREMD))

(ITALIANO (=XFREMD))

(ESPANOL (=XFREMD))

(XFREMD ((0) (! AM SORRY, | SPEAK ONLY ENGLISH)))

(HELLO ((0) (HMOW DO YOU DO. PLEASE STATE YOUR PRORLEM)))
(COMPUTER 50 ((0) (DO COMPUTERS WORRY YOU)

(WHY DO YOU MENTION COMPUTERS) (WHAT DO YOU THINK MACHINES
HAVE TO DO WITH YOUR PROBLEM) (DON'T YOU THINK COMPUTERS CAN
HELP PEOPLE) (WHAT ABOUT MACHINES WORRIES YOU) (WHAT

DO YOU THINK ARQUT MACHINES)))

(MACHINE 50 (=COMPUTER))

(MACHINES 50 (=COMPUTER))

(COMPUTERS 50 (=COMPUTER))

(AM = ARE ((0 ARE YOU 0) (DO YOU BELIEVE YOU ARE &)

44 Communications of the ACM

(WOULD YOU WANT TO BE &) (YOU WISM | WOULD TELL YOU YOU ARE &)
(WHAT WOULD !T MEAN |7 YOU WERZ 4) (=WHAT))

((0) (WHY DO YOU SAY '2M') (| DON'T UNDERSTAND THAT)))

(ARE ((0 ARE ! 0)

(WHY ARE YOU INTERESTED IN WHETHER | AM & OR NOT)

(WOULD YOU PREFER IF | WEREN'T &) (PERMAPS | AM 4 IN YOUR
FANTASIES) (DO YOU SOMETIMES THINK | AM L) (=WHAT))

((0 ARE 0) (DID YOU THINK THEY MIGHT NOT BE 3)

(WOULD YOU LIKE IT IF THEY WERE NOT 3) (WHAT IF THEY WERE NOT 3)
(POSSIBLY THEY ARE 3)))

(YOUR = MY ((0 MY 0) (WHY ARE YOU CONCERNED OVER MY 3)

(WHAT ABOUT YOUR OWN 3) (ARE YOU WORRIED ARQUT SOMEONE ELSES 3)
(REALLY, MY 3)))

(WAS 2 ((0 wAs YOUu 0)

(WHAT IF YOU WERE 4) (BC YOU THINX YOU WERE &)

(WERE YOU u) (WHAT WOULD IT MEAN IF YOU WERE u)

(WHAT DOES ' & ' SUGGEST TO YOU) (=WHAT))

((0 YOU WAS 0)

(WERE YOU REALLY) (WHY DT YOU TELL ME YOU WERE 4 NOW)

(PERHAPS | ALREADY KNEW YOU WERE &))

((0 WAS | D) (WOULD YOU LIKE TO BELIEVE | WAS &)

(WHAT SUGGESTS THAT | WAS &)

(WHAT DO YOU THINK) (PERHMAPS | WAS &)

(WHAT IF | HAD BEEN 4))

((0) (NEWKEY)))

(WERE = WAS (=WAS))

(ME = YOU)

(YOU'RE = I'M ((0 I'M 0) (PRE (I ARE 3) (=YOU))))

(1'M = YOU'RE ((0 YOU'RE 0) (PRE (YOU ARE 3) (=1))))
(MYSELF = YOURSELF)

(YOURSELF = MYSELF)

(MOTHER DLIST(/NOUN FAMILY))

(MOM = MOTHER DLIST(/ FAMILY))

(DAD = FATHER OLIST(/ FAMILY))

(FATHER DLIST(/NOUN FAMILY))

(SISTER DLIST(/FAMILY))

(BROTHER OLIST(/FAMILY))

(WIFE DLIST(/FAMILY))

(CHILDREN OLIST(/FAMILY))

(1 = YOU

((0 YOU (+ WANT NEED) 0) (WHAT WOULD IT MEAN TO YOU IF YOU GOT &)
(WHY DO YOU WANT &) (SUPPOSE YOU GOT & SOON) (WHAT

IF YOU NEVER GOT &) (WHAT WOULD GETTING & MEAN TO

YOU) (WHAT DOES WANTING & MAVE TO 0O WITH THIS DISCUSSION))
((0 YOU ARE 0 (+SAD UNHAPPY DEPRESSED SICK) 0)

(1 AM SORRY TO HEAR YOU ARE 5) (DO YOU THINK COMING HERE
WILL HELP YOU NOT TO BE 5) (!'M SURE ITS NOT PLEASANT TO
BE 5) (CAN YOU EXPLAIN WHAT MADE YOU 5))

((0 YOU ARE 0 (*MAPPY ELATED GLAD BETTER) 0)

(HOW HAVE | HMELPED YOU TO BE §5)

(HAS YOUR TREATMENT MADE YOU 5) (WHAT MAKES YOU 5 JUST
NOW) (CAN YOU EXPLAIN WHY YOU ARE SUDDENLY 5))

((0 YOU WAS 0) (=WAS))

((0 YOU (/BELIEF) YOU 0) (DO YOU REALLY THINK SO) (BUT YOU ARE
NOT SURE YOU 5) (DO YOU REALLY DOUBT YOU 5))

((0 YOU 0 (/BELIEF) 0 | 0) (=YOU))

((0 YOU ARE 0)

(IS IT BECAUSE YOU ARE & THAT YOU CAME TD ME)

(HOW LONG MAVE YOU BEEN &)

(DO YOU BELIEVE IT NORMAL TC BE &)

(DO YOU ENJOY BEING &))

((0 YOU (* CAN'T CANNOT) 0) (MOW DO YOU KNOW YOU CAN'T)
(HAVE YOU TRIED)

(PERHAPS YOU COULD & NOW)

(DO YOU REALLY WANT TQ BE ABLE TO &))

(C0 YOU DON'T 0)(DON'T YOU REALLY &)(WHY DON'T YOU &)
(DO YOU WISH TO BE ABLE TO &) (DOES THAT TROUBLE YOU))
((0 YOU FEEL 0) (TELL ME MORE ABOUT SUCH FEELINGS)

(DO YOU OFTEN FEEL &)

(DO YOU ENJOY FEELING &)

(OF WHAT DOES FEELING & REMIND YOU))

((0 YOU 0 | 0) (PERHAPS IN YOUR FANTASY WE 3 EACH OTHER)
(DO YOU WISH TO 3 ME)

(YOU SEEM TO NEED TO 3 ME)

(DO YOU 3 ANYONE ELSE))

Volume 9 / Number 1 / January, 1966

((0) (You sav 1)

(CAN YOU ELABORATE ON THAT) (DO YOU SAY 1 FOR SOME SPECIAL REASON)
(THAT'S QUITE INTERESTING)))

(YOU = | ((0 | REMIND YOU OF 0) (=0IT))

(€0 | ARE 0) (WHAT MAKES YOU THINK | AM 4)

(DOES IT PLEASE YOU 7O BELIEVE | AM &)

(DO YOU SOMETIMES WISH YOU WERE &)

(PERHAPS YOU WOULD LIKE TO BE 4))

(€0 1 0 YOU) (WHY DO YOU THINK | 3 YOU)

(YOU LIKE TO THINK | 3 YOU - DON'T YOU)

(WHAT MAKES YOU THINK | 3 YOu)

(REALLY, | 3 YOU) (DO YOU WISH TO BFLIEVE | 3 vOU)

(SUPPOSE | DID 3 YOU = WHAT WOULD THAT MEAN)

(DOES SOMEONE ELSE BELIEVE | 3 You))

((0 1 0) (WE WERE DISCUSSING YOU - NOT ME)

(OH, 1 3) (YOU'RE NOT REALLY TALKING AROUT MF = ARE YOU)
(WHAT ARE YOUR FEELINGS NOW))) 1
(YES ((0) (YOU SEEM QUITE POSITIVE) (YOU ARE SURE) ‘
(1 SEE) (1 UNDERSTAND))) !
(NO ((0) (ARE YOU SAYING 'NO' JUST TO 3E NEGATIVE) |
(YOU ARE BEING A 31T NEGATIVE) (WHY NOT) (WHY 'NO'))) f
(MY = YOUR 2 ((0 YOUR 0 (/FAMILY) 0) !
(TELL ME MORE ABOUT YOUR FAMILY) (WHMO ELSE IN YOUR FAMILY

5) (YOUR L) (WHAT ELSE COMES TO MIND WHEN YOU THINK OF 1

YOUR 4))

((0 YOUR 0) (YOUR 3) (WHY DO YOU SAY YOUR 3) (NOES THAT
SUGGEST ANYTHING ELSE WHICH BELONGS TO YOU) (IS IT
IMPORTANT TO YOU THAT 2 3)))

(CAN ((0 CAN | 0) (YOU BELIEVE | CAN & NON'T YOU) (=WHAT) i
(YOU WANT ME TO BE ABLE TO 4) (PERWAPS YOU WOULD LIKF TO B€

ABLE TO & YOURSELF)) ((0 CAN fOU 0) (WMETMER OR NOT YOU CAN &
DEPENDS ON YOU MORE THAN ON ME) (DO YOU WANT TN 3E ARLE TO &)
(PERMAPS YOU DON'T WANT TO 4) (=WHAT))) {
(WHAT ((0) (WHY DO YOU ASK) (NOES THAT QUESTICN INTERFST YOU) [
(WHAT IS IT YOU REALLY WANT TO KNOW)
(ARE SUCH QUESTIONS MUCH ON YOUR MIND)
(WHAT ANSWER WOULD PLEASE YOU MOST) ‘
(WHAT DO YOU THINK) (WHAT COMES TO YOUR MIMD WHEN YOU ASK THAT) {
(HAVE YOU ASKED SUCH QUESTION BEFORE)

(HAVE YOU ASKED ANYONE ELSE)))

(BECAUSE ((0) (1S THAT THE REAL RFASON) (NOM'T ANY OTHER REASONS i
COME TO MIND) (DOES THAT REASON SEEM TO EXPLAIN ANYTHMING ELSE)
(WHAT QTHER REASONS MIGHT THERE 3£)))

(WHY ((0 WHY DON'T | 0) (DO YOU BELIEVE | DON'T 5) (PERHAPS |
WILL 5 IN GOOD TIME) (SHOULD YOU S YOURSELF) (YOU WANT ME TO 5)
(=WHAT))

((0 WHY CAN'T YOU 0) (DO YOU THINK YOU SHOULD RE ARLE TO §5)
(DO YOU WANT TO BE ABLE TO 5) (PO YOU BELIFVE THIS WILL HELP YOU
TO 5) (MAVE YOU ANY IDEA WHY YOU CAN'T 5) (sWHAT))

(= WHAT))

(EVERYONE 2 ((0 (e EVERYONE EVERYBODY NOBODY NOONE) 0)
(REALLY, 2) (SURELY NOT 2) (CAN YOU THINK OF

ANYONE IN PARTICULAR) (WHO, FOR EXAMPLE) (YOU ARE THINKING OF
A VERY SPECIAL PERSON)

(WHQ, MAY | ASK) (SOMEONE SPECIAL PERHAPS)

(YOU HAVE A PARTICULAR PERSON IN MINN, DON'T YOU) (WHO DO YOU
THINK YOU'RE TALKING ABOUT)))

(EVERYBODY 2 (= EVERYONE))

(NOBODY 2 (=EVERYONE))

(NOONE 2 (=EVERYONE))

(ALWAYS 1 ((0) (CAN YOU THINK OF A SPECIFIC EXAMPLE) (WHEN)
(WHAT INCIDENT ARE YOU THINKING OF) (REALLY, ALWAYS)))

(LIKE 10 ((0 (*AM IS ARE WAS) 0 LIKE 0) (=01T))

((0) (NEWKEY)))

(DIT (C0) (IN WHAT WAY) (WHAT RESEMBLANCE DO YOU SEE)

(WHAT DOES THAT SIMILARITY SUGGEST TO YOU)

(WHAT OTHER CONNECTIONS DO YOU SEE)

(WHAT D0 YOU SUPPOSE THAT RESEMBLANCE MEANS)

(WHAT IS THE CONNECTION, DO YOU SUPPOSE)

(COULD THERE REALLY BE SOME CONNECTION)

(HOW)))

Q)

RECEIVED SEPTEMBER, 1963

Volume 9 / Number 1 / January, 1966 Communications of the ACM 45

