i

senr’s
LC’-':uit:le

& | [T
§ el

\ P ooy i Q

,// i s £ TAm
o % iR
Vi ging
o LT

// / _ LT

SAMPSIPLBSL

2.J40pPOoLILLIOD =

USER’S GUIDE STATEMENT

This equipment generates and uses radio frequency energy. If it is not properly
installed and used in strict accordance with the manufacturer’s instructions, thig
equipment may interfere with radio and television reception. This machine hag
been tested and found to comply with the limits for a Class B computing device
peripheral in accordance with the specifications in Subpart 15 of FCC Rules|
which are designed to provide reasonable protection against such interference in g
residential installation. If you suspect interference, you can test this equipment by
turning it off and on. If you determine that there is interference with radio or televi
sion reception, try one or more of the following measures to correct it:

reorient the receiving antenna

move the computer away from the receiver

change the relative positions of the computer equipment and the receiver
plug the computer into a different outlet so that the computer and the receive®

are on different branch circuits
If necessary, consult your Commodore dealer or an experienced radio/television

technician for additional suggestions. You may also wish to consult the foIIOWang'
booklet, which was prepared by the Federal Communications Commission:

“How to identify and Resolve Radio-TV Interference Problems” This booklet is,
available from the U.S. Government Printing Office, Washington, D.C. 20402
Stock No. 004-000-00345-4."

IMPORTANT: Shield interface cable must be used according to FCC 14.838D.

FOR USERS IN UK
WARNING: THIS APPARATUS MUST BE EARTHED !

IMPORTANT. The wires in this mains lead are coloured in accordance with the fo'
lowing code:

Green and yellow : Earth
Blue : Neutral ’
Brown . Live

A§ the colours of the vgire§ in the mains lead of this apparatus may not corresporic
with the coloured marking identifying the terminals in your plug, proceed as follows

The wire which is coloured green and yellow must be connected to the terminal in

the plug which is marked by the letter E or by the safety earth :
S ed
green or green and yellow. Y d ymbol—or coloure

The wire_which is coloured blue must be connected to the terminal which is
marked with the letter N or coloured black. _

The wire 'which is coloured brown must be connected to the terminal which if‘
marked with the letter L or coloured red. S

t

COMMODORE
1541
DISK DRIVE
USER’S GUIDE

A Friendly Introduction to Your 1541 Disk Drive

Second Edition

by Jim & Ellen Strasma

r commodore

COMPUTERS

TABLE OF CONTENTS

At e R T T T T e gt A et s s o AR BT, 1
. The advantagesof adiskdriveciiiieirininennocncnnss 1
BTN OR LS SRS o 0 'e o6 siare bi's oiaie erale aals s 0lpia 978408 7 L e1s S18 Ligs oo iies 1

A T L T R PR e TR AT TR 2

BRI DRI SR . | i e Caeeansnnssessneesoheesohsstassssss 2
Specifications of the 1541 Disk Drive.......ccovviiiiinennrnnnnnnns, 4

PART ONE: GUIDE TO OPERATION

B e AN T s v e e e aTe st Mo va's s nels 5 niose'd 5

L e L SR i e o OO e Oy T | 5

EEREIEY ERE TRAVE <\s iase s e s ais sisn'sisiasiss e sy datanoie et G SR80 s e b 6

ORI T ORI . . e sle e aaels sae ele o6 n 80 ais 8.0 808 s s /s'a/s 6

LRI O e POWRE .. s e e e aeanines sainwesoufaaissspansssass 7

A ORIBESOOIME dANER . 2050 030 o i s muaie nie aibis:s ia g aiE aco s o Risoip & 48078 9

SR TR DR DA .,) e e Saln e s v als e e we s st ae oot 11

P T A A el B E AN AR AR RN, g o g u e i g BTN 12

YIRS BN RN RN T 7 s e o oo o v/ o o1a Aisiele o 08 we o 6 o o0 5 sl t nLe s L6 s a 665 12

Salety Tiles Tor dIBkettE GaNe. e e e ansanesteenessssssss 13

TR st AR U R LRSI ERA Sl rveie R TR 13

Safety rules for removing diskettesccciiiiiiineennennnn 14

Loading a packaged program..........cccoceeetsecssasscscassesss 14

How to prepare anewdiskettecoo0vviinerenencccnnnenss 15

e By Ol e s L B e s o s iseies s s s e e s sasioss 16

R R B e I ATy . e« o o e eee o0 c e ola ol e siatoesesssosaisss 17

I e aleral' o 67 s als siala s s s a(ats o n s 0% uiis s u's wis o 's b:n siwiaiereis ninbisla 17

L gy Ty RN R E PR R RRRER ot sl | g 18

The information in thi$ manual has been reviewed and is believed to be entirely reliable. :’vi:ﬂi isa (:liirreecc'tory? """"""""""""""""""""""" ::

No responsibility, however, is assumed for inaccuracies. The material in this manual is Wh:t';gd.i A 0‘3‘ ws """"""""""""""""""""""" 34
for information purposes only, and may be changed without notice. g et ::f,ro:y)t PO O Rk o ol o b T

PR b e e e, o 20

© Commodor Eletronics L., Sepember 1984 Menting x diectory mra B ..., FEUARE e

“*All rights reserved.”’ AR WAy 10 De BTV . . o e S e T It e T o sioms 21

Pattern matchingand wildcardscciiiiiiiiiennnnnnsas 22

PART TWO: GUIDE TO ADVANCED OPERATION AND PROGRAMMING

Chapter 4: CommandScovvverarsssssossscsasscesasssasnes T 25
Command Channel............... a4 i o e m el A b sl ol S s v 25
Reading the Error Chanmelcoiiiuviinttenncinscnnnenns 26
Housekeeping hints.ooviiiiivieiscnccanecceccnnnsnenenns 28
Saving Programs.coeeeereecsssessaseassssssessanssasnns 29
Save withreplace A i i ele w10 0 orulaan itis s 9708 3 30
Verifying Programsccoeeeeerosssssssssscsssscssssansans 30
Erasing Programs........ccoveesssessssassonssssssnssssssssnssns 31
Scratch for advanced USerScovveeeencesnsssssssasncnsseans 33
Renaming programs.ooeeeeesssssssssssssasssosassesnnnns 34
Renaming and scratching troublesome programsccoeveveen 36
COpYINZ PrOZramMSovvvvverenncccsascnssssssassssanasssansnns 37
Validating the diskettecoivviiiianrarnnsicnncnccnnnns 38
INMEANZING - .« cc coovceessernsnnsesecssassanssesnssossssecseccses 40

Chapter 5: Sequential Data Filescoiiiiiiiiiiianricnnacnnaane 42
The concept of files........cccvvviviiniinnnnnenccncsnneeecannnns 42
Opening a sequentialfileooiiiiiiiiiiecaininnnnennns 42
Adding to a sequentialfile...................... sias 5 sla o rstae o o0 ¢ 0 45
Writing file data: Print#cccoiiniiiiinerrcncrantacennes 46
Closingafileccooceeeerssecccscsccnsssonvensss ST . s a5 48
Reading file data using INPUT#cccoienicnncnneccnnnccnnns 49
More about INPUT (advanced)coecveeevcncncsnnsssscnnnnns 50
Numeric Data Storage on Diskette........ alpEsia damaines bR s SAE oo 's o 0/ 51
Reading File Data: Using GET#........ccc0ieiitenennccecnnnnenn 52
Demonstration of Sequential Filesccvviiiinncnanennns 54

Chapter 6: Relative Data Filescciiviiiiieniiiiiiereciinananee 55
The value of relative 8CCeSSvvvveveerrereresscssanssennnonsns 55
Files, Records, and Fieldscooviivrnnnnnnnercansncnncccnnns 55
IR0 BEIMEEN 0 5 on on e s e a6 s/sio nninien eensnnammnaiihaisadasssosssss 56
Creatingarelativefilecooiiiiiiiiiiiiniirnennnninn 56
Using relative files: Record#..........cocititniinrnntnnnanacenns 57
Completing relative file creation...........ccoetieercennreecannns 59
Expanding arelative filecccivieiiniiioiiiasanncaninns 60
Writing relative filedatacciienenaractenninnsnciinns 61
Designing a relative recordccoveiiterncicrssnsinnnsaccnnss 61
Writingthe recordccoocveteeeeciacccccccnssccssssssscnnss 62
Reading a relativerecordcoiuiiiieinnnecinnnsnccnenans 63

The value of index files

--

Chapter 7: Direct Access Commands.coiviiiiininiieniiicasnenees 65
R EO0N K0T SOVEDOBE WEETE oo vcion voinasiosois snnsosiansasosssssesinss 65
U T T Y e i e e et il o R SR it < 65
T TS T T R e i e P Bt Ml e e 65
R I 0, e 0 e /oo s s sl 2 o hia s 0 s s iols wie e alale oia s sn oa oo sis%e Hiwe m's 66
o Sl e P Lt e WA SR S L P e S8 SR e 67
IR OTIRINR) COMUIBBMIMR ¢ o+ iia 545 alerwi6 50050 0 4 w0 wisslalass aseis e slodannie 68
ST g e s A S P G 69
EIOCRHRE DIDERE. S o v s 3o o dainia s olom biulaidls sl aintels disls: slsara oinibres dleo ke 70
RPN DOCKS &% o' 8105 oo 800§ wivlale s os AE 0 dbente dale 68 o s wieiu olei sl s 71
Using random files (advanced)covvevenennnnnnnnnnennnns 72
Chapter 8: Internal Disk Commands.cooviiiiinienncncnnnncnnns 73
Ry Oy VIR L L L D e I e o tews sivenna 73
BRI IR B IL & T = /e '8 0 012 0.0/ ale ia s e 8la e a6 aluieiaisla e o sie s's'b ora & ¥/5: & 74
BRCEROEY WEIDE. oo o oivio nisisinnaso pios aalk asinte shlan st ok salsls s islsly 75
IERNRGEY ROPOMWDR'S o< 4.5 o 5.0 55050 0.0 0 hela N RIS Kioge G B1E w0 w0t nin Shisoss WdsE 77
e i e R G R o Bt 77
LT U R e SN P S) SR B B i Bl e 78
Chapter 9: Machine Language Programsccovievieeeeennenannns ...80
Disk-related kernal subroutinesoovevviivineniennennes 80
Appendices
A. Changing the Device Number...........cooiieereneeiennnnnnns 81
IR TG VECSERPER T 2005 v o 50460 i e s s e STals d A i s ASTETC eI 0 8 83
B0 DAkttt OPMAME < <o vivias v vaninion sl siadsnise v smenassleeidess 87
D. Disk Command Quick Reference Chartc..... 92
DRI A T T R R ML R e A 93
List of Figures
aary Ug U I SR B | S i S P SR T T T g B 5
BRI PRI 8 S e e s S ool eale sars ot o a/v.olatle e o s a eialeTs € b6 6.2 s & 6Ts 6
B IoppY DIk HOOKSD .= . o S e s o S e el S s sieavaene 8
4. Position for Diskette Insertion.cocovuieennencnsccanns 12

INTRODUCTION

The 1541 disk drive greatly increases the speed, storage capacity, flexibility and reliabil-
ity of your Commodore computer. As you use the 1541 disk drive, you will appreciate its
superiority to the cassette recorder you may have used before and to disk drives offered for
other brands of computers.

THE ADVANTAGES OF A DISK DRIVE

. Speed

If you have used a cassette recorder for data storage, you probably know it can take up
to an hour just to search one long cassette tape looking for a specific program. With the
1541 disk drive, a list of all the programs on a diskette appears on your screen in
seconds. The speed of program loading is also greatly improved. It takes the 1541 only
a minute to load a large program that would take a half-hour to load from tape.

Reliability

Reliability is another reason for choosing a disk drive. It is all too common for a cassette
user to accidentally erase a valuable program by saving a new program on top of the old
one, without realizing it. The 1541 disk drive automatically verifies everything it
records.

Direct File Access

A third advantage of a disk drive is the ability to use relative files (discussed in Chapter
6). On a diskette, any part of a relative file can be accessed and altered separately,
without affecting the rest of the file.

Overall, using a disk drive makes for easier and more powerful computing.
FEATURES OF THE 1541

The 1541 is one of the most affordable disk drives on the market. Compared to
competitors, the 1541 has high capacity, and even higher intelligence. It is one of the most
cost-effective disk drives available. Most home and personal computers that use a disk
take at least 10K of RAM memory from the computer to hold a disk operating system
(known as a DOS.) This large program must be in memory the whole time the disk is
being used, and much of it must also be kept on every diskette.

The Commodore 1541 works differently and more effectively. It contains its own
built-in microcomputer to control its various operations, along with enough ROM and
RAM memory to operate without any help from the computer. Commodore’s DOS
“lives’ entirely inside the disk drive, and does not require any internal memory in the
Computer to do its work, nor does it have to be loaded before use like DOS on other
Computers. It is so independent that once it begins working on a command, it will
complete it while the computer goes on to some other task, effectively allowing you to do
two things at once.

_ Another key advantage of the Commodore 1541 over disk drives for other computers
1S its dynamic allocation of disk space. Many other disk drives make you think about
€very program you save. Where can I store it on this diskette, and should I pack the disk

first? (Packing is the process of moving all the leftover work areas to the end of the

diskette’s storage space.) All this is handled automatically on Commodore disk drives,

The 1541 disk drive always knows where the next program will go, and automatically fit; There’s

it into the best available spot.

Diskettes created on the 1541 may be read by several other Commodore disk
drives, including the former 1540, 2040, and 4040, and the 2031. It is usually possi.
ble, though not recommended, to write data to any one of these drives from any of

the others.
The 1541 communicates with the computer and other devices over a cable an

interface known as the Commodore serial bus. It is patterned after the IEEE-48§
bus used on Commodore’s PET and CBM models, except that the serial version
only uses one wire for data. The two serial ports on the 1541 allow several devices
to be connected together at once, each plugged into the next in ‘‘daisy chain’’ fash. 3. D

ion. Up to 4 disk drives and 2 printers can be connected this way.

HOW TO USE THIS BOOK

This book is divided into two main parts. The first part gives you the information you
need to use the 1541 effectively, even if you know little or nothing about programming
This part of the book tells you how to set up the system, how to prepare diskettes for use,
how to read a directory, and how to load programs. Part two of the book is for advanced
users and those who would like to become advanced users. This part provides more
advanced commands, tells about the different files the 1541 uses, and how to manage
them, as well as giving a few hints for machine language programmers.

Both beginning and advanced users will find valuable information in the appendi-
ces—a quick reference list of disk commands, a list of disk error messages and what they
mean, a glossary of words used in this manual, how to use two or more disk drives al
once, and explanations of some programs on the Test/Demo diskette packed with your
1541.

Since owners of four different Commodore computers use the 1541, we have
separated several explanations into two versions, depending on which Basic your com-
puter uses. If you have a VIC 20 or Commodore 64, please read the pages marked Basic
2. Those with the Commodore 16 or the Plus/4 should read pages marked Basic 3.5. For
many commands, there will be an added page or two of further comments and advance¢
techniques. Feel free to skip anything you don’t understand on those pages now, and come
back later.

BASIC OPERATING STEPS

If you’re like most people, you’re anxious to start using your new disk drivt
right away. In view of that, we have outlined the basic steps you need to know ir
order to get started.

Once you’ve mastered the basic steps however, you will need to refer to the rest of
this manual in order to make full use of the 1541’s features. In fact, before you begin, yov
should take a look at the following short sections, which offer precautions on handling the
equipment: ‘‘Simple maintenance tips,’” ‘‘Safety rules for diskette care,’’ and *‘Safet)
rules for removing diskettes.”’

Unpack, hook-up, and turn on the disk drive.

no shortcut through this part. You’ll have to read this section to find out
what connects to what, when to turn everything on, and how to empty the drive.

If you run into any problems at this point, refer to the Troubleshooting Guide.

1.

Gently insert a pre-programmed diskette.
For the purpose of demonstration, use the Test/Demo diskette that was included

d with the disk drive.

If you run into any problems at this point, refer to Chapter 2, ““Inserting a
Diskette.”’

LOAD “HOW TO USE”’,8 (for Basic 2)
DLOAD “HOW TO USE”’(for Basic 3.5)
Press: RETURN

HOW TO USE is the name of a particular program on the Text/Demo diskette. To
load a different BASIC program, substitute the name of that program inside the
quotation marks.

If you want to load a program that isn’t written in BASIC language, you must
use the Basic 2 command and add the following after the 8 in that command: ,1

If you run into any problems at this point, refer to Chapter 2, the section enti-
tled ‘‘Loading a Packaged Program.”’

4. After you perform step 3, the following will appear on the screen:
SEARCHING FOR HOW TO USE

LOADING
READY

At this point, type RUN and press the RETURN key and follow the directions
for the program.

SPECIFICATIONS OF THE 1541 DISK DRIVE

STORAGE
Total formatted capacity 174848 bytes per diskette
Maximum Sequential file size 168656 bytes per diskette
Maximum Relative file size 167132 bytes per diskette
Records per file 65535
Files per diskette 144
Tracks per diskette 35
Sectors per track 17-21
Sectors per diskette 683 total
664 free for data
Bytes per sector 256
INTEGRATED CIRCUIT CHIPS USED
1 6502 microprocessor
Used for overall control
2 6522 VIA Versatile Interface Adapters

Used for input and output,
and as internal timers

1 6116 RAM Random Access Memory
Used as 2K of buffers
1 16K ROM Read-Only Memory
Contains a 16K Disk Operating System (DOS)
INTERFACE USED
Commodore serial bus with two 6-pin DIN connectors
Device number selectable from 8-11
Secondary addresses 0-15
PHYSICAL DIMENSIONS
Height 97 mm
Width 200 mm
Depth 374 mm

ELECTRICAL REQUIREMENTS
Three wire-grounded detachable power cable.

Voltage U.S: 100-120 VAC
Export 220-240 VAC
Frequency ~ U.S. 60 HZ
Export 50 HZ
Power used 25 Watts
MEDIA

Any good quality 5% inch diskette may be used (Commodore diskettes are recof
mended).

PART 1: GUIDE TO OPERATION

UNPACKING

The first thing you will need to do with your disk drive is unpack it. Inside the carton
in which you found this manual, there should also be: a 1541 disk drive, a gray power
cord, a black cable to connect the disk drive to the computer, a demonstration diskette,
and a warranty card to be filled out and returned to Commodore.

Please don’t connect anything until you’ve read the next three pages! It could save
you a lot of trouble.

[-y]Figo:) A
(Gorrsre = 1B ||

L = ¢ 1)

‘\ O\
“QT' \ \ DOORLATCH ~——

DRIVE INDICATER (RED LED)
LIGHT: ACTIVE
FLASH: ERROR

//

POWER INDICATER
Fig 1. Front Panel (GREEN LED) LIGHT: POWER ON

i Fig. 1.B
Spin
s L dnwee Door
LC: COMMOAOre S ———— 1 54l

— e L
A

\ \ DOOR LEVER

DFHVE INDICATER (RED LED) LIGHT: ACTIVE
FLASH: ERROR

POWER INDICATER

(GREEN LED) LIGHT: POWER ON

EMPTY THE DRIVE

First, it is very important to be sure nothing is inside the disk drive. If you turn the
power off or on with a diskette in the drive, you could lose its contents and have to re-
record it. Since you wouldn’t like having to do that, always check to be sure nothing is
inside the drive before turning it off or on.

When you first unpack the disk drive, you will find a cardboard shipping spacer
inside. Following the instructions below, pull it out as though it were a diskette, but don’t
throw it away. You will want to put it back inside the slot any time you move or ship the
disk drive later.

To check whether a spin-door drive is empty (Fig 1.B), simply rotate the lever on the
front of the disk drive counter-clockwise until it stops, one-quarter turn at most. Then
reach inside the lang slot the lever covers when it points down, and pull out any diskette
you find there.

To check whether a pop door drive is empty (Fig 1.A), simply press lightly on the
door latch, as though it were a pushbutton. The door will pop open upwards, exposing the
long slot in which your diskettes will rest. Once the door is open, a small spring inside
will usually eject any diskette inside.

CONNECTING THE CABLES

The power cable plugs into the back of the disk drive at one end, and into a grounded
(3-prong) outlet at the other end. It will only go in one way. Before you plug it in though,
make sure that your entire computer system is turned off. The disk drive’s on/off switch is
in the back, on the left side (when viewed from the back). It is off when the portion

Fig 2. Back Panel SERIAL BUS

e

POWER SWITCH

i o

Q
O

|
J

FUSE/HOLDER

AC INPUT

marked ‘‘off’" is pushed inward. Leave your whole system off until everything is
connected. We will tell you when it is safe to turn it on.

After plugging the power cord into the disk drive and a suitable outlet, find the black
cable that goes from the disk drive to the computer. It is called a serial bus cable to
describe the way the computer, and other accessories communicate with each other
through its wires. It has an identical 6-pin DIN connector at each end, which like the
power connector can only go in one way—with the dimple in the side of the plug facing
1 To plug in the serial bus cable, find the dimple on the side of the metal part of the
plug and turn that side up. Then push it straight into one of the two serial bus connectors
on the back of the disk drive. The other end goes into the similar connector on the back of
your computer, marked “‘serial bus.”* If another accessory, such as a printer, is already
connected there, unplug the other device’s cable from the computer, and attach it to the
spare serial bus connector on the back of the 1541. Then install the serial cable from the
1541 in the serial bus connector on the back of the computer (Fig 3.A.)

If you have more than one disk drive, each added disk drive's serial bus cable is
plugged into the second serial bus connector on the back of the previous disk drive, like a
daisy chain (Fig 3.B). However, don’t connect the other(s) until you've learned how to
change their device numbers, as no two disk drives can have the same device number.
We'll cover ways of changing disk device numbers in Appendix A. Until you are ready to
read that section, you may find it easier to leave your extra drive(s) unconnected.

TURNING ON THE POWER

With everything hooked up, and the disk drive empty, it is time to turn on the power.
You can turn on the power to the disk and other devices on the serial bus (connected via
serial cables) in any order you like. Just be sure to either turn on the power to the computer
itself last, or to use a multiple outlet power box with a master switch to turn everything off
and on at once. When everything is on, including the computer, the disk drive will go
through a self check for a second or so, to be sure it is working correctly. After the drive is
satisfied with its own health, it will flash the red light below the drive door once, and the
green power-on light to the left of the drive door will glow continuously. At the same
time, the computer will be going through a similar self-test, and displaying its hello
message on your TV or video monitor. Once the red light on the disk drive has flashed and
gone out, it is safe to begin working with the drive. If the light doesn’t go out, but
continues to flash, you may have a problem. Refer to the troubleshooting guide for help.

. 1541
Single Drive
Floppy Disk

Commodore
Personal Computer

Single
Fig 3.A Floppy Disc Hookup

T TROUBLESHOOTING GUIDE

Gymptom Cause Remedy
Green indicator light Disk drive not Make sure power switch
on the 1541 not on turned on is in the ‘‘on’’ position
Power cable not Check both ends of power
plugged in cable to be sure they
are fully inserted
Power off to Replace fuse or reset
wall outlet circuit breaker in house
Bad fuse in Replace fuse (located
disk drive on back panel, as shown
in Figure 2) with one of
same size and rating
(1f any fuse fails twice, added help is needed. If the house fuse failed, you may need an electrician. If
the drive fuse failed, call your dealer.)

1541
Singte Drive
Floppy Disk

Commodore
Personal Computer

Serial Cable 1541

Single Drive

Twin
Fig 3.b Floppy Disc Hookup Printer

Red error light The disk drive is Turn the system off for

on drive flashes failing its power-on a minute and try again.

continously on self-test If it repeats, try again

power-up, before with the serial bus

any disk commands disconnected. If it

have been given still repeats, call your
dealer. If unplugging
the serial cable made a
difference, check the
cable for proper
connection at both ends.

This can also be caused
by some cartridges on
the C-64 and always by

‘ a 16K cartridge on the
VIC 20. Remove the
cartridge and power-up
the disk drive again to
determine where the

problem is.

(The principle behind unplugging the serial cable is *‘divide and conquer.”’ The drive can do its
power-on test even when not connected to a computer. If it succeeds that way, then the problem is
probably in the cable or the rest of the system, not the 1541.)

TROUBLESHOOTING GUIDE

Symptom

Cause

Remedy

Progranis won’t load, and
computer says ‘‘DEVICE
NOT PRESENT ERROR."’

Programs won't load, but
computer and disk drive
give no error message.

Serial bus cable
not well connected, or
disk not turned on.

Another device on the
serial bus may be
interfering.

Be sure serial bus cable
is correctly inserted
and disk drive is turned
on

Unplug all other devices
on the serial bus. If

that cures it, plug them
in one at a time. The
one just added when the
trouble repeats is most
likely the problem.

Also, trying to load a
machine language program
into BASIC space will
cause this problem.

(Such devices may not be turned on properly, or may have conflicting device numbers. Only one
device on the bus can have any one device number.)

Programs won't load
and disk error light
flashes.

(Be sure to spell program names exactly right, as the disk drive is very particular, even about spaces
and punctuation marks, and will not load a program unless you call it exactly the same thing it was

A disk error has
occurred.

called when it was saved on the diskette.)

Check the disk error
channel to see why the
error occurred. Follow
the advice in Appendix B
to correct it.

Your own programs Load
fine, but commercial
programs and those

from other 1541 owners
fail to load.

Either the diskette you
are loading is faulty,
(some mass-produced
diskettes are) or your
disk drive is misaligned.

Try another copy of the
troublesome programs. If
several programs from
several sources always
fail to load, have your
dealer align your

disk drive.

Your own programs that
used to Load won't

any more, but programs
saved on newly-formatted
diskettes still work.

Older diskettes have
been damaged.

The disk drive has gone
out of alignment.

See the section on safety
rules for diskette care.
Recopy from backups.

Have your dealer align
your disk drive.

The disk drive powers
up with the activity
light blinking.

Hardware failure (RAM,
ROM, PCB).

Have your dealer send it
out for repair.

10

SIMPLE MAINTENANCE TIPS

Your 1541 should serve you well for years to come, but there are a few things you
can do to avoid costly maintenance.

1. Keep the drive well-ventilated. Like a refrigerator, it needs a few inches of air
circulation on all sides to work properly. If heat can’t be avoided any other way, you may
cool the drive by placing a small filtered fan on the drive so its air blows into the cooling
slots. (An inexpensive air freshener is quite suitable for this.) However, the added air flow
will result in more dirt getting in the drive.

2. Use onl ood quality diskettes. Badly-made diskettes could cause increased wear on
the drive’s read/write head. If a particular diskette is unusually noisy in use, it is probably
causing added wear, and should be replaced.

3. Avoid using programs that ‘“‘thump’’ the drive as they load. Many commercial
programs, and diskettes that are failing, cause the disk drive to make a bumping or
chattering noise as it attempts to read a bad sector. If the diskette can be copied to a fresh
diskette, do so immediately. If it is protected by its maker against copying, the thumping
is intentional and will have to be endured. Be aware, however, that excessive thumping,
especially when the drive is hot, caused some older 1541’s to go out of alignment and led
to costly repairs. Current 1541’s have been redesigned to prevent the problem.

Note: the ‘*‘Memory-Write’’ example in Chapter 8 temporarily turns off the bumps.

4. Tt would be a good idea to have your 1541 checked over about once a year in normal
use. Several items are likely to need attention: the felt load pad on the read/write head may
giﬂy enough to need replacement, the head itself may need a bit of cleaning (with 91%
isopropyl alcohol on a cotton swab), the rails along which the head moves may need
lubrication (with a special Molybdenum lubricant, NOT oil), and the write protect sensor
may need to be dusted to be sure its optical sensor has a clear view. Since most of these
chores require special materials or parts, it is best to leave the work to an authorized
Commodore service center. If you wish to do the work yourself, ask your dealer to order
the 1541 maintenance guide for you (part number 990445), but be aware that home repair
of the 1541 will void your warranty.

CHAPTER 2
DISKETTES

WHAT IS A DISKETTE?

Before we actually begin using the drive, let’s take a moment to look at th,
Test/Demo diskette packed with the disk drive. To do this, grasp it by the label, whic}
should be sticking out of the paper jacket. Then pull it out of the jacket which keeps it fre,
of dust and other contaminants. (Save the jacket; the diskette should always be kept in i
jacket except when actually in use in the disk drive.) It is often called a floppy diskette
because it is flexible, even though it is not safe to bend diskettes.

A diskette is much like a cassette tape, but in the form of a circle and enclosed withi,
a protective square plastic cover. As on a cassette tape, only a small exposed portion o
the magnetic recording surface is sensitive. You may touch the rest of the diskette an)
time you like, but avoid touching the few small portions that are not covered by th
protective cover. Also, never try to remove this cover. Unlike the paper jacket, the plast;
diskette cover is intended to remain on permanently.

Next, notice the notch on one side of the diskette (it may be covered by a piece ¢
tape). This notch is called the write protect notch. When it is covered with the opaque tap
packed with blank diskettes, the disk drive cannot change the contents of that diskette
Never remove the tape on the Test/Demo diskette.

The label on the top of the diskette says ‘1541 Test/Demo’’ on it, and tells yo
which diskette you are using. Blank diskettes come with extra labels in addition to on
applied by the maker of the diskette. Use them to describe your own diskettes.

At least two other parts of the diskette are worth mentioning: The hub and the acces
slot. The hole in the center is called the hub. A cone-shaped spindle fills it when the driv
door is closed, and its edges are clamped. This keeps them from slipping, when th
diskette spins at 300 RPM in use.

The oval opening in the diskette opposite the label is called the access slot. It expose
just enough of the diskette’s surface for the read/write head and load pad inside the driv
to touch a one inch long line from the center to the edge of the diskette’s working surface
The bottom side of that slot is where all the information is written as the diskette spins. |
is one place your fingers should never touch.

ACCESS SLOT

z

v

m

HUB 2

z

WRITE 3
PROTECT o
NOTCH b}
= F

WHEN COVERED, DISKETTE
CONTENTS CANNOT BE
AL TERED

Fig.4. Position for Diskette Insertion
12

4.

SAFETY RULES FOR DISKETTE CARE

. Keep the disk drive and its diskettes away from all moisture, dust, smoke, food, and
magnets (including the electromagnets in telephones and TV's). Also keep them away
from temperatures either too hot or too cold for you to work in for extended periods.
When not in the drive, diskettes should be stored upright inside their paper jackets. Do
not allow them to become bent or folded. Since the working part of the diskette is on
the bottom, never set it down on a table top or other place where dust or moisture
might affect it, and be especially careful to keep your fingers away from the openings
in the diskette cover.

3. Although some people sell kits intended to ‘‘double your diskette’s capacity’’ by

cutting an extra write-protect notch into a diskette, it is best not to use the other side of

the diskette on the 1541 drive, even if your diskette is labeled ‘‘double-sided.’’ Doing
so will cause added wear to your diskettes and drive, and may cost you an important
program some day.

When buying diskettes, you may use any good quality 5% inch diskette.

5. Make sure the diskette center hole is more or less centered in its opening before
inserting the diskette into the drive. Although the hub assembly will correctly center
most any diskette, it would be very difficult to rescue data from a diskette recorded
with its hub off-center. One way to help center diskettes is to ‘‘tickle’’ the drive door
shut instead of slamming it down. By gently closing it part-way, and then opening a bit
and then closing the rest of the way, you give the spindle more chances to center the
diskette properly. Another way to ease diskette centering is to buy diskettes that come
with reinforced hubs. These hard plastic rings around the hub opening make the
diskette hub more rigid, and easier to center properly.

2.

INSERTING A DISKETTE

Spin Door Drives

To insert a diskette in a spin door 1541 (Fig 1.B), first open the drive door by rotating
the door lever counter-clockwise one quarter turn until it stops, with the lever level with
the slot in the front of the drive.

Grasp the diskette by the side opposite the large oval access slot, and hold it with the
label up and the write-protect notch to the left. Now insert the diskette by pushing it
straight into the slot, the access slot going in first and the label last. Be sure the diskette
£0es in until it stops naturally, with no part showing outside the drive, but you shouldn't
have to force or bend it to get it there.

With the diskette in position, seat it properly for use by twisting the door lever
Clof:kwise one-quarter turn, vertically over the slot until it stops. If it does not move
casily, stop! You may have put the diskette in the wrong way, or incompletely. If that

n$, reposition the diskette until the door lever closes easily.

Pop Door Drives
To insert a diskette in a pop door 1541 (Fig 1.a), first open the drive door by pressing
d and sli.g.htly up on the door latch. A spring inside will then pop the latch up into the
Pen position, exposing a long slot for the diskette in the front of the drive.
labelcmsp the diskette by the side opposite the large oval access slot, and hold it with the
Up and the write-protect notch to the left.

in

13

Now insert the diskette by pushing it straight into the slot, with the access slot goj,
in first and the label last. Be sure the diskette goes in until it stops naturally and no long
springs back out if you release it. No part of the diskette should be showing outside
drive when the diskette is fully inserted, but you shouldn’t have to force or bend it to ge;
there. You may notice a small click when it reaches full insertion and the ejection spri,
catches.

With the diskette in position, seat it for use by pressing straight down on the do
latch until it clicks into position, and its handle moves slightly toward you. If the lay
does not move easily, stop! You may have put the diskette in the wrong way, |
incompletely. If that happens, reposition the diskette until the latch closes easily. Ng
you are ready to begin working with the diskette.

SAFETY RULES FOR REMOVING DISKETTES

Always remove diskettes before turning a drive off or on. If a diskette were in pla
and the door closed at power on or off, you could lose part or all of the data on th
diskette.

Similarly, do not remove a diskette from its drive when the red drive activity light
on! That light only glows when the drive is actually in use. Removing the diskette with
on may result in your losing information currently being written to the diskette.

LOADING A PACKAGED PROGRAM

To use prepackaged BASIC programs available on diskette, here is the procedure:

After turning on your computer system, carefully insert the preprogrammed disket
as described on the previous page. For purpose of demonstration, use the Test/Den
diskette included with the disk drive. The following commands will load a program fro
the diskette into the computer:

BASIC 2:

LOAD ‘‘program name’’,device number,relocate flag

Example: LOAD ‘*HOW TO USE",8

BASIC 3.5:
DLOAD “‘program name’’,Ddrive #,Udevice number,relocate flag

Example: DLOAD ‘“HOW TO USE"’

After each command press the RETURN key

In both cases the exact name of the program wanted is placed between quotatil
marks. Drive # is optional .

Next is the device number of your disk drive which, unless you change it, is alway’
on the 1541. If you have more than one drive however, you will need to change the dev¥
number on any additional drive (see Appendix A for instructions on setting a driv¢
device number).

Last is the relocate flag. It can have one of two values, 0 and 1. If the relocate flag is
omitted, all Commodore computers that use the 1541 automatically relocate the
they load to live in the part of computer memory reserved for BASIC programs.
relocate flag value is 1, auto-relocation is turned off, and the program is loaded into
the exact part of memory from which it was originally saved. This feature allows
achine-language and other special purpose programs to come into the computer
at the correct location for them to operate properly. At this point in your learning,
¢ only thing you need to know about the relocate flag is how to use it. Simply
include the 1 at the end of the LOAD command if a particular program doesn’t run
properly when loaded the usual way. . :
After you type in the command and press the RETURN key, the following will

appear on the screen:

0 or

SEARCHING FOR ‘“HOW TO USE”
LOADING

READY.
L}

When the word READY and the flashing cursor reappear on the screen and the red
light goes off on the drive, the program named ““HOW TO USE’’ on the TestDemo
diskette has been loaded into the computer. To use it, just type the word RUN and press
the RETURN key.

The same Load command will also allow you to load other prepackaged programs
from the Test/Demo or other diskettes. Merely substitute the exact program name that you
want to use between the quotation marks in the above example, and that will be the
program the computer will load (a list of Test/Demo programs is shown in Chapter 3, in
the section entitled ‘‘What a Directory Shows’’).

Note: here and in the remainder of the book, we will assume you are in graphic
mode, seeing upper case letters and graphic characters when you type. This is the normal
condition of all Commodore computers covered by this manual when they are first turned
on. If you now see lower-case letters when you type without using the SHIFT key, you are
in text mode instead. Press the COMMODORE key (€x), at the lower left corner of your
keyboard, together with a SHIFT key to switch to graphic mode.

HOW TO PREPARE A NEW DISKETTE: BASIC 2
A diskette needs a pattern of magnetic grooves in order for the drive’s read/write
heﬂ_l to find things on it. This pattern is not on your diskettes when you buy them, but
adding it to a diskette is simple once you know to do it. Here is the procedure:
FORMAT FOR THE DISK NEW COMMAND

OPEN 15,device #,15,*‘Ndrive #:diskette name,id”’
CLOSE 15

o Tlus Open command will be described more fully in Chapters 4 and 5. For now, just
PY it as is, replacing only the parts given in lower case. These include: the device

15

number of the 1541, normally 8; the drive number, always 0 on the 1541; any desire,
name for the diskette, up to 16 characters in length, followed by a 2 character diskette |}
number. The Close command is often optional; just don’t Open that same file agy;,
without Closing it the first time. .

EXAMPLE:
OPEN 15,8,15,“NO:MY FIRST DISK,01'": CLOSE 15

Note: the chattering or thumping noise you hear just after the disk New commay,
begins is entirely normal. The disk must be sure it is at track 1, which it assures b
stepping outward 45 times (on a 35 track diskette.) The noise you hear is the hey
assembly hitting the track 1 bumper after its inevitable arrival.

HOW TO PREPARE A NEW DISKETTE: BASIC 3.5

A diskette needs a pattern of magnetic grooves in order for the drive’s read/wriy
head to find things on it. This pattern is not on your diskettes when you buy them, by
adding it to a diskette is simple once you know to do it. Here is the procedure:

FORMAT FOR THE HEADER COMMAND
HEADER ‘‘diskette name’’,lid,Ddrive #,Udevice #

Where ‘‘diskette name’’ is any desired name for the diskette, up to 16 characters i
length; “‘id”’ is a 2 character diskette ID number; ‘‘drive #’’ is the drive number, 0 i
omitted (as it must be on the 1541); and ‘‘device # '’ is the disk’s device number, assume(
to be 8 if omitted. As described in the next page, ‘‘id"’ is optional if (and only if) th
diskette has been previously formatted on a 1541. Also, the ID must be a string literal, no
a variable or expression, and may not include Basic reserved words. Thus, **,IFI’’ canno
be used because If is a Basic keyword, and ‘‘,I(A$)"" is not allowed because A$ is !
variable. ‘*,IA$’’ is allowed, but the ID number will be the letter ‘‘A’’ plus a dollar sigi
($), not the contents of the variable A$. If you need a variable ID number, use the Basic'
form of the format command.

EXAMPLE:
HEADER ‘“MY FIRST DISK,101,DO"’

Note: the chattering or thumping noise you hear just after the Header comman
begins is entirely normal. The disk must be sure it is at track 1, which it assures b}
stepping outward 45 times (on a 35 track diskette). The noise you hear is the hea
assembly hitting the track 1 bumper after its inevitable arrival.

REUSING AN OLD DISKETTE

After you have once formatted a particular diskette, you can re-format it as thopgh

were brand new at any time, using the above procedures. However, you can also chan fj]

its name and erase its programs more quickly and easily by omitting the ID number !

16

our format command. By leaving off the ID number, the format command will finish in a
?cw seconds instead of the usual 90 seconds.

oRGANlZlNG A DISKETTE LIBRARY

Though you may not believe it now, you will eventually have dozens, if not hundreds
of diskettes. You can ease life then by planning now. Assign each diskette a unique ID
number when you format it. There are diskette cataloging programs you can buy, that
store and alphabetize a list of all your file names, but are of limited value unless your
diskette ID numbers are unique.

At least two valid approaches are used in assigning ID numbers. One starts at 00 with
the first diskette, and continues upward with each new diskette, through 99, and then
onward from AA through ZZ. Another organizes diskettes within small categories, and
starts the ID number for each diskette in that category with the same first character, going
from 0 to 9 and A to Z with the second character as before. Thus, all “*Tax’" diskettes
could have ID numbers that begin with *“T."* Either approach works well when followed
diligently.

While on this subject, may we suggest you choose names for diskettes on the same
basis, so they too will be unique, and descriptive of the files on them.

BACKUPS

When to do a Backup

Although the 1541 is far more reliable than a cassette drive under most circum-
stances, its diskettes are still relatively fragile, and have a useful life of only a few years in
steady use. Therefore, it is important to make regular backups of important programs and
files. Make a backup whenever you wouldn’t want to redo your current work. Just as you
should save your work every half hour or so when writing a new program, so you should
also back up the diskette you're using at least daily while you are changing it frequently.
In a business, you would make an archival backup every time important information was
due to be erased, such as when a new accounting period begins.

How to do a Backup
We have included programs on the Test/Demo diskette that can be used for similar
purposes. These programs are described further in Appendix E.

How to Rotate Backups

Once you begin to accumulate backups, you'll want to recycle older ones. One good
method is to date each backup. Then retain all backups until the current project is finished.
When you are sure the last backup is correct, make another backup of it to file, and move
all older backups to a box of diskettes that may be reused.

One other popular approach, suited to projects that never end, is to rotate backups in
a chain, wherein there are son backups, father backups, and grandfather backups. Then,
when another backup is needed, the grandfather difkette is reused, the father becomes the
grandfather, and the son becomes the father. :

}Vhichever approach is used, it is recommended that the newly-made backup become
the diskette that is immediately used, and the diskette that is known to be good should be
ed away as the backup. That way, if the backup fails, you'll know it immediately, rather
than after all the other backups have failed some dark day.

17

CHAPTER 3
DIRECTORIES

WHAT IS A DIRECTORY?

One of the primary advantages of a disk drive is that it can, with nearly equal ea
and speed, access any part of a diskette’s surface, and jump quickly from one spot |
another. A DATASSETTE™, on the other hand, usually reads a cassette file from t,
beginning to the end, without skipping around. To see what’s on a cassette, it is necessap
to look at its entire length, which could take as long as an hour. On a disk drive, by way ¢
contrast, it is a quick and simple matter to view a list of the programs and data files on;,
diskette. This list is called the directory.

VIEWING THE DIRECTORY: BASIC 2

To view the directory in Basic 2, it is usually necessary to load it, like a program. A
when you load other programs, this erases anything already in Basic memory, so be sur
to save any work you don’t want to lose before loading the directory in Basic 2. (Chapter:
describes how to Save a program.)

For example, to load the entire directory from disk device 8, type:

LOAD*‘$",8

Then, to display the directory on your screen after it loads into computer memory
type LIST. You may slow the listing by pressing the CONTROL key on the VIC 20 an
Commodore 64, and halt it entirely by pressing the STOP key.

You can also use this command to limit the directory to desired files by using pattern
matching characters described later in this chapter.

VIEWING THE DIRECTORY: BASIC 3.5

To view the directory in Basic 3.5, simply type the word DIRECTORY on a blani
line, and press the RETURN key. Unlike Basic 2’s method of loading a directory, thi
does not erase anything already in Basic memory, so you can safely ask for a directory
almost any time, even from within another program.

Again, you may slow a directory listing on the Commodore 16 and Plus/4 by holding
down the COMMODORE key (€k), or halt it entirely by pressing the STOP key. Yo
may also pause it with CONTROL-S (by holding down the CONTROL key while pressing
the *‘S’’ key), and resume by pressing any other key.

WHAT A DIRECTORY SHOWS

Now let’s look at a typical directory on your 1541 Test/Demo Diskette.

“PRG

74 "HOW TO USE"

12 *HOW PART 2° PRG

12 *"HOW PART 3" PRG

4 "yiC-20 WEDGE" PRG

1 *c-64 WEDGE" PRG

4 *ppos S.1° PRG IMPORTANT NOTE:

8 *“PRINTER TEST" PRG Your Test/Demo diskette

4 *DISK ADDR CHANGE" PRG may contain additional
»WIEW BAM" PRG programs. Commodore

e - DISK® PRG may update the diskette

4 E=ck JSrom time to time.

14 "DISPLAY, T&S " PRG

8 *"PERFORMANCE TEST" PRG

- *SEQ.FILE.DEMO" PRG

7 *"SD.BACKUP.C16" PRG

7 "sSpD.BACKUP.PLUS4" PRG

10 *SD.BACKUP.CB4 " PRG

7 *"PRINT.E4.UTIL" PRG

T *"PRINT.C16.UTIL" PRG

7 "PRINT.+4.UTIL" PRG

30 *C64 BASIC DEMO" PRG

35 "+4 BASIC DEMO" PRG

8 *LOAD ADDRESS" PRG

¥ "UNSCRATCH" PRG

S *"HEADER CHANGE " PRG

10 "REL.FILE.DEMO"® PRG

426 BLOCKS FREE.

Starting with the top line, here is what it tells us:

The 0 at the left end tells us that the 1541’s single drive is drive 0. If we had gotten
directory from a dual disk drive, it might have said ‘‘1’” instead.
next thing on the top line of the directory after the format type is the name of the
diskette, enclosed in quotation marks, and printed in reverse field. Just as each program
has a name, so does the diskette itself, assigned when the diskette was formatted. The
i name may be up to 16 characters long, and serves mainly to help you organize
your diskette library. By keeping related files together on the same diskette, you'll ease
ll}e task of finding the program you want later, when you have dozens or hundreds of
. The two character code to the right of the name is the diskette ID, also created
When the diskette was formatted, and equally useful for individualizing diskettes.
The 2A at the right end of the top line tells us that the 1541 uses version 2 of
’s DOS (disk operating system), and that it, like most Commodore drives,
uses format *‘A."’

this

19

The rest of the directory contains one line per program or file, each line supplyinl
three pieces of information about its subject.

At the left end of each line is the size of that line’s file in blocks (or sectors) of 25
characters. Four blocks are equivalent to 1K (1024 characters) of RAM (read/wri
memory inside the computer.

The middle of each directory line contains the name of the file, enclosed in quotatj,
marks. All characters between the quote marks are part of the name, and must be include,
when loading or opening that file.

The right portion of each directory line is a three character abbreviation for the fj,
type of that entry. As we will see in later chapters, there are many ways to stoy
information on a diskette, most of which are associated with a distinctive file type.

TYPES OF FILES AVAILABLE
Currently used file types include:

PRG = Program files

SEQ = Sequential data files

REL = Relative data files

USR = User (nearly identical to sequential)

DEL = Deleted (you may never see one of these.)

(Note: Direct Access files, also called Random files, do not automatically appear in
the directory. They are discussed in Chapter 7.)

After all the directory entries have listed, the directory finishes with a messag
showing how many blocks of the diskette are still available for use. This number can var
from 664 on a new diskette to O on one that is already completely full.

WATCH OUT FOR SPLAT FILES!

One indicator you may occasionally notice on a directory line, after you begin savin
programs and files, is an asterisk appearing just before the file type of a file that is!
blocks long. This indicates the file was not properly closed after it was created, and that!
should not be relied upon. These ‘‘splat’ files (as they are called in England) wi
normally need to be erased from the diskette and rewritten. However, do not use th
Scratch command to get rid of them. They can only be safely erased by the Validate an
Collect commands. One of these should normally be used whenever a splat file is notice
on a diskette. (All these commands are described in the next chapter.)

There are two exceptions to the above warning: one is that Validate and Collet
cannot be used on some diskettes that include direct access (random) files, and the other!
that if the information in the splat file was crucial and can’t be replaced, there is a way !
rescue whatever part of the file was properly written. (This option is also described in th
next chapter). 4

20

PI“NT]NG A DIRECTORY
To make a permanent copy of a directory, perhaps to fasten to the diskette’s outer
per) envelope, you will need to send the directory to a printer, such as Commodore’s
;A[PS 801, 1520 and 1526 serial bus models. To do this, you may need to refer to your
printer manual, but briefly the procedure for listing a directory to device 4 is as follows:

LOAD*'$0"".8
OPEN 4,4:CMD 4:LIST

PRINT#4:CLOSE 4

Also note that all of the statements that can be combined on one line already have
been. Type them in immediate mode to avoid disturbing the directory.

All other options, such as differing device numbers, and selective directories (see
next section) can also be specified as usual in the Load command.

WARNING: Be sure to include the PRINT# command after every printer
listing. Otherwise, the printer will remain as an unwanted listener on the serial bus,
and may disrupt other work. Also, do not abbreviate PRINT# as ?#. Although it
will look proper when listed out, it will cause a SYNTAX ERROR in use. The
proper abbreviation for PRINT# is pR.

READING A DIRECTORY AS A FILE

If you would like to read a directory from within a program, you may do so. In Basic
3.5, simply include the DIRECTORY command in your Basic program. In Basic 2,
however, and optionally in the others, you will have to Open the directory as though it
were a data file and read it character by character. See the discussion of Get# in Chapter 5
for more information.

ANOTHER WAY TO BE SELECTIVE

Before discussing the pattern-matching options available for use in several disk
“Ommands, let’s cover one more that is only usable in a directory. Several different types
of files can coexist peacefully on the same diskette. By altering our directory load
chmand' we can create a directory from the files of a single selected type. Thus, we
Might request a list of all sequential data files (see Chapter 5), one of all the relative data
files (see Chapter 6), or one of only program files. To do this, simply add to the end of
your selective directory request the equals sign (=) followed by the first letter of the file
'YPe you want in your directory. For example, the Basic 2 command:

21

LOAD*'$0:*=S"",8

will load a directory of all sequential files, while the Basic 3.5 command:
DIRECTORY,*‘A*=R"

will display a directesy consisting only of relative files beginning with the letter ‘A"’

The possible file types, and their abbreviations for this use are:

P = Program
S = Sequential
R = Relative
U = User

D = Deleted
A = Append
M = Modify

PATTERN MATCHING AND WILD CARDS

Just as cassette users can load programs without giving a full name, disk users ¢
use special pattern matching characters to load a program from a partial name. The san
characters can also be used to provide selective directories. The two special characte
used in pattern matching are the asterisk (*) and the question mark (?). They &
something like a wild card in a game of cards. The difference between the two is that t
asterisk makes all characters in and beyond its position wild, while the question mark on
makes its own character position wild. Here are some examples, and their results:

LOAD *‘A*’",8 loads the first file on disk that begins with an ‘A"’ regardless
what follows. ‘“‘ARTIST", ‘“‘ARTERY’’, and ‘“‘AZURE’ would all qualify, b
‘““BARRY"’ wouldn’t, even though it has an ‘*A’’ elsewhere in its name.

DLOAD *‘SM?TH"’ (Basic 3.5) loads the first program that starts with “‘SM’’, en
with ““TH’’, and has one other character between. This would load ‘‘SMITH |
““SMYTH"’, but not ‘*‘SMYTHE"".

OPEN 8,8,2,"R?C*,S,R"" We'll study Open in Chapter 5, but the pattern used he
means that the selected file will begin with an *‘R’’ and have a “‘C’” in the third charact
of its name.

DIRECTORY, ‘Q*"’ (Basic 3.5) will load a directory of files whose names be¢
with “‘Q"".

LOAD ***” 8 and DLOAD *‘*** are special cases. When an asterisk is used alone’
a name, it matches the last file used. If none have been used yet on the current diske!
since turning on the drive, using the asterisk alone loads the first program on the disket"

10 INPUT A$:LOAD A$+***' 8 loads any file whose name starts with U
characters entered in AS$.

22

FORMAT FOR PATTERN MATCHING: EXAMPLES:

wexpression™”’ “C-64*""
or
ssexpression’expression”’ *‘C?64 WEDGE"’
or
“C-647WED*"’

ssexpression?expression*"’

Use any of the above patterns in any of the disk commands whose format includes.a
_ This applies to Load, Dload, Directory, Open, Scratch, aqd to the source file in
the Copy and Rename commands. More than one “*?"’ can appear in lh(:. same pattem.‘
As you might expect, their use in pattern matching means you can’t use the asterisk
or question mark in a file name when saving or writing a file (see next chapter.)

23

PART TWO:
GUIDE TO ADVANCED OPERATION
AND PROGRAMMING

CHAPTER 4
COMMANDS

COMMAND CHANNEL

Commodore disk drives expect to receive many of their instructions over what is
known as a command channel. Although we will not explain the concepts behind it until
Chapter 6, we will learn it to use it now, so you can give your 1541 disk the commands it
needs to do some essential chores.

To instruct the command channel, we use a Basic Open statement to the disk, with a
secondary address of 15. The usual form of this statement is:

OPEN 15,8,15

The first 15 is a file number, and could be any number from 1 to 255. It is used to
match the secondary address (the last number on the line), which is also 15. The middle
number is the primary address, better known as the device number, and is normally 8
when talking with the 1541. A second disk drive would usually be 9, a third, 10 and so on.

Once the command channel has been opened, use the Basic Print# command to send
information to the disk drive, and Basic’s Input# command to receive information back
from the disk drive. These two commands are like Basic's Print and Input statements,
except that they use the device number specified in the preceding Open statement instead
of defaulting to the screen and keyboard respectively.

In Basic 2, you'll use both Print#15 and Input#15 extensively, to send housekeep-
ing commands to the disk and to check its error status. Basic 3.5 has built-in commands
for most of these chores. Even so, it will be good for those of you with Basic 3.5 to see
how such commands are sent.

Sending a Command via the Command Channel
Here is the way we send the Initialize command to the disk via the command

channe].
PRINT#15,10"

This command assumes we have already opened the file 15 to the command
channel. ““10"" can be replaced with any string expression that is a valid disk com-
Mand. If file 15 isn’t already open, we can combine the Open and the Print# in a
Single statement:

OPEN 15,8,15,*10"

However, this only works for the first disk command given. After that, file 15 is
Y open, and Opening it again would cause a ‘‘FILE OPEN"’ error. Added com-
are sent via Print# instead.

25

FORMAT FOR SENDING DISK COMMANDS

OPEN 15,device #,15,command$.
o mvmlc it to
2DS$

or

Print#15,command$ Y oy
Jither in immediate mode or within a program, and the current error status message of the

sk will be displayed on the screen. A message will be displayed whether there is an error
¢ not, but if there was an error, printing its message will also clear it from the disk
. v and turn off the error light on the disk drive.
OPEN 15,8,15,VO”’ Once the message is on the screen, you can look it up in Appendix B to see what it
peans, and what to do about it.

Examples:

or
PRINT#15,“V0™ ¢RROR CHECK SUBROUTINE

where ‘‘device #' is the disk’s device number, normally 8, and ‘‘command$’’ is an Since those of you who are writing programs should be checking the error status after
valid string expression. If it is not also a valid disk command. it will result in an error oxach disk command, you may want to include a small subroutine in each program to take
the disk drive. This is indicated by a flashing error light on the disk drive, and an erro:are of the error channel. Here is one we use:

message such as **31,SYNTAX ERROR™ when the error channel is read as described o

the next two pages. 3asic 2 version: Basic 3.5 version:
i9980 REM READ ERROR CHANNEL 59990 REM READ ERROR CHANNEL
READING THE ERROR CHANNEL: BASIC 2 9990 INPUT#15, EN,EMS,ET ES 60000 IF DS>1 THEN PRINT DS$:STOP
s . . & ino thy light to flash 0000 IF EN>1 THEN PRINT
In Basic 2, there is no simple way to learn what is causing the error lig o EN,EMS, ET ES:STOP 60010 RETURN

the disk drive without writing a small program. This, in turn, causes you to lose anjoqean
; ¢ ficws 0010 RETURN
program variables already in memory. The reason for this is that the INPUT# comman

cannot easily be used in immediate mode (that is, without a line number). SRR rsion assumes file 15 has already been o 8w
. ; Basic ned earl th , and
You will often need to be able to read the disk error channel, to see why the disk erra IS Clo<cl omevwhere clse at the endyof " p::gram. ier in the program, an

light is ﬂa§hing, N‘d thereby turn the error _llght off again. This subroutine reads the error channel and puts the results into the named variables.
Here is a brief program to check for disk errors: 1 the Basic 2 version, they are EN, EM$, ET, and ES, which stand for Error Number,
fror Message, Error Track and Error Sector respectively. Of the four, only EM$ has to
10 OPEN 15,8,15 ® a string, and you could choose other variable names, although these have become
20 INPUT#15,EN,EM$,ET,ES aditional for this use.
30 PRINT EN,EMS$,ET,ES _The Basic 3.5 version subroutine uses the reserved variables DS and DS$ already set
40 CLOSE 15 :hde for this purpose. They are updated automatically by Basic whenever they are used.

erwise, the two versions of the subroutine are equivalent
& ; : i ints t ; q i
This little program reads the error channel into 4 Basic variables, and prin TWo error numbers are harmless: 0 means everything is OK, and 1 tells how many

results on the screen. A message will be displayed whether there is an error or not, butles were erased b i i i
; < f g - y a Scratch command. If the error status is anything else, line 60000
there was an error, this program will also clear it from disk DEwesy and turn off the rTints the error message and halts the program. After you have repaired the damage, you

light on the disk drive. ook it oin AvpeadixB § ® il Iay then continue the program with Basic’s Cont command.
Once the message l;:n @e screen, you can look it up in Appen Ripes “Cause this is a subroutine, you access it with the Basic Gosub command, either in
means, and what to do about it. \medme mode or from a program. (For example, **200 GOSUB 59990’".) The Return
“ment in line 60010 will jump back to immediate mode or the next statement in your
READING THE ERROR CHANNEL: BASIC 3.5 OBram, whichever is appropriate. »

In Basic 3.5, it is very easy to learn what is causing the error light to flash on the di
drive, and no need to write a program. Simply type:

26
27

HOUSEKEEPING HINTS .

Note: the ““0:"" at the start of i
Hint #1: It is best to open file 15 once at the very start of a program, and only close | Commodore disks had two c(l)riv‘::l: if:]altl;‘ces sl: mae hc(;l:i(:::r Kﬁ: tht:l d:ys]xsv:;an all
i ough the will

the end of the program, after all other files have already been closed. Do this becy| ally default to drive 0 E :

t . . F i
closing the command channel automatically closes all other disk files. By opening on¢|);vhenever saving or i\"]r:')ti: a‘;"fliglea .;j.hn iy]’). o besf to specnf.y the drive
the start, the file is open whenever needed for disk commands elsewhere in the prog (the Disk Besting. System:) 8 - I'nis avoids potential confusion in DOS

Closing it at the end makes sure all disk files are properly closed without interrupting
other file commands. L

Hint #2: If Basic halts with an error when you have files open, Basic aborts them wit,
closing them properly on the disk. To close them properly on the disk, you must tprSA“NG PROGRAMS: BASIC 3.5

OPEN 15,8,15:CLOSE 15 Before you can save a program to diskette, the diskett
jescribed earlier. Saving to diskette is just lik i jaketie must be formancd, "as
Just like saving to cassette, except that the device

This opens the command channel and immediately closes it, along with all other JUMPer of the disk drive is not optional.

files. Failure to close a disk file properly both in Basic and on the disk may resultin lo,____

HINT #3: One disk error message is not always an error. Error 73, **CBM DOS§

1541 will appear if you read the disk error channel before sending any disk comm

when you turn on your computer. This is a handy way to check which version of DOS here **fil - i

are using. However, if this message appears later, after other disk commands, it me; . i s any string ex

there is a mismatch between the DOS used to format your diskette and the DOS in X ;,u nflmber (the D" param
he disk drive (the ‘U’

drive. levice number to 8.

i l;l‘o:mggs, ;t \;v’l'llfnot work in copying programs that are not in the Basic text area,
ol w{]] , <:;' tlhhe Commodore 64. To copy it and similar machine language
it h 5 eed the .S command of the machine language monitor built into the

mmodore 16 and Plus/4. To access a built-in monitor, type MONITOR. To exit a

nonito H
SAVING PROGRAMS: BASIC 2 1Hor, type X alone on a line.

DSAVE ‘‘file name’’,Ddrive #,Udevice #

pression of up to 16 characters, optionally followed by
eter, alw:ays 0 on the 1541), and the device number of
parameter). If omitted, the drive number defaults to 0, and the

HINT #4: To reset drive, type: OPEN 15,8,15,°*UJ’’ Then wait until the drive act
LED is off and motor goes off, then type: CLOSE 15. This also applies to sending a

Before you can save a program to diskette, the diskette must be formatte(
described earlier. Saving to diskette is just like saving to cassette, except that the d¢
number of the disk drive is not optional.

‘ORMAT FOR A MONITOR SAVE

LT P)
S*drive #:file name’’ ,device # ,starting address,ending address + 1
FORMAT FOR THE SAVE COMMAND there “drive #:** is the drive number, 0 on the 154]:

Plo 14 characters lon i

ioi g (leaving 2 for the drive numbe ks s
1 2 r and colon); ‘‘d

BIt device number, normally 08 on the 1541 (the); “‘device #"* is a two

leading 0 is ired);
to be . : ; required); and the
&), N saved are given in Hexadecimal (base 16,) but without a leading dollar

where *“file name"" is any string expression of up to 16 characters, preceded by the t Sayeq Ote that the ending address listed must be | location beyond the last location to
number (always O on the 1541) and a colon, and followed by the device number ¢
disk, normally 8.

However, it will not work in copying programs that are not in the Basic tex!
such as “‘DOS 5.1"" for the Commodore 64. To copy it and similar machine lant
programs, you will need a machine language monitor program. [¢
for this purpose is identical to the monitor save described on the next page'
Basic 3.5.

“file name’" is any valid file name

SAVE “‘drive #:file name’’ ,device #

Here is the required syntax to save a copy of *‘DOS 5.1"*

§ee
0:DOg 5.1",08,CC00, CF5A

28 29

-

s
SAVE WITH REPLACE OPTION 1f the disk copy of the program differs even a tiny bit from the copy in memo
; ‘ﬁi‘iﬁﬁ;’owm t:)e :isbpla)'fed. to tell you that the copies differ. This in itsi:)l’t1
; py is bad, but i ¢ .

If a file already exists, it can’t be saved again because the disk only allows one ¢ 'Wlem. . they were supposed to be identical, one of the other
of any given file name per diskette. It is possible to get around this problem using 'le. there’s no point in trying to verify a disk copy of a program after th
Rename and Scratch commands described later. However, if all you wish to do is repliginal is N0 longer in memory. With nothing to compare to, an ap afem ermer th ﬁ
a program or data file with a revised version, another command is more convenieyays be announced, even though the disk copy is always and al;tomaticzll s ; wil
Known as Save-with-replace , or @Save, this option tells the disk to replace any fil, yrigten to the disk. g gt

finds in the directory with the same name, substituting the new file for it. ;
ORMAT FOR THE VERIFY COMMAND:
FORMAT FOR SAVE WITH REPLACE: FORMAT FOR SAVE WITH REPLAQ i
BASIC 2 BASIC 3.5 VERIFY ‘‘drive #:pattern’’ device #, relocate flag
SAVE “‘@Drive #:file name’’, device # DSAVE ‘‘@file name’’,Ddrive ;
Udevice # here. ?.tdrive #:" is an optional drive number (0 on the 1541,) **pattern’ is any string
' ' iy & tha.t evaluates to a file name, with or without pattern-matching characters, and
where all the parameters are as usual except for adding a leading ““at™ sign (@.) Tdevice #'* is the disk device number, normally 8. If the relocate flag is presen; d
«0:>" in the Basic 2 version, though a holdover from earlier dual drives is required heguals 1, the file will be veri io : an
g req er:::sw;t oy i verified where originally saved, rather than relocated into the

EXAMPLES:
useful alternate form of the command is:

SAVE**@0:REVISED PROGRAM" ,8 DSAVE “‘@REVISED PROGRAM"
VERIFY ***" device #

The actual procedure is that the new version is saved completely, then the old vers
is scratched, and its directory entry altered to point to the new version. Because it woverifies the last file used without having to type its name or drive numbe :
this way, there is little, if any, danger that a disaster such as having the power goingdn't work properly after save-with-replace, because the last ﬁl:umsedl'. However, it
midway through the process would destroy both the old and new copies of the fleted, and the drive will try to compare the deleted file to the pro gl the-one
Nothing happens to the old copy until after the new copy is saved properly. rm will result, but **VERIFY ERROR’’ will always be ann . gm;n R g

However, we do offer one caution—do not use @Save on an almost-full disk’SAVE, include at least part of the file name that is to be v Qlf;nze' - To use verify after
Only use it when you have enough room on the diskette to hold a second complete cop One other note about Verify—when you Verify a '”elOC:tI:diil in the pattern.
the program being replaced. Due to the way @Save works, both the old and new versWays be announced, due to changes in the link pointers of Basic s YWy nea.rly
of the file are on disk simultaneously at one point, as a way of safeguarding against lofocation. It is best to only verify files saved from the sam programs mad'e during
the program. If there is not enough room left on diskette to hold that second copy, onl"_'w memory size. For example, a Basic program saved fi Sigpees mafhlne: and
much of the new version will be saved on the 1541 as there is still room for. Afxer"ﬁ?d using a Commodore 64, ;ven when %he ro. S e s = o'ty be
command completes, a look at a directory will show the new version is present " (unless the program is re-saved). This sho lﬁdng:al:‘“ t:VC'uld ;‘vork ﬁm'a on bo’th
doesn’t occupy enough blocks to match the copy in memory. Unfortunately, the V¢ verifying files on machines other than the one which B e‘only s
command (see next section) will not detect this problem, because however much didMParing two disk files to see if they are the same fIc_h,sw_m;e them is when you are
saved will have been saved properly. h against the other, and as suggested, can onl); be :lo::, 0‘:‘;} ebz'almo:dmg l:>.ne and

MOry size as the one on which the files were first created. i b

VERIFYING PROGRAMS 'ASING
ING OLD PROGRAMS: BASIC 2

Although not as necessary with a disk drive as with a cassette, Basic’s
command can be used to make doubly certain that a program file was properly sa" semch command allows you to erase unwanted files. and f
disk. It works much like the Load command, except that it only compares{=e edfor use by other files. It can be used to erase either a s'i alll ﬁlree ki Byl
character in the program against the equivalent character in the computer’s ! Pattern-matching. ngtefie, an sewecal fles at
ory, instead of actually being copied into memory.

30 31

b F TCH COMMAND: ; P‘W" can be any file name or combination of characters and wild card characters. As
RMA THE SCRA ; ”._up" stands for drive number, which may only be 0 on the 1541. If the drive

er is omitted, 0 is assumed. Likewise, ‘“U"" stands for unit (devi
W 8. If **U’" is omitted, 8 is assumed. e

or abbreviate it as: Thanks to the defaults, the usual form of the Scratch command becomes:

PRINT#15,*SCRATCHO:pattern’’

PRINT#15,*S0:pattern’’

*‘pattern’’ can be any file name or combination of characters and wild card character, geRATCH *‘pattern™
usual, it is assumed that the command channel has already been opened as file
Although not absolutely necessary, it is best to include the drive number in So, g a precaution, you will be asked:
commands.
If you check the error channel after a Scratch command, as described in the, ARE YOU SURE? B
section, the value for ET (error track) will tell you how many files were scratcheq
example, if your diskette contains program files named ‘‘TEST”, *“TRAlg e Basic obeys a Scratch command. If yo i
““TRUCK"’, and **TAIL"’, you may scratch all four, along with any other files beginy press RETURN alone or type any 0the¥ a‘:‘:‘::rs‘u:‘;jst::pclg r:,rne:: dY ::;:jblec::‘JRﬁJ (-;d"
with the letter **T"", by using the command: The number of files that were scratched will be automatically displayed Forc:xam._
e, if your diskette contains program files named ‘“TEST"’, ““TRAIN"", “TRUCK", and

TAIL™, you may scratch all four, along with any o inning wi
e) y other files be w
I"", by using the command: i B e

PRINT#15,*S0:T*"’

Then, to prove they are gone, you can type:
SERATCH ‘T
GOSUB 59990

dif the four listed were the only files beginning with *“T** . .
to call the error checking subroutine given earlier in this chapter, and if the four | ginning » you will see:

were the only files beginning with *“T"’, you will see: 01,FILES SCRATCHED, 04,00
01,FILES SCRATCHED,04,00 MY.l
READY.® €04 tells you 4 files were scratched.
The **04’" tells you 4 files were scratched. "RATCH (FOR ADVANCED USERS)

letesm : a powerful command, and should be used with caution, to be sure you only
vl you really want erased. When using it with a pattern, we suggest you first

* "€ Same pattern in a Directory command, to be i ;
!) sure exactly wh
The Scratch command allows you to erase unwanted programs and files from®ted, That way you'll have no unpleasant surprises when you u'.ze \;lelil; ﬁ:e;atv:;ll t:

diskettes, and free up the space they occupied for use by other files and programs. ' Seratch command.
be used to erase either a single file, or several files at once via pattern-matching (des T
at the end of Chapter 3). NI'!;:' i # Scratch
: o Jou accidentally Scratch a file you shouldn’t is sti i

FORMAT FOR THE SCRATCH COMMAND: :*‘h&sw's New command, Scra);ch doesn’t mt?l‘;e’“:?:emoﬁtszll:i:lecil::;? ::f:'::llﬁ

| P‘:tl!‘l:'etl;ls to it .in the diskette directory. If you immediately set the disi(ette aside
led il aln e:rt\’vn(t:e-protect notch, to be sure no one adds any files to the diskette, a
“\elp o e y Commodore user group may be able to recover your file for you. It
), Since o inforemefnbczr what kmd.of file it was you scratched (program, sequential,

rmation cannot be directly recovered from what is left of the file.

ERASING OLD PROGRAMS: BASIC 3.5

SCRATCH *‘pattern’’,Ddrive #,Uunit #

32 33

More about Splats

One other warning—never scratch a splat file. These are files that show up i
directory listing with an asterisk (*) just before the file type for an entry. The asterig jyst
splat) means that file was never properly closed, and thus there is no valid chain of e
links for the Scratch command to follow in erasing the file.

If you Scratch such a file, odds are you will improperly free up sectors that ar n e
needed by other programs, and cause permanent damage to those other programg IP" e protﬁr a;" called BOO_T » currently the first program on a diskette to
when you add more files to the diskette. If you find a splat file, or if you discover to, omepP* else in the directory, you might type:
that you have scratched such a file, immediately validate the diskette using the Van('
command described later in this chapter. If you have added any files to the diskette g
scratching the splat file, it is best to immediately copy the entire diskette onto ap, B cormand (descri . .
fresh diskette, but do this with a copy program rather than with a backup prog0HO%=== o fli’l')l,l i an'th(escribed later), which turns “TEMP"
Otherwise, the same problem will be recreated on the new diskette. When the new co, P2 o % g Scryafch command to get rid of th
done, compare the number of blocks free in its directory to the number free on the Ong‘,w o amed to ““TEMP"" by the command above.
diskette. If the numbers match, no damage has been done. If not, very likely at leag .
file on the diskette has been corrupted, and all should be immediately checked. im“;ﬂNG PROGRAMS: BASIC 3.5

saving a new copy of a ‘‘calendar’’ program, you might type:

#15,"RO:CALENDAR/BACKUP = CALENDAR"’

-
~ PRINT#15,‘RO:TEMP = BOOT""

into a new copy of
e original copy of

Locked Files The Rename command allows you to alter the name of a program or other file in the

Very occasionally, a diskette will contain a locked file; that is one which canngwmmry‘ Since only the directory is affected, Rename works very quickly.
erased with the Scratch command. Such files may be recognized by the “‘<’’ ch ;
which immediately follows the file type in their directory entry. If you wish to en ;T FOR RENAME COMMAND:
locked file, you will have to use a disk monitor to clear bit 6 of the file-type byte i ‘ e . = g
directory entry on the diskette. Conversely, to lock a file, you would set bit 6 of the; RENAME *old name’* TO *‘new name™ Ddrive #,Udevice #
byte. For more information on how such tricks are done, see Chapter 9 and Appendi SRR namc'”

bt § is the name you want the file to have, and *‘old name’

as now. “‘new name"’ may be an
P 1o 16 characters in length. If
lcviogyls, is assumed. One cautio
losed before you rename it.

: ‘ is the name it
Y string expression that evaluates to a valid file name,

“D" is left out, drive 0 is assumed. If **U"’ is absent,
n—be sure the file you are renaming has been properly

RENAMING PROGRAMS: BASIC 2

The Rename command allows you to alter the name of a program or other file I
diskette directory. Since only the directory is affected, Rename works very quickly XAMPLES:
e

FORMAT FOR RENAME COMMAND: UstBefore saving a new copy of a *calendar” program, you might type:

PRINT#15,*‘RENAMEQ:new name = old name"’ RENAME “CALENDAR"’ TO ““CALENDAR/B
ACKUP”

or it may be abbreviated as: X to moy “ o
ol € a program called ‘‘BOOT"’, currently the first program on a diskette to

lace else | i : A
PRINT#15, ‘R0:new name = old name"’ “ lse in the directory, you might type:

where ‘‘new name’’ is the name you want the file to have, and ‘‘old name’’ is the? BOOT" TO “TEMP

has now. ‘“‘new name’’ may be any valid file name, up to 16 characters in Ienglfollom byaC
‘B0 Opy command (described later), which turns *“TEMP""

assumed you have already opened file 15 to the command channel. ’

= 4 ’5 » and finishi i :
One caution—be sure the file you are renaming has been properly closed bef!BOQps" e 'g:ls:::;% :)n'l"'l‘?i ;‘;’f‘cbh cl:)mmand to get rid of th
i y the command above,

rename it.

into a new copy of
e original copy of

34 35

RENAMING AND SCRATCHING TROUBLESOME FILES
(ADVANCED USERS)

Eventually, you may run across a file which has a crazy filename, such as a cop,

;}m PROGRAMS: BASIC 2

o

Copy command allows you to make a spare copy of any program or file on a
However, on a single drive like the 1541, the copy must be on the same diskette,

by itself (**,"") or one that includes a SHIFTed SPACE. Or perhaps you will find on¢ MI ich means it must be given a different name from the file copied. It’s also used to

includes nonprinting characters. Any of these can be troublesome. Comma files
instance, are an exception to the rule that no two files can have the same name. Sip,

shouldn’t be possible to make a file whose name is only a comma, the disk never ex °“d

Mage up to four sequential data files (combining them by linking one to another,

(oend ina chain). Files are linked in the order in which they appear in the command.
, files and other files on the diskette are not changed. Files must be closed

you to do it again.

Files with a SHIFT-SPACE in their name can also be troublesome, because the 4
interprets the shifted SPACE as signalling the end of the file name, and prints wha,
follows after the quotation mark that marks the end of a name in the directory. |
technique can also be useful, allowing you to have a long file name, but also mak
disk recognize a small part of it as being the same as the whole thing without y
pattern-matching characters.

In any case, if you have a troublesome filename, you can use the Chr$() functio,
specify troublesome characters without typing them directly. This may allow you to b,
them into a Rename command. If this fails, you may also use the pattern-matc, mvmed as
characters in a Scratch command. This gives you a way to specify the name without y
the troublesome characters at all, but also means loss of your file. &%

For example, if you have managed to create a file named “***‘MOVIES"’, with - " -
extra quotationpmark at the front of ﬂ%e file name, you can rename it to ‘‘MOVIES" 15, CO:BACKUP=ORIGINAL
using the Chr$() equivalent of a quotation mark in the Rename command:

e . they are copied or concatenated.

AT FOR THE COPY COMMAND
mlNT#lS ““COPYdrive #:new file =drive #:old file”’

ExAMPLES:
PRINT#15,° ‘COPY0:BACKUP =ORIGINAL"’

where *‘drive #’ is the drive number (0 on the 1541,) “‘new file’’ is the copy, and ‘‘old

BASIC 2 FORMAT: file”" is the original.

PRINT#15,"*RO:MOVIES ="' + CHR$(34) + **‘MOVIES"’ FORMAT FOR THE CONCATENATE OPTION

BASIC 3.5 FORMAT:
RENAME (CHR$(34) + *“MOVIES™") TO ‘*“‘MOVIES"”

PRINT#15, ‘Cdrive #:new file=drive #:file 1,drive#:file 2,drive #:file 3,drive
#:file 4™

where *‘drive # '’ is the drive number for each file. Since it is always 0 on the 1541, the
drive number is often omitted.

EXAMPLES:

After renaming a file named ‘‘BOOT’’ to *‘TEMP’’ in the last section’s example, we
tan use the Copy command to make a spare copy of the program elsewhere on the
, under the original name:

The CHR$(34) forces a quotation mark into the command string without upsetting Ba
The procedure for a file name that includes a SHIFT-SPACE is similar, but v
CHR$(160).

In cases where even this doesn’t work, for example if your diskette contains a cor
file, (one named **,"") you can get rid of it this way:

BASIC 2 FORMAT: BASIC 3.5 FORMAT:

PRINT#15,*S0:?" SCRATCH **?"

PRINT#15,‘C0:BOOT = TEMP"’
Depending on the exact problem, you may have to be very creative in choosing pal“‘

matching characters that will affect only the desired file, and may have to rename 0'y
files first to keep them from being scratched too.

Aﬂel‘ creating several small sequential files that each fit easily in memory along with
fle. . we are using, we can use the concatenate option to combine them in a master

» €ven if the result is too big to fit in memory. (Do be sure it will fit in remaining space
the diskette—it will be as big as the sum of the sizes of the files in it.)

PRINT#15,C0:A-Z = A-G,H-M,N-Z""
E 3 ®

36 37

NOTE: Dual drives make fuller use of this command, copying programs from one digj
programs that you need.

COPYING PROGRAMS: BASIC 3.5

The Copy command allows you to make a spare copy of any program or file
diskette. However, on a single drive like the 1541, the copy must be on the same diske
which means it must be given a different name from the file copied. The source ﬁle&u
other files on the diskette are not changed. Files must be closed before they are COpg
Although the 1541 supports a Concatenate option, Basic 3.5 doesn’t have a Speg
command for it. The Basic 2 syntax from the previous page may be used instead. \

FORMAT FOR THE COPY COMMAND

COPY Ddrive #, “old file’* to Ddrive #,‘‘new file’’,Udevice #
wheret D" is the drive number (always 0 on the 1541,) ‘“‘new file’’ is the copy, ‘%
file’ is the original, and **U"" is the device number. If omitted, the drive number defay

to 0 and the device number (unit) to 8.

EXAMPLES:

After renaming a file named *‘BOOT" to ““TEMP"” in the last section’s example, y
can use the Copy command to make a spare copy of the program elsewhere on ¢
diskette, under the original name:

COPY ““TEMP’’ TO ‘‘BOOT”’

To copy a file on a second disk drive, we would use:

COPY “‘ORIGINAL’’ TO *“BACKUP"’,U9

NOTE: Dual drives make fuller use of this command, copying programs from one diske! @il

to another in a single disk unit. To do that on the 1541, refer to Appendix E to find U
programs that you need.

VALIDATING THE DISKETTE: BASIC 2

The Validate command recalculates the Block Availability Map (BAM) of !
current diskette, allocating only those sectors still being used by valid, properly-clo¥
files and programs. All other sectors (blocks) are left unallocated and free for re-use. &
all improperly-closed files are automatically Scratched. However, this bare description'
its workings doesn’t indicate either the power or the danger of the Validate command.!
power is in restoring to good health many diskettes whose directories or block availabil’
maps have become muddled. Any time the blocks used by the files on a diskette plus !
blocks shown as free don’t add up to the 664 available on a fresh diskette, Validat¢
needed, with one exception below. Similarly, any time a diskette contains an impmpef"

38

to another in a single disk unit. To do that on the 1541, refer to Appendix E to ﬁnd: 1

ile (splat file), indicated by an asterisk (*) next to its file type in the directory, that
eds to be validated. In fact, but for the one exception below, it is a good idea to
diskettes whenever you are the least bit concerned about their integrity.
exception is diskettes containing Direct Access files, as described in Chapter 7.
ect access (random) files do not allocate their sectors in a way the Validate
d can recognize. Thus, using Validate on such a diskette may result in un-
ing all direct access files, with loss of all their contents when other files are added.
specifically instructed otherwise, never use Validate on a diskette containing direct
files. (Note: these are not the same as the relative files described in Chapter 6.
date may be used on relative files without difficulty.)

AT FOR THE VALIDATE COMMAND

@?NT#}S,“VALIDATEO"

\bbreviated as

"vf, i #]5.“VU"

#15,V0'
DATING THE DISKETTE: BASIC 3.5

The Collect command in Basic 3.5 is the same as the Validate command in Basic 2.
leulates the Block Availability Map (BAM) of the current diskette, allocating only
e sectors still being used by valid, properly-closed files and programs. All other
(blocks) are left unallocated and free for re-use, and all improperly-closed files are
tically Scratched. However, this bare description of its workings doesn’t indicate
power or the danger of the Collect command. Its power is in restoring to good
any diskettes whose directories or block availability maps have become muddled.

, any time a diskette contains an improperly-closed file (splat file), indicated by
Sterisk (*) next to its file type in the directory, that diskette needs to be collected. In
it for the one exception below, it is a good idea to collect diskettes whenever you
least bit concerned about their integrity. Just note the number of blocks free in the
's directory before and after using Collect, and if the totals differ, there was indeed
em, and the diskette should probably be copied onto a fresh diskette file by file,
e Copy command described in the previous section, rather than using a backup
mand or program.
~ The exception is diskettes containing Direct Access files, as described in Chapter 7.
ﬁrect access (random) files do not allocate their sectors in a way Collect can
8Nize. Thus, collecting such a diskette may result in un-allocating all direct access

39

Bs use for Initialize is to keep a cleamng GISKelic SPHIERE, = J&=5 =02 =
e is no need to use such kits on any regular basis under normal com.imons of
cs and care.) Nonetheless, if you are using such a kit, the following short
. will keep the diskette spinning long enough for your need:

files, with loss of all their contents when other files are added. Unless Specificy
instructed otherwise, never collect a diskette containing direct access files. (Note: the; g
are not the same as the relative files described in Chapter 6. Collect may be useq 3
relative files without difficulty.)

FORMAT FOR THE COLLECT COMMAND 0 OPEN 158,15

COLLECT Ddrive #,Udevice #

where ‘D"’ is the drive number (always 0 on the 1541,) and *‘U"’ the device number. A
usual, if omitted they default to drive 0 and device 8 respectively. < an Initialize loop to keep the drive motor on for about 20 seconds.

EXAMPLE:
COLLECT DO
INITIALIZING

One command that should not often be needed on the 1541, but is still of occasion,
value is Initialize. On the 1541, and nearly all other Commodore drives, this function
performed automatically, whenever a new diskette is inserted. (The optical write-prote;
switch is used to sense when a diskette is changed.y

The result of an Initialize, whether forced by a command, or done automatically b
the disk, is a re-reading of the current diskette’s BAM (Block Availability Map) into;
disk buffer. This information must, of course, always be correct in order for the disk
store new files properly. However, since the chore is handled automatically, the only tim
you’d need to use the command is if something happened to make the information in th
drive buffers unreliable. Even so, you may use the command for reassurance, as oftenz
you like, so long as you close all your files except for the command channel first.

FORMAT FOR THE INITIALIZE COMMAND EXAMPLE:

PRINT#15,“ INITIALIZEdrive #"’ PRINT#15,““INITIALIZE 0"
or it may be abbreviated to

PRINT#15,* ‘Idrive #’ PRINT#15,*'10"

where the command channel is assumed to be opened by file 15, and “‘drive #* is 0
the 1541.

41

CHAPTER 5
SEQUENTIAL DATA FILES

THE CONCEPT OF FILES

A file on a diskette is just like a file cabinet in your office—an organized place to N
things. Nearly everything you put on a diskette goes in one kind of file or another. S £
all we've used are program files, but there are others, as we have mentioned. In lhj
chapter we will learn about sequential data files.

As we just suggested, the primary purpose of a data file is to store the contents ,
program variables, so they won’t be lost when the program ends. A sequential data fi|.
one in which the contents of the variables are stored ‘‘in sequence,” one right af[;
another, just as each link in a chain follows the previous link. You may already be familj,
with sequential files from using a DATASSETTE™, because sequential files on diskey,
are just like the data files used on cassettes. Whether on cassette or diskette, sequentj;
files must be read from beginning to end, without skipping around in the middle.

When sequential files are created, information (data) is transferred byte by by
through a buffer, onto the magnetic media. Once in the disk drive, program filg
sequential data files, and user files all work sequentially. Even the directory acts like,
sequential file.

To use sequential files properly, we will learn some more Basic words in the ney
few pages. Then we’ll put them together in a simple but useful program.

Note: Besides sequential data files, two other file types are recorded sequentially
on a diskette, and may be considered varying forms of sequential files. They are
program files, and user files. When you save a program on a diskette, it is saved in
order from beginning to end, just like the information in a sequential data file. The
main difference is in the commands you use to access it. User files are even more
similar to sequential data files—differing, for most purposes, in name only. User
files are almost never used, but like program files, they could be treated as though
they were sequential data files and are accessed with the same commands.

For the advanced user, the similarity of the various file types offers the
possibility of such advanced tricks as reading a program file into the computer a
byte (character) at a time and rewriting it to the diskette in a modified form. The
idea of using one program to write another is powerful, and available on the
Commodore disk drives.

OPENING A FILE

One of the most powerful tools in Commodore Basic is the Open statement. With '
you may send almost any data almost anywhere, much like a telephone switchboard th?
can connect any caller to any destination. As you might expect, a command that can ¢
this much is fairly complex. You have already used Open statements regularly in some 0
your diskette housekeeping commands.

42

Before we study the format of the Open statement, let’s review some of the possible
ces in a Commodore computer system:

nevice #: Name: Used for:
fo Keyboard Receiving input from the computer operator
'J‘ DATASSETTE™ Sending and receiving information from cassette
) RS232 Sending and receiving information from a Modem
3 Screen Sending output to a video display
4 Printer Sending output to a hard copy printer
Disk drive Sending and receiving information from diskette

gecause of the flexibility of the Open statement, it is possible for a single program
ement to contact any one of these devices, or even others, depending on the value of a
le character in the command. Often an Open statement is the only difference between
that uses a DATASSETTE™ and one using the 1541. If the character is kept in
ble, the device used can even change each time that part of the program is used,
ending data alternately and with equal ease to diskette, cassette, printer and screen.

' REMEMBER TO CHECK FOR DISK ERRORS!
~ In the last chapter we learned how to check for disk errors after disk com-
‘mands in a program. It is equally important to c¢heck for disk errors after using file-
handling statements. Failure to detect a disk error before using another file-
handling statement could cause loss of data, and failure of the Basic program.
The easiest way to check the disk is to follow all file-handling statements with
Y_.a sub statement to an error check subroutine.

- EXAMPLE:
840 OPEN 4,8,4,“0:DEGREE DAY DATA,S,W"’'
- 850 GOSUB 59990:REM CHECK FOR DISK ERRORS

FORMAT FOR THE DISK OPEN STATEMENT:
~ OPEN file #, device #, channel #,"‘drive #:file name,file type,direction’’

ere:
s
7

“file #°* is an integer (whole number) between 1 and 255. If the file number is
Ater than 127, a line-feed character is inserted after each carriage return in the file
d. Though this may be helpful in printer files, it will cause severe problems in disk
% and is to be avoided at all costs. Do not open a disk file with a file number greater
40 127, After the file is open, all other file commands will refer to it by the number
e. Only one file can use any given file number at a time.

ce #°° is the number, or primary address, of the device to be used. This
18 an integer in the range 0-31, and is normally 8 on the 1541.

Ny

\ 43

«‘channel #”’ is a secondary address, giving further instructions to the selecteg
device about how further commands are to be obeyed. In disk files, the channel numby,
selects a particular channel along which communications for this file can take place. Th,
possible range of disk chanrel numbers is 0-15, but 0 is reserved for program Loads, 1 fo,
program Saves, and 15 for the disk command channel. Also be sure that no two disk fil,
have the same channel number unless they will never be open at the same time. (One wa,
to do this is to make the channel number for each file the same as its file number.)

“drive #*’ is the drive number, always 0 on the 1541. Do not omit it, or you wj|
only be able to use two channels at the same time instead of the normal maximum of three
If any pre-existing file of the same name is to be replaced, precede the drive number wig
the *‘at’ sign (@) to request Open-with-replace.

«file name”’ is the file name, maximum length 16 characters. Pattern matching
characters are allowed in the name when accessing existing files, but not when creating
new ones. ‘

“file type” is the file type desired: S= sequential, P=program, U=user, an(
L =Ilength of a relative file.

“‘direction’’ is the type of access desired. There are three possibilities: R =read,
W = write, and M = modify. When creating a file, use ““W"" to write the data to diskette
When viewing a completed file, use ‘R’ to read the data from diskette. Only use the
““M"* (modify) option as a last ditch way of reading back data from an improperly-close
(Splat) file. (If you try this, check every byte as it is read to be sure the data is still valid,
as such files always include some erroneous data, and have no proper end.)

“file type”’ and ‘‘direction’’ don’t have to be abbreviated. They can be spelled ou
in full for clarity in printed listings.

“file #°, ““device #’ and “‘channel #** must be valid numeric constants, variables
or expressions. The rest of the command must be a valid string literal, variable o
expression.

, this erases all our old phone numbers, so make sure that any information that
deleted is of no importance. After writing our phone file, we remove our diskette

off the system. Later, to recall the data in the file, we would reopen it with
ing like

'OPEN 8,8,8,"'0:PHONES,S,R""

matter whether the file and channel numbers match the ones we used before, but
he file name does have to match. However, it is possible to use an abbreviation form of
file name, if there are no other files that would have the same abbreviation:

10,8,6,*0:PH*,S,R"’

If we have too many phone numbers, they might not fit in one file. In that case, we
ight use several similar file names, and let a program choose the correct file.

100 INPUT “*“WHICH PHONE FILE (1-3)"";PH
110 IF PH<>1 AND PH<>2 AND PH<>3 THEN 100

120 OPEN 4,8,2,“PHONE"’ + STR$(PH) + *“,S,R""

o u cal omit the drive number on an Open command to read a file. Doing so allows those
iith dual drives to search both diskettes for the file.

: Basic 2 and Basic 3.5 use the same file handling commands and the same
irect access commands (chapters 7-8). Unless otherwise noted, you may use the
ime commands for both throughout the remainder of this book.

The maximum number of files that may be open simultaneously is 10, including al
files to all devices. The maximum number of sequential disk files that can be open at onc
is 3 (or 2 if you neglect to include the drive number in your Open statement), plus

command channel. ADDING TO A SEQUENTIAL FILE

EXAMPLES OF OPENING SEQUENTIAL FILES: p ;
g sequential file and add more information to the end of it. The same thing can

e another way on the 1541. In place of the “‘type’” and *‘direction’” parameters in

1t tial file of ph bers, ould use:
To create a sequential file of phone numbers, you cou Bt substifute *A™ for AT 5 WY e o i and

OPEN 2.8.2,**0:PHONES,SEQUENTIAL ,WRITE"

or save yourself some typing with:

OPEN 2.8.2.0:PHONES, $.W" file #,device #,channel #,*‘drive #:file name, A"’
everything is as on the previous page except for the ending ‘A’ replacing the

On the off-chance we've already got a **‘PHONES’’ file on our diskette, we can avoid’ T L
PE" and *‘direction’’ parameters.

““FILE EXISTS"* error message by doing an @OPEN
OPEN 2,8,2,*(@0:PHONES,S,W"’

44 45

EXAMPLE: e ‘‘file #°’ is the same file number given in the desired file’s current Open statement.

ng any given access of a particular file, the file number must remain constant because
srves as a shorthand way of relating all other file-handling commands back to the
ect Open statement. Given a file number, the computer can look up everything else
it a file that matters.

The ‘‘data list’’ is the same as for a Print statement - a list of constants, variables
Jor expressions, including numbers, strings or both. However, it is strongly recom-
yded that each Print# statement to disk include only one data item. If you wish to
ude more items, they must be separated by a carriage return character, not a comma.
sicolons are permitted, but not recorded in the file, and do not result in any added
ses in the file. Use them to separate items in the list that might otherwise be confused,
 as a string variable immediately following a numeric variable.

If you are writing a grading program, it would be convenient to simply tack on eqg
student’s new grades to the end of their existing grade files. To add data to the ““JOH)
PAUL JONES" file, we could type

OPEN 1,8,3,*0:JOHN PAUL JONES,A™

In this case, DOS will allocate at least one more sector (block) to the file the firg
time you append to it, even if you only add one character of information. You may alg,
notice that using the Collect or Validate command didn’t correct the file size. On the othg,
hand, your data is quite safe, and if the wasted space becomes a problem, you can easi,
.correct it by copying the file to the same diskette or a different one, and scratching th
original file. Here’s a sequence of commands that will copy such files to the originy
diskette under the original name, for ease of continued use:

Note: Do not leave a space between PRINT and #, and do not abbreviate the

BASIC 2: and as ?#. The correct abbreviation for Print# is pR.

PRINT#15,‘RO:TEMP =JOHN PAUL JONES"'
PRINT#15,“C0:JOHN PAUL JONES =TEMP"’
PRINT#15,‘SO:TEMP"’

BASIC 3.5:

RENAME “‘JOHN PAUL JONES” TO *‘TEMP”’
COPY ‘“TEMP”’ TO ““JOHN PAUL JONES™
SCRATCH ““TEMP"’

ecord a few grades for John Paul Jones, using a sequential disk file #1 previously
ed for writing, we could use:

If you are using Basic 2, be sure to open file 15 to the command channel beforehand (i.e 210 : PRINT#1,GRADES$(CLASS)

with OPEN 15,8,15) and close it afterwards (i.e., with CLOSE 15). 220 NEXT CLASS

320 GOSUB 59990:REM CHECK FOR DISK ERRORS
WRITING FILE DATA: USING PRINT# '

After a sequential file has been opened to write (with a type and direction 0 ming your program includes an error check subroutine like the one in the last
S W), we use the Print# command to send data to it for storage on diskette. If you ar)-
familiar with Basic’s Print statement, you will find Print# works exactly the same wa) = In using Print# there is an exception to the requirement to check for disk
except that the list of items following the command word is sent to a particular fil¢ rs after every file-handling statement. When using Print#, a single check after
instead of automatically appearing on the screen. Even the formatting options (punctu” tire set of data has been written will still detect the error, so long as the check
tion and such) work in much the same way as in Print statements. This means you havel ade before any other file-handling statement or disk command is used. You
be sure the items sent make sense to the particular file and device used. be familiar with Print statements in which several items follow each other:

For instance, a comma between variables in a Print statement acts as a separator ’
screen displays, making each successive item appear in the next preset display fiet
(typically at the next column whose number is evenly divisible by 10). If the same com™
is included between variables going to a disk file, it will again act as a separator, agd/
inserting extra spaces into the data. This time, however, it is inappropriate, as the X
spaces are simply wasted on the diskette, and may create more problems when reading ‘h
file back into the computer. Therefore, you are urged to follow the following for™
precisely when sending data to a disk file.

400 PRINT NAMES, STREETS, CITY$

et those same variables onto sequential disk file number 5 instead of the screen, the
approach would be to use three separate Print# statements, as follows:

FORMAT FOR THE PRINT # STATEMENT
PRINT#file # ,data list

46 47

However, if you need to combine them, here is a safe way to do it:
400 PRINT#5,NAMES;CHR$(13);STREET$;CHR$(13);CITY$

CHR$(13) is the carriage return character, and has the same effect as putting the prip
items in separate lines. If you do this often, some space and time may be saved b,
previously defining a variable as equal to CHR$(13):

10 CR$ = CHR$(13) ... 400 PRINT#5 NAMES$;CR$;STREETS$;CR$;CITY$

The basic idea is that a proper sequential disk file write, if redirected to the screep,
will display only one data item per line, with each succeeding item on the next line.

CLOSING A FILE WHEN YOU ARE DONE USING IT

After you finish using a data file, it is éxtremely important that you Close it. Durin
the process of writing a file, data is accumulated in a memory buffer, and only written oy
to the physical cassette or diskette when the buffer fills.

Working this way, there is almost always a small amount of data in the buffer thy
has not been written to diskette or cassette yet, and which would simply be lost if the
computer system were turned off. Similarly, there are diskette housekeeping matters, such
as updating the BAM (Block Availability Map) of sectors used by the current file, which
are not performed during the ordinary course of writing a file. This is the reason fo
having a Close statement. When we know we are done with a file, the Close statemen!
will write the rest of the data buffer out to cassette or diskette, update the BAM, and
complete the file’s entry in the directory. Always Close a data file when you are don
using it! Failure to do so may cause loss of the entire file!

However, do not close the disk command channel until all other files have beer
Closed. The command channel (described in the last chapter), when used, should be the
first file Opened, and the last file Closed in any program. Otherwise, remaining files ma)
be closed automatically. As also described there, this may be used to advantage if ¢
program halts on an error while disk files are open.

FORMAT FOR THE CLOSE STATEMENT
CLOSE file #
where “*file #'' is the same file number given in the desired file’s current Open statemer!
EXAMPLES:
To close the data file #5 used as an example on the previous page, we would use
CLOSE 5
In Commodore’s CBM and PET computers, there is a Dclose statement, that, whe!
used alone, closes all disk files at once. With a bit of planning, the same can be don¢ 'f

Basic 2 and 3.5 via a program loop. Since there is no harm in closing a file that was"

48

n, close every file you even think might be open before ending a program. If for
ymple, we always gave our files numbers between 1 and 10, we could close them all

9950 FOR I=1TO 10
9960 CLOSE I
19970 GOSUB 59990:REM CHECK FOR DISK ERRORS
9980 NEXT 1

ce information has been written properly to a diskette file, it may be read back into
e computer with an Input# statement. Just as the Print# statement is much like the Print
| nt, Input# is nearly identical to Input, except that the list of items following the
ommand word comes from a particular file instead of the keyboard. Both statements are
ject to the same limitations—halting input after a comma or colon, not accepting data
ns too large to fit in Basic’s Input buffer, and not accepting non-numeric data into a
neric variable.

AT FOR THE INPUT# STATEMENT
#file #,variable list
here “‘file #'* is the same file number given in the desired file’s current Open statement,

zlement is to be input by a particular Input# statement, each variable name must be
rated from others by a comma.

[0 read back in the grades written with the Print# example, use:

300 FOR CLASS =1 TO COURSES
310 INPUT#1,GRADES(CLASS)

: L0 read back in the address data written by another Print# example, it is safest to

800 INPUT#5, NAMES

810 GOSUB 59990:REM CHECK FOR DISK ERRORS
820 INPUT#5,STREETS

830 GOSUB 59990:REM CHECK FOR DISK ERRORS
840 INPUT#5,CITY$

850 GOSUB 59990:REM CHECK FOR DISK ERRORS

49

but many programs cheat on safety a bit and use

800 INPUT#5,NAMES$,STREETS,CITY$
810 GOSUB 59990:REM CHECK FOR DISK ERRORS

This is done primarily when top speed in the program is essential, and there is little or p
risk of reading improper data from the file.

MORE ABOUT INPUT# (FOR ADVANCED USERS)

Troublesome Characters

After you begin using data files regularly, you may encounter two Basic errq;
messages more or less frequently. They are *‘STRING TOO LONG ERROR "’ and “*FILE
DATA ERROR’'. Both are likely to halt your program at an Input# statement, but may
also have been caused by errors in a Print# statement when the file was written.

“*STRING TOO LONG’* ERRORS

A Basic string may be up to 255 characters long, although the longest string you cap
enter via a single Input statement is just under 2 lines of text (4 on the VIC 20). This lower
limitation is due to the 88 character size of the Input buffer in Commodore’s serial bus
computers. The same limit applies to Input# statements. If a single data element (string or
number) being read from a disk file into an Input# statement contains more than 87
characters, Basic will halt with a ““‘STRING TOO LONG ERROR’’'. To prevent this
error, be sure to limit each string to under 88 characters, and separate all file data items
with carriage returns (See the next section for a cure once the error has occurred.)

“FILE DATA’’ ERRORS

The other error message ‘‘FILE DATA ERROR’’ is caused by attempting to read
non-numeric character into a numeric variable. To a computer, a number is the characters
0 through 9, the “‘+ '’ and ‘* — "’ signs, the decimal point (.), the SPACE character, and
the letter “‘E’’ used in scientific notation. If any other character appears in an Input# to a
numeric variable, ‘‘FILE DATA ERROR’’ will be displayed and the program will halt.
The usual causes of this error are a mismatch between the order in which variables are
written to and read from a file, a missing carriage return within a Print# statement thal
writes more than one data item, or a data item that includes either a comma or a colon
without a preceding quotation mark. Once a file data error has occurred, you should
correct it by reading the data item into a string variable, and then converting it back to ?
number with the Basic Val() statement after removing non-numeric characters with the
string functions described in your computer users manual.

COMMAS (,) AND COLONS (:)

As suggested before, commas and colons can cause trouble in a file, because theY
delimit (end) the data element in which they appear and cause any remaining characters i"
the data element to be read into the next Input# variable. (They have the same effect in an
Input statement, causing the common ‘‘EXTRA IGNORED’’ error message.) However
sometimes we really need a comma or colon within a data element, such as a name writte
as ‘‘Last, First”. The cure is to precede such data elements with a quotation mark. After®

50

ation mark, in either an Input or Input# statement, all other characters except a
age return or another quotation mark are accepted as part of the current data element.

PLES:

‘,To force a quotation mark into a data element going to a file, append a CHR$(34) to
start of the data element. For example:

PRINT#2,CHR$(34) + *‘STRASMA, JIM"’

PRINT#2,CHR$(34);'‘'STRASMA, JIM"’

1f you do this often, some space and time may be saved by previously defining a variable
ual to CHR$(34) as we did earlier with CHR$(13):

20 QT$ = CHR$(34)

400 PRINT#5,QT$ + NAMES$

each case, the added quotation mark will be stripped out of the data by the Input or
ut# statement, but the comma or colon will remain safely part of the data.

RIC DATA STORAGE ON DISKETTE

- Inside the computer, the space occupied by a numeric variable depends only on its
pe. Simple numeric variables use 7 bytes (character locations) of memory. Real array
riables use 5 bytes per array element, and integer array elements use 2 bytes each. In
trast, when a numeric variable or any type is written to a file, the space it occupies
nds entirely on its length, not its type.

Numeric data is written to a file in the form of a string, as if the Str$() function had
en performed on it. The first character will be a blank space if the number is positive,
d a minus sign (—) if the number is negative. Then comes the number, digit by digit.
e last character is a cursor right character.

This format allows the disk ddta to be read back into a string or numeric variable
. It is, however, somewhat wasteful of disk space, and it can be difficult to anticipate
€ space required by numbers of unknown length. For this reason, some programs
ivert all numeric variables into strings before writing them to diskette, and use string
Ctions to remove any unneeded characters in advance. Doing so still allows those data
ments to be read back into a numeric variable by Input# later, although file data errors
y be avoided by reading all data in as strings, and converting to numbers after the
Ormation is inside the computer.

- For example, ‘‘N$=MID$(STR$(N),2)’’ will convert a positive number N into a
N$ without the usual leading space for its numeric sign. Then instead of writing
INT#5 N, you would use PRINT#5,N$.

51

READING FILE DATA: USING GET#

The Get# statement retrieves data from the disk drive, one character at a time. Like
the similar keyboard Get statement in Basic, it only accepts a single character into ,
specified variable. However, unlike the Get statement, it doesn’t just fall through to th,
next statement if there is no data to be gotten. The primary use of Get# is to retrieve frop,
diskette any data that cannot be read into an Input# statement, either because it is too long
to fit in the input buffer or because it includes troublesome characters.

FORMAT FOR THE GET# STATEMENT:
GET#file#,variable list

where “‘file #’ is the same file number given in the desired file’s current Open statement,
and ‘“‘variable list’’ is one or more valid Basic variable names. If more than one data
element is to be input by a particular Get# statement, each variable name must be
separated from others by a comma.

In practice, you will almost never see a Get or Get# statement containing more than
one variable name. If more than one character is needed, a loop is used rather than
additional variables. Also as in the Input# statement, it is safer to use string variables
when the file to be read might contain a non-numeric character.

Data in a Get# statement comes in byte by byte, including such normally invisible
characters as the Carriage Return, and the various cursor controls. All but one will be read
properly. The exception is CHR$(0), the ASCII Null character. It is different from an
empty string (one of the form A$ = """"),even though empty strings are often referred to as
null strings. Unfortunately, in a Get# statement, CHR$(0) is converted into an empty
string. The cure is to test for an empty string after a Get#, and replace any that are found
with CHR$(0) instead. The first example below illustrates the method.

EXAMPLES:

To read a file that may contain a CHR$(0), such as a machine language program file,
we could correct any CHR$(0) bytes with

1100 GET#3,G$:IF G$="""" THEN G$=CHR$(0)

If an overlong string has managed to be recorded in a file, it may be safely read back
into the computer with Get#, using a loop such as this

3300 B$="*""
3310 GET#1,A$
3320 IF A$<>CHR$(13) THEN B$=B$ + A$:GOTO 3310

The limit for such a technique is 255 characters. It will ignore CHR$(0), but that may b¢
an advantage in building a text string.

52

Get# may be especially useful in recovering damaged files, or files with ur'lkn.own
.nts. The Basic reserved variable ST (the file STatus variable) can be used to indicate
1 all of a properly-closed file has been read.

500 GET#2,S$

510 SU = ST:REM REMEMBER FILE STATUS

520 PRINT S$; ’

530 [F SU=0 THEN 500:REM IF THERE'S MORE TO BE READ
540 IF SU<>64 THEN PRINT *'STATUS ERROR: ST ="";SU

ying ST into SU is often an unneccessary precaution, but must be done if any other
ndling statement appears between the one which read from the file and the one that
s back to read again. For example, it would be required if line 520 was changed to

520 PRINT#1,S$;

srwise, the file status checked in line 530 would be that of the write file, not the read

POSSIBLE VALUES OF THE FILE STATUS VARIABLE “'ST"",
AND THEIR MEANINGS

THEN

-
I

All is OK

Receiving device was not available (time out on talker)
Transmitting device was not available (time out on listener)
Cassette data file block was too short

Cassette data file block was too long

Unrecoverable read error from cassette, verify error

Cassette checksum error—one or more faulty characters were read
End of file reached (EOI detected)

Device not present, or end of tape mark found on cassette

S D RN m O v

DEMONSTRATION OF SEQUENTIAL FILES

Use the following program for your first experiments with sequential files.
Comments have been added to help you better understand it.

150 CR$ =CHR$(13)
160 OPEN 15,8,15
170 PRINT CHR$(147):REM CLEAR

Make a carriage return variable

SCREEN
190 PRINT ““** WRITE A FILE **
210 PRINT
220 OPEN 2,8,2, @0:SEQ FILE,S,W"’ Open demo file with replace
230 GOSUB 500 Check for disk errors

240 PRINT“ENTER A WORD,

THEN A NUMBER" F
250 PRINT*‘OR ‘END,0’ TO STOP"’
260 PRINT

270 INPUT AS$,B Accept a string & number

from keyboard

280 PRINT#2,A$;CR$:B Write them to the disk fil
290 GOSUB 500 l :
300 IF A$<>*‘END’’ THEN 270 Until finished
310 PRINT
320 CLOSE 2 Tidy up
340 PRINT **** READ SAME FILE

BACK ***
360 PRINT

370 OPEN 2,8,2,‘0:SEQ FILE,S,R"
380 GOSUB 500
390 INPUT#2,A$,B
400 RS=ST
410 GOSUB 500
420 PRINT AS$,B Display file contents
430 IF RS =0 THEN 390 until done,
440 IF RS<>64 THEN
PRINT*‘STATUS ="";RS unless there’s an error
450 CLOSE 2 Then quit
460 END
480 REM ** ERROR CHECK S/R **
500 INPUT#15,EN,EMS$ ET,ES
510 IF EN>0 THEN PRINT
EN,EMS,ET,ES:STOP

Reopen same file for reading

Read next string & number from file
Remember file status

A Basic 3.5-only version could
replace line 500 with
500 IF DS>0 THEN PRINT

DS$:STOP

520 RETURN and delete line 510

54

CHAPTER 6
RELATIVE DATA FILES

E VALUE OF RELATIVE ACCESS

Sequential files are very useful when you’re just working with a continuous stream of
— i.e., information that can be read or written all at once. However, sequential files

not useful or desirable in some situations. For example, after writing a large list of
labels, you wouldn’t want to have to re-read the entire list each time you need a
on’s record. Instead, you need some kind of random access, a way to get to a
cular label in your file without having to read through all those preceding it first.

s an example, compare a record turntable with a cassette recorder. You have to

j;_ to a cassette from beginning to end, but a turntable needle can be picked up at any
, and instantly moved to any spot on the record. Your disk drive works like a turntable
12l respecl In this chapter we will learn about a type of file that reflects this flexibility.

ctually, two different types of random access files may be used on Commodore

1 drives: relative files and random files. Relative files are much more convenient for

 data handling operations, but true random access file commands are also available to

anced users, and will be discussed in the next chapter.

ES, RECORDS, AND FIELDS

- When learning about sequential files, we did not worry about the organization of data
hin a file, so long as the variables used to write the file matched up properly with those
ich read it back into the computer. But in order for relative access to work, we need a
e structured and predictable environment for our data.

The structure we will use is similar to that used in the traditional filing cabinet. In a

itional office, all customer records might be kept in a single file cabinet. Within this
, each customer has a personal record in a file folder with their name on it, that

ains everything the office knows about that person. Likewise, within each file folder,
e may be many small slips of paper, each containing one bit of information about that

tomer, such as a home phone number, or the date of the most recent purchase.

a computerized office, the file cabinet is gone, but the concept of a file containing
information about a group or topic remains. The file folders are gone too, but the

ion of subdividing the file into individual records remains. The slips of paper within
‘personal records are gone too, replaced by subdivisions within the records, called
ds. Each field is large enough to hold one piece of information about one record in the
. Thus, within each file there are many records, and within each record there are

ically many fields.

A relative file takes care of organizing the records for you, numbering them from 1 to
atever, by ones, but the fields are up to you to organize. Each record will be of the
e size, but the 1541 won't insist that they all be divided the same way. On the other

they normally will all be subdivided the same way, and if it can be known in
e exactly where each field starts within each record, there are even fast ways to

;: a desired field within a record without reading through the other fields. As all of
S implies, access speed is a primary reason for putting information into a relative disk
. Some well-written relative file programs are able to find and read the record of one

55

desired person out of a thousand in under 15 seconds,
could match.

FILE LIMITS

' One of the nicest aspects of relative files is that all this is done for you without
having to worry at all about exactly where on the diskette's surface a given record wiﬁour
stored, or whether it will fit properly within the current disk sector, or need to be exte
onto‘the next available sector. DOS takes care of all that for you. All you need to (rjldéd
specify how long each record is, in bytes, and how many records you will need. DOS e
do the rest..ar'ld organize things in such a way that it can quickly find any record in the f\‘:;”]
as soon as it is given its record number (ordinal position within the file). ; %

The only limit that will concern you, is that each record must be the same size
the record length you choose must be between 2 and 254 characters. Naturally the en:::

file also has to fit on your diskette t i
00, which means that the more rec
shorter each must be. PRI <. e

CREATING A RELATIVE FILE

When a relative file is to be used for the first time, its Open statement will create the

) t pen 2 pe a
ﬁl . ft th ! h 0 " be ed t ﬁl f both 7
€, after at, the same statement wi us 0 re-open the € 10r re dlng

FORMAT STATEMENT TO OPEN A RELATIVE FILE:

OPEN file #, device #, channel #, ‘‘drive #: file name, L.
length) wis

+ CHRS$ (record
where ‘.‘ﬁle #’ is the file number, normally an integer between 1 and 127; **device #'" is
the device number to be used, normally 8 on the 1541; *‘channel #** selects a particular
charznel‘along which communications for this file can take place, normally between 2 and
14, ‘dnye #*" is the drive number, always 0 on the 1541; and *‘file name’’ is the file
name, with a maximum length of 16 characters. Pattern matching characters are allowed
:n the name when accessing an existing file, but not when creating a new one. The
‘record length™” is the size of each record within the file in bytes used, including ca}riagf
returns, quotation marks and other special characters. ;

56

a feat no sequential file Progry, ‘

1. Do not precede the drive number with the *‘at’’ sign (@); there is no reason
y replace a relative file.

2. ,L ,**+CHRS$(record length) is only required when a relative file is first
reated, though it may used later, so long as the ‘‘record length’’ is the same as
.\ en the file was first created. Since relative files may be read from or written to
ternately and with equal ease, there is no need to specify Read or Write mode
hen opening a relative file.

3. “‘file #°’, “‘device #'* and ‘‘channel #’* must be valid numeric constants,

ariables or expressions. The rest of the command must be a valid string literal,
able or expression.

4. Only 1 relative file can be open at a time on the 1541, although a sequential

and the command channel may also be open at the same time.

OPEN 2,8,2,“GRADES,L,"" + CHR$(100)

To re-open an unknown relative file of the user’s choice that has already been
ated, we could use

200 INPUT""WHICH FILE'’;FI$
210 OPEN 5,8,5,FI$

ING RELATIVE FILES: RECORD#

en a relative file is opened for the first time, it is not quite ready for use. Both to
time when using the file later, and to assure that the file will work reliably, it is
ssary to create several records before closing the file for the first time. At a minimum,
igh records to fill more than 2 disk sectors (512 bytes) should be written. In practice,
5t programs go ahead and create as many records as the program is eventually expected
. That approach has the additional benefit of avoiding such problems as running out
oom on the diskette before the entire file is completed.

If you simply begin writing data to a just-opened relative file, it will act much like a
Juential file, putting the data elements written by the first Print# statement in Record
, those written by the second Print# statement in record #2 and so on. (As this
lies, each relative record must be written by a single Print# statement, using embed-
iage returns within the data to separate fields that will be read in via one or more
t# statements later.) However, it is far better to explicitly specify which record
nber is desired via a Record# command to the disk. This allows you to access records
hy desired order, hopping anywhere in a file with equal ease. Properly used, it also
ids a subtle error (bug) common to all Commodore disk drives.

57

FORMAT FOR THE RECORD# COMMAND:

PRINT#15, *‘P’’ + CHRS (channel # +96) + CHRS (<record #) + CHR$
(>record #) + CHRS (offset)

where ‘‘channel #" is the channel number specified in the current Open statement for
specified file, ‘*<record #'' is the low byte of the desired record number, expressed 3¢ 3
two byte integer, ‘*>record #'' is the high byte of the desired record number, and o
optional ‘‘offset’’ value, if present, is the byte within the record at which a followj:n
Read or Write should begin. ¢
] To fully understand this command, we must understand how most integers are storeg
in computers based on the 6502 and related microprocessors. In the binary arithmetic ugeg
by the microprocessor, it is possible to express any unsigned integer from 0-255 ip ,
single byte. It is also possible to store any unsigned integer from 0-65535 in 2 bytes, wit,
1 byte holding the part of the number that is evenly divisible by 256, and any remainder i,
the other byte. In machine language, such numbers are written backwards, with the low.

order byte (the remainder) first, followed by the high order byte. In assembly language |

programs written with the Commodore Assembler, the low part of a two byte number js
indicated by preceding its label with the less-than character (<). Similarly, the high pan
of the number is indicated by greater-than (>).

SAFETY NOTE: GIVE EACH RECORD# COMMAND TWICE!

Tp avoid the remote possibility of corrupting relative file data, it is necessary to
give Record# commands twice—once before a record is read or written, and again
immediately afterwards.

EXAMPLES:

To position the record pointer for file number 2 to record number 3, we could type:
PRINT #15, ““P”’ + CHRS$ (98) + CHRS (3) + CHRS (0)

The CHR$(98) comes from adding the constant (96) to the desired channel number (2):
(96 +2=98) Although the command appears to work even when 96 is not added to the
channel number, the constant is normally added to maintain compatibility with the way
Record# works on Commodore’s CBM and PET computers.

Since 3 is less than 256, the high byte of its binary rcpresentation is 0, and the entif®
value fits into the low byte, Since we want to read or write from the beginning of
record, no offset value is needed.

Since these calculations quickly become tedious, most programs arc written t0 do
fhcm for you. Here is an example of a program which inputs a record number and convert
it into the required low byte/high byte form:

58

*“RECORD # DESIRED'";RE

s RE<1 OR RE>65535 THEN 450

\H = INT(RE/256)

=RE-256*RH

SRINT#15, ‘P’ + CHRS (98) + CHRS (RL) +CHRS (RH)

RH and RL are calculated as in the previous example, programs may also use
for the channel, record, and offset required:

NPUT ‘‘CHANNEL, RECORD, & OFFSET DESIRED’";CH,RE,OF
PRINT#15,*‘P""+ CHRS$ (CH + 96) + CHRS (RL) + CHRS (RH) + CHRS (OF)

R RECORD# COMMAND

asic 4.0 on Commodore's PET and CBM models includes a Basic Record#
nd not found in any of the serial bus computers. However, some available
programs for these models. include it. It serves the same function as the
command explained above, but has a simplified syntax:

ECORD#file #,record #,offset

 “file #°* is the relative file number being used, not the command channel’s
record #** is the desired record number, and “offset’’ is as above.

f you see a Record# command written in Basic 4 form in a program you want
tion.

simply convert it into the usual form for both Basic 2 and 3.5 described in

ING RELATIVE FILE CREATION

that we have learned how to use both the Open and Record# commands, we are
dy to properly create a relative file. The only additional fact we need to know is
$(255) is a special character in a relative file. It is the character used by the DOS
ative records as they are created, before a program fills them with other
on. Thus, if we want to write the last record we expect to need in our file with
a that will not interfere with our later work, CHR$(255) is the obvious choice.
how it works in an actual program which you may copy for use in your own
1 pmgrams.

Open command channel
Select file parameters

15,8,15

**ENTER RELATIVE FILE NAME "";FI$
“ENTER MAX. # OF RECORDS"*;NR
" ENTER RECORD LENGTH"";RL

=S T FESEEF =

59

1410 OPEN 1,8,2,"°0:""+FI$ +** ,L,”’+ CHR$(RL) Begin to create des;, (G RELATIVE FILE DATA
1420 GOSUB 59990 Check for disk erTorg
1430 RH =INT(NR/256) Calculate length Valyg
1440 RL = NR-256*RH
1450 PRINT#15,*‘P"” + CHR$(96 + 2) +
CHR$(RL) + CHR$(RH) Position to last recory
number

(ands used to read and write relative file data are the same Print#, Input#,
¢ commands used in the preceding chapter on Sequential files. Each command is
described there. However, some aspects of relative file access do differ from
al file programming, and we will cover those differences here.

1460 GOSUB 59990 LIGNING A RELATIVE RECORD
1470 PRINT#1,CHR$(255); Send default characteno
1480 GOSUB 59990 stated earlier in this chapter, each relative record has a fixed length, including all
1490 PRINT#15," ‘P’ + CHR$(96 + 2) + Re-position for safety acters. Within that fixed length, there are two popular ways to organize
CHRS$(RL) + CHR$(RH) adividual fields of information. One is free-format, with individual fields varying
1500 GOSUB 59990 ngth from record to record, and each field separated from the next by a carriage return
1510 CLOSE 1 Now the file can be gL ater (each of which does take up 1 character space in the record). The other approach
closed d-length fields, that may or may not be separated by carriage returns. If fixed
1520 GOSUB 59990 are not all separated by carriage returns, you will either need to be sure a
9980 CLOSE 15 And the command chy is included within each 88 character portion of the record. If this is not
closed g will have to use the Get# command to read the record, at a significant cost in
9990 END Before we end the pro.
gram tive records of 88 or fewer characters, or final portions of records that are 88 or
59980 REM CHECK DISK SUBROUTINE aracters in length, need not end in a carriage return. The 1541 is smart enough to
59990 INPUT#15,EN,EMS$, ET,ES 2 the end of a relative record even without a final carriage return. Though the
60000 IF EN>1 AND EN<>50 THEN PRINT ing of a single character isn’t much, when multiplied by the number of records on a
EN,EMS$.ET,ES:STOP Ignore ‘*‘RECORD NOTj the savings could be significant.
PRESENT"”’ e each relative record must be written by a single Print# statement, the recom-

60010 RETURN pproach is to build a copy of the current record in memory before writing it to
an be collected into a single string variable with the help of Basic’s many string-
functions, and then all written out at once from that variable.

is an example. If we are writing a 4-line mail label, consisting of 4 fields named
, “STREET"’, **CITY & STATE"", and **ZIP CODE"", and have a total record

‘characters, we can organize it in either of two ways:

Two lines require additional explanation. When line 1470 executes, the disk drive s
operate for up to ten or more minutes, creating all the records in the file, up to!
maximum record number you selected in line 1390. This is normal, and only needs to
done once. During the process you may hear the drive motor turning and an occasio
slight click as the head steps from track to track, everything is probably just fine. Secos
line 60000 above is different from the equivalent line in the error check subroutine g'f
earlier. Here disk error number 50 is specifically ignored, because it will be generé

FIXED LENGTH FIELDS WITH VARIABLE LENGTH FIELDS

when the error channel is checked in line 1460. We ignore it because not havin Leugh e Length
requested record would only be an error if that record had previously been created. 27 characters NAME 31 characters
27 characters STREET 31 characters
EXPANDING A RELATIVE FILE 23 characters CITY & STATE 26 characters
; 10 characters ZIP CODE 11 characters
What if you underestimate your needs and need to expand a relative file lalC’;d‘ 5 siters Potential lerigth P T
problem. Simply request the record number you need, even if it doesn’t currently e** Edited length o

the file. If there is no such record yet, DOS will create it as soon as you try 0 “(!
information in it, and also automatically create any other missing records belo¥'

h fix , the field lengths add up t tly th d length. Since
number. The only penalty will be a slight time delay while the records are created. QLR FeCinas, Wi Gk TSRS T NP0 ARCOY T IR e (

€ngth is just within the Input buffer size limitation, no carriage return characters
d. With variable length records, we can take advantage of the vatiability of
dress lengths. While one name contains 27 letters, another may have only 15,
ame variability exists in Street and City lengths. Although variable length records

aracter per field for carriage returns, they can take advantage of the difference

6l

between maximum field length and average field length. A program that uses |, y
record lengths must calculate the total length of each record as it is entered, to be S '
total of all fields doesn’t exceed the space available.

WRITING THE RECORD

Here is an example of program lines to enter variable length fields for the aboy, 8
design, build them into a single string, and send them to record number RE in file N,
3 (assumed to be a relative file that uses channel number 3).

150 CR$ =CHRS$(13)

2000 INPUT*‘NAME’’;NA$

2010 IF LEN(NA$)>30 THEN 2000

2020 INPUT*‘STREET"’;SA$

2030 IF LEN(SA$)>30 THEN 2020

2040 INPUT**CITY & STATE’’;CS$

2050 IF LEN(CS$)>25 THEN 2040

2060 INPUT*‘ZIP CODE’";ZP$

2070 IF LEN(ZP$)>10 THEN 2060

2080 DA$=NA$ +CR$ +SA$ + CRS$ +
CS$+CR$ +ZP$

2090 IF LEN(DA$)<87 THEN 2120

2100 PRINT*‘RECORD TOO LONG™

2110 GOTO 2000

2120 RH=INT(RE/256)

2130 RL=RE-256*RH

2140 PRINT#15,‘P”” + CHR$(96 + 3) +
CHRS$(RL) + CHR$(RH)

2150 GOSUB 59990

2160 PRINT#3,DA$

2170 GOSUB 59990

2180 PRINT#15,*'P”’ + CHR$(96 + 3) +
CHR$(RL) + CHR$(RH)

2190 GOSUB 59990

To use the above program lines for the version with fixed length fields, we W I

alter a few lines as follows:

150
160 BL$=“ "

2000 INPUT*‘NAME’";NA$

2005 LN =LEN(NAS$)

2010 IF LEN(NAS$)>27 THEN 2000
2015 NA$ =NAS$ + LEFT$(BL$,27-LN)
2020 INPUT**'STREET"’;SA$

2025 LN=LEN(SAS)

62

F LEN(SA$)>27 THEN 2020

SAS = SAS$ + LEFT$(BLS,27-LN)
INPUT*‘CITY & STATE"";CS$

N =LEN(CS$)

F LEN(CS$)>23 THEN 2040

€S$ = CS$ + LEFT$(BLS,23-LN)
INPUT*‘ZIP CODE"";ZP$

LN = LEN(ZPS$)

F LEN(ZP$)>10 THEN 2060

P$ = ZP$ + LEFT$(BLS, 10-LN)
NA$ + SA$ + CS$ + ZP$

; Note lack of separators
Carriage Return
49 H = INT(RE/256)
Enter fields RE'ZS?T}?'
And check length of each #15,'P”” + CHR$(96 + 3) +

#3,DAS; Note added semicolon

#15,"P”’ + CHR$(96 + 3) +
CHRS$(RL) + CHR$(RH) + CHRS (1)
O0SUB 59990

Build output data string
Check its length

If too long overall

field contents vary in length, variable field lengths are often preferable. On the
and, if the field lengths are stable, fixed field lengths are preferable. Fixed length
re also required if you want to use the optional offset parameter of the Record#
ind to point at a particular byte within a record. However, one warning must be
bout using the offset this way. When any part of a record is written, DOS
tes any remaining spaces in the record. Thus, if you must use the offset option,
pdate any field in a record other than the last one unless all succeeding fields will
‘updated from memory later.

e above programs are careful to match record lengths exactly to the space
€. Programs that don’t do so will discover that DOS pads short records out to full
th fill characters, and truncates overlong records to fill only their allotted space.
A record is truncated, DOS will indicate error 51, **RECORD OVERFLOW"', but
cords will be accepted without a DOS error message.

Calculate record number

Position to record number RE
Check for disk errors
Send data to it

Re-position for safety

ING A RELATIVE RECORD

Ice a relative record has been written properly to diskette, reading it back into
T memory is fairly simple, but the procedure again varies, depending on whether
fixed or variable length fields. Here are the program lines needed to read back the
fields created above from record number RE in file and channel 3:

Not needed this time
27 shifted space characters

Checking for different leng™ f Calculate record number

And padding to preset siz¢* |
HR$(RL) + CHR$(RH) + CHRS (1) Position to record number RE

63

3030 GOSUB 59990 Check for disk errors

i CHAPTER 7
3040 INPUT#1 £:03,SA$,CS$,ZP$ Read in fields s b Lo K
3050 GOSUB 5 |
“P’ + CHR$(96 +3) + ‘
i E&N&:if; CHR$(RH) (Re-position for safety DL FOR ADVANCED USERS

. ’ . fields: Direct access commands specify individual sectors on the diskette, reading and
Here are the lines needed to read back the version with et longiti o g information entirely under your direction. This gives them almost complete
lity in data-handling programs, but also imposes tremendous responsibilities on the
er, to be sure nothing goes awry. As a result, they are normally used only in

lex commercial programs able to properly organize data without help from the disk

3000 RH = INT(RE/256)
3010 RL=RE-256*RH
3020 PRINT#15,"*P"’ + CHR$(96 + 3) + CHR$

itself.
(RL)+ CHR$(RH) A far more common use of direct access commands is in utility programs used to
3030 GOSUB 59990 ; nd alter parts of the diskette that are not normally seen directly. For instance, such
] ol . .
3040 INPUT#1,DA$ Read in entire reco! {

ands can be used to change the name of a diskette without erasing all of its
e i 5 59992 CHR$(96 +3) + ams, to lock a program so it can’t be erased, or hide your name in a location where it
3060 PRINT#15,"‘P*" + il

CHR$(RL) + CHR$(RH) . P

3070 NA$ = LEFT$(DAS$,27) Split data into fields
3080 SA$ =MID$(DA$,28,27)
3090 CS$ =MID$(DAS,55,23)
3100 ZP$ = RIGHT$(DAS$,10)

ORGANIZATION

here are a total of 683 blocks on a 1541 diskette, of which 664 are available for use,
e rest reserved for the BAM (Block Availability Map) and the Directory.

he diskette’s surface is divided into tracks, which are laid out as concentric circles
surface of the diskette. There are 35 different tracks, starting with track | at the
2 of the diskette to track 35 at the center. Track 18 is used for the directory, and the
ills up the diskette from the center outward, alternately in both directions.

ach track is subdivided into sectors (also called blocks). Because there is more
n the outer tracks, there are more sectors per track there. The outermost tracks

21 sectors each, while the innermost ones only have 17 sectors each. The table
shows the number of sectors per track.

This ends our discussion of rclative files. A complete “RELATIVITZ FILE’’ program,
similar to the examples in this chapter, is included on the Test/Demo diskette.

THE VALUE OF INDEX FILES (ADVANCED USERS)

In the last two chapters we have learned how to use seguential and relative t:"lle:l
separately. But they are often used together, with the sequential file used to keep r:hc
records of which name in the relative file is stored in each record number. That wgy
contents of the sequential file can be read into a string array and sorted alphabetically.

i Table 6.1: Track and Sector F t
After sorting, a technique known as a binary search can be used to very quickly find & able 6 rack and Sector Forma

entered name in the array, and read in or write the associated record in the relative ﬁI; ;“ C:‘ N:J;WBER SEC?): Nl.:ll\:(l:ERs TOTAL j:.;CTORs
gram intain t ore such index files, sorted in differing W& ‘ to throug|

A?dva;nced prcly s can.maintain two or m s kg e

simultaneously. e 2wt)8 9

31 to 35 0 through 16 17

this chapter we will describe the DOS commands for directly reading and writing
and block on the diskette, as well as the commands used to mark blocks as used

2d. Unless otherwise notes, all direct access commands are the same in both Basic
dasic 3.5.

NG A DATA CHANNEL FOR DIRECT ACCESS

hien working with direct access data, you-need two channels open to the disk: the
d channel we’ve used throughout the book, and another for data. The command
‘is opened with the usual OPEN 15,8,15 or equivalent. A direct access data

65

channel is opened much like other files, except that the pound sign (#), °p"°nany
followed by a memory buffer number, is used as a file name.

FORMAT FOR DIRECT ACCESS FILE OPEN STATEMENTS:
OPEN file # ,device #, channel #, *‘#buffer #°
where ‘‘file #' is the file number, ‘‘device #'’ is the disk’s device number, normally 8
““channel #"* is the channel number, a number between 2 and 14 that is not used by ofp,
files open at the same time; and *‘buffer #, if present, is a 0, 1, 2, or 3, specifying the
memory buffer within the 1541 to use for this file’s data.
EXAMPLES:
If we don’t specify which disk buffer to use, the 1541 will select one:
OPEN 5,8,5, #"’

Or we can make the choice ourselves:

OPEN 4,8,4," " #2”

BLOCK-READ

The purpose of a Block Read is to load the contents of a specified sector into a
file buffer. Although the Block Read command (B-R) is still part of the DOS
command set, it is nearly always replaced by the Ul command.

FORMAT FOR THE BLOCK-READ COMMAND:
PRINT#15, ““U1"’; channel #; drive #; track #; sector #

where ‘‘channel #’ is the channel number specified when the file into which the block
will be read was opened, ‘‘drive #’’ is the drive number, always O on the 1541, and
“‘track #’’ and ‘‘sector #’’ are respectively the track and sector numbers containing the
desired block of data to be read into the file buffer.

ALTERNATE FORMATS:
PRINT#15,°*U1:""channel #;drive #;track #;sector #

PRINT#15,"“UA:"channel #drive #;track #;sector #
PRINT#15,"*Ul:channel # drive #,track #,sector #'’

ere is a complete program to read a sector into disk memory using Ul, and from

:‘into computer memory via Get#. (If a carriage return will appear at least once in
y 88 characters of data, Input# may be used in place of Get#).

110 MB =7936:REM $1F00 Define a memory buffer

120 INPUT*“TRACK TO READ"';T Select a track

130 INPUT **SECTOR TO READ’’;S and sector

140 OPEN 15,8,15 Open command channel
50 OPEN 5,8,5,““#" Open direct access channel
160 PRINT#15,°U1°*;5;0;T;S Read sector into disk buffer

170 FOR I=MB TO MB + 255 Use a loop to
180 GET#5,AS$:IF A$=""" copy disk buffer

THEN A$ = CHR$(0) into computer memory
190 POKE I,ASC(A$) . Tidy up after
200 NEXT

210 CLOSE 5:CLOSE 15

he loop progresses, the contents of the specified track and sector are copied into

uter memory, beginning at the address set by variable MB in line 160, and may be
ined and altered there. This is the basis for programs like “‘DISPLAY T & S"’ on the

DCK-WRITE

The purpose of a Block Write is to save the contents of a file buffer into a specified

L;L It is thus the reverse of the Block Read command. Although the Block Write

nand (B-W) is still part of the DOS command set, it is nearly always replaced by the
and.

IMAT FOR THE BLOCK-WRITE COMMAND:

#15,°'U2"";channel #;drive #;track #;sector #

e “‘channel # ' is the channel number specified when the file into which the block

¢ read was opened; “‘drive #' is the drive number (always 0 on the 1541); and

k #°* and ‘‘sector #'* are respectively the track and sector numbers that should
ve the block of data being saved from the file buffer.

ATE FORMATS:
#15,°*U2:""channel #;drive #:track #:sector #

#15,°“UB:""channel #;drive #;track #;sector #
#15,“U2:channel #,drive #,track #,sector #°°

67

EXAMPLES:

To restore track 18, sector 1 of the directory from the disk buffer filled by the Blog
Read example on page 82, we can use

PRINT#15,°U2";5;0;18;1

We'll return to this example on the next pag'e, after we learn to alter the directory i,
useful way.

We can also use a Block Write to write a name in Track 1, Sector 1, a rarely-use
sector. This can be used as a way of marking a diskette as belonging to you. Here i,
program to do it, using the alternate form of the Block Write command:

110 INPUT ** YOUR NAME'" :NAS$ Enter a name

120 OPEN 15,8,15 Open command channel
130 OPEN 4,84, #" Open direct access channel
140 PRINT#4,NA$ Write name to buffer

150 PRINT#15,°U2";4:0;1;1 Write buffer to Track 1,
160 CLOSE 4 Sector | of diskette

170 CLOSE 15 Tidy up after

180 END

THE ORIGINAL BLOCK-READ AND BLOCK-WRITE COMMANDS (EXPERT
USERS ONLY)

Although the Block Read and Block Write commands are nearly always replaced by
the U1 and U2 commands respectively, the original commands can still be used, as long
as you fully understand their effects. Unlike U1 and U2, B-R and B-W allow you to reqd
or write less than a full sector. In the case of B-R, the first byte of the selected sector is
used to set the buffer pointer (see next section), and determines how many bytes of lh:fl
sector are read into a disk memory buffer. A program may check to be sure it doesn'
attempt to read past the end of data actually loaded into the buffer, by watchir?g for lhf
value of the file status variable ST to change from 0 to 64. When the buffer is written back
to diskette by B-W, the first byte written is the current value of the buffer pointer, ﬂfl'::
only that many bytes are written into the specified sector. B-R and B-W may thus
useful in working with custom-designed file structures.

FORMAT FOR THE ORIGINAL BLOCK-READ AND BLOCK-WRITE COM
MANDS:

PRINT#15, ‘BLOCK-READ’";channel #;drive #:track #;sector #
abbreviated as: PRINT#15,*‘B-R"";channel #;drive #;track #;sector #
and

PRINT#15,*‘BLOCK-WRITE";channel #;drive #:track #;sector #

68

always interpreted as being the number of characters to read, rather than part of the

ytes are written into the specified sector. It cannot be used to rewrite an entire

uffer pointer.

reviated as: PRINT#15,"‘B-W’;channel #;drive #;track #;sector #

, “‘channel #'’ is the channel number specified when the file into which the block

‘be read was opened, ‘‘drive #'’ is the drive number (always 0 on the 1541), and

#'* and ‘‘sector #'’ are respectively the track and sector numbers containing the

red block of data to be partially read into or written from the file buffer.

IMPORTANT NOTES:
1. In a true Block-Read, the first byte of the selected sector is used to

» ine how many bytes of that sector to read into the disk memory buffer. It
us cannot be used to read an entire sector into the buffer, as the first data byte is

2. Similarly, in a true Block-Write, when the buffer is written back to diskette,
e first byte written is the current value of the buffer pointer, and only that many

onto diskette unchanged, because the first data byte is overwritten by the

i BUFFER POINTER

he buffer pointer points to where the next Read or Write will begin within a disk
buffer. By moving the buffer pointer, you can access individual bytes within a

k in any order. This allows you to edit any portion of a sector, or organize it into

5, like a relative record.
MAT FOR THE BUFFER-POINTER COMMAND:

#15,“BUFFER-POINTER "’ ;channel #;byte

'_ abbreviated as: PRINT#15,*‘B-P’";channel #;byte

> “‘channel #'’ is the channel number specified when the file reserving the buffer

opened, and ‘‘byte’” is the character number within the buffer at which to point.

ATE FORMATS:

#15,'‘B-P:""channel #;byte
#15,'‘B-P:channel #;byte"’

is a program that locks the first program or file on a 1541 diskette. It works by

ing the start of the directory (Track 18, Sector 1) into disk memory, setting the buffer

69

pointer to the first file type byte (see Appendix C for details of directory organizatiop)
locking it by setting bit 6 and rewriting it. '
110 OPEN 15,8,15

120 OPEN 5,8,5,“#"

130 PRINT#15,°U1°";5;0;18;1

140 PRINT#15,‘B-P’";5;2

150 GET#5,A$:IF A$="""" THEN A$ =CHR$(0)
160 A=ASC(AS$) OR 64

170 PRINT#15,‘B-P’";5;2

Open command channel
Open direct access channe|
Read Track 18, Sector 1
Point to Byte 2 of the buffe;
Read it into memory

Turn on bit 6 to lock

Point to Byte 2 again

180 PRINT#5,CHR$(A); Overwrite it in buffer
190 PRINT#15,°U2"";5;0;18;1 Rewrite buffer to diskette
200 CLOSE 5 Tidy up after

210 CLOSE 15

220 END

After the above program is run, the first file on that diskette can no longer be erased. [f
you later need to erase that file, re-run the same program, but substitute the revised line
160 below to unlock the file again:
160 A=ASC(A$) AND 191 Turn off bit 6 to unlock
ALLOCATING BLOCKS
Once you have written something in a particular sector on a diskette with the help of
direct access commands, you may wish to mark that sector as ‘‘already used,‘ to keep
other files from being written there. Blocks thus ‘‘allocated’’ will be safe until the diskette
is validated.
FORMAT FOR BLOCK-ALLOCATE COMMAND:
PRINT#15,‘BLOCK-ALLOCATE " ;drive #; track #;sector #
usually abbreviated as: PRINT#15,‘B-A’";drive #; track #;sector #

where ‘‘drive #’’ is the drive number, always 0 on the 1541, and ‘‘track #' and *‘sector
#** are the track and sector containing the block of data to be read into the file buffer.

ALTERNATE FORMAT:
PRINT#15,‘B-A:"";drive #; frack #;sector #
EXAMPLE:

If you try to allocate a block that isn’t available, the DOS will set the error messag®
to number 65, NO BLOCK, and set the track and block numbers in the error message

70

, pext available track and block number. Therefore, before selecting a block to write,
to allocate that block. If the block isn’t available, read the next available block from
en-or channel and allocate it instead. However, do not allocate data blocks in the
ectory track. If the track number returned is 0, the diskette is full.

" Here is a program that allocates a place to store a message on a diskette.

Open command channel
*“ direct access "’

0 OPEN15,8,15

D OPENS,8,5, #"°

0 PRINT#S5,‘I THINK
THEREFORE 1 AM”’ Write a message to buffer
Start at first track & sector
Try allocating it

See if it worked

If so, we’re almost done

#15,‘B-A"";0;T;S
) INPUT#15,EN,EMS,ET ES
0 IF EN =0 THEN 210
0 IF EN<>65 THEN PRINT
EN,EMS$,ET,ES:STOP
) IF ET =0 THEN PRINT
:‘DISK FULL"’:STOP
) IF ET =18 THEN ET=19:ES=0
) T=ET:S=ES:GOTO 140
) PRINT#15,°°U2"";5;0;T;S
PRINT ““STORED AT:",T,S
) CLOSE 5:CLOSE 15
0 END

4

*‘NO BLOCK’’ means already allocated

If next track is 0, we're out of room
Don’t allocate the directory!

Try suggested track & sector next
Write buffer to allocated sector

Say where message went

and tidy up

I[EEING BLOCKS

'The Block-Free command is the opposite of Block-Allocate. It frees a block that you
on’t need any more, for re-use by the DOS. Block-Free updates the BAM to show a

ticular sector is not in use, rather than actually erasing any data.
AT FOR BLOCK-FREE COMMAND:

_ PRINT#15,‘BLOCK-FREE"";drive #;track #;sector #
viated as: PRINT#15,"'B-F’";drive #;track #;sector #

‘“drive #°° is the drive number (always 0 on the 1541), and ‘‘track #’” and ‘‘sector

"" are respectively the track and sector numbers containing the desired block of data to
ad into the file buffer.

LTERNATE FORMAT:

PRINT#15,"‘B-F:""idrive #;track #;sector #

71

EXAMPLE:

To free the sector in which we wrote our name in the Block Write example, ang
allocated in the first Block-Allocate example, we could use the following command:

PRINT#15,‘B-F’”;0;1;1
USING RANDOM FILES (ADVANCED USERS ONLY)

py combining the commands in this chapter, it is possible to develop a file.
handing program that uses random files. What you need to know now is how t
keep track of which blocks on the disk such a file has used. (Even though you kno:
a sector has not been allocated by your random file, you must also be sure it wasn’t
allocated by another unrelated file on the diskette.)
: The most common way of recording which sectors have been used by a random file is
in a sequential file. The sequential file stores a list of record numbers, with the track
sector, and byte location of each record. This means three channels are needed by a;

random file: one for the command channel, one for the random data, and the last for the
sequential data.

72

puter.

CHAPTER 5
INTERNAL DISK COMMANDS

Expert programmers can give commands that directly alter the workings of the 1541,
sh as skilled programmers can alter the workings of Basic inside the computer with
ks, Pokes and Sys calls. It is also possible to write machine language programns that
and run entirely within the 1541, either by writing them into disk memory from the
outer, or by foading them directly from diskette into the desired disk memory buffer.
se, this is similar to loading and running machine language programs in your

\s when learning to use Peek(), Poke and Sys in your computer, extreme caution is
sed in using the commands in this chapter. They are essentially machine language

mands, and lack all of Basic's safeguards. If anything goes wrong, you may have to

the disk drive off and on again (after removing the diskette) to regain control. Do not
tice these commands on any important diskette. Rather, make a spare copy and work
h that. Knowing how to program a 6502 in machine language will help greatly, and
will also need a good memory map of the 1541. A brief 1541 map appears below.

1541 MEMORY MAP

Purpose

2K of RAM memory
Zero page work area: job queue, important variables & pointers
Stack work area
Command buffers & tables: channels, parser, output, variables
Data buffers 0-4, | per page of memory.

Input/Output chips
6522 VIA: 1/0 to computer
6522 VIA: 1/O to disk controller

Two 8K Disk Operating System ROMs
Interface Processor: receive & interpret commands from computer
Floppy Disk Controller: executes IP’s commands, controls mecha-
nism ;
IRQ handler: switches from IP to FDC & back every 10 ms.
ROM tables & constants
Patch area
JMP table: User command vectors

73

Other Resources:
More detailed information about Commodore disk drives can be found in these
books:
Inside Commodore DOS, by Immers & Neufeld (Datamost, c1984)
The Anatomy of the 1541 Disk Drive, by Englisch & Szczepanowski
(Abacus, c1984)
Programming the PET/CBM, by West (Level Limited, c1982)
The PET Personal Computer Guide, by Osborne & Strasmas
(Osborne/McGraw-Hill, c1982)

MEMORY-READ

The disk contains 16K of ROM (Read-Only Memory), as well as 2K of RAM (Read-
Write Memory). You can get direct access to any location within these, or to the buffers
that the DOS has set up in RAM, by using memory commands. Memory-Read allows yoy
to select which byte or bytes to read from disk memory into the computer. The Memory-
Read command is the equivalent of the Basic Peek() function, but reads the disk’s
memory instead of the computer’s memory.

Note: Unlike other disk commands, those in this chapter cannot be spelled out in
full. Thus, M-R is correct, but MEMORY-READ is not a permitted alternate
wording.

FORMAT FOR THE MEMORY-READ COMMAND: |
PRINT#15,**‘M-R" CHR$(<address)CHR$(>address)CHR$(# of bytes)

where *‘<address’’ is the low order part, and **>address’" is the high order part of the
address in disk memory to be read. If the optional *‘# of bytes’ is specified, it selects
'how many memory locations will be read in, from 1-255. Otherwise, | character will be
read. If desired, a colon (:) may follow M-R inside the quotation marks.

ALTERNATE FORMAT:
PRINT#15,"‘M-R:"’CHR$(<address)CHR$(>address)CHRS$(# of bytes)

The next byte read using the Get# statement through channel #15 (the error
channel), will be from that address in the disk controller’s memory, and successive bytes
' wiH be from successive memory locations.

i Any Input# from the error channel will give peculiar results when you're using this
command. This can be cleared up by sending any other command to the disk, excep!
another memory command.

74

AMPLES:

To see how many tries the disk will make to read a particular sector, and whether
ks one-half track to each side will be attempted if a read fails, and whether
ps" to track one and back will be attempted before declaring the sector unreadable,
.an’use the following lines. They will read a special variable in the zero page of disk
_ called REVCNT. It is located at $6A hexadecimal ($6A hexadecimal = 6 x 16
10 = 106).

Open command channel
Same as G =PEEK(106)

| OPEN 15,8,15

) PRINT#15,*“M-R”’CHR$(106)CHR$(0)
\GET#15,G$:IF G$="""" THEN G$ =CHR$(0)
) G = ASC(GS)

3=G AND 128:B$=*"ON’":IF B THEN B$ = ""OFF"" Check bit 7
y§=G AND 64:S$="*ON’":IF S THEN S$="‘OFF"’ Check bit 6

| T=G AND 31:PRINT *‘# OF TRIES IS"";T Check bits 0-5
) PRINT ‘‘BUMPS ARE’';B$ and give results
) PRINT “‘SEEKS ARE’’;S$
i Tidy up after

Open command channel
Enter number of bytes wanted
unless done

or way out of line

Enter starting address
Convert it into disk form
Actual Memory-Read

) OPEN15,8,15
| INPUT*‘# OF BYTES TO READ (0=END)"";NL

NL>255 THEN 120

UT*‘STARTING AT ADDRESS'";AD
'AH = INT(AD/256):AL = AD-AH*256

) PRINT#15,**M-R"’CHR$(AL)CHR$(AH)
CHRS$(NL)

R I=1TONL Loop til have all the data
: GET#15,A$:IF A$="*** THEN A$ = CHR$(0) '
: PRINT ASC(A$); printing it as we go

Forever

“The Memory-Write command is the equivalent of the Basic Poke command,' but has
effect in disk memory instead of within the computer. M-W allows you to write up to
bytes at a time into disk memory. The Memory-Execute and some User commands can
used to run any programs written this way.

75

FURMAL FUK THE MEMORY-WRITE COMMAND: MORY-EXECUTE
PRINT#15,*“M-W""CHR$(<address)CHR$(>address)CHR$ ‘

A ine in disk memory, either in RAM or ROM, can be executed with the
(# of bytes)CHR$(data byte(s)) y routine in disk memory

-Execute command. It is the equivalent of the Basic Sys call to a machine

- broutine, but works in disk memory instead of within the com-
where “‘<address’’ is the low order part, and **>address’’ is the high order part of th, JEFEORIER

address in disk memory to begin writing, “‘# of bytes’ is the number of memg
locations that will be written (from 1-34), and *‘data byte"’ is 1 or more byte values tq be
written into disk memory, each as a CHR$() value. If desired, a colon (:) may follow .
W within the quotation marks.

vA T FOR THE MEMORY-EXECUTE COMMAND:

PRINT#15,*‘M-E’’CHR$(<address)CHR$(>address)

ALTERNATE FORMAT: : ‘*<address’’ is the low order part, and *‘>address’’ is the high order part of the
PRINT#15,**M-W:""CHR$(<address)CHR $(>address)CHR$
(# of bytes)CHR$(data byte(s))

EXAMPLES:

We can use this line to turn off the ““bumps’’ when loading DOS-protected programs (i.e.
programs that have been protected against being copied by creating and checking for
specific disk errors).

PRINT#15,**M-W " "CHR$(106)CHR$(0)CHR$(1)CHR$(133)
R *‘M-E’’CHR$(88)CHR$(242)
The following line can be used to recover bad sectors, such as when an important file has gL = i

been damaged and cannot be read PRy, plausible use for this command would be to artificially trigger an error message.

’ "Il miss the message:

PRINT#15,*M-W"'CHRS(106)CHRS(0)CHRS(1)CHRS(31) e e i ke o
: “M-E”’ 239
The above two examples may be very useful under some circumstances. They are the QERL#15,“M-ECHRMONCHR239)
equivalent of POKE 106,133 and POKE 106,31 respectively, but in disk memory, not
inside the computer. As mentioned in the previous section’s first example, location 106 in
the 1541 disk drive signifies three separate activities to the drive, all related to error
recovery. Bit 7 (the high bit), if set means no bumps (don’t thump the drive back to track
1). Bit 6, if set, means no seeks. In that case, the drive won'’t attempt to read the half-track
above and below the assigned track to see if it can read the data that way. The bottom 6
bits are the count of how many times the disk will try to read each sector before and after
trying seeks and bumps before giving up. Since 31 is the largest number that can be
expressed in 6 bits, that is the maximum number of tries allowed.

From this example, you can see the value of knowing something about Peeks, Pokes,
and machine-language before using direct-access disk commands, as well as their poten-
tial power.

vever, most uses require intimate knowledge of the inner.workings of the DOS, and
ary setup with other commands, such as Memory-Write.

DCK-EXECUTE

memory buffer from diskette, and execute it from the first location within the
er, until a ReTurn from Subroutine (RTS) instruction ends the command.

AT FOR THE BLOCK-EXECUTE COMMAND:

| PRINT#15,"B-E";channel #:drive #;track #;sector #

re ‘‘channel #'' is the channel number specified when the file into which the bl::
be loaded was opened, ‘‘drive # is the drive number (always O on the 1541),

i* #* and “‘sector #*’ are respectively the track and sector numbers containing the
red block of data to be loaded into the file buffer and executed there.

76 7

ALTERNATE FORMATS: AT FOR USER COMMANDS:

PRINT#15,‘B-E: "’ ;channel #;drive #;track #;sector #
PRINT#15, ‘B-E:channel #,drive #,track #,sector #”’

- PRINT#15,"‘Ucharacter”’

““character’’ defines one of the preset user commands listed above.

EXAMPLES:
PLES:
Assuming you've written a machine language program onto Track 1, Sector 8 of ,
diskette, and would like to run it in buffer number 1 in disk memory (starting at $04(y - PRINT#15,U:” Preferred form of DOS RESET command
hexadecimal, you could do so as follows: - PRINT#15,°U3" Execute program at start of buffer 2

110 OPEN 15,8,15 Open command channel

120 OPEN 2,8,2,*‘#1" Open direct access channel to buffer |
130 PRINT#15,*B-E’";2;0;1;8 Load Track 1, Sector 8 in it & execufe
140 CLOSE 2 Tidy up after

150 CLOSE 15

160 END

USER COMMANDS

Most User commands are intended to be used as machine language JMP or Basic
SYS commands to machine language programs that reside inside the disk memory.
However, some of them have other uses as well. The User] and User2 commands are used
to replace the Block-Read and Block-Write commands, UI re-starts the 1541 without
changing its variables, UJ cold-starts the 1541 almost as if it had been turned off and on
again, and UI- speeds up the 1541 when used with the VIC 20 only. (Note: VIC 20 owners
don’t have to use Ul-; the 1541 works with the VIC 20, with or without this command.)

User Command Function
Ul or UA replaces Block-Read
U2 or UB replaces Block-Write
U3 or UC JMP $0500 (same as SYS 5*256, but within the 1541 itself.)
U4 or UD JMP $0503 (SYS 5*256 + 3)
US or UE JMP $0506 (“* 5*256 + 6)
U6 or UF JMP $0509 (“* 5*256+9)
U7 or UG JMP $050C (** 5*256+12)
U8 or UH JMP $050F (** 5*256 + 15)
U9 or Ul 1541 NMI (non-maskable interrupt—warm start)
U:orUJ 1541 reset (cold start, allow 2 seconds before next command.)
Ul + restore 1541 to usual speed
UI- speed 1541 up by 25% when used with VIC 20 only.

By loading these memory locations with another machine language JMP command:
such as JMP $0520, you can create longer routines that operate in the disk’s memory
along with an easy-to-use jump table.

78 19

CHAPTER 9

MACHINE LANGUAGE PROGRAMS

Here is a list of disk-related Kernal ROM subroutines and a practical example of thej,
use in a program which reads a sequential file into memory from disk. Note that mog
require advance setup of one or more processor registers or memory locations, and all are
called with the assembly language JSR command.

For a more complete description as to what each routine does and how parameters are

set for each routine, see the Programmer’s Reference Guide for your specific computer.

DISK-RELATED KERNAL SUBROUTINES

Label Address Function
SETLFS = $FFBA ;SET LOGICAL, FIRST & SECOND ADDRESSES
SETNAM = $FFBD ;SET LENGTH & ADDRESS OF FILENAME
OPEN = $FFCO ;OPEN LOGICAL FILE
CLOSE = $FFC3 ;CLOSE LOGICAL FILE
CHKIN = $FFC6 ;SELECT CHANNEL FOR INPUT
CHKOUT = $FFC9 ;SELECT CHANNEL FOR OUTPUT
CLRCHN = $FFCC ;CLEAR ALL CHANNELS & RESTORE
DEFAULT 1’0
CHRIN = $FFCF ;GET BYTE FROM CURRENT INPUT DEVICE
CHROUT = $FFD2 ;OUTPUT BYTE TO CURRENT OUTPUT
DEVICE

START LDA #4 ;SET LENGTH & ADDRESS

LDX #<FNADR ;OF FILE NAME, LOW

LDY #>FNADR ;& HIGH BYTES

JSR SETNAM ;FOR NAME SETTER

LDA #3 ;SET FILE NUMBER,

LDX #8 ;DISK DEVICE NUMBER,

LDY #0 ;AND SECONDARY ADDRESS

JSR SETLFS ;AND SET THEM

JSR OPEN ;OPEN 3,8,0,“TEST”’

LDX #3

JSR CHKIN ;SELECT FILE 3 FOR INPUT
NEXT JSR CHRIN ;GET NEXT BYTE FROM FILE

BEQ END ;UNTIL FINISH OR FAIL

JSR CHROUT ;OUTPUT BYTE TO SCREEN

JMP NEXT ;AND LOOP BACK FOR MORE
END LDA #3 ;WHEN DONE

JSR CLOSE ;CLOSE FILE

JSR CLRCHN ;RESTORE DEFAULT IO

RTS ;BACK TO BASIC
FNADR BYT “TEST" ;STORE FILE NAME HERE

80

APPENDIX A: CHANGING THE DEVICE NUMBER
)FTWARE METHOD

The preferred way to temporarily change the device number of a disk drive is via a
pgram. When power is first turned on, the drive reads an I/O location whose value is
ntrolled by a jumper on its circuit board, and writes the device number it reads there into
smory locations 119 and 120. Any time thereafter, you may write over that device
mber with a new one, which will be effective until it is changed again, or the 1541 is

)RMAT FOR TEMPORARILY CHANGING THE DISK DEVICE NUMBER:

- PRINT#15,**M-W"’CHR$(119)CHR$(0)CHR$(2)CHR$
(device # + 32)CHR$(device # +64)

{AMPLE:
Here is a program that sets any device number from 8-11:

INPUT'NEW DEVICE NUMBER';DV

IF DV<8 OR DV>11 THEN 10

OPEN 15.8,15

PRINT#15,**M-W* " CHR$(119)CHR$(0)CHR$(2)CHR$(DV +32)CHR$(DV + 64)
CLOSE 15

Note: If you will be using two disk drives, and want to temporarily change the
evice number of one, you will need to run the above program with the disk drive
‘whose device number is not to be changed turned off. After the program has been
, you may turn that drive back on. If you need to connect more than two drives
at once, you will need to use the hardware method .of changing device numbers,
2 though you may be able to get by in an emergency by unplugging the serial bus
cable from drives whose device number has already been set while changing others.
This is not recommended, however, as there is always danger of damaging
electronic devices when plugging in cables with the power on.

ARDWARE METHOD

IMPORTANT: Using the following method to change the device number will void
the 1541 Disk Drive warranty!

81

If you have more than one drive, either you or preferably your dealer may perm,_
nently change the address of all after the first, to avoid having to run the program on th,
previous page before each use of multiple drives. The only tools needed to make th,
change are a Phillips-head screwdriver and a sharp knife.

STEPS TO CHANGE THE DEVICE NUMBER ON HARDWARE

. Disconnect all cables from drive, including power.

Turn drive upside down on a flat, steady surface.

. Remove 4 screws on bottom that hold drive cover together.

. Carefully turn drive right side up, and remove case top.

Remove 2 screws on side of metal housing covering the main circuit board.

. Remove housing.

. Locate the two device number jumpers. They will be small round silvery spots
(solder pads) on the main circuit board, located close together, each cut nearly ip
half, and will be the only such jumpers on the board. On current 1541’s, they are
located near the front of the drive, in the middle, by resistors R32 and R36, capacitor
C46, and transistor Q3, all of which are named on the board. On older 1541’s with
white cases, they were located in the left rear of the board, to the left of UABI, 3
6522 VIA chip. In each case, Jumper 1 is toward the rear, and Jumper 2 toward the
front of the drive.

8. Following the chart below, decide which jumper(s) to cut.

Device # Jumper 1 Jumper 2
9 cut
10 cut
11 v cut cut

9. Make the cut by completing the cut already nearly separating the two halves of the
selected jumper(s).
10. Replace the metal housing and its 2 screws.
11. Replace case top, carefully turn drive upside down, and tighten 4 case screws.
12. Re-connect cables and power up.

Note: If you make a mistake, perhaps cutting the wrong jumper, or your needs
change later, a cut jumper can be restored with a small dot of electrical solder.
However, do not attempt this yourself unless you are already skilled at electronic
soldering.

82

PENDIX B: DOS ERROR MESSAGES AND LIKELY CAUSES

jote: Many commercial program diskettes are intentionally created with one or
re of the following errors, to keep programs from being improperly duplicated.
f a disk error occurs while you are making a security copy of a commercial
gram diskette, check the program’s manual. If its copyright statement does not
ermit purchasers to copy the program for their own use, you may not be able to

plicate the diskette. In some such cases, a safety spare copy of the program
kette is available from your dealer or directly from the company for a reasonable

OK (not an error)
This is the message that usually appears when the error channel is checked. It
means there is no current error in the disk unit.

FILES SCRATCHED (not an error)
This is the message that appears when the error channel is checked after using the
Scratch command. The track number tells how many files were erased.

'E: If any other error message numbers less than 20 ever appear, they may be
. All true errors have numbers of 20 or more.

READ ERROR (block header not found)

The disk controller is unable to locate the header of the requested data block.
Caused by an illegal block, or a header that has been destroyed. Usually
unrecoverable.

READ ERROR (no sync character)

The disk controller is unable to detect a sync mark on the desired track.
~ Caused by misalignment, or a diskette .that is absent, unformatted or
_improperly seated. Can also indicate hardware failure. Unless caused by one
of the above simple causes, this error is usually unrecoverable.

READ ERROR (data block not present)

The disk controller has been requested to read or verify a data block that was not
properly written. Occurs in conjunction with Block commands and indicates an
illegal track and/or sector request.

READ ERROR (checksum error in data block)

There is an error in the data. The sector has been read into disk memory, but its
checksum is wrong. May indicate grounding problems. This fairly minor error is
often repairable by simply reading and rewriting the sector with direct access
commands.

83

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

READ ERROR (byte decoding error)
The data or header has been read into disk memory, but a hardware error has be,
created by an invalid bit pattern in the data byte. May indicate grounding problem

SYNTAX ERROR (invalid command)
The DOS does not recognize a command sent to the command channel (secondary
address 15). Check your typing and try again.

WRITE ERROR (write-verify error)
The controller has detected a mismatch between the data written to diskette ang the
same data in disk memory. May mean the diskette is faulty. If so, try another. Use
only high quality diskettes from reputable makers.

RECORD NOT PRESENT

~ The requested record number has not been created yet. This is not an error in a new
relative file or one that is being intentionally expanded. It results from reading past
~ the last existing record, or positioning to a non-existent record number with the

WRITE PROTECT ON Record# command.

The controller has been requested to write a data block while the write prote
sensor is covered. Usually caused by writing to a diskette whose write protect nocy
is covered over with tape to prevent changing the diskette’s contents.

- OVERFLOW IN RECORD
The data to be written in the current record exceeds the record size. The excess has
been truncated (cut off). Be sure to include all special characters (such as carriage

READ ERROR (checksum error in header) Jtums) in calculating rocord gives.

The controller detected an error in the header bytes of the requested data block. The
block was not read into disk memory. May indicate grounding problems. Usually
unrecoverable.

FILE TOO LARGE

There isn’t room left on the diskette to create the requested relative record.
" To avoid this error, create the last record number that will be needed as you
first create the file. If the file is unavoidably too large for the diskette, either
split it into two files on two diskettes, or use abbreviations in the data to
‘allow shorter records.

WRITE ERROR (long data block)

The controller attempts to detect the sync mark of the next header after writing a
data block. If the sync mark does not appear on time, this error message is
generated. It is caused by a bad diskette format (the data extends into the next

block) or by a hardware failure. WRITE FILE OPEN

" A write file that has not been closed is being re-opened for reading. This file must
~ be immediately rescued, as described in Housekeeping Hint #2 in Chapter 4, or it
will become a splat (improperly closed) file and probably be lost.

DISK ID MISMATCH
The disk controller has been requested to access a diskette which has not been

initialized. Can al if a diskett 4
an also occur if a diskette has a bad header FILE NOT OPEN

~ A file is being accessed that has not been opened by the DOS. In some such

SYNTAX ERROR (general syntax
. i ~ cases no error message is generated. Rather the request is simply ignored.

The DOS cannot interpret the command sent to the command channel. Typically,
this is caused by an illegal number of file names, or an illegal pattern. Check your

typing and try again. FILE NOT FOUND

The requested file does not exist on the indicated drive. Check your spelling and try

SYNTAX ERROR (invalid command) Jpagain.

The DOS does not recognize the command. It must begin with the first character

sent. Check your typing and try again. QR RS

A file with the same name as has been requested for a new file already exists on the

SYNTAX ERROR (invalid command) - diskette. Duplicate file names are not allowed. Select another name.

Th d sent i i i ds.
e command sent is longer than 58 characters. Use abbreviated disk comman FILE TYPE MISMATCH

" The requested file access is not possible using files of the type named. Reread the

SYNTAX ERROR (invalid file name) chapter covering that file type

Pattern matching characters cannot be used in the Save command or when Opening

files for the purpose of Writing new data. Spell out the file name. NO BLOCK

Occurs in conjunction with B-A. The sector you tried to allocate is already
allocated. The track and sector numbers returned are the next higher track and
sector available. If the track number returned is zero (0), all remaining sectors are
full. If the diskette is not full yet, try a lower track and sector.

SYNTAX ERROR (no file given) >
The file name was left out of a command or the DOS does not recognize it as such:
Typically, a colon (:) has been omitted. Try again.

84 85

67:

70:

5 5

72:

73:

74:

ILLEGAL TRACK AND SECTOR
The DOS has attempted to access a track or sector which does not exist. May
indicate a faulty link pointer in a data block.

ILLEGAL SYSTEM T OR S
This special error message indicates an illegal system track or block.

NO CHANNEL (available)

The requested channel is not available, or all channels are in use. A maximum
three sequential files or one relative file plus one sequential file may be openeg 4
one time, plus the command channel. Do not omit the drive number in a sequenjy
Open command, or only two sequential files can be used. Close all files as soop 4
you no longer need them.

DIRECTORY ERROR
The BAM (Block Availability Map) on the diskette does not match the copy in disk
memory. To correct, Initialize the diskette.

DISK FULL

Either the diskette or its directory is full. DISK FULL is sent when 2 blocks are stil]
available, allowing the current file to be closed. If you get this message and the
directory shows any blocks left, you have too many separate files in your directory,
and will need to combine some, delete any that are no longer needed, or copy some
to another diskette.

DOS MISMATCH (CBM DOS V2.6 1541)

If the disk error status is checked when the drive is first turned on, before a
directory or other command has been given, this message will appear. In that use, it
is not an error, but rather an easy way to see which version of DOS is in use. If the
message appears at other times, an attempt has been made to write to a diskette with
an incompatible format, such as the former DOS 1 on the Commodore 2040 disk
drive. Use one of the copy programs on the Test/Demo diskette to copy the desired
file(s) to a 1541 diskette.

DRIVE NOT READY

An attempt has been made to access the 1541 single disk without a formatted
diskette in place. Blank diskettes cannot be used until they have been formatted.

86

ENDIX C: DISKETTE FORMATS

NOTE
Not to scale

\
-«

100 100 -
it et
e \ e

EEELET F FEE = B

1541 Format: Expanded View of a Single Sector

87

1541 BLOCK DISTRIBUTION BY TRACK

Track number Range of Sectors Total # of Sectors
1to 17 0to20 21
18 to 24 Oto 18 19
25 to 30 Oto 17 18
31to35 Oto 16 17
1541 BAM FORMAT
Track 18, Sector 0.
BYTE CONTENTS DEFINITION
(2),1 18,01 Track and sector of first directory block.
- 65 ASCII character A indicating 1541/4040 format.
ae 0 Null flag for future DOS use.
3 Bit map of the available blocks in tracks 1-35.
1 = available block
0 = block not available (each bit represents one block)

1541 DIRECTORY HEADER
Track 18, Sector 0.
BYTE CONTENTS DEFINITION
144-159 Diskette name i i
padded with shifted spaces.
160-161 160 Shifted spaces. j
162-163 Diskette ID.
164 160 Shifted space
165-166 50,65 :::SCII representation of 2A, which are, respectively,
e DOS version (2) and f¢ tt
167-170 160 Shifted spaces. S s (AP0
170-255 0 Nulls ($00), not used.

88

PROGRAM FILE FORMAT

DEFINITION

Track and sector of next block in program file.

Load address of the program
Next 252 bytes of program information stored as in computer

memory (with key words tokenized).

AINING FULL SECTORS

L1 Track and sector of next block in program file.

;255 Next 254 bytes of program info stored as in computer memory
(with key words tokenized).

INAL SECTOR

1 Null ($00), followed by number of valid data bytes in sector.

Last bytes of the program information, stored as in computer
memory (with key words tokenized). The end of a Basic file is
marked by 3 zero bytes in a row. Any remaining bytes in the
sector are garbage, and may be ignored.

SEQUENTIAL FILE FORMAT

DEFINITION

\LL BUT FINAL SECTOR

Track and sector of next sequential data block.
254 bytes of data.

Null ($00), followed by number of valid data bytes in sector.
Last bytes of data. Any remaining bytes are gar

bage and may be ignored.

89

1541 RELATIVE FILE FORMAT

BYTE DEFINITION
DATA BLOCK

0,1 Track and sector of next data block.

2-255 254 bytes of data. Empty records contain $FF

(al_l binary ones) in the first byte followed by $00
(binary all zeros) to the end of the record. Partially
filled records are padded with nulls ($00).

SIDE SECTOR BLOCK

0-1 Track and sector of next side sector block.

2 Side sector number (0-5)

3 Record length

4-5 Track and sector of first side sector (number 0)
6-7 Track and sector of second side sector (number 1)
8-9 Track and sector of third side sector (number 2)
10-11 Track and sector of fourth side sector (number 3)
12-13 Track and sector of fifth side sector (number 4)
14-15 Track and sector of sixth side sector (number 5)
16-255 Track and sector pointers to 120 data blocks.

1541 DIRECTORY FILE FORMAT

Track 18, Sector 1.

DEFINITION
Track and sector of next directory block.
File entry 1*
File entry 2*
File entry 3*
98-127 File entry 4*
' 130-159 File entry 5*
162-191 File entry 6*
| 194-223 File entry 7*
226-255 File entry 8*
| *STRUCTURE OF EACH INDIVIDUAL DIRECTORY ENTRY
7 BYTE CONTENTS DEFINITION
128 File type OR’ed with $80 to indicate properly closed file.
+ (if OR’ed with $CO instead, file is locked.)
type TYPES: 0 = DELeted

1 = SEQuential
2 = PROGram
3 = USER

4 = RELative

Track and sector of first data block.

File name padded with shifted spaces.

Relative file only: track and sector of first side

sector block.

Relative file only: Record length.

Unused.

Track and sector of replacement file during an
@SAVE or @OPEN.

Number of blocks in file: stored as a two-byte integer,
in low byte, high byte order.

91

APPENDIX D: DISK COMMAND QUICK REFERENCE CHART

General Format: OPEN 15,8,15:PRINT#15,command:CLOSE 15 (Basic 2)
HOUSEKEEPING COMMANDS

BASIC 2 NEW
COPY
RENAME
SCRATCH
INITIALIZE
VALIDATE

BASIC3.5 NEW

“*NO:diskette name,id"*
“*CO:new file =0:0ld file*’
**RO:new name = old name"’
**S0:file name™’

o

Vo

HEADER *‘diskette name,"" lid DO

COPY COPY **old file”” TO *“*new file'
RENAME RENAME *‘old name’* TO *‘new name"’
SCRATCH SCRATCH **file name”’
VALIDATE COLLECT
BOTH INITIALIZE &l0%:
FILE COMMANDS
BASIC 2 LOAD LOAD *‘file name"’,8
SAVE SAVE ““0:file name"’,8
BASIC 3.5 LOAD DLOAD *‘file name"*
SAVE DSAVE *‘file name”’
BOTH CLOSE CLOSE file #
GET# GET#file #,variable list
INPUT# INPUT#file # variable list
OPEN OPEN file #,8.channel #,**0:file name,file
type,direction’’
PRINT# PRINT#file #,data list
RECORD# “P"’+ CHR$(channel #)+ CHR$(<record #)
+ CHRS$(>record #)+ CHRS$(offset)
DIRECT ACCESS COMMANDS

BLOCK-ALLOCATE
BLOCK-EXECUTE
BLOCK-FREE
BUFFER-POINTER
BLOCK-READ
BLOCK-WRITE

“B-A’";0;track #:sector #
“B-E’";channel #;0;track #:sector #
“‘B-F'";0;track #:sector #
"“B-P”’;channel #;byte
“Ul"";channel #:0;track #:sector #
““U2"";channel #;0;track #:sector #

MEMORY-EXECUTE "M-E"CHR$(<add}css)CHR$(>address)

MEMORY-READ
MEMORY-WRITE

::M-R':CHR$(<address)CHR$(>addmss)CHR$(# of bytes)
M-W*’CHR$(<address)CHR$(>address)CHRS$(# of bytes)

CHRS$ (data byte)
USER **Ucharacter”’

92

PPENDIX E: TEST/DEMO DISKETTE

OW TO USE
The ““HOW TO USE’’ programs provide brief descriptions of the other programs

on the Test/Demo diskette.

VIC-20 & C-64 WEDGES

Additional commands are available which allow you to type short instructions to
the disk drive. Load and run the VIC-20 WEDGE if you have a VIC; use the C-64
WEDGE if you have a Commodore 64. Using either, you will be able to press backslash
(/) followed by the program name and the RETURN key to load a program; the ‘‘/”’
means load from disk drive. For example, type ‘‘/how to use’’ to load that program.
Type ““>" or “@’’ and then press RETURN to display the current disk error status.
Type “>$" or “@$’’ and RETURN to display the directory without erasing the current

program.

DOS 5.1
The DOS 5.1 program is not intended to be loaded directly, but is loaded instead

from the program C-64 WEDGE. Its load address is $CCQ® hexadecimal.

PRINTER TEST
The PRINTER TEST prints a listing of characters in a form that makes it easy to

check the mechanical and electronic capabilities of the printer.

DISK ADDR CHANGE
Use this program to change the device number of the disk drive. It is a soft

change—when the system is turned off, the disk drive is reset to its original device
number.

VIEW BAM
The VIEW BAM program allows a programmer to examine the contents of the sec-

tors that make up the block availability map (BAM)—the table that DOS uses to identify
blocks that have been allocated to the files on that diskette.

CHECK DISK
The CHECK DISK program can be used to make sure a new diskette that has been

headered is in fact a good diskette. The program writes to every block to verify its ability
to store information and identifies any diskette that contains a bad block. Don’t use
such diskettes.

DISPLAY T&S
The DISPLAY T&S program allows a programmer to examine the contents of a

block by specifying the particular track number and sector number that identifies that
block.

PERFORMANCE TEST
The PERFORMANCE TEST program tests the electronic and mechanical capabili-
ties of the disk drive whenever necessary. Use this program whenever you suspect there
may be damage to the drive.
93

SEQ.FILE.DEMO AND REL.FILE.DEMO

These two files are included as programming examples or guidelines when writing
your own programs. They also illustrate the important technique of checking the error
channel after each access to the disk drive.

SD.BACKUP.xx

These three programs are entitled SD.BACKUP.C64, SD.BACKUP.C16, and
SD.BACKUP.PLUS4. Each, when loaded into its respective computer, allows you to
create an exact duplicate of a diskette by switching a blank diskette and the diskette to
be copied in and out of the drive at the appropriate times. Loading and running them
incorrectly may damage a diskette.

PRINT.xx.UTIL

These three programs are actually entitled PRINT.64.UTIL, PRINT.+4, and
PRINT.C16.UTIL. They provide two functions: a printout of any Text-Mode screen
display, and a listing of the contents of all scaler (non-array) variables in a Basic pro-
gram to screen or printer. Any CBM printer may be used for either function. Printing of
reverse-video and graphics characters depends on the specific printer model used. These
programs can run from tape.

C64 BASIC DEMO +4 BASIC DEMO

These programs offer a set of demo routines which can perform minimal system
testing on the computers. Routines are provided for testing the video and sound output,
keyboard and joy stick input, and disk unit 1/0.

LOAD ADDRESS

LOAD ADDRESS is a simple program that tells you where a program was origi-
nally located in memory. Some programs can only run in the same locations from which
they were saved. Load such programs with LOAD*‘filename’’,8,1.

UNSCRATCH
Allows you to restore a file that’s been deleted (scratched) from a diskette as long as
the diskette hasn’t been written to since the scratch was performed.

HEADER CHANGE
Allows you to rename a diskette without losing the data currently stored in the
diskette.

IMPORTANT NOTE:
Your Test/Demo diskette
may contain additional
programs. Commodore
may update the diskette
from time to time.

ALL ADDITIONS, DELETIONS, OR MODIFICATIONS TO THE PRO-
GRAMS LISTED IN THIS APPENDIX WILL BE NOTED IN THE “HOW TO
USE”” PROGRAMS ON YOUR TEST/DEMO DISKETTE.

94

Commodore offers a complete line of peripherals and
accessories for other new and exciting applications.

Dot Matrix Printers

Commodore manufactures printers designed to fit almost any type of
application. These include a variety of high-speed, dot matrix printers
for business applications and graphics printers for general and high-
resolution printing for graphics packages such as LOGO. Enhance your
system today with the addition of a quality printer from Commodore.

Color Monitors

Commodore monitors, designed specifically for Commodore computers,
provide superior resolution compared to most television sets or other
video monitors. They come complete with video adjustment controls and
a speaker with volume control.

Accessories

Modems

A Commodore modem allows your computer to communicate with other
computers via standard telephone lines. Information may be instantly ob-
tained including timely financial information, news and reference libraries.
Turn your ordinary phone into a telecomputing information network.
Joysticks and Game Paddles

Increase your video game skills with the addition of a Commodore joy-
stick or game paddle.

Commodore Diskettes

To ensure maximum performance from your 1541 disk drive, use quality
Commodore diskettes.

Software

Get more from your computer with Commodore Software. Whether it's
productivity, educational or recreational, Commodore offers a complete
line of software at affordable prices.

Commodore has a variety of other products available for your particular
system. See your dealer for more details.

r commodore

COMPUTERS

Commodore Business Machines, Inc.
Computer Systems Division
1200 Wilson Drive, West Chester, PA 19380

Printed in Japan P/N 1540031-03

